Barth Syndrome: From Mitochondrial Dysfunctions Associated with Aberrant Production of Reactive Oxygen Species to Pluripotent Stem Cell Studies

Mutations in the gene encoding the enzyme tafazzin, TAZ, cause Barth syndrome (BTHS). Individuals with this X-linked multisystem disorder present cardiomyopathy (CM) (often dilated), skeletal muscle weakness, neutropenia, growth retardation, and 3-methylglutaconic aciduria. Biopsies of the heart, li...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in genetics Vol. 6; p. 359
Main Authors Saric, Ana, Andreau, Karine, Armand, Anne-Sophie, Møller, Ian M., Petit, Patrice X.
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media 20.01.2016
Frontiers Media S.A
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Mutations in the gene encoding the enzyme tafazzin, TAZ, cause Barth syndrome (BTHS). Individuals with this X-linked multisystem disorder present cardiomyopathy (CM) (often dilated), skeletal muscle weakness, neutropenia, growth retardation, and 3-methylglutaconic aciduria. Biopsies of the heart, liver and skeletal muscle of patients have revealed mitochondrial malformations and dysfunctions. It is the purpose of this review to summarize recent results of studies on various animal or cell models of Barth syndrome, which have characterized biochemically the strong cellular defects associated with TAZ mutations. Tafazzin is a mitochondrial phospholipidlysophospholipid transacylase that shuttles acyl groups between phospholipids and regulates the remodeling of cardiolipin (CL), a unique inner mitochondrial membrane phospholipid dimer consisting of two phosphatidyl residues linked by a glycerol bridge. After their biosynthesis, the acyl chains of CLs may be modified in remodeling processes involving up to three different enzymes. Their characteristic acyl chain composition depends on the function of tafazzin, although the enzyme itself surprisingly lacks acyl specificity. CLs are crucial for correct mitochondrial structure and function. In addition to their function in the basic mitochondrial function of ATP production, CLs play essential roles in cardiac function, apoptosis, autophagy, cell cycle regulation and Fe-S cluster biosynthesis. Recent developments in tafazzin research have provided strong insights into the link between mitochondrial dysfunction and the production of reactive oxygen species (ROS). An important tool has been the generation of BTHS-specific induced pluripotent stem cells (iPSCs) from BTHS patients. In a complementary approach, disease-specific mutations have been introduced into wild-type iPSC lines enabling direct comparison with isogenic controls. iPSC-derived cardiomyocytes were then characterized using biochemical and classical bioenergetic approaches. The cells are tested in a "heart-on-chip" assay to model the pathophysiology in vitro, to characterize the underlying mechanism of BTHS deriving from TAZ mutations, mitochondrial deficiencies and ROS production and leading to tissue defects, and to evaluate potential therapies with the use of mitochondrially targeted antioxidants.
AbstractList Mutations in the gene encoding the enzyme tafazzin, TAZ, cause Barth syndrome (BTHS). Individuals with this X-linked multisystem disorder present cardiomyopathy (CM) (often dilated), skeletal muscle weakness, neutropenia, growth retardation, and 3-methylglutaconic aciduria. Biopsies of the heart, liver and skeletal muscle of patients have revealed mitochondrial malformations and dysfunctions. It is the purpose of this review to summarize recent results of studies on various animal or cell models of Barth syndrome, which have characterized biochemically the strong cellular defects associated with TAZ mutations. Tafazzin is a mitochondrial phospholipidlysophospholipid transacylase that shuttles acyl groups between phospholipids and regulates the remodeling of cardiolipin (CL), a unique inner mitochondrial membrane phospholipid dimer consisting of two phosphatidyl residues linked by a glycerol bridge. After their biosynthesis, the acyl chains of CLs may be modified in remodeling processes involving up to three different enzymes. Their characteristic acyl chain composition depends on the function of tafazzin, although the enzyme itself surprisingly lacks acyl specificity. CLs are crucial for correct mitochondrial structure and function. In addition to their function in the basic mitochondrial function of ATP production, CLs play essential roles in cardiac function, apoptosis, autophagy, cell cycle regulation and Fe-S cluster biosynthesis. Recent developments in tafazzin research have provided strong insights into the link between mitochondrial dysfunction and the production of reactive oxygen species (ROS). An important tool has been the generation of BTHS-specific induced pluripotent stem cells (iPSCs) from BTHS patients. In a complementary approach, disease-specific mutations have been introduced into wild-type iPSC lines enabling direct comparison with isogenic controls. iPSC-derived cardiomyocytes were then characterized using biochemical and classical bioenergetic approaches. The cells are tested in a "heart-on-chip" assay to model the pathophysiology in vitro, to characterize the underlying mechanism of BTHS deriving from TAZ mutations, mitochondrial deficiencies and ROS production and leading to tissue defects, and to evaluate potential therapies with the use of mitochondrially targeted antioxidants.Mutations in the gene encoding the enzyme tafazzin, TAZ, cause Barth syndrome (BTHS). Individuals with this X-linked multisystem disorder present cardiomyopathy (CM) (often dilated), skeletal muscle weakness, neutropenia, growth retardation, and 3-methylglutaconic aciduria. Biopsies of the heart, liver and skeletal muscle of patients have revealed mitochondrial malformations and dysfunctions. It is the purpose of this review to summarize recent results of studies on various animal or cell models of Barth syndrome, which have characterized biochemically the strong cellular defects associated with TAZ mutations. Tafazzin is a mitochondrial phospholipidlysophospholipid transacylase that shuttles acyl groups between phospholipids and regulates the remodeling of cardiolipin (CL), a unique inner mitochondrial membrane phospholipid dimer consisting of two phosphatidyl residues linked by a glycerol bridge. After their biosynthesis, the acyl chains of CLs may be modified in remodeling processes involving up to three different enzymes. Their characteristic acyl chain composition depends on the function of tafazzin, although the enzyme itself surprisingly lacks acyl specificity. CLs are crucial for correct mitochondrial structure and function. In addition to their function in the basic mitochondrial function of ATP production, CLs play essential roles in cardiac function, apoptosis, autophagy, cell cycle regulation and Fe-S cluster biosynthesis. Recent developments in tafazzin research have provided strong insights into the link between mitochondrial dysfunction and the production of reactive oxygen species (ROS). An important tool has been the generation of BTHS-specific induced pluripotent stem cells (iPSCs) from BTHS patients. In a complementary approach, disease-specific mutations have been introduced into wild-type iPSC lines enabling direct comparison with isogenic controls. iPSC-derived cardiomyocytes were then characterized using biochemical and classical bioenergetic approaches. The cells are tested in a "heart-on-chip" assay to model the pathophysiology in vitro, to characterize the underlying mechanism of BTHS deriving from TAZ mutations, mitochondrial deficiencies and ROS production and leading to tissue defects, and to evaluate potential therapies with the use of mitochondrially targeted antioxidants.
Mutations in the gene encoding the enzyme tafazzin, TAZ, cause Barth syndrome (BTHS). Individuals with this X-linked multisystem disorder present cardiomyopathy (CM) (often dilated), skeletal muscle weakness, neutropenia, growth retardation, and 3-methylglutaconic aciduria. Biopsies of the heart, liver and skeletal muscle of patients have revealed mitochondrial malformations and dysfunctions. It is the purpose of this review to summarize recent results of studies on various animal or cell models of Barth syndrome, which have characterized biochemically the strong cellular defects associated with TAZ mutations. Tafazzin is a mitochondrial phospholipidlysophospholipid transacylase that shuttles acyl groups between phospholipids and regulates the remodeling of cardiolipin (CL), a unique inner mitochondrial membrane phospholipid dimer consisting of two phosphatidyl residues linked by a glycerol bridge. After their biosynthesis, the acyl chains of CLs may be modified in remodeling processes involving up to three different enzymes. Their characteristic acyl chain composition depends on the function of tafazzin, although the enzyme itself surprisingly lacks acyl specificity. CLs are crucial for correct mitochondrial structure and function. In addition to their function in the basic mitochondrial function of ATP production, CLs play essential roles in cardiac function, apoptosis, autophagy, cell cycle regulation and Fe-S cluster biosynthesis. Recent developments in tafazzin research have provided strong insights into the link between mitochondrial dysfunction and the production of reactive oxygen species (ROS). An important tool has been the generation of BTHS-specific induced pluripotent stem cells (iPSCs) from BTHS patients. In a complementary approach, disease-specific mutations have been introduced into wild-type iPSC lines enabling direct comparison with isogenic controls. iPSC-derived cardiomyocytes were then characterized using biochemical and classical bioenergetic approaches. The cells are tested in a "heart-on-chip" assay to model the pathophysiology in vitro, to characterize the underlying mechanism of BTHS deriving from TAZ mutations, mitochondrial deficiencies and ROS production and leading to tissue defects, and to evaluate potential therapies with the use of mitochondrially targeted antioxidants.
Mutations in the gene encoding the enzyme tafazzin, TAZ , cause Barth syndrome (BTHS). Individuals with this X-linked multisystem disorder present cardiomyopathy (CM) (often dilated), skeletal muscle weakness, neutropenia, growth retardation, and 3-methylglutaconic aciduria. Biopsies of the heart, liver and skeletal muscle of patients have revealed mitochondrial malformations and dysfunctions. It is the purpose of this review to summarize recent results of studies on various animal or cell models of Barth syndrome, which have characterized biochemically the strong cellular defects associated with TAZ mutations. Tafazzin is a mitochondrial phospholipidlysophospholipid transacylase that shuttles acyl groups between phospholipids and regulates the remodeling of cardiolipin (CL), a unique inner mitochondrial membrane phospholipid dimer consisting of two phosphatidyl residues linked by a glycerol bridge. After their biosynthesis, the acyl chains of CLs may be modified in remodeling processes involving up to three different enzymes. Their characteristic acyl chain composition depends on the function of tafazzin, although the enzyme itself surprisingly lacks acyl specificity. CLs are crucial for correct mitochondrial structure and function. In addition to their function in the basic mitochondrial function of ATP production, CLs play essential roles in cardiac function, apoptosis, autophagy, cell cycle regulation and Fe-S cluster biosynthesis. Recent developments in tafazzin research have provided strong insights into the link between mitochondrial dysfunction and the production of reactive oxygen species (ROS). An important tool has been the generation of BTHS-specific induced pluripotent stem cells (iPSCs) from BTHS patients. In a complementary approach, disease-specific mutations have been introduced into wild-type iPSC lines enabling direct comparison with isogenic controls. iPSC-derived cardiomyocytes were then characterized using biochemical and classical bioenergetic approaches. The cells are tested in a “heart-on-chip” assay to model the pathophysiology in vitro , to characterize the underlying mechanism of BTHS deriving from TAZ mutations, mitochondrial deficiencies and ROS production and leading to tissue defects, and to evaluate potential therapies with the use of mitochondrially targeted antioxidants.
Mutations in the gene encoding the enzyme tafazzin, TAZ, cause Barth syndrome (BTHS). Individuals with this X-linked multisystem disorder present cardiomyopathy (often dilated), skeletal muscle weakness, neutropenia, growth retardation and 3-methylglutaconic aciduria. Biopsies of the heart, liver and skeletal muscle of patients have revealed mitochondrial malformations and dysfunctions. It is the purpose of this review to summarize recent results of studies on various animal or cell models of Barth syndrome, which have characterized biochemically the strong cellular defects associated with TAZ mutations. Tafazzin is a mitochondrial phospholipid-lysophospholipid transacylase that shuttles acyl groups between phospholipids and regulates the remodeling of cardiolipin (CL), a unique inner mitochondrial membrane phospholipid dimer consisting of two phosphatidyl residues linked by a glycerol bridge. After their biosynthesis, the acyl chains of CLs may be modified in remodeling processes involving up to three different enzymes. Their characteristic acyl chain composition depends on the function of tafazzin, although the enzyme itself surprisingly lacks acyl specificity. CLs are crucial for correct mitochondrial structure and function. In addition to their function in the basic mitochondrial function of ATP production, CLs play essential roles in cardiac function, apoptosis, autophagy, cell cycle regulation and Fe-S cluster biosynthesis. Recent developments in tafazzin research have provided strong insights into the link between mitochondrial dysfunction and the production of reactive oxygen species (ROS). An important tool has been the generation of BTHS-specific induced pluripotent stem cells (iPSCs) from BTHS patients. In a complementary approach, disease-specific mutations have been introduced into wild-type iPSC lines enabling direct comparison with isogenic controls. iPSC-derived cardiomyocytes were then characterized using biochemical and classical bioenergetic approaches. The cells are tested in a ‘‘heart-on-chip’’ assay to model the pathophysiology in vitro, to characterize the underlying mechanism of BTHS deriving from TAZ mutations, mitochondrial deficiencies and ROS production and leading to tissue defects, and to evaluate potential therapies with the use of mitochondrially targeted antioxidants.
Author Petit, Patrice X.
Andreau, Karine
Armand, Anne-Sophie
Møller, Ian M.
Saric, Ana
AuthorAffiliation 3 Department of Molecular Biology and Genetics, Aarhus University Slagelse, Denmark
2 Division of Molecular Medicine, Ruđer Bošković Institute Zagreb, Croatia
1 INSERM U 1124 “Toxicologie, Pharmacologie et Signalisation Cellulaire” and “FR 3567” CNRS Chimie, Toxicologie, Signalisation Cellulaire et Cibles Thérapeutiques, Université Paris Descartes – Centre Universitaire des Saints-Pères Paris, France
AuthorAffiliation_xml – name: 1 INSERM U 1124 “Toxicologie, Pharmacologie et Signalisation Cellulaire” and “FR 3567” CNRS Chimie, Toxicologie, Signalisation Cellulaire et Cibles Thérapeutiques, Université Paris Descartes – Centre Universitaire des Saints-Pères Paris, France
– name: 3 Department of Molecular Biology and Genetics, Aarhus University Slagelse, Denmark
– name: 2 Division of Molecular Medicine, Ruđer Bošković Institute Zagreb, Croatia
Author_xml – sequence: 1
  givenname: Ana
  surname: Saric
  fullname: Saric, Ana
– sequence: 2
  givenname: Karine
  surname: Andreau
  fullname: Andreau, Karine
– sequence: 3
  givenname: Anne-Sophie
  surname: Armand
  fullname: Armand, Anne-Sophie
– sequence: 4
  givenname: Ian M.
  surname: Møller
  fullname: Møller, Ian M.
– sequence: 5
  givenname: Patrice X.
  surname: Petit
  fullname: Petit, Patrice X.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26834781$$D View this record in MEDLINE/PubMed
https://hal.science/hal-04749806$$DView record in HAL
BookMark eNp1Uk1vEzEQXaEiWkrvnJCPcEjwV9Y2B6QQKK0U1IrA2fLas4mrzTq1dwP5FfxlvEmL2kr4MqPn996Mx_OyOGpDC0XxmuAxY1K9r5fQwphiMhljzCbqWXFCypKPJKbk6EF-XJyldIPz4Yoxxl8Ux7SUjAtJToo_n0zsVmixa10Ma_iAznNA33wX7CpkzJsGfd6lum9t50Ob0DSlYL3pwKFfPiunFcRo2g5dx-D6PQmFGn0Hk_MtoKvfu9wnWmzAekioC-i66aPfhA6yaNHBGs2gaXLWu0x4VTyvTZPg7C6eFj_Pv_yYXYzmV18vZ9P5yHJVdiNmBKsk5YRyLCWrKFZEKEtdKbhzuFK1YLZ0QlInKsZrl-dDQeCMgMQ1YafF5cHXBXOjN9GvTdzpYLzeAyEudR6Mtw1oYbClXOSKwDhwLo2aQK7uJlWtSE2z18eD16av1uBsflg0zSPTxzetX-ll2GouiKJEZYN3B4PVE9nFdK4HDHPBlcTldmj87V2xGG57SJ1e-2TzBE0LoU-aiJIyziTHmfrmYV__nO9_PxPKA8HGkFKEWlvfmeELc5u-0QTrYdP0ftP0sGl6v2lZiJ8I773_K_kLibbYUA
CitedBy_id crossref_primary_10_1111_bjh_14677
crossref_primary_10_3389_fphys_2021_768411
crossref_primary_10_1172_jci_insight_176887
crossref_primary_10_1155_2020_6813405
crossref_primary_10_1038_s41598_022_10270_4
crossref_primary_10_1155_2019_3836186
crossref_primary_10_3389_fcimb_2023_997245
crossref_primary_10_3390_jcm6110100
crossref_primary_10_1002_jmd2_12335
crossref_primary_10_1096_fj_202200145R
crossref_primary_10_1016_j_biochi_2019_10_004
crossref_primary_10_1161_CIRCULATIONAHA_121_053755
crossref_primary_10_1016_j_drudis_2024_104209
crossref_primary_10_1039_D2CB00158F
crossref_primary_10_1165_rcmb_2021_0512OC
crossref_primary_10_37549_AR2706
crossref_primary_10_1007_s11010_020_04021_0
crossref_primary_10_1101_gad_349678_122
crossref_primary_10_1093_hmg_ddae152
crossref_primary_10_1242_jcs_260857
crossref_primary_10_1007_s10571_016_0458_9
crossref_primary_10_2174_1381612826999200820162154
crossref_primary_10_1016_j_intimp_2023_110013
crossref_primary_10_1002_jimd_12447
crossref_primary_10_1038_s41598_017_02089_1
crossref_primary_10_1093_ehjcr_ytaf030
crossref_primary_10_17116_jnevro2023123091131
crossref_primary_10_1016_j_bbalip_2019_01_006
crossref_primary_10_1134_S000629791912006X
crossref_primary_10_1063_5_0111581
crossref_primary_10_1096_fj_201901598R
crossref_primary_10_3390_ijms21093182
crossref_primary_10_26508_lsa_201900308
crossref_primary_10_1182_bloodadvances_2021005720
crossref_primary_10_3389_fped_2019_00436
crossref_primary_10_1161_CIRCULATIONAHA_120_048698
crossref_primary_10_9794_jspccs_32_409
crossref_primary_10_1002_1873_3468_13973
crossref_primary_10_1016_j_stem_2019_02_020
Cites_doi 10.1152/ajpheart.00098.2010
10.1161/JAHA.111.000455
10.1128/MCB.01092-12
10.1369/0022155415574818
10.1016/j.chemphyslip.2013.12.009
10.1161/01.CIR.103.9.1256
10.1016/j.vascn.2012.04.001
10.1001/jama.2013.282409
10.1073/pnas.1113442109
10.1093/icb/icq079
10.1038/emboj.2010.98
10.1007/BF01799418
10.1016/j.chemphyslip.2012.03.001
10.1074/jbc.M210329200
10.1074/jbc.273.24.14933
10.1016/j.jacc.2012.02.066
10.1002/ajmg.a.20660
10.1038/nm.3261
10.1093/hmg/dds447
10.1016/j.devcel.2011.08.008
10.1038/nmeth.2649
10.1016/j.ymgme.2012.01.015
10.1172/JCI64125
10.1128/EC.00237-13
10.1038/nchembio.1064
10.1038/labinvest.3700480
10.1038/ng0496-385
10.1016/j.chemphyslip.2013.10.008
10.1016/0009-8981(76)90552-0
10.1007/BF00281076
10.1016/j.mito.2015.01.002
10.1038/labinvest.3700274
10.1073/pnas.0705070104
10.1074/jbc.M305956200
10.1074/jbc.M
10.1242/dmm.010900
10.1161/01.RES.0000233378.95325.ce
10.1089/hum.2010.199
10.1371/journal.pone.0113680
10.1139/o03-074
10.1128/jb.165.3.901-910.1986
10.1016/j.plipres.2014.04.001
10.1016/j.cub.2009.10.074
10.1016/S0021-9258(17)30583-5
10.1038/nature08301
10.1074/jbc.C200551200
10.1002/ana.10419
10.4161/cc.10.23.18384
10.1016/j.cmet.2011.04.007
10.1074/jbc.M501527200
10.1016/j.bbamem.2009.07.009
10.1086/301604
10.1016/j.jmb.2006.06.057
10.1161/01.CIR.0000100664.10777.B8
10.1194/jlr.M500056-JLR200
10.1016/S0163-7827(00)00005-9
10.1253/circj.CJ-14-0182
10.1194/jlr.C600004-JLR200
10.1002/emmm.201100194
10.1016/S0022-3476(05)80289-6
10.1002/ajmg.1320450309
10.1016/j.ajpath.2013.05.022
10.1155/2014/654198
10.1016/j.chemphyslip.2005.08.002
10.1038/nm.3545
10.1083/jcb.200605043
10.1038/srep01263
10.1007/s00246-005-0873-z
10.1016/j.chemphyslip.2013.12.003
10.1086/302095
10.1007/s00018-008-8030-5
10.1016/j.cmet.2013.03.018
10.1083/jcb.200603087
10.1074/jbc.M504955200
10.1016/j.cardiores.2004.06.030
10.1152/ajpheart.00084.2013
10.1016/j.exger.2010.01.003
10.1196/annals.1444.011
10.1042/BJ20082055
10.1542/peds.2005-2667
10.3389/fgene.2015.00003
10.1097/HCO.0b013e3283376daf
10.1083/jcb.201008177
10.1038/mt.2010.269
10.4330/wjc.v6.i10.1091
10.1134/S0006297908120018
10.1093/hmg/ddq088
10.1016/j.stem.2012.10.010
10.1016/j.cmet.2014.04.016
10.1007/s11886-012-0248-z
10.1038/sj.cdd.4402020
10.1042/BJ20060303
10.1016/j.ymgme.2013.11.006
10.2174/1871529X14666140505123753
10.1083/jcb.200806048
10.1016/0022-510X(83)90209-5
10.1126/science.1158799
10.1002/ajmg.a.30661
10.1073/pnas.1109290108
10.1007/s10863-014-9591-7
10.1016/j.molcel.2009.02.013
10.1016/S0021-9258(18)54116-8
10.1182/blood-2003-11-3940
10.1161/CIRCRESAHA.111.300496
10.1016/j.bbalip.2012.11.007
10.1007/s002940050399
10.1074/jbc.M405479200
10.1097/MOH.0b013e32831c83f3
10.1016/j.tibs.2011.09.003
10.1371/journal.pone.0102796
10.1016/j.bbadis.2013.03.005
10.1002/pd.2599
10.1002/ajmg.a.31653
10.1016/0022-2828(95)90000-4
10.1016/0304-4157(85)90002-4
10.1016/j.mito.2008.12.001
10.1016/0005-2736(90)90036-N
10.1074/jbc.M307382200
10.1074/jbc.273.16.9829
10.1007/s11886-013-0369-z
10.1074/jbc.M109.016642
10.1002/jnr.23322
10.1080/15548627.2015.1023984
10.1038/nchembio.1068
10.1074/jbc.M110.171439
10.1186/1750-1172-8-23
10.1083/jcb.200906098
10.1038/ncomms4903
10.1371/journal.pone.0048628
10.1113/jphysiol.2006.109512
10.1152/ajpcell.00243.2006
10.1038/nn.3195
10.1016/0014-5793(93)80922-H
10.1542/peds.64.1.24
10.1194/jlr.M200217-JLR200
10.1016/j.stem.2014.06.015
10.1091/mbc.E13-03-0121
10.1016/j.chemphyslip.2013.11.010
10.1039/c1lc20557a
10.1083/jcb.200803129
10.1007/s00246-012-0258-z
10.1093/emboj/19.21.5720
10.1016/S0022-3476(99)70118-6
10.1016/j.bbalip.2009.01.004
10.1038/nm.3592
10.4161/auto.27191
10.1083/jcb.200801152
10.1073/pnas.1120043109
10.1042/BJ20041491
10.18632/aging.100572
10.1016/j.plipres.2013.07.002
10.1371/journal.pone.0005329
10.1016/j.febslet.2006.07.022
10.1194/jlr.M800561-JLR200
10.1016/j.ymgme.2012.09.013
10.1021/ac800173r
10.1016/j.bbamcr.2008.07.024
10.1093/carcin/bgi163
10.1016/0005-2728(90)90255-3
10.1073/pnas.1304913110
10.1016/j.bbamem.2009.04.019
10.1091/mbc.E05-03-0256
10.1074/jbc.M606100200
10.1002/ajmg.a.35609
10.1007/s10545-012-9552-4
10.1016/0005-2760(71)90201-3
10.1038/labinvest.3780427
10.1042/0264-6021:3470687
10.1038/nchem.1924
10.1016/j.chemphyslip.2013.10.001
10.1056/NEJMoa0908679
10.1016/j.cell.2006.07.024
10.1016/j.jprot.2011.05.004
10.1152/ajpcell.00377.2008
10.1016/B978-0-12-801185-0.00006-4
10.1074/jbc.M403275200
10.1038/ncpcardio0766
10.1038/ijo.2008.116
10.1016/j.mgene.2015.04.001
10.1016/S0021-9258(18)72683-5
10.1007/s00431-007-0592-y
10.1038/ncb2837
10.1002/ajmg.c.31372
10.1093/eurheartj/eht067
10.1038/nbt.2473
10.4161/auto.24135
10.1016/S0014-5793(02)03292-1
10.1074/jbc.271.2.789
10.1126/science.1151526
10.1111/j.1365-2958.2008.06216.x
10.1074/jbc.M112.428938
10.1016/j.scr.2013.05.005
ContentType Journal Article
Copyright Distributed under a Creative Commons Attribution 4.0 International License
Copyright © 2016 Saric, Andreau, Armand, Møller and Petit. 2016 Saric, Andreau, Armand, Møller and Petit
Copyright_xml – notice: Distributed under a Creative Commons Attribution 4.0 International License
– notice: Copyright © 2016 Saric, Andreau, Armand, Møller and Petit. 2016 Saric, Andreau, Armand, Møller and Petit
DBID AAYXX
CITATION
NPM
7X8
1XC
VOOES
5PM
DOA
DOI 10.3389/fgene.2015.00359
DatabaseName CrossRef
PubMed
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed



Database_xml – sequence: 1
  dbid: DOA
  name: WRHA-DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1664-8021
ExternalDocumentID oai_doaj_org_article_7a0c247a73e34e448a95e3b8d5bf91f2
PMC4719219
oai_HAL_hal_04749806v1
26834781
10_3389_fgene_2015_00359
Genre Journal Article
Review
GrantInformation_xml – fundername: AFM-Téléthon
  grantid: AFM 15137; 15661
GroupedDBID 53G
5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFS
ACXDI
ADBBV
ADRAZ
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
CITATION
DIK
EMOBN
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
OK1
PGMZT
RNS
RPM
IAO
IEA
IHR
IPNFZ
ISR
NPM
RIG
7X8
1XC
VOOES
5PM
ID FETCH-LOGICAL-c496t-3a73b8241240883b209179c2d674dd0b9f73c6d782d7b34fd3592e70d78e80f13
IEDL.DBID M48
ISSN 1664-8021
IngestDate Wed Aug 27 01:30:01 EDT 2025
Thu Aug 21 18:01:03 EDT 2025
Wed Jul 02 06:32:46 EDT 2025
Thu Jul 10 16:48:26 EDT 2025
Thu Jan 02 22:18:56 EST 2025
Tue Jul 01 00:46:51 EDT 2025
Thu Apr 24 23:04:46 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords stem cells
mitochondrially targeted antioxidant
mitochondria
barth syndrome
cellular models
cardiolipin
tafazzin
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c496t-3a73b8241240883b209179c2d674dd0b9f73c6d782d7b34fd3592e70d78e80f13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
This article was submitted to Genetic Disorders, a section of the journal Frontiers in Genetics
Reviewed by: Uwe Schlattner, University Joseph Fourier, France; Shuliang Chen, Howard Hughes Medical Institute and University of California, San Diego, USA; Colin Phoon, New York University School of Medicine, USA
Edited by: Enrico Baruffini, University of Parma, Italy
ORCID 0000-0002-5038-9101
0000-0002-0291-6421
0000-0002-9773-0733
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fgene.2015.00359
PMID 26834781
PQID 1762343840
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_7a0c247a73e34e448a95e3b8d5bf91f2
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4719219
hal_primary_oai_HAL_hal_04749806v1
proquest_miscellaneous_1762343840
pubmed_primary_26834781
crossref_citationtrail_10_3389_fgene_2015_00359
crossref_primary_10_3389_fgene_2015_00359
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-01-20
PublicationDateYYYYMMDD 2016-01-20
PublicationDate_xml – month: 01
  year: 2016
  text: 2016-01-20
  day: 20
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in genetics
PublicationTitleAlternate Front Genet
PublicationYear 2016
Publisher Frontiers Media
Frontiers Media S.A
Publisher_xml – name: Frontiers Media
– name: Frontiers Media S.A
References Brandner (B22) 2005; 16
Slomka (B154) 2012; 14
Acehan (B3) 2007; 87
Bunse (B24) 2003; 53
Gerdes (B53) 1995; 27
Marziliano (B112) 2007; 143A
Mordwinkin (B120) 2013; 310
He (B65) 2014; 2014
Herndon (B67) 2013; 12
Ng (B123) 2005; 26
Orstavik (B125) 1998; 63
Clarke (B36) 2013; 8
Chu (B33) 2014; 10
Schlame (B143) 2013; 1831
Sproule (B158) 2008; 1142
Bowron (B20) 2013; 36
Steinberg (B159) 2013; 112
Li (B102) 2012; 109
Claypool (B38) 2006; 174
Hsu (B78) 2015; 11
Mejia (B117) 2014b; 179
Hostetler (B73) 1971; 239
Phoon (B129) 2012; 1
Hatch (B63) 2004; 82
Richter (B137) 2009; 418
Nicolay (B124) 1990; 1018
Ardail (B7) 1990; 265
He (B64) 2010; 299
Houtkooper (B75) 2008; 65
Zischka (B193) 2008; 80
Yen (B186) 2008; 167
Kuchler (B98) 1986; 165
Acehan (B1) 2009; 9
Schlame (B149) 2005; 138
Valianpour (B171) 2003; 44
Chung (B35) 2007; 4(Suppl. 1)
Steward (B160) 2010; 30
Selem (B151) 2013; 15
Chao (B28) 2014; 9
Zweigerdt (B194) 2014; 15
Byrne (B25) 2014; 546
Antonenko (B6) 2008; 73
Bacman (B9) 2013; 19
Chu (B34) 2013; 15
Whited (B177) 2013; 22
Kelley (B92) 1991; 119
Barth (B16) 1981
Pangborn (B127) 1942; 143
Gandhi (B50) 2009; 33
Raval (B134) 2014; 20
Vaz (B174) 2003; 278
Bione (B18) 1996; 12
Gonzalvez (B57) 2008; 183
Schlame (B148) 2009; 1788
Roberts (B139) 2012; 158A
James (B83) 2005; 280
Van Haute (B172) 2013; 31
Saini-Chohan (B141) 2009; 50
Spencer (B157) 2005; 26
Goffart (B54) 2004; 64
Chang (B27) 1998b; 273
Tamura (B163) 2013; 17
Kutik (B100) 2008; 183
Mejia (B116) 2014a; 14
Xu (B182) 2006; 281
Lu (B107) 2006; 47
Ye (B185) 2014
Arnarez (B8) 2013; 3
Hovius (B77) 1993; 330
Koshkin (B97) 2000; 347(Pt 3)
Ren (B135) 2014; 55
Hick (B68) 2013; 6
Liu (B105) 2012; 32
Zhang (B190) 2005; 280
Ji (B85) 2012; 15
Baile (B10) 2014; 179
Valianpour (B170) 2005; 46
Rambold (B133) 2011; 10
Barth (B17) 1999; 135
Zhu (B192) 2013; 9
Lu (B108) 2015; 6
Xiao (B179) 2011; 108
Bratic (B23) 2013; 123
Shen (B152) 1996; 271
Acehan (B2) 2011; 286
Reznick (B136) 2006; 574
Johnston (B86) 1997; 61
Haines (B60) 2002; 528
Osman (B126) 2010; 29
Hodgson (B70) 1987; 75
Ronvelia (B140) 2012; 107
Schlame (B145) 2012b; 165
Ades (B4) 1993; 45
Jung (B88) 2012; 4
Mali (B111) 2013; 10
Barth (B13) 1983; 62
Kabeya (B89) 2000; 19
Jager (B81) 2007; 104
Schlame (B150) 2000; 39
Yu (B187) 2007; 318
Claypool (B37) 2012; 37
Claypool (B39) 2008; 182
Li (B103) 2015; 63
Jefferies (B84) 2013; 163C
DeVay (B44) 2009; 186
Taylor (B166) 2012; 7
Hanke (B61) 2012; 33
Malhotra (B110) 2009; 1791
Kuijpers (B99) 2004; 103
Moretti (B121) 2010; 363
Chen (B29) 2006; 398
Xu (B183) 2005; 85
Dzugasová (B48) 1998; 34
Grosberg (B58) 2011; 11
Tyurina (B169) 2014b; 6
Matsa (B113) 2014; 35
Horvath (B72) 2013; 52
Daum (B42) 1985; 822
Grosberg (B59) 2012; 65
Cosson (B41) 2012; 106
Raja (B132) 2014; 179
Wysocki (B178) 1976; 71
Kelso (B93) 2001; 276
Hardie (B62) 2008; 32(Suppl. 4)
Zhang (B188) 2011; 13
Gonzalvez (B56) 2013; 1832
Schlame (B144) 2012a; 8
Takahashi (B161) 2006; 126
Gebert (B52) 2009; 19
Taylor (B165) 2003; 278
Dey (B45) 2009; 4
Neustein (B122) 1979; 64
Barth (B15) 1996; 19
Pignatelli (B130) 2003; 108
Lill (B104) 2009; 460
Tamura (B162) 2013; 5
Schlame (B147) 2006; 580
Shi (B153) 2010; 50
Zhong (B191) 2004; 279
Soustek (B155) 2011; 22
Testet (B167) 2005; 387
Brand (B21) 2010; 45
Kirwin (B95) 2014; 111
Chen (B30) 2008; 68
Ichida (B79) 2001; 103
Joshi (B87) 2009; 1793
Chicco (B31) 2007; 292
Kagan (B90) 2014; 179
Xu (B181) 2015; 21
Khuchua (B94) 2006; 99
Richter-Dennerlein (B138) 2014; 20
van Raam (B173) 2009; 16
Sallam (B142) 2014; 78
Ma (B109) 2004; 279
Jahnke (B82) 2009; 296
McCain (B114) 2013; 110
Lombardi (B106) 2010; 25
Claypool (B40) 2011; 192
Hijikata (B69) 2015; 4
Tyurina (B168) 2014a; 179
McKenzie (B115) 2006; 361
Choi (B32) 2007; 14
Hom (B71) 2011; 21
Merante (B118) 1994; 55
Baile (B11) 2013; 24
Schlame (B146) 1993; 268
Dudek (B47) 2013; 11
Wang (B175) 2014a; 20
Zhang (B189) 2002; 277
Spencer (B156) 2006; 118
Gawrisch (B51) 2012; 8
Xu (B180) 2003; 278
Quarto (B131) 2012; 109
Bissler (B19) 2002; 82
Chang (B26) 1998a; 273
Lan (B101) 2013; 12
Wang (B176) 2014b; 92
Kambal (B91) 2011; 19
de Almeida (B43) 2014; 5
Houtkooper (B74) 2009; 1788
Ajith (B5) 2014; 6
Gonzalez (B55) 2005; 134
Tamura (B164) 2006; 174
Moller (B119) 2011; 74
Hovius (B76) 1990; 1021
Kobayashi (B96) 2014; 9
Ban (B12) 2010; 19
Itzhaki (B80) 2012; 60
Xu (B184) 2009; 284
Gaber (B49) 2013; 183
Dimos (B46) 2008; 321
He (B66) 2013; 305
Barth (B14) 2004; 126A
Patil (B128) 2013; 288
18510346 - Anal Chem. 2008 Jul 1;80(13):5051-8
12569106 - J Biol Chem. 2003 Apr 11;278(15):12716-21
18779372 - J Cell Biol. 2008 Sep 8;182(5):937-50
23405277 - Sci Rep. 2013;3:1263
17082194 - J Biol Chem. 2006 Dec 22;281(51):39217-24
11060023 - EMBO J. 2000 Nov 1;19(21):5720-8
21730175 - Proc Natl Acad Sci U S A. 2011 Jul 19;108(29):11860-5
20124997 - Curr Opin Cardiol. 2010 May;25(3):222-8
24273069 - J Neurosci Res. 2014 Feb;92(2):218-31
21091282 - Hum Gene Ther. 2011 Jul;22(7):865-71
9545322 - J Biol Chem. 1998 Apr 17;273(16):9829-36
25349653 - World J Cardiol. 2014 Oct 26;6(10):1091-9
11092892 - J Biol Chem. 2001 Feb 16;276(7):4588-96
1719174 - J Pediatr. 1991 Nov;119(5):738-47
19057200 - Curr Opin Hematol. 2009 Jan;16(1):14-9
15485678 - Cardiovasc Res. 2004 Nov 1;64(2):198-207
2154259 - Biochim Biophys Acta. 1990 Jan 29;1021(2):217-26
20660394 - N Engl J Med. 2010 Oct 7;363(15):1397-409
8434619 - Am J Med Genet. 1993 Feb 1;45(3):327-34
4998839 - Biochim Biophys Acta. 1971 Jun 8;239(1):113-9
6142097 - J Neurol Sci. 1983 Dec;62(1-3):327-55
17394203 - Am J Med Genet A. 2007 May 1;143A(9):907-15
16973164 - FEBS Lett. 2006 Oct 9;580(23):5450-5
18425414 - Cell Mol Life Sci. 2008 Aug;65(16):2493-506
23787782 - Autophagy. 2013 Nov 1;9(11):1663-76
20185555 - Hum Mol Genet. 2010 Jun 1;19(11):2113-22
24076990 - Nat Methods. 2013 Oct;10(10):957-63
15975958 - Carcinogenesis. 2005 Nov;26(11):1914-21
22178754 - Proc Natl Acad Sci U S A. 2012 Jan 3;109 (1):215-20
21558246 - Integr Comp Biol. 2010 Nov;50(5):869-79
2203472 - Biochim Biophys Acta. 1990 Jul 25;1018(2-3):229-33
14623814 - Circulation. 2003 Nov 25;108(21):2672-8
16794186 - Circ Res. 2006 Jul 21;99(2):201-8
15304507 - J Biol Chem. 2004 Oct 22;279(43):44394-9
8630491 - Nat Genet. 1996 Apr;12(4):385-9
15588229 - Biochem J. 2005 May 1;387(Pt 3):617-26
24856930 - Cell Metab. 2014 Jul 1;20(1):158-71
8370463 - FEBS Lett. 1993 Sep 6;330(1):71-6
15788391 - J Biol Chem. 2005 Jun 3;280(22):21295-312
22521339 - J Pharmacol Toxicol Methods. 2012 May-Jun;65(3):126-35
23871585 - Am J Pathol. 2013 Sep;183(3):720-34
19700766 - J Biol Chem. 2009 Oct 16;284(42):29230-9
23100323 - Hum Mol Genet. 2013 Feb 1;22(3):483-92
19114592 - J Cell Biol. 2008 Dec 29;183(7):1213-21
20485265 - EMBO J. 2010 Jun 16;29(12 ):1976-87
16888643 - Cell Death Differ. 2007 Mar;14(3):597-606
16899548 - Am J Physiol Cell Physiol. 2007 Jan;292(1):C33-44
19416660 - Biochim Biophys Acta. 2009 Apr;1791(4):314-20
23470493 - Eur Heart J. 2014 Apr;35(16):1078-87
24300280 - Chem Phys Lipids. 2014 Apr;179:64-9
21300850 - J Cell Biol. 2011 Feb 7;192(3):447-62
10484787 - J Pediatr. 1999 Sep;135(3):273-6
18719601 - Int J Obes (Lond). 2008 Sep;32 Suppl 4:S7-12
18725250 - Biochim Biophys Acta. 2009 Jan;1793(1):212-8
22427193 - Pediatr Cardiol. 2012 Dec;33(8):1430-4
11238270 - Circulation. 2001 Mar 6;103(9):1256-63
23454757 - J Clin Invest. 2013 Mar;123(3):951-7
18990125 - Ann N Y Acad Sci. 2008 Oct;1142:133-58
22749309 - J Am Coll Cardiol. 2012 Sep 11;60(11):990-1000
24144810 - Chem Phys Lipids. 2014 Apr;179:11-6
16847078 - Pediatrics. 2006 Aug;118(2):e337-46
22101267 - Cell Cycle. 2011 Dec 1;10(23):4032-8
2408671 - Biochim Biophys Acta. 1985 Jun 12;822(1):1-42
25422939 - PLoS One. 2014 Nov 25;9(11):e113680
8079988 - Am J Hum Genet. 1994 Sep;55(3):437-46
19752025 - J Cell Biol. 2009 Sep 21;186(6):793-803
3030927 - Hum Genet. 1987 Mar;75(3):286-90
16857210 - J Mol Biol. 2006 Aug 18;361(3):462-9
22014644 - Trends Biochem Sci. 2012 Jan;37(1):32-41
8557688 - J Biol Chem. 1996 Jan 12;271(2):789-95
25050861 - PLoS One. 2014 Jul 22;9(7):e102796
19295176 - Am J Physiol Cell Physiol. 2009 May;296(5):C1185-94
19001123 - J Cell Biol. 2008 Nov 17;183(4):681-96
8380172 - J Biol Chem. 1993 Jan 5;268(1):74-9
9345098 - Am J Hum Genet. 1997 Nov;61(5):1053-8
12562862 - J Lipid Res. 2003 Mar;44(3):560-6
23152787 - PLoS One. 2012;7(11):e48628
9614098 - J Biol Chem. 1998 Jun 12;273(24):14933-41
25919711 - Autophagy. 2015 Apr 3;11(4):643-52
15806137 - Lab Invest. 2005 Jun;85(6):823-30
12297275 - FEBS Lett. 2002 Sep 25;528(1-3):35-9
25941633 - Meta Gene. 2015 Apr 22;4:92-106
10769171 - Biochem J. 2000 May 1;347 Pt 3:687-91
25598000 - Mitochondrion. 2015 Mar;21:27-32
23523468 - Biochim Biophys Acta. 2013 Aug;1832(8):1194-206
20812380 - Prenat Diagn. 2010 Oct;30(10 ):970-6
24813252 - Nat Med. 2014 Jun;20(6):616-23
9792874 - Am J Hum Genet. 1998 Nov;63(5):1457-63
23290139 - Cell Stem Cell. 2013 Jan 3;12(1):101-13
24848241 - Nat Chem. 2014 Jun;6(6):542-52
22987008 - Nat Chem Biol. 2012 Oct;8(10):811-2
24875164 - Nat Commun. 2014 May 30;5:3903
18669821 - Science. 2008 Aug 29;321(5893):1218-21
23031367 - Mol Genet Metab. 2012 Nov;107(3):428-32
963901 - Clin Chim Acta. 1976 Sep 6;71(2):349-51
16135531 - Mol Biol Cell. 2005 Nov;16(11):5202-14
25247053 - Oxid Med Cell Longev. 2014;2014:654198
24769127 - Prog Lipid Res. 2014 Jul;55:1-16
16709637 - J Physiol. 2006 Jul 1;574(Pt 1):33-9
11896212 - Lab Invest. 2002 Mar;82(3):335-44
7602601 - J Mol Cell Cardiol. 1995 Mar;27(3):849-56
24901565 - Nat Med. 2014 Jun;20(6):585-6
23637464 - Mol Biol Cell. 2013 Jun;24(12):2008-20
572031 - Pediatrics. 1979 Jul;64(1):24-9
21920313 - Dev Cell. 2011 Sep 13;21(3):469-78
12509856 - Ann Neurol. 2003 Jan;53(1):121-3
19196246 - Biochem J. 2009 Mar 1;418(2):261-75
8739954 - J Inherit Metab Dis. 1996;19(2):157-60
24445246 - Chem Phys Lipids. 2014 Apr;179:49-56
23329794 - Circ Res. 2013 Jan 18;112(2):393-405
15052331 - Biochem Cell Biol. 2004 Feb;82(1):99-112
23792436 - Stem Cell Res. 2013 Sep;11(2):806-19
3005242 - J Bacteriol. 1986 Mar;165(3):901-10
16904174 - Cell. 2006 Aug 25;126(4):663-76
16235007 - Pediatr Cardiol. 2005 Sep-Oct;26(5):632-7
23136396 - Dis Model Mech. 2013 May;6(3):608-21
23666883 - Curr Cardiol Rep. 2013 Jun;15(6):369
24184646 - Chem Phys Lipids. 2014 Apr;179:25-31
19962311 - Curr Biol. 2009 Dec 29;19(24):2133-9
22072288 - Lab Chip. 2011 Dec 21;11(24):4165-73
20064600 - Exp Gerontol. 2010 Aug;45(7-8):466-72
18430085 - Mol Microbiol. 2008 May;68(4):1061-72
23716679 - Proc Natl Acad Sci U S A. 2013 Jun 11;110(24):9770-5
23843353 - Am J Med Genet C Semin Med Genet. 2013 Aug;163C(3):198-205
24342716 - Mol Genet Metab. 2014 Jan;111(1):26-32
23623749 - Cell Metab. 2013 May 7;17(5):709-18
17043667 - Lab Invest. 2007 Jan;87(1):40-8
22922784 - Nat Neurosci. 2012 Oct;15(10):1407-13
19285945 - Mol Cell. 2009 Mar 13;33(5):627-38
22327929 - Curr Cardiol Rep. 2012 Apr;14(2):208-16
15972817 - J Biol Chem. 2005 Aug 19;280(33):29403-8
16226238 - Chem Phys Lipids. 2005 Dec;138(1-2):38-49
21068380 - J Biol Chem. 2011 Jan 14;286(2):899-908
15805542 - J Lipid Res. 2005 Jun;46(6):1182-95
19390630 - PLoS One. 2009;4(4):e5329
22465155 - Chem Phys Lipids. 2012 Jul;165(5):512-9
15169766 - J Biol Chem. 2004 Jul 30;279(31):32294-300
22174035 - EMBO Mol Med. 2012 Mar;4(3):180-91
19001357 - J Lipid Res. 2009 Aug;50(8):1600-8
24632794 - Circ J. 2014;78(4):784-94
24078306 - Eukaryot Cell. 2013 Dec;12(12):1600-8
23192348 - J Biol Chem. 2013 Jan 18;288(3):1696-705
16943180 - J Cell Biol. 2006 Aug 28;174(5):631-7
23913125 - Nat Med. 2013 Sep;19(9):1111-3
19619503 - Biochim Biophys Acta. 2009 Oct;1788(10):2003-14
24007978 - Prog Lipid Res. 2013 Oct;52(4):590-614
23807703 - Aging (Albany NY). 2013 Jun;5(6):392-3
17846786 - Eur J Pediatr. 2008 Aug;167(8):941-4
9799363 - Curr Genet. 1998 Oct;34(4):297-302
23398819 - Orphanet J Rare Dis. 2013 Feb 12;8:23
15793838 - Am J Med Genet A. 2005 May 1;134(4):409-14
24801725 - Cardiovasc Hematol Disord Drug Targets. 2014;14(2):98-106
16716149 - Biochem J. 2006 Sep 1;398(2):169-76
21641550 - Cell Metab. 2011 Jun 8;13(6):690-700
23109063 - J Inherit Metab Dis. 2013 Sep;36(5):741-6
19114128 - Mitochondrion. 2009 Apr;9(2):86-95
20348225 - Am J Physiol Heart Circ Physiol. 2010 Jul;299(1):H210-6
15098233 - Am J Med Genet A. 2004 May 1;126A(4):349-54
23130124 - J Am Heart Assoc. 2012 Apr;1(2):null
24351649 - Autophagy. 2014 Feb;10(2):376-8
22941046 - Nat Chem Biol. 2012 Oct;8(10):862-9
17609368 - Proc Natl Acad Sci U S A. 2007 Jul 17;104(29):12017-22
24240927 - JAMA. 2013 Nov 20;310(19):2039-40
24036476 - Nat Cell Biol. 2013 Oct;15(10):1197-205
12930833 - J Biol Chem. 2003 Oct 31;278(44):43089-94
12364341 - J Biol Chem. 2002 Nov 15;277(46):43553-6
24996164 - Cell Stem Cell. 2014 Jul 3;15(1):9-11
16547353 - J Lipid Res. 2006 Jun;47(6):1140-5
23045169 - Am J Med Genet A. 2012 Nov;158A(11):2726-32
2172233 - J Biol Chem. 1990 Nov 5;265(31):18797-802
21601020 - J Proteomics. 2011 Oct 19;74(11):2228-42
19120014 - Biochemistry (Mosc). 2008 Dec;73(12):1273-87
25398338 - Methods Enzymol. 2014;546:119-38
23302926 - Nat Biotechnol. 2013 Jan;31(1):20-3
23997105 - Am J Physiol Heart Circ Physiol. 2013 Nov 1;305(9):H1332-43
14551214 - J Biol Chem. 2003 Dec 19;278(51):51380-5
19675643 - Nature. 2009 Aug 13;460(7257):831-8
10799718 - Prog Lipid Res. 2000 May;39(3):257-88
16880272 - J Cell Biol. 2006 Jul 31;174(3):379-90
19413994 - Biochim Biophys Acta. 2009 Oct;1788(10):2080-3
25691889 - Front Genet. 2015 Feb 03;6:3
14764526 - Blood. 2004 May 15;103(10):3915-23
22949503 - Mol Cell Biol. 2012 Nov;32(21):4493-504
25673287 - J Histochem Cytochem. 2015 May;63(5):301-11
21119622 - Mol Ther. 2011 Mar;19(3):584-93
17230217 - Nat Clin Pract Cardiovasc Med. 2007 Feb;4 Suppl 1:S60-7
18029452 - Science. 2007 Dec 21;318(5858):1917-20
24333544 - Chem Phys Lipids. 2014 Apr;179:3-10
25432572 - J Bioenerg Biomembr. 2016 Apr;48(2):113-23
23200781 - Biochim Biophys Acta. 2013 Mar;1831(3):582-8
22410210 - Mol Genet Metab. 2012 May;106(1):115-20
22509026 - Proc Natl Acad Sci U S A. 2012 May 1;109(18):6975-80
References_xml – volume: 299
  start-page: H210
  year: 2010
  ident: B64
  article-title: Tafazzin knockdown causes hypertrophy of neonatal ventricular myocytes.
  publication-title: Am. J. Physiol. Heart Circ. Physiol.
  doi: 10.1152/ajpheart.00098.2010
– volume: 1
  issue: jah3
  year: 2012
  ident: B129
  article-title: Tafazzin knockdown in mice leads to a developmental cardiomyopathy with early diastolic dysfunction preceding myocardial noncompaction.
  publication-title: J. Am. Heart Assoc.
  doi: 10.1161/JAHA.111.000455
– volume: 32
  start-page: 4493
  year: 2012
  ident: B105
  article-title: Ablation of ALCAT1 mitigates hypertrophic cardiomyopathy through effects on oxidative stress and mitophagy.
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.01092-12
– volume: 63
  start-page: 301
  year: 2015
  ident: B103
  article-title: Cardiolipin and its different properties in mitophagy and apoptosis.
  publication-title: J. Histochem. Cytochem.
  doi: 10.1369/0022155415574818
– volume: 179
  start-page: 49
  year: 2014
  ident: B132
  article-title: The functions of cardiolipin in cellular metabolism-potential modifiers of the Barth syndrome phenotype.
  publication-title: Chem. Phys. Lipids
  doi: 10.1016/j.chemphyslip.2013.12.009
– volume: 103
  start-page: 1256
  year: 2001
  ident: B79
  article-title: Novel gene mutations in patients with left ventricular noncompaction or Barth syndrome.
  publication-title: Circulation
  doi: 10.1161/01.CIR.103.9.1256
– volume: 65
  start-page: 126
  year: 2012
  ident: B59
  article-title: Muscle on a chip: in vitro contractility assays for smooth and striated muscle.
  publication-title: J. Pharmacol. Toxicol. Methods
  doi: 10.1016/j.vascn.2012.04.001
– volume: 310
  start-page: 2039
  year: 2013
  ident: B120
  article-title: Patient-specific stem cells and cardiovascular drug discovery.
  publication-title: JAMA
  doi: 10.1001/jama.2013.282409
– volume: 109
  start-page: 215
  year: 2012
  ident: B131
  article-title: Skeletogenic phenotype of human Marfan embryonic stem cells faithfully phenocopied by patient-specific induced-pluripotent stem cells.
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1113442109
– volume: 50
  start-page: 869
  year: 2010
  ident: B153
  article-title: Comparative studies of oxidative stress and mitochondrial function in aging.
  publication-title: Integr. Comp. Biol.
  doi: 10.1093/icb/icq079
– volume: 29
  start-page: 1976
  year: 2010
  ident: B126
  article-title: A mitochondrial phosphatase required for cardiolipin biosynthesis: the PGP phosphatase Gep4.
  publication-title: EMBO J.
  doi: 10.1038/emboj.2010.98
– volume: 19
  start-page: 157
  year: 1996
  ident: B15
  article-title: X-linked cardioskeletal myopathy and neutropenia (Barth syndrome): respiratory-chain abnormalities in cultured fibroblasts.
  publication-title: J. Inherit. Metab. Dis.
  doi: 10.1007/BF01799418
– volume: 165
  start-page: 512
  year: 2012b
  ident: B145
  article-title: Comparison of cardiolipins from Drosophila strains with mutations in putative remodeling enzymes.
  publication-title: Chem. Phys. Lipids
  doi: 10.1016/j.chemphyslip.2012.03.001
– volume: 278
  start-page: 12716
  year: 2003
  ident: B165
  article-title: Purification and characterization of monolysocardiolipin acyltransferase from pig liver mitochondria.
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M210329200
– volume: 273
  start-page: 14933
  year: 1998b
  ident: B27
  article-title: Isolation and characterization of the gene (CLS1) encoding cardiolipin synthase in Saccharomyces cerevisiae.
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.273.24.14933
– volume: 60
  start-page: 990
  year: 2012
  ident: B80
  article-title: Modeling of catecholaminergic polymorphic ventricular tachycardia with patient-specific human-induced pluripotent stem cells.
  publication-title: J. Am. Coll. Cardiol.
  doi: 10.1016/j.jacc.2012.02.066
– volume: 126A
  start-page: 349
  year: 2004
  ident: B14
  article-title: X-linked cardioskeletal myopathy and neutropenia (Barth syndrome): an update.
  publication-title: Am. J. Med. Genet. A
  doi: 10.1002/ajmg.a.20660
– volume: 19
  start-page: 1111
  year: 2013
  ident: B9
  article-title: Specific elimination of mutant mitochondrial genomes in patient-derived cells by mitoTALENs.
  publication-title: Nat. Med.
  doi: 10.1038/nm.3261
– volume: 22
  start-page: 483
  year: 2013
  ident: B177
  article-title: Seven functional classes of Barth syndrome mutation.
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/dds447
– volume: 21
  start-page: 469
  year: 2011
  ident: B71
  article-title: The permeability transition pore controls cardiac mitochondrial maturation and myocyte differentiation.
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2011.08.008
– volume: 10
  start-page: 957
  year: 2013
  ident: B111
  article-title: Cas9 as a versatile tool for engineering biology.
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2649
– volume: 106
  start-page: 115
  year: 2012
  ident: B41
  article-title: Barth syndrome in a female patient.
  publication-title: Mol. Genet. Metab.
  doi: 10.1016/j.ymgme.2012.01.015
– volume: 123
  start-page: 951
  year: 2013
  ident: B23
  article-title: The role of mitochondria in aging.
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI64125
– volume: 12
  start-page: 1600
  year: 2013
  ident: B67
  article-title: The Taz1p transacylase is imported and sorted into the outer mitochondrial membrane via a membrane anchor domain.
  publication-title: Eukaryot. Cell
  doi: 10.1128/EC.00237-13
– volume: 8
  start-page: 862
  year: 2012a
  ident: B144
  article-title: The physical state of lipid substrates provides transacylation specificity for tafazzin.
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.1064
– volume: 87
  start-page: 40
  year: 2007
  ident: B3
  article-title: Comparison of lymphoblast mitochondria from normal subjects and patients with Barth syndrome using electron microscopic tomography.
  publication-title: Lab. Invest.
  doi: 10.1038/labinvest.3700480
– volume: 12
  start-page: 385
  year: 1996
  ident: B18
  article-title: A novel X-linked gene, G4.5. is responsible for Barth syndrome.
  publication-title: Nat. Genet.
  doi: 10.1038/ng0496-385
– volume: 179
  start-page: 25
  year: 2014
  ident: B10
  article-title: The topology and regulation of cardiolipin biosynthesis and remodeling in yeast.
  publication-title: Chem. Phys. Lipids
  doi: 10.1016/j.chemphyslip.2013.10.008
– volume: 71
  start-page: 349
  year: 1976
  ident: B178
  article-title: 3-Hydroxy-3-methylglutaric aciduria: deficiency of 3-hydroxy-3-methylglutaryl coenzyme A lyase.
  publication-title: Clin. Chim. Acta
  doi: 10.1016/0009-8981(76)90552-0
– volume: 75
  start-page: 286
  year: 1987
  ident: B70
  article-title: Prenatal diagnosis of X-linked choroideremia with mental retardation, associated with a cytologically detectable X-chromosome deletion.
  publication-title: Hum. Genet.
  doi: 10.1007/BF00281076
– volume: 21
  start-page: 27
  year: 2015
  ident: B181
  article-title: Tafazzins from Drosophila and mammalian cells assemble in large protein complexes with a short half-life.
  publication-title: Mitochondrion
  doi: 10.1016/j.mito.2015.01.002
– volume: 85
  start-page: 823
  year: 2005
  ident: B183
  article-title: Characterization of lymphoblast mitochondria from patients with Barth syndrome.
  publication-title: Lab. Invest.
  doi: 10.1038/labinvest.3700274
– volume: 104
  start-page: 12017
  year: 2007
  ident: B81
  article-title: AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha.
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0705070104
– volume: 278
  start-page: 43089
  year: 2003
  ident: B174
  article-title: Only one splice variant of the human TAZ gene encodes a functional protein with a role in cardiolipin metabolism.
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M305956200
– volume: 276
  start-page: 4588
  year: 2001
  ident: B93
  article-title: Selective targeting of a redox-active ubiquinone to mitochondria within cells: antioxidant and antiapoptotic properties.
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M
– volume: 6
  start-page: 608
  year: 2013
  ident: B68
  article-title: Neurons and cardiomyocytes derived from induced pluripotent stem cells as a model for mitochondrial defects in Friedreich’s ataxia.
  publication-title: Dis. Model Mech.
  doi: 10.1242/dmm.010900
– volume: 99
  start-page: 201
  year: 2006
  ident: B94
  article-title: A zebrafish model of human Barth syndrome reveals the essential role of tafazzin in cardiac development and function.
  publication-title: Circ. Res.
  doi: 10.1161/01.RES.0000233378.95325.ce
– volume: 22
  start-page: 865
  year: 2011
  ident: B155
  article-title: Characterization of a transgenic short hairpin RNA-induced murine model of Tafazzin deficiency.
  publication-title: Hum. Gene Ther.
  doi: 10.1089/hum.2010.199
– volume: 9
  issue: e113680
  year: 2014
  ident: B28
  article-title: Cell cycle arrest and cell survival induce reverse trends of cardiolipin remodeling.
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0113680
– volume: 82
  start-page: 99
  year: 2004
  ident: B63
  article-title: Cel Biology of cardiac mitochondrial phospholipids.
  publication-title: Biochem. Cell Biol.
  doi: 10.1139/o03-074
– volume: 165
  start-page: 901
  year: 1986
  ident: B98
  article-title: Subcellular and submitochondrial localization of phospholipid-synthesizing enzymes in Saccharomyces cerevisiae.
  publication-title: J. Bacteriol.
  doi: 10.1128/jb.165.3.901-910.1986
– volume: 55
  start-page: 1
  year: 2014
  ident: B135
  article-title: Metabolism and function of mitochondrial cardiolipin.
  publication-title: Prog. Lipid Res.
  doi: 10.1016/j.plipres.2014.04.001
– volume: 19
  start-page: 2133
  year: 2009
  ident: B52
  article-title: Mitochondrial cardiolipin involved in outer-membrane protein biogenesis: implications for Barth syndrome.
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2009.10.074
– volume: 265
  start-page: 18797
  year: 1990
  ident: B7
  article-title: Mitochondrial contact sites. Lipid composition and dynamics.
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(17)30583-5
– volume: 460
  start-page: 831
  year: 2009
  ident: B104
  article-title: Function and biogenesis of iron-sulphur proteins.
  publication-title: Nature
  doi: 10.1038/nature08301
– volume: 277
  start-page: 43553
  year: 2002
  ident: B189
  article-title: Gluing the respiratory chain together. Cardiolipin is required for supercomplex formation in the inner mitochondrial membrane.
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.C200551200
– volume: 53
  start-page: 121
  year: 2003
  ident: B24
  article-title: Cardiac energetics correlates to myocardial hypertrophy in Friedreich’s ataxia.
  publication-title: Ann. Neurol.
  doi: 10.1002/ana.10419
– volume: 10
  start-page: 4032
  year: 2011
  ident: B133
  article-title: Mechanisms of mitochondria and autophagy crosstalk.
  publication-title: Cell Cycle
  doi: 10.4161/cc.10.23.18384
– volume: 13
  start-page: 690
  year: 2011
  ident: B188
  article-title: Mitochondrial phosphatase PTPMT1 is essential for cardiolipin biosynthesis.
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2011.04.007
– volume: 280
  start-page: 21295
  year: 2005
  ident: B83
  article-title: Interactions of mitochondria-targeted and untargeted ubiquinones with the mitochondrial respiratory chain and reactive oxygen species. Implications for the use of exogenous ubiquinones as therapies and experimental tools.
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M501527200
– volume: 1788
  start-page: 2003
  year: 2009
  ident: B74
  article-title: The enigmatic role of tafazzin in cardiolipin metabolism.
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbamem.2009.07.009
– volume: 61
  start-page: 1053
  year: 1997
  ident: B86
  article-title: Mutation characterization and genotype-phenotype correlation in Barth syndrome.
  publication-title: Am. J. Hum. Genet.
  doi: 10.1086/301604
– volume: 361
  start-page: 462
  year: 2006
  ident: B115
  article-title: Mitochondrial respiratory chain supercomplexes are destabilized in Barth Syndrome patients.
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2006.06.057
– volume: 108
  start-page: 2672
  year: 2003
  ident: B130
  article-title: Clinical characterization of left ventricular noncompaction in children: a relatively common form of cardiomyopathy.
  publication-title: Circulation
  doi: 10.1161/01.CIR.0000100664.10777.B8
– volume: 46
  start-page: 1182
  year: 2005
  ident: B170
  article-title: Monolysocardiolipins accumulate in Barth syndrome but do not lead to enhanced apoptosis.
  publication-title: J. Lipid Res.
  doi: 10.1194/jlr.M500056-JLR200
– volume: 39
  start-page: 257
  year: 2000
  ident: B150
  article-title: The biosynthesis and functional role of cardiolipin.
  publication-title: Prog. Lipid Res.
  doi: 10.1016/S0163-7827(00)00005-9
– volume: 78
  start-page: 784
  year: 2014
  ident: B142
  article-title: Modeling inherited cardiac disorders.
  publication-title: Circ. J.
  doi: 10.1253/circj.CJ-14-0182
– volume: 47
  start-page: 1140
  year: 2006
  ident: B107
  article-title: Cloning and characterization of a cDNA encoding human cardiolipin synthase (hCLS1).
  publication-title: J. Lipid Res.
  doi: 10.1194/jlr.C600004-JLR200
– volume: 4
  start-page: 180
  year: 2012
  ident: B88
  article-title: Dantrolene rescues arrhythmogenic RYR2 defect in a patient-specific stem cell model of catecholaminergic polymorphic ventricular tachycardia.
  publication-title: EMBO Mol. Med.
  doi: 10.1002/emmm.201100194
– volume: 119
  start-page: 738
  year: 1991
  ident: B92
  article-title: X-linked dilated cardiomyopathy with neutropenia, growth retardation, and 3-methylglutaconic aciduria.
  publication-title: J. Pediatr.
  doi: 10.1016/S0022-3476(05)80289-6
– volume: 45
  start-page: 327
  year: 1993
  ident: B4
  article-title: Barth syndrome: clinical features and confirmation of gene localisation to distal Xq28.
  publication-title: Am. J. Med. Genet.
  doi: 10.1002/ajmg.1320450309
– volume: 183
  start-page: 720
  year: 2013
  ident: B49
  article-title: Fetal reprogramming and senescence in hypoplastic left heart syndrome and in human pluripotent stem cells during cardiac differentiation.
  publication-title: Am. J. Pathol.
  doi: 10.1016/j.ajpath.2013.05.022
– volume: 2014
  issue: 654198
  year: 2014
  ident: B65
  article-title: Mitochondria-targeted antioxidant prevents cardiac dysfunction induced by tafazzin gene knockdown in cardiac myocytes.
  publication-title: Oxid. Med. Cell. Longev.
  doi: 10.1155/2014/654198
– volume: 138
  start-page: 38
  year: 2005
  ident: B149
  article-title: Molecular symmetry in mitochondrial cardiolipins.
  publication-title: Chem. Phys. Lipids
  doi: 10.1016/j.chemphyslip.2005.08.002
– volume: 20
  start-page: 616
  year: 2014a
  ident: B175
  article-title: Modeling the mitochondrial cardiomyopathy of Barth syndrome with induced pluripotent stem cell and heart-on-chip technologies.
  publication-title: Nat. Med.
  doi: 10.1038/nm.3545
– volume: 174
  start-page: 379
  year: 2006
  ident: B38
  article-title: Mitochondrial mislocalization and altered assembly of a cluster of Barth syndrome mutant tafazzins.
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200605043
– volume: 3
  issue: 1263
  year: 2013
  ident: B8
  article-title: Identification of cardiolipin binding sites on cytochrome c oxidase at the entrance of proton channels.
  publication-title: Sci. Rep.
  doi: 10.1038/srep01263
– volume: 26
  start-page: 632
  year: 2005
  ident: B157
  article-title: Ventricular arrhythmia in the X-linked cardiomyopathy Barth syndrome.
  publication-title: Pediatr. Cardiol.
  doi: 10.1007/s00246-005-0873-z
– volume: 179
  start-page: 3
  year: 2014a
  ident: B168
  article-title: Characterization of cardiolipins and their oxidation products by LC-MS analysis.
  publication-title: Chem. Phys. Lipids
  doi: 10.1016/j.chemphyslip.2013.12.003
– volume: 63
  start-page: 1457
  year: 1998
  ident: B125
  article-title: X chromosome inactivation in carriers of Barth syndrome.
  publication-title: Am. J. Hum. Genet.
  doi: 10.1086/302095
– volume: 65
  start-page: 2493
  year: 2008
  ident: B75
  article-title: Cardiolipin, the heart of mitochondrial metabolism.
  publication-title: Cell. Mol. Life Sci.
  doi: 10.1007/s00018-008-8030-5
– volume: 17
  start-page: 709
  year: 2013
  ident: B163
  article-title: Tam41 is a CDP-diacylglycerol synthase required for cardiolipin biosynthesis in mitochondria.
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2013.03.018
– volume: 174
  start-page: 631
  year: 2006
  ident: B164
  article-title: Identification of Tam41 maintaining integrity of the TIM23 protein translocator complex in mitochondria.
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200603087
– volume: 280
  start-page: 29403
  year: 2005
  ident: B190
  article-title: Cardiolipin is essential for organization of complexes III and IV into a supercomplex in intact yeast mitochondria.
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M504955200
– volume: 64
  start-page: 198
  year: 2004
  ident: B54
  article-title: Regulation of mitochondrial proliferation in the heart: power-plant failure contributes to cardiac failure in hypertrophy.
  publication-title: Cardiovasc. Res.
  doi: 10.1016/j.cardiores.2004.06.030
– volume: 305
  start-page: H1332
  year: 2013
  ident: B66
  article-title: Tafazzin knockdown interrupts cell cycle progression in cultured neonatal ventricular fibroblasts.
  publication-title: Am. J. Physiol. Heart Circ. Physiol.
  doi: 10.1152/ajpheart.00084.2013
– volume: 45
  start-page: 466
  year: 2010
  ident: B21
  article-title: The sites and topology of mitochondrial superoxide production.
  publication-title: Exp. Gerontol.
  doi: 10.1016/j.exger.2010.01.003
– volume: 1142
  start-page: 133
  year: 2008
  ident: B158
  article-title: Mitochondrial encephalopathy, lactic acidosis, and strokelike episodes: basic concepts, clinical phenotype, and therapeutic management of MELAS syndrome.
  publication-title: Ann. N. Y. Acad. Sci.
  doi: 10.1196/annals.1444.011
– volume: 418
  start-page: 261
  year: 2009
  ident: B137
  article-title: AMPK and the biochemistry of exercise: implications for human health and disease.
  publication-title: Biochem. J.
  doi: 10.1042/BJ20082055
– volume: 118
  start-page: e337
  year: 2006
  ident: B156
  article-title: Cardiac and clinical phenotype in Barth syndrome.
  publication-title: Pediatrics
  doi: 10.1542/peds.2005-2667
– volume: 6
  issue: 3
  year: 2015
  ident: B108
  article-title: Disorders of phospholipid metabolism: an emerging class of mitochondrial disease due to defects in nuclear genes.
  publication-title: Front. Genet.
  doi: 10.3389/fgene.2015.00003
– volume: 25
  start-page: 222
  year: 2010
  ident: B106
  article-title: Arrhythmogenic right ventricular cardiomyopathy is a disease of cardiac stem cells.
  publication-title: Curr. Opin. Cardiol.
  doi: 10.1097/HCO.0b013e3283376daf
– volume: 192
  start-page: 447
  year: 2011
  ident: B40
  article-title: Barth syndrome mutations that cause tafazzin complex lability.
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201008177
– volume: 19
  start-page: 584
  year: 2011
  ident: B91
  article-title: Generation of HIV-1 resistant and functional macrophages from hematopoietic stem cell-derived induced pluripotent stem cells.
  publication-title: Mol. Ther.
  doi: 10.1038/mt.2010.269
– volume: 6
  start-page: 1091
  year: 2014
  ident: B5
  article-title: Mitochondria-targeted agents: future perspectives of mitochondrial pharmaceutics in cardiovascular diseases.
  publication-title: World J. Cardiol.
  doi: 10.4330/wjc.v6.i10.1091
– volume: 73
  start-page: 1273
  year: 2008
  ident: B6
  article-title: Mitochondria-targeted plastoquinone derivatives as tools to interrupt execution of the aging program. 1. Cationic plastoquinone derivatives: synthesis and in vitro studies.
  publication-title: Biochemistry (Mosc)
  doi: 10.1134/S0006297908120018
– volume: 19
  start-page: 2113
  year: 2010
  ident: B12
  article-title: OPA1 disease alleles causing dominant optic atrophy have defects in cardiolipin-stimulated GTP hydrolysis and membrane tubulation.
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddq088
– volume: 12
  start-page: 101
  year: 2013
  ident: B101
  article-title: Abnormal calcium handling properties underlie familial hypertrophic cardiomyopathy pathology in patient-specific induced pluripotent stem cells.
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2012.10.010
– volume: 20
  start-page: 158
  year: 2014
  ident: B138
  article-title: DNAJC19, a Mitochondrial Cochaperone Associated with Cardiomyopathy, Forms a Complex with Prohibitins to Regulate Cardiolipin Remodeling.
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2014.04.016
– volume: 14
  start-page: 208
  year: 2012
  ident: B154
  article-title: Advances in nuclear cardiac instrumentation with a view towards reduced radiation exposure.
  publication-title: Curr. Cardiol. Rep.
  doi: 10.1007/s11886-012-0248-z
– volume: 14
  start-page: 597
  year: 2007
  ident: B32
  article-title: Cardiolipin deficiency releases cytochrome c from the inner mitochondrial membrane and accelerates stimuli-elicited apoptosis.
  publication-title: Cell Death Differ.
  doi: 10.1038/sj.cdd.4402020
– volume: 398
  start-page: 169
  year: 2006
  ident: B29
  article-title: Identification and functional characterization of hCLS1, a human cardiolipin synthase localized in mitochondria.
  publication-title: Biochem. J.
  doi: 10.1042/BJ20060303
– volume: 111
  start-page: 26
  year: 2014
  ident: B95
  article-title: Tafazzin splice variants and mutations in Barth syndrome.
  publication-title: Mol. Genet. Metab.
  doi: 10.1016/j.ymgme.2013.11.006
– volume: 14
  start-page: 98
  year: 2014a
  ident: B116
  article-title: Cardiolipin metabolism and the role it plays in heart failure and mitochondrial supercomplex formation.
  publication-title: Cardiovasc. Hematol. Disord. Drug Targets
  doi: 10.2174/1871529X14666140505123753
– volume: 183
  start-page: 1213
  year: 2008
  ident: B100
  article-title: The translocator maintenance protein Tam41 is required for mitochondrial cardiolipin biosynthesis.
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200806048
– volume: 62
  start-page: 327
  year: 1983
  ident: B13
  article-title: An X-linked mitochondrial disease affecting cardiac muscle, skeletal muscle and neutrophil leucocytes.
  publication-title: J. Neurol. Sci.
  doi: 10.1016/0022-510X(83)90209-5
– volume: 321
  start-page: 1218
  year: 2008
  ident: B46
  article-title: Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons.
  publication-title: Science
  doi: 10.1126/science.1158799
– volume: 134
  start-page: 409
  year: 2005
  ident: B55
  article-title: Barth syndrome: TAZ gene mutations, mRNAs, and evolution.
  publication-title: Am. J. Med. Genet. A
  doi: 10.1002/ajmg.a.30661
– volume: 108
  start-page: 11860
  year: 2011
  ident: B179
  article-title: Structural and functional analysis of PTPMT1, a phosphatase required for cardiolipin synthesis.
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1109290108
– year: 2014
  ident: B185
  article-title: Cardiolipin remodeling: a regulatory hub for modulating cardiolipin metabolism and function.
  publication-title: J. Bioenerg. Biomembr.
  doi: 10.1007/s10863-014-9591-7
– volume: 33
  start-page: 627
  year: 2009
  ident: B50
  article-title: PINK1-associated Parkinson’s disease is caused by neuronal vulnerability to calcium-induced cell death.
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2009.02.013
– volume: 268
  start-page: 74
  year: 1993
  ident: B146
  article-title: Cardiolipin is synthesized on the matrix side of the inner membrane in rat liver mitochondria.
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)54116-8
– volume: 103
  start-page: 3915
  year: 2004
  ident: B99
  article-title: Neutrophils in Barth syndrome (BTHS) avidly bind annexin-V in the absence of apoptosis.
  publication-title: Blood
  doi: 10.1182/blood-2003-11-3940
– volume: 112
  start-page: 393
  year: 2013
  ident: B159
  article-title: Oxidative stress and sarcomeric proteins.
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.111.300496
– volume: 1831
  start-page: 582
  year: 2013
  ident: B143
  article-title: Cardiolipin remodeling and the function of tafazzin.
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbalip.2012.11.007
– volume: 34
  start-page: 297
  year: 1998
  ident: B48
  article-title: Phosphatidylglycerolphosphate synthase encoded by the PEL1/PGS1 gene in Saccharomyces cerevisiae is localized in mitochondria and its expression is regulated by phospholipid precursors.
  publication-title: Curr. Genet.
  doi: 10.1007/s002940050399
– year: 1981
  ident: B16
  publication-title: An X-Linked Mitochondrial Disease Affecting Cardiac Muscle, Skeletal Muscle and Neutrophil Leucocytes. Preliminary Communication.
– volume: 279
  start-page: 44394
  year: 2004
  ident: B109
  article-title: The human TAZ gene complements mitochondrial dysfunction in the yeast taz1Delta mutant. Implications for Barth syndrome.
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M405479200
– volume: 16
  start-page: 14
  year: 2009
  ident: B173
  article-title: Mitochondrial defects lie at the basis of neutropenia in Barth syndrome.
  publication-title: Curr. Opin. Hematol.
  doi: 10.1097/MOH.0b013e32831c83f3
– volume: 37
  start-page: 32
  year: 2012
  ident: B37
  article-title: The complexity of cardiolipin in health and disease.
  publication-title: Trends Biochem. Sci.
  doi: 10.1016/j.tibs.2011.09.003
– volume: 9
  issue: e102796
  year: 2014
  ident: B96
  article-title: Directed differentiation of patient-specific induced pluripotent stem cells identifies the transcriptional repression and epigenetic modification of NKX2-5, HAND1, and NOTCH1 in hypoplastic left heart syndrome.
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0102796
– volume: 1832
  start-page: 1194
  year: 2013
  ident: B56
  article-title: Barth syndrome: cellular compensation of mitochondrial dysfunction and apoptosis inhibition due to changes in cardiolipin remodeling linked to tafazzin (TAZ) gene mutation.
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbadis.2013.03.005
– volume: 30
  start-page: 970
  year: 2010
  ident: B160
  article-title: Barth syndrome: an X-linked cause of fetal cardiomyopathy and stillbirth.
  publication-title: Prenat. Diagn.
  doi: 10.1002/pd.2599
– volume: 143A
  start-page: 907
  year: 2007
  ident: B112
  article-title: Barth syndrome associated with compound hemizygosity and heterozygosity of the TAZ and LDB3 genes.
  publication-title: Am. J. Med. Genet. A
  doi: 10.1002/ajmg.a.31653
– volume: 27
  start-page: 849
  year: 1995
  ident: B53
  article-title: Structural remodeling and mechanical dysfunction of cardiac myocytes in heart failure.
  publication-title: J. Mol. Cell. Cardiol.
  doi: 10.1016/0022-2828(95)90000-4
– volume: 822
  start-page: 1
  year: 1985
  ident: B42
  article-title: Lipids of mitochondria.
  publication-title: Biochem. Biophys. Acta
  doi: 10.1016/0304-4157(85)90002-4
– volume: 55
  start-page: 437
  year: 1994
  ident: B118
  article-title: Maternally inherited hypertrophic cardiomyopathy due to a novel T-to-C transition at nucleotide 9997 in the mitochondrial tRNA(glycine) gene.
  publication-title: Am. J. Hum. Genet.
– volume: 9
  start-page: 86
  year: 2009
  ident: B1
  article-title: Distinct effects of tafazzin deletion in differentiated and undifferentiated mitochondria.
  publication-title: Mitochondrion
  doi: 10.1016/j.mito.2008.12.001
– volume: 1021
  start-page: 217
  year: 1990
  ident: B76
  article-title: Improved methods to isolate and subfractionate rat liver mitochondria. Lipid composition of the inner and outer membrane.
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/0005-2736(90)90036-N
– volume: 278
  start-page: 51380
  year: 2003
  ident: B180
  article-title: Remodeling of cardiolipin by phospholipid transacylation.
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M307382200
– volume: 273
  start-page: 9829
  year: 1998a
  ident: B26
  article-title: The PEL1 gene (renamed PGS1) encodes the phosphatidylglycero-phosphate synthase of Saccharomyces cerevisiae.
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.273.16.9829
– volume: 15
  issue: 369
  year: 2013
  ident: B151
  article-title: Stem cell therapy for pediatric dilated cardiomyopathy.
  publication-title: Curr. Cardiol. Rep.
  doi: 10.1007/s11886-013-0369-z
– volume: 284
  start-page: 29230
  year: 2009
  ident: B184
  article-title: Characterization of tafazzin splice variants from humans and fruit flies.
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M109.016642
– volume: 92
  start-page: 218
  year: 2014b
  ident: B176
  article-title: Mechanisms and effects of curcumin on spatial learning and memory improvement in APPswe/PS1dE9 mice.
  publication-title: J. Neurosci. Res.
  doi: 10.1002/jnr.23322
– volume: 11
  start-page: 643
  year: 2015
  ident: B78
  article-title: Cardiolipin remodeling by TAZ/tafazzin is selectively required for the initiation of mitophagy.
  publication-title: Autophagy
  doi: 10.1080/15548627.2015.1023984
– volume: 8
  start-page: 811
  year: 2012
  ident: B51
  article-title: Tafazzin senses curvature.
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.1068
– volume: 286
  start-page: 899
  year: 2011
  ident: B2
  article-title: Cardiac and skeletal muscle defects in a mouse model of human Barth syndrome.
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M110.171439
– volume: 8
  issue: 23
  year: 2013
  ident: B36
  article-title: Barth syndrome.
  publication-title: Orphanet. J. Rare Dis.
  doi: 10.1186/1750-1172-8-23
– volume: 186
  start-page: 793
  year: 2009
  ident: B44
  article-title: Coassembly of Mgm1 isoforms requires cardiolipin and mediates mitochondrial inner membrane fusion.
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200906098
– volume: 5
  issue: 3903
  year: 2014
  ident: B43
  article-title: Transplanted terminally differentiated induced pluripotent stem cells are accepted by immune mechanisms similar to self-tolerance.
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms4903
– volume: 7
  issue: e48628
  year: 2012
  ident: B166
  article-title: Human trifunctional protein alpha links cardiolipin remodeling to beta-oxidation.
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0048628
– volume: 574
  start-page: 33
  year: 2006
  ident: B136
  article-title: The role of AMP-activated protein kinase in mitochondrial biogenesis.
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.2006.109512
– volume: 292
  start-page: C33
  year: 2007
  ident: B31
  article-title: Role of cardiolipin alterations in mitochondrial dysfunction and disease.
  publication-title: Am. J. Physiol. Cell Physiol.
  doi: 10.1152/ajpcell.00243.2006
– volume: 15
  start-page: 1407
  year: 2012
  ident: B85
  article-title: Lipidomics identifies cardiolipin oxidation as a mitochondrial target for redox therapy of brain injury.
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.3195
– volume: 330
  start-page: 71
  year: 1993
  ident: B77
  article-title: Phospholipid asymmetry of the outer membrane of rat liver mitochondria. Evidence for the presence of cardiolipin on the outside of the outer membrane.
  publication-title: FEBS Lett.
  doi: 10.1016/0014-5793(93)80922-H
– volume: 64
  start-page: 24
  year: 1979
  ident: B122
  article-title: An X-linked recessive cardiomyopathy with abnormal mitochondria.
  publication-title: Pediatrics
  doi: 10.1542/peds.64.1.24
– volume: 44
  start-page: 560
  year: 2003
  ident: B171
  article-title: Linoleic acid supplementation of Barth syndrome fibroblasts restores cardiolipin levels: implications for treatment.
  publication-title: J. Lipid Res.
  doi: 10.1194/jlr.M200217-JLR200
– volume: 15
  start-page: 9
  year: 2014
  ident: B194
  article-title: Your heart on a chip: iPSC-based modeling of Barth-syndrome-associated cardiomyopathy.
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2014.06.015
– volume: 24
  start-page: 2008
  year: 2013
  ident: B11
  article-title: Deacylation on the matrix side of the mitochondrial inner membrane regulates cardiolipin remodeling.
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.E13-03-0121
– volume: 179
  start-page: 64
  year: 2014
  ident: B90
  article-title: Cardiolipin asymmetry, oxidation and signaling.
  publication-title: Chem. Phys. Lipids
  doi: 10.1016/j.chemphyslip.2013.11.010
– volume: 11
  start-page: 4165
  year: 2011
  ident: B58
  article-title: Ensembles of engineered cardiac tissues for physiological and pharmacological study: heart on a chip.
  publication-title: Lab Chip
  doi: 10.1039/c1lc20557a
– volume: 183
  start-page: 681
  year: 2008
  ident: B57
  article-title: Cardiolipin provides an essential activating platform for caspase-8 on mitochondria.
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200803129
– volume: 33
  start-page: 1430
  year: 2012
  ident: B61
  article-title: Left ventricular noncompaction cardiomyopathy in Barth syndrome: an example of an undulating cardiac phenotype necessitating mechanical circulatory support as a bridge to transplantation.
  publication-title: Pediatr. Cardiol.
  doi: 10.1007/s00246-012-0258-z
– volume: 19
  start-page: 5720
  year: 2000
  ident: B89
  article-title: LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing.
  publication-title: EMBO J.
  doi: 10.1093/emboj/19.21.5720
– volume: 135
  start-page: 273
  year: 1999
  ident: B17
  article-title: X-linked cardioskeletal myopathy and neutropenia (Barth syndrome)-MIM 302060.
  publication-title: J. Pediatr.
  doi: 10.1016/S0022-3476(99)70118-6
– volume: 1791
  start-page: 314
  year: 2009
  ident: B110
  article-title: Formation of molecular species of mitochondrial cardiolipin. 1. A novel transacylation mechanism to shuttle fatty acids between sn-1 and sn-2 positions of multiple phospholipid species.
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbalip.2009.01.004
– volume: 20
  start-page: 585
  year: 2014
  ident: B134
  article-title: Cardiomyopathy, mitochondria and Barth syndrome: iPSCs reveal a connection.
  publication-title: Nat. Med.
  doi: 10.1038/nm.3592
– volume: 10
  start-page: 376
  year: 2014
  ident: B33
  article-title: LC3 binds externalized cardiolipin on injured mitochondria to signal mitophagy in neurons: implications for Parkinson disease.
  publication-title: Autophagy
  doi: 10.4161/auto.27191
– volume: 182
  start-page: 937
  year: 2008
  ident: B39
  article-title: Cardiolipin defines the interactome of the major ADP/ATP carrier protein of the mitochondrial inner membrane.
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200801152
– volume: 109
  start-page: 6975
  year: 2012
  ident: B102
  article-title: Lysocardiolipin acyltransferase 1 (ALCAT1) controls mitochondrial DNA fidelity and biogenesis through modulation of MFN2 expression.
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1120043109
– volume: 387
  start-page: 617
  year: 2005
  ident: B167
  article-title: Ypr140wp, ‘the yeast tafazzin,’ displays a mitochondrial lysophosphatidylcholine (lyso-PC) acyltransferase activity related to triacylglycerol and mitochondrial lipid synthesis.
  publication-title: Biochem. J.
  doi: 10.1042/BJ20041491
– volume: 5
  start-page: 392
  year: 2013
  ident: B162
  article-title: Unveiling the last missing link of the cardiolipin synthetic pathway in mitochondria.
  publication-title: Aging (Albany NY)
  doi: 10.18632/aging.100572
– volume: 52
  start-page: 590
  year: 2013
  ident: B72
  article-title: Lipids of mitochondria.
  publication-title: Prog. Lipid Res.
  doi: 10.1016/j.plipres.2013.07.002
– volume: 4
  issue: e5329
  year: 2009
  ident: B45
  article-title: Phenotypic and functional characterization of human mammary stem/progenitor cells in long term culture.
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0005329
– volume: 580
  start-page: 5450
  year: 2006
  ident: B147
  article-title: Barth syndrome, a human disorder of cardiolipin metabolism.
  publication-title: FEBS Lett.
  doi: 10.1016/j.febslet.2006.07.022
– volume: 50
  start-page: 1600
  year: 2009
  ident: B141
  article-title: Cardiolipin biosynthesis and remodeling enzymes are altered during development of heart failure.
  publication-title: J. Lipid Res.
  doi: 10.1194/jlr.M800561-JLR200
– volume: 107
  start-page: 428
  year: 2012
  ident: B140
  article-title: Intrafamilial variability for novel TAZ gene mutation: barth syndrome with dilated cardiomyopathy and heart failure in an infant and left ventricular noncompaction in his great-uncle.
  publication-title: Mol. Genet. Metab.
  doi: 10.1016/j.ymgme.2012.09.013
– volume: 80
  start-page: 5051
  year: 2008
  ident: B193
  article-title: Electrophoretic analysis of the mitochondrial outer membrane rupture induced by permeability transition.
  publication-title: Anal. Chem.
  doi: 10.1021/ac800173r
– volume: 1793
  start-page: 212
  year: 2009
  ident: B87
  article-title: Cellular functions of cardiolipin in yeast.
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbamcr.2008.07.024
– volume: 26
  start-page: 1914
  year: 2005
  ident: B123
  article-title: The role of docosahexaenoic acid in mediating mitochondrial membrane lipid oxidation and apoptosis in colonocytes.
  publication-title: Carcinogenesis
  doi: 10.1093/carcin/bgi163
– volume: 1018
  start-page: 229
  year: 1990
  ident: B124
  article-title: The role of contact sites between inner and outer mitochondrial membrane in energy transfer.
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/0005-2728(90)90255-3
– volume: 110
  start-page: 9770
  year: 2013
  ident: B114
  article-title: Recapitulating maladaptive, multiscale remodeling of failing myocardium on a chip.
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1304913110
– volume: 1788
  start-page: 2080
  year: 2009
  ident: B148
  article-title: The role of cardiolipin in the structural organization of mitochondrial membranes.
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbamem.2009.04.019
– volume: 16
  start-page: 5202
  year: 2005
  ident: B22
  article-title: Taz1, an outer mitochondrial membrane protein, affects stability and assembly of inner membrane protein complexes: implications for Barth Syndrome.
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.E05-03-0256
– volume: 281
  start-page: 39217
  year: 2006
  ident: B182
  article-title: The enzymatic function of tafazzin.
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M606100200
– volume: 158A
  start-page: 2726
  year: 2012
  ident: B139
  article-title: The Barth Syndrome Registry: distinguishing disease characteristics and growth data from a longitudinal study.
  publication-title: Am. J. Med. Genet. A
  doi: 10.1002/ajmg.a.35609
– volume: 36
  start-page: 741
  year: 2013
  ident: B20
  article-title: Diagnosis of Barth syndrome using a novel LC-MS/MS method for leukocyte cardiolipin analysis.
  publication-title: J. Inherit. Metab. Dis.
  doi: 10.1007/s10545-012-9552-4
– volume: 239
  start-page: 113
  year: 1971
  ident: B73
  article-title: Biosynthesis of cardiolipin in liver mitochondria.
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/0005-2760(71)90201-3
– volume: 82
  start-page: 335
  year: 2002
  ident: B19
  article-title: Infantile dilated X-linked cardiomyopathy, G4.5 mutations, altered lipids, and ultrastructural malformations of mitochondria in heart, liver, and skeletal muscle.
  publication-title: Lab. Invest.
  doi: 10.1038/labinvest.3780427
– volume: 347(Pt 3)
  start-page: 687
  year: 2000
  ident: B97
  article-title: Oxidative phosphorylation in cardiolipin-lacking yeast mitochondria.
  publication-title: Biochem. J.
  doi: 10.1042/0264-6021:3470687
– volume: 6
  start-page: 542
  year: 2014b
  ident: B169
  article-title: A mitochondrial pathway for biosynthesis of lipid mediators.
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1924
– volume: 179
  start-page: 11
  year: 2014b
  ident: B117
  article-title: Mammalian cardiolipin biosynthesis.
  publication-title: Chem. Phys. Lipids
  doi: 10.1016/j.chemphyslip.2013.10.001
– volume: 363
  start-page: 1397
  year: 2010
  ident: B121
  article-title: Patient-specific induced pluripotent stem-cell models for long-QT syndrome.
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa0908679
– volume: 126
  start-page: 663
  year: 2006
  ident: B161
  article-title: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors.
  publication-title: Cell
  doi: 10.1016/j.cell.2006.07.024
– volume: 74
  start-page: 2228
  year: 2011
  ident: B119
  article-title: Protein carbonylation and metal-catalyzed protein oxidation in a cellular perspective.
  publication-title: J. Proteomics
  doi: 10.1016/j.jprot.2011.05.004
– volume: 296
  start-page: C1185
  year: 2009
  ident: B82
  article-title: Control of mitochondrial biogenesis, ROS level, and cytosolic Ca2+ concentration during the cell cycle and the onset of differentiation in L6E9 myoblasts.
  publication-title: Am. J. Physiol. Cell Physiol.
  doi: 10.1152/ajpcell.00377.2008
– volume: 546
  start-page: 119
  year: 2014
  ident: B25
  article-title: Genome editing in human stem cells.
  publication-title: Methods Enzymol.
  doi: 10.1016/B978-0-12-801185-0.00006-4
– volume: 279
  start-page: 32294
  year: 2004
  ident: B191
  article-title: Absence of cardiolipin results in temperature sensitivity, respiratory defects, and mitochondrial DNA instability independent of pet56.
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M403275200
– volume: 4(Suppl. 1)
  start-page: S60
  year: 2007
  ident: B35
  article-title: Mitochondrial oxidative metabolism is required for the cardiac differentiation of stem cells.
  publication-title: Nat. Clin. Pract. Cardiovasc. Med.
  doi: 10.1038/ncpcardio0766
– volume: 32(Suppl. 4)
  start-page: S7
  year: 2008
  ident: B62
  article-title: AMPK: a key regulator of energy balance in the single cell and the whole organism.
  publication-title: Int. J. Obes. (Lond.)
  doi: 10.1038/ijo.2008.116
– volume: 4
  start-page: 92
  year: 2015
  ident: B69
  article-title: Structural and functional analyses of Barth syndrome-causing mutations and alternative splicing in the tafazzin acyltransferase domain.
  publication-title: Meta Gene
  doi: 10.1016/j.mgene.2015.04.001
– volume: 143
  start-page: 247
  year: 1942
  ident: B127
  article-title: Isolation and purification of a serologically active phospholipid from beef heart.
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)72683-5
– volume: 167
  start-page: 941
  year: 2008
  ident: B186
  article-title: Acute metabolic decompensation and sudden death in Barth syndrome: report of a family and a literature review.
  publication-title: Eur. J. Pediatr.
  doi: 10.1007/s00431-007-0592-y
– volume: 15
  start-page: 1197
  year: 2013
  ident: B34
  article-title: Cardiolipin externalization to the outer mitochondrial membrane acts as an elimination signal for mitophagy in neuronal cells.
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb2837
– volume: 163C
  start-page: 198
  year: 2013
  ident: B84
  article-title: Barth syndrome.
  publication-title: Am. J. Med. Genet. C Semin. Med. Genet.
  doi: 10.1002/ajmg.c.31372
– volume: 35
  start-page: 1078
  year: 2014
  ident: B113
  article-title: Allele-specific RNA interference rescues the long-QT syndrome phenotype in human-induced pluripotency stem cell cardiomyocytes.
  publication-title: Eur. Heart J.
  doi: 10.1093/eurheartj/eht067
– volume: 31
  start-page: 20
  year: 2013
  ident: B172
  article-title: Human embryonic stem cells commonly display large mitochondrial DNA deletions.
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2473
– volume: 9
  start-page: 1663
  year: 2013
  ident: B192
  article-title: After the banquet: mitochondrial biogenesis, mitophagy, and cell survival.
  publication-title: Autophagy
  doi: 10.4161/auto.24135
– volume: 528
  start-page: 35
  year: 2002
  ident: B60
  article-title: Cardiolipin: a proton trap for oxidative phosphorylation.
  publication-title: FEBS Lett.
  doi: 10.1016/S0014-5793(02)03292-1
– volume: 271
  start-page: 789
  year: 1996
  ident: B152
  article-title: The CDS1 gene encoding CDP-diacylglycerol synthase in Saccharomyces cerevisiae is essential for cell growth.
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.271.2.789
– volume: 318
  start-page: 1917
  year: 2007
  ident: B187
  article-title: Induced pluripotent stem cell lines derived from human somatic cells.
  publication-title: Science
  doi: 10.1126/science.1151526
– volume: 68
  start-page: 1061
  year: 2008
  ident: B30
  article-title: Loss of tafazzin in yeast leads to increased oxidative stress during respiratory growth.
  publication-title: Mol. Microbiol.
  doi: 10.1111/j.1365-2958.2008.06216.x
– volume: 288
  start-page: 1696
  year: 2013
  ident: B128
  article-title: Loss of cardiolipin leads to perturbation of mitochondrial and cellular iron homeostasis.
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M112.428938
– volume: 11
  start-page: 806
  year: 2013
  ident: B47
  article-title: Cardiolipin deficiency affects respiratory chain function and organization in an induced pluripotent stem cell model of Barth syndrome.
  publication-title: Stem Cell Res.
  doi: 10.1016/j.scr.2013.05.005
– reference: 10769171 - Biochem J. 2000 May 1;347 Pt 3:687-91
– reference: 8079988 - Am J Hum Genet. 1994 Sep;55(3):437-46
– reference: 24848241 - Nat Chem. 2014 Jun;6(6):542-52
– reference: 2203472 - Biochim Biophys Acta. 1990 Jul 25;1018(2-3):229-33
– reference: 19752025 - J Cell Biol. 2009 Sep 21;186(6):793-803
– reference: 23843353 - Am J Med Genet C Semin Med Genet. 2013 Aug;163C(3):198-205
– reference: 15793838 - Am J Med Genet A. 2005 May 1;134(4):409-14
– reference: 19962311 - Curr Biol. 2009 Dec 29;19(24):2133-9
– reference: 22014644 - Trends Biochem Sci. 2012 Jan;37(1):32-41
– reference: 21601020 - J Proteomics. 2011 Oct 19;74(11):2228-42
– reference: 22987008 - Nat Chem Biol. 2012 Oct;8(10):811-2
– reference: 19295176 - Am J Physiol Cell Physiol. 2009 May;296(5):C1185-94
– reference: 8630491 - Nat Genet. 1996 Apr;12(4):385-9
– reference: 19196246 - Biochem J. 2009 Mar 1;418(2):261-75
– reference: 14623814 - Circulation. 2003 Nov 25;108(21):2672-8
– reference: 23192348 - J Biol Chem. 2013 Jan 18;288(3):1696-705
– reference: 21558246 - Integr Comp Biol. 2010 Nov;50(5):869-79
– reference: 24351649 - Autophagy. 2014 Feb;10(2):376-8
– reference: 25398338 - Methods Enzymol. 2014;546:119-38
– reference: 17394203 - Am J Med Genet A. 2007 May 1;143A(9):907-15
– reference: 23666883 - Curr Cardiol Rep. 2013 Jun;15(6):369
– reference: 1719174 - J Pediatr. 1991 Nov;119(5):738-47
– reference: 24078306 - Eukaryot Cell. 2013 Dec;12(12):1600-8
– reference: 16904174 - Cell. 2006 Aug 25;126(4):663-76
– reference: 21300850 - J Cell Biol. 2011 Feb 7;192(3):447-62
– reference: 19114128 - Mitochondrion. 2009 Apr;9(2):86-95
– reference: 22072288 - Lab Chip. 2011 Dec 21;11(24):4165-73
– reference: 24144810 - Chem Phys Lipids. 2014 Apr;179:11-6
– reference: 16888643 - Cell Death Differ. 2007 Mar;14(3):597-606
– reference: 24875164 - Nat Commun. 2014 May 30;5:3903
– reference: 23454757 - J Clin Invest. 2013 Mar;123(3):951-7
– reference: 21730175 - Proc Natl Acad Sci U S A. 2011 Jul 19;108(29):11860-5
– reference: 23290139 - Cell Stem Cell. 2013 Jan 3;12(1):101-13
– reference: 23398819 - Orphanet J Rare Dis. 2013 Feb 12;8:23
– reference: 19120014 - Biochemistry (Mosc). 2008 Dec;73(12):1273-87
– reference: 12297275 - FEBS Lett. 2002 Sep 25;528(1-3):35-9
– reference: 24632794 - Circ J. 2014;78(4):784-94
– reference: 19114592 - J Cell Biol. 2008 Dec 29;183(7):1213-21
– reference: 23807703 - Aging (Albany NY). 2013 Jun;5(6):392-3
– reference: 15588229 - Biochem J. 2005 May 1;387(Pt 3):617-26
– reference: 12509856 - Ann Neurol. 2003 Jan;53(1):121-3
– reference: 9545322 - J Biol Chem. 1998 Apr 17;273(16):9829-36
– reference: 12364341 - J Biol Chem. 2002 Nov 15;277(46):43553-6
– reference: 2408671 - Biochim Biophys Acta. 1985 Jun 12;822(1):1-42
– reference: 18719601 - Int J Obes (Lond). 2008 Sep;32 Suppl 4:S7-12
– reference: 16709637 - J Physiol. 2006 Jul 1;574(Pt 1):33-9
– reference: 25349653 - World J Cardiol. 2014 Oct 26;6(10):1091-9
– reference: 15788391 - J Biol Chem. 2005 Jun 3;280(22):21295-312
– reference: 15098233 - Am J Med Genet A. 2004 May 1;126A(4):349-54
– reference: 11238270 - Circulation. 2001 Mar 6;103(9):1256-63
– reference: 8557688 - J Biol Chem. 1996 Jan 12;271(2):789-95
– reference: 24076990 - Nat Methods. 2013 Oct;10(10):957-63
– reference: 23787782 - Autophagy. 2013 Nov 1;9(11):1663-76
– reference: 19001357 - J Lipid Res. 2009 Aug;50(8):1600-8
– reference: 25941633 - Meta Gene. 2015 Apr 22;4:92-106
– reference: 21068380 - J Biol Chem. 2011 Jan 14;286(2):899-908
– reference: 17230217 - Nat Clin Pract Cardiovasc Med. 2007 Feb;4 Suppl 1:S60-7
– reference: 12562862 - J Lipid Res. 2003 Mar;44(3):560-6
– reference: 23200781 - Biochim Biophys Acta. 2013 Mar;1831(3):582-8
– reference: 24036476 - Nat Cell Biol. 2013 Oct;15(10):1197-205
– reference: 18990125 - Ann N Y Acad Sci. 2008 Oct;1142:133-58
– reference: 19675643 - Nature. 2009 Aug 13;460(7257):831-8
– reference: 19700766 - J Biol Chem. 2009 Oct 16;284(42):29230-9
– reference: 16794186 - Circ Res. 2006 Jul 21;99(2):201-8
– reference: 17082194 - J Biol Chem. 2006 Dec 22;281(51):39217-24
– reference: 15805542 - J Lipid Res. 2005 Jun;46(6):1182-95
– reference: 21641550 - Cell Metab. 2011 Jun 8;13(6):690-700
– reference: 22941046 - Nat Chem Biol. 2012 Oct;8(10):862-9
– reference: 572031 - Pediatrics. 1979 Jul;64(1):24-9
– reference: 16135531 - Mol Biol Cell. 2005 Nov;16(11):5202-14
– reference: 22327929 - Curr Cardiol Rep. 2012 Apr;14(2):208-16
– reference: 9614098 - J Biol Chem. 1998 Jun 12;273(24):14933-41
– reference: 16899548 - Am J Physiol Cell Physiol. 2007 Jan;292(1):C33-44
– reference: 11060023 - EMBO J. 2000 Nov 1;19(21):5720-8
– reference: 16547353 - J Lipid Res. 2006 Jun;47(6):1140-5
– reference: 16943180 - J Cell Biol. 2006 Aug 28;174(5):631-7
– reference: 23302926 - Nat Biotechnol. 2013 Jan;31(1):20-3
– reference: 18425414 - Cell Mol Life Sci. 2008 Aug;65(16):2493-506
– reference: 23130124 - J Am Heart Assoc. 2012 Apr;1(2):null
– reference: 20660394 - N Engl J Med. 2010 Oct 7;363(15):1397-409
– reference: 22178754 - Proc Natl Acad Sci U S A. 2012 Jan 3;109 (1):215-20
– reference: 21119622 - Mol Ther. 2011 Mar;19(3):584-93
– reference: 9345098 - Am J Hum Genet. 1997 Nov;61(5):1053-8
– reference: 19413994 - Biochim Biophys Acta. 2009 Oct;1788(10):2080-3
– reference: 18430085 - Mol Microbiol. 2008 May;68(4):1061-72
– reference: 24445246 - Chem Phys Lipids. 2014 Apr;179:49-56
– reference: 21091282 - Hum Gene Ther. 2011 Jul;22(7):865-71
– reference: 22101267 - Cell Cycle. 2011 Dec 1;10(23):4032-8
– reference: 20185555 - Hum Mol Genet. 2010 Jun 1;19(11):2113-22
– reference: 22465155 - Chem Phys Lipids. 2012 Jul;165(5):512-9
– reference: 24901565 - Nat Med. 2014 Jun;20(6):585-6
– reference: 16857210 - J Mol Biol. 2006 Aug 18;361(3):462-9
– reference: 18669821 - Science. 2008 Aug 29;321(5893):1218-21
– reference: 16235007 - Pediatr Cardiol. 2005 Sep-Oct;26(5):632-7
– reference: 24342716 - Mol Genet Metab. 2014 Jan;111(1):26-32
– reference: 25919711 - Autophagy. 2015 Apr 3;11(4):643-52
– reference: 24007978 - Prog Lipid Res. 2013 Oct;52(4):590-614
– reference: 8434619 - Am J Med Genet. 1993 Feb 1;45(3):327-34
– reference: 2172233 - J Biol Chem. 1990 Nov 5;265(31):18797-802
– reference: 14764526 - Blood. 2004 May 15;103(10):3915-23
– reference: 20348225 - Am J Physiol Heart Circ Physiol. 2010 Jul;299(1):H210-6
– reference: 8380172 - J Biol Chem. 1993 Jan 5;268(1):74-9
– reference: 23031367 - Mol Genet Metab. 2012 Nov;107(3):428-32
– reference: 18725250 - Biochim Biophys Acta. 2009 Jan;1793(1):212-8
– reference: 24273069 - J Neurosci Res. 2014 Feb;92(2):218-31
– reference: 24769127 - Prog Lipid Res. 2014 Jul;55:1-16
– reference: 19619503 - Biochim Biophys Acta. 2009 Oct;1788(10):2003-14
– reference: 3030927 - Hum Genet. 1987 Mar;75(3):286-90
– reference: 963901 - Clin Chim Acta. 1976 Sep 6;71(2):349-51
– reference: 20124997 - Curr Opin Cardiol. 2010 May;25(3):222-8
– reference: 16847078 - Pediatrics. 2006 Aug;118(2):e337-46
– reference: 15485678 - Cardiovasc Res. 2004 Nov 1;64(2):198-207
– reference: 19390630 - PLoS One. 2009;4(4):e5329
– reference: 23523468 - Biochim Biophys Acta. 2013 Aug;1832(8):1194-206
– reference: 24856930 - Cell Metab. 2014 Jul 1;20(1):158-71
– reference: 23637464 - Mol Biol Cell. 2013 Jun;24(12):2008-20
– reference: 23997105 - Am J Physiol Heart Circ Physiol. 2013 Nov 1;305(9):H1332-43
– reference: 16880272 - J Cell Biol. 2006 Jul 31;174(3):379-90
– reference: 25691889 - Front Genet. 2015 Feb 03;6:3
– reference: 23329794 - Circ Res. 2013 Jan 18;112(2):393-405
– reference: 22949503 - Mol Cell Biol. 2012 Nov;32(21):4493-504
– reference: 23913125 - Nat Med. 2013 Sep;19(9):1111-3
– reference: 20485265 - EMBO J. 2010 Jun 16;29(12 ):1976-87
– reference: 16973164 - FEBS Lett. 2006 Oct 9;580(23):5450-5
– reference: 18510346 - Anal Chem. 2008 Jul 1;80(13):5051-8
– reference: 15304507 - J Biol Chem. 2004 Oct 22;279(43):44394-9
– reference: 22174035 - EMBO Mol Med. 2012 Mar;4(3):180-91
– reference: 18029452 - Science. 2007 Dec 21;318(5858):1917-20
– reference: 15806137 - Lab Invest. 2005 Jun;85(6):823-30
– reference: 24813252 - Nat Med. 2014 Jun;20(6):616-23
– reference: 10799718 - Prog Lipid Res. 2000 May;39(3):257-88
– reference: 23470493 - Eur Heart J. 2014 Apr;35(16):1078-87
– reference: 17846786 - Eur J Pediatr. 2008 Aug;167(8):941-4
– reference: 23136396 - Dis Model Mech. 2013 May;6(3):608-21
– reference: 23100323 - Hum Mol Genet. 2013 Feb 1;22(3):483-92
– reference: 23045169 - Am J Med Genet A. 2012 Nov;158A(11):2726-32
– reference: 24801725 - Cardiovasc Hematol Disord Drug Targets. 2014;14(2):98-106
– reference: 24333544 - Chem Phys Lipids. 2014 Apr;179:3-10
– reference: 25247053 - Oxid Med Cell Longev. 2014;2014:654198
– reference: 22410210 - Mol Genet Metab. 2012 May;106(1):115-20
– reference: 2154259 - Biochim Biophys Acta. 1990 Jan 29;1021(2):217-26
– reference: 9792874 - Am J Hum Genet. 1998 Nov;63(5):1457-63
– reference: 14551214 - J Biol Chem. 2003 Dec 19;278(51):51380-5
– reference: 10484787 - J Pediatr. 1999 Sep;135(3):273-6
– reference: 15975958 - Carcinogenesis. 2005 Nov;26(11):1914-21
– reference: 25422939 - PLoS One. 2014 Nov 25;9(11):e113680
– reference: 15169766 - J Biol Chem. 2004 Jul 30;279(31):32294-300
– reference: 20064600 - Exp Gerontol. 2010 Aug;45(7-8):466-72
– reference: 23871585 - Am J Pathol. 2013 Sep;183(3):720-34
– reference: 22509026 - Proc Natl Acad Sci U S A. 2012 May 1;109(18):6975-80
– reference: 11896212 - Lab Invest. 2002 Mar;82(3):335-44
– reference: 12569106 - J Biol Chem. 2003 Apr 11;278(15):12716-21
– reference: 25673287 - J Histochem Cytochem. 2015 May;63(5):301-11
– reference: 22427193 - Pediatr Cardiol. 2012 Dec;33(8):1430-4
– reference: 12930833 - J Biol Chem. 2003 Oct 31;278(44):43089-94
– reference: 19285945 - Mol Cell. 2009 Mar 13;33(5):627-38
– reference: 4998839 - Biochim Biophys Acta. 1971 Jun 8;239(1):113-9
– reference: 20812380 - Prenat Diagn. 2010 Oct;30(10 ):970-6
– reference: 19001123 - J Cell Biol. 2008 Nov 17;183(4):681-96
– reference: 8370463 - FEBS Lett. 1993 Sep 6;330(1):71-6
– reference: 18779372 - J Cell Biol. 2008 Sep 8;182(5):937-50
– reference: 9799363 - Curr Genet. 1998 Oct;34(4):297-302
– reference: 24184646 - Chem Phys Lipids. 2014 Apr;179:25-31
– reference: 17043667 - Lab Invest. 2007 Jan;87(1):40-8
– reference: 24300280 - Chem Phys Lipids. 2014 Apr;179:64-9
– reference: 8739954 - J Inherit Metab Dis. 1996;19(2):157-60
– reference: 23792436 - Stem Cell Res. 2013 Sep;11(2):806-19
– reference: 22521339 - J Pharmacol Toxicol Methods. 2012 May-Jun;65(3):126-35
– reference: 19416660 - Biochim Biophys Acta. 2009 Apr;1791(4):314-20
– reference: 15972817 - J Biol Chem. 2005 Aug 19;280(33):29403-8
– reference: 11092892 - J Biol Chem. 2001 Feb 16;276(7):4588-96
– reference: 23152787 - PLoS One. 2012;7(11):e48628
– reference: 22922784 - Nat Neurosci. 2012 Oct;15(10):1407-13
– reference: 19057200 - Curr Opin Hematol. 2009 Jan;16(1):14-9
– reference: 25050861 - PLoS One. 2014 Jul 22;9(7):e102796
– reference: 21920313 - Dev Cell. 2011 Sep 13;21(3):469-78
– reference: 23109063 - J Inherit Metab Dis. 2013 Sep;36(5):741-6
– reference: 24996164 - Cell Stem Cell. 2014 Jul 3;15(1):9-11
– reference: 3005242 - J Bacteriol. 1986 Mar;165(3):901-10
– reference: 23716679 - Proc Natl Acad Sci U S A. 2013 Jun 11;110(24):9770-5
– reference: 25432572 - J Bioenerg Biomembr. 2016 Apr;48(2):113-23
– reference: 17609368 - Proc Natl Acad Sci U S A. 2007 Jul 17;104(29):12017-22
– reference: 23405277 - Sci Rep. 2013;3:1263
– reference: 6142097 - J Neurol Sci. 1983 Dec;62(1-3):327-55
– reference: 24240927 - JAMA. 2013 Nov 20;310(19):2039-40
– reference: 16226238 - Chem Phys Lipids. 2005 Dec;138(1-2):38-49
– reference: 7602601 - J Mol Cell Cardiol. 1995 Mar;27(3):849-56
– reference: 22749309 - J Am Coll Cardiol. 2012 Sep 11;60(11):990-1000
– reference: 23623749 - Cell Metab. 2013 May 7;17(5):709-18
– reference: 25598000 - Mitochondrion. 2015 Mar;21:27-32
– reference: 16716149 - Biochem J. 2006 Sep 1;398(2):169-76
– reference: 15052331 - Biochem Cell Biol. 2004 Feb;82(1):99-112
SSID ssj0000493334
Score 2.3836021
SecondaryResourceType review_article
Snippet Mutations in the gene encoding the enzyme tafazzin, TAZ, cause Barth syndrome (BTHS). Individuals with this X-linked multisystem disorder present...
Mutations in the gene encoding the enzyme tafazzin, TAZ , cause Barth syndrome (BTHS). Individuals with this X-linked multisystem disorder present...
SourceID doaj
pubmedcentral
hal
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 359
SubjectTerms Barth Syndrome
cardiolipin
Cellular Biology
Cellular Models
Endocrinology and metabolism
Genetics
Human genetics
Human health and pathology
Life Sciences
Mitochondria
Stem Cells
Subcellular Processes
Tafazzin
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELbQSkhcEMszy0MGceEQNbGd2Oa2i6gqhLjASnuz7NhWQUtSbVO0_RP8ZmbsbNWCBBcuPbiOE8984xk7k28Ied3o2LRWVmBpVpaCR1s6cNRg8UEIrlrvbcq2-NQuzsWHi-Zir9QX5oRleuAsuJm0VccEDMQDF3C9sroJ3CnfuKjrmFZf8Hl7m6lvOe7lnIv8XhJ2YXoWQR9Ii1njGQpHatI9P5To-sG7LDEZ8s9I8_eEyT0PNL9H7k6hIz3Nj3xMboX-Prmdi0luH5CfZzCZJf08URC8ncMv_Q4GCwscNAHOqN-u0Y8lqFE7KSZ4ioex1LpwBY5rpKtMAgud6BApBJVpSaTD9RYmR_HTTNhd03Ggq8sNLDkDRN0jRT5oim8B6DpnJj4k5_P3X94tyqnaQtkJ3Y4lBxE7xbAaNaw83KFUpe6Yb6XwvnI6St61HiIKLx0X0YMQWZAVtARVxZo_Ikf90IcnhPKoGh-t051zIkqmvK55bTsVrGNMh4LMbmRvuomKHCtiXBrYkqC2TNKWQW2ZpK2CvNldsco0HH_pe4bq3PVDAu3UALAyE6zMv2BVkFcAhoMxFqcfDbZVQgqtqvZHXZCXN1gxYJUoZNuHYbM2NfgYDlgXVUEeZ-zsxmKt4viBb0HkAaoObnb4T_91mZi_IZLQ4GJO_scMn5I7ILN0nMSqZ-RovNqE5xBgje5FsqVf6ycngA
  priority: 102
  providerName: Directory of Open Access Journals
Title Barth Syndrome: From Mitochondrial Dysfunctions Associated with Aberrant Production of Reactive Oxygen Species to Pluripotent Stem Cell Studies
URI https://www.ncbi.nlm.nih.gov/pubmed/26834781
https://www.proquest.com/docview/1762343840
https://hal.science/hal-04749806
https://pubmed.ncbi.nlm.nih.gov/PMC4719219
https://doaj.org/article/7a0c247a73e34e448a95e3b8d5bf91f2
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELZgERIXxJvwWBnEhUPYxHbiGAmh7kKpEAsrlkq9WXZsU1bZBNoUbX8Ff5mxkxYCKyQuieI4jjLzjb_xIzMIPcmEy3LFE7A0xWNGnYo1EDVYvGWMFrkxKuy2eJ9PpuztLJv9-j26F-Dy3KGdzyc1XVTPzr6tX4LBv_AjTuDbPQei9hEvUz89QjNxEV0CXuI-n8Fh7-yfdL4wpd0yc54z6JpJ2q1bntvIgKdCOH9gn7nfLPm3J_rnhsrfGGp8DV3tXUs86rBwHV2w9Q10uUs2ub6JfuwDSub4uA9R8ByP4YQPwaJBCFAGQMSv1ktPdAGLeKM5a7CfrcUjbRfAbC0-6qLEQiXcOPzRqtBn4g9na_g6HDLa2yVuG3xUraBPasAtb_Fxa0_xga0q3G9dvIWm49efDiZxn44hLpnI25gqTnVBfLpq6JqoJuBqcFESk3NmTKKF47TMDbgchmvKnAEpEssTKLFF4lJ6G-3UTW3vIkxdkRmntCi1Zo6TwoiUpqosrNKECBuhvY3wZdnHKvcpMyoJYxavLhnUJb26ZFBXhJ5un_jaxen4R919r89tPR9hOxQ0i8-yN1jJVVISBgCmljLAbaFEZuH7TaadSB2J0GNAw6CNyeid9GUJ40wUSf49jdCjDVgkmK1fi1G1bVZLmQIJUTAGlkToTgeebVskL6j_AzhCfACrwcuGd-ov8xAaHFwNARx07z-kcR9dgYswrUSSB2inXazsQ3C0Wr0bJijg-GaW7gZb-glL6yjN
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Barth+Syndrome%3A+From+Mitochondrial+Dysfunctions+Associated+with+Aberrant+Production+of+Reactive+Oxygen+Species+to+Pluripotent+Stem+Cell+Studies&rft.jtitle=Frontiers+in+genetics&rft.au=Saric%2C+Ana&rft.au=Andreau%2C+Karine&rft.au=Armand%2C+Anne-Sophie&rft.au=M%C3%B8ller%2C+Ian+M.&rft.date=2016-01-20&rft.issn=1664-8021&rft.eissn=1664-8021&rft.volume=6&rft_id=info:doi/10.3389%2Ffgene.2015.00359&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fgene_2015_00359
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-8021&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-8021&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-8021&client=summon