Barth Syndrome: From Mitochondrial Dysfunctions Associated with Aberrant Production of Reactive Oxygen Species to Pluripotent Stem Cell Studies
Mutations in the gene encoding the enzyme tafazzin, TAZ, cause Barth syndrome (BTHS). Individuals with this X-linked multisystem disorder present cardiomyopathy (CM) (often dilated), skeletal muscle weakness, neutropenia, growth retardation, and 3-methylglutaconic aciduria. Biopsies of the heart, li...
Saved in:
Published in | Frontiers in genetics Vol. 6; p. 359 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Media
20.01.2016
Frontiers Media S.A |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Mutations in the gene encoding the enzyme tafazzin, TAZ, cause Barth syndrome (BTHS). Individuals with this X-linked multisystem disorder present cardiomyopathy (CM) (often dilated), skeletal muscle weakness, neutropenia, growth retardation, and 3-methylglutaconic aciduria. Biopsies of the heart, liver and skeletal muscle of patients have revealed mitochondrial malformations and dysfunctions. It is the purpose of this review to summarize recent results of studies on various animal or cell models of Barth syndrome, which have characterized biochemically the strong cellular defects associated with TAZ mutations. Tafazzin is a mitochondrial phospholipidlysophospholipid transacylase that shuttles acyl groups between phospholipids and regulates the remodeling of cardiolipin (CL), a unique inner mitochondrial membrane phospholipid dimer consisting of two phosphatidyl residues linked by a glycerol bridge. After their biosynthesis, the acyl chains of CLs may be modified in remodeling processes involving up to three different enzymes. Their characteristic acyl chain composition depends on the function of tafazzin, although the enzyme itself surprisingly lacks acyl specificity. CLs are crucial for correct mitochondrial structure and function. In addition to their function in the basic mitochondrial function of ATP production, CLs play essential roles in cardiac function, apoptosis, autophagy, cell cycle regulation and Fe-S cluster biosynthesis. Recent developments in tafazzin research have provided strong insights into the link between mitochondrial dysfunction and the production of reactive oxygen species (ROS). An important tool has been the generation of BTHS-specific induced pluripotent stem cells (iPSCs) from BTHS patients. In a complementary approach, disease-specific mutations have been introduced into wild-type iPSC lines enabling direct comparison with isogenic controls. iPSC-derived cardiomyocytes were then characterized using biochemical and classical bioenergetic approaches. The cells are tested in a "heart-on-chip" assay to model the pathophysiology in vitro, to characterize the underlying mechanism of BTHS deriving from TAZ mutations, mitochondrial deficiencies and ROS production and leading to tissue defects, and to evaluate potential therapies with the use of mitochondrially targeted antioxidants. |
---|---|
AbstractList | Mutations in the gene encoding the enzyme tafazzin, TAZ, cause Barth syndrome (BTHS). Individuals with this X-linked multisystem disorder present cardiomyopathy (CM) (often dilated), skeletal muscle weakness, neutropenia, growth retardation, and 3-methylglutaconic aciduria. Biopsies of the heart, liver and skeletal muscle of patients have revealed mitochondrial malformations and dysfunctions. It is the purpose of this review to summarize recent results of studies on various animal or cell models of Barth syndrome, which have characterized biochemically the strong cellular defects associated with TAZ mutations. Tafazzin is a mitochondrial phospholipidlysophospholipid transacylase that shuttles acyl groups between phospholipids and regulates the remodeling of cardiolipin (CL), a unique inner mitochondrial membrane phospholipid dimer consisting of two phosphatidyl residues linked by a glycerol bridge. After their biosynthesis, the acyl chains of CLs may be modified in remodeling processes involving up to three different enzymes. Their characteristic acyl chain composition depends on the function of tafazzin, although the enzyme itself surprisingly lacks acyl specificity. CLs are crucial for correct mitochondrial structure and function. In addition to their function in the basic mitochondrial function of ATP production, CLs play essential roles in cardiac function, apoptosis, autophagy, cell cycle regulation and Fe-S cluster biosynthesis. Recent developments in tafazzin research have provided strong insights into the link between mitochondrial dysfunction and the production of reactive oxygen species (ROS). An important tool has been the generation of BTHS-specific induced pluripotent stem cells (iPSCs) from BTHS patients. In a complementary approach, disease-specific mutations have been introduced into wild-type iPSC lines enabling direct comparison with isogenic controls. iPSC-derived cardiomyocytes were then characterized using biochemical and classical bioenergetic approaches. The cells are tested in a "heart-on-chip" assay to model the pathophysiology in vitro, to characterize the underlying mechanism of BTHS deriving from TAZ mutations, mitochondrial deficiencies and ROS production and leading to tissue defects, and to evaluate potential therapies with the use of mitochondrially targeted antioxidants.Mutations in the gene encoding the enzyme tafazzin, TAZ, cause Barth syndrome (BTHS). Individuals with this X-linked multisystem disorder present cardiomyopathy (CM) (often dilated), skeletal muscle weakness, neutropenia, growth retardation, and 3-methylglutaconic aciduria. Biopsies of the heart, liver and skeletal muscle of patients have revealed mitochondrial malformations and dysfunctions. It is the purpose of this review to summarize recent results of studies on various animal or cell models of Barth syndrome, which have characterized biochemically the strong cellular defects associated with TAZ mutations. Tafazzin is a mitochondrial phospholipidlysophospholipid transacylase that shuttles acyl groups between phospholipids and regulates the remodeling of cardiolipin (CL), a unique inner mitochondrial membrane phospholipid dimer consisting of two phosphatidyl residues linked by a glycerol bridge. After their biosynthesis, the acyl chains of CLs may be modified in remodeling processes involving up to three different enzymes. Their characteristic acyl chain composition depends on the function of tafazzin, although the enzyme itself surprisingly lacks acyl specificity. CLs are crucial for correct mitochondrial structure and function. In addition to their function in the basic mitochondrial function of ATP production, CLs play essential roles in cardiac function, apoptosis, autophagy, cell cycle regulation and Fe-S cluster biosynthesis. Recent developments in tafazzin research have provided strong insights into the link between mitochondrial dysfunction and the production of reactive oxygen species (ROS). An important tool has been the generation of BTHS-specific induced pluripotent stem cells (iPSCs) from BTHS patients. In a complementary approach, disease-specific mutations have been introduced into wild-type iPSC lines enabling direct comparison with isogenic controls. iPSC-derived cardiomyocytes were then characterized using biochemical and classical bioenergetic approaches. The cells are tested in a "heart-on-chip" assay to model the pathophysiology in vitro, to characterize the underlying mechanism of BTHS deriving from TAZ mutations, mitochondrial deficiencies and ROS production and leading to tissue defects, and to evaluate potential therapies with the use of mitochondrially targeted antioxidants. Mutations in the gene encoding the enzyme tafazzin, TAZ, cause Barth syndrome (BTHS). Individuals with this X-linked multisystem disorder present cardiomyopathy (CM) (often dilated), skeletal muscle weakness, neutropenia, growth retardation, and 3-methylglutaconic aciduria. Biopsies of the heart, liver and skeletal muscle of patients have revealed mitochondrial malformations and dysfunctions. It is the purpose of this review to summarize recent results of studies on various animal or cell models of Barth syndrome, which have characterized biochemically the strong cellular defects associated with TAZ mutations. Tafazzin is a mitochondrial phospholipidlysophospholipid transacylase that shuttles acyl groups between phospholipids and regulates the remodeling of cardiolipin (CL), a unique inner mitochondrial membrane phospholipid dimer consisting of two phosphatidyl residues linked by a glycerol bridge. After their biosynthesis, the acyl chains of CLs may be modified in remodeling processes involving up to three different enzymes. Their characteristic acyl chain composition depends on the function of tafazzin, although the enzyme itself surprisingly lacks acyl specificity. CLs are crucial for correct mitochondrial structure and function. In addition to their function in the basic mitochondrial function of ATP production, CLs play essential roles in cardiac function, apoptosis, autophagy, cell cycle regulation and Fe-S cluster biosynthesis. Recent developments in tafazzin research have provided strong insights into the link between mitochondrial dysfunction and the production of reactive oxygen species (ROS). An important tool has been the generation of BTHS-specific induced pluripotent stem cells (iPSCs) from BTHS patients. In a complementary approach, disease-specific mutations have been introduced into wild-type iPSC lines enabling direct comparison with isogenic controls. iPSC-derived cardiomyocytes were then characterized using biochemical and classical bioenergetic approaches. The cells are tested in a "heart-on-chip" assay to model the pathophysiology in vitro, to characterize the underlying mechanism of BTHS deriving from TAZ mutations, mitochondrial deficiencies and ROS production and leading to tissue defects, and to evaluate potential therapies with the use of mitochondrially targeted antioxidants. Mutations in the gene encoding the enzyme tafazzin, TAZ , cause Barth syndrome (BTHS). Individuals with this X-linked multisystem disorder present cardiomyopathy (CM) (often dilated), skeletal muscle weakness, neutropenia, growth retardation, and 3-methylglutaconic aciduria. Biopsies of the heart, liver and skeletal muscle of patients have revealed mitochondrial malformations and dysfunctions. It is the purpose of this review to summarize recent results of studies on various animal or cell models of Barth syndrome, which have characterized biochemically the strong cellular defects associated with TAZ mutations. Tafazzin is a mitochondrial phospholipidlysophospholipid transacylase that shuttles acyl groups between phospholipids and regulates the remodeling of cardiolipin (CL), a unique inner mitochondrial membrane phospholipid dimer consisting of two phosphatidyl residues linked by a glycerol bridge. After their biosynthesis, the acyl chains of CLs may be modified in remodeling processes involving up to three different enzymes. Their characteristic acyl chain composition depends on the function of tafazzin, although the enzyme itself surprisingly lacks acyl specificity. CLs are crucial for correct mitochondrial structure and function. In addition to their function in the basic mitochondrial function of ATP production, CLs play essential roles in cardiac function, apoptosis, autophagy, cell cycle regulation and Fe-S cluster biosynthesis. Recent developments in tafazzin research have provided strong insights into the link between mitochondrial dysfunction and the production of reactive oxygen species (ROS). An important tool has been the generation of BTHS-specific induced pluripotent stem cells (iPSCs) from BTHS patients. In a complementary approach, disease-specific mutations have been introduced into wild-type iPSC lines enabling direct comparison with isogenic controls. iPSC-derived cardiomyocytes were then characterized using biochemical and classical bioenergetic approaches. The cells are tested in a “heart-on-chip” assay to model the pathophysiology in vitro , to characterize the underlying mechanism of BTHS deriving from TAZ mutations, mitochondrial deficiencies and ROS production and leading to tissue defects, and to evaluate potential therapies with the use of mitochondrially targeted antioxidants. Mutations in the gene encoding the enzyme tafazzin, TAZ, cause Barth syndrome (BTHS). Individuals with this X-linked multisystem disorder present cardiomyopathy (often dilated), skeletal muscle weakness, neutropenia, growth retardation and 3-methylglutaconic aciduria. Biopsies of the heart, liver and skeletal muscle of patients have revealed mitochondrial malformations and dysfunctions. It is the purpose of this review to summarize recent results of studies on various animal or cell models of Barth syndrome, which have characterized biochemically the strong cellular defects associated with TAZ mutations. Tafazzin is a mitochondrial phospholipid-lysophospholipid transacylase that shuttles acyl groups between phospholipids and regulates the remodeling of cardiolipin (CL), a unique inner mitochondrial membrane phospholipid dimer consisting of two phosphatidyl residues linked by a glycerol bridge. After their biosynthesis, the acyl chains of CLs may be modified in remodeling processes involving up to three different enzymes. Their characteristic acyl chain composition depends on the function of tafazzin, although the enzyme itself surprisingly lacks acyl specificity. CLs are crucial for correct mitochondrial structure and function. In addition to their function in the basic mitochondrial function of ATP production, CLs play essential roles in cardiac function, apoptosis, autophagy, cell cycle regulation and Fe-S cluster biosynthesis. Recent developments in tafazzin research have provided strong insights into the link between mitochondrial dysfunction and the production of reactive oxygen species (ROS). An important tool has been the generation of BTHS-specific induced pluripotent stem cells (iPSCs) from BTHS patients. In a complementary approach, disease-specific mutations have been introduced into wild-type iPSC lines enabling direct comparison with isogenic controls. iPSC-derived cardiomyocytes were then characterized using biochemical and classical bioenergetic approaches. The cells are tested in a ‘‘heart-on-chip’’ assay to model the pathophysiology in vitro, to characterize the underlying mechanism of BTHS deriving from TAZ mutations, mitochondrial deficiencies and ROS production and leading to tissue defects, and to evaluate potential therapies with the use of mitochondrially targeted antioxidants. |
Author | Petit, Patrice X. Andreau, Karine Armand, Anne-Sophie Møller, Ian M. Saric, Ana |
AuthorAffiliation | 3 Department of Molecular Biology and Genetics, Aarhus University Slagelse, Denmark 2 Division of Molecular Medicine, Ruđer Bošković Institute Zagreb, Croatia 1 INSERM U 1124 “Toxicologie, Pharmacologie et Signalisation Cellulaire” and “FR 3567” CNRS Chimie, Toxicologie, Signalisation Cellulaire et Cibles Thérapeutiques, Université Paris Descartes – Centre Universitaire des Saints-Pères Paris, France |
AuthorAffiliation_xml | – name: 1 INSERM U 1124 “Toxicologie, Pharmacologie et Signalisation Cellulaire” and “FR 3567” CNRS Chimie, Toxicologie, Signalisation Cellulaire et Cibles Thérapeutiques, Université Paris Descartes – Centre Universitaire des Saints-Pères Paris, France – name: 3 Department of Molecular Biology and Genetics, Aarhus University Slagelse, Denmark – name: 2 Division of Molecular Medicine, Ruđer Bošković Institute Zagreb, Croatia |
Author_xml | – sequence: 1 givenname: Ana surname: Saric fullname: Saric, Ana – sequence: 2 givenname: Karine surname: Andreau fullname: Andreau, Karine – sequence: 3 givenname: Anne-Sophie surname: Armand fullname: Armand, Anne-Sophie – sequence: 4 givenname: Ian M. surname: Møller fullname: Møller, Ian M. – sequence: 5 givenname: Patrice X. surname: Petit fullname: Petit, Patrice X. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26834781$$D View this record in MEDLINE/PubMed https://hal.science/hal-04749806$$DView record in HAL |
BookMark | eNp1Uk1vEzEQXaEiWkrvnJCPcEjwV9Y2B6QQKK0U1IrA2fLas4mrzTq1dwP5FfxlvEmL2kr4MqPn996Mx_OyOGpDC0XxmuAxY1K9r5fQwphiMhljzCbqWXFCypKPJKbk6EF-XJyldIPz4Yoxxl8Ux7SUjAtJToo_n0zsVmixa10Ma_iAznNA33wX7CpkzJsGfd6lum9t50Ob0DSlYL3pwKFfPiunFcRo2g5dx-D6PQmFGn0Hk_MtoKvfu9wnWmzAekioC-i66aPfhA6yaNHBGs2gaXLWu0x4VTyvTZPg7C6eFj_Pv_yYXYzmV18vZ9P5yHJVdiNmBKsk5YRyLCWrKFZEKEtdKbhzuFK1YLZ0QlInKsZrl-dDQeCMgMQ1YafF5cHXBXOjN9GvTdzpYLzeAyEudR6Mtw1oYbClXOSKwDhwLo2aQK7uJlWtSE2z18eD16av1uBsflg0zSPTxzetX-ll2GouiKJEZYN3B4PVE9nFdK4HDHPBlcTldmj87V2xGG57SJ1e-2TzBE0LoU-aiJIyziTHmfrmYV__nO9_PxPKA8HGkFKEWlvfmeELc5u-0QTrYdP0ftP0sGl6v2lZiJ8I773_K_kLibbYUA |
CitedBy_id | crossref_primary_10_1111_bjh_14677 crossref_primary_10_3389_fphys_2021_768411 crossref_primary_10_1172_jci_insight_176887 crossref_primary_10_1155_2020_6813405 crossref_primary_10_1038_s41598_022_10270_4 crossref_primary_10_1155_2019_3836186 crossref_primary_10_3389_fcimb_2023_997245 crossref_primary_10_3390_jcm6110100 crossref_primary_10_1002_jmd2_12335 crossref_primary_10_1096_fj_202200145R crossref_primary_10_1016_j_biochi_2019_10_004 crossref_primary_10_1161_CIRCULATIONAHA_121_053755 crossref_primary_10_1016_j_drudis_2024_104209 crossref_primary_10_1039_D2CB00158F crossref_primary_10_1165_rcmb_2021_0512OC crossref_primary_10_37549_AR2706 crossref_primary_10_1007_s11010_020_04021_0 crossref_primary_10_1101_gad_349678_122 crossref_primary_10_1093_hmg_ddae152 crossref_primary_10_1242_jcs_260857 crossref_primary_10_1007_s10571_016_0458_9 crossref_primary_10_2174_1381612826999200820162154 crossref_primary_10_1016_j_intimp_2023_110013 crossref_primary_10_1002_jimd_12447 crossref_primary_10_1038_s41598_017_02089_1 crossref_primary_10_1093_ehjcr_ytaf030 crossref_primary_10_17116_jnevro2023123091131 crossref_primary_10_1016_j_bbalip_2019_01_006 crossref_primary_10_1134_S000629791912006X crossref_primary_10_1063_5_0111581 crossref_primary_10_1096_fj_201901598R crossref_primary_10_3390_ijms21093182 crossref_primary_10_26508_lsa_201900308 crossref_primary_10_1182_bloodadvances_2021005720 crossref_primary_10_3389_fped_2019_00436 crossref_primary_10_1161_CIRCULATIONAHA_120_048698 crossref_primary_10_9794_jspccs_32_409 crossref_primary_10_1002_1873_3468_13973 crossref_primary_10_1016_j_stem_2019_02_020 |
Cites_doi | 10.1152/ajpheart.00098.2010 10.1161/JAHA.111.000455 10.1128/MCB.01092-12 10.1369/0022155415574818 10.1016/j.chemphyslip.2013.12.009 10.1161/01.CIR.103.9.1256 10.1016/j.vascn.2012.04.001 10.1001/jama.2013.282409 10.1073/pnas.1113442109 10.1093/icb/icq079 10.1038/emboj.2010.98 10.1007/BF01799418 10.1016/j.chemphyslip.2012.03.001 10.1074/jbc.M210329200 10.1074/jbc.273.24.14933 10.1016/j.jacc.2012.02.066 10.1002/ajmg.a.20660 10.1038/nm.3261 10.1093/hmg/dds447 10.1016/j.devcel.2011.08.008 10.1038/nmeth.2649 10.1016/j.ymgme.2012.01.015 10.1172/JCI64125 10.1128/EC.00237-13 10.1038/nchembio.1064 10.1038/labinvest.3700480 10.1038/ng0496-385 10.1016/j.chemphyslip.2013.10.008 10.1016/0009-8981(76)90552-0 10.1007/BF00281076 10.1016/j.mito.2015.01.002 10.1038/labinvest.3700274 10.1073/pnas.0705070104 10.1074/jbc.M305956200 10.1074/jbc.M 10.1242/dmm.010900 10.1161/01.RES.0000233378.95325.ce 10.1089/hum.2010.199 10.1371/journal.pone.0113680 10.1139/o03-074 10.1128/jb.165.3.901-910.1986 10.1016/j.plipres.2014.04.001 10.1016/j.cub.2009.10.074 10.1016/S0021-9258(17)30583-5 10.1038/nature08301 10.1074/jbc.C200551200 10.1002/ana.10419 10.4161/cc.10.23.18384 10.1016/j.cmet.2011.04.007 10.1074/jbc.M501527200 10.1016/j.bbamem.2009.07.009 10.1086/301604 10.1016/j.jmb.2006.06.057 10.1161/01.CIR.0000100664.10777.B8 10.1194/jlr.M500056-JLR200 10.1016/S0163-7827(00)00005-9 10.1253/circj.CJ-14-0182 10.1194/jlr.C600004-JLR200 10.1002/emmm.201100194 10.1016/S0022-3476(05)80289-6 10.1002/ajmg.1320450309 10.1016/j.ajpath.2013.05.022 10.1155/2014/654198 10.1016/j.chemphyslip.2005.08.002 10.1038/nm.3545 10.1083/jcb.200605043 10.1038/srep01263 10.1007/s00246-005-0873-z 10.1016/j.chemphyslip.2013.12.003 10.1086/302095 10.1007/s00018-008-8030-5 10.1016/j.cmet.2013.03.018 10.1083/jcb.200603087 10.1074/jbc.M504955200 10.1016/j.cardiores.2004.06.030 10.1152/ajpheart.00084.2013 10.1016/j.exger.2010.01.003 10.1196/annals.1444.011 10.1042/BJ20082055 10.1542/peds.2005-2667 10.3389/fgene.2015.00003 10.1097/HCO.0b013e3283376daf 10.1083/jcb.201008177 10.1038/mt.2010.269 10.4330/wjc.v6.i10.1091 10.1134/S0006297908120018 10.1093/hmg/ddq088 10.1016/j.stem.2012.10.010 10.1016/j.cmet.2014.04.016 10.1007/s11886-012-0248-z 10.1038/sj.cdd.4402020 10.1042/BJ20060303 10.1016/j.ymgme.2013.11.006 10.2174/1871529X14666140505123753 10.1083/jcb.200806048 10.1016/0022-510X(83)90209-5 10.1126/science.1158799 10.1002/ajmg.a.30661 10.1073/pnas.1109290108 10.1007/s10863-014-9591-7 10.1016/j.molcel.2009.02.013 10.1016/S0021-9258(18)54116-8 10.1182/blood-2003-11-3940 10.1161/CIRCRESAHA.111.300496 10.1016/j.bbalip.2012.11.007 10.1007/s002940050399 10.1074/jbc.M405479200 10.1097/MOH.0b013e32831c83f3 10.1016/j.tibs.2011.09.003 10.1371/journal.pone.0102796 10.1016/j.bbadis.2013.03.005 10.1002/pd.2599 10.1002/ajmg.a.31653 10.1016/0022-2828(95)90000-4 10.1016/0304-4157(85)90002-4 10.1016/j.mito.2008.12.001 10.1016/0005-2736(90)90036-N 10.1074/jbc.M307382200 10.1074/jbc.273.16.9829 10.1007/s11886-013-0369-z 10.1074/jbc.M109.016642 10.1002/jnr.23322 10.1080/15548627.2015.1023984 10.1038/nchembio.1068 10.1074/jbc.M110.171439 10.1186/1750-1172-8-23 10.1083/jcb.200906098 10.1038/ncomms4903 10.1371/journal.pone.0048628 10.1113/jphysiol.2006.109512 10.1152/ajpcell.00243.2006 10.1038/nn.3195 10.1016/0014-5793(93)80922-H 10.1542/peds.64.1.24 10.1194/jlr.M200217-JLR200 10.1016/j.stem.2014.06.015 10.1091/mbc.E13-03-0121 10.1016/j.chemphyslip.2013.11.010 10.1039/c1lc20557a 10.1083/jcb.200803129 10.1007/s00246-012-0258-z 10.1093/emboj/19.21.5720 10.1016/S0022-3476(99)70118-6 10.1016/j.bbalip.2009.01.004 10.1038/nm.3592 10.4161/auto.27191 10.1083/jcb.200801152 10.1073/pnas.1120043109 10.1042/BJ20041491 10.18632/aging.100572 10.1016/j.plipres.2013.07.002 10.1371/journal.pone.0005329 10.1016/j.febslet.2006.07.022 10.1194/jlr.M800561-JLR200 10.1016/j.ymgme.2012.09.013 10.1021/ac800173r 10.1016/j.bbamcr.2008.07.024 10.1093/carcin/bgi163 10.1016/0005-2728(90)90255-3 10.1073/pnas.1304913110 10.1016/j.bbamem.2009.04.019 10.1091/mbc.E05-03-0256 10.1074/jbc.M606100200 10.1002/ajmg.a.35609 10.1007/s10545-012-9552-4 10.1016/0005-2760(71)90201-3 10.1038/labinvest.3780427 10.1042/0264-6021:3470687 10.1038/nchem.1924 10.1016/j.chemphyslip.2013.10.001 10.1056/NEJMoa0908679 10.1016/j.cell.2006.07.024 10.1016/j.jprot.2011.05.004 10.1152/ajpcell.00377.2008 10.1016/B978-0-12-801185-0.00006-4 10.1074/jbc.M403275200 10.1038/ncpcardio0766 10.1038/ijo.2008.116 10.1016/j.mgene.2015.04.001 10.1016/S0021-9258(18)72683-5 10.1007/s00431-007-0592-y 10.1038/ncb2837 10.1002/ajmg.c.31372 10.1093/eurheartj/eht067 10.1038/nbt.2473 10.4161/auto.24135 10.1016/S0014-5793(02)03292-1 10.1074/jbc.271.2.789 10.1126/science.1151526 10.1111/j.1365-2958.2008.06216.x 10.1074/jbc.M112.428938 10.1016/j.scr.2013.05.005 |
ContentType | Journal Article |
Copyright | Distributed under a Creative Commons Attribution 4.0 International License Copyright © 2016 Saric, Andreau, Armand, Møller and Petit. 2016 Saric, Andreau, Armand, Møller and Petit |
Copyright_xml | – notice: Distributed under a Creative Commons Attribution 4.0 International License – notice: Copyright © 2016 Saric, Andreau, Armand, Møller and Petit. 2016 Saric, Andreau, Armand, Møller and Petit |
DBID | AAYXX CITATION NPM 7X8 1XC VOOES 5PM DOA |
DOI | 10.3389/fgene.2015.00359 |
DatabaseName | CrossRef PubMed MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: DOA name: WRHA-DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1664-8021 |
ExternalDocumentID | oai_doaj_org_article_7a0c247a73e34e448a95e3b8d5bf91f2 PMC4719219 oai_HAL_hal_04749806v1 26834781 10_3389_fgene_2015_00359 |
Genre | Journal Article Review |
GrantInformation_xml | – fundername: AFM-Téléthon grantid: AFM 15137; 15661 |
GroupedDBID | 53G 5VS 9T4 AAFWJ AAKDD AAYXX ACGFS ACXDI ADBBV ADRAZ AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV CITATION DIK EMOBN GROUPED_DOAJ GX1 HYE KQ8 M48 M~E OK1 PGMZT RNS RPM IAO IEA IHR IPNFZ ISR NPM RIG 7X8 1XC VOOES 5PM |
ID | FETCH-LOGICAL-c496t-3a73b8241240883b209179c2d674dd0b9f73c6d782d7b34fd3592e70d78e80f13 |
IEDL.DBID | M48 |
ISSN | 1664-8021 |
IngestDate | Wed Aug 27 01:30:01 EDT 2025 Thu Aug 21 18:01:03 EDT 2025 Wed Jul 02 06:32:46 EDT 2025 Thu Jul 10 16:48:26 EDT 2025 Thu Jan 02 22:18:56 EST 2025 Tue Jul 01 00:46:51 EDT 2025 Thu Apr 24 23:04:46 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | stem cells mitochondrially targeted antioxidant mitochondria barth syndrome cellular models cardiolipin tafazzin |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c496t-3a73b8241240883b209179c2d674dd0b9f73c6d782d7b34fd3592e70d78e80f13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 This article was submitted to Genetic Disorders, a section of the journal Frontiers in Genetics Reviewed by: Uwe Schlattner, University Joseph Fourier, France; Shuliang Chen, Howard Hughes Medical Institute and University of California, San Diego, USA; Colin Phoon, New York University School of Medicine, USA Edited by: Enrico Baruffini, University of Parma, Italy |
ORCID | 0000-0002-5038-9101 0000-0002-0291-6421 0000-0002-9773-0733 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fgene.2015.00359 |
PMID | 26834781 |
PQID | 1762343840 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_7a0c247a73e34e448a95e3b8d5bf91f2 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4719219 hal_primary_oai_HAL_hal_04749806v1 proquest_miscellaneous_1762343840 pubmed_primary_26834781 crossref_citationtrail_10_3389_fgene_2015_00359 crossref_primary_10_3389_fgene_2015_00359 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-01-20 |
PublicationDateYYYYMMDD | 2016-01-20 |
PublicationDate_xml | – month: 01 year: 2016 text: 2016-01-20 day: 20 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Frontiers in genetics |
PublicationTitleAlternate | Front Genet |
PublicationYear | 2016 |
Publisher | Frontiers Media Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media – name: Frontiers Media S.A |
References | Brandner (B22) 2005; 16 Slomka (B154) 2012; 14 Acehan (B3) 2007; 87 Bunse (B24) 2003; 53 Gerdes (B53) 1995; 27 Marziliano (B112) 2007; 143A Mordwinkin (B120) 2013; 310 He (B65) 2014; 2014 Herndon (B67) 2013; 12 Ng (B123) 2005; 26 Orstavik (B125) 1998; 63 Clarke (B36) 2013; 8 Chu (B33) 2014; 10 Schlame (B143) 2013; 1831 Sproule (B158) 2008; 1142 Bowron (B20) 2013; 36 Steinberg (B159) 2013; 112 Li (B102) 2012; 109 Claypool (B38) 2006; 174 Hsu (B78) 2015; 11 Mejia (B117) 2014b; 179 Hostetler (B73) 1971; 239 Phoon (B129) 2012; 1 Hatch (B63) 2004; 82 Richter (B137) 2009; 418 Nicolay (B124) 1990; 1018 Ardail (B7) 1990; 265 He (B64) 2010; 299 Houtkooper (B75) 2008; 65 Zischka (B193) 2008; 80 Yen (B186) 2008; 167 Kuchler (B98) 1986; 165 Acehan (B1) 2009; 9 Schlame (B149) 2005; 138 Valianpour (B171) 2003; 44 Chung (B35) 2007; 4(Suppl. 1) Steward (B160) 2010; 30 Selem (B151) 2013; 15 Chao (B28) 2014; 9 Zweigerdt (B194) 2014; 15 Byrne (B25) 2014; 546 Antonenko (B6) 2008; 73 Bacman (B9) 2013; 19 Chu (B34) 2013; 15 Whited (B177) 2013; 22 Kelley (B92) 1991; 119 Barth (B16) 1981 Pangborn (B127) 1942; 143 Gandhi (B50) 2009; 33 Raval (B134) 2014; 20 Vaz (B174) 2003; 278 Bione (B18) 1996; 12 Gonzalvez (B57) 2008; 183 Schlame (B148) 2009; 1788 Roberts (B139) 2012; 158A James (B83) 2005; 280 Van Haute (B172) 2013; 31 Saini-Chohan (B141) 2009; 50 Spencer (B157) 2005; 26 Goffart (B54) 2004; 64 Chang (B27) 1998b; 273 Tamura (B163) 2013; 17 Kutik (B100) 2008; 183 Mejia (B116) 2014a; 14 Xu (B182) 2006; 281 Lu (B107) 2006; 47 Ye (B185) 2014 Arnarez (B8) 2013; 3 Hovius (B77) 1993; 330 Koshkin (B97) 2000; 347(Pt 3) Ren (B135) 2014; 55 Hick (B68) 2013; 6 Liu (B105) 2012; 32 Zhang (B190) 2005; 280 Ji (B85) 2012; 15 Baile (B10) 2014; 179 Valianpour (B170) 2005; 46 Rambold (B133) 2011; 10 Barth (B17) 1999; 135 Zhu (B192) 2013; 9 Lu (B108) 2015; 6 Xiao (B179) 2011; 108 Bratic (B23) 2013; 123 Shen (B152) 1996; 271 Acehan (B2) 2011; 286 Reznick (B136) 2006; 574 Johnston (B86) 1997; 61 Haines (B60) 2002; 528 Osman (B126) 2010; 29 Hodgson (B70) 1987; 75 Ronvelia (B140) 2012; 107 Schlame (B145) 2012b; 165 Ades (B4) 1993; 45 Jung (B88) 2012; 4 Mali (B111) 2013; 10 Barth (B13) 1983; 62 Kabeya (B89) 2000; 19 Jager (B81) 2007; 104 Schlame (B150) 2000; 39 Yu (B187) 2007; 318 Claypool (B37) 2012; 37 Claypool (B39) 2008; 182 Li (B103) 2015; 63 Jefferies (B84) 2013; 163C DeVay (B44) 2009; 186 Taylor (B166) 2012; 7 Hanke (B61) 2012; 33 Malhotra (B110) 2009; 1791 Kuijpers (B99) 2004; 103 Moretti (B121) 2010; 363 Chen (B29) 2006; 398 Xu (B183) 2005; 85 Dzugasová (B48) 1998; 34 Grosberg (B58) 2011; 11 Tyurina (B169) 2014b; 6 Matsa (B113) 2014; 35 Horvath (B72) 2013; 52 Daum (B42) 1985; 822 Grosberg (B59) 2012; 65 Cosson (B41) 2012; 106 Raja (B132) 2014; 179 Wysocki (B178) 1976; 71 Kelso (B93) 2001; 276 Hardie (B62) 2008; 32(Suppl. 4) Zhang (B188) 2011; 13 Gonzalvez (B56) 2013; 1832 Schlame (B144) 2012a; 8 Takahashi (B161) 2006; 126 Gebert (B52) 2009; 19 Taylor (B165) 2003; 278 Dey (B45) 2009; 4 Neustein (B122) 1979; 64 Barth (B15) 1996; 19 Pignatelli (B130) 2003; 108 Lill (B104) 2009; 460 Tamura (B162) 2013; 5 Schlame (B147) 2006; 580 Shi (B153) 2010; 50 Zhong (B191) 2004; 279 Soustek (B155) 2011; 22 Testet (B167) 2005; 387 Brand (B21) 2010; 45 Kirwin (B95) 2014; 111 Chen (B30) 2008; 68 Ichida (B79) 2001; 103 Joshi (B87) 2009; 1793 Chicco (B31) 2007; 292 Kagan (B90) 2014; 179 Xu (B181) 2015; 21 Khuchua (B94) 2006; 99 Richter-Dennerlein (B138) 2014; 20 van Raam (B173) 2009; 16 Sallam (B142) 2014; 78 Ma (B109) 2004; 279 Jahnke (B82) 2009; 296 McCain (B114) 2013; 110 Lombardi (B106) 2010; 25 Claypool (B40) 2011; 192 Hijikata (B69) 2015; 4 Tyurina (B168) 2014a; 179 McKenzie (B115) 2006; 361 Choi (B32) 2007; 14 Hom (B71) 2011; 21 Merante (B118) 1994; 55 Baile (B11) 2013; 24 Schlame (B146) 1993; 268 Dudek (B47) 2013; 11 Wang (B175) 2014a; 20 Zhang (B189) 2002; 277 Spencer (B156) 2006; 118 Gawrisch (B51) 2012; 8 Xu (B180) 2003; 278 Quarto (B131) 2012; 109 Bissler (B19) 2002; 82 Chang (B26) 1998a; 273 Lan (B101) 2013; 12 Wang (B176) 2014b; 92 Kambal (B91) 2011; 19 de Almeida (B43) 2014; 5 Houtkooper (B74) 2009; 1788 Ajith (B5) 2014; 6 Gonzalez (B55) 2005; 134 Tamura (B164) 2006; 174 Moller (B119) 2011; 74 Hovius (B76) 1990; 1021 Kobayashi (B96) 2014; 9 Ban (B12) 2010; 19 Itzhaki (B80) 2012; 60 Xu (B184) 2009; 284 Gaber (B49) 2013; 183 Dimos (B46) 2008; 321 He (B66) 2013; 305 Barth (B14) 2004; 126A Patil (B128) 2013; 288 18510346 - Anal Chem. 2008 Jul 1;80(13):5051-8 12569106 - J Biol Chem. 2003 Apr 11;278(15):12716-21 18779372 - J Cell Biol. 2008 Sep 8;182(5):937-50 23405277 - Sci Rep. 2013;3:1263 17082194 - J Biol Chem. 2006 Dec 22;281(51):39217-24 11060023 - EMBO J. 2000 Nov 1;19(21):5720-8 21730175 - Proc Natl Acad Sci U S A. 2011 Jul 19;108(29):11860-5 20124997 - Curr Opin Cardiol. 2010 May;25(3):222-8 24273069 - J Neurosci Res. 2014 Feb;92(2):218-31 21091282 - Hum Gene Ther. 2011 Jul;22(7):865-71 9545322 - J Biol Chem. 1998 Apr 17;273(16):9829-36 25349653 - World J Cardiol. 2014 Oct 26;6(10):1091-9 11092892 - J Biol Chem. 2001 Feb 16;276(7):4588-96 1719174 - J Pediatr. 1991 Nov;119(5):738-47 19057200 - Curr Opin Hematol. 2009 Jan;16(1):14-9 15485678 - Cardiovasc Res. 2004 Nov 1;64(2):198-207 2154259 - Biochim Biophys Acta. 1990 Jan 29;1021(2):217-26 20660394 - N Engl J Med. 2010 Oct 7;363(15):1397-409 8434619 - Am J Med Genet. 1993 Feb 1;45(3):327-34 4998839 - Biochim Biophys Acta. 1971 Jun 8;239(1):113-9 6142097 - J Neurol Sci. 1983 Dec;62(1-3):327-55 17394203 - Am J Med Genet A. 2007 May 1;143A(9):907-15 16973164 - FEBS Lett. 2006 Oct 9;580(23):5450-5 18425414 - Cell Mol Life Sci. 2008 Aug;65(16):2493-506 23787782 - Autophagy. 2013 Nov 1;9(11):1663-76 20185555 - Hum Mol Genet. 2010 Jun 1;19(11):2113-22 24076990 - Nat Methods. 2013 Oct;10(10):957-63 15975958 - Carcinogenesis. 2005 Nov;26(11):1914-21 22178754 - Proc Natl Acad Sci U S A. 2012 Jan 3;109 (1):215-20 21558246 - Integr Comp Biol. 2010 Nov;50(5):869-79 2203472 - Biochim Biophys Acta. 1990 Jul 25;1018(2-3):229-33 14623814 - Circulation. 2003 Nov 25;108(21):2672-8 16794186 - Circ Res. 2006 Jul 21;99(2):201-8 15304507 - J Biol Chem. 2004 Oct 22;279(43):44394-9 8630491 - Nat Genet. 1996 Apr;12(4):385-9 15588229 - Biochem J. 2005 May 1;387(Pt 3):617-26 24856930 - Cell Metab. 2014 Jul 1;20(1):158-71 8370463 - FEBS Lett. 1993 Sep 6;330(1):71-6 15788391 - J Biol Chem. 2005 Jun 3;280(22):21295-312 22521339 - J Pharmacol Toxicol Methods. 2012 May-Jun;65(3):126-35 23871585 - Am J Pathol. 2013 Sep;183(3):720-34 19700766 - J Biol Chem. 2009 Oct 16;284(42):29230-9 23100323 - Hum Mol Genet. 2013 Feb 1;22(3):483-92 19114592 - J Cell Biol. 2008 Dec 29;183(7):1213-21 20485265 - EMBO J. 2010 Jun 16;29(12 ):1976-87 16888643 - Cell Death Differ. 2007 Mar;14(3):597-606 16899548 - Am J Physiol Cell Physiol. 2007 Jan;292(1):C33-44 19416660 - Biochim Biophys Acta. 2009 Apr;1791(4):314-20 23470493 - Eur Heart J. 2014 Apr;35(16):1078-87 24300280 - Chem Phys Lipids. 2014 Apr;179:64-9 21300850 - J Cell Biol. 2011 Feb 7;192(3):447-62 10484787 - J Pediatr. 1999 Sep;135(3):273-6 18719601 - Int J Obes (Lond). 2008 Sep;32 Suppl 4:S7-12 18725250 - Biochim Biophys Acta. 2009 Jan;1793(1):212-8 22427193 - Pediatr Cardiol. 2012 Dec;33(8):1430-4 11238270 - Circulation. 2001 Mar 6;103(9):1256-63 23454757 - J Clin Invest. 2013 Mar;123(3):951-7 18990125 - Ann N Y Acad Sci. 2008 Oct;1142:133-58 22749309 - J Am Coll Cardiol. 2012 Sep 11;60(11):990-1000 24144810 - Chem Phys Lipids. 2014 Apr;179:11-6 16847078 - Pediatrics. 2006 Aug;118(2):e337-46 22101267 - Cell Cycle. 2011 Dec 1;10(23):4032-8 2408671 - Biochim Biophys Acta. 1985 Jun 12;822(1):1-42 25422939 - PLoS One. 2014 Nov 25;9(11):e113680 8079988 - Am J Hum Genet. 1994 Sep;55(3):437-46 19752025 - J Cell Biol. 2009 Sep 21;186(6):793-803 3030927 - Hum Genet. 1987 Mar;75(3):286-90 16857210 - J Mol Biol. 2006 Aug 18;361(3):462-9 22014644 - Trends Biochem Sci. 2012 Jan;37(1):32-41 8557688 - J Biol Chem. 1996 Jan 12;271(2):789-95 25050861 - PLoS One. 2014 Jul 22;9(7):e102796 19295176 - Am J Physiol Cell Physiol. 2009 May;296(5):C1185-94 19001123 - J Cell Biol. 2008 Nov 17;183(4):681-96 8380172 - J Biol Chem. 1993 Jan 5;268(1):74-9 9345098 - Am J Hum Genet. 1997 Nov;61(5):1053-8 12562862 - J Lipid Res. 2003 Mar;44(3):560-6 23152787 - PLoS One. 2012;7(11):e48628 9614098 - J Biol Chem. 1998 Jun 12;273(24):14933-41 25919711 - Autophagy. 2015 Apr 3;11(4):643-52 15806137 - Lab Invest. 2005 Jun;85(6):823-30 12297275 - FEBS Lett. 2002 Sep 25;528(1-3):35-9 25941633 - Meta Gene. 2015 Apr 22;4:92-106 10769171 - Biochem J. 2000 May 1;347 Pt 3:687-91 25598000 - Mitochondrion. 2015 Mar;21:27-32 23523468 - Biochim Biophys Acta. 2013 Aug;1832(8):1194-206 20812380 - Prenat Diagn. 2010 Oct;30(10 ):970-6 24813252 - Nat Med. 2014 Jun;20(6):616-23 9792874 - Am J Hum Genet. 1998 Nov;63(5):1457-63 23290139 - Cell Stem Cell. 2013 Jan 3;12(1):101-13 24848241 - Nat Chem. 2014 Jun;6(6):542-52 22987008 - Nat Chem Biol. 2012 Oct;8(10):811-2 24875164 - Nat Commun. 2014 May 30;5:3903 18669821 - Science. 2008 Aug 29;321(5893):1218-21 23031367 - Mol Genet Metab. 2012 Nov;107(3):428-32 963901 - Clin Chim Acta. 1976 Sep 6;71(2):349-51 16135531 - Mol Biol Cell. 2005 Nov;16(11):5202-14 25247053 - Oxid Med Cell Longev. 2014;2014:654198 24769127 - Prog Lipid Res. 2014 Jul;55:1-16 16709637 - J Physiol. 2006 Jul 1;574(Pt 1):33-9 11896212 - Lab Invest. 2002 Mar;82(3):335-44 7602601 - J Mol Cell Cardiol. 1995 Mar;27(3):849-56 24901565 - Nat Med. 2014 Jun;20(6):585-6 23637464 - Mol Biol Cell. 2013 Jun;24(12):2008-20 572031 - Pediatrics. 1979 Jul;64(1):24-9 21920313 - Dev Cell. 2011 Sep 13;21(3):469-78 12509856 - Ann Neurol. 2003 Jan;53(1):121-3 19196246 - Biochem J. 2009 Mar 1;418(2):261-75 8739954 - J Inherit Metab Dis. 1996;19(2):157-60 24445246 - Chem Phys Lipids. 2014 Apr;179:49-56 23329794 - Circ Res. 2013 Jan 18;112(2):393-405 15052331 - Biochem Cell Biol. 2004 Feb;82(1):99-112 23792436 - Stem Cell Res. 2013 Sep;11(2):806-19 3005242 - J Bacteriol. 1986 Mar;165(3):901-10 16904174 - Cell. 2006 Aug 25;126(4):663-76 16235007 - Pediatr Cardiol. 2005 Sep-Oct;26(5):632-7 23136396 - Dis Model Mech. 2013 May;6(3):608-21 23666883 - Curr Cardiol Rep. 2013 Jun;15(6):369 24184646 - Chem Phys Lipids. 2014 Apr;179:25-31 19962311 - Curr Biol. 2009 Dec 29;19(24):2133-9 22072288 - Lab Chip. 2011 Dec 21;11(24):4165-73 20064600 - Exp Gerontol. 2010 Aug;45(7-8):466-72 18430085 - Mol Microbiol. 2008 May;68(4):1061-72 23716679 - Proc Natl Acad Sci U S A. 2013 Jun 11;110(24):9770-5 23843353 - Am J Med Genet C Semin Med Genet. 2013 Aug;163C(3):198-205 24342716 - Mol Genet Metab. 2014 Jan;111(1):26-32 23623749 - Cell Metab. 2013 May 7;17(5):709-18 17043667 - Lab Invest. 2007 Jan;87(1):40-8 22922784 - Nat Neurosci. 2012 Oct;15(10):1407-13 19285945 - Mol Cell. 2009 Mar 13;33(5):627-38 22327929 - Curr Cardiol Rep. 2012 Apr;14(2):208-16 15972817 - J Biol Chem. 2005 Aug 19;280(33):29403-8 16226238 - Chem Phys Lipids. 2005 Dec;138(1-2):38-49 21068380 - J Biol Chem. 2011 Jan 14;286(2):899-908 15805542 - J Lipid Res. 2005 Jun;46(6):1182-95 19390630 - PLoS One. 2009;4(4):e5329 22465155 - Chem Phys Lipids. 2012 Jul;165(5):512-9 15169766 - J Biol Chem. 2004 Jul 30;279(31):32294-300 22174035 - EMBO Mol Med. 2012 Mar;4(3):180-91 19001357 - J Lipid Res. 2009 Aug;50(8):1600-8 24632794 - Circ J. 2014;78(4):784-94 24078306 - Eukaryot Cell. 2013 Dec;12(12):1600-8 23192348 - J Biol Chem. 2013 Jan 18;288(3):1696-705 16943180 - J Cell Biol. 2006 Aug 28;174(5):631-7 23913125 - Nat Med. 2013 Sep;19(9):1111-3 19619503 - Biochim Biophys Acta. 2009 Oct;1788(10):2003-14 24007978 - Prog Lipid Res. 2013 Oct;52(4):590-614 23807703 - Aging (Albany NY). 2013 Jun;5(6):392-3 17846786 - Eur J Pediatr. 2008 Aug;167(8):941-4 9799363 - Curr Genet. 1998 Oct;34(4):297-302 23398819 - Orphanet J Rare Dis. 2013 Feb 12;8:23 15793838 - Am J Med Genet A. 2005 May 1;134(4):409-14 24801725 - Cardiovasc Hematol Disord Drug Targets. 2014;14(2):98-106 16716149 - Biochem J. 2006 Sep 1;398(2):169-76 21641550 - Cell Metab. 2011 Jun 8;13(6):690-700 23109063 - J Inherit Metab Dis. 2013 Sep;36(5):741-6 19114128 - Mitochondrion. 2009 Apr;9(2):86-95 20348225 - Am J Physiol Heart Circ Physiol. 2010 Jul;299(1):H210-6 15098233 - Am J Med Genet A. 2004 May 1;126A(4):349-54 23130124 - J Am Heart Assoc. 2012 Apr;1(2):null 24351649 - Autophagy. 2014 Feb;10(2):376-8 22941046 - Nat Chem Biol. 2012 Oct;8(10):862-9 17609368 - Proc Natl Acad Sci U S A. 2007 Jul 17;104(29):12017-22 24240927 - JAMA. 2013 Nov 20;310(19):2039-40 24036476 - Nat Cell Biol. 2013 Oct;15(10):1197-205 12930833 - J Biol Chem. 2003 Oct 31;278(44):43089-94 12364341 - J Biol Chem. 2002 Nov 15;277(46):43553-6 24996164 - Cell Stem Cell. 2014 Jul 3;15(1):9-11 16547353 - J Lipid Res. 2006 Jun;47(6):1140-5 23045169 - Am J Med Genet A. 2012 Nov;158A(11):2726-32 2172233 - J Biol Chem. 1990 Nov 5;265(31):18797-802 21601020 - J Proteomics. 2011 Oct 19;74(11):2228-42 19120014 - Biochemistry (Mosc). 2008 Dec;73(12):1273-87 25398338 - Methods Enzymol. 2014;546:119-38 23302926 - Nat Biotechnol. 2013 Jan;31(1):20-3 23997105 - Am J Physiol Heart Circ Physiol. 2013 Nov 1;305(9):H1332-43 14551214 - J Biol Chem. 2003 Dec 19;278(51):51380-5 19675643 - Nature. 2009 Aug 13;460(7257):831-8 10799718 - Prog Lipid Res. 2000 May;39(3):257-88 16880272 - J Cell Biol. 2006 Jul 31;174(3):379-90 19413994 - Biochim Biophys Acta. 2009 Oct;1788(10):2080-3 25691889 - Front Genet. 2015 Feb 03;6:3 14764526 - Blood. 2004 May 15;103(10):3915-23 22949503 - Mol Cell Biol. 2012 Nov;32(21):4493-504 25673287 - J Histochem Cytochem. 2015 May;63(5):301-11 21119622 - Mol Ther. 2011 Mar;19(3):584-93 17230217 - Nat Clin Pract Cardiovasc Med. 2007 Feb;4 Suppl 1:S60-7 18029452 - Science. 2007 Dec 21;318(5858):1917-20 24333544 - Chem Phys Lipids. 2014 Apr;179:3-10 25432572 - J Bioenerg Biomembr. 2016 Apr;48(2):113-23 23200781 - Biochim Biophys Acta. 2013 Mar;1831(3):582-8 22410210 - Mol Genet Metab. 2012 May;106(1):115-20 22509026 - Proc Natl Acad Sci U S A. 2012 May 1;109(18):6975-80 |
References_xml | – volume: 299 start-page: H210 year: 2010 ident: B64 article-title: Tafazzin knockdown causes hypertrophy of neonatal ventricular myocytes. publication-title: Am. J. Physiol. Heart Circ. Physiol. doi: 10.1152/ajpheart.00098.2010 – volume: 1 issue: jah3 year: 2012 ident: B129 article-title: Tafazzin knockdown in mice leads to a developmental cardiomyopathy with early diastolic dysfunction preceding myocardial noncompaction. publication-title: J. Am. Heart Assoc. doi: 10.1161/JAHA.111.000455 – volume: 32 start-page: 4493 year: 2012 ident: B105 article-title: Ablation of ALCAT1 mitigates hypertrophic cardiomyopathy through effects on oxidative stress and mitophagy. publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.01092-12 – volume: 63 start-page: 301 year: 2015 ident: B103 article-title: Cardiolipin and its different properties in mitophagy and apoptosis. publication-title: J. Histochem. Cytochem. doi: 10.1369/0022155415574818 – volume: 179 start-page: 49 year: 2014 ident: B132 article-title: The functions of cardiolipin in cellular metabolism-potential modifiers of the Barth syndrome phenotype. publication-title: Chem. Phys. Lipids doi: 10.1016/j.chemphyslip.2013.12.009 – volume: 103 start-page: 1256 year: 2001 ident: B79 article-title: Novel gene mutations in patients with left ventricular noncompaction or Barth syndrome. publication-title: Circulation doi: 10.1161/01.CIR.103.9.1256 – volume: 65 start-page: 126 year: 2012 ident: B59 article-title: Muscle on a chip: in vitro contractility assays for smooth and striated muscle. publication-title: J. Pharmacol. Toxicol. Methods doi: 10.1016/j.vascn.2012.04.001 – volume: 310 start-page: 2039 year: 2013 ident: B120 article-title: Patient-specific stem cells and cardiovascular drug discovery. publication-title: JAMA doi: 10.1001/jama.2013.282409 – volume: 109 start-page: 215 year: 2012 ident: B131 article-title: Skeletogenic phenotype of human Marfan embryonic stem cells faithfully phenocopied by patient-specific induced-pluripotent stem cells. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1113442109 – volume: 50 start-page: 869 year: 2010 ident: B153 article-title: Comparative studies of oxidative stress and mitochondrial function in aging. publication-title: Integr. Comp. Biol. doi: 10.1093/icb/icq079 – volume: 29 start-page: 1976 year: 2010 ident: B126 article-title: A mitochondrial phosphatase required for cardiolipin biosynthesis: the PGP phosphatase Gep4. publication-title: EMBO J. doi: 10.1038/emboj.2010.98 – volume: 19 start-page: 157 year: 1996 ident: B15 article-title: X-linked cardioskeletal myopathy and neutropenia (Barth syndrome): respiratory-chain abnormalities in cultured fibroblasts. publication-title: J. Inherit. Metab. Dis. doi: 10.1007/BF01799418 – volume: 165 start-page: 512 year: 2012b ident: B145 article-title: Comparison of cardiolipins from Drosophila strains with mutations in putative remodeling enzymes. publication-title: Chem. Phys. Lipids doi: 10.1016/j.chemphyslip.2012.03.001 – volume: 278 start-page: 12716 year: 2003 ident: B165 article-title: Purification and characterization of monolysocardiolipin acyltransferase from pig liver mitochondria. publication-title: J. Biol. Chem. doi: 10.1074/jbc.M210329200 – volume: 273 start-page: 14933 year: 1998b ident: B27 article-title: Isolation and characterization of the gene (CLS1) encoding cardiolipin synthase in Saccharomyces cerevisiae. publication-title: J. Biol. Chem. doi: 10.1074/jbc.273.24.14933 – volume: 60 start-page: 990 year: 2012 ident: B80 article-title: Modeling of catecholaminergic polymorphic ventricular tachycardia with patient-specific human-induced pluripotent stem cells. publication-title: J. Am. Coll. Cardiol. doi: 10.1016/j.jacc.2012.02.066 – volume: 126A start-page: 349 year: 2004 ident: B14 article-title: X-linked cardioskeletal myopathy and neutropenia (Barth syndrome): an update. publication-title: Am. J. Med. Genet. A doi: 10.1002/ajmg.a.20660 – volume: 19 start-page: 1111 year: 2013 ident: B9 article-title: Specific elimination of mutant mitochondrial genomes in patient-derived cells by mitoTALENs. publication-title: Nat. Med. doi: 10.1038/nm.3261 – volume: 22 start-page: 483 year: 2013 ident: B177 article-title: Seven functional classes of Barth syndrome mutation. publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/dds447 – volume: 21 start-page: 469 year: 2011 ident: B71 article-title: The permeability transition pore controls cardiac mitochondrial maturation and myocyte differentiation. publication-title: Dev. Cell doi: 10.1016/j.devcel.2011.08.008 – volume: 10 start-page: 957 year: 2013 ident: B111 article-title: Cas9 as a versatile tool for engineering biology. publication-title: Nat. Methods doi: 10.1038/nmeth.2649 – volume: 106 start-page: 115 year: 2012 ident: B41 article-title: Barth syndrome in a female patient. publication-title: Mol. Genet. Metab. doi: 10.1016/j.ymgme.2012.01.015 – volume: 123 start-page: 951 year: 2013 ident: B23 article-title: The role of mitochondria in aging. publication-title: J. Clin. Invest. doi: 10.1172/JCI64125 – volume: 12 start-page: 1600 year: 2013 ident: B67 article-title: The Taz1p transacylase is imported and sorted into the outer mitochondrial membrane via a membrane anchor domain. publication-title: Eukaryot. Cell doi: 10.1128/EC.00237-13 – volume: 8 start-page: 862 year: 2012a ident: B144 article-title: The physical state of lipid substrates provides transacylation specificity for tafazzin. publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.1064 – volume: 87 start-page: 40 year: 2007 ident: B3 article-title: Comparison of lymphoblast mitochondria from normal subjects and patients with Barth syndrome using electron microscopic tomography. publication-title: Lab. Invest. doi: 10.1038/labinvest.3700480 – volume: 12 start-page: 385 year: 1996 ident: B18 article-title: A novel X-linked gene, G4.5. is responsible for Barth syndrome. publication-title: Nat. Genet. doi: 10.1038/ng0496-385 – volume: 179 start-page: 25 year: 2014 ident: B10 article-title: The topology and regulation of cardiolipin biosynthesis and remodeling in yeast. publication-title: Chem. Phys. Lipids doi: 10.1016/j.chemphyslip.2013.10.008 – volume: 71 start-page: 349 year: 1976 ident: B178 article-title: 3-Hydroxy-3-methylglutaric aciduria: deficiency of 3-hydroxy-3-methylglutaryl coenzyme A lyase. publication-title: Clin. Chim. Acta doi: 10.1016/0009-8981(76)90552-0 – volume: 75 start-page: 286 year: 1987 ident: B70 article-title: Prenatal diagnosis of X-linked choroideremia with mental retardation, associated with a cytologically detectable X-chromosome deletion. publication-title: Hum. Genet. doi: 10.1007/BF00281076 – volume: 21 start-page: 27 year: 2015 ident: B181 article-title: Tafazzins from Drosophila and mammalian cells assemble in large protein complexes with a short half-life. publication-title: Mitochondrion doi: 10.1016/j.mito.2015.01.002 – volume: 85 start-page: 823 year: 2005 ident: B183 article-title: Characterization of lymphoblast mitochondria from patients with Barth syndrome. publication-title: Lab. Invest. doi: 10.1038/labinvest.3700274 – volume: 104 start-page: 12017 year: 2007 ident: B81 article-title: AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0705070104 – volume: 278 start-page: 43089 year: 2003 ident: B174 article-title: Only one splice variant of the human TAZ gene encodes a functional protein with a role in cardiolipin metabolism. publication-title: J. Biol. Chem. doi: 10.1074/jbc.M305956200 – volume: 276 start-page: 4588 year: 2001 ident: B93 article-title: Selective targeting of a redox-active ubiquinone to mitochondria within cells: antioxidant and antiapoptotic properties. publication-title: J. Biol. Chem. doi: 10.1074/jbc.M – volume: 6 start-page: 608 year: 2013 ident: B68 article-title: Neurons and cardiomyocytes derived from induced pluripotent stem cells as a model for mitochondrial defects in Friedreich’s ataxia. publication-title: Dis. Model Mech. doi: 10.1242/dmm.010900 – volume: 99 start-page: 201 year: 2006 ident: B94 article-title: A zebrafish model of human Barth syndrome reveals the essential role of tafazzin in cardiac development and function. publication-title: Circ. Res. doi: 10.1161/01.RES.0000233378.95325.ce – volume: 22 start-page: 865 year: 2011 ident: B155 article-title: Characterization of a transgenic short hairpin RNA-induced murine model of Tafazzin deficiency. publication-title: Hum. Gene Ther. doi: 10.1089/hum.2010.199 – volume: 9 issue: e113680 year: 2014 ident: B28 article-title: Cell cycle arrest and cell survival induce reverse trends of cardiolipin remodeling. publication-title: PLoS ONE doi: 10.1371/journal.pone.0113680 – volume: 82 start-page: 99 year: 2004 ident: B63 article-title: Cel Biology of cardiac mitochondrial phospholipids. publication-title: Biochem. Cell Biol. doi: 10.1139/o03-074 – volume: 165 start-page: 901 year: 1986 ident: B98 article-title: Subcellular and submitochondrial localization of phospholipid-synthesizing enzymes in Saccharomyces cerevisiae. publication-title: J. Bacteriol. doi: 10.1128/jb.165.3.901-910.1986 – volume: 55 start-page: 1 year: 2014 ident: B135 article-title: Metabolism and function of mitochondrial cardiolipin. publication-title: Prog. Lipid Res. doi: 10.1016/j.plipres.2014.04.001 – volume: 19 start-page: 2133 year: 2009 ident: B52 article-title: Mitochondrial cardiolipin involved in outer-membrane protein biogenesis: implications for Barth syndrome. publication-title: Curr. Biol. doi: 10.1016/j.cub.2009.10.074 – volume: 265 start-page: 18797 year: 1990 ident: B7 article-title: Mitochondrial contact sites. Lipid composition and dynamics. publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(17)30583-5 – volume: 460 start-page: 831 year: 2009 ident: B104 article-title: Function and biogenesis of iron-sulphur proteins. publication-title: Nature doi: 10.1038/nature08301 – volume: 277 start-page: 43553 year: 2002 ident: B189 article-title: Gluing the respiratory chain together. Cardiolipin is required for supercomplex formation in the inner mitochondrial membrane. publication-title: J. Biol. Chem. doi: 10.1074/jbc.C200551200 – volume: 53 start-page: 121 year: 2003 ident: B24 article-title: Cardiac energetics correlates to myocardial hypertrophy in Friedreich’s ataxia. publication-title: Ann. Neurol. doi: 10.1002/ana.10419 – volume: 10 start-page: 4032 year: 2011 ident: B133 article-title: Mechanisms of mitochondria and autophagy crosstalk. publication-title: Cell Cycle doi: 10.4161/cc.10.23.18384 – volume: 13 start-page: 690 year: 2011 ident: B188 article-title: Mitochondrial phosphatase PTPMT1 is essential for cardiolipin biosynthesis. publication-title: Cell Metab. doi: 10.1016/j.cmet.2011.04.007 – volume: 280 start-page: 21295 year: 2005 ident: B83 article-title: Interactions of mitochondria-targeted and untargeted ubiquinones with the mitochondrial respiratory chain and reactive oxygen species. Implications for the use of exogenous ubiquinones as therapies and experimental tools. publication-title: J. Biol. Chem. doi: 10.1074/jbc.M501527200 – volume: 1788 start-page: 2003 year: 2009 ident: B74 article-title: The enigmatic role of tafazzin in cardiolipin metabolism. publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbamem.2009.07.009 – volume: 61 start-page: 1053 year: 1997 ident: B86 article-title: Mutation characterization and genotype-phenotype correlation in Barth syndrome. publication-title: Am. J. Hum. Genet. doi: 10.1086/301604 – volume: 361 start-page: 462 year: 2006 ident: B115 article-title: Mitochondrial respiratory chain supercomplexes are destabilized in Barth Syndrome patients. publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2006.06.057 – volume: 108 start-page: 2672 year: 2003 ident: B130 article-title: Clinical characterization of left ventricular noncompaction in children: a relatively common form of cardiomyopathy. publication-title: Circulation doi: 10.1161/01.CIR.0000100664.10777.B8 – volume: 46 start-page: 1182 year: 2005 ident: B170 article-title: Monolysocardiolipins accumulate in Barth syndrome but do not lead to enhanced apoptosis. publication-title: J. Lipid Res. doi: 10.1194/jlr.M500056-JLR200 – volume: 39 start-page: 257 year: 2000 ident: B150 article-title: The biosynthesis and functional role of cardiolipin. publication-title: Prog. Lipid Res. doi: 10.1016/S0163-7827(00)00005-9 – volume: 78 start-page: 784 year: 2014 ident: B142 article-title: Modeling inherited cardiac disorders. publication-title: Circ. J. doi: 10.1253/circj.CJ-14-0182 – volume: 47 start-page: 1140 year: 2006 ident: B107 article-title: Cloning and characterization of a cDNA encoding human cardiolipin synthase (hCLS1). publication-title: J. Lipid Res. doi: 10.1194/jlr.C600004-JLR200 – volume: 4 start-page: 180 year: 2012 ident: B88 article-title: Dantrolene rescues arrhythmogenic RYR2 defect in a patient-specific stem cell model of catecholaminergic polymorphic ventricular tachycardia. publication-title: EMBO Mol. Med. doi: 10.1002/emmm.201100194 – volume: 119 start-page: 738 year: 1991 ident: B92 article-title: X-linked dilated cardiomyopathy with neutropenia, growth retardation, and 3-methylglutaconic aciduria. publication-title: J. Pediatr. doi: 10.1016/S0022-3476(05)80289-6 – volume: 45 start-page: 327 year: 1993 ident: B4 article-title: Barth syndrome: clinical features and confirmation of gene localisation to distal Xq28. publication-title: Am. J. Med. Genet. doi: 10.1002/ajmg.1320450309 – volume: 183 start-page: 720 year: 2013 ident: B49 article-title: Fetal reprogramming and senescence in hypoplastic left heart syndrome and in human pluripotent stem cells during cardiac differentiation. publication-title: Am. J. Pathol. doi: 10.1016/j.ajpath.2013.05.022 – volume: 2014 issue: 654198 year: 2014 ident: B65 article-title: Mitochondria-targeted antioxidant prevents cardiac dysfunction induced by tafazzin gene knockdown in cardiac myocytes. publication-title: Oxid. Med. Cell. Longev. doi: 10.1155/2014/654198 – volume: 138 start-page: 38 year: 2005 ident: B149 article-title: Molecular symmetry in mitochondrial cardiolipins. publication-title: Chem. Phys. Lipids doi: 10.1016/j.chemphyslip.2005.08.002 – volume: 20 start-page: 616 year: 2014a ident: B175 article-title: Modeling the mitochondrial cardiomyopathy of Barth syndrome with induced pluripotent stem cell and heart-on-chip technologies. publication-title: Nat. Med. doi: 10.1038/nm.3545 – volume: 174 start-page: 379 year: 2006 ident: B38 article-title: Mitochondrial mislocalization and altered assembly of a cluster of Barth syndrome mutant tafazzins. publication-title: J. Cell Biol. doi: 10.1083/jcb.200605043 – volume: 3 issue: 1263 year: 2013 ident: B8 article-title: Identification of cardiolipin binding sites on cytochrome c oxidase at the entrance of proton channels. publication-title: Sci. Rep. doi: 10.1038/srep01263 – volume: 26 start-page: 632 year: 2005 ident: B157 article-title: Ventricular arrhythmia in the X-linked cardiomyopathy Barth syndrome. publication-title: Pediatr. Cardiol. doi: 10.1007/s00246-005-0873-z – volume: 179 start-page: 3 year: 2014a ident: B168 article-title: Characterization of cardiolipins and their oxidation products by LC-MS analysis. publication-title: Chem. Phys. Lipids doi: 10.1016/j.chemphyslip.2013.12.003 – volume: 63 start-page: 1457 year: 1998 ident: B125 article-title: X chromosome inactivation in carriers of Barth syndrome. publication-title: Am. J. Hum. Genet. doi: 10.1086/302095 – volume: 65 start-page: 2493 year: 2008 ident: B75 article-title: Cardiolipin, the heart of mitochondrial metabolism. publication-title: Cell. Mol. Life Sci. doi: 10.1007/s00018-008-8030-5 – volume: 17 start-page: 709 year: 2013 ident: B163 article-title: Tam41 is a CDP-diacylglycerol synthase required for cardiolipin biosynthesis in mitochondria. publication-title: Cell Metab. doi: 10.1016/j.cmet.2013.03.018 – volume: 174 start-page: 631 year: 2006 ident: B164 article-title: Identification of Tam41 maintaining integrity of the TIM23 protein translocator complex in mitochondria. publication-title: J. Cell Biol. doi: 10.1083/jcb.200603087 – volume: 280 start-page: 29403 year: 2005 ident: B190 article-title: Cardiolipin is essential for organization of complexes III and IV into a supercomplex in intact yeast mitochondria. publication-title: J. Biol. Chem. doi: 10.1074/jbc.M504955200 – volume: 64 start-page: 198 year: 2004 ident: B54 article-title: Regulation of mitochondrial proliferation in the heart: power-plant failure contributes to cardiac failure in hypertrophy. publication-title: Cardiovasc. Res. doi: 10.1016/j.cardiores.2004.06.030 – volume: 305 start-page: H1332 year: 2013 ident: B66 article-title: Tafazzin knockdown interrupts cell cycle progression in cultured neonatal ventricular fibroblasts. publication-title: Am. J. Physiol. Heart Circ. Physiol. doi: 10.1152/ajpheart.00084.2013 – volume: 45 start-page: 466 year: 2010 ident: B21 article-title: The sites and topology of mitochondrial superoxide production. publication-title: Exp. Gerontol. doi: 10.1016/j.exger.2010.01.003 – volume: 1142 start-page: 133 year: 2008 ident: B158 article-title: Mitochondrial encephalopathy, lactic acidosis, and strokelike episodes: basic concepts, clinical phenotype, and therapeutic management of MELAS syndrome. publication-title: Ann. N. Y. Acad. Sci. doi: 10.1196/annals.1444.011 – volume: 418 start-page: 261 year: 2009 ident: B137 article-title: AMPK and the biochemistry of exercise: implications for human health and disease. publication-title: Biochem. J. doi: 10.1042/BJ20082055 – volume: 118 start-page: e337 year: 2006 ident: B156 article-title: Cardiac and clinical phenotype in Barth syndrome. publication-title: Pediatrics doi: 10.1542/peds.2005-2667 – volume: 6 issue: 3 year: 2015 ident: B108 article-title: Disorders of phospholipid metabolism: an emerging class of mitochondrial disease due to defects in nuclear genes. publication-title: Front. Genet. doi: 10.3389/fgene.2015.00003 – volume: 25 start-page: 222 year: 2010 ident: B106 article-title: Arrhythmogenic right ventricular cardiomyopathy is a disease of cardiac stem cells. publication-title: Curr. Opin. Cardiol. doi: 10.1097/HCO.0b013e3283376daf – volume: 192 start-page: 447 year: 2011 ident: B40 article-title: Barth syndrome mutations that cause tafazzin complex lability. publication-title: J. Cell Biol. doi: 10.1083/jcb.201008177 – volume: 19 start-page: 584 year: 2011 ident: B91 article-title: Generation of HIV-1 resistant and functional macrophages from hematopoietic stem cell-derived induced pluripotent stem cells. publication-title: Mol. Ther. doi: 10.1038/mt.2010.269 – volume: 6 start-page: 1091 year: 2014 ident: B5 article-title: Mitochondria-targeted agents: future perspectives of mitochondrial pharmaceutics in cardiovascular diseases. publication-title: World J. Cardiol. doi: 10.4330/wjc.v6.i10.1091 – volume: 73 start-page: 1273 year: 2008 ident: B6 article-title: Mitochondria-targeted plastoquinone derivatives as tools to interrupt execution of the aging program. 1. Cationic plastoquinone derivatives: synthesis and in vitro studies. publication-title: Biochemistry (Mosc) doi: 10.1134/S0006297908120018 – volume: 19 start-page: 2113 year: 2010 ident: B12 article-title: OPA1 disease alleles causing dominant optic atrophy have defects in cardiolipin-stimulated GTP hydrolysis and membrane tubulation. publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddq088 – volume: 12 start-page: 101 year: 2013 ident: B101 article-title: Abnormal calcium handling properties underlie familial hypertrophic cardiomyopathy pathology in patient-specific induced pluripotent stem cells. publication-title: Cell Stem Cell doi: 10.1016/j.stem.2012.10.010 – volume: 20 start-page: 158 year: 2014 ident: B138 article-title: DNAJC19, a Mitochondrial Cochaperone Associated with Cardiomyopathy, Forms a Complex with Prohibitins to Regulate Cardiolipin Remodeling. publication-title: Cell Metab. doi: 10.1016/j.cmet.2014.04.016 – volume: 14 start-page: 208 year: 2012 ident: B154 article-title: Advances in nuclear cardiac instrumentation with a view towards reduced radiation exposure. publication-title: Curr. Cardiol. Rep. doi: 10.1007/s11886-012-0248-z – volume: 14 start-page: 597 year: 2007 ident: B32 article-title: Cardiolipin deficiency releases cytochrome c from the inner mitochondrial membrane and accelerates stimuli-elicited apoptosis. publication-title: Cell Death Differ. doi: 10.1038/sj.cdd.4402020 – volume: 398 start-page: 169 year: 2006 ident: B29 article-title: Identification and functional characterization of hCLS1, a human cardiolipin synthase localized in mitochondria. publication-title: Biochem. J. doi: 10.1042/BJ20060303 – volume: 111 start-page: 26 year: 2014 ident: B95 article-title: Tafazzin splice variants and mutations in Barth syndrome. publication-title: Mol. Genet. Metab. doi: 10.1016/j.ymgme.2013.11.006 – volume: 14 start-page: 98 year: 2014a ident: B116 article-title: Cardiolipin metabolism and the role it plays in heart failure and mitochondrial supercomplex formation. publication-title: Cardiovasc. Hematol. Disord. Drug Targets doi: 10.2174/1871529X14666140505123753 – volume: 183 start-page: 1213 year: 2008 ident: B100 article-title: The translocator maintenance protein Tam41 is required for mitochondrial cardiolipin biosynthesis. publication-title: J. Cell Biol. doi: 10.1083/jcb.200806048 – volume: 62 start-page: 327 year: 1983 ident: B13 article-title: An X-linked mitochondrial disease affecting cardiac muscle, skeletal muscle and neutrophil leucocytes. publication-title: J. Neurol. Sci. doi: 10.1016/0022-510X(83)90209-5 – volume: 321 start-page: 1218 year: 2008 ident: B46 article-title: Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. publication-title: Science doi: 10.1126/science.1158799 – volume: 134 start-page: 409 year: 2005 ident: B55 article-title: Barth syndrome: TAZ gene mutations, mRNAs, and evolution. publication-title: Am. J. Med. Genet. A doi: 10.1002/ajmg.a.30661 – volume: 108 start-page: 11860 year: 2011 ident: B179 article-title: Structural and functional analysis of PTPMT1, a phosphatase required for cardiolipin synthesis. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1109290108 – year: 2014 ident: B185 article-title: Cardiolipin remodeling: a regulatory hub for modulating cardiolipin metabolism and function. publication-title: J. Bioenerg. Biomembr. doi: 10.1007/s10863-014-9591-7 – volume: 33 start-page: 627 year: 2009 ident: B50 article-title: PINK1-associated Parkinson’s disease is caused by neuronal vulnerability to calcium-induced cell death. publication-title: Mol. Cell doi: 10.1016/j.molcel.2009.02.013 – volume: 268 start-page: 74 year: 1993 ident: B146 article-title: Cardiolipin is synthesized on the matrix side of the inner membrane in rat liver mitochondria. publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)54116-8 – volume: 103 start-page: 3915 year: 2004 ident: B99 article-title: Neutrophils in Barth syndrome (BTHS) avidly bind annexin-V in the absence of apoptosis. publication-title: Blood doi: 10.1182/blood-2003-11-3940 – volume: 112 start-page: 393 year: 2013 ident: B159 article-title: Oxidative stress and sarcomeric proteins. publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.111.300496 – volume: 1831 start-page: 582 year: 2013 ident: B143 article-title: Cardiolipin remodeling and the function of tafazzin. publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbalip.2012.11.007 – volume: 34 start-page: 297 year: 1998 ident: B48 article-title: Phosphatidylglycerolphosphate synthase encoded by the PEL1/PGS1 gene in Saccharomyces cerevisiae is localized in mitochondria and its expression is regulated by phospholipid precursors. publication-title: Curr. Genet. doi: 10.1007/s002940050399 – year: 1981 ident: B16 publication-title: An X-Linked Mitochondrial Disease Affecting Cardiac Muscle, Skeletal Muscle and Neutrophil Leucocytes. Preliminary Communication. – volume: 279 start-page: 44394 year: 2004 ident: B109 article-title: The human TAZ gene complements mitochondrial dysfunction in the yeast taz1Delta mutant. Implications for Barth syndrome. publication-title: J. Biol. Chem. doi: 10.1074/jbc.M405479200 – volume: 16 start-page: 14 year: 2009 ident: B173 article-title: Mitochondrial defects lie at the basis of neutropenia in Barth syndrome. publication-title: Curr. Opin. Hematol. doi: 10.1097/MOH.0b013e32831c83f3 – volume: 37 start-page: 32 year: 2012 ident: B37 article-title: The complexity of cardiolipin in health and disease. publication-title: Trends Biochem. Sci. doi: 10.1016/j.tibs.2011.09.003 – volume: 9 issue: e102796 year: 2014 ident: B96 article-title: Directed differentiation of patient-specific induced pluripotent stem cells identifies the transcriptional repression and epigenetic modification of NKX2-5, HAND1, and NOTCH1 in hypoplastic left heart syndrome. publication-title: PLoS ONE doi: 10.1371/journal.pone.0102796 – volume: 1832 start-page: 1194 year: 2013 ident: B56 article-title: Barth syndrome: cellular compensation of mitochondrial dysfunction and apoptosis inhibition due to changes in cardiolipin remodeling linked to tafazzin (TAZ) gene mutation. publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbadis.2013.03.005 – volume: 30 start-page: 970 year: 2010 ident: B160 article-title: Barth syndrome: an X-linked cause of fetal cardiomyopathy and stillbirth. publication-title: Prenat. Diagn. doi: 10.1002/pd.2599 – volume: 143A start-page: 907 year: 2007 ident: B112 article-title: Barth syndrome associated with compound hemizygosity and heterozygosity of the TAZ and LDB3 genes. publication-title: Am. J. Med. Genet. A doi: 10.1002/ajmg.a.31653 – volume: 27 start-page: 849 year: 1995 ident: B53 article-title: Structural remodeling and mechanical dysfunction of cardiac myocytes in heart failure. publication-title: J. Mol. Cell. Cardiol. doi: 10.1016/0022-2828(95)90000-4 – volume: 822 start-page: 1 year: 1985 ident: B42 article-title: Lipids of mitochondria. publication-title: Biochem. Biophys. Acta doi: 10.1016/0304-4157(85)90002-4 – volume: 55 start-page: 437 year: 1994 ident: B118 article-title: Maternally inherited hypertrophic cardiomyopathy due to a novel T-to-C transition at nucleotide 9997 in the mitochondrial tRNA(glycine) gene. publication-title: Am. J. Hum. Genet. – volume: 9 start-page: 86 year: 2009 ident: B1 article-title: Distinct effects of tafazzin deletion in differentiated and undifferentiated mitochondria. publication-title: Mitochondrion doi: 10.1016/j.mito.2008.12.001 – volume: 1021 start-page: 217 year: 1990 ident: B76 article-title: Improved methods to isolate and subfractionate rat liver mitochondria. Lipid composition of the inner and outer membrane. publication-title: Biochim. Biophys. Acta doi: 10.1016/0005-2736(90)90036-N – volume: 278 start-page: 51380 year: 2003 ident: B180 article-title: Remodeling of cardiolipin by phospholipid transacylation. publication-title: J. Biol. Chem. doi: 10.1074/jbc.M307382200 – volume: 273 start-page: 9829 year: 1998a ident: B26 article-title: The PEL1 gene (renamed PGS1) encodes the phosphatidylglycero-phosphate synthase of Saccharomyces cerevisiae. publication-title: J. Biol. Chem. doi: 10.1074/jbc.273.16.9829 – volume: 15 issue: 369 year: 2013 ident: B151 article-title: Stem cell therapy for pediatric dilated cardiomyopathy. publication-title: Curr. Cardiol. Rep. doi: 10.1007/s11886-013-0369-z – volume: 284 start-page: 29230 year: 2009 ident: B184 article-title: Characterization of tafazzin splice variants from humans and fruit flies. publication-title: J. Biol. Chem. doi: 10.1074/jbc.M109.016642 – volume: 92 start-page: 218 year: 2014b ident: B176 article-title: Mechanisms and effects of curcumin on spatial learning and memory improvement in APPswe/PS1dE9 mice. publication-title: J. Neurosci. Res. doi: 10.1002/jnr.23322 – volume: 11 start-page: 643 year: 2015 ident: B78 article-title: Cardiolipin remodeling by TAZ/tafazzin is selectively required for the initiation of mitophagy. publication-title: Autophagy doi: 10.1080/15548627.2015.1023984 – volume: 8 start-page: 811 year: 2012 ident: B51 article-title: Tafazzin senses curvature. publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.1068 – volume: 286 start-page: 899 year: 2011 ident: B2 article-title: Cardiac and skeletal muscle defects in a mouse model of human Barth syndrome. publication-title: J. Biol. Chem. doi: 10.1074/jbc.M110.171439 – volume: 8 issue: 23 year: 2013 ident: B36 article-title: Barth syndrome. publication-title: Orphanet. J. Rare Dis. doi: 10.1186/1750-1172-8-23 – volume: 186 start-page: 793 year: 2009 ident: B44 article-title: Coassembly of Mgm1 isoforms requires cardiolipin and mediates mitochondrial inner membrane fusion. publication-title: J. Cell Biol. doi: 10.1083/jcb.200906098 – volume: 5 issue: 3903 year: 2014 ident: B43 article-title: Transplanted terminally differentiated induced pluripotent stem cells are accepted by immune mechanisms similar to self-tolerance. publication-title: Nat. Commun. doi: 10.1038/ncomms4903 – volume: 7 issue: e48628 year: 2012 ident: B166 article-title: Human trifunctional protein alpha links cardiolipin remodeling to beta-oxidation. publication-title: PLoS ONE doi: 10.1371/journal.pone.0048628 – volume: 574 start-page: 33 year: 2006 ident: B136 article-title: The role of AMP-activated protein kinase in mitochondrial biogenesis. publication-title: J. Physiol. doi: 10.1113/jphysiol.2006.109512 – volume: 292 start-page: C33 year: 2007 ident: B31 article-title: Role of cardiolipin alterations in mitochondrial dysfunction and disease. publication-title: Am. J. Physiol. Cell Physiol. doi: 10.1152/ajpcell.00243.2006 – volume: 15 start-page: 1407 year: 2012 ident: B85 article-title: Lipidomics identifies cardiolipin oxidation as a mitochondrial target for redox therapy of brain injury. publication-title: Nat. Neurosci. doi: 10.1038/nn.3195 – volume: 330 start-page: 71 year: 1993 ident: B77 article-title: Phospholipid asymmetry of the outer membrane of rat liver mitochondria. Evidence for the presence of cardiolipin on the outside of the outer membrane. publication-title: FEBS Lett. doi: 10.1016/0014-5793(93)80922-H – volume: 64 start-page: 24 year: 1979 ident: B122 article-title: An X-linked recessive cardiomyopathy with abnormal mitochondria. publication-title: Pediatrics doi: 10.1542/peds.64.1.24 – volume: 44 start-page: 560 year: 2003 ident: B171 article-title: Linoleic acid supplementation of Barth syndrome fibroblasts restores cardiolipin levels: implications for treatment. publication-title: J. Lipid Res. doi: 10.1194/jlr.M200217-JLR200 – volume: 15 start-page: 9 year: 2014 ident: B194 article-title: Your heart on a chip: iPSC-based modeling of Barth-syndrome-associated cardiomyopathy. publication-title: Cell Stem Cell doi: 10.1016/j.stem.2014.06.015 – volume: 24 start-page: 2008 year: 2013 ident: B11 article-title: Deacylation on the matrix side of the mitochondrial inner membrane regulates cardiolipin remodeling. publication-title: Mol. Biol. Cell doi: 10.1091/mbc.E13-03-0121 – volume: 179 start-page: 64 year: 2014 ident: B90 article-title: Cardiolipin asymmetry, oxidation and signaling. publication-title: Chem. Phys. Lipids doi: 10.1016/j.chemphyslip.2013.11.010 – volume: 11 start-page: 4165 year: 2011 ident: B58 article-title: Ensembles of engineered cardiac tissues for physiological and pharmacological study: heart on a chip. publication-title: Lab Chip doi: 10.1039/c1lc20557a – volume: 183 start-page: 681 year: 2008 ident: B57 article-title: Cardiolipin provides an essential activating platform for caspase-8 on mitochondria. publication-title: J. Cell Biol. doi: 10.1083/jcb.200803129 – volume: 33 start-page: 1430 year: 2012 ident: B61 article-title: Left ventricular noncompaction cardiomyopathy in Barth syndrome: an example of an undulating cardiac phenotype necessitating mechanical circulatory support as a bridge to transplantation. publication-title: Pediatr. Cardiol. doi: 10.1007/s00246-012-0258-z – volume: 19 start-page: 5720 year: 2000 ident: B89 article-title: LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. publication-title: EMBO J. doi: 10.1093/emboj/19.21.5720 – volume: 135 start-page: 273 year: 1999 ident: B17 article-title: X-linked cardioskeletal myopathy and neutropenia (Barth syndrome)-MIM 302060. publication-title: J. Pediatr. doi: 10.1016/S0022-3476(99)70118-6 – volume: 1791 start-page: 314 year: 2009 ident: B110 article-title: Formation of molecular species of mitochondrial cardiolipin. 1. A novel transacylation mechanism to shuttle fatty acids between sn-1 and sn-2 positions of multiple phospholipid species. publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbalip.2009.01.004 – volume: 20 start-page: 585 year: 2014 ident: B134 article-title: Cardiomyopathy, mitochondria and Barth syndrome: iPSCs reveal a connection. publication-title: Nat. Med. doi: 10.1038/nm.3592 – volume: 10 start-page: 376 year: 2014 ident: B33 article-title: LC3 binds externalized cardiolipin on injured mitochondria to signal mitophagy in neurons: implications for Parkinson disease. publication-title: Autophagy doi: 10.4161/auto.27191 – volume: 182 start-page: 937 year: 2008 ident: B39 article-title: Cardiolipin defines the interactome of the major ADP/ATP carrier protein of the mitochondrial inner membrane. publication-title: J. Cell Biol. doi: 10.1083/jcb.200801152 – volume: 109 start-page: 6975 year: 2012 ident: B102 article-title: Lysocardiolipin acyltransferase 1 (ALCAT1) controls mitochondrial DNA fidelity and biogenesis through modulation of MFN2 expression. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1120043109 – volume: 387 start-page: 617 year: 2005 ident: B167 article-title: Ypr140wp, ‘the yeast tafazzin,’ displays a mitochondrial lysophosphatidylcholine (lyso-PC) acyltransferase activity related to triacylglycerol and mitochondrial lipid synthesis. publication-title: Biochem. J. doi: 10.1042/BJ20041491 – volume: 5 start-page: 392 year: 2013 ident: B162 article-title: Unveiling the last missing link of the cardiolipin synthetic pathway in mitochondria. publication-title: Aging (Albany NY) doi: 10.18632/aging.100572 – volume: 52 start-page: 590 year: 2013 ident: B72 article-title: Lipids of mitochondria. publication-title: Prog. Lipid Res. doi: 10.1016/j.plipres.2013.07.002 – volume: 4 issue: e5329 year: 2009 ident: B45 article-title: Phenotypic and functional characterization of human mammary stem/progenitor cells in long term culture. publication-title: PLoS ONE doi: 10.1371/journal.pone.0005329 – volume: 580 start-page: 5450 year: 2006 ident: B147 article-title: Barth syndrome, a human disorder of cardiolipin metabolism. publication-title: FEBS Lett. doi: 10.1016/j.febslet.2006.07.022 – volume: 50 start-page: 1600 year: 2009 ident: B141 article-title: Cardiolipin biosynthesis and remodeling enzymes are altered during development of heart failure. publication-title: J. Lipid Res. doi: 10.1194/jlr.M800561-JLR200 – volume: 107 start-page: 428 year: 2012 ident: B140 article-title: Intrafamilial variability for novel TAZ gene mutation: barth syndrome with dilated cardiomyopathy and heart failure in an infant and left ventricular noncompaction in his great-uncle. publication-title: Mol. Genet. Metab. doi: 10.1016/j.ymgme.2012.09.013 – volume: 80 start-page: 5051 year: 2008 ident: B193 article-title: Electrophoretic analysis of the mitochondrial outer membrane rupture induced by permeability transition. publication-title: Anal. Chem. doi: 10.1021/ac800173r – volume: 1793 start-page: 212 year: 2009 ident: B87 article-title: Cellular functions of cardiolipin in yeast. publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbamcr.2008.07.024 – volume: 26 start-page: 1914 year: 2005 ident: B123 article-title: The role of docosahexaenoic acid in mediating mitochondrial membrane lipid oxidation and apoptosis in colonocytes. publication-title: Carcinogenesis doi: 10.1093/carcin/bgi163 – volume: 1018 start-page: 229 year: 1990 ident: B124 article-title: The role of contact sites between inner and outer mitochondrial membrane in energy transfer. publication-title: Biochim. Biophys. Acta doi: 10.1016/0005-2728(90)90255-3 – volume: 110 start-page: 9770 year: 2013 ident: B114 article-title: Recapitulating maladaptive, multiscale remodeling of failing myocardium on a chip. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1304913110 – volume: 1788 start-page: 2080 year: 2009 ident: B148 article-title: The role of cardiolipin in the structural organization of mitochondrial membranes. publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbamem.2009.04.019 – volume: 16 start-page: 5202 year: 2005 ident: B22 article-title: Taz1, an outer mitochondrial membrane protein, affects stability and assembly of inner membrane protein complexes: implications for Barth Syndrome. publication-title: Mol. Biol. Cell doi: 10.1091/mbc.E05-03-0256 – volume: 281 start-page: 39217 year: 2006 ident: B182 article-title: The enzymatic function of tafazzin. publication-title: J. Biol. Chem. doi: 10.1074/jbc.M606100200 – volume: 158A start-page: 2726 year: 2012 ident: B139 article-title: The Barth Syndrome Registry: distinguishing disease characteristics and growth data from a longitudinal study. publication-title: Am. J. Med. Genet. A doi: 10.1002/ajmg.a.35609 – volume: 36 start-page: 741 year: 2013 ident: B20 article-title: Diagnosis of Barth syndrome using a novel LC-MS/MS method for leukocyte cardiolipin analysis. publication-title: J. Inherit. Metab. Dis. doi: 10.1007/s10545-012-9552-4 – volume: 239 start-page: 113 year: 1971 ident: B73 article-title: Biosynthesis of cardiolipin in liver mitochondria. publication-title: Biochim. Biophys. Acta doi: 10.1016/0005-2760(71)90201-3 – volume: 82 start-page: 335 year: 2002 ident: B19 article-title: Infantile dilated X-linked cardiomyopathy, G4.5 mutations, altered lipids, and ultrastructural malformations of mitochondria in heart, liver, and skeletal muscle. publication-title: Lab. Invest. doi: 10.1038/labinvest.3780427 – volume: 347(Pt 3) start-page: 687 year: 2000 ident: B97 article-title: Oxidative phosphorylation in cardiolipin-lacking yeast mitochondria. publication-title: Biochem. J. doi: 10.1042/0264-6021:3470687 – volume: 6 start-page: 542 year: 2014b ident: B169 article-title: A mitochondrial pathway for biosynthesis of lipid mediators. publication-title: Nat. Chem. doi: 10.1038/nchem.1924 – volume: 179 start-page: 11 year: 2014b ident: B117 article-title: Mammalian cardiolipin biosynthesis. publication-title: Chem. Phys. Lipids doi: 10.1016/j.chemphyslip.2013.10.001 – volume: 363 start-page: 1397 year: 2010 ident: B121 article-title: Patient-specific induced pluripotent stem-cell models for long-QT syndrome. publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa0908679 – volume: 126 start-page: 663 year: 2006 ident: B161 article-title: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. publication-title: Cell doi: 10.1016/j.cell.2006.07.024 – volume: 74 start-page: 2228 year: 2011 ident: B119 article-title: Protein carbonylation and metal-catalyzed protein oxidation in a cellular perspective. publication-title: J. Proteomics doi: 10.1016/j.jprot.2011.05.004 – volume: 296 start-page: C1185 year: 2009 ident: B82 article-title: Control of mitochondrial biogenesis, ROS level, and cytosolic Ca2+ concentration during the cell cycle and the onset of differentiation in L6E9 myoblasts. publication-title: Am. J. Physiol. Cell Physiol. doi: 10.1152/ajpcell.00377.2008 – volume: 546 start-page: 119 year: 2014 ident: B25 article-title: Genome editing in human stem cells. publication-title: Methods Enzymol. doi: 10.1016/B978-0-12-801185-0.00006-4 – volume: 279 start-page: 32294 year: 2004 ident: B191 article-title: Absence of cardiolipin results in temperature sensitivity, respiratory defects, and mitochondrial DNA instability independent of pet56. publication-title: J. Biol. Chem. doi: 10.1074/jbc.M403275200 – volume: 4(Suppl. 1) start-page: S60 year: 2007 ident: B35 article-title: Mitochondrial oxidative metabolism is required for the cardiac differentiation of stem cells. publication-title: Nat. Clin. Pract. Cardiovasc. Med. doi: 10.1038/ncpcardio0766 – volume: 32(Suppl. 4) start-page: S7 year: 2008 ident: B62 article-title: AMPK: a key regulator of energy balance in the single cell and the whole organism. publication-title: Int. J. Obes. (Lond.) doi: 10.1038/ijo.2008.116 – volume: 4 start-page: 92 year: 2015 ident: B69 article-title: Structural and functional analyses of Barth syndrome-causing mutations and alternative splicing in the tafazzin acyltransferase domain. publication-title: Meta Gene doi: 10.1016/j.mgene.2015.04.001 – volume: 143 start-page: 247 year: 1942 ident: B127 article-title: Isolation and purification of a serologically active phospholipid from beef heart. publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)72683-5 – volume: 167 start-page: 941 year: 2008 ident: B186 article-title: Acute metabolic decompensation and sudden death in Barth syndrome: report of a family and a literature review. publication-title: Eur. J. Pediatr. doi: 10.1007/s00431-007-0592-y – volume: 15 start-page: 1197 year: 2013 ident: B34 article-title: Cardiolipin externalization to the outer mitochondrial membrane acts as an elimination signal for mitophagy in neuronal cells. publication-title: Nat. Cell Biol. doi: 10.1038/ncb2837 – volume: 163C start-page: 198 year: 2013 ident: B84 article-title: Barth syndrome. publication-title: Am. J. Med. Genet. C Semin. Med. Genet. doi: 10.1002/ajmg.c.31372 – volume: 35 start-page: 1078 year: 2014 ident: B113 article-title: Allele-specific RNA interference rescues the long-QT syndrome phenotype in human-induced pluripotency stem cell cardiomyocytes. publication-title: Eur. Heart J. doi: 10.1093/eurheartj/eht067 – volume: 31 start-page: 20 year: 2013 ident: B172 article-title: Human embryonic stem cells commonly display large mitochondrial DNA deletions. publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2473 – volume: 9 start-page: 1663 year: 2013 ident: B192 article-title: After the banquet: mitochondrial biogenesis, mitophagy, and cell survival. publication-title: Autophagy doi: 10.4161/auto.24135 – volume: 528 start-page: 35 year: 2002 ident: B60 article-title: Cardiolipin: a proton trap for oxidative phosphorylation. publication-title: FEBS Lett. doi: 10.1016/S0014-5793(02)03292-1 – volume: 271 start-page: 789 year: 1996 ident: B152 article-title: The CDS1 gene encoding CDP-diacylglycerol synthase in Saccharomyces cerevisiae is essential for cell growth. publication-title: J. Biol. Chem. doi: 10.1074/jbc.271.2.789 – volume: 318 start-page: 1917 year: 2007 ident: B187 article-title: Induced pluripotent stem cell lines derived from human somatic cells. publication-title: Science doi: 10.1126/science.1151526 – volume: 68 start-page: 1061 year: 2008 ident: B30 article-title: Loss of tafazzin in yeast leads to increased oxidative stress during respiratory growth. publication-title: Mol. Microbiol. doi: 10.1111/j.1365-2958.2008.06216.x – volume: 288 start-page: 1696 year: 2013 ident: B128 article-title: Loss of cardiolipin leads to perturbation of mitochondrial and cellular iron homeostasis. publication-title: J. Biol. Chem. doi: 10.1074/jbc.M112.428938 – volume: 11 start-page: 806 year: 2013 ident: B47 article-title: Cardiolipin deficiency affects respiratory chain function and organization in an induced pluripotent stem cell model of Barth syndrome. publication-title: Stem Cell Res. doi: 10.1016/j.scr.2013.05.005 – reference: 10769171 - Biochem J. 2000 May 1;347 Pt 3:687-91 – reference: 8079988 - Am J Hum Genet. 1994 Sep;55(3):437-46 – reference: 24848241 - Nat Chem. 2014 Jun;6(6):542-52 – reference: 2203472 - Biochim Biophys Acta. 1990 Jul 25;1018(2-3):229-33 – reference: 19752025 - J Cell Biol. 2009 Sep 21;186(6):793-803 – reference: 23843353 - Am J Med Genet C Semin Med Genet. 2013 Aug;163C(3):198-205 – reference: 15793838 - Am J Med Genet A. 2005 May 1;134(4):409-14 – reference: 19962311 - Curr Biol. 2009 Dec 29;19(24):2133-9 – reference: 22014644 - Trends Biochem Sci. 2012 Jan;37(1):32-41 – reference: 21601020 - J Proteomics. 2011 Oct 19;74(11):2228-42 – reference: 22987008 - Nat Chem Biol. 2012 Oct;8(10):811-2 – reference: 19295176 - Am J Physiol Cell Physiol. 2009 May;296(5):C1185-94 – reference: 8630491 - Nat Genet. 1996 Apr;12(4):385-9 – reference: 19196246 - Biochem J. 2009 Mar 1;418(2):261-75 – reference: 14623814 - Circulation. 2003 Nov 25;108(21):2672-8 – reference: 23192348 - J Biol Chem. 2013 Jan 18;288(3):1696-705 – reference: 21558246 - Integr Comp Biol. 2010 Nov;50(5):869-79 – reference: 24351649 - Autophagy. 2014 Feb;10(2):376-8 – reference: 25398338 - Methods Enzymol. 2014;546:119-38 – reference: 17394203 - Am J Med Genet A. 2007 May 1;143A(9):907-15 – reference: 23666883 - Curr Cardiol Rep. 2013 Jun;15(6):369 – reference: 1719174 - J Pediatr. 1991 Nov;119(5):738-47 – reference: 24078306 - Eukaryot Cell. 2013 Dec;12(12):1600-8 – reference: 16904174 - Cell. 2006 Aug 25;126(4):663-76 – reference: 21300850 - J Cell Biol. 2011 Feb 7;192(3):447-62 – reference: 19114128 - Mitochondrion. 2009 Apr;9(2):86-95 – reference: 22072288 - Lab Chip. 2011 Dec 21;11(24):4165-73 – reference: 24144810 - Chem Phys Lipids. 2014 Apr;179:11-6 – reference: 16888643 - Cell Death Differ. 2007 Mar;14(3):597-606 – reference: 24875164 - Nat Commun. 2014 May 30;5:3903 – reference: 23454757 - J Clin Invest. 2013 Mar;123(3):951-7 – reference: 21730175 - Proc Natl Acad Sci U S A. 2011 Jul 19;108(29):11860-5 – reference: 23290139 - Cell Stem Cell. 2013 Jan 3;12(1):101-13 – reference: 23398819 - Orphanet J Rare Dis. 2013 Feb 12;8:23 – reference: 19120014 - Biochemistry (Mosc). 2008 Dec;73(12):1273-87 – reference: 12297275 - FEBS Lett. 2002 Sep 25;528(1-3):35-9 – reference: 24632794 - Circ J. 2014;78(4):784-94 – reference: 19114592 - J Cell Biol. 2008 Dec 29;183(7):1213-21 – reference: 23807703 - Aging (Albany NY). 2013 Jun;5(6):392-3 – reference: 15588229 - Biochem J. 2005 May 1;387(Pt 3):617-26 – reference: 12509856 - Ann Neurol. 2003 Jan;53(1):121-3 – reference: 9545322 - J Biol Chem. 1998 Apr 17;273(16):9829-36 – reference: 12364341 - J Biol Chem. 2002 Nov 15;277(46):43553-6 – reference: 2408671 - Biochim Biophys Acta. 1985 Jun 12;822(1):1-42 – reference: 18719601 - Int J Obes (Lond). 2008 Sep;32 Suppl 4:S7-12 – reference: 16709637 - J Physiol. 2006 Jul 1;574(Pt 1):33-9 – reference: 25349653 - World J Cardiol. 2014 Oct 26;6(10):1091-9 – reference: 15788391 - J Biol Chem. 2005 Jun 3;280(22):21295-312 – reference: 15098233 - Am J Med Genet A. 2004 May 1;126A(4):349-54 – reference: 11238270 - Circulation. 2001 Mar 6;103(9):1256-63 – reference: 8557688 - J Biol Chem. 1996 Jan 12;271(2):789-95 – reference: 24076990 - Nat Methods. 2013 Oct;10(10):957-63 – reference: 23787782 - Autophagy. 2013 Nov 1;9(11):1663-76 – reference: 19001357 - J Lipid Res. 2009 Aug;50(8):1600-8 – reference: 25941633 - Meta Gene. 2015 Apr 22;4:92-106 – reference: 21068380 - J Biol Chem. 2011 Jan 14;286(2):899-908 – reference: 17230217 - Nat Clin Pract Cardiovasc Med. 2007 Feb;4 Suppl 1:S60-7 – reference: 12562862 - J Lipid Res. 2003 Mar;44(3):560-6 – reference: 23200781 - Biochim Biophys Acta. 2013 Mar;1831(3):582-8 – reference: 24036476 - Nat Cell Biol. 2013 Oct;15(10):1197-205 – reference: 18990125 - Ann N Y Acad Sci. 2008 Oct;1142:133-58 – reference: 19675643 - Nature. 2009 Aug 13;460(7257):831-8 – reference: 19700766 - J Biol Chem. 2009 Oct 16;284(42):29230-9 – reference: 16794186 - Circ Res. 2006 Jul 21;99(2):201-8 – reference: 17082194 - J Biol Chem. 2006 Dec 22;281(51):39217-24 – reference: 15805542 - J Lipid Res. 2005 Jun;46(6):1182-95 – reference: 21641550 - Cell Metab. 2011 Jun 8;13(6):690-700 – reference: 22941046 - Nat Chem Biol. 2012 Oct;8(10):862-9 – reference: 572031 - Pediatrics. 1979 Jul;64(1):24-9 – reference: 16135531 - Mol Biol Cell. 2005 Nov;16(11):5202-14 – reference: 22327929 - Curr Cardiol Rep. 2012 Apr;14(2):208-16 – reference: 9614098 - J Biol Chem. 1998 Jun 12;273(24):14933-41 – reference: 16899548 - Am J Physiol Cell Physiol. 2007 Jan;292(1):C33-44 – reference: 11060023 - EMBO J. 2000 Nov 1;19(21):5720-8 – reference: 16547353 - J Lipid Res. 2006 Jun;47(6):1140-5 – reference: 16943180 - J Cell Biol. 2006 Aug 28;174(5):631-7 – reference: 23302926 - Nat Biotechnol. 2013 Jan;31(1):20-3 – reference: 18425414 - Cell Mol Life Sci. 2008 Aug;65(16):2493-506 – reference: 23130124 - J Am Heart Assoc. 2012 Apr;1(2):null – reference: 20660394 - N Engl J Med. 2010 Oct 7;363(15):1397-409 – reference: 22178754 - Proc Natl Acad Sci U S A. 2012 Jan 3;109 (1):215-20 – reference: 21119622 - Mol Ther. 2011 Mar;19(3):584-93 – reference: 9345098 - Am J Hum Genet. 1997 Nov;61(5):1053-8 – reference: 19413994 - Biochim Biophys Acta. 2009 Oct;1788(10):2080-3 – reference: 18430085 - Mol Microbiol. 2008 May;68(4):1061-72 – reference: 24445246 - Chem Phys Lipids. 2014 Apr;179:49-56 – reference: 21091282 - Hum Gene Ther. 2011 Jul;22(7):865-71 – reference: 22101267 - Cell Cycle. 2011 Dec 1;10(23):4032-8 – reference: 20185555 - Hum Mol Genet. 2010 Jun 1;19(11):2113-22 – reference: 22465155 - Chem Phys Lipids. 2012 Jul;165(5):512-9 – reference: 24901565 - Nat Med. 2014 Jun;20(6):585-6 – reference: 16857210 - J Mol Biol. 2006 Aug 18;361(3):462-9 – reference: 18669821 - Science. 2008 Aug 29;321(5893):1218-21 – reference: 16235007 - Pediatr Cardiol. 2005 Sep-Oct;26(5):632-7 – reference: 24342716 - Mol Genet Metab. 2014 Jan;111(1):26-32 – reference: 25919711 - Autophagy. 2015 Apr 3;11(4):643-52 – reference: 24007978 - Prog Lipid Res. 2013 Oct;52(4):590-614 – reference: 8434619 - Am J Med Genet. 1993 Feb 1;45(3):327-34 – reference: 2172233 - J Biol Chem. 1990 Nov 5;265(31):18797-802 – reference: 14764526 - Blood. 2004 May 15;103(10):3915-23 – reference: 20348225 - Am J Physiol Heart Circ Physiol. 2010 Jul;299(1):H210-6 – reference: 8380172 - J Biol Chem. 1993 Jan 5;268(1):74-9 – reference: 23031367 - Mol Genet Metab. 2012 Nov;107(3):428-32 – reference: 18725250 - Biochim Biophys Acta. 2009 Jan;1793(1):212-8 – reference: 24273069 - J Neurosci Res. 2014 Feb;92(2):218-31 – reference: 24769127 - Prog Lipid Res. 2014 Jul;55:1-16 – reference: 19619503 - Biochim Biophys Acta. 2009 Oct;1788(10):2003-14 – reference: 3030927 - Hum Genet. 1987 Mar;75(3):286-90 – reference: 963901 - Clin Chim Acta. 1976 Sep 6;71(2):349-51 – reference: 20124997 - Curr Opin Cardiol. 2010 May;25(3):222-8 – reference: 16847078 - Pediatrics. 2006 Aug;118(2):e337-46 – reference: 15485678 - Cardiovasc Res. 2004 Nov 1;64(2):198-207 – reference: 19390630 - PLoS One. 2009;4(4):e5329 – reference: 23523468 - Biochim Biophys Acta. 2013 Aug;1832(8):1194-206 – reference: 24856930 - Cell Metab. 2014 Jul 1;20(1):158-71 – reference: 23637464 - Mol Biol Cell. 2013 Jun;24(12):2008-20 – reference: 23997105 - Am J Physiol Heart Circ Physiol. 2013 Nov 1;305(9):H1332-43 – reference: 16880272 - J Cell Biol. 2006 Jul 31;174(3):379-90 – reference: 25691889 - Front Genet. 2015 Feb 03;6:3 – reference: 23329794 - Circ Res. 2013 Jan 18;112(2):393-405 – reference: 22949503 - Mol Cell Biol. 2012 Nov;32(21):4493-504 – reference: 23913125 - Nat Med. 2013 Sep;19(9):1111-3 – reference: 20485265 - EMBO J. 2010 Jun 16;29(12 ):1976-87 – reference: 16973164 - FEBS Lett. 2006 Oct 9;580(23):5450-5 – reference: 18510346 - Anal Chem. 2008 Jul 1;80(13):5051-8 – reference: 15304507 - J Biol Chem. 2004 Oct 22;279(43):44394-9 – reference: 22174035 - EMBO Mol Med. 2012 Mar;4(3):180-91 – reference: 18029452 - Science. 2007 Dec 21;318(5858):1917-20 – reference: 15806137 - Lab Invest. 2005 Jun;85(6):823-30 – reference: 24813252 - Nat Med. 2014 Jun;20(6):616-23 – reference: 10799718 - Prog Lipid Res. 2000 May;39(3):257-88 – reference: 23470493 - Eur Heart J. 2014 Apr;35(16):1078-87 – reference: 17846786 - Eur J Pediatr. 2008 Aug;167(8):941-4 – reference: 23136396 - Dis Model Mech. 2013 May;6(3):608-21 – reference: 23100323 - Hum Mol Genet. 2013 Feb 1;22(3):483-92 – reference: 23045169 - Am J Med Genet A. 2012 Nov;158A(11):2726-32 – reference: 24801725 - Cardiovasc Hematol Disord Drug Targets. 2014;14(2):98-106 – reference: 24333544 - Chem Phys Lipids. 2014 Apr;179:3-10 – reference: 25247053 - Oxid Med Cell Longev. 2014;2014:654198 – reference: 22410210 - Mol Genet Metab. 2012 May;106(1):115-20 – reference: 2154259 - Biochim Biophys Acta. 1990 Jan 29;1021(2):217-26 – reference: 9792874 - Am J Hum Genet. 1998 Nov;63(5):1457-63 – reference: 14551214 - J Biol Chem. 2003 Dec 19;278(51):51380-5 – reference: 10484787 - J Pediatr. 1999 Sep;135(3):273-6 – reference: 15975958 - Carcinogenesis. 2005 Nov;26(11):1914-21 – reference: 25422939 - PLoS One. 2014 Nov 25;9(11):e113680 – reference: 15169766 - J Biol Chem. 2004 Jul 30;279(31):32294-300 – reference: 20064600 - Exp Gerontol. 2010 Aug;45(7-8):466-72 – reference: 23871585 - Am J Pathol. 2013 Sep;183(3):720-34 – reference: 22509026 - Proc Natl Acad Sci U S A. 2012 May 1;109(18):6975-80 – reference: 11896212 - Lab Invest. 2002 Mar;82(3):335-44 – reference: 12569106 - J Biol Chem. 2003 Apr 11;278(15):12716-21 – reference: 25673287 - J Histochem Cytochem. 2015 May;63(5):301-11 – reference: 22427193 - Pediatr Cardiol. 2012 Dec;33(8):1430-4 – reference: 12930833 - J Biol Chem. 2003 Oct 31;278(44):43089-94 – reference: 19285945 - Mol Cell. 2009 Mar 13;33(5):627-38 – reference: 4998839 - Biochim Biophys Acta. 1971 Jun 8;239(1):113-9 – reference: 20812380 - Prenat Diagn. 2010 Oct;30(10 ):970-6 – reference: 19001123 - J Cell Biol. 2008 Nov 17;183(4):681-96 – reference: 8370463 - FEBS Lett. 1993 Sep 6;330(1):71-6 – reference: 18779372 - J Cell Biol. 2008 Sep 8;182(5):937-50 – reference: 9799363 - Curr Genet. 1998 Oct;34(4):297-302 – reference: 24184646 - Chem Phys Lipids. 2014 Apr;179:25-31 – reference: 17043667 - Lab Invest. 2007 Jan;87(1):40-8 – reference: 24300280 - Chem Phys Lipids. 2014 Apr;179:64-9 – reference: 8739954 - J Inherit Metab Dis. 1996;19(2):157-60 – reference: 23792436 - Stem Cell Res. 2013 Sep;11(2):806-19 – reference: 22521339 - J Pharmacol Toxicol Methods. 2012 May-Jun;65(3):126-35 – reference: 19416660 - Biochim Biophys Acta. 2009 Apr;1791(4):314-20 – reference: 15972817 - J Biol Chem. 2005 Aug 19;280(33):29403-8 – reference: 11092892 - J Biol Chem. 2001 Feb 16;276(7):4588-96 – reference: 23152787 - PLoS One. 2012;7(11):e48628 – reference: 22922784 - Nat Neurosci. 2012 Oct;15(10):1407-13 – reference: 19057200 - Curr Opin Hematol. 2009 Jan;16(1):14-9 – reference: 25050861 - PLoS One. 2014 Jul 22;9(7):e102796 – reference: 21920313 - Dev Cell. 2011 Sep 13;21(3):469-78 – reference: 23109063 - J Inherit Metab Dis. 2013 Sep;36(5):741-6 – reference: 24996164 - Cell Stem Cell. 2014 Jul 3;15(1):9-11 – reference: 3005242 - J Bacteriol. 1986 Mar;165(3):901-10 – reference: 23716679 - Proc Natl Acad Sci U S A. 2013 Jun 11;110(24):9770-5 – reference: 25432572 - J Bioenerg Biomembr. 2016 Apr;48(2):113-23 – reference: 17609368 - Proc Natl Acad Sci U S A. 2007 Jul 17;104(29):12017-22 – reference: 23405277 - Sci Rep. 2013;3:1263 – reference: 6142097 - J Neurol Sci. 1983 Dec;62(1-3):327-55 – reference: 24240927 - JAMA. 2013 Nov 20;310(19):2039-40 – reference: 16226238 - Chem Phys Lipids. 2005 Dec;138(1-2):38-49 – reference: 7602601 - J Mol Cell Cardiol. 1995 Mar;27(3):849-56 – reference: 22749309 - J Am Coll Cardiol. 2012 Sep 11;60(11):990-1000 – reference: 23623749 - Cell Metab. 2013 May 7;17(5):709-18 – reference: 25598000 - Mitochondrion. 2015 Mar;21:27-32 – reference: 16716149 - Biochem J. 2006 Sep 1;398(2):169-76 – reference: 15052331 - Biochem Cell Biol. 2004 Feb;82(1):99-112 |
SSID | ssj0000493334 |
Score | 2.3836021 |
SecondaryResourceType | review_article |
Snippet | Mutations in the gene encoding the enzyme tafazzin, TAZ, cause Barth syndrome (BTHS). Individuals with this X-linked multisystem disorder present... Mutations in the gene encoding the enzyme tafazzin, TAZ , cause Barth syndrome (BTHS). Individuals with this X-linked multisystem disorder present... |
SourceID | doaj pubmedcentral hal proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 359 |
SubjectTerms | Barth Syndrome cardiolipin Cellular Biology Cellular Models Endocrinology and metabolism Genetics Human genetics Human health and pathology Life Sciences Mitochondria Stem Cells Subcellular Processes Tafazzin |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELbQSkhcEMszy0MGceEQNbGd2Oa2i6gqhLjASnuz7NhWQUtSbVO0_RP8ZmbsbNWCBBcuPbiOE8984xk7k28Ied3o2LRWVmBpVpaCR1s6cNRg8UEIrlrvbcq2-NQuzsWHi-Zir9QX5oRleuAsuJm0VccEDMQDF3C9sroJ3CnfuKjrmFZf8Hl7m6lvOe7lnIv8XhJ2YXoWQR9Ii1njGQpHatI9P5To-sG7LDEZ8s9I8_eEyT0PNL9H7k6hIz3Nj3xMboX-Prmdi0luH5CfZzCZJf08URC8ncMv_Q4GCwscNAHOqN-u0Y8lqFE7KSZ4ioex1LpwBY5rpKtMAgud6BApBJVpSaTD9RYmR_HTTNhd03Ggq8sNLDkDRN0jRT5oim8B6DpnJj4k5_P3X94tyqnaQtkJ3Y4lBxE7xbAaNaw83KFUpe6Yb6XwvnI6St61HiIKLx0X0YMQWZAVtARVxZo_Ikf90IcnhPKoGh-t051zIkqmvK55bTsVrGNMh4LMbmRvuomKHCtiXBrYkqC2TNKWQW2ZpK2CvNldsco0HH_pe4bq3PVDAu3UALAyE6zMv2BVkFcAhoMxFqcfDbZVQgqtqvZHXZCXN1gxYJUoZNuHYbM2NfgYDlgXVUEeZ-zsxmKt4viBb0HkAaoObnb4T_91mZi_IZLQ4GJO_scMn5I7ILN0nMSqZ-RovNqE5xBgje5FsqVf6ycngA priority: 102 providerName: Directory of Open Access Journals |
Title | Barth Syndrome: From Mitochondrial Dysfunctions Associated with Aberrant Production of Reactive Oxygen Species to Pluripotent Stem Cell Studies |
URI | https://www.ncbi.nlm.nih.gov/pubmed/26834781 https://www.proquest.com/docview/1762343840 https://hal.science/hal-04749806 https://pubmed.ncbi.nlm.nih.gov/PMC4719219 https://doaj.org/article/7a0c247a73e34e448a95e3b8d5bf91f2 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELZgERIXxJvwWBnEhUPYxHbiGAmh7kKpEAsrlkq9WXZsU1bZBNoUbX8Ff5mxkxYCKyQuieI4jjLzjb_xIzMIPcmEy3LFE7A0xWNGnYo1EDVYvGWMFrkxKuy2eJ9PpuztLJv9-j26F-Dy3KGdzyc1XVTPzr6tX4LBv_AjTuDbPQei9hEvUz89QjNxEV0CXuI-n8Fh7-yfdL4wpd0yc54z6JpJ2q1bntvIgKdCOH9gn7nfLPm3J_rnhsrfGGp8DV3tXUs86rBwHV2w9Q10uUs2ub6JfuwDSub4uA9R8ByP4YQPwaJBCFAGQMSv1ktPdAGLeKM5a7CfrcUjbRfAbC0-6qLEQiXcOPzRqtBn4g9na_g6HDLa2yVuG3xUraBPasAtb_Fxa0_xga0q3G9dvIWm49efDiZxn44hLpnI25gqTnVBfLpq6JqoJuBqcFESk3NmTKKF47TMDbgchmvKnAEpEssTKLFF4lJ6G-3UTW3vIkxdkRmntCi1Zo6TwoiUpqosrNKECBuhvY3wZdnHKvcpMyoJYxavLhnUJb26ZFBXhJ5un_jaxen4R919r89tPR9hOxQ0i8-yN1jJVVISBgCmljLAbaFEZuH7TaadSB2J0GNAw6CNyeid9GUJ40wUSf49jdCjDVgkmK1fi1G1bVZLmQIJUTAGlkToTgeebVskL6j_AzhCfACrwcuGd-ov8xAaHFwNARx07z-kcR9dgYswrUSSB2inXazsQ3C0Wr0bJijg-GaW7gZb-glL6yjN |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Barth+Syndrome%3A+From+Mitochondrial+Dysfunctions+Associated+with+Aberrant+Production+of+Reactive+Oxygen+Species+to+Pluripotent+Stem+Cell+Studies&rft.jtitle=Frontiers+in+genetics&rft.au=Saric%2C+Ana&rft.au=Andreau%2C+Karine&rft.au=Armand%2C+Anne-Sophie&rft.au=M%C3%B8ller%2C+Ian+M.&rft.date=2016-01-20&rft.issn=1664-8021&rft.eissn=1664-8021&rft.volume=6&rft_id=info:doi/10.3389%2Ffgene.2015.00359&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fgene_2015_00359 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-8021&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-8021&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-8021&client=summon |