Maternal gut microbes shape the early-life assembly of gut microbiota in passerine chicks via nests

Knowledge is growing on how gut microbiota are established, but the effects of maternal symbiotic microbes throughout early microbial successions in birds remain elusive. In this study, we examined the contributions and transmission modes of maternal microbes into the neonatal microbiota of a passer...

Full description

Saved in:
Bibliographic Details
Published inMicrobiome Vol. 8; no. 1; pp. 129 - 13
Main Authors Chen, Cheng-Yu, Chen, Chih-Kuan, Chen, Yi-Ying, Fang, Andrew, Shaw, Grace Tzun-Wen, Hung, Chih-Ming, Wang, Daryi
Format Journal Article
LanguageEnglish
Published England BioMed Central 11.09.2020
BMC
Subjects
Online AccessGet full text
ISSN2049-2618
2049-2618
DOI10.1186/s40168-020-00896-9

Cover

Loading…
Abstract Knowledge is growing on how gut microbiota are established, but the effects of maternal symbiotic microbes throughout early microbial successions in birds remain elusive. In this study, we examined the contributions and transmission modes of maternal microbes into the neonatal microbiota of a passerine, the zebra finch (Taeniopygia guttata), based on fostering experiments. Using 16S rRNA amplicon sequencing, we found that zebra finch chicks raised by their biological or foster parents (the society finch Lonchura striata domestica) had gut microbial communities converging with those of the parents that reared them. Moreover, source-tracking models revealed high contribution of zebra finches' oral cavity/crop microbiota to their chicks' early gut microbiota, which were largely replaced by the parental gut microbiota at later stages. The results suggest that oral feeding only affects the early stage of hatchling gut microbial development. Our study indicates that passerine chicks mainly acquire symbionts through indirect maternal transmission-passive environmental uptake from nests that were smeared with the intestinal and cloacal microbes of parents that raised them. Gut microbial diversity was low in hand-reared chicks, emphasizing the importance of parental care in shaping the gut microbiota. In addition, several probiotics were found in chicks fostered by society finches, which are excellent foster parents for other finches in bird farms and hosts of brood parasitism by zebra finches in aviaries; this finding implies that avian species that can transfer probiotics to chicks may become selectively preferred hosts of brood parasitism in nature. Video Abstract.
AbstractList Knowledge is growing on how gut microbiota are established, but the effects of maternal symbiotic microbes throughout early microbial successions in birds remain elusive. In this study, we examined the contributions and transmission modes of maternal microbes into the neonatal microbiota of a passerine, the zebra finch (Taeniopygia guttata), based on fostering experiments. Using 16S rRNA amplicon sequencing, we found that zebra finch chicks raised by their biological or foster parents (the society finch Lonchura striata domestica) had gut microbial communities converging with those of the parents that reared them. Moreover, source-tracking models revealed high contribution of zebra finches' oral cavity/crop microbiota to their chicks' early gut microbiota, which were largely replaced by the parental gut microbiota at later stages. The results suggest that oral feeding only affects the early stage of hatchling gut microbial development. Our study indicates that passerine chicks mainly acquire symbionts through indirect maternal transmission-passive environmental uptake from nests that were smeared with the intestinal and cloacal microbes of parents that raised them. Gut microbial diversity was low in hand-reared chicks, emphasizing the importance of parental care in shaping the gut microbiota. In addition, several probiotics were found in chicks fostered by society finches, which are excellent foster parents for other finches in bird farms and hosts of brood parasitism by zebra finches in aviaries; this finding implies that avian species that can transfer probiotics to chicks may become selectively preferred hosts of brood parasitism in nature. Video Abstract.
Abstract Background Knowledge is growing on how gut microbiota are established, but the effects of maternal symbiotic microbes throughout early microbial successions in birds remain elusive. In this study, we examined the contributions and transmission modes of maternal microbes into the neonatal microbiota of a passerine, the zebra finch (Taeniopygia guttata), based on fostering experiments. Results Using 16S rRNA amplicon sequencing, we found that zebra finch chicks raised by their biological or foster parents (the society finch Lonchura striata domestica) had gut microbial communities converging with those of the parents that reared them. Moreover, source-tracking models revealed high contribution of zebra finches’ oral cavity/crop microbiota to their chicks’ early gut microbiota, which were largely replaced by the parental gut microbiota at later stages. The results suggest that oral feeding only affects the early stage of hatchling gut microbial development. Conclusions Our study indicates that passerine chicks mainly acquire symbionts through indirect maternal transmission—passive environmental uptake from nests that were smeared with the intestinal and cloacal microbes of parents that raised them. Gut microbial diversity was low in hand-reared chicks, emphasizing the importance of parental care in shaping the gut microbiota. In addition, several probiotics were found in chicks fostered by society finches, which are excellent foster parents for other finches in bird farms and hosts of brood parasitism by zebra finches in aviaries; this finding implies that avian species that can transfer probiotics to chicks may become selectively preferred hosts of brood parasitism in nature. Video Abstract
Background Knowledge is growing on how gut microbiota are established, but the effects of maternal symbiotic microbes throughout early microbial successions in birds remain elusive. In this study, we examined the contributions and transmission modes of maternal microbes into the neonatal microbiota of a passerine, the zebra finch (Taeniopygia guttata), based on fostering experiments. Results Using 16S rRNA amplicon sequencing, we found that zebra finch chicks raised by their biological or foster parents (the society finch Lonchura striata domestica) had gut microbial communities converging with those of the parents that reared them. Moreover, source-tracking models revealed high contribution of zebra finches’ oral cavity/crop microbiota to their chicks’ early gut microbiota, which were largely replaced by the parental gut microbiota at later stages. The results suggest that oral feeding only affects the early stage of hatchling gut microbial development. Conclusions Our study indicates that passerine chicks mainly acquire symbionts through indirect maternal transmission—passive environmental uptake from nests that were smeared with the intestinal and cloacal microbes of parents that raised them. Gut microbial diversity was low in hand-reared chicks, emphasizing the importance of parental care in shaping the gut microbiota. In addition, several probiotics were found in chicks fostered by society finches, which are excellent foster parents for other finches in bird farms and hosts of brood parasitism by zebra finches in aviaries; this finding implies that avian species that can transfer probiotics to chicks may become selectively preferred hosts of brood parasitism in nature. Video Abstract
Knowledge is growing on how gut microbiota are established, but the effects of maternal symbiotic microbes throughout early microbial successions in birds remain elusive. In this study, we examined the contributions and transmission modes of maternal microbes into the neonatal microbiota of a passerine, the zebra finch (Taeniopygia guttata), based on fostering experiments.BACKGROUNDKnowledge is growing on how gut microbiota are established, but the effects of maternal symbiotic microbes throughout early microbial successions in birds remain elusive. In this study, we examined the contributions and transmission modes of maternal microbes into the neonatal microbiota of a passerine, the zebra finch (Taeniopygia guttata), based on fostering experiments.Using 16S rRNA amplicon sequencing, we found that zebra finch chicks raised by their biological or foster parents (the society finch Lonchura striata domestica) had gut microbial communities converging with those of the parents that reared them. Moreover, source-tracking models revealed high contribution of zebra finches' oral cavity/crop microbiota to their chicks' early gut microbiota, which were largely replaced by the parental gut microbiota at later stages. The results suggest that oral feeding only affects the early stage of hatchling gut microbial development.RESULTSUsing 16S rRNA amplicon sequencing, we found that zebra finch chicks raised by their biological or foster parents (the society finch Lonchura striata domestica) had gut microbial communities converging with those of the parents that reared them. Moreover, source-tracking models revealed high contribution of zebra finches' oral cavity/crop microbiota to their chicks' early gut microbiota, which were largely replaced by the parental gut microbiota at later stages. The results suggest that oral feeding only affects the early stage of hatchling gut microbial development.Our study indicates that passerine chicks mainly acquire symbionts through indirect maternal transmission-passive environmental uptake from nests that were smeared with the intestinal and cloacal microbes of parents that raised them. Gut microbial diversity was low in hand-reared chicks, emphasizing the importance of parental care in shaping the gut microbiota. In addition, several probiotics were found in chicks fostered by society finches, which are excellent foster parents for other finches in bird farms and hosts of brood parasitism by zebra finches in aviaries; this finding implies that avian species that can transfer probiotics to chicks may become selectively preferred hosts of brood parasitism in nature. Video Abstract.CONCLUSIONSOur study indicates that passerine chicks mainly acquire symbionts through indirect maternal transmission-passive environmental uptake from nests that were smeared with the intestinal and cloacal microbes of parents that raised them. Gut microbial diversity was low in hand-reared chicks, emphasizing the importance of parental care in shaping the gut microbiota. In addition, several probiotics were found in chicks fostered by society finches, which are excellent foster parents for other finches in bird farms and hosts of brood parasitism by zebra finches in aviaries; this finding implies that avian species that can transfer probiotics to chicks may become selectively preferred hosts of brood parasitism in nature. Video Abstract.
ArticleNumber 129
Author Fang, Andrew
Chen, Yi-Ying
Wang, Daryi
Hung, Chih-Ming
Chen, Cheng-Yu
Chen, Chih-Kuan
Shaw, Grace Tzun-Wen
Author_xml – sequence: 1
  givenname: Cheng-Yu
  surname: Chen
  fullname: Chen, Cheng-Yu
– sequence: 2
  givenname: Chih-Kuan
  surname: Chen
  fullname: Chen, Chih-Kuan
– sequence: 3
  givenname: Yi-Ying
  surname: Chen
  fullname: Chen, Yi-Ying
– sequence: 4
  givenname: Andrew
  surname: Fang
  fullname: Fang, Andrew
– sequence: 5
  givenname: Grace Tzun-Wen
  surname: Shaw
  fullname: Shaw, Grace Tzun-Wen
– sequence: 6
  givenname: Chih-Ming
  surname: Hung
  fullname: Hung, Chih-Ming
– sequence: 7
  givenname: Daryi
  orcidid: 0000-0003-3859-9162
  surname: Wang
  fullname: Wang, Daryi
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32917256$$D View this record in MEDLINE/PubMed
BookMark eNp9kk1v1DAQhiNUREvpH-CALHHhEvB37AsSqvioVMQFztbEmex68caLnVTaf0-yW6ptD_hia-aZV-OZ92V1NqQBq-o1o-8ZM_pDkZRpU1NOa0qN1bV9Vl1wKm3NNTNnJ-_z6qqUDZ2PZbKR5kV1LrhlDVf6ovLfYcQ8QCSraSTb4HNqsZCyhh2ScY0EIcd9HUOPBErBbRv3JPUndEgjkDCQ3ZLOYUDi18H_LuQuABmwjOVV9byHWPDq_r6sfn35_PP6W3374-vN9afb2kurx1ooST3XVljFeKeFbwR62QGXIAVvW41N23WyMdpQ3vCmMy1YpZVVvRRaobisbo66XYKN2-Wwhbx3CYI7BFJeOchj8BFdjxSsYF0PBqWgukXTy9ZI4Q0AhW7W-njU2k3tFjuPw5ghPhJ9nBnC2q3SnZsHbIxSs8C7e4Gc_kzzGNw2FI8xwoBpKo5LyTnjysoZffsE3aRp2cmBklRYq-xMvTnt6KGVf7ucAX4E5q2UkrF_QBh1i2fc0TNu9ow7eMYtquZJkQ8jjCEtvwrxf6V_AU1oxeA
CitedBy_id crossref_primary_10_1242_jeb_224485
crossref_primary_10_3389_fmicb_2022_934272
crossref_primary_10_7717_peerj_12401
crossref_primary_10_1080_19490976_2022_2057779
crossref_primary_10_1007_s00438_022_01875_5
crossref_primary_10_1186_s40168_023_01700_0
crossref_primary_10_3390_microorganisms11092289
crossref_primary_10_1186_s40168_023_01490_5
crossref_primary_10_1128_spectrum_04084_22
crossref_primary_10_3168_jds_2022_22655
crossref_primary_10_3389_fmicb_2021_706424
crossref_primary_10_1016_j_envpol_2024_124434
crossref_primary_10_3389_fmicb_2022_911416
crossref_primary_10_1111_jav_03360
crossref_primary_10_1093_conphys_coae052
crossref_primary_10_3390_ani13040707
crossref_primary_10_1080_01584197_2022_2114088
crossref_primary_10_1186_s12862_024_02329_9
crossref_primary_10_1021_acsinfecdis_3c00554
crossref_primary_10_3389_fmicb_2023_1092100
crossref_primary_10_1093_femsec_fiad164
crossref_primary_10_1186_s40168_022_01401_0
crossref_primary_10_1128_spectrum_00783_22
crossref_primary_10_1016_j_ecoenv_2023_115480
crossref_primary_10_1111_brv_13036
crossref_primary_10_3390_ani13172783
crossref_primary_10_1111_ibi_13388
crossref_primary_10_1186_s42523_024_00313_8
crossref_primary_10_1242_jeb_246024
crossref_primary_10_3389_fmicb_2022_916735
crossref_primary_10_1111_mec_16915
crossref_primary_10_3390_biology11010031
crossref_primary_10_7717_peerj_12291
crossref_primary_10_1007_s00300_024_03260_x
crossref_primary_10_1093_icb_icad031
crossref_primary_10_1186_s42523_023_00243_x
crossref_primary_10_3390_ani13081362
crossref_primary_10_1186_s40168_021_01200_z
crossref_primary_10_1016_j_avrs_2022_100050
crossref_primary_10_3389_fmicb_2021_619141
crossref_primary_10_3389_fmicb_2023_1177404
crossref_primary_10_1016_j_celrep_2023_113021
crossref_primary_10_3390_birds2010003
crossref_primary_10_3389_fmicb_2022_983808
Cites_doi 10.1038/s41586-019-1451-5
10.1126/sciadv.1500997
10.1002/dvg.22900
10.1111/j.1095-8312.2008.01127.x
10.1093/genetics/131.2.479
10.1007/s00018-011-0830-3
10.3390/genes9080381
10.1093/femsec/fiz061
10.1073/pnas.1007028107
10.1038/nature25973
10.1371/journal.pbio.0050177
10.1128/AEM.00462-08
10.1038/nature11053
10.1007/s10336-016-1371-1
10.1111/2041-210X.12613
10.1073/pnas.1010529108
10.1371/journal.pone.0153215
10.3389/fmicb.2017.01967
10.1016/j.aninu.2015.07.003
10.1111/mec.13730
10.1186/gb-2011-12-6-r60
10.1038/nrmicro1978
10.1038/s41575-018-0061-2
10.1007/s00248-002-2015-y
10.1371/journal.pone.0181427
10.1111/j.1365-294X.2010.04892.x
10.1038/nature11552
10.1126/science.aat7164
10.1128/AEM.71.12.8228-8235.2005
10.1038/ismej.2009.128
10.1128/AEM.01541-09
10.1111/mec.15087
10.1126/science.aad2571
10.1186/s40168-017-0371-6
10.1016/j.chom.2014.11.010
10.1038/nature11550
10.7717/peerj.321
10.1002/ece3.1243
10.3389/fmicb.2019.00035
10.1073/pnas.1002601107
10.1111/j.1523-536X.2010.00421.x
10.1111/1365-2656.12243
10.1038/s41396-018-0067-3
10.1016/j.phrs.2010.01.004
10.1038/nmeth.1650
10.1038/nmeth.1184
10.1111/j.1442-9993.1993.tb00438.x
10.3389/fmicb.2014.00223
10.7554/eLife.05224
10.3920/BM2014.0111
10.1186/1472-6785-13-11
10.1038/ismej.2009.153
10.3389/fmicb.2018.01524
10.1111/1574-6968.12608
10.1038/nature12820
10.1038/nmeth.2604
10.1038/ncomms5500
10.1111/j.0908-8857.2005.03479.x
10.1126/science.aad9378
10.1101/pdb.prot084780
10.1038/nrgastro.2017.173
10.1371/journal.pbio.1001631
10.1637/7474-111605R.1
10.1038/ni0111-5
10.1126/science.1104816
10.1093/femsec/fix142
10.1016/j.chom.2018.05.012
10.1093/bioinformatics/btr507
10.1093/bioinformatics/btr381
10.1038/nri2515
10.1038/nm.4039
10.1128/AEM.03006-05
ContentType Journal Article
Copyright 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2020
Copyright_xml – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2020
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
7X8
5PM
DOA
DOI 10.1186/s40168-020-00896-9
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database ProQuest
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Open Access Full Text
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE

Publicly Available Content Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2049-2618
EndPage 13
ExternalDocumentID oai_doaj_org_article_fe0a931dfa8e4306be8f4b843c8aa0ad
PMC7488855
32917256
10_1186_s40168_020_00896_9
Genre Video-Audio Media
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: ;
  grantid: MOST 108-2311-B-001-031
GroupedDBID 0R~
53G
5VS
7X7
88E
8FE
8FH
8FI
8FJ
AAFWJ
AAHBH
AAJSJ
AASML
AAYXX
ABUWG
ACGFS
ADBBV
ADRAZ
ADUKV
AENEX
AFKRA
AFPKN
AHBYD
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AOIJS
ASPBG
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CITATION
DIK
EBLON
EBS
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAG
IAO
IEP
IHR
INH
INR
ISR
ITC
KQ8
LK8
M1P
M48
M7P
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RBZ
ROL
RPM
RSV
SOJ
UKHRP
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
8FK
AZQEC
DWQXO
GNUQQ
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c496t-3540c26939512d63c73ec4da24a432bb6e7bdd4786802727d8ba956595f4365e3
IEDL.DBID M48
ISSN 2049-2618
IngestDate Wed Aug 27 01:27:52 EDT 2025
Thu Aug 21 14:04:31 EDT 2025
Mon Jul 21 09:56:49 EDT 2025
Fri Jul 25 09:20:42 EDT 2025
Thu Apr 03 07:05:55 EDT 2025
Thu Apr 24 22:56:06 EDT 2025
Tue Jul 01 04:16:37 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Host-microbiome interactions
Maternal effects
Gut microbiota assembly
Avian microbiota
Maternal microbial transmission
Language English
License Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c496t-3540c26939512d63c73ec4da24a432bb6e7bdd4786802727d8ba956595f4365e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Undefined-3
ORCID 0000-0003-3859-9162
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s40168-020-00896-9
PMID 32917256
PQID 2444039959
PQPubID 2040205
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_fe0a931dfa8e4306be8f4b843c8aa0ad
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7488855
proquest_miscellaneous_2442212594
proquest_journals_2444039959
pubmed_primary_32917256
crossref_primary_10_1186_s40168_020_00896_9
crossref_citationtrail_10_1186_s40168_020_00896_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-09-11
PublicationDateYYYYMMDD 2020-09-11
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-11
  day: 11
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle Microbiome
PublicationTitleAlternate Microbiome
PublicationYear 2020
Publisher BioMed Central
BMC
Publisher_xml – name: BioMed Central
– name: BMC
References H Wickham (896_CR77) 2016; 2
SS Mak (896_CR40) 2015; 53
P van der Wielen (896_CR69) 2002; 44
LJ Funkhouser (896_CR21) 2013; 11
MG Dominguez-Bello (896_CR22) 2016; 22
T Magoč (896_CR46) 2011; 27
AH Moeller (896_CR17) 2018; 362
S Arboleya (896_CR25) 2015; 6
F Bäckhed (896_CR4) 2005; 307
RC Edgar (896_CR48) 2011; 27
DI Bolnick (896_CR16) 2014; 5
Illumina I (896_CR45) 2013
T Hothorn (896_CR51) 2016
MC de Goffau (896_CR1) 2019; 572
JL Round (896_CR28) 2009; 9
J Tung (896_CR20) 2015; 4
C Lozupone (896_CR52) 2005; 71
N Segata (896_CR58) 2011; 12
MG Dominguez-Bello (896_CR8) 2010; 107
TZ DeSantis (896_CR50) 2006; 72
V Zanardo (896_CR13) 2010; 37
A Engelbrektson (896_CR43) 2010; 4
EM Quigley (896_CR68) 2010; 61
KM Maslowski (896_CR10) 2011; 12
J Oksanen (896_CR54) 2013; 2
A Teyssier (896_CR39) 2018; 9
CG Olnood (896_CR67) 2015; 1
M Martín-Vivaldi (896_CR30) 2014; 83
SA Bull (896_CR64) 2008; 74
RD Heijtz (896_CR5) 2011; 108
LA David (896_CR7) 2014; 505
C Palmer (896_CR23) 2007; 5
M Ruiz-Rodriguez (896_CR35) 2009; 96
896_CR33
AH Moeller (896_CR19) 2016; 2
HPJ van Veelen (896_CR31) 2018; 12
CL Bevins (896_CR15) 2011; 68
M Ruiz-Rodríguez (896_CR36) 2018; 9
CR Olson (896_CR41) 2014; 2014
PD Schloss (896_CR47) 2009; 75
RN Carmody (896_CR71) 2015; 17
L Excoffier (896_CR55) 1992; 131
T Yatsunenko (896_CR12) 2012; 486
N Zmora (896_CR72) 2019; 16
SM Hird (896_CR37) 2014; 2
V Tremaroli (896_CR6) 2012; 489
BB Oakley (896_CR65) 2014; 360
D Knights (896_CR56) 2011; 8
FS Lucas (896_CR38) 2005; 36
A Barbosa (896_CR61) 2016; 11
D Rothschild (896_CR11) 2018; 555
KR Clarke (896_CR53) 1993; 18
DW Waite (896_CR57) 2014; 5
CMH Benskin (896_CR66) 2010; 19
MAF Gillingham (896_CR74) 2019; 10
AK Benson (896_CR14) 2010; 107
M Hamady (896_CR44) 2008; 5
CA Lozupone (896_CR3) 2012; 489
T Gensollen (896_CR27) 2016; 352
AE Goodenough (896_CR75) 2017; 158
K Makki (896_CR9) 2018; 23
C-Y Chen (896_CR18) 2017; 12
TJ Colston (896_CR24) 2016; 25
MG de Agüero (896_CR26) 2016; 351
T Hsieh (896_CR76) 2016; 7
RE Ley (896_CR2) 2008; 6
J Ding (896_CR32) 2017; 8
RC Edgar (896_CR49) 2013; 10
R Ambrosini (896_CR73) 2019; 95
D Sprockett (896_CR60) 2018; 15
WF van Dongen (896_CR62) 2013; 13
896_CR59
HPJ van Veelen (896_CR34) 2017; 5
Y Yin (896_CR70) 2010; 4
MD Lee (896_CR63) 2006; 50
RC Shaw (896_CR42) 2014; 4
K Grond (896_CR29) 2017; 93
References_xml – volume: 572
  start-page: 329
  year: 2019
  ident: 896_CR1
  publication-title: Nature
  doi: 10.1038/s41586-019-1451-5
– volume: 2
  start-page: e1500997
  year: 2016
  ident: 896_CR19
  publication-title: Sci Adv
  doi: 10.1126/sciadv.1500997
– volume: 53
  start-page: 669
  year: 2015
  ident: 896_CR40
  publication-title: genesis
  doi: 10.1002/dvg.22900
– volume: 96
  start-page: 406
  year: 2009
  ident: 896_CR35
  publication-title: Biol J Linn Soc
  doi: 10.1111/j.1095-8312.2008.01127.x
– volume: 131
  start-page: 479
  year: 1992
  ident: 896_CR55
  publication-title: Genetics
  doi: 10.1093/genetics/131.2.479
– volume: 68
  start-page: 3675
  year: 2011
  ident: 896_CR15
  publication-title: Cell Mol Life Sci
  doi: 10.1007/s00018-011-0830-3
– volume: 9
  start-page: 381
  year: 2018
  ident: 896_CR36
  publication-title: Genes
  doi: 10.3390/genes9080381
– volume: 95
  start-page: fiz061
  year: 2019
  ident: 896_CR73
  publication-title: FEMS Microbiol Ecol
  doi: 10.1093/femsec/fiz061
– volume: 107
  start-page: 18933
  year: 2010
  ident: 896_CR14
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.1007028107
– volume: 555
  start-page: 210
  year: 2018
  ident: 896_CR11
  publication-title: Nature
  doi: 10.1038/nature25973
– ident: 896_CR33
– volume: 5
  start-page: e177
  year: 2007
  ident: 896_CR23
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.0050177
– volume: 74
  start-page: 5408
  year: 2008
  ident: 896_CR64
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.00462-08
– volume: 486
  start-page: 222
  year: 2012
  ident: 896_CR12
  publication-title: nature
  doi: 10.1038/nature11053
– volume: 158
  start-page: 233
  year: 2017
  ident: 896_CR75
  publication-title: J Ornithol
  doi: 10.1007/s10336-016-1371-1
– volume: 7
  start-page: 1451
  year: 2016
  ident: 896_CR76
  publication-title: Methods Ecol Evol
  doi: 10.1111/2041-210X.12613
– volume: 108
  start-page: 3047
  year: 2011
  ident: 896_CR5
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.1010529108
– volume: 11
  start-page: e0153215
  year: 2016
  ident: 896_CR61
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0153215
– volume: 8
  start-page: 1967
  year: 2017
  ident: 896_CR32
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2017.01967
– volume: 1
  start-page: 184
  year: 2015
  ident: 896_CR67
  publication-title: Animal Nutr
  doi: 10.1016/j.aninu.2015.07.003
– volume: 25
  start-page: 3776
  year: 2016
  ident: 896_CR24
  publication-title: Mol Ecol
  doi: 10.1111/mec.13730
– volume: 12
  start-page: R60
  year: 2011
  ident: 896_CR58
  publication-title: Genome Biol
  doi: 10.1186/gb-2011-12-6-r60
– volume: 6
  start-page: 776
  year: 2008
  ident: 896_CR2
  publication-title: Nat Rev Microbiol
  doi: 10.1038/nrmicro1978
– volume: 16
  start-page: 35
  year: 2019
  ident: 896_CR72
  publication-title: Nat Rev Gastroenterol Hepatol
  doi: 10.1038/s41575-018-0061-2
– volume: 2
  start-page: 1
  year: 2016
  ident: 896_CR77
  publication-title: Create Elegant Data Visualisations Using the Grammar of Graphics Version
– volume: 44
  start-page: 286
  year: 2002
  ident: 896_CR69
  publication-title: Microb Ecol
  doi: 10.1007/s00248-002-2015-y
– volume: 12
  start-page: e0181427
  year: 2017
  ident: 896_CR18
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0181427
– volume: 19
  start-page: 5531
  year: 2010
  ident: 896_CR66
  publication-title: Mol Ecol
  doi: 10.1111/j.1365-294X.2010.04892.x
– volume: 489
  start-page: 242
  year: 2012
  ident: 896_CR6
  publication-title: Nature
  doi: 10.1038/nature11552
– volume: 362
  start-page: 453
  year: 2018
  ident: 896_CR17
  publication-title: Science
  doi: 10.1126/science.aat7164
– volume: 71
  start-page: 8228
  year: 2005
  ident: 896_CR52
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.71.12.8228-8235.2005
– volume: 4
  start-page: 367
  year: 2010
  ident: 896_CR70
  publication-title: ISME J
  doi: 10.1038/ismej.2009.128
– volume: 75
  start-page: 7537
  year: 2009
  ident: 896_CR47
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.01541-09
– ident: 896_CR59
  doi: 10.1111/mec.15087
– volume: 351
  start-page: 1296
  year: 2016
  ident: 896_CR26
  publication-title: Science
  doi: 10.1126/science.aad2571
– volume: 5
  start-page: 156
  year: 2017
  ident: 896_CR34
  publication-title: Microbiome
  doi: 10.1186/s40168-017-0371-6
– volume: 17
  start-page: 72
  year: 2015
  ident: 896_CR71
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2014.11.010
– volume: 489
  start-page: 220
  year: 2012
  ident: 896_CR3
  publication-title: Nature
  doi: 10.1038/nature11550
– volume: 2
  start-page: e321
  year: 2014
  ident: 896_CR37
  publication-title: PeerJ
  doi: 10.7717/peerj.321
– volume: 4
  start-page: 4500
  year: 2014
  ident: 896_CR42
  publication-title: Ecol Evol
  doi: 10.1002/ece3.1243
– volume: 10
  start-page: 35
  year: 2019
  ident: 896_CR74
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2019.00035
– volume: 107
  start-page: 11971
  year: 2010
  ident: 896_CR8
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.1002601107
– volume: 37
  start-page: 275
  year: 2010
  ident: 896_CR13
  publication-title: Birth
  doi: 10.1111/j.1523-536X.2010.00421.x
– volume: 83
  start-page: 1289
  year: 2014
  ident: 896_CR30
  publication-title: J Anim Ecol
  doi: 10.1111/1365-2656.12243
– volume: 12
  start-page: 1375
  year: 2018
  ident: 896_CR31
  publication-title: ISME J
  doi: 10.1038/s41396-018-0067-3
– volume: 61
  start-page: 213
  year: 2010
  ident: 896_CR68
  publication-title: Pharmacol Res
  doi: 10.1016/j.phrs.2010.01.004
– volume-title: Package ‘multcomp’
  year: 2016
  ident: 896_CR51
– start-page: 1
  volume-title: 16S Metagenomic sequencing library preparation. Preparing 16S Ribosomal RNA Gene Amplicons for the Illumina MiSeq System
  year: 2013
  ident: 896_CR45
– volume: 8
  start-page: 761
  year: 2011
  ident: 896_CR56
  publication-title: Nat Methods
  doi: 10.1038/nmeth.1650
– volume: 5
  start-page: 235
  year: 2008
  ident: 896_CR44
  publication-title: Nat Methods
  doi: 10.1038/nmeth.1184
– volume: 18
  start-page: 117
  year: 1993
  ident: 896_CR53
  publication-title: Aust J Ecol
  doi: 10.1111/j.1442-9993.1993.tb00438.x
– volume: 2
  start-page: 1
  year: 2013
  ident: 896_CR54
  publication-title: Community ecology package, version
– volume: 5
  start-page: 223
  year: 2014
  ident: 896_CR57
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2014.00223
– volume: 4
  start-page: e05224
  year: 2015
  ident: 896_CR20
  publication-title: elife
  doi: 10.7554/eLife.05224
– volume: 6
  start-page: 543
  year: 2015
  ident: 896_CR25
  publication-title: Benefic Microbes
  doi: 10.3920/BM2014.0111
– volume: 13
  start-page: 11
  year: 2013
  ident: 896_CR62
  publication-title: BMC Ecol
  doi: 10.1186/1472-6785-13-11
– volume: 4
  start-page: 642
  year: 2010
  ident: 896_CR43
  publication-title: ISME J
  doi: 10.1038/ismej.2009.153
– volume: 9
  start-page: 1524
  year: 2018
  ident: 896_CR39
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2018.01524
– volume: 360
  start-page: 100
  year: 2014
  ident: 896_CR65
  publication-title: FEMS Microbiol Lett
  doi: 10.1111/1574-6968.12608
– volume: 505
  start-page: 559
  year: 2014
  ident: 896_CR7
  publication-title: Nature
  doi: 10.1038/nature12820
– volume: 10
  start-page: 996
  year: 2013
  ident: 896_CR49
  publication-title: Nat Methods
  doi: 10.1038/nmeth.2604
– volume: 5
  start-page: 4500
  year: 2014
  ident: 896_CR16
  publication-title: Nat Commun
  doi: 10.1038/ncomms5500
– volume: 36
  start-page: 510
  year: 2005
  ident: 896_CR38
  publication-title: J Avian Biol
  doi: 10.1111/j.0908-8857.2005.03479.x
– volume: 352
  start-page: 539
  year: 2016
  ident: 896_CR27
  publication-title: Science
  doi: 10.1126/science.aad9378
– volume: 2014
  start-page: pdb. prot084780
  year: 2014
  ident: 896_CR41
  publication-title: Cold Spring Harb Protoc
  doi: 10.1101/pdb.prot084780
– volume: 15
  start-page: 197
  year: 2018
  ident: 896_CR60
  publication-title: Nat Rev Gastroenterol Hepatol
  doi: 10.1038/nrgastro.2017.173
– volume: 11
  start-page: e1001631
  year: 2013
  ident: 896_CR21
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.1001631
– volume: 50
  start-page: 1
  year: 2006
  ident: 896_CR63
  publication-title: Avian Dis
  doi: 10.1637/7474-111605R.1
– volume: 12
  start-page: 5
  year: 2011
  ident: 896_CR10
  publication-title: Nat Immunol
  doi: 10.1038/ni0111-5
– volume: 307
  start-page: 1915
  year: 2005
  ident: 896_CR4
  publication-title: Science
  doi: 10.1126/science.1104816
– volume: 93
  start-page: fix142
  year: 2017
  ident: 896_CR29
  publication-title: FEMS Microbiol Ecol
  doi: 10.1093/femsec/fix142
– volume: 23
  start-page: 705
  year: 2018
  ident: 896_CR9
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2018.05.012
– volume: 27
  start-page: 2957
  year: 2011
  ident: 896_CR46
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr507
– volume: 27
  start-page: 2194
  year: 2011
  ident: 896_CR48
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr381
– volume: 9
  start-page: 313
  year: 2009
  ident: 896_CR28
  publication-title: Nat Rev Immunol
  doi: 10.1038/nri2515
– volume: 22
  start-page: 250
  year: 2016
  ident: 896_CR22
  publication-title: Nat Med
  doi: 10.1038/nm.4039
– volume: 72
  start-page: 5069
  year: 2006
  ident: 896_CR50
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.03006-05
SSID ssj0000914748
Score 2.4540617
Snippet Knowledge is growing on how gut microbiota are established, but the effects of maternal symbiotic microbes throughout early microbial successions in birds...
Background Knowledge is growing on how gut microbiota are established, but the effects of maternal symbiotic microbes throughout early microbial successions in...
Abstract Background Knowledge is growing on how gut microbiota are established, but the effects of maternal symbiotic microbes throughout early microbial...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 129
SubjectTerms Aging
Animals
Animals, Newborn - microbiology
Avian microbiota
Birds
Brood parasitism
Crop
Deoxyribonucleic acid
Digestive system
DNA
Eggs
Evolution
Experiments
Farms
Feces
Female
Finches - microbiology
Gastrointestinal Microbiome - genetics
Gastrointestinal tract
Gut microbiota
Gut microbiota assembly
Host-microbiome interactions
Humidity
Intestinal microflora
Intestine
Juveniles
Lonchura striata
Male
Maternal effects
Maternal microbial transmission
Microbiota
Microorganisms
Neonates
Nesting Behavior
Nests
Neurosciences
Oral cavity
Probiotics
RNA, Ribosomal, 16S - genetics
rRNA 16S
Society
Symbionts
Taeniopygia guttata
SummonAdditionalLinks – databaseName: DOAJ Open Access Full Text
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlUOilNOnLbRJU6K2I2JIsS8e0NIRCe2ogNyFZo8Z0411ibyH_viPZu-yWkl56tWQsj-bxffZohpD3dQMqiuCZKAMSFOMl80qWLKLvE0q5qoKc5ftNXV7JL9f19U6rr5QTNpUHngR3FqF0RlQhOg0S8a0HHaXXUrTaudKF5H0x5u2QqeyDTSUbqTenZLQ6G5BIKM0SW8KwZxQze5EoF-z_G8r8M1lyJ_pcPCNPZ9hIz6flHpJH0B-Rx1MjyfvnpP3qpmLO9Md6pLcpyc7DQIcbtwKKEI9CqmPMFl0EimgZbv3ini7jzuxuOTra9XSVhtOJQJqapPwc6K_OUXSH4_CCXF18_v7pks3tE1grjRpZ-qLTcmUEgigelGgbAa0MjksnBfdeQeNDkI1WGrkpb4L2DtlSbeoohapBvCQH_bKH14TGUgQeMfh7RFzIp42OaMfe4C6I6EJVkGojStvOtcVTi4uFzRxDKzuJ36L4bRa_NQX5sL1nNVXWeHD2x7RD25mpKna-gLpiZ12x_9KVghxv9tfOpjpYxDeyTAd88RnvtsNoZOnPiethuc5zOMb42siCvJrUYbsSwZHxInAsSLOnKHtL3R_pu5tcyBs1VOu6fvM_3u0tecKzchtWVcfkYLxbwwnipdGfZtP4DaAhEqo
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3_a9UwED_0DcFfxO92TongbxLWNmma_CRONobgEHGw30LSJFvZW_tc-4T997u0fXVPZL82KYTL5e7zuVzuAD4WpReBOUtZ6pCgKMupFTylAW0fE8JkmR-yfE_E8Sn_dlacTQG3bkqr3NjEwVC7toox8n10QzyN7zDV59VvGrtGxdvVqYXGQ9hBEyyLBewcHJ78-DlHWdAb8pLLzWsZKfY7JBRC0sia0P0pQdWWRxoK9_8Pbf6bNHnHCx09hScTfCRfxv1-Bg988xwejQ0lb15A9d2MRZ3J-bonVzHZzvqOdBdm5QlCPeJjPWO6rIMniJr9lV3ekDbcmV23vSF1Q1ZxOL4MJLFZymVH_tSGoFnsu5dwenT46-sxndoo0Ior0dMY2alyoRiCqdwJVpXMV9yZnBvOcmuFL61zvJRCIkfNSyetQdZUqCJwJgrPXsGiaRv_BkhImcsDggCLyAt5tZIBz7NVnFUsGJclkG1EqaupxnhsdbHUA9eQQo_i1yh-PYhfqwQ-zf-sxgob984-iDs0z4zVsYcP7fW5ng6bDj41imUuGOk5ciLrZeBW4iqlMalxCext9ldPR7bTfxUsgQ_zMB62eINiGt-uhzk5KlqheAKvR3WYV8JyZL4IIBMotxRla6nbI019MRT0Rg2Vsih271_WW3icD2qraJbtwaK_Xvt3iIh6-35S-1ut6AoT
  priority: 102
  providerName: ProQuest
Title Maternal gut microbes shape the early-life assembly of gut microbiota in passerine chicks via nests
URI https://www.ncbi.nlm.nih.gov/pubmed/32917256
https://www.proquest.com/docview/2444039959
https://www.proquest.com/docview/2442212594
https://pubmed.ncbi.nlm.nih.gov/PMC7488855
https://doaj.org/article/fe0a931dfa8e4306be8f4b843c8aa0ad
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3di9QwEA_3geCL-G3Pc4ngm0TbJk2TBxFP7jyEO0Rc2LeSNMldca9dt93D_e-dpO1yK4v40odm2obJTOb3S5MZhN5kueWOGk1obICgSM2I5iwmDuY-yrlKEht2-V7y8yn7Ostme2gsdzQosN1J7Xw9qely_u73r_VHcPgPweEFf98CR-CCeCIEEU1yIvfRIUQm7q38YoD7YWaWCctDQa0UgDEB8iDGczQ7X7MVq0JK_1049O_tlHfi09lD9GAAlvhTbwmP0J6tH6N7fanJ9RNUXqg-3TO-WnX4xm_D07bF7bVaWAwgEFuf6ZjMK2cx4Gl7o-dr3Lg70lXTKVzVeOGb_ZlB7Muo_GzxbaUwTJhd-xRNz05_fD4nQ4EFUjLJO-LXfMqUSwowKzWcljm1JTMqZYrRVGtuc20MywUXwF7T3AitgE9lMnOM8szSZ-igbmr7AmEXU5M6gAcaMBkwbikceLqWjJbUKZNEKBlVWZRD9nFfBGNeBBYieNGrvwD1F0H9hYzQ280ziz73xj-lT_wIbSR93uxwo1leFYMbFs7GStLEOCUsA7akrXBMC-ilUCpWJkLH4_gWoy0WgIBY7I8Awzdeb5rBDf2_FVXbZhVkUkABmWQRet6bw6YnNAVODNAyQvmWoWx1dbulrq5Dqm-wViGy7Og_vvsS3U-D7UqSJMfooFuu7CsATJ2eoP18lk_Q4cnp5bfvk7DsANcvs2QS_OMPPWAUIg
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKKwQXxJtAASPBCUVNbMexDwhRaLWl7QqhVurN2LHdrtgmS5MF7Z_iNzLOY-ki1FuvsRNZ43l8nzOeQeh1ljvuqTUxTSwQFGlYbDhLYg--j3Ku09S1Wb5jPjpmn0-ykzX0e7gLE9IqB5_YOmpbFeGMfAvCEEvCPUz5fvYjDl2jwt_VoYVGpxb7bvELKFv9bu8T7O8bQnZ3jj6O4r6rQFwwyZs4HHQUhEsK2IJYToucuoJZTZhmlBjDXW6sZbngAigbya0wGkhEJjPPKM8che_eQBsAMyRY0cb2zvjL1-WpDkRfljMx3M4RfKsGAsNFHFgahFvJY7kSAdtGAf9Dt_8maV6Kert30Z0eruIPnX7dQ2uuvI9udg0sFw9Qcai7ItL4dN7g85DcZ1yN6zM9cxigJXahfnI8nXiHAaW7czNd4Mpfmj2pGo0nJZ6F4XATEYfmLN9r_HOiMbjhpn6Ijq9FwI_QelmV7gnCPqGWeAAdBpAe8HgpPPgPIxktqNc2jVA6iFIVfU3z0FpjqlpuI7jqxK9A_KoVv5IRert8Z9ZV9Lhy9nbYoeXMUI27fVBdnKreuJV3iZY0tV4Lx4CDGSc8MwJWKbROtI3Q5rC_qncRtfqr0BF6tRwG4w5_bHTpqnk7hwC2yCSL0ONOHZYroQSYNgDWCOUrirKy1NWRcnLWFhAHDRUiy55evayX6Nbo6PBAHeyN95-h26RVYRmn6SZaby7m7jmgsca86E0Ao2_XbXV_AHnGRRY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Maternal+gut+microbes+shape+the+early-life+assembly+of+gut+microbiota+in+passerine+chicks+via+nests&rft.jtitle=Microbiome&rft.au=Chen%2C+Cheng-Yu&rft.au=Chen%2C+Chih-Kuan&rft.au=Chen%2C+Yi-Ying&rft.au=Fang%2C+Andrew&rft.date=2020-09-11&rft.issn=2049-2618&rft.eissn=2049-2618&rft.volume=8&rft.issue=1&rft.spage=129&rft_id=info:doi/10.1186%2Fs40168-020-00896-9&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2049-2618&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2049-2618&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2049-2618&client=summon