Offshore wind turbine fatigue loads: The influence of alternative wave modeling for different turbulent and mean winds
The coupled hydro-aero-elastic response and fatigue loads of a bottom-supported offshore wind turbine under different wind conditions and for different wave modeling assumptions is the subject of this study. Nonlinear modeling of hydrodynamic forcing can bring about resonant vibrations of the tower...
Saved in:
Published in | Renewable energy Vol. 102; pp. 157 - 169 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.03.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The coupled hydro-aero-elastic response and fatigue loads of a bottom-supported offshore wind turbine under different wind conditions and for different wave modeling assumptions is the subject of this study. Nonlinear modeling of hydrodynamic forcing can bring about resonant vibrations of the tower leading to significant stress amplitude cycles. A comparison between linear and fully nonlinear wave models is presented, with consideration for different accompanying mean wind speeds and turbulence intensities. Hydrodynamic and aerodynamic loads acting on the support structure and on the rotor of a 5-MW wind turbine are modeled in a fully coupled hydro-aero-elastic solver. A key finding is that when the turbine is in a parked state, the widely used linear wave modeling approach significantly underestimates fatigue loads. On the other hand, when the wind turbine is in power production, aerodynamic loads are dominant and the effects due to consideration of nonlinear wave kinematics become less important.
•Nonlinear waves can cause resonant vibrations of an OWT tower.•We show how resonant vibrations and different wind conditions influence fatigue loads.•In a parked state, fully nonlinear waves have significant effects on fatigue loads. |
---|---|
AbstractList | The coupled hydro-aero-elastic response and fatigue loads of a bottom-supported offshore wind turbine under different wind conditions and for different wave modeling assumptions is the subject of this study. Nonlinear modeling of hydrodynamic forcing can bring about resonant vibrations of the tower leading to significant stress amplitude cycles. A comparison between linear and fully nonlinear wave models is presented, with consideration for different accompanying mean wind speeds and turbulence intensities. Hydrodynamic and aerodynamic loads acting on the support structure and on the rotor of a 5-MW wind turbine are modeled in a fully coupled hydro-aero-elastic solver. A key finding is that when the turbine is in a parked state, the widely used linear wave modeling approach significantly underestimates fatigue loads. On the other hand, when the wind turbine is in power production, aerodynamic loads are dominant and the effects due to consideration of nonlinear wave kinematics become less important.
•Nonlinear waves can cause resonant vibrations of an OWT tower.•We show how resonant vibrations and different wind conditions influence fatigue loads.•In a parked state, fully nonlinear waves have significant effects on fatigue loads. The coupled hydro-aero-elastic response and fatigue loads of a bottom-supported offshore wind turbine under different wind conditions and for different wave modeling assumptions is the subject of this study. Nonlinear modeling of hydrodynamic forcing can bring about resonant vibrations of the tower leading to significant stress amplitude cycles. A comparison between linear and fully nonlinear wave models is presented, with consideration for different accompanying mean wind speeds and turbulence intensities. Hydrodynamic and aerodynamic loads acting on the support structure and on the rotor of a 5-MW wind turbine are modeled in a fully coupled hydro-aero-elastic solver. A key finding is that when the turbine is in a parked state, the widely used linear wave modeling approach significantly underestimates fatigue loads. On the other hand, when the wind turbine is in power production, aerodynamic loads are dominant and the effects due to consideration of nonlinear wave kinematics become less important. |
Author | Marino, Enzo Manuel, Lance Giusti, Alessandro |
Author_xml | – sequence: 1 givenname: Enzo orcidid: 0000-0001-7441-1994 surname: Marino fullname: Marino, Enzo email: enzo.marino@dicea.unifi.it organization: Dept. of Civil and Environmental Engineering, University of Florence, Italy – sequence: 2 givenname: Alessandro surname: Giusti fullname: Giusti, Alessandro organization: Dept. of Civil and Environmental Engineering, University of Florence, Italy – sequence: 3 givenname: Lance orcidid: 0000-0002-0602-3014 surname: Manuel fullname: Manuel, Lance organization: Dept. of Civil, Architectural, and Environmental Engineering, The University of Texas at Austin, USA |
BookMark | eNqFkE9vVCEUxYmpidPab9AFSzdvyr_H8LowMY1akybd1DXhwaVlwkAF3hi_vbyOKxcaEuDenHO4_M7RWcoJELqiZEsJldf7bYHU15b1qre2hPE3aEPVbhqIVOwMbcgkyUCFou_Qea17QuiodmKDjg_e1-dcAP8MyeG2lDkkwN608LQAjtm4eoMfnwGH5OMCyQLOHpvYoKQuOnaj6dshO4ghPWGfC3bBe-gjtde8Ja4309MPYNLrO_U9eutNrHD557xA3798fry9G-4fvn67_XQ_WDHJNvCRGystY04wYeeJCUGnmYyKzsxIPntrjVRc7Pg4Axk9UOfITHccDHHKcH6BPpxyX0r-sUBt-hCqhRhNgrxUzSiVSnIlpi69OUltybUW8NqG1n-YUysmRE2JXmHrvT7B1ivstdthd7P4y_xSwsGUX_-zfTzZoDM4Bii62rAydqGAbdrl8O-A34ATn6I |
CitedBy_id | crossref_primary_10_1016_j_proeng_2017_09_329 crossref_primary_10_3390_en13071549 crossref_primary_10_1016_j_proeng_2017_09_527 crossref_primary_10_1016_j_ijfatigue_2019_04_012 crossref_primary_10_1016_j_renene_2018_12_071 crossref_primary_10_1088_1757_899X_772_1_012096 crossref_primary_10_1016_j_oceaneng_2024_118189 crossref_primary_10_1007_s13344_023_0020_8 crossref_primary_10_1016_j_renene_2024_120238 crossref_primary_10_1002_we_2389 crossref_primary_10_3390_en12040703 crossref_primary_10_14710_ijred_9_2_263_286 crossref_primary_10_1016_j_renene_2020_02_079 crossref_primary_10_1016_j_renene_2022_04_061 crossref_primary_10_1016_j_marstruc_2020_102922 crossref_primary_10_1016_j_oceaneng_2024_116787 crossref_primary_10_1016_j_soildyn_2021_106674 crossref_primary_10_1016_j_engstruct_2024_118759 crossref_primary_10_1016_j_renene_2018_03_087 crossref_primary_10_3390_su11020494 crossref_primary_10_1016_j_marstruc_2018_11_004 crossref_primary_10_1016_j_engstruct_2019_109287 crossref_primary_10_1016_j_ijfatigue_2018_06_002 crossref_primary_10_1007_s12206_018_0213_x crossref_primary_10_1016_j_energy_2021_121480 crossref_primary_10_1016_j_ijfatigue_2022_107145 crossref_primary_10_1016_j_renene_2021_06_115 crossref_primary_10_1016_j_oceaneng_2024_120279 crossref_primary_10_1016_j_marstruc_2018_06_013 crossref_primary_10_1016_j_ijfatigue_2020_105487 crossref_primary_10_1016_j_marstruc_2022_103303 crossref_primary_10_1177_09574565211000444 crossref_primary_10_1080_17445302_2018_1532867 crossref_primary_10_1016_j_oceaneng_2021_110271 crossref_primary_10_1007_s40722_022_00272_9 crossref_primary_10_3390_en13123092 crossref_primary_10_1115_1_4042946 crossref_primary_10_1016_j_marstruc_2021_102937 crossref_primary_10_1016_j_renene_2022_09_093 crossref_primary_10_1016_j_enconman_2019_112239 crossref_primary_10_1016_j_renene_2021_10_060 crossref_primary_10_1016_j_renene_2018_02_086 crossref_primary_10_1016_j_renene_2018_02_080 crossref_primary_10_3390_en13236407 crossref_primary_10_1016_j_ijfatigue_2020_105475 crossref_primary_10_5194_wes_9_533_2024 crossref_primary_10_1088_1742_6596_2647_11_112011 crossref_primary_10_1016_j_renene_2021_06_044 crossref_primary_10_1016_j_oceaneng_2023_114365 crossref_primary_10_1016_j_renene_2022_11_116 crossref_primary_10_1016_j_oceaneng_2023_116661 crossref_primary_10_3390_en15134881 crossref_primary_10_1016_j_oceaneng_2024_119786 crossref_primary_10_1016_j_oceaneng_2022_112318 crossref_primary_10_3390_su16072967 crossref_primary_10_1016_j_apm_2022_06_001 crossref_primary_10_1007_s13344_020_0055_z crossref_primary_10_1016_j_oceaneng_2022_112514 crossref_primary_10_1016_j_renene_2019_04_005 |
Cites_doi | 10.1016/S0141-1187(02)00048-2 10.1016/j.engstruct.2015.07.038 10.1016/j.apor.2011.02.001 10.1016/j.egypro.2015.11.422 10.1016/j.ress.2012.06.011 10.1016/j.egypro.2015.11.417 10.4031/MTSJ.43.3.2 10.1016/j.cma.2012.12.005 10.1016/j.engstruct.2010.11.004 10.1016/j.jweia.2010.12.015 10.1016/j.ijfatigue.2016.01.007 10.1016/j.jweia.2011.03.008 10.1002/we.138 10.1017/jfm.2014.386 10.1016/j.jweia.2013.09.003 10.1016/j.engstruct.2011.02.037 10.1260/030952407781494494 10.2118/950149-G 10.1002/we.1569 10.1016/j.marstruc.2015.03.005 10.1002/we.1959 10.1115/1.4029212 10.1016/j.egypro.2015.11.426 10.1111/ffe.12184 10.1016/j.coastaleng.2014.01.006 10.1016/j.renene.2014.02.052 10.1115/1.3160647 10.1016/j.renene.2015.03.070 10.3390/en5072071 10.1017/S002211209700699X 10.1016/j.renene.2016.01.033 |
ContentType | Journal Article |
Copyright | 2016 Elsevier Ltd |
Copyright_xml | – notice: 2016 Elsevier Ltd |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.renene.2016.10.023 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-0682 |
EndPage | 169 |
ExternalDocumentID | 10_1016_j_renene_2016_10_023 S0960148116308886 |
GroupedDBID | --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 29P 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABFNM ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMC HVGLF HZ~ IHE J1W JARJE JJJVA K-O KOM LY6 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAC SDF SDG SDP SEN SES SET SEW SPC SPCBC SSR SST SSZ T5K TN5 WUQ ZCA ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 L.6 |
ID | FETCH-LOGICAL-c496t-353ac6c22d424cb924419b0581b2a63bfcca6834735be05fe1dd0b173ea0d8a33 |
IEDL.DBID | .~1 |
ISSN | 0960-1481 |
IngestDate | Fri Jul 11 01:36:14 EDT 2025 Tue Jul 01 03:20:36 EDT 2025 Thu Apr 24 22:59:52 EDT 2025 Fri Feb 23 02:34:00 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Fatigue loads Nonlinear waves Offshore wind turbines |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c496t-353ac6c22d424cb924419b0581b2a63bfcca6834735be05fe1dd0b173ea0d8a33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-7441-1994 0000-0002-0602-3014 |
OpenAccessLink | http://hdl.handle.net/2158/1070163 |
PQID | 2116863849 |
PQPubID | 24069 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_2116863849 crossref_citationtrail_10_1016_j_renene_2016_10_023 crossref_primary_10_1016_j_renene_2016_10_023 elsevier_sciencedirect_doi_10_1016_j_renene_2016_10_023 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-03-01 |
PublicationDateYYYYMMDD | 2017-03-01 |
PublicationDate_xml | – month: 03 year: 2017 text: 2017-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Renewable energy |
PublicationYear | 2017 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Paulsen, Bredmose, Bingham, Jacobsen (bib11) 2014; 755 Marino, Lugni, Manuel, Nguyen, Borri (bib16) 2014 Natarajan (bib13) 2014; 68 P. J. Moriarty, A. C. Hansen, AeroDyn Theory Manual AeroDyn Theory Manual (December). Holtslag, Bierbooms, van Bussel (bib33) 2016; 19 Yeter, Garbatov, Guedes Soares (bib23) 2016; 87 Morison, Johnson, Schaaf (bib43) 1950; 2 Dong, Moan, Gao (bib25) 2011; 33 Marino, Lugni, Stabile, Borri (bib15) 2014 Sim, Basu, Manuel (bib40) 2012; 5 Bush, Manuel (bib46) 2009 Chaplin, Rainey, Yemm (bib9) 1997 Yeter, Garbatov, Guedes Soares (bib22) 2015; 101 Sørensen (bib26) 2012; 22 Brennan (bib34) 2014; 37 Agarwal, Manuel (bib12) 2011; 33 Laino, Craig Hansen (bib41) 2002 Jonkman, Kilcher (bib38) 2012 Dong, Moan, Gao (bib27) 2012; 106 Adedipe, Brennan, Kolios (bib35) 2015; 42 Jonkman, Marshall (bib37) 2005 Jonkman, Butterfield, Musial, Scott (bib45) 2009 Marino, Stabile, Borri, Lugni (bib14) 2013 Marino, Lugni, Borri (bib8) 2014 Van Der Meulen, Ashuri, Van Bussel, Molenaar (bib18) 2012 Passon (bib29) 2015; 81 Marino, Borri, Peil (bib3) 2011; 99 Marino, Nguyen, Lugni, Manuel, Borri (bib20) 2013 Kelma, Schaumann (bib28) 2015; 80 Schløer, Bredmose, Bingham, Larsen (bib36) 2012; vol. 7 Ziegler, Voormeeren, Schafhirt, Muskulus (bib32) 2016; 91 Agarwal, Manuel (bib19) 2009; 131 IEC 61400-1 Wind turbines - Part 1: Design requirements 3rd ed. Veldkamp, van der Tempel (bib17) 2005; 8 Marino, Borri, Lugni (bib5) 2011 Mittendorf (bib44) 2009; 43 Paulsen, Bredmose, Bingham (bib2) 2014; 86 P. Ragan, L. Manuel, Comparing estimates of wind turbine fatigue loads using time-domain and spectral methods, Wind Eng.. 31(2). Marino, Lugni, Borri (bib6) 2013; 123 Ziegler, Voormeeren, Schafhirt, Muskulus (bib31) 2015; 80 Marino, Nguyen, Lugni, Manuel, Borri (bib7) 2014; 137 Grue, Huseby (bib10) 2002; 24 Jia (bib30) 2011; 33 Marino, Lugni, Borri (bib1) 2013; 255 Marino, Borri, Lugni (bib4) 2011; 99 Stieng, Hetland, Schafhirt, Muskulus (bib24) 2015; 80 Rendon, Manuel (bib47) 2014; 17 Marino (10.1016/j.renene.2016.10.023_bib7) 2014; 137 Marino (10.1016/j.renene.2016.10.023_bib16) 2014 Brennan (10.1016/j.renene.2016.10.023_bib34) 2014; 37 Marino (10.1016/j.renene.2016.10.023_bib4) 2011; 99 Jia (10.1016/j.renene.2016.10.023_bib30) 2011; 33 Marino (10.1016/j.renene.2016.10.023_bib1) 2013; 255 Laino (10.1016/j.renene.2016.10.023_bib41) 2002 Bush (10.1016/j.renene.2016.10.023_bib46) 2009 Chaplin (10.1016/j.renene.2016.10.023_bib9) 1997 Sørensen (10.1016/j.renene.2016.10.023_bib26) 2012; 22 Adedipe (10.1016/j.renene.2016.10.023_bib35) 2015; 42 Paulsen (10.1016/j.renene.2016.10.023_bib2) 2014; 86 Natarajan (10.1016/j.renene.2016.10.023_bib13) 2014; 68 Passon (10.1016/j.renene.2016.10.023_bib29) 2015; 81 Holtslag (10.1016/j.renene.2016.10.023_bib33) 2016; 19 Yeter (10.1016/j.renene.2016.10.023_bib23) 2016; 87 Yeter (10.1016/j.renene.2016.10.023_bib22) 2015; 101 Marino (10.1016/j.renene.2016.10.023_bib6) 2013; 123 Van Der Meulen (10.1016/j.renene.2016.10.023_bib18) 2012 Rendon (10.1016/j.renene.2016.10.023_bib47) 2014; 17 Grue (10.1016/j.renene.2016.10.023_bib10) 2002; 24 Marino (10.1016/j.renene.2016.10.023_bib20) 2013 Kelma (10.1016/j.renene.2016.10.023_bib28) 2015; 80 Jonkman (10.1016/j.renene.2016.10.023_bib38) 2012 Sim (10.1016/j.renene.2016.10.023_bib40) 2012; 5 Agarwal (10.1016/j.renene.2016.10.023_bib12) 2011; 33 Schløer (10.1016/j.renene.2016.10.023_bib36) 2012; vol. 7 Dong (10.1016/j.renene.2016.10.023_bib25) 2011; 33 10.1016/j.renene.2016.10.023_bib39 Marino (10.1016/j.renene.2016.10.023_bib3) 2011; 99 Jonkman (10.1016/j.renene.2016.10.023_bib37) 2005 Ziegler (10.1016/j.renene.2016.10.023_bib31) 2015; 80 Marino (10.1016/j.renene.2016.10.023_bib15) 2014 10.1016/j.renene.2016.10.023_bib42 Mittendorf (10.1016/j.renene.2016.10.023_bib44) 2009; 43 10.1016/j.renene.2016.10.023_bib21 Stieng (10.1016/j.renene.2016.10.023_bib24) 2015; 80 Marino (10.1016/j.renene.2016.10.023_bib8) 2014 Marino (10.1016/j.renene.2016.10.023_bib14) 2013 Agarwal (10.1016/j.renene.2016.10.023_bib19) 2009; 131 Paulsen (10.1016/j.renene.2016.10.023_bib11) 2014; 755 Veldkamp (10.1016/j.renene.2016.10.023_bib17) 2005; 8 Ziegler (10.1016/j.renene.2016.10.023_bib32) 2016; 91 Jonkman (10.1016/j.renene.2016.10.023_bib45) 2009 Marino (10.1016/j.renene.2016.10.023_bib5) 2011 Dong (10.1016/j.renene.2016.10.023_bib27) 2012; 106 Morison (10.1016/j.renene.2016.10.023_bib43) 1950; 2 |
References_xml | – volume: 755 start-page: 1 year: 2014 end-page: 34 ident: bib11 article-title: Forcing of a bottom-mounted circular cylinder by steep regular water waves at finite depth publication-title: J. Fluid Mech. – volume: 8 start-page: 49 year: 2005 end-page: 65 ident: bib17 article-title: Influence of wave modelling on the prediction of fatigue for offshore wind turbines publication-title: Wind Energy – volume: 131 start-page: 41601 year: 2009 ident: bib19 article-title: On the modeling of nonlinear waves for prediction of long-term offshore wind turbine loads publication-title: J. Offshore Mech. Arct. Eng. – volume: 80 start-page: 193 year: 2015 end-page: 200 ident: bib31 article-title: Sensitivity of wave fatigue loads on offshore wind turbines under varying site conditions publication-title: Energy Procedia – volume: vol. 7 start-page: 393 year: 2012 ident: bib36 article-title: Effects from fully nonlinear irregular wave forcing on the fatigue life of an offshore wind turbine and its monopile foundation publication-title: Ocean Sp. Util. Ocean Renew. Energy, ASME, Schloer2012 – volume: 5 start-page: 2071 year: 2012 end-page: 2092 ident: bib40 article-title: On space-time resolution of inflow representations for wind turbine loads analysis publication-title: Energies – volume: 22 start-page: 234 year: 2012 end-page: 241 ident: bib26 article-title: Reliability-based calibration of fatigue safety factors for offshore wind turbines publication-title: Int. J. Offshore Polar Eng. – volume: 33 start-page: 477 year: 2011 end-page: 491 ident: bib30 article-title: Wind and structural modelling for an accurate fatigue life assessment of tubular structures publication-title: Eng. Struct. – volume: 81 start-page: 723 year: 2015 end-page: 736 ident: bib29 article-title: Damage equivalent windwave correlations on basis of damage contour lines for the fatigue design of offshore wind turbines publication-title: Renew. Energy – reference: IEC 61400-1 Wind turbines - Part 1: Design requirements 3rd ed. – year: 2009 ident: bib45 article-title: Definition of a 5-MW Reference Wind Turbine for Offshore System Development – start-page: 3443 year: 2011 end-page: 3449 ident: bib5 article-title: Extreme response of offshore wind turbines due to fully nonlinear waves publication-title: Proc. 8th Int. Conf. Struct. Dyn. EURODYN 2011 – volume: 37 start-page: 717 year: 2014 end-page: 721 ident: bib34 article-title: A framework for variable amplitude corrosion fatigue materials tests for offshore wind steel support structures publication-title: Fatigue Fract. Eng. Mater. Struct. – year: 2014 ident: bib15 article-title: Coupled dynamic simulations of offshore wind turbines using linear, weakly and fully nonlinear wave models : the limitations of the second-order wave theory publication-title: 9th Int. Conf. Struct. Dyn. (EURODYN 2014) – volume: 99 start-page: 767 year: 2011 end-page: 775 ident: bib4 article-title: Influence of wind-waves energy transfer on the impulsive hydrodynamic loads acting on offshore wind turbines publication-title: J. Wind Eng. Ind. Aerodyn. – reference: P. J. Moriarty, A. C. Hansen, AeroDyn Theory Manual AeroDyn Theory Manual (December). – year: 2009 ident: bib46 article-title: Foundation models for offshore wind turbines publication-title: 47th AIAA Aerosp. Sci. Meet. Incl. New Horizons Forum Aerosp. Expo., Aerospace Sciences Meetings – year: 2013 ident: bib14 article-title: A comparative study about the effects of linear, weakly and fully nonlinear wave models on the dynamic response of offshore wind turbines publication-title: Res. Appl. Struct. Eng. Mech. Comput. SEMC 2013 – reference: P. Ragan, L. Manuel, Comparing estimates of wind turbine fatigue loads using time-domain and spectral methods, Wind Eng.. 31(2). – volume: 99 start-page: 483 year: 2011 end-page: 490 ident: bib3 article-title: A fully nonlinear wave model to account for breaking wave impact loads on offshore wind turbines publication-title: J. Wind Eng. Ind. Aerodyn. – year: 2013 ident: bib20 article-title: Irregular nonlinear wave simulation and associated loads on offshore wind turbines publication-title: 32nd Int. Conf. Ocean. Offshore Arct. Eng., No. M, ASME Digital Library NOOPisbn: 978-0-7918-5542-3 – volume: 68 start-page: 829 year: 2014 end-page: 841 ident: bib13 article-title: Influence of second-order random wave kinematics on the design loads of offshore wind turbine support structures publication-title: Renew. Energy – volume: 106 start-page: 11 year: 2012 end-page: 27 ident: bib27 article-title: Fatigue reliability analysis of the jacket support structure for offshore wind turbine considering the effect of corrosion and inspection publication-title: Reliab. Eng. Syst. Saf. – volume: 87 start-page: 71 year: 2016 end-page: 80 ident: bib23 article-title: Evaluation of fatigue damage model predictions for fixed offshore wind turbine support structures publication-title: Int. J. Fatigue – volume: 43 start-page: 23 year: 2009 end-page: 33 ident: bib44 article-title: Joint description methods of wind and waves for the design of offshore wind turbines publication-title: Mar. Technol. Soc. J. – volume: 101 start-page: 518 year: 2015 end-page: 528 ident: bib22 article-title: Fatigue damage assessment of fixed offshore wind turbine tripod support structures publication-title: Eng. Struct. – start-page: 119 year: 1997 end-page: 147 ident: bib9 article-title: Ringing of a vertical cylinder in waves publication-title: J. Fluid Mech. – volume: 33 start-page: 215 year: 2011 end-page: 227 ident: bib12 article-title: Incorporating irregular nonlinear waves in coupled simulation and reliability studies of offshore wind turbines publication-title: Appl. Ocean. Res. – volume: 2 start-page: 149 year: 1950 end-page: 154 ident: bib43 article-title: The force exerted by surface waves on piles publication-title: J. Pet. Technol. – volume: 123 start-page: 363 year: 2013 end-page: 376 ident: bib6 article-title: The role of the nonlinear wave kinematics on the global responses of an OWT in parked and operating conditions publication-title: J. Wind Eng. Ind. Aerodyn. – volume: 19 start-page: 1917 year: 2016 end-page: 1932 ident: bib33 article-title: Wind turbine fatigue loads as a function of atmospheric conditions offshore publication-title: Wind Energy – year: 2002 ident: bib41 article-title: AeroDyn User's Guide, Tech. Rep. – volume: 80 start-page: 151 year: 2015 end-page: 158 ident: bib28 article-title: Probabilistic fatigue analysis of jacket support structures for offshore wind turbines exemplified on tubular joints publication-title: Energy Procedia – volume: 80 start-page: 229 year: 2015 end-page: 236 ident: bib24 article-title: Relative assessment of fatigue loads for offshore wind turbine support structures publication-title: Energy Procedia – start-page: 1 year: 2014 end-page: 8 ident: bib8 article-title: Aero-hydroelastic instabilities on an offshore fixed-bottom wind turbine in severe sea state publication-title: Proc. 11th Int. Conf. Hydrodyn. (ICHD 2014) Oct. 19 24, 2014, No. Ichd, ICHD 2014 – volume: 255 start-page: 275 year: 2013 end-page: 288 ident: bib1 article-title: A novel numerical strategy for the simulation of irregular nonlinear waves and their effects on the dynamic response of offshore wind turbines publication-title: Comput. Methods Appl. Mech. Eng. – start-page: 1 year: 2014 end-page: 9 ident: bib16 article-title: Simulation of nonlinear waves on offshore wind turbines and associated fatigue load assessment publication-title: 33nd Int. Conf. Ocean. Offshore Arct. Eng. – volume: 33 start-page: 2002 year: 2011 end-page: 2014 ident: bib25 article-title: Long-term fatigue analysis of multi-planar tubular joints for jacket-type offshore wind turbine in time domain publication-title: Eng. Struct. – volume: 91 start-page: 425 year: 2016 end-page: 433 ident: bib32 article-title: Design clustering of offshore wind turbines using probabilistic fatigue load estimation publication-title: Renew. Energy – year: 2005 ident: bib37 article-title: FAST User's Guide, Tech. rep., Technical Report NREL/EL-500-38230 – volume: 86 start-page: 57 year: 2014 end-page: 76 ident: bib2 article-title: An efficient domain decomposition strategy for wave loads on surface piercing circular cylinders publication-title: Coast. Eng. – year: 2012 ident: bib18 article-title: Influence of nonlinear irregular waves on the fatigue loads of an offshore wind turbine publication-title: Sci. Mak. Torque from Wind. 4th Sci. Conf. Oldenbg. (Germany), 9-12 Oct, 2012 – year: 2012 ident: bib38 article-title: TurbSim User's Guide, Tech. Rep. September, Technical Report NREL/TP Version 1.06.00 – volume: 17 start-page: 209 year: 2014 end-page: 223 ident: bib47 article-title: Long-term loads for a monopile-supported offshore wind turbine publication-title: Wind Energy – volume: 137 start-page: 021901 year: 2014 ident: bib7 article-title: Irregular nonlinear wave simulation and associated loads on offshore wind turbines publication-title: J. Offshore Mech. Arct. Eng. – volume: 42 start-page: 115 year: 2015 end-page: 136 ident: bib35 article-title: Corrosion fatigue load frequency sensitivity analysis publication-title: Mar. Struct. – volume: 24 start-page: 203 year: 2002 end-page: 214 ident: bib10 article-title: Higher-harmonic wave forces and ringing of vertical cylinders publication-title: Appl. Ocean. Res. – volume: 24 start-page: 203 issue: 4 year: 2002 ident: 10.1016/j.renene.2016.10.023_bib10 article-title: Higher-harmonic wave forces and ringing of vertical cylinders publication-title: Appl. Ocean. Res. doi: 10.1016/S0141-1187(02)00048-2 – year: 2013 ident: 10.1016/j.renene.2016.10.023_bib14 article-title: A comparative study about the effects of linear, weakly and fully nonlinear wave models on the dynamic response of offshore wind turbines – volume: 101 start-page: 518 year: 2015 ident: 10.1016/j.renene.2016.10.023_bib22 article-title: Fatigue damage assessment of fixed offshore wind turbine tripod support structures publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2015.07.038 – start-page: 1 year: 2014 ident: 10.1016/j.renene.2016.10.023_bib8 article-title: Aero-hydroelastic instabilities on an offshore fixed-bottom wind turbine in severe sea state – year: 2014 ident: 10.1016/j.renene.2016.10.023_bib15 article-title: Coupled dynamic simulations of offshore wind turbines using linear, weakly and fully nonlinear wave models : the limitations of the second-order wave theory – volume: 33 start-page: 215 issue: 3 year: 2011 ident: 10.1016/j.renene.2016.10.023_bib12 article-title: Incorporating irregular nonlinear waves in coupled simulation and reliability studies of offshore wind turbines publication-title: Appl. Ocean. Res. doi: 10.1016/j.apor.2011.02.001 – volume: 80 start-page: 193 year: 2015 ident: 10.1016/j.renene.2016.10.023_bib31 article-title: Sensitivity of wave fatigue loads on offshore wind turbines under varying site conditions publication-title: Energy Procedia doi: 10.1016/j.egypro.2015.11.422 – year: 2009 ident: 10.1016/j.renene.2016.10.023_bib45 – volume: 106 start-page: 11 year: 2012 ident: 10.1016/j.renene.2016.10.023_bib27 article-title: Fatigue reliability analysis of the jacket support structure for offshore wind turbine considering the effect of corrosion and inspection publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2012.06.011 – year: 2009 ident: 10.1016/j.renene.2016.10.023_bib46 article-title: Foundation models for offshore wind turbines – volume: 80 start-page: 151 year: 2015 ident: 10.1016/j.renene.2016.10.023_bib28 article-title: Probabilistic fatigue analysis of jacket support structures for offshore wind turbines exemplified on tubular joints publication-title: Energy Procedia doi: 10.1016/j.egypro.2015.11.417 – volume: 43 start-page: 23 issue: 3 year: 2009 ident: 10.1016/j.renene.2016.10.023_bib44 article-title: Joint description methods of wind and waves for the design of offshore wind turbines publication-title: Mar. Technol. Soc. J. doi: 10.4031/MTSJ.43.3.2 – volume: 255 start-page: 275 year: 2013 ident: 10.1016/j.renene.2016.10.023_bib1 article-title: A novel numerical strategy for the simulation of irregular nonlinear waves and their effects on the dynamic response of offshore wind turbines publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2012.12.005 – volume: 33 start-page: 477 issue: 2 year: 2011 ident: 10.1016/j.renene.2016.10.023_bib30 article-title: Wind and structural modelling for an accurate fatigue life assessment of tubular structures publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2010.11.004 – year: 2005 ident: 10.1016/j.renene.2016.10.023_bib37 – volume: 99 start-page: 483 issue: 4 year: 2011 ident: 10.1016/j.renene.2016.10.023_bib3 article-title: A fully nonlinear wave model to account for breaking wave impact loads on offshore wind turbines publication-title: J. Wind Eng. Ind. Aerodyn. doi: 10.1016/j.jweia.2010.12.015 – volume: 87 start-page: 71 year: 2016 ident: 10.1016/j.renene.2016.10.023_bib23 article-title: Evaluation of fatigue damage model predictions for fixed offshore wind turbine support structures publication-title: Int. J. Fatigue doi: 10.1016/j.ijfatigue.2016.01.007 – volume: 99 start-page: 767 issue: 6–7 year: 2011 ident: 10.1016/j.renene.2016.10.023_bib4 article-title: Influence of wind-waves energy transfer on the impulsive hydrodynamic loads acting on offshore wind turbines publication-title: J. Wind Eng. Ind. Aerodyn. doi: 10.1016/j.jweia.2011.03.008 – year: 2012 ident: 10.1016/j.renene.2016.10.023_bib18 article-title: Influence of nonlinear irregular waves on the fatigue loads of an offshore wind turbine – year: 2002 ident: 10.1016/j.renene.2016.10.023_bib41 – volume: 8 start-page: 49 issue: 1 year: 2005 ident: 10.1016/j.renene.2016.10.023_bib17 article-title: Influence of wave modelling on the prediction of fatigue for offshore wind turbines publication-title: Wind Energy doi: 10.1002/we.138 – volume: 755 start-page: 1 year: 2014 ident: 10.1016/j.renene.2016.10.023_bib11 article-title: Forcing of a bottom-mounted circular cylinder by steep regular water waves at finite depth publication-title: J. Fluid Mech. doi: 10.1017/jfm.2014.386 – volume: 123 start-page: 363 year: 2013 ident: 10.1016/j.renene.2016.10.023_bib6 article-title: The role of the nonlinear wave kinematics on the global responses of an OWT in parked and operating conditions publication-title: J. Wind Eng. Ind. Aerodyn. doi: 10.1016/j.jweia.2013.09.003 – volume: 33 start-page: 2002 issue: 6 year: 2011 ident: 10.1016/j.renene.2016.10.023_bib25 article-title: Long-term fatigue analysis of multi-planar tubular joints for jacket-type offshore wind turbine in time domain publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2011.02.037 – volume: 22 start-page: 234 issue: 3 year: 2012 ident: 10.1016/j.renene.2016.10.023_bib26 article-title: Reliability-based calibration of fatigue safety factors for offshore wind turbines publication-title: Int. J. Offshore Polar Eng. – ident: 10.1016/j.renene.2016.10.023_bib21 doi: 10.1260/030952407781494494 – volume: 2 start-page: 149 issue: 05 year: 1950 ident: 10.1016/j.renene.2016.10.023_bib43 article-title: The force exerted by surface waves on piles publication-title: J. Pet. Technol. doi: 10.2118/950149-G – volume: 17 start-page: 209 issue: 2 year: 2014 ident: 10.1016/j.renene.2016.10.023_bib47 article-title: Long-term loads for a monopile-supported offshore wind turbine publication-title: Wind Energy doi: 10.1002/we.1569 – volume: 42 start-page: 115 year: 2015 ident: 10.1016/j.renene.2016.10.023_bib35 article-title: Corrosion fatigue load frequency sensitivity analysis publication-title: Mar. Struct. doi: 10.1016/j.marstruc.2015.03.005 – start-page: 1 year: 2014 ident: 10.1016/j.renene.2016.10.023_bib16 article-title: Simulation of nonlinear waves on offshore wind turbines and associated fatigue load assessment – volume: 19 start-page: 1917 year: 2016 ident: 10.1016/j.renene.2016.10.023_bib33 article-title: Wind turbine fatigue loads as a function of atmospheric conditions offshore publication-title: Wind Energy doi: 10.1002/we.1959 – volume: 137 start-page: 021901 issue: 2 year: 2014 ident: 10.1016/j.renene.2016.10.023_bib7 article-title: Irregular nonlinear wave simulation and associated loads on offshore wind turbines publication-title: J. Offshore Mech. Arct. Eng. doi: 10.1115/1.4029212 – start-page: 3443 year: 2011 ident: 10.1016/j.renene.2016.10.023_bib5 article-title: Extreme response of offshore wind turbines due to fully nonlinear waves – year: 2012 ident: 10.1016/j.renene.2016.10.023_bib38 – volume: 80 start-page: 229 year: 2015 ident: 10.1016/j.renene.2016.10.023_bib24 article-title: Relative assessment of fatigue loads for offshore wind turbine support structures publication-title: Energy Procedia doi: 10.1016/j.egypro.2015.11.426 – volume: vol. 7 start-page: 393 year: 2012 ident: 10.1016/j.renene.2016.10.023_bib36 article-title: Effects from fully nonlinear irregular wave forcing on the fatigue life of an offshore wind turbine and its monopile foundation – year: 2013 ident: 10.1016/j.renene.2016.10.023_bib20 article-title: Irregular nonlinear wave simulation and associated loads on offshore wind turbines – volume: 37 start-page: 717 issue: 7 year: 2014 ident: 10.1016/j.renene.2016.10.023_bib34 article-title: A framework for variable amplitude corrosion fatigue materials tests for offshore wind steel support structures publication-title: Fatigue Fract. Eng. Mater. Struct. doi: 10.1111/ffe.12184 – volume: 86 start-page: 57 year: 2014 ident: 10.1016/j.renene.2016.10.023_bib2 article-title: An efficient domain decomposition strategy for wave loads on surface piercing circular cylinders publication-title: Coast. Eng. doi: 10.1016/j.coastaleng.2014.01.006 – volume: 68 start-page: 829 year: 2014 ident: 10.1016/j.renene.2016.10.023_bib13 article-title: Influence of second-order random wave kinematics on the design loads of offshore wind turbine support structures publication-title: Renew. Energy doi: 10.1016/j.renene.2014.02.052 – volume: 131 start-page: 41601 issue: 4 year: 2009 ident: 10.1016/j.renene.2016.10.023_bib19 article-title: On the modeling of nonlinear waves for prediction of long-term offshore wind turbine loads publication-title: J. Offshore Mech. Arct. Eng. doi: 10.1115/1.3160647 – volume: 81 start-page: 723 year: 2015 ident: 10.1016/j.renene.2016.10.023_bib29 article-title: Damage equivalent windwave correlations on basis of damage contour lines for the fatigue design of offshore wind turbines publication-title: Renew. Energy doi: 10.1016/j.renene.2015.03.070 – ident: 10.1016/j.renene.2016.10.023_bib39 – volume: 5 start-page: 2071 issue: 12 year: 2012 ident: 10.1016/j.renene.2016.10.023_bib40 article-title: On space-time resolution of inflow representations for wind turbine loads analysis publication-title: Energies doi: 10.3390/en5072071 – start-page: 119 year: 1997 ident: 10.1016/j.renene.2016.10.023_bib9 article-title: Ringing of a vertical cylinder in waves publication-title: J. Fluid Mech. doi: 10.1017/S002211209700699X – volume: 91 start-page: 425 year: 2016 ident: 10.1016/j.renene.2016.10.023_bib32 article-title: Design clustering of offshore wind turbines using probabilistic fatigue load estimation publication-title: Renew. Energy doi: 10.1016/j.renene.2016.01.033 – ident: 10.1016/j.renene.2016.10.023_bib42 |
SSID | ssj0015874 |
Score | 2.477636 |
Snippet | The coupled hydro-aero-elastic response and fatigue loads of a bottom-supported offshore wind turbine under different wind conditions and for different wave... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 157 |
SubjectTerms | Fatigue loads hydrodynamics kinematics nonlinear models Nonlinear waves Offshore wind turbines power generation renewable energy sources turbulent flow wind speed wind turbines |
Title | Offshore wind turbine fatigue loads: The influence of alternative wave modeling for different turbulent and mean winds |
URI | https://dx.doi.org/10.1016/j.renene.2016.10.023 https://www.proquest.com/docview/2116863849 |
Volume | 102 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jXvQgfuL8GBG8dmubNG29jaFMhXnQwW4laVKdzHasrbv5t_uStkMFGXjpISRpyO_lvd8jL-8hdAUkI3BAcC3g3tyifsIs8LP0LbuvCBFgIaSJthiz0YTeT71pCw2btzA6rLLW_ZVON9q6bunXu9lfzGb9J02-gcw7wCjgqAQ67Talvpby3uc6zAOWUmVihs6W7t08nzMxXjprZKqTZTqsp2O8XPKXefqlqI31ud1DuzVtxINqZfuopdIDtPMtmeAh-nhMkvw1Wyq8Aj8bgykBp1fhBLb-pVR4nnGZX2MQCzxrCpPgLMHmujw16b_xisPH1MaBGTHQWdzUTynMfKU2UZjD7O-Kp-Y_-RGa3N48D0dWXVXBimnICot4hMcsdl1JXRoL8L-oEwobIBMuZ0QkgCkLiC5JLJTtJcqR0haOTxS3ZcAJOUbtNEvVCcKu9G0BQEs7jqniVHAR2rFrM-EpCZ5aB5FmM6O4TjmuK1_Moya27C2qIIg0BLoVIOggaz1qUaXc2NDfb3CKfohOBFZhw8jLBtYITpW-KuGpyso8AreYBaCaaHj679nP0LarOYAJWDtH7WJZqgtgMIXoGhHtoq3B3cNo_AVldfGM |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGYAB8RTlaSTWtEnsOikbqqgKlDLQSt0sO3agqCRVH3Tjt3N2kgqQUCWWDJbtWP7Od9_J5zuEroBkhB4IrgPcWzg0iJkDfpa5ZQ80IRIshLLRFl3W7tP7QX1QQs3iLYwJq8x1f6bTrbbOW2r5btbGw2Ht2ZBvIPMeMAo4KiFbQ-sUjq8pY1D9XMZ5wFqyVMzQ2zHdi_dzNsjLpI1MTLZMj1VNkJdP_rJPvzS1NT-tHbSd80Z8ky1tF5V0soe2vmUT3EcfT3E8fU0nGi_A0cZgS8Dr1TiGvX-ZazxKhZpeY5ALPCwqk-A0xva-PLH5v_FCwMcWx4EZMfBZXBRQmdn55sZGYQGzv2uR2P9MD1C_ddtrtp28rIIT0QabOaRORMQi31fUp5EEB4x6DekCZtIXjMgYQGUhMTWJpXbrsfaUcqUXEC1cFQpCDlE5SRN9hLCvAlcC0sqNIqoFlUI23Mh3maxrBa5aBZFiM3mU5xw3pS9GvAgue-MZBNxAYFoBggpylqPGWc6NFf2DAif-Q3Y4mIUVIy8LWDkcK3NXIhKdzqcc_GIWgm6ijeN_z36BNtq9xw7v3HUfTtCmbwiBjV47ReXZZK7PgM7M5LkV1y_rtPMa |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Offshore+wind+turbine+fatigue+loads%3A+The+influence+of+alternative+wave+modeling+for+different+turbulent+and+mean+winds&rft.jtitle=Renewable+energy&rft.au=Marino%2C+Enzo&rft.au=Giusti%2C+Alessandro&rft.au=Manuel%2C+Lance&rft.date=2017-03-01&rft.issn=0960-1481&rft.volume=102&rft.spage=157&rft.epage=169&rft_id=info:doi/10.1016%2Fj.renene.2016.10.023&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_renene_2016_10_023 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-1481&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-1481&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-1481&client=summon |