Anthropogenic gadolinium in freshwater and drinking water systems

The increasing use of gadolinium-based contrast agents (GBCAs) for magnetic resonance imaging is leading to widespread contamination of freshwater and drinking water systems. Contrary to previous assumptions that GBCAs are stable throughout the water cycle, they can degrade. The stability of GBCAs d...

Full description

Saved in:
Bibliographic Details
Published inWater research (Oxford) Vol. 182; p. 115966
Main Authors Brünjes, Robert, Hofmann, Thilo
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.09.2020
The Authors. Published by Elsevier Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The increasing use of gadolinium-based contrast agents (GBCAs) for magnetic resonance imaging is leading to widespread contamination of freshwater and drinking water systems. Contrary to previous assumptions that GBCAs are stable throughout the water cycle, they can degrade. The stability of GBCAs depends largely on their organic ligands, but also on the physicochemical conditions. There is specific concern regarding UV end-of-pipe water treatments, which may degrade GBCAs. Degradation products in drinking water supplies can increase the risk of adverse health effects. This is of particular relevance where the raw water for drinking water production has a higher proportion of recycled wastewater. GBCAs concentrations in aquatic systems, often referred to as anthropogenic gadolinium, are determined using a variety of calculation methods. Where anthropogenic gadolinium concentrations are low, the inconsistent use of these methods results in high discrepancies and high levels of uncertainty. The current COVID-19 crisis will, in the short-term, drastically decrease the input of GBCAs to freshwater systems. Temporal variations in anthropogenic gadolinium concentrations in river water can be used to better understand river-aquifer interactions and groundwater flow velocities. Collecting urine from all patients following MRI examinations could be a way forward to halt the generally increasing concentrations of Gd in drinking water systems and recover this technologically critical element. [Display omitted] •Rising concentration of gadolinium-based contrast agents (GBCAs) in drinking water.•Stability of GBCAs is determined by their organic ligands.•UV end-of-pipe treatment may enhance the risks posed by GBCAs in drinking water.•Inconsistent use of methods to calculate Gd anomalies and anthropogenic Gd.•Temporal Gd patterns in rivers can improve understanding of subsurface systems.
AbstractList The increasing use of gadolinium-based contrast agents (GBCAs) for magnetic resonance imaging is leading to widespread contamination of freshwater and drinking water systems. Contrary to previous assumptions that GBCAs are stable throughout the water cycle, they can degrade. The stability of GBCAs depends largely on their organic ligands, but also on the physicochemical conditions. There is specific concern regarding UV end-of-pipe water treatments, which may degrade GBCAs. Degradation products in drinking water supplies can increase the risk of adverse health effects. This is of particular relevance where the raw water for drinking water production has a higher proportion of recycled wastewater. GBCAs concentrations in aquatic systems, often referred to as anthropogenic gadolinium, are determined using a variety of calculation methods. Where anthropogenic gadolinium concentrations are low, the inconsistent use of these methods results in high discrepancies and high levels of uncertainty. The current COVID-19 crisis will, in the short-term, drastically decrease the input of GBCAs to freshwater systems. Temporal variations in anthropogenic gadolinium concentrations in river water can be used to better understand river-aquifer interactions and groundwater flow velocities. Collecting urine from all patients following MRI examinations could be a way forward to halt the generally increasing concentrations of Gd in drinking water systems and recover this technologically critical element.
The increasing use of gadolinium-based contrast agents (GBCAs) for magnetic resonance imaging is leading to widespread contamination of freshwater and drinking water systems. Contrary to previous assumptions that GBCAs are stable throughout the water cycle, they can degrade. The stability of GBCAs depends largely on their organic ligands, but also on the physicochemical conditions. There is specific concern regarding UV end-of-pipe water treatments, which may degrade GBCAs. Degradation products in drinking water supplies can increase the risk of adverse health effects. This is of particular relevance where the raw water for drinking water production has a higher proportion of recycled wastewater. GBCAs concentrations in aquatic systems, often referred to as anthropogenic gadolinium, are determined using a variety of calculation methods. Where anthropogenic gadolinium concentrations are low, the inconsistent use of these methods results in high discrepancies and high levels of uncertainty. The current COVID-19 crisis will, in the short-term, drastically decrease the input of GBCAs to freshwater systems. Temporal variations in anthropogenic gadolinium concentrations in river water can be used to better understand river-aquifer interactions and groundwater flow velocities. Collecting urine from all patients following MRI examinations could be a way forward to halt the generally increasing concentrations of Gd in drinking water systems and recover this technologically critical element. Image 1 • Rising concentration of gadolinium-based contrast agents (GBCAs) in drinking water. • Stability of GBCAs is determined by their organic ligands. • UV end-of-pipe treatment may enhance the risks posed by GBCAs in drinking water. • Inconsistent use of methods to calculate Gd anomalies and anthropogenic Gd. • Temporal Gd patterns in rivers can improve understanding of subsurface systems.
The increasing use of gadolinium-based contrast agents (GBCAs) for magnetic resonance imaging is leading to widespread contamination of freshwater and drinking water systems. Contrary to previous assumptions that GBCAs are stable throughout the water cycle, they can degrade. The stability of GBCAs depends largely on their organic ligands, but also on the physicochemical conditions. There is specific concern regarding UV end-of-pipe water treatments, which may degrade GBCAs. Degradation products in drinking water supplies can increase the risk of adverse health effects. This is of particular relevance where the raw water for drinking water production has a higher proportion of recycled wastewater. GBCAs concentrations in aquatic systems, often referred to as anthropogenic gadolinium, are determined using a variety of calculation methods. Where anthropogenic gadolinium concentrations are low, the inconsistent use of these methods results in high discrepancies and high levels of uncertainty. The current COVID-19 crisis will, in the short-term, drastically decrease the input of GBCAs to freshwater systems. Temporal variations in anthropogenic gadolinium concentrations in river water can be used to better understand river-aquifer interactions and groundwater flow velocities. Collecting urine from all patients following MRI examinations could be a way forward to halt the generally increasing concentrations of Gd in drinking water systems and recover this technologically critical element.The increasing use of gadolinium-based contrast agents (GBCAs) for magnetic resonance imaging is leading to widespread contamination of freshwater and drinking water systems. Contrary to previous assumptions that GBCAs are stable throughout the water cycle, they can degrade. The stability of GBCAs depends largely on their organic ligands, but also on the physicochemical conditions. There is specific concern regarding UV end-of-pipe water treatments, which may degrade GBCAs. Degradation products in drinking water supplies can increase the risk of adverse health effects. This is of particular relevance where the raw water for drinking water production has a higher proportion of recycled wastewater. GBCAs concentrations in aquatic systems, often referred to as anthropogenic gadolinium, are determined using a variety of calculation methods. Where anthropogenic gadolinium concentrations are low, the inconsistent use of these methods results in high discrepancies and high levels of uncertainty. The current COVID-19 crisis will, in the short-term, drastically decrease the input of GBCAs to freshwater systems. Temporal variations in anthropogenic gadolinium concentrations in river water can be used to better understand river-aquifer interactions and groundwater flow velocities. Collecting urine from all patients following MRI examinations could be a way forward to halt the generally increasing concentrations of Gd in drinking water systems and recover this technologically critical element.
The increasing use of gadolinium-based contrast agents (GBCAs) for magnetic resonance imaging is leading to widespread contamination of freshwater and drinking water systems. Contrary to previous assumptions that GBCAs are stable throughout the water cycle, they can degrade. The stability of GBCAs depends largely on their organic ligands, but also on the physicochemical conditions. There is specific concern regarding UV end-of-pipe water treatments, which may degrade GBCAs. Degradation products in drinking water supplies can increase the risk of adverse health effects. This is of particular relevance where the raw water for drinking water production has a higher proportion of recycled wastewater. GBCAs concentrations in aquatic systems, often referred to as anthropogenic gadolinium, are determined using a variety of calculation methods. Where anthropogenic gadolinium concentrations are low, the inconsistent use of these methods results in high discrepancies and high levels of uncertainty. The current COVID-19 crisis will, in the short-term, drastically decrease the input of GBCAs to freshwater systems. Temporal variations in anthropogenic gadolinium concentrations in river water can be used to better understand river-aquifer interactions and groundwater flow velocities. Collecting urine from all patients following MRI examinations could be a way forward to halt the generally increasing concentrations of Gd in drinking water systems and recover this technologically critical element. [Display omitted] •Rising concentration of gadolinium-based contrast agents (GBCAs) in drinking water.•Stability of GBCAs is determined by their organic ligands.•UV end-of-pipe treatment may enhance the risks posed by GBCAs in drinking water.•Inconsistent use of methods to calculate Gd anomalies and anthropogenic Gd.•Temporal Gd patterns in rivers can improve understanding of subsurface systems.
ArticleNumber 115966
Author Brünjes, Robert
Hofmann, Thilo
Author_xml – sequence: 1
  givenname: Robert
  surname: Brünjes
  fullname: Brünjes, Robert
– sequence: 2
  givenname: Thilo
  surname: Hofmann
  fullname: Hofmann, Thilo
  email: thilo.hofmann@univie.ac.at
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32599421$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1uEzEUhS1URNPCGyA0SzYT_O8xC6SoghapEpt2bbn2ncRhxg62U9S3Z6JJEXTRrixdn_Pdo3vO0ElMERB6T_CSYCI_bZe_bc1QlhTTaUSElvIVWpBO6ZZy3p2gBcactYQJforOStlijCll-g06ZVRozSlZoNUq1k1Ou7SGGFyztj4NIYb92ITY9BN-M22B3NjoG59D_BniuplH5aFUGMtb9Lq3Q4F3x_cc3X77enNx1V7_uPx-sbpuHdeythSwoBgTrCQRngDRXgglqVesFx25c4xpyYB7xgE4k1hz4XFHqOw5pcKyc_Rl5u72dyN4B7FmO5hdDqPNDybZYP7_iWFj1uneKCqkIGwCfDwCcvq1h1LNGIqDYbAR0r4YKhRnirEOvyzlRE8BlTpIP_wb62-exxNPgs-zwOVUSobeuFBtDemQMgyGYHPo02zN3Kc59GnmPiczf2J-5L9gO94KpkLuA2RTXIDowIcMrhqfwvOAP5VIuyk
CitedBy_id crossref_primary_10_1186_s41747_024_00451_3
crossref_primary_10_3390_molecules25235762
crossref_primary_10_1021_acsestengg_3c00377
crossref_primary_10_1016_j_envpol_2023_123163
crossref_primary_10_1016_j_jfca_2024_107106
crossref_primary_10_1021_acs_est_2c07726
crossref_primary_10_3390_molecules29010135
crossref_primary_10_1097_RLI_0000000000001172
crossref_primary_10_1016_j_envres_2021_112495
crossref_primary_10_1016_j_scitotenv_2023_162844
crossref_primary_10_1029_2024GB008125
crossref_primary_10_1016_j_watres_2021_117836
crossref_primary_10_1002_jmri_29132
crossref_primary_10_3390_ma18030699
crossref_primary_10_1016_j_scitotenv_2022_155909
crossref_primary_10_3390_jcm12010215
crossref_primary_10_1007_s10653_023_01743_0
crossref_primary_10_3389_fmars_2024_1304362
crossref_primary_10_1021_acs_jmedchem_2c00500
crossref_primary_10_1007_s00330_023_10456_y
crossref_primary_10_1016_j_electacta_2022_141457
crossref_primary_10_1016_j_psep_2022_09_056
crossref_primary_10_1111_1754_9485_13581
crossref_primary_10_1016_j_radi_2024_06_007
crossref_primary_10_1212_WNL_0000000000210274
crossref_primary_10_3390_toxics12120904
crossref_primary_10_1016_j_jhazmat_2025_137941
crossref_primary_10_1016_j_rx_2024_05_012
crossref_primary_10_1002_jssc_202200575
crossref_primary_10_1016_j_radi_2023_09_006
crossref_primary_10_1002_pro_70101
crossref_primary_10_1097_RLI_0000000000000983
crossref_primary_10_1016_j_marpolbul_2022_113463
crossref_primary_10_1016_j_envpol_2023_121289
crossref_primary_10_1148_radiol_240020
crossref_primary_10_1007_s11845_024_03708_3
crossref_primary_10_1016_j_scitotenv_2024_175063
crossref_primary_10_1016_j_intimp_2023_110000
crossref_primary_10_3389_fmars_2024_1413033
crossref_primary_10_2214_AJR_24_30927
crossref_primary_10_1038_s41598_023_32596_3
crossref_primary_10_1016_j_psep_2024_03_115
crossref_primary_10_1039_D4DT02761B
crossref_primary_10_1016_j_jhazmat_2023_131930
crossref_primary_10_1016_j_rxeng_2024_05_004
crossref_primary_10_3390_ijms23052876
crossref_primary_10_1002_jat_4774
crossref_primary_10_1007_s10661_023_11279_6
crossref_primary_10_1016_j_cclet_2024_109960
crossref_primary_10_1002_hyp_14979
crossref_primary_10_3390_oceans4040026
crossref_primary_10_1186_s41747_023_00337_w
crossref_primary_10_1007_s00256_024_04682_8
crossref_primary_10_1016_j_scitotenv_2024_174819
crossref_primary_10_1021_acsami_4c22884
crossref_primary_10_1007_s10311_024_01815_2
crossref_primary_10_1016_j_rx_2023_06_007
crossref_primary_10_1021_acsearthspacechem_1c00238
crossref_primary_10_1016_j_scitotenv_2021_148506
crossref_primary_10_1039_D1CC06229H
crossref_primary_10_1016_j_jglr_2023_03_004
crossref_primary_10_1016_j_jhydrol_2025_132704
crossref_primary_10_3390_su12177130
crossref_primary_10_1016_j_scitotenv_2022_159241
crossref_primary_10_1021_acsnanoscienceau_4c00032
crossref_primary_10_1007_s11604_024_01642_z
crossref_primary_10_1016_j_coelec_2022_101169
crossref_primary_10_1016_j_neurad_2021_08_002
crossref_primary_10_1038_s41598_022_21762_8
crossref_primary_10_1016_j_envpol_2023_122428
crossref_primary_10_1016_j_jocmr_2025_101840
crossref_primary_10_1016_j_jhazmat_2021_125183
crossref_primary_10_1097_RLI_0000000000000955
crossref_primary_10_1007_s00330_024_11214_4
crossref_primary_10_1016_j_chemosphere_2024_142321
crossref_primary_10_1097_RLI_0000000000001025
crossref_primary_10_1016_j_ecoenv_2024_116442
crossref_primary_10_1002_jmri_28994
crossref_primary_10_1016_j_acra_2022_10_021
crossref_primary_10_1016_j_jhydrol_2024_130652
crossref_primary_10_1007_s00330_024_11150_3
crossref_primary_10_1016_j_envpol_2024_124740
crossref_primary_10_1007_s00330_024_11333_y
crossref_primary_10_1007_s00234_024_03305_2
crossref_primary_10_1021_acs_est_1c02958
crossref_primary_10_1038_s41598_023_37342_3
crossref_primary_10_1016_j_jconhyd_2022_104057
crossref_primary_10_1021_acsomega_4c02296
crossref_primary_10_1016_j_chemosphere_2023_140950
crossref_primary_10_1016_j_envint_2023_107868
crossref_primary_10_1016_j_rxeng_2023_06_008
crossref_primary_10_1016_j_catcom_2022_106544
crossref_primary_10_1007_s10554_024_03089_9
crossref_primary_10_31466_kfbd_1184568
crossref_primary_10_1007_s11356_023_30439_2
crossref_primary_10_1038_s41569_024_01077_z
crossref_primary_10_1007_s00244_024_01110_9
crossref_primary_10_1016_j_radi_2024_06_022
crossref_primary_10_1021_acs_biomac_3c01391
crossref_primary_10_1039_D3CC05989H
crossref_primary_10_1016_j_scitotenv_2022_158464
crossref_primary_10_3389_fcvm_2024_1457498
crossref_primary_10_1007_s00723_024_01655_x
crossref_primary_10_1016_j_mex_2022_101965
crossref_primary_10_1080_15226514_2021_1984388
crossref_primary_10_1002_jmri_29181
crossref_primary_10_1007_s42058_022_00103_8
crossref_primary_10_3390_jmse11050956
Cites_doi 10.1021/es803278n
10.1007/s00216-012-6643-x
10.1016/j.apgeochem.2010.11.011
10.1016/j.scitotenv.2017.08.170
10.14512/gaia.27.1.10
10.1016/j.chemosphere.2020.126398
10.1016/j.ejrad.2006.06.021
10.1016/j.jhydrol.2009.02.029
10.1016/j.chemgeo.2007.10.010
10.1016/j.chemosphere.2016.12.135
10.1016/0016-7037(85)90090-0
10.1016/0016-7037(90)90002-3
10.1016/S0016-7037(00)00494-4
10.1016/0012-821X(88)90031-3
10.1016/j.mri.2018.11.015
10.1016/j.talanta.2016.03.022
10.1093/ndt/gfk062
10.1007/s00216-014-8368-5
10.1002/hyp.10735
10.2166/wst.1997.0474
10.1016/j.marchem.2013.06.001
10.1016/j.apgeochem.2014.04.006
10.1007/s10661-016-5282-7
10.1016/j.psep.2014.04.010
10.1021/es010235q
10.1016/j.watres.2016.01.012
10.1148/radiol.2018171105
10.1007/s10666-004-4269-x
10.1016/S1076-6332(98)80191-8
10.1016/j.chemosphere.2013.09.102
10.1016/0143-148X(80)90020-8
10.1021/ic00032a034
10.1016/j.ejrad.2008.01.023
10.3389/fmars.2018.00111
10.1016/j.mri.2016.08.016
10.1021/acs.est.5b04322
10.1021/es048456u
10.1016/j.tox.2008.03.012
10.1039/C5EM00533G
10.1016/j.jcis.2010.01.069
10.1016/j.apgeochem.2009.09.027
10.1016/j.scitotenv.2019.07.075
10.1007/s10534-008-9135-x
10.1016/0012-821X(96)00127-6
10.1016/j.chroma.2013.08.017
10.1111/jiec.12237
10.1016/j.marchem.2005.11.007
10.1016/j.trac.2017.12.011
10.1097/RLI.0b013e3181852171
10.1016/S0016-7037(00)00472-5
10.1016/j.scitotenv.2018.11.343
10.1016/j.apgeochem.2018.01.008
10.1007/s11604-015-0503-5
10.1016/j.chemer.2004.08.004
10.5004/dwt.2018.22844
10.1016/j.mri.2017.01.006
10.1002/etc.4116
10.3109/02841851.2010.515614
10.1002/mrc.1260311111
10.1007/s11356-015-5221-0
10.1021/es990633h
10.1007/s11356-017-0880-7
10.1039/C8MT00302E
10.2343/geochemj.40.463
10.1007/s10498-014-9247-6
10.1016/j.watres.2009.04.033
10.1002/hyp.6649
10.1021/es903888t
10.1016/S0043-1354(01)00370-0
10.1177/0284185116666419
10.1016/j.chemosphere.2003.10.062
10.2166/wst.2010.885
10.1016/j.jtemb.2018.10.021
10.1016/j.chemosphere.2015.09.044
10.1002/aheh.200300492
10.1021/es301981z
10.1016/j.molliq.2016.06.076
10.1016/j.jtemb.2017.10.004
10.1021/es400708w
10.1080/10643389.2013.866622
10.1016/j.apgeochem.2011.06.011
10.1021/es051270q
10.1016/j.jcis.2004.04.007
10.1016/j.ejrad.2008.01.025
10.1016/j.crte.2015.01.003
10.1021/es402219u
10.1016/j.apgeochem.2014.05.020
10.1016/j.ccr.2007.04.018
10.5194/hess-16-2405-2012
10.1001/jamaneurol.2015.2960
10.1002/jmri.21967
10.1016/j.scitotenv.2018.06.155
10.1007/s11356-018-3489-6
10.1021/cr980440x
10.1016/j.mri.2019.01.001
10.1681/ASN.2006060601
10.1016/j.chemer.2006.01.002
10.1021/acssuschemeng.7b01124
10.1038/d41586-020-00758-2
10.1016/j.marpolbul.2010.03.027
10.1016/j.ccr.2011.05.013
10.1016/S0016-7037(03)00495-2
10.1007/s10653-006-9040-6
10.1259/bjr/17111243
10.1016/j.chemosphere.2009.01.036
10.1007/s10040-011-0713-6
10.1016/j.chemosphere.2010.05.001
10.1021/acs.analchem.5b04493
10.1016/j.scitotenv.2015.06.042
10.1080/10643389.2013.829765
10.1016/j.scitotenv.2016.06.105
10.1016/j.gca.2004.08.020
10.1016/S0375-6742(00)00083-2
10.1002/mrm.1910380120
10.1016/j.epsl.2012.11.033
10.1007/s11356-017-8491-x
10.1016/j.envint.2011.02.018
ContentType Journal Article
Copyright 2020 The Authors
Copyright © 2020 The Authors. Published by Elsevier Ltd.. All rights reserved.
2020 The Authors 2020
Copyright_xml – notice: 2020 The Authors
– notice: Copyright © 2020 The Authors. Published by Elsevier Ltd.. All rights reserved.
– notice: 2020 The Authors 2020
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
DOI 10.1016/j.watres.2020.115966
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
MEDLINE

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-2448
EndPage 115966
ExternalDocumentID PMC7256513
32599421
10_1016_j_watres_2020_115966
S0043135420305030
Genre Journal Article
Review
GroupedDBID ---
--K
--M
-DZ
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5VS
6I.
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFRF
ABFYP
ABJNI
ABLST
ABMAC
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFO
ACGFS
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HMC
IHE
IMUCA
J1W
KCYFY
KOM
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SCU
SDF
SDG
SDP
SES
SPC
SPCBC
SSE
SSJ
SSZ
T5K
TAE
TN5
TWZ
WH7
XPP
ZCA
ZMT
~02
~G-
~KM
.55
186
29R
6TJ
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACKIV
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEGFY
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HMA
HVGLF
HZ~
H~9
MVM
OHT
R2-
RIG
SEN
SEP
SEW
SSH
WUQ
X7M
XOL
YHZ
YV5
ZXP
ZY4
~A~
CGR
CUY
CVF
ECM
EIF
NPM
7X8
EFKBS
7S9
L.6
5PM
ID FETCH-LOGICAL-c496t-2e05200107615d1e19d55762d73f581bc33963e4d34ee4360945d08126f4225a3
IEDL.DBID .~1
ISSN 0043-1354
1879-2448
IngestDate Thu Aug 21 13:56:13 EDT 2025
Thu Jul 10 22:16:18 EDT 2025
Tue Aug 05 11:18:29 EDT 2025
Thu Apr 03 07:00:56 EDT 2025
Tue Jul 01 01:21:01 EDT 2025
Thu Apr 24 23:10:55 EDT 2025
Fri Feb 23 02:46:15 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords COVID-19
Drinking water
Micropollutants
Gadolinium anomaly
Gadolinium-based contrast agents
Anthropogenic gadolinium
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2020 The Authors. Published by Elsevier Ltd.. All rights reserved.
Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c496t-2e05200107615d1e19d55762d73f581bc33963e4d34ee4360945d08126f4225a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0043135420305030
PMID 32599421
PQID 2419094770
PQPubID 23479
PageCount 1
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7256513
proquest_miscellaneous_2574373380
proquest_miscellaneous_2419094770
pubmed_primary_32599421
crossref_citationtrail_10_1016_j_watres_2020_115966
crossref_primary_10_1016_j_watres_2020_115966
elsevier_sciencedirect_doi_10_1016_j_watres_2020_115966
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-09-01
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Water research (Oxford)
PublicationTitleAlternate Water Res
PublicationYear 2020
Publisher Elsevier Ltd
The Authors. Published by Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
– name: The Authors. Published by Elsevier Ltd
References Vriens, Voegelin, Hug, Kaegi, Winkel, Buser, Berg (bib129) 2017; 7b01731
Pyrzynska, Kubiak, Wysocka (bib110) 2016; 154
Lerat-Hardy, Coynel, Dutruch, Pereto, Bossy, Gil-Diaz, Capdeville, Blanc, Schäfer (bib71) 2019; 656
Lindner, Lingott, Richter, Jiang, Jakubowski, Panne (bib73) 2015; 407
Barber, Murphy, Verplanck, Sandstrom, Taylor, Furlong (bib3) 2006; 40
Morcos (bib92) 2007; 80
Patra, Roy, Madhuri, Sharma (bib103) 2017; 5
Cobelo-García, Filella, Croot, Frazzoli, Du Laing, Ospina-Alvarez, Rauch, Salaun, Schäfer, Zimmermann (bib24) 2015; 22
Montagne, Toga, Zlokovic (bib90) 2016; 73
Richardson, Kimura (bib114) 2016; 88
Micskei, Powell, Helm, Brücher, Merbach (bib83) 1993; 31
Birka, Roscher, Holtkamp, Sperling, Karst (bib12) 2016; 91
Künnemeyer, Terborg, Meermann, Brauckmann, Möller, Scheffer, Karst (bib62) 2009; 43
Callaway, Cyranoski, Mallapaty, Stoye, Tollefson (bib19) 2020; 579
Klaver, Verheul, Bakker, Petelet-Giraud, Négrel (bib54) 2014; 47
Blinova, Lukjanova, Muna, Vija, Kahru (bib14) 2018; 642
Nozaki, Lerche, Alibo, Tsutsumi (bib98) 2000; 64
Reoyo-Prats, Aubert, Sellier, Roig, Palacios (bib113) 2018; 25
Lawrence, Bariel (bib65) 2010; 80
Rogowska, Olkowska, Ratajczyk, Wolska (bib115) 2018
Taylor, McLennan (bib123) 1985
Stepka, Dror, Berkowitz (bib121) 2018; 610–611
Massmann, Sültenfuß, Dünnbier, Knappe, Taute, Pekdeger (bib132) 2008; 22
Merschel, Bau (bib81) 2015; 533
Ogata, Terakado (bib99) 2006; 40
Pereao, Bode-Aluko, Fatoba, Laatikainen, Petrik (bib105) 2018; 130
Kulaksiz, Bau (bib58) 2013; 362
Elbaz-Poulichet, Seidel, Othoniel (bib33) 2002; 36
Holzbecher, Knappe, Pekdeger (bib48) 2005; 10
Pédrot, Dia, Davranche (bib104) 2010; 345
Möller, Paces, Dulski, Morteani (bib89) 2002; 36
Merbach, Helm, Tóth (bib80) 2013
Clases, Fingerhut, Jeibmann, Sperling, Doble, Karst (bib22) 2018; 51
Oturan, Aaron (bib101) 2014; 44
Clases, Sperling, Karst (bib23) 2018; 104
Rozemeijer, Siderius, Verheul, Pomarius (bib116) 2012; 16
de Campos, Enzweiler (bib30) 2016; 188
Luo, Byrne (bib75) 2004; 68
De Baar, Brewer, Bacon (bib29) 1985; 49
Grobner (bib42) 2006; 21
Bau, Dulski (bib4) 1996; 143
Chan, Wong (bib21) 2007; 251
Dulski, Möller, Pekdeger (bib32) 2011; 19
Le Fur, Caravan (bib69) 2019; 11
Tepe, Romero, Bau (bib125) 2014; 45
Gromet, Dymek, Haskin, Korotev (bib43) 1984; 48
Idée, Port, Medina, Lancelot, Fayoux, Ballet, Corot (bib49) 2008; 248
Fingerhut, Niehoff, Sperling, Jeibmann, Paulus, Niederstadt, Allkemper, Heindel, Holling, Karst (bib36) 2018; 45
Food and Drug Administration (bib38) 2017
Rabiet, Brissaud, Seidel, Pistre, Elbaz-Poulichet (bib111) 2009; 75
Joffe, Thomsen, Meusel (bib51) 1998; 5
Möller, Knappe, Dulski, Pekdeger (bib87) 2011; 26
Davranche, Gruau, Dia, Marsac, Pédrot, Pourret (bib26) 2015; 21
(bib35) 2017; 44
Kovalova, Siegrist, Von Gunten, Eugster, Hagenbuch, Wittmer, Moser, McArdell (bib56) 2013; 47
Lawrence, Kamber (bib66) 2006; 100
Kümmerer, Helmers (bib61) 2000; 34
Prybylski, Semelka, Jay (bib109) 2017; 38
Migaszewski, Gałuszka (bib84) 2015; 45
Hinck, Ferguson, Puhaakka (bib46) 1997; 35
Pourret, Houben (bib108) 2018
Semelka, Prybylski, Ramalho (bib119) 2019; 58
Idée, Port, Robic, Medina, Sabatou, Corot (bib50) 2009
Morcos (bib91) 2008; 66
Davranche, Pourret, Gruau, Dia, Jin, Gaertner (bib28) 2008; 247
Petelet-Giraud, Klaver, Negrel (bib106) 2009; 369
Rabiet, Letouzet, Hassanzadeh, Simon (bib112) 2014; 95
Lindner, Lingott, Richter, Jakubowski, Panne (bib72) 2013; 405
Möller, Dulski, Bau, Knappe, Pekdeger, Sommer-Von Jarmersted (bib86) 2000; 69–70
Organisation for Economic Cooperation and Development (OECD) (bib100) 2017
Anastopoulos, Bhatnagar, Lima (bib1) 2016; 221
Schmidt, Bau, Merschel, Tepe (bib118) 2019; 687
Brünjes, Höhn, Hofmann (bib16) 2017
Bazzicalupi, Bianchi, Giorgi, Clares, García-España (bib7) 2012; 256
Byrne, Kim (bib18) 1990; 54
Lawrence (bib64) 2010; 60
Goldstein, Jacobsen (bib41) 1988; 89
Telgmann, Wehe, Birka, Künnemeyer, Nowak, Sperling, Karst (bib124) 2012; 46
Hissler, Hostache, Iffly, Pfister, Stille (bib47) 2015; 347
Marckmann (bib76) 2006; 17
Davranche, Pourret, Gruau, Dia (bib27) 2004; 277
Nassar, Du, Graedel (bib94) 2015; 19
Hathorne, Haley, Stichel, Grasse, Zieringer, Frank (bib44) 2012; 13
Wang, Jin, Comblin, Lopez-Mut, Merciny, Desreux (bib130) 1992; 31
Kulaksiz, Bau (bib60) 2011; 37
Kamber, Greig, Collerson (bib52) 2005; 69
Brünjes, Bichler, Hoehn, Lange, Brauch, Hofmann (bib15) 2016; 571
Hatje, Bruland, Flegal (bib45) 2016; 50
Lawrence, Keller, Poussade (bib67) 2010; 61
McLennan (bib77) 1989
Bichler, Muellegger, Brünjes, Hofmann (bib11) 2016; 30
Means, Kucak, Crerar (bib78) 1980; 1
Cyris, Knolle, Richard, Dopp, Von Sonntag, Schmidt (bib25) 2013; 47
Bau, Knappe, Dulski (bib5) 2006; 66
Kulaksiz, Bau (bib59) 2011; 26
Swaminathan (bib122) 2016; 34
Verplanck, Taylor, Nordstrom, Barber (bib128) 2005; 39
Parant, Perrat, Wagner, Rosin, Py, Cossu-Leguille (bib102) 2018
Schijf, Christy (bib117) 2018; 5
Burai, Hietapelto, Király, Tóth, Brücher (bib17) 1997; 38
Birka, Wehe, Telgmann, Sperling, Karst (bib13) 2013; 1308
Elizalde-González, García-Díaz, González-Perea, Mattusch (bib34) 2017; 24
Food and Drug Administration (bib37) 2018
Xia, Davis, Crawford, Abraham (bib131) 2010; 51
Caravan, Ellison, McMurry, Lauffer (bib20) 1999; 99
Port, Idée, Medina, Robic, Sabatou, Corot (bib107) 2008; 21
Lee, Robinson, Chong (bib70) 2014; 92
Nehra, McDonald, Bluhm, Gunderson, Murray, Jannetto, Kallmes, Eckel, McDonald (bib95) 2018; 288
Morteani, Möller, Fuganti, Paces (bib93) 2006; 28
Lagerström, Field, Séguret, Fischer, Hann, Sherrell (bib63) 2013; 155
Neubert (bib96) 2008
Lingott, Lindner, Telgmann, Esteban-Fernández, Jakubowski, Panne (bib74) 2016; 18
Lawrence, Ort, Keller (bib68) 2009; 43
Bau, Schmidt, Pack, Bendel, Kraemer (bib6) 2018; 90
Menahem, Dror, Berkowitz (bib79) 2016
Thomsen (bib126) 2017; 58
Kanda, Oba, Toyoda, Kitajima, Furui (bib53) 2016; 34
Metsärinne, Rantanen, Aksela, Tuhkanen (bib82) 2004; 55
Song, Shin, Ryu, Seon (bib120) 2017; 172
Möller, Morteani, Dulski (bib88) 2003; 31
Niederste-Hollenberg, Eckartz, Peters, Hillenbrand, Maier, Beer, Reszt (bib97) 2018; 27
Frenzel, Lengsfeld, Schirmer, Hütter, Weinmann (bib39) 2008; 43
Atinkpahoun, Pons, Louis, Leclerc, Soclo (bib2) 2020; 251
Verplanck, Furlong, Gray, Phillips, Wolf, Esposito (bib127) 2010; 44
Bellin (bib8) 2006; 60
Bellin, Van Der Molen (bib9) 2008; 66
Gibby, Parish, Merrill, Fernandez, Anderson, Merchel, Parr (bib40) 2019; 58
Knappe, Möller, Dulski, Pekdeger (bib55) 2005; 65
Möller, Dulski (bib85) 2010; 25
Dia, Gruau, Olivié-Lauquet, Riou, Molénat, Curmi (bib31) 2000; 64
Kulaksiz (bib57) 2012
Beyer, Angulo Cornejo (bib10) 2012
Petelet-Giraud (10.1016/j.watres.2020.115966_bib106) 2009; 369
Grobner (10.1016/j.watres.2020.115966_bib42) 2006; 21
Rabiet (10.1016/j.watres.2020.115966_bib112) 2014; 95
Organisation for Economic Cooperation and Development (OECD) (10.1016/j.watres.2020.115966_bib100) 2017
Swaminathan (10.1016/j.watres.2020.115966_bib122) 2016; 34
Caravan (10.1016/j.watres.2020.115966_bib20) 1999; 99
Bau (10.1016/j.watres.2020.115966_bib4) 1996; 143
Brünjes (10.1016/j.watres.2020.115966_bib16) 2017
Cyris (10.1016/j.watres.2020.115966_bib25) 2013; 47
Thomsen (10.1016/j.watres.2020.115966_bib126) 2017; 58
Clases (10.1016/j.watres.2020.115966_bib23) 2018; 104
Nassar (10.1016/j.watres.2020.115966_bib94) 2015; 19
Pyrzynska (10.1016/j.watres.2020.115966_bib110) 2016; 154
Dia (10.1016/j.watres.2020.115966_bib31) 2000; 64
(10.1016/j.watres.2020.115966_bib35) 2017; 44
Telgmann (10.1016/j.watres.2020.115966_bib124) 2012; 46
Kanda (10.1016/j.watres.2020.115966_bib53) 2016; 34
Lawrence (10.1016/j.watres.2020.115966_bib67) 2010; 61
Bellin (10.1016/j.watres.2020.115966_bib9) 2008; 66
McLennan (10.1016/j.watres.2020.115966_bib77) 1989
Chan (10.1016/j.watres.2020.115966_bib21) 2007; 251
Prybylski (10.1016/j.watres.2020.115966_bib109) 2017; 38
Anastopoulos (10.1016/j.watres.2020.115966_bib1) 2016; 221
Pédrot (10.1016/j.watres.2020.115966_bib104) 2010; 345
Holzbecher (10.1016/j.watres.2020.115966_bib48) 2005; 10
Oturan (10.1016/j.watres.2020.115966_bib101) 2014; 44
Birka (10.1016/j.watres.2020.115966_bib12) 2016; 91
Port (10.1016/j.watres.2020.115966_bib107) 2008; 21
Burai (10.1016/j.watres.2020.115966_bib17) 1997; 38
Metsärinne (10.1016/j.watres.2020.115966_bib82) 2004; 55
Stepka (10.1016/j.watres.2020.115966_bib121) 2018; 610–611
Pereao (10.1016/j.watres.2020.115966_bib105) 2018; 130
Möller (10.1016/j.watres.2020.115966_bib87) 2011; 26
Künnemeyer (10.1016/j.watres.2020.115966_bib62) 2009; 43
Lawrence (10.1016/j.watres.2020.115966_bib66) 2006; 100
Lawrence (10.1016/j.watres.2020.115966_bib68) 2009; 43
Parant (10.1016/j.watres.2020.115966_bib102) 2018
Luo (10.1016/j.watres.2020.115966_bib75) 2004; 68
Ogata (10.1016/j.watres.2020.115966_bib99) 2006; 40
Morcos (10.1016/j.watres.2020.115966_bib91) 2008; 66
Bau (10.1016/j.watres.2020.115966_bib6) 2018; 90
Nehra (10.1016/j.watres.2020.115966_bib95) 2018; 288
Fingerhut (10.1016/j.watres.2020.115966_bib36) 2018; 45
Blinova (10.1016/j.watres.2020.115966_bib14) 2018; 642
Goldstein (10.1016/j.watres.2020.115966_bib41) 1988; 89
Brünjes (10.1016/j.watres.2020.115966_bib15) 2016; 571
Niederste-Hollenberg (10.1016/j.watres.2020.115966_bib97) 2018; 27
Dulski (10.1016/j.watres.2020.115966_bib32) 2011; 19
Bazzicalupi (10.1016/j.watres.2020.115966_bib7) 2012; 256
Klaver (10.1016/j.watres.2020.115966_bib54) 2014; 47
De Baar (10.1016/j.watres.2020.115966_bib29) 1985; 49
Hathorne (10.1016/j.watres.2020.115966_bib44) 2012; 13
Vriens (10.1016/j.watres.2020.115966_bib129) 2017; 7b01731
Bellin (10.1016/j.watres.2020.115966_bib8) 2006; 60
de Campos (10.1016/j.watres.2020.115966_bib30) 2016; 188
Bichler (10.1016/j.watres.2020.115966_bib11) 2016; 30
Marckmann (10.1016/j.watres.2020.115966_bib76) 2006; 17
Möller (10.1016/j.watres.2020.115966_bib85) 2010; 25
Hinck (10.1016/j.watres.2020.115966_bib46) 1997; 35
Hissler (10.1016/j.watres.2020.115966_bib47) 2015; 347
Lingott (10.1016/j.watres.2020.115966_bib74) 2016; 18
Birka (10.1016/j.watres.2020.115966_bib13) 2013; 1308
Kulaksiz (10.1016/j.watres.2020.115966_bib60) 2011; 37
Atinkpahoun (10.1016/j.watres.2020.115966_bib2) 2020; 251
Micskei (10.1016/j.watres.2020.115966_bib83) 1993; 31
Montagne (10.1016/j.watres.2020.115966_bib90) 2016; 73
Callaway (10.1016/j.watres.2020.115966_bib19) 2020; 579
Lee (10.1016/j.watres.2020.115966_bib70) 2014; 92
Food and Drug Administration (10.1016/j.watres.2020.115966_bib37)
Frenzel (10.1016/j.watres.2020.115966_bib39) 2008; 43
Barber (10.1016/j.watres.2020.115966_bib3) 2006; 40
Food and Drug Administration (10.1016/j.watres.2020.115966_bib38)
Verplanck (10.1016/j.watres.2020.115966_bib127) 2010; 44
Tepe (10.1016/j.watres.2020.115966_bib125) 2014; 45
Merbach (10.1016/j.watres.2020.115966_bib80) 2013
Clases (10.1016/j.watres.2020.115966_bib22) 2018; 51
Kulaksiz (10.1016/j.watres.2020.115966_bib57) 2012
Lawrence (10.1016/j.watres.2020.115966_bib65) 2010; 80
Knappe (10.1016/j.watres.2020.115966_bib55) 2005; 65
Reoyo-Prats (10.1016/j.watres.2020.115966_bib113) 2018; 25
Byrne (10.1016/j.watres.2020.115966_bib18) 1990; 54
Cobelo-García (10.1016/j.watres.2020.115966_bib24) 2015; 22
Kulaksiz (10.1016/j.watres.2020.115966_bib59) 2011; 26
Lawrence (10.1016/j.watres.2020.115966_bib64) 2010; 60
Means (10.1016/j.watres.2020.115966_bib78) 1980; 1
Rozemeijer (10.1016/j.watres.2020.115966_bib116) 2012; 16
Elizalde-González (10.1016/j.watres.2020.115966_bib34) 2017; 24
Davranche (10.1016/j.watres.2020.115966_bib26) 2015; 21
Lindner (10.1016/j.watres.2020.115966_bib72) 2013; 405
Merschel (10.1016/j.watres.2020.115966_bib81) 2015; 533
Elbaz-Poulichet (10.1016/j.watres.2020.115966_bib33) 2002; 36
Wang (10.1016/j.watres.2020.115966_bib130) 1992; 31
Migaszewski (10.1016/j.watres.2020.115966_bib84) 2015; 45
Richardson (10.1016/j.watres.2020.115966_bib114) 2016; 88
Bau (10.1016/j.watres.2020.115966_bib5) 2006; 66
Lindner (10.1016/j.watres.2020.115966_bib73) 2015; 407
Schijf (10.1016/j.watres.2020.115966_bib117) 2018; 5
Semelka (10.1016/j.watres.2020.115966_bib119) 2019; 58
Kamber (10.1016/j.watres.2020.115966_bib52) 2005; 69
Kovalova (10.1016/j.watres.2020.115966_bib56) 2013; 47
Massmann (10.1016/j.watres.2020.115966_bib132) 2008; 22
Joffe (10.1016/j.watres.2020.115966_bib51) 1998; 5
Möller (10.1016/j.watres.2020.115966_bib86) 2000; 69–70
Idée (10.1016/j.watres.2020.115966_bib49) 2008; 248
Patra (10.1016/j.watres.2020.115966_bib103) 2017; 5
Verplanck (10.1016/j.watres.2020.115966_bib128) 2005; 39
Taylor (10.1016/j.watres.2020.115966_bib123) 1985
Gromet (10.1016/j.watres.2020.115966_bib43) 1984; 48
Nozaki (10.1016/j.watres.2020.115966_bib98) 2000; 64
Beyer (10.1016/j.watres.2020.115966_bib10) 2012
Möller (10.1016/j.watres.2020.115966_bib88) 2003; 31
Rabiet (10.1016/j.watres.2020.115966_bib111) 2009; 75
Morteani (10.1016/j.watres.2020.115966_bib93) 2006; 28
Menahem (10.1016/j.watres.2020.115966_bib79) 2016
Lerat-Hardy (10.1016/j.watres.2020.115966_bib71) 2019; 656
Neubert (10.1016/j.watres.2020.115966_bib96) 2008
Kümmerer (10.1016/j.watres.2020.115966_bib61) 2000; 34
Idée (10.1016/j.watres.2020.115966_bib50) 2009
Morcos (10.1016/j.watres.2020.115966_bib92) 2007; 80
Song (10.1016/j.watres.2020.115966_bib120) 2017; 172
Le Fur (10.1016/j.watres.2020.115966_bib69) 2019; 11
Hatje (10.1016/j.watres.2020.115966_bib45) 2016; 50
Davranche (10.1016/j.watres.2020.115966_bib27) 2004; 277
Xia (10.1016/j.watres.2020.115966_bib131) 2010; 51
Rogowska (10.1016/j.watres.2020.115966_bib115) 2018
Davranche (10.1016/j.watres.2020.115966_bib28) 2008; 247
Möller (10.1016/j.watres.2020.115966_bib89) 2002; 36
Schmidt (10.1016/j.watres.2020.115966_bib118) 2019; 687
Kulaksiz (10.1016/j.watres.2020.115966_bib58) 2013; 362
Gibby (10.1016/j.watres.2020.115966_bib40) 2019; 58
Lagerström (10.1016/j.watres.2020.115966_bib63) 2013; 155
Pourret (10.1016/j.watres.2020.115966_bib108)
References_xml – year: 2016
  ident: bib79
  article-title: Transport of gadolinium- and arsenic-based pharmaceuticals in saturated soil under various redox conditions
  publication-title: Chemosphere
– year: 2017
  ident: bib100
  article-title: Magnetic resonance imaging (MRI) exams [WWW Document]
  publication-title: OECD Heal. Stat. Heal. Care Util
– volume: 571
  start-page: 1432
  year: 2016
  end-page: 1440
  ident: bib15
  article-title: Anthropogenic gadolinium as a transient tracer for investigating river bank filtration
  publication-title: Sci. Total Environ.
– volume: 58
  start-page: 76
  year: 2019
  end-page: 81
  ident: bib40
  article-title: The use of a binary chelate formulation: could gadolinium based linear contrast agents be rescued by the addition of zinc selective chelates?
  publication-title: Magn. Reson. Imaging
– volume: 26
  start-page: 1877
  year: 2011
  end-page: 1885
  ident: bib59
  article-title: Anthropogenic gadolinium as a microcontaminant in tap water used as drinking water in urban areas and megacities
  publication-title: Appl. Geochem.
– volume: 26
  start-page: 140
  year: 2011
  end-page: 149
  ident: bib87
  article-title: Behavior of Gd-DTPA in simulated bank filtration
  publication-title: Appl. Geochem.
– volume: 22
  start-page: 788
  year: 2008
  end-page: 801
  ident: bib132
  article-title: Investigation of groundwater residence times during bank filtration in Berlin: a multi-tracer approach
  publication-title: Hydrol. Process. Int. J.
– volume: 277
  start-page: 271
  year: 2004
  end-page: 279
  ident: bib27
  article-title: Impact of humate complexation on the adsorption of REE onto Fe oxyhydroxide
  publication-title: J. Colloid Interface Sci.
– volume: 533
  start-page: 91
  year: 2015
  end-page: 101
  ident: bib81
  article-title: Rare earth elements in the aragonitic shell of freshwater mussel Corbicula fluminea and the bioavailability of anthropogenic lanthanum, samarium and gadolinium in river water
  publication-title: Sci. Total Environ.
– volume: 58
  start-page: 174
  year: 2019
  end-page: 178
  ident: bib119
  article-title: Influence of excess ligand on Nephrogenic Systemic Fibrosis associated with nonionic, linear gadolinium-based contrast agents
  publication-title: Magn. Reson. Imaging
– year: 2018
  ident: bib37
  article-title: Update on FDA approach to safety issue of gadolinium retention after administration of gadolinium-based contrast agents
– volume: 18
  start-page: 200
  year: 2016
  end-page: 207
  ident: bib74
  article-title: Gadolinium-uptake by aquatic and terrestrial organisms-distribution determined by laser ablation inductively coupled plasma mass spectrometry
  publication-title: Environ. Sci. Process. Impacts
– volume: 46
  start-page: 11929
  year: 2012
  end-page: 11936
  ident: bib124
  article-title: Speciation and isotope dilution analysis of gadolinium-based contrast agents in wastewater
  publication-title: Environ. Sci. Technol.
– volume: 31
  start-page: 225
  year: 2003
  end-page: 239
  ident: bib88
  article-title: Anomalous gadolinium, cerium, and yttrium contents in the adige and isarco river waters and in the water of their tributaries (provinces trento and bolzano/bozen, NE Italy)
  publication-title: Acta Hydrochim. Hydrobiol.
– volume: 75
  start-page: 1057
  year: 2009
  end-page: 1064
  ident: bib111
  article-title: Positive gadolinium anomalies in wastewater treatment plant effluents and aquatic environment in the Hérault watershed (South France)
  publication-title: Chemosphere
– volume: 21
  start-page: 1104
  year: 2006
  end-page: 1108
  ident: bib42
  article-title: Gadolinium – a specific trigger for the development of nephrogenic fibrosing dermopathy and nephrogenic systemic fibrosis?
  publication-title: Nephrol. Dial. Transplant.
– volume: 19
  start-page: 1044
  year: 2015
  end-page: 1054
  ident: bib94
  article-title: Criticality of the rare earth elements
  publication-title: J. Ind. Ecol.
– volume: 73
  start-page: 13
  year: 2016
  end-page: 14
  ident: bib90
  article-title: Blood-brain barrier permeability and gadolinium benefits and potential pitfalls in research
  publication-title: JAMA Neurol.
– volume: 65
  start-page: 167
  year: 2005
  end-page: 189
  ident: bib55
  article-title: Positive gadolinium anomaly in surface water and ground water of the urban area Berlin, Germany
  publication-title: Chem. Erde - Geochem.
– volume: 21
  start-page: 469
  year: 2008
  end-page: 490
  ident: bib107
  article-title: Efficiency, thermodynamic and kinetic stability of marketed gadolinium chelates and their possible clinical consequences: a critical review
  publication-title: Biometals
– volume: 407
  start-page: 2415
  year: 2015
  end-page: 2422
  ident: bib73
  article-title: Analysis of Gadolinium-based contrast agents in tap water with a new hydrophilic interaction chromatography (ZIC-cHILIC) hyphenated with inductively coupled plasma mass spectrometry
  publication-title: Anal. Bioanal. Chem.
– volume: 25
  start-page: 48
  year: 2010
  end-page: 59
  ident: bib85
  article-title: Transmetallation of Gd-DTPA by Cu, Y and lanthanides and its impact on the hydrosphere
  publication-title: Appl. Geochem.
– volume: 247
  start-page: 154
  year: 2008
  end-page: 170
  ident: bib28
  article-title: Competitive binding of REE to humic acid and manganese oxide: impact of reaction kinetics on development of cerium anomaly and REE adsorption
  publication-title: Chem. Geol.
– volume: 47
  start-page: 7899
  year: 2013
  end-page: 7908
  ident: bib56
  article-title: Elimination of micropollutants during post-treatment of hospital wastewater with powdered activated carbon, ozone, and UV
  publication-title: Environ. Sci. Technol.
– volume: 25
  start-page: 6107
  year: 2018
  end-page: 6121
  ident: bib113
  article-title: Dynamics and sources of pharmaceutically active compounds in a coastal Mediterranean river during heavy rains
  publication-title: Environ. Sci. Pollut. Res.
– volume: 248
  start-page: 77
  year: 2008
  end-page: 88
  ident: bib49
  article-title: Possible involvement of gadolinium chelates in the pathophysiology of nephrogenic systemic fibrosis: a critical review
  publication-title: Toxicology
– volume: 30
  start-page: 1742
  year: 2016
  end-page: 1756
  ident: bib11
  article-title: Quantification of river water infiltration in shallow aquifers using acesulfame and anthropogenic gadolinium
  publication-title: Hydrol. Process.
– volume: 49
  start-page: 1961
  year: 1985
  end-page: 1969
  ident: bib29
  article-title: Anomalies in rare earth distributions in seawater: Gd and Tb
  publication-title: Geochem. Cosmochim. Acta
– volume: 43
  start-page: 3534
  year: 2009
  end-page: 3540
  ident: bib68
  article-title: Detection of anthropogenic gadolinium in treated wastewater in South East Queensland, Australia
  publication-title: Water Res.
– volume: 40
  start-page: 475
  year: 2006
  end-page: 486
  ident: bib3
  article-title: Chemical loading into surface water along a hydrological, biogeochemical, and land use gradient: a holistic watershed approach
  publication-title: Environ. Sci. Technol.
– volume: 27
  start-page: 147
  year: 2018
  end-page: 155
  ident: bib97
  article-title: Reducing the emission of X-Ray contrast agents to the environment
  publication-title: Gaia
– volume: 39
  start-page: 6923
  year: 2005
  end-page: 6929
  ident: bib128
  article-title: Aqueous stability of gadolinium in surface waters receiving sewage treatment plant effluent Boulder Creek, Colorado
  publication-title: Environ. Sci. Technol.
– volume: 69
  start-page: 1041
  year: 2005
  end-page: 1058
  ident: bib52
  article-title: A new estimate for the composition of weathered young upper continental crust from alluvial sediments, Queensland, Australia
  publication-title: Geochem. Cosmochim. Acta
– volume: 51
  start-page: 212
  year: 2018
  end-page: 218
  ident: bib22
  article-title: LA-ICP-MS/MS improves limits of detection in elemental bioimaging of gadolinium deposition originating from MRI contrast agents in skin and brain tissues
  publication-title: J. Trace Elem. Med. Biol.
– volume: 61
  start-page: 685
  year: 2010
  end-page: 692
  ident: bib67
  article-title: Removal of magnetic resonance imaging contrast agents through advanced water treatment plants
  publication-title: Water Sci. Technol.
– volume: 7b01731
  year: 2017
  ident: bib129
  article-title: Quantification of element fluxes in wastewaters: a nationwide survey in Switzerland
  publication-title: Environ. Sci. Technol.
– volume: 40
  start-page: 463
  year: 2006
  end-page: 474
  ident: bib99
  article-title: Rare earth element abundances in some seawaters and related river waters from the Osaka Bay area, Japan: significance of anthropogenic Gd
  publication-title: Geochem. J.
– volume: 100
  start-page: 147
  year: 2006
  end-page: 161
  ident: bib66
  article-title: The behaviour of the rare earth elements during estuarine mixing-revisited
  publication-title: Mar. Chem.
– volume: 10
  start-page: 1
  year: 2005
  end-page: 8
  ident: bib48
  article-title: Identification of degradation characteristics - exemplified by Gd-DTPA in a large experimental column
  publication-title: Environ. Model. Assess.
– volume: 13
  start-page: 1
  year: 2012
  end-page: 12
  ident: bib44
  article-title: Online preconcentration ICP-MS analysis of rare earth elements in seawater
  publication-title: G-cubed
– volume: 405
  start-page: 1865
  year: 2013
  end-page: 1873
  ident: bib72
  article-title: Speciation of gadolinium in surface water samples and plants by hydrophilic interaction chromatography hyphenated with inductively coupled plasma mass spectrometry
  publication-title: Anal. Bioanal. Chem.
– volume: 5
  start-page: 1
  year: 2018
  end-page: 17
  ident: bib117
  article-title: Effect of Mg and Ca on the stability of the MRI contrast agent Gd–DTPA in seawater
  publication-title: Front. Mar. Sci.
– volume: 80
  start-page: 794
  year: 2010
  end-page: 799
  ident: bib65
  article-title: Tracing treated wastewater in an inland catchment using anthropogenic gadolinium
  publication-title: Chemosphere
– start-page: 538
  year: 2017
  end-page: 543
  ident: bib16
  article-title: Stabilitätsunterschiede von Gadolinium-Komplexen
– volume: 80
  start-page: 586
  year: 2007
  ident: bib92
  article-title: Nephrogenic systemic fibrosis following the administration of extracellular gadolinium based contrast agents: is the stability of the contrast agent molecule an important factor in the pathogenesis of this condition?
  publication-title: Br. J. Radiol.
– volume: 37
  start-page: 973
  year: 2011
  end-page: 979
  ident: bib60
  article-title: Rare earth elements in the Rhine River, Germany: first case of anthropogenic lanthanum as a dissolved microcontaminant in the hydrosphere
  publication-title: Environ. Int.
– volume: 45
  start-page: 191
  year: 2014
  end-page: 197
  ident: bib125
  article-title: High-technology metals as emerging contaminants: strong increase of anthropogenic gadolinium levels in tap water of Berlin, Germany, from 2009 to 2012
  publication-title: Appl. Geochem.
– volume: 188
  start-page: 281
  year: 2016
  ident: bib30
  article-title: Anthropogenic gadolinium anomalies and rare earth elements in the water of Atibaia River and Anhumas Creek, Southeast Brazil
  publication-title: Environ. Monit. Assess.
– year: 2012
  ident: bib57
  article-title: Rare Earth Elements as Emerging Contaminants in the Rhine River , Germany and its Tributaries
– volume: 66
  start-page: 143
  year: 2006
  end-page: 152
  ident: bib5
  article-title: Anthropogenic gadolinium as a micropollutant in river waters in Pennsylvania and in Lake Erie, northeastern United States
  publication-title: Chem. Erde
– volume: 91
  start-page: 244
  year: 2016
  end-page: 250
  ident: bib12
  article-title: Investigating the stability of gadolinium based contrast agents towards UV radiation
  publication-title: Water Res.
– volume: 19
  start-page: 823
  year: 2011
  end-page: 834
  ident: bib32
  article-title: Comparison of gadopentetic acid (Gd-DTPA) and bromide in a dual-tracer field experiment
  publication-title: Hydrogeol. J.
– year: 2018
  ident: bib108
  article-title: Characterization of metal binding sites onto biochar using rare earth elements as a fingerprint. Heliyon e00543
– volume: 347
  start-page: 294
  year: 2015
  end-page: 303
  ident: bib47
  article-title: Anthropogenic rare earth element fluxes into floodplains: coupling between geochemical monitoring and hydrodynamic sediment transport modelling
  publication-title: Compt. Rendus Geosci.
– start-page: 1249
  year: 2009
  end-page: 1258
  ident: bib50
  article-title: Role of thermodynamic and kinetic parameters in gadolinium chelate stability
  publication-title: J. Magn. Reson. Imag.
– volume: 31
  start-page: 1011
  year: 1993
  end-page: 1020
  ident: bib83
  article-title: Water exchange on [Gd(H2O)8]3+ and [Gd(PDTA)(H2O)2]- in aqueous solution: a variable-pressure, -temperature and -magnetic field 17O NMR study
  publication-title: Magn. Reson. Chem.
– volume: 38
  start-page: 145
  year: 2017
  end-page: 151
  ident: bib109
  article-title: The stability of gadolinium-based contrast agents in human serum: a reanalysis of literature data and association with clinical outcomes
  publication-title: Magn. Reson. Imaging
– volume: 66
  start-page: 160
  year: 2008
  end-page: 167
  ident: bib9
  article-title: Extracellular gadolinium-based contrast media: an overview
  publication-title: Eur. J. Radiol.
– start-page: 169
  year: 1989
  end-page: 200
  ident: bib77
  article-title: Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes
  publication-title: Geochemistry and Mineralogy of Rare Earth Elements
– volume: 345
  start-page: 206
  year: 2010
  end-page: 213
  ident: bib104
  article-title: Dynamic structure of humic substances: rare earth elements as a fingerprint
  publication-title: J. Colloid Interface Sci.
– volume: 154
  start-page: 15
  year: 2016
  end-page: 22
  ident: bib110
  article-title: Application of solid phase extraction procedures for rare earth elements determination in environmental samples
  publication-title: Talanta
– volume: 43
  start-page: 2884
  year: 2009
  end-page: 2890
  ident: bib62
  article-title: Speciation analysis of gadolinium chelates in hospital effluents and wastewater treatment plant sewage by a novel HILIC/ICP-MS method
  publication-title: Environ. Sci. Technol.
– volume: 172
  start-page: 155
  year: 2017
  end-page: 165
  ident: bib120
  article-title: Anthropogenic rare earth elements and their spatial distributions in the Han River, South Korea
  publication-title: Chemosphere
– volume: 89
  start-page: 35
  year: 1988
  end-page: 47
  ident: bib41
  article-title: Rare earth elements in river waters
  publication-title: Earth Planet Sci. Lett.
– volume: 36
  start-page: 1102
  year: 2002
  end-page: 1105
  ident: bib33
  article-title: Occurrence of an anthropogenic gadolinium anomaly in river and coastal waters of Southern France
  publication-title: Water Res.
– volume: 35
  start-page: 25
  year: 1997
  end-page: 31
  ident: bib46
  article-title: Resistance of EDTA and DTPA to aerobic biodegradation
  publication-title: Water Sci. Technol.
– volume: 22
  start-page: 15188
  year: 2015
  end-page: 15194
  ident: bib24
  article-title: COST action TD1407: network on technology-critical elements (NOTICE)—from environmental processes to human health threats
  publication-title: Environ. Sci. Pollut. Res.
– volume: 5
  start-page: 491
  year: 1998
  end-page: 502
  ident: bib51
  article-title: Pharmacokinetics of gadodiamide injection in patients with severe renal insufficiency and patients undergoing hemodialysis or continuous ambulatory peritoneal dialysis
  publication-title: Acad. Radiol.
– volume: 656
  start-page: 409
  year: 2019
  end-page: 420
  ident: bib71
  article-title: Rare Earth Element fluxes over 15 years into a major European Estuary (Garonne-Gironde, SW France): hospital effluents as a source of increasing gadolinium anomalies
  publication-title: Sci. Total Environ.
– volume: 288
  start-page: 416
  year: 2018
  end-page: 423
  ident: bib95
  article-title: Accumulation of gadolinium in human cerebrospinal fluid after gadobutrol-enhanced MR imaging: a prospective observational cohort study
  publication-title: Radiology
– volume: 610–611
  start-page: 1083
  year: 2018
  end-page: 1091
  ident: bib121
  article-title: The effect of nanoparticles and humic acid on technology critical element concentrations in aqueous solutions with soil and sand
  publication-title: Sci. Total Environ.
– volume: 88
  start-page: 546
  year: 2016
  end-page: 582
  ident: bib114
  article-title: Water analysis: emerging contaminants and current issues
  publication-title: Anal. Chem.
– volume: 642
  start-page: 1100
  year: 2018
  end-page: 1107
  ident: bib14
  article-title: Evaluation of the potential hazard of lanthanides to freshwater microcrustaceans
  publication-title: Sci. Total Environ.
– volume: 1
  start-page: 45
  year: 1980
  end-page: 60
  ident: bib78
  article-title: Relative degradation rates of NTA, EDTA and DTPA and environmental implications
  publication-title: Environ. Pollut. Ser. B Chem. Phys.
– volume: 45
  start-page: 429
  year: 2015
  end-page: 471
  ident: bib84
  article-title: The characteristics, occurrence, and geochemical behavior of rare earth elements in the environment: a review
  publication-title: Crit. Rev. Environ. Sci. Technol.
– year: 2008
  ident: bib96
  article-title: Umweltverhalten und Ökotoxikologie von gadoliniumhaltigen Magnetresonanztomographie-Kontrastmitteln
– volume: 51
  start-page: 1126
  year: 2010
  end-page: 1136
  ident: bib131
  article-title: Gadolinium released from MR contrast agents is deposited in brain tumors: in situ demonstration using scanning electron microscopy with energy dispersive X-ray spectroscopy
  publication-title: Acta Radiol.
– volume: 5
  start-page: 6910
  year: 2017
  end-page: 6923
  ident: bib103
  article-title: Removal and recycling of precious rare earth element from wastewater samples using imprinted magnetic ordered mesoporous carbon
  publication-title: ACS Sustain. Chem. Eng.
– volume: 90
  start-page: 142
  year: 2018
  end-page: 149
  ident: bib6
  article-title: The European Shale: an improved data set for normalisation of rare earth element and yttrium concentrations in environmental and biological samples from Europe
  publication-title: Appl. Geochem.
– volume: 28
  start-page: 257
  year: 2006
  end-page: 264
  ident: bib93
  article-title: Input and fate of anthropogenic estrogens and gadolinium in surface water and sewage plants in the hydrological basin of Prague (Czech Republic)
  publication-title: Environ. Geochem. Health
– volume: 362
  start-page: 43
  year: 2013
  end-page: 50
  ident: bib58
  article-title: Anthropogenic dissolved and colloid/nanoparticle-bound samarium, lanthanum and gadolinium in the Rhine River and the impending destruction of the natural rare earth element distribution in rivers
  publication-title: Earth Planet Sci. Lett.
– volume: 69–70
  start-page: 409
  year: 2000
  end-page: 414
  ident: bib86
  article-title: Anthropogenic gadolinium as a conservative tracer in hydrology
  publication-title: J. Geochem. Explor.
– volume: 143
  start-page: 245
  year: 1996
  end-page: 255
  ident: bib4
  article-title: Anthropogenic origin of positive gadolinium anomalies in river waters
  publication-title: Earth Planet Sci. Lett.
– volume: 60
  start-page: 314
  year: 2006
  end-page: 323
  ident: bib8
  article-title: MR contrast agents, the old and the new
  publication-title: Eur. J. Radiol.
– volume: 155
  start-page: 71
  year: 2013
  end-page: 80
  ident: bib63
  article-title: Automated on-line flow-injection ICP-MS determination of trace metals (Mn, Fe, Co, Ni, Cu and Zn) in open ocean seawater: application to the GEOTRACES program
  publication-title: Mar. Chem.
– volume: 50
  start-page: 4159
  year: 2016
  end-page: 4168
  ident: bib45
  article-title: Increases in anthropogenic gadolinium anomalies and rare earth element concentrations in san francisco bay over a 20 Year record
  publication-title: Environ. Sci. Technol.
– volume: 369
  start-page: 336
  year: 2009
  end-page: 349
  ident: bib106
  article-title: Natural versus anthropogenic sources in the surface- and groundwater dissolved load of the Dommel river (Meuse basin): constraints by boron and strontium isotopes and gadolinium anomaly
  publication-title: J. Hydrol.
– volume: 31
  start-page: 1095
  year: 1992
  end-page: 1099
  ident: bib130
  article-title: A kinetic investigation of the lanthanide DOTA chelates. Stability and rates of formation and of dissociation of a macrocyclic gadolinium(III) polyaza polycarboxylic MRI contrast agent
  publication-title: Inorg. Chem.
– volume: 34
  start-page: 3
  year: 2016
  end-page: 9
  ident: bib53
  article-title: Brain gadolinium deposition after administration of gadolinium-based contrast agents
  publication-title: Jpn. J. Radiol.
– volume: 687
  start-page: 1401
  year: 2019
  end-page: 1408
  ident: bib118
  article-title: Anthropogenic gadolinium in tap water and in tap water-based beverages from fast-food franchises in six major cities in Germany
  publication-title: Sci. Total Environ.
– volume: 251
  start-page: 2428
  year: 2007
  end-page: 2451
  ident: bib21
  article-title: Small molecular gadolinium(III) complexes as MRI contrast agents for diagnostic imaging
  publication-title: Coord. Chem. Rev.
– volume: 17
  start-page: 2359
  year: 2006
  end-page: 2362
  ident: bib76
  article-title: Nephrogenic systemic fibrosis: suspected causative role of gadodiamide used for contrast-enhanced magnetic resonance imaging
  publication-title: J. Am. Soc. Nephrol.
– volume: 104
  start-page: 135
  year: 2018
  end-page: 147
  ident: bib23
  article-title: Analysis of metal-based contrast agents in medicine and the environment
  publication-title: TrAC Trends Anal. Chem. (Reference Ed.)
– volume: 11
  year: 2019
  ident: bib69
  article-title: The biological fate of gadolinium-based MRI contrast agents: a call to action for bioinorganic chemists
  publication-title: Metall
– volume: 47
  start-page: 186
  year: 2014
  end-page: 197
  ident: bib54
  article-title: Anthropogenic rare earth element in rivers: gadoliniumand lanthanum. Partitioning between the dissolved and particulate phases in the rhine river and spatial propagation through the rhine-meuse delta (The Netherlands)
  publication-title: Appl. Geochem.
– volume: 36
  start-page: 2387
  year: 2002
  end-page: 2394
  ident: bib89
  article-title: Anthropogenic Gd in surface water, drainage system, and the water supply of the City of Prague, Czech Republic
  publication-title: Environ. Sci. Technol.
– volume: 1308
  start-page: 125
  year: 2013
  end-page: 131
  ident: bib13
  article-title: Sensitive quantification of gadolinium-based magnetic resonance imaging contrast agents in surface waters using hydrophilic interaction liquid chromatography and inductively coupled plasma sector field mass spectrometry
  publication-title: J. Chromatogr. A
– volume: 60
  start-page: 1113
  year: 2010
  end-page: 1116
  ident: bib64
  article-title: Detection of anthropogenic gadolinium in the brisbane river plume in moreton bay, Queensland, Australia
  publication-title: Mar. Pollut. Bull.
– volume: 221
  start-page: 954
  year: 2016
  end-page: 962
  ident: bib1
  article-title: Adsorption of rare earth metals: a review of recent literature
  publication-title: J. Mol. Liq.
– volume: 43
  start-page: 817
  year: 2008
  end-page: 828
  ident: bib39
  article-title: Stability of gadolinium-based magnetic resonance imaging contrast agents in human serum at 37°C
  publication-title: Invest. Radiol.
– volume: 92
  start-page: 489
  year: 2014
  end-page: 508
  ident: bib70
  article-title: A review on application of flocculants in wastewater treatment
  publication-title: Process Saf. Environ. Protect.
– volume: 68
  start-page: 691
  year: 2004
  end-page: 699
  ident: bib75
  article-title: Carbonate complexation of yttrium and the rare earth elements in natural waters
  publication-title: Geochem. Cosmochim. Acta
– volume: 47
  start-page: 9942
  year: 2013
  end-page: 9949
  ident: bib25
  article-title: Reaction of gadolinium chelates with ozone and hydroxyl radicals
  publication-title: Environ. Sci. Technol.
– volume: 251
  year: 2020
  ident: bib2
  article-title: Rare earth elements (REE) in the urban wastewater of Cotonou (Benin, West Africa)
  publication-title: Chemosphere
– volume: 66
  start-page: 175
  year: 2008
  end-page: 179
  ident: bib91
  article-title: Extracellular gadolinium contrast agents: differences in stability
  publication-title: Eur. J. Radiol.
– volume: 16
  start-page: 2405
  year: 2012
  end-page: 2415
  ident: bib116
  article-title: Tracing the spatial propagation of river inlet water into an agricultural polder area using anthropogenic gadolinium
  publication-title: Hydrol. Earth Syst. Sci.
– volume: 24
  start-page: 8164
  year: 2017
  end-page: 8175
  ident: bib34
  article-title: Removal of gadolinium-based contrast agents: adsorption on activated carbon
  publication-title: Environ. Sci. Pollut. Res.
– year: 2012
  ident: bib10
  article-title: Koordinationschemie: Grundlagen-Synthesen-Anwendungen
– volume: 48
  start-page: 2469
  year: 1984
  end-page: 2482
  ident: bib43
  article-title: The “North American shale composite” - its compilation, major and trace element characteristics
  publication-title: G-cubed
– volume: 38
  start-page: 146
  year: 1997
  end-page: 150
  ident: bib17
  article-title: Stability constants and 1H relaxation effects of ternary complexes formed between Gd-DTPA, Gd-DTPA-BMA, Gd-DOTA, and Gd-EDTA and citrate, phosphate, and carbonate ions
  publication-title: Magn. Reson. Med.
– volume: 64
  start-page: 4131
  year: 2000
  end-page: 4148
  ident: bib31
  article-title: The distribution of rare earth elements in groundwaters: assessing the role of source-rock composition, redox changes and colloidal particles
  publication-title: Geochem. Cosmochim. Acta
– volume: 99
  start-page: 2293
  year: 1999
  end-page: 2352
  ident: bib20
  article-title: Gadolinium(III) chelates as MRI contrast agents: structure, dynamics, and applications
  publication-title: Chem. Rev.
– volume: 44
  start-page: 5
  year: 2017
  end-page: 8
  ident: bib35
  article-title: EMA’s final opinion confirms restrictions on use of linear gadolinium agents in body scans Recommendations conclude
  publication-title: EMA’s Sci. Rev. Gadolinium Deposit.
– volume: 54
  start-page: 2645
  year: 1990
  end-page: 2656
  ident: bib18
  article-title: Rare earth element scavenging in seawater
  publication-title: Geochem. Cosmochim. Acta
– volume: 34
  start-page: 573
  year: 2000
  end-page: 577
  ident: bib61
  article-title: Hospital effluents as a source of gadolinium in the aquatic environment
  publication-title: Environ. Sci. Technol.
– volume: 34
  start-page: 1373
  year: 2016
  end-page: 1376
  ident: bib122
  article-title: Gadolinium toxicity: iron and ferroportin as central targets
  publication-title: Magn. Reson. Imaging
– volume: 130
  start-page: 71
  year: 2018
  end-page: 86
  ident: bib105
  article-title: Rare earth elements removal techniques from water/wastewater: a review
  publication-title: Desalin. Water Treat.
– volume: 579
  start-page: 482
  year: 2020
  end-page: 483
  ident: bib19
  article-title: The coronavirus pandemic in five powerful charts
  publication-title: Nature
– volume: 58
  start-page: 259
  year: 2017
  end-page: 263
  ident: bib126
  article-title: Are the increasing amounts of gadolinium in surface and tap water dangerous?
  publication-title: Acta Radiol.
– volume: 95
  start-page: 639
  year: 2014
  end-page: 642
  ident: bib112
  article-title: Transmetallation of Gd-DTPA by Fe3+, Cu2+and Zn2+in water: batch experiments and coagulation-flocculation simulations
  publication-title: Chemosphere
– year: 2018
  ident: bib102
  article-title: Variations of anthropogenic gadolinium in rivers close to waste water treatment plant discharges
  publication-title: Environ. Sci. Pollut. Res.
– volume: 256
  start-page: 13
  year: 2012
  end-page: 27
  ident: bib7
  article-title: Addressing selectivity criteria in binding equilibria
  publication-title: Coord. Chem. Rev.
– volume: 55
  start-page: 379
  year: 2004
  end-page: 388
  ident: bib82
  article-title: Biological and photochemical degradation rates of diethylenetriaminepentaacetic acid (DTPA) in the presence and absence of Fe(III)
  publication-title: Chemosphere
– year: 1985
  ident: bib123
  article-title: The Continental Crust: its Composition and Evolution. An Examination of the Geochemical Record Preserved in Sedimentary Rocks
– volume: 44
  start-page: 2577
  year: 2014
  end-page: 2641
  ident: bib101
  article-title: Advanced oxidation processes in water/wastewater treatment: principles and applications. A review
  publication-title: Crit. Rev. Environ. Sci. Technol.
– volume: 45
  start-page: 125
  year: 2018
  end-page: 130
  ident: bib36
  article-title: Spatially resolved quantification of gadolinium deposited in the brain of a patient treated with gadolinium-based contrast agents
  publication-title: J. Trace Elem. Med. Biol.
– year: 2017
  ident: bib38
  article-title: FDA Safety Announcement - FDA warns that gadolinium-based contrast agents (GBCAs) are retained in the body; requires new class warnings
– volume: 64
  start-page: 3975
  year: 2000
  end-page: 3982
  ident: bib98
  article-title: Dissolved indium and rare earth elements in three Japanese rivers and Tokyo Bay: evidence for anthropogenic Gd and in
  publication-title: Geochem. Cosmochim. Acta
– year: 2013
  ident: bib80
  article-title: The Chemistry of Contrast Agents
– year: 2018
  ident: bib115
  article-title: Gadolinium as a new emerging contaminant of aquatic environment
  publication-title: Environ. Toxicol. Chem.
– volume: 21
  start-page: 197
  year: 2015
  end-page: 215
  ident: bib26
  article-title: Biogeochemical factors affecting rare earth element distribution in shallow wetland groundwater
  publication-title: Aquat. Geochem.
– volume: 44
  start-page: 3876
  year: 2010
  end-page: 3882
  ident: bib127
  article-title: Evaluating the behavior of gadolinium and other rare earth elements through large metropolitan sewage treatment plants
  publication-title: Environ. Sci. Technol.
– volume: 43
  start-page: 2884
  year: 2009
  ident: 10.1016/j.watres.2020.115966_bib62
  article-title: Speciation analysis of gadolinium chelates in hospital effluents and wastewater treatment plant sewage by a novel HILIC/ICP-MS method
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es803278n
– volume: 405
  start-page: 1865
  year: 2013
  ident: 10.1016/j.watres.2020.115966_bib72
  article-title: Speciation of gadolinium in surface water samples and plants by hydrophilic interaction chromatography hyphenated with inductively coupled plasma mass spectrometry
  publication-title: Anal. Bioanal. Chem.
  doi: 10.1007/s00216-012-6643-x
– start-page: 538
  year: 2017
  ident: 10.1016/j.watres.2020.115966_bib16
– ident: 10.1016/j.watres.2020.115966_bib38
– volume: 26
  start-page: 140
  year: 2011
  ident: 10.1016/j.watres.2020.115966_bib87
  article-title: Behavior of Gd-DTPA in simulated bank filtration
  publication-title: Appl. Geochem.
  doi: 10.1016/j.apgeochem.2010.11.011
– volume: 610–611
  start-page: 1083
  year: 2018
  ident: 10.1016/j.watres.2020.115966_bib121
  article-title: The effect of nanoparticles and humic acid on technology critical element concentrations in aqueous solutions with soil and sand
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.08.170
– volume: 27
  start-page: 147
  year: 2018
  ident: 10.1016/j.watres.2020.115966_bib97
  article-title: Reducing the emission of X-Ray contrast agents to the environment
  publication-title: Gaia
  doi: 10.14512/gaia.27.1.10
– volume: 251
  year: 2020
  ident: 10.1016/j.watres.2020.115966_bib2
  article-title: Rare earth elements (REE) in the urban wastewater of Cotonou (Benin, West Africa)
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2020.126398
– volume: 60
  start-page: 314
  year: 2006
  ident: 10.1016/j.watres.2020.115966_bib8
  article-title: MR contrast agents, the old and the new
  publication-title: Eur. J. Radiol.
  doi: 10.1016/j.ejrad.2006.06.021
– volume: 369
  start-page: 336
  year: 2009
  ident: 10.1016/j.watres.2020.115966_bib106
  article-title: Natural versus anthropogenic sources in the surface- and groundwater dissolved load of the Dommel river (Meuse basin): constraints by boron and strontium isotopes and gadolinium anomaly
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2009.02.029
– volume: 247
  start-page: 154
  year: 2008
  ident: 10.1016/j.watres.2020.115966_bib28
  article-title: Competitive binding of REE to humic acid and manganese oxide: impact of reaction kinetics on development of cerium anomaly and REE adsorption
  publication-title: Chem. Geol.
  doi: 10.1016/j.chemgeo.2007.10.010
– volume: 172
  start-page: 155
  year: 2017
  ident: 10.1016/j.watres.2020.115966_bib120
  article-title: Anthropogenic rare earth elements and their spatial distributions in the Han River, South Korea
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2016.12.135
– volume: 49
  start-page: 1961
  year: 1985
  ident: 10.1016/j.watres.2020.115966_bib29
  article-title: Anomalies in rare earth distributions in seawater: Gd and Tb
  publication-title: Geochem. Cosmochim. Acta
  doi: 10.1016/0016-7037(85)90090-0
– volume: 13
  start-page: 1
  year: 2012
  ident: 10.1016/j.watres.2020.115966_bib44
  article-title: Online preconcentration ICP-MS analysis of rare earth elements in seawater
  publication-title: G-cubed
– volume: 54
  start-page: 2645
  year: 1990
  ident: 10.1016/j.watres.2020.115966_bib18
  article-title: Rare earth element scavenging in seawater
  publication-title: Geochem. Cosmochim. Acta
  doi: 10.1016/0016-7037(90)90002-3
– volume: 64
  start-page: 4131
  year: 2000
  ident: 10.1016/j.watres.2020.115966_bib31
  article-title: The distribution of rare earth elements in groundwaters: assessing the role of source-rock composition, redox changes and colloidal particles
  publication-title: Geochem. Cosmochim. Acta
  doi: 10.1016/S0016-7037(00)00494-4
– volume: 89
  start-page: 35
  year: 1988
  ident: 10.1016/j.watres.2020.115966_bib41
  article-title: Rare earth elements in river waters
  publication-title: Earth Planet Sci. Lett.
  doi: 10.1016/0012-821X(88)90031-3
– volume: 58
  start-page: 174
  year: 2019
  ident: 10.1016/j.watres.2020.115966_bib119
  article-title: Influence of excess ligand on Nephrogenic Systemic Fibrosis associated with nonionic, linear gadolinium-based contrast agents
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/j.mri.2018.11.015
– volume: 154
  start-page: 15
  year: 2016
  ident: 10.1016/j.watres.2020.115966_bib110
  article-title: Application of solid phase extraction procedures for rare earth elements determination in environmental samples
  publication-title: Talanta
  doi: 10.1016/j.talanta.2016.03.022
– volume: 21
  start-page: 1104
  year: 2006
  ident: 10.1016/j.watres.2020.115966_bib42
  article-title: Gadolinium – a specific trigger for the development of nephrogenic fibrosing dermopathy and nephrogenic systemic fibrosis?
  publication-title: Nephrol. Dial. Transplant.
  doi: 10.1093/ndt/gfk062
– volume: 407
  start-page: 2415
  year: 2015
  ident: 10.1016/j.watres.2020.115966_bib73
  article-title: Analysis of Gadolinium-based contrast agents in tap water with a new hydrophilic interaction chromatography (ZIC-cHILIC) hyphenated with inductively coupled plasma mass spectrometry
  publication-title: Anal. Bioanal. Chem.
  doi: 10.1007/s00216-014-8368-5
– volume: 30
  start-page: 1742
  year: 2016
  ident: 10.1016/j.watres.2020.115966_bib11
  article-title: Quantification of river water infiltration in shallow aquifers using acesulfame and anthropogenic gadolinium
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.10735
– volume: 35
  start-page: 25
  year: 1997
  ident: 10.1016/j.watres.2020.115966_bib46
  article-title: Resistance of EDTA and DTPA to aerobic biodegradation
  publication-title: Water Sci. Technol.
  doi: 10.2166/wst.1997.0474
– volume: 155
  start-page: 71
  year: 2013
  ident: 10.1016/j.watres.2020.115966_bib63
  article-title: Automated on-line flow-injection ICP-MS determination of trace metals (Mn, Fe, Co, Ni, Cu and Zn) in open ocean seawater: application to the GEOTRACES program
  publication-title: Mar. Chem.
  doi: 10.1016/j.marchem.2013.06.001
– volume: 45
  start-page: 191
  year: 2014
  ident: 10.1016/j.watres.2020.115966_bib125
  article-title: High-technology metals as emerging contaminants: strong increase of anthropogenic gadolinium levels in tap water of Berlin, Germany, from 2009 to 2012
  publication-title: Appl. Geochem.
  doi: 10.1016/j.apgeochem.2014.04.006
– volume: 188
  start-page: 281
  year: 2016
  ident: 10.1016/j.watres.2020.115966_bib30
  article-title: Anthropogenic gadolinium anomalies and rare earth elements in the water of Atibaia River and Anhumas Creek, Southeast Brazil
  publication-title: Environ. Monit. Assess.
  doi: 10.1007/s10661-016-5282-7
– volume: 92
  start-page: 489
  year: 2014
  ident: 10.1016/j.watres.2020.115966_bib70
  article-title: A review on application of flocculants in wastewater treatment
  publication-title: Process Saf. Environ. Protect.
  doi: 10.1016/j.psep.2014.04.010
– year: 2012
  ident: 10.1016/j.watres.2020.115966_bib57
– volume: 36
  start-page: 2387
  year: 2002
  ident: 10.1016/j.watres.2020.115966_bib89
  article-title: Anthropogenic Gd in surface water, drainage system, and the water supply of the City of Prague, Czech Republic
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es010235q
– volume: 91
  start-page: 244
  year: 2016
  ident: 10.1016/j.watres.2020.115966_bib12
  article-title: Investigating the stability of gadolinium based contrast agents towards UV radiation
  publication-title: Water Res.
  doi: 10.1016/j.watres.2016.01.012
– volume: 288
  start-page: 416
  year: 2018
  ident: 10.1016/j.watres.2020.115966_bib95
  article-title: Accumulation of gadolinium in human cerebrospinal fluid after gadobutrol-enhanced MR imaging: a prospective observational cohort study
  publication-title: Radiology
  doi: 10.1148/radiol.2018171105
– volume: 10
  start-page: 1
  year: 2005
  ident: 10.1016/j.watres.2020.115966_bib48
  article-title: Identification of degradation characteristics - exemplified by Gd-DTPA in a large experimental column
  publication-title: Environ. Model. Assess.
  doi: 10.1007/s10666-004-4269-x
– year: 2012
  ident: 10.1016/j.watres.2020.115966_bib10
– volume: 5
  start-page: 491
  year: 1998
  ident: 10.1016/j.watres.2020.115966_bib51
  article-title: Pharmacokinetics of gadodiamide injection in patients with severe renal insufficiency and patients undergoing hemodialysis or continuous ambulatory peritoneal dialysis
  publication-title: Acad. Radiol.
  doi: 10.1016/S1076-6332(98)80191-8
– volume: 95
  start-page: 639
  year: 2014
  ident: 10.1016/j.watres.2020.115966_bib112
  article-title: Transmetallation of Gd-DTPA by Fe3+, Cu2+and Zn2+in water: batch experiments and coagulation-flocculation simulations
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2013.09.102
– volume: 1
  start-page: 45
  year: 1980
  ident: 10.1016/j.watres.2020.115966_bib78
  article-title: Relative degradation rates of NTA, EDTA and DTPA and environmental implications
  publication-title: Environ. Pollut. Ser. B Chem. Phys.
  doi: 10.1016/0143-148X(80)90020-8
– volume: 31
  start-page: 1095
  year: 1992
  ident: 10.1016/j.watres.2020.115966_bib130
  article-title: A kinetic investigation of the lanthanide DOTA chelates. Stability and rates of formation and of dissociation of a macrocyclic gadolinium(III) polyaza polycarboxylic MRI contrast agent
  publication-title: Inorg. Chem.
  doi: 10.1021/ic00032a034
– volume: 66
  start-page: 160
  year: 2008
  ident: 10.1016/j.watres.2020.115966_bib9
  article-title: Extracellular gadolinium-based contrast media: an overview
  publication-title: Eur. J. Radiol.
  doi: 10.1016/j.ejrad.2008.01.023
– volume: 5
  start-page: 1
  year: 2018
  ident: 10.1016/j.watres.2020.115966_bib117
  article-title: Effect of Mg and Ca on the stability of the MRI contrast agent Gd–DTPA in seawater
  publication-title: Front. Mar. Sci.
  doi: 10.3389/fmars.2018.00111
– volume: 34
  start-page: 1373
  year: 2016
  ident: 10.1016/j.watres.2020.115966_bib122
  article-title: Gadolinium toxicity: iron and ferroportin as central targets
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/j.mri.2016.08.016
– volume: 50
  start-page: 4159
  year: 2016
  ident: 10.1016/j.watres.2020.115966_bib45
  article-title: Increases in anthropogenic gadolinium anomalies and rare earth element concentrations in san francisco bay over a 20 Year record
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.5b04322
– volume: 39
  start-page: 6923
  year: 2005
  ident: 10.1016/j.watres.2020.115966_bib128
  article-title: Aqueous stability of gadolinium in surface waters receiving sewage treatment plant effluent Boulder Creek, Colorado
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es048456u
– volume: 248
  start-page: 77
  year: 2008
  ident: 10.1016/j.watres.2020.115966_bib49
  article-title: Possible involvement of gadolinium chelates in the pathophysiology of nephrogenic systemic fibrosis: a critical review
  publication-title: Toxicology
  doi: 10.1016/j.tox.2008.03.012
– volume: 18
  start-page: 200
  year: 2016
  ident: 10.1016/j.watres.2020.115966_bib74
  article-title: Gadolinium-uptake by aquatic and terrestrial organisms-distribution determined by laser ablation inductively coupled plasma mass spectrometry
  publication-title: Environ. Sci. Process. Impacts
  doi: 10.1039/C5EM00533G
– volume: 345
  start-page: 206
  year: 2010
  ident: 10.1016/j.watres.2020.115966_bib104
  article-title: Dynamic structure of humic substances: rare earth elements as a fingerprint
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2010.01.069
– volume: 25
  start-page: 48
  year: 2010
  ident: 10.1016/j.watres.2020.115966_bib85
  article-title: Transmetallation of Gd-DTPA by Cu, Y and lanthanides and its impact on the hydrosphere
  publication-title: Appl. Geochem.
  doi: 10.1016/j.apgeochem.2009.09.027
– volume: 687
  start-page: 1401
  year: 2019
  ident: 10.1016/j.watres.2020.115966_bib118
  article-title: Anthropogenic gadolinium in tap water and in tap water-based beverages from fast-food franchises in six major cities in Germany
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.07.075
– volume: 21
  start-page: 469
  year: 2008
  ident: 10.1016/j.watres.2020.115966_bib107
  article-title: Efficiency, thermodynamic and kinetic stability of marketed gadolinium chelates and their possible clinical consequences: a critical review
  publication-title: Biometals
  doi: 10.1007/s10534-008-9135-x
– volume: 143
  start-page: 245
  year: 1996
  ident: 10.1016/j.watres.2020.115966_bib4
  article-title: Anthropogenic origin of positive gadolinium anomalies in river waters
  publication-title: Earth Planet Sci. Lett.
  doi: 10.1016/0012-821X(96)00127-6
– volume: 1308
  start-page: 125
  year: 2013
  ident: 10.1016/j.watres.2020.115966_bib13
  article-title: Sensitive quantification of gadolinium-based magnetic resonance imaging contrast agents in surface waters using hydrophilic interaction liquid chromatography and inductively coupled plasma sector field mass spectrometry
  publication-title: J. Chromatogr. A
  doi: 10.1016/j.chroma.2013.08.017
– year: 1985
  ident: 10.1016/j.watres.2020.115966_bib123
– volume: 19
  start-page: 1044
  year: 2015
  ident: 10.1016/j.watres.2020.115966_bib94
  article-title: Criticality of the rare earth elements
  publication-title: J. Ind. Ecol.
  doi: 10.1111/jiec.12237
– ident: 10.1016/j.watres.2020.115966_bib108
– volume: 7b01731
  year: 2017
  ident: 10.1016/j.watres.2020.115966_bib129
  article-title: Quantification of element fluxes in wastewaters: a nationwide survey in Switzerland
  publication-title: Environ. Sci. Technol.
– volume: 100
  start-page: 147
  year: 2006
  ident: 10.1016/j.watres.2020.115966_bib66
  article-title: The behaviour of the rare earth elements during estuarine mixing-revisited
  publication-title: Mar. Chem.
  doi: 10.1016/j.marchem.2005.11.007
– volume: 104
  start-page: 135
  year: 2018
  ident: 10.1016/j.watres.2020.115966_bib23
  article-title: Analysis of metal-based contrast agents in medicine and the environment
  publication-title: TrAC Trends Anal. Chem. (Reference Ed.)
  doi: 10.1016/j.trac.2017.12.011
– volume: 43
  start-page: 817
  year: 2008
  ident: 10.1016/j.watres.2020.115966_bib39
  article-title: Stability of gadolinium-based magnetic resonance imaging contrast agents in human serum at 37°C
  publication-title: Invest. Radiol.
  doi: 10.1097/RLI.0b013e3181852171
– volume: 64
  start-page: 3975
  year: 2000
  ident: 10.1016/j.watres.2020.115966_bib98
  article-title: Dissolved indium and rare earth elements in three Japanese rivers and Tokyo Bay: evidence for anthropogenic Gd and in
  publication-title: Geochem. Cosmochim. Acta
  doi: 10.1016/S0016-7037(00)00472-5
– volume: 44
  start-page: 5
  year: 2017
  ident: 10.1016/j.watres.2020.115966_bib35
  article-title: EMA’s final opinion confirms restrictions on use of linear gadolinium agents in body scans Recommendations conclude
  publication-title: EMA’s Sci. Rev. Gadolinium Deposit.
– volume: 656
  start-page: 409
  year: 2019
  ident: 10.1016/j.watres.2020.115966_bib71
  article-title: Rare Earth Element fluxes over 15 years into a major European Estuary (Garonne-Gironde, SW France): hospital effluents as a source of increasing gadolinium anomalies
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.11.343
– volume: 90
  start-page: 142
  year: 2018
  ident: 10.1016/j.watres.2020.115966_bib6
  article-title: The European Shale: an improved data set for normalisation of rare earth element and yttrium concentrations in environmental and biological samples from Europe
  publication-title: Appl. Geochem.
  doi: 10.1016/j.apgeochem.2018.01.008
– volume: 34
  start-page: 3
  year: 2016
  ident: 10.1016/j.watres.2020.115966_bib53
  article-title: Brain gadolinium deposition after administration of gadolinium-based contrast agents
  publication-title: Jpn. J. Radiol.
  doi: 10.1007/s11604-015-0503-5
– volume: 65
  start-page: 167
  year: 2005
  ident: 10.1016/j.watres.2020.115966_bib55
  article-title: Positive gadolinium anomaly in surface water and ground water of the urban area Berlin, Germany
  publication-title: Chem. Erde - Geochem.
  doi: 10.1016/j.chemer.2004.08.004
– volume: 130
  start-page: 71
  year: 2018
  ident: 10.1016/j.watres.2020.115966_bib105
  article-title: Rare earth elements removal techniques from water/wastewater: a review
  publication-title: Desalin. Water Treat.
  doi: 10.5004/dwt.2018.22844
– volume: 38
  start-page: 145
  year: 2017
  ident: 10.1016/j.watres.2020.115966_bib109
  article-title: The stability of gadolinium-based contrast agents in human serum: a reanalysis of literature data and association with clinical outcomes
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/j.mri.2017.01.006
– year: 2018
  ident: 10.1016/j.watres.2020.115966_bib115
  article-title: Gadolinium as a new emerging contaminant of aquatic environment
  publication-title: Environ. Toxicol. Chem.
  doi: 10.1002/etc.4116
– volume: 51
  start-page: 1126
  year: 2010
  ident: 10.1016/j.watres.2020.115966_bib131
  article-title: Gadolinium released from MR contrast agents is deposited in brain tumors: in situ demonstration using scanning electron microscopy with energy dispersive X-ray spectroscopy
  publication-title: Acta Radiol.
  doi: 10.3109/02841851.2010.515614
– volume: 31
  start-page: 1011
  year: 1993
  ident: 10.1016/j.watres.2020.115966_bib83
  article-title: Water exchange on [Gd(H2O)8]3+ and [Gd(PDTA)(H2O)2]- in aqueous solution: a variable-pressure, -temperature and -magnetic field 17O NMR study
  publication-title: Magn. Reson. Chem.
  doi: 10.1002/mrc.1260311111
– volume: 22
  start-page: 15188
  year: 2015
  ident: 10.1016/j.watres.2020.115966_bib24
  article-title: COST action TD1407: network on technology-critical elements (NOTICE)—from environmental processes to human health threats
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-015-5221-0
– volume: 34
  start-page: 573
  year: 2000
  ident: 10.1016/j.watres.2020.115966_bib61
  article-title: Hospital effluents as a source of gadolinium in the aquatic environment
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es990633h
– volume: 25
  start-page: 6107
  year: 2018
  ident: 10.1016/j.watres.2020.115966_bib113
  article-title: Dynamics and sources of pharmaceutically active compounds in a coastal Mediterranean river during heavy rains
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-017-0880-7
– volume: 11
  year: 2019
  ident: 10.1016/j.watres.2020.115966_bib69
  article-title: The biological fate of gadolinium-based MRI contrast agents: a call to action for bioinorganic chemists
  publication-title: Metall
  doi: 10.1039/C8MT00302E
– volume: 40
  start-page: 463
  year: 2006
  ident: 10.1016/j.watres.2020.115966_bib99
  article-title: Rare earth element abundances in some seawaters and related river waters from the Osaka Bay area, Japan: significance of anthropogenic Gd
  publication-title: Geochem. J.
  doi: 10.2343/geochemj.40.463
– volume: 21
  start-page: 197
  year: 2015
  ident: 10.1016/j.watres.2020.115966_bib26
  article-title: Biogeochemical factors affecting rare earth element distribution in shallow wetland groundwater
  publication-title: Aquat. Geochem.
  doi: 10.1007/s10498-014-9247-6
– volume: 43
  start-page: 3534
  year: 2009
  ident: 10.1016/j.watres.2020.115966_bib68
  article-title: Detection of anthropogenic gadolinium in treated wastewater in South East Queensland, Australia
  publication-title: Water Res.
  doi: 10.1016/j.watres.2009.04.033
– volume: 22
  start-page: 788
  year: 2008
  ident: 10.1016/j.watres.2020.115966_bib132
  article-title: Investigation of groundwater residence times during bank filtration in Berlin: a multi-tracer approach
  publication-title: Hydrol. Process. Int. J.
  doi: 10.1002/hyp.6649
– volume: 44
  start-page: 3876
  year: 2010
  ident: 10.1016/j.watres.2020.115966_bib127
  article-title: Evaluating the behavior of gadolinium and other rare earth elements through large metropolitan sewage treatment plants
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es903888t
– volume: 36
  start-page: 1102
  year: 2002
  ident: 10.1016/j.watres.2020.115966_bib33
  article-title: Occurrence of an anthropogenic gadolinium anomaly in river and coastal waters of Southern France
  publication-title: Water Res.
  doi: 10.1016/S0043-1354(01)00370-0
– volume: 58
  start-page: 259
  year: 2017
  ident: 10.1016/j.watres.2020.115966_bib126
  article-title: Are the increasing amounts of gadolinium in surface and tap water dangerous?
  publication-title: Acta Radiol.
  doi: 10.1177/0284185116666419
– volume: 55
  start-page: 379
  year: 2004
  ident: 10.1016/j.watres.2020.115966_bib82
  article-title: Biological and photochemical degradation rates of diethylenetriaminepentaacetic acid (DTPA) in the presence and absence of Fe(III)
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2003.10.062
– volume: 61
  start-page: 685
  year: 2010
  ident: 10.1016/j.watres.2020.115966_bib67
  article-title: Removal of magnetic resonance imaging contrast agents through advanced water treatment plants
  publication-title: Water Sci. Technol.
  doi: 10.2166/wst.2010.885
– volume: 51
  start-page: 212
  year: 2018
  ident: 10.1016/j.watres.2020.115966_bib22
  article-title: LA-ICP-MS/MS improves limits of detection in elemental bioimaging of gadolinium deposition originating from MRI contrast agents in skin and brain tissues
  publication-title: J. Trace Elem. Med. Biol.
  doi: 10.1016/j.jtemb.2018.10.021
– year: 2016
  ident: 10.1016/j.watres.2020.115966_bib79
  article-title: Transport of gadolinium- and arsenic-based pharmaceuticals in saturated soil under various redox conditions
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2015.09.044
– volume: 31
  start-page: 225
  year: 2003
  ident: 10.1016/j.watres.2020.115966_bib88
  article-title: Anomalous gadolinium, cerium, and yttrium contents in the adige and isarco river waters and in the water of their tributaries (provinces trento and bolzano/bozen, NE Italy)
  publication-title: Acta Hydrochim. Hydrobiol.
  doi: 10.1002/aheh.200300492
– volume: 46
  start-page: 11929
  year: 2012
  ident: 10.1016/j.watres.2020.115966_bib124
  article-title: Speciation and isotope dilution analysis of gadolinium-based contrast agents in wastewater
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es301981z
– volume: 221
  start-page: 954
  year: 2016
  ident: 10.1016/j.watres.2020.115966_bib1
  article-title: Adsorption of rare earth metals: a review of recent literature
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2016.06.076
– volume: 45
  start-page: 125
  year: 2018
  ident: 10.1016/j.watres.2020.115966_bib36
  article-title: Spatially resolved quantification of gadolinium deposited in the brain of a patient treated with gadolinium-based contrast agents
  publication-title: J. Trace Elem. Med. Biol.
  doi: 10.1016/j.jtemb.2017.10.004
– volume: 47
  start-page: 7899
  year: 2013
  ident: 10.1016/j.watres.2020.115966_bib56
  article-title: Elimination of micropollutants during post-treatment of hospital wastewater with powdered activated carbon, ozone, and UV
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es400708w
– volume: 45
  start-page: 429
  year: 2015
  ident: 10.1016/j.watres.2020.115966_bib84
  article-title: The characteristics, occurrence, and geochemical behavior of rare earth elements in the environment: a review
  publication-title: Crit. Rev. Environ. Sci. Technol.
  doi: 10.1080/10643389.2013.866622
– volume: 26
  start-page: 1877
  year: 2011
  ident: 10.1016/j.watres.2020.115966_bib59
  article-title: Anthropogenic gadolinium as a microcontaminant in tap water used as drinking water in urban areas and megacities
  publication-title: Appl. Geochem.
  doi: 10.1016/j.apgeochem.2011.06.011
– year: 2008
  ident: 10.1016/j.watres.2020.115966_bib96
– volume: 40
  start-page: 475
  year: 2006
  ident: 10.1016/j.watres.2020.115966_bib3
  article-title: Chemical loading into surface water along a hydrological, biogeochemical, and land use gradient: a holistic watershed approach
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es051270q
– volume: 277
  start-page: 271
  year: 2004
  ident: 10.1016/j.watres.2020.115966_bib27
  article-title: Impact of humate complexation on the adsorption of REE onto Fe oxyhydroxide
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2004.04.007
– volume: 66
  start-page: 175
  year: 2008
  ident: 10.1016/j.watres.2020.115966_bib91
  article-title: Extracellular gadolinium contrast agents: differences in stability
  publication-title: Eur. J. Radiol.
  doi: 10.1016/j.ejrad.2008.01.025
– volume: 347
  start-page: 294
  year: 2015
  ident: 10.1016/j.watres.2020.115966_bib47
  article-title: Anthropogenic rare earth element fluxes into floodplains: coupling between geochemical monitoring and hydrodynamic sediment transport modelling
  publication-title: Compt. Rendus Geosci.
  doi: 10.1016/j.crte.2015.01.003
– volume: 47
  start-page: 9942
  year: 2013
  ident: 10.1016/j.watres.2020.115966_bib25
  article-title: Reaction of gadolinium chelates with ozone and hydroxyl radicals
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es402219u
– volume: 47
  start-page: 186
  year: 2014
  ident: 10.1016/j.watres.2020.115966_bib54
  article-title: Anthropogenic rare earth element in rivers: gadoliniumand lanthanum. Partitioning between the dissolved and particulate phases in the rhine river and spatial propagation through the rhine-meuse delta (The Netherlands)
  publication-title: Appl. Geochem.
  doi: 10.1016/j.apgeochem.2014.05.020
– volume: 251
  start-page: 2428
  year: 2007
  ident: 10.1016/j.watres.2020.115966_bib21
  article-title: Small molecular gadolinium(III) complexes as MRI contrast agents for diagnostic imaging
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2007.04.018
– volume: 16
  start-page: 2405
  year: 2012
  ident: 10.1016/j.watres.2020.115966_bib116
  article-title: Tracing the spatial propagation of river inlet water into an agricultural polder area using anthropogenic gadolinium
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-16-2405-2012
– volume: 73
  start-page: 13
  year: 2016
  ident: 10.1016/j.watres.2020.115966_bib90
  article-title: Blood-brain barrier permeability and gadolinium benefits and potential pitfalls in research
  publication-title: JAMA Neurol.
  doi: 10.1001/jamaneurol.2015.2960
– start-page: 1249
  year: 2009
  ident: 10.1016/j.watres.2020.115966_bib50
  article-title: Role of thermodynamic and kinetic parameters in gadolinium chelate stability
  publication-title: J. Magn. Reson. Imag.
  doi: 10.1002/jmri.21967
– volume: 642
  start-page: 1100
  year: 2018
  ident: 10.1016/j.watres.2020.115966_bib14
  article-title: Evaluation of the potential hazard of lanthanides to freshwater microcrustaceans
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.06.155
– year: 2018
  ident: 10.1016/j.watres.2020.115966_bib102
  article-title: Variations of anthropogenic gadolinium in rivers close to waste water treatment plant discharges
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-018-3489-6
– volume: 99
  start-page: 2293
  year: 1999
  ident: 10.1016/j.watres.2020.115966_bib20
  article-title: Gadolinium(III) chelates as MRI contrast agents: structure, dynamics, and applications
  publication-title: Chem. Rev.
  doi: 10.1021/cr980440x
– volume: 58
  start-page: 76
  year: 2019
  ident: 10.1016/j.watres.2020.115966_bib40
  article-title: The use of a binary chelate formulation: could gadolinium based linear contrast agents be rescued by the addition of zinc selective chelates?
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/j.mri.2019.01.001
– volume: 17
  start-page: 2359
  year: 2006
  ident: 10.1016/j.watres.2020.115966_bib76
  article-title: Nephrogenic systemic fibrosis: suspected causative role of gadodiamide used for contrast-enhanced magnetic resonance imaging
  publication-title: J. Am. Soc. Nephrol.
  doi: 10.1681/ASN.2006060601
– volume: 66
  start-page: 143
  year: 2006
  ident: 10.1016/j.watres.2020.115966_bib5
  article-title: Anthropogenic gadolinium as a micropollutant in river waters in Pennsylvania and in Lake Erie, northeastern United States
  publication-title: Chem. Erde
  doi: 10.1016/j.chemer.2006.01.002
– volume: 5
  start-page: 6910
  year: 2017
  ident: 10.1016/j.watres.2020.115966_bib103
  article-title: Removal and recycling of precious rare earth element from wastewater samples using imprinted magnetic ordered mesoporous carbon
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.7b01124
– volume: 579
  start-page: 482
  year: 2020
  ident: 10.1016/j.watres.2020.115966_bib19
  article-title: The coronavirus pandemic in five powerful charts
  publication-title: Nature
  doi: 10.1038/d41586-020-00758-2
– volume: 60
  start-page: 1113
  year: 2010
  ident: 10.1016/j.watres.2020.115966_bib64
  article-title: Detection of anthropogenic gadolinium in the brisbane river plume in moreton bay, Queensland, Australia
  publication-title: Mar. Pollut. Bull.
  doi: 10.1016/j.marpolbul.2010.03.027
– year: 2013
  ident: 10.1016/j.watres.2020.115966_bib80
– volume: 256
  start-page: 13
  year: 2012
  ident: 10.1016/j.watres.2020.115966_bib7
  article-title: Addressing selectivity criteria in binding equilibria
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2011.05.013
– volume: 68
  start-page: 691
  year: 2004
  ident: 10.1016/j.watres.2020.115966_bib75
  article-title: Carbonate complexation of yttrium and the rare earth elements in natural waters
  publication-title: Geochem. Cosmochim. Acta
  doi: 10.1016/S0016-7037(03)00495-2
– start-page: 169
  year: 1989
  ident: 10.1016/j.watres.2020.115966_bib77
  article-title: Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes
– volume: 28
  start-page: 257
  year: 2006
  ident: 10.1016/j.watres.2020.115966_bib93
  article-title: Input and fate of anthropogenic estrogens and gadolinium in surface water and sewage plants in the hydrological basin of Prague (Czech Republic)
  publication-title: Environ. Geochem. Health
  doi: 10.1007/s10653-006-9040-6
– ident: 10.1016/j.watres.2020.115966_bib37
– year: 2017
  ident: 10.1016/j.watres.2020.115966_bib100
  article-title: Magnetic resonance imaging (MRI) exams [WWW Document]
  publication-title: OECD Heal. Stat. Heal. Care Util
– volume: 80
  start-page: 586
  year: 2007
  ident: 10.1016/j.watres.2020.115966_bib92
  article-title: Nephrogenic systemic fibrosis following the administration of extracellular gadolinium based contrast agents: is the stability of the contrast agent molecule an important factor in the pathogenesis of this condition?
  publication-title: Br. J. Radiol.
  doi: 10.1259/bjr/17111243
– volume: 75
  start-page: 1057
  year: 2009
  ident: 10.1016/j.watres.2020.115966_bib111
  article-title: Positive gadolinium anomalies in wastewater treatment plant effluents and aquatic environment in the Hérault watershed (South France)
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2009.01.036
– volume: 19
  start-page: 823
  year: 2011
  ident: 10.1016/j.watres.2020.115966_bib32
  article-title: Comparison of gadopentetic acid (Gd-DTPA) and bromide in a dual-tracer field experiment
  publication-title: Hydrogeol. J.
  doi: 10.1007/s10040-011-0713-6
– volume: 80
  start-page: 794
  year: 2010
  ident: 10.1016/j.watres.2020.115966_bib65
  article-title: Tracing treated wastewater in an inland catchment using anthropogenic gadolinium
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2010.05.001
– volume: 88
  start-page: 546
  year: 2016
  ident: 10.1016/j.watres.2020.115966_bib114
  article-title: Water analysis: emerging contaminants and current issues
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.5b04493
– volume: 533
  start-page: 91
  year: 2015
  ident: 10.1016/j.watres.2020.115966_bib81
  article-title: Rare earth elements in the aragonitic shell of freshwater mussel Corbicula fluminea and the bioavailability of anthropogenic lanthanum, samarium and gadolinium in river water
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2015.06.042
– volume: 44
  start-page: 2577
  year: 2014
  ident: 10.1016/j.watres.2020.115966_bib101
  article-title: Advanced oxidation processes in water/wastewater treatment: principles and applications. A review
  publication-title: Crit. Rev. Environ. Sci. Technol.
  doi: 10.1080/10643389.2013.829765
– volume: 571
  start-page: 1432
  year: 2016
  ident: 10.1016/j.watres.2020.115966_bib15
  article-title: Anthropogenic gadolinium as a transient tracer for investigating river bank filtration
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2016.06.105
– volume: 69
  start-page: 1041
  year: 2005
  ident: 10.1016/j.watres.2020.115966_bib52
  article-title: A new estimate for the composition of weathered young upper continental crust from alluvial sediments, Queensland, Australia
  publication-title: Geochem. Cosmochim. Acta
  doi: 10.1016/j.gca.2004.08.020
– volume: 69–70
  start-page: 409
  year: 2000
  ident: 10.1016/j.watres.2020.115966_bib86
  article-title: Anthropogenic gadolinium as a conservative tracer in hydrology
  publication-title: J. Geochem. Explor.
  doi: 10.1016/S0375-6742(00)00083-2
– volume: 38
  start-page: 146
  year: 1997
  ident: 10.1016/j.watres.2020.115966_bib17
  article-title: Stability constants and 1H relaxation effects of ternary complexes formed between Gd-DTPA, Gd-DTPA-BMA, Gd-DOTA, and Gd-EDTA and citrate, phosphate, and carbonate ions
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.1910380120
– volume: 362
  start-page: 43
  year: 2013
  ident: 10.1016/j.watres.2020.115966_bib58
  article-title: Anthropogenic dissolved and colloid/nanoparticle-bound samarium, lanthanum and gadolinium in the Rhine River and the impending destruction of the natural rare earth element distribution in rivers
  publication-title: Earth Planet Sci. Lett.
  doi: 10.1016/j.epsl.2012.11.033
– volume: 24
  start-page: 8164
  year: 2017
  ident: 10.1016/j.watres.2020.115966_bib34
  article-title: Removal of gadolinium-based contrast agents: adsorption on activated carbon
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-017-8491-x
– volume: 37
  start-page: 973
  year: 2011
  ident: 10.1016/j.watres.2020.115966_bib60
  article-title: Rare earth elements in the Rhine River, Germany: first case of anthropogenic lanthanum as a dissolved microcontaminant in the hydrosphere
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2011.02.018
– volume: 48
  start-page: 2469
  year: 1984
  ident: 10.1016/j.watres.2020.115966_bib43
  article-title: The “North American shale composite” - its compilation, major and trace element characteristics
  publication-title: G-cubed
SSID ssj0002239
Score 2.6229813
SecondaryResourceType review_article
Snippet The increasing use of gadolinium-based contrast agents (GBCAs) for magnetic resonance imaging is leading to widespread contamination of freshwater and drinking...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 115966
SubjectTerms Anthropogenic gadolinium
Betacoronavirus
Contrast Media
Coronavirus Infections
COVID-19
COVID-19 infection
Drinking Water
Fresh Water
freshwater
Gadolinium
Gadolinium anomaly
Gadolinium-based contrast agents
groundwater flow
Humans
hydrologic cycle
ligands
magnetism
Micropollutants
Pandemics
Pneumonia, Viral
Review
risk
river water
SARS-CoV-2
uncertainty
urine
Water Pollutants, Chemical - analysis
water reuse
Title Anthropogenic gadolinium in freshwater and drinking water systems
URI https://dx.doi.org/10.1016/j.watres.2020.115966
https://www.ncbi.nlm.nih.gov/pubmed/32599421
https://www.proquest.com/docview/2419094770
https://www.proquest.com/docview/2574373380
https://pubmed.ncbi.nlm.nih.gov/PMC7256513
Volume 182
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jXvQgfjs_RgSvdWs-GnscwzEVd3KwW2mbxFU0ytzw5t_uS9PMTcWBhR6avsLry8v7aN_7BaFzpdupyjUJciZzSFCUDjISpwEX4K-4hqOsdr8bRP0huxnxUQ11fS-MLausbL-z6aW1rkZalTRbr0Vhe3zB-VHOiNVZOG0HOxNWyy8-vso8wP3F_i-zpfbtc2WN13tqGzIgSyTWdvC4xEr81T39DD-_V1EuuKXeFtqs4knccSxvo5oyO2hjAWVwF3X8ZgigK0WOHyyIU2GK2TMuDNbA2RgYVBOcGonlxO2lgN2Qw3l-20PD3tV9tx9UOyeAyONoGhBVwimF9iMFl6EKY8khsSBSUM0hUM0phYWnmKRMKUYjyPG4hOCARJrBAk_pPqqbF6MOERYk4yrLiKS5ZlEoUwgppMgySlKQoVYNRL3AkryCFbe7Wzwlvn7sMXFiTqyYEyfmBgrmT706WI0V9MLPRbKkHglY_hVPnvmpS2Dl2N8hqVEvMyBiEAzFTIj2HzRcWOwnegk0B2665_xSyBxjRkLgbUkR5gQWuXv5jinGJYK3gECTh_To3291jNbtlSt2O0H16WSmTiE6mmbNUv2baK1zfdsffALnqxBv
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT8IwFG8QD-rB-C1-zsTrhPVjdUdCJKjACRJuzba2MqODIMSbf7uv64agRhKX7NK9Jm-vfV_b6-8hdK10LVSxxm5MZQwJitJuhIPQZRz8FdNwZdXuna7f6tOHARuUUKM4C2PKKnPbb216Zq3zkWouzeo4ScwZX3B-hFFs9izca2idgvqaNgY3H191HuD_guI3syEvzs9lRV7voTmRAWkiNsaDBRlY4q_-6Wf8-b2McsEvNXfQdh5QOnXL8y4qqXQPbS3ADO6jetENATZLEjtPBsUpSZPZq5OkjgbOhsCgmjhhKh05sc0UHDtkgZ7fDlC_eddrtNy8dQLIPPCnLlYZnpJnvlIw6SkvkAwyCyw50Qwi1ZgQ0DxFJaFKUeJDksckRAfY1xQ0PCSHqJyOUnWMHI4jpqIISxJr6nsyhJhC8igiOAQZalVBpBCYiHNccdPe4kUUBWTPwopZGDELK-YKcuezxhZXYwU9L9ZCLO0PAaZ_xcyrYukEqI75HxKmajQDIgrRUEA5r_1Bw7gBfyK3QHNkl3vOL4HUMaDYA96WNsKcwEB3Lz9Jk2EG4c0h0mQeOfn3W12ijVav0xbt--7jKdo0T2zl2xkqTyczdQ6h0jS6yFThE_1KEf0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Anthropogenic+gadolinium+in+freshwater+and+drinking+water+systems&rft.jtitle=Water+research+%28Oxford%29&rft.au=Br%C3%BCnjes%2C+Robert&rft.au=Hofmann%2C+Thilo&rft.date=2020-09-01&rft.issn=1879-2448&rft.eissn=1879-2448&rft.volume=182&rft.spage=115966&rft_id=info:doi/10.1016%2Fj.watres.2020.115966&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-1354&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-1354&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-1354&client=summon