Anthropogenic gadolinium in freshwater and drinking water systems
The increasing use of gadolinium-based contrast agents (GBCAs) for magnetic resonance imaging is leading to widespread contamination of freshwater and drinking water systems. Contrary to previous assumptions that GBCAs are stable throughout the water cycle, they can degrade. The stability of GBCAs d...
Saved in:
Published in | Water research (Oxford) Vol. 182; p. 115966 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.09.2020
The Authors. Published by Elsevier Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The increasing use of gadolinium-based contrast agents (GBCAs) for magnetic resonance imaging is leading to widespread contamination of freshwater and drinking water systems. Contrary to previous assumptions that GBCAs are stable throughout the water cycle, they can degrade. The stability of GBCAs depends largely on their organic ligands, but also on the physicochemical conditions. There is specific concern regarding UV end-of-pipe water treatments, which may degrade GBCAs. Degradation products in drinking water supplies can increase the risk of adverse health effects. This is of particular relevance where the raw water for drinking water production has a higher proportion of recycled wastewater. GBCAs concentrations in aquatic systems, often referred to as anthropogenic gadolinium, are determined using a variety of calculation methods. Where anthropogenic gadolinium concentrations are low, the inconsistent use of these methods results in high discrepancies and high levels of uncertainty. The current COVID-19 crisis will, in the short-term, drastically decrease the input of GBCAs to freshwater systems. Temporal variations in anthropogenic gadolinium concentrations in river water can be used to better understand river-aquifer interactions and groundwater flow velocities. Collecting urine from all patients following MRI examinations could be a way forward to halt the generally increasing concentrations of Gd in drinking water systems and recover this technologically critical element.
[Display omitted]
•Rising concentration of gadolinium-based contrast agents (GBCAs) in drinking water.•Stability of GBCAs is determined by their organic ligands.•UV end-of-pipe treatment may enhance the risks posed by GBCAs in drinking water.•Inconsistent use of methods to calculate Gd anomalies and anthropogenic Gd.•Temporal Gd patterns in rivers can improve understanding of subsurface systems. |
---|---|
AbstractList | The increasing use of gadolinium-based contrast agents (GBCAs) for magnetic resonance imaging is leading to widespread contamination of freshwater and drinking water systems. Contrary to previous assumptions that GBCAs are stable throughout the water cycle, they can degrade. The stability of GBCAs depends largely on their organic ligands, but also on the physicochemical conditions. There is specific concern regarding UV end-of-pipe water treatments, which may degrade GBCAs. Degradation products in drinking water supplies can increase the risk of adverse health effects. This is of particular relevance where the raw water for drinking water production has a higher proportion of recycled wastewater. GBCAs concentrations in aquatic systems, often referred to as anthropogenic gadolinium, are determined using a variety of calculation methods. Where anthropogenic gadolinium concentrations are low, the inconsistent use of these methods results in high discrepancies and high levels of uncertainty. The current COVID-19 crisis will, in the short-term, drastically decrease the input of GBCAs to freshwater systems. Temporal variations in anthropogenic gadolinium concentrations in river water can be used to better understand river-aquifer interactions and groundwater flow velocities. Collecting urine from all patients following MRI examinations could be a way forward to halt the generally increasing concentrations of Gd in drinking water systems and recover this technologically critical element. The increasing use of gadolinium-based contrast agents (GBCAs) for magnetic resonance imaging is leading to widespread contamination of freshwater and drinking water systems. Contrary to previous assumptions that GBCAs are stable throughout the water cycle, they can degrade. The stability of GBCAs depends largely on their organic ligands, but also on the physicochemical conditions. There is specific concern regarding UV end-of-pipe water treatments, which may degrade GBCAs. Degradation products in drinking water supplies can increase the risk of adverse health effects. This is of particular relevance where the raw water for drinking water production has a higher proportion of recycled wastewater. GBCAs concentrations in aquatic systems, often referred to as anthropogenic gadolinium, are determined using a variety of calculation methods. Where anthropogenic gadolinium concentrations are low, the inconsistent use of these methods results in high discrepancies and high levels of uncertainty. The current COVID-19 crisis will, in the short-term, drastically decrease the input of GBCAs to freshwater systems. Temporal variations in anthropogenic gadolinium concentrations in river water can be used to better understand river-aquifer interactions and groundwater flow velocities. Collecting urine from all patients following MRI examinations could be a way forward to halt the generally increasing concentrations of Gd in drinking water systems and recover this technologically critical element. Image 1 • Rising concentration of gadolinium-based contrast agents (GBCAs) in drinking water. • Stability of GBCAs is determined by their organic ligands. • UV end-of-pipe treatment may enhance the risks posed by GBCAs in drinking water. • Inconsistent use of methods to calculate Gd anomalies and anthropogenic Gd. • Temporal Gd patterns in rivers can improve understanding of subsurface systems. The increasing use of gadolinium-based contrast agents (GBCAs) for magnetic resonance imaging is leading to widespread contamination of freshwater and drinking water systems. Contrary to previous assumptions that GBCAs are stable throughout the water cycle, they can degrade. The stability of GBCAs depends largely on their organic ligands, but also on the physicochemical conditions. There is specific concern regarding UV end-of-pipe water treatments, which may degrade GBCAs. Degradation products in drinking water supplies can increase the risk of adverse health effects. This is of particular relevance where the raw water for drinking water production has a higher proportion of recycled wastewater. GBCAs concentrations in aquatic systems, often referred to as anthropogenic gadolinium, are determined using a variety of calculation methods. Where anthropogenic gadolinium concentrations are low, the inconsistent use of these methods results in high discrepancies and high levels of uncertainty. The current COVID-19 crisis will, in the short-term, drastically decrease the input of GBCAs to freshwater systems. Temporal variations in anthropogenic gadolinium concentrations in river water can be used to better understand river-aquifer interactions and groundwater flow velocities. Collecting urine from all patients following MRI examinations could be a way forward to halt the generally increasing concentrations of Gd in drinking water systems and recover this technologically critical element.The increasing use of gadolinium-based contrast agents (GBCAs) for magnetic resonance imaging is leading to widespread contamination of freshwater and drinking water systems. Contrary to previous assumptions that GBCAs are stable throughout the water cycle, they can degrade. The stability of GBCAs depends largely on their organic ligands, but also on the physicochemical conditions. There is specific concern regarding UV end-of-pipe water treatments, which may degrade GBCAs. Degradation products in drinking water supplies can increase the risk of adverse health effects. This is of particular relevance where the raw water for drinking water production has a higher proportion of recycled wastewater. GBCAs concentrations in aquatic systems, often referred to as anthropogenic gadolinium, are determined using a variety of calculation methods. Where anthropogenic gadolinium concentrations are low, the inconsistent use of these methods results in high discrepancies and high levels of uncertainty. The current COVID-19 crisis will, in the short-term, drastically decrease the input of GBCAs to freshwater systems. Temporal variations in anthropogenic gadolinium concentrations in river water can be used to better understand river-aquifer interactions and groundwater flow velocities. Collecting urine from all patients following MRI examinations could be a way forward to halt the generally increasing concentrations of Gd in drinking water systems and recover this technologically critical element. The increasing use of gadolinium-based contrast agents (GBCAs) for magnetic resonance imaging is leading to widespread contamination of freshwater and drinking water systems. Contrary to previous assumptions that GBCAs are stable throughout the water cycle, they can degrade. The stability of GBCAs depends largely on their organic ligands, but also on the physicochemical conditions. There is specific concern regarding UV end-of-pipe water treatments, which may degrade GBCAs. Degradation products in drinking water supplies can increase the risk of adverse health effects. This is of particular relevance where the raw water for drinking water production has a higher proportion of recycled wastewater. GBCAs concentrations in aquatic systems, often referred to as anthropogenic gadolinium, are determined using a variety of calculation methods. Where anthropogenic gadolinium concentrations are low, the inconsistent use of these methods results in high discrepancies and high levels of uncertainty. The current COVID-19 crisis will, in the short-term, drastically decrease the input of GBCAs to freshwater systems. Temporal variations in anthropogenic gadolinium concentrations in river water can be used to better understand river-aquifer interactions and groundwater flow velocities. Collecting urine from all patients following MRI examinations could be a way forward to halt the generally increasing concentrations of Gd in drinking water systems and recover this technologically critical element. [Display omitted] •Rising concentration of gadolinium-based contrast agents (GBCAs) in drinking water.•Stability of GBCAs is determined by their organic ligands.•UV end-of-pipe treatment may enhance the risks posed by GBCAs in drinking water.•Inconsistent use of methods to calculate Gd anomalies and anthropogenic Gd.•Temporal Gd patterns in rivers can improve understanding of subsurface systems. |
ArticleNumber | 115966 |
Author | Brünjes, Robert Hofmann, Thilo |
Author_xml | – sequence: 1 givenname: Robert surname: Brünjes fullname: Brünjes, Robert – sequence: 2 givenname: Thilo surname: Hofmann fullname: Hofmann, Thilo email: thilo.hofmann@univie.ac.at |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32599421$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1uEzEUhS1URNPCGyA0SzYT_O8xC6SoghapEpt2bbn2ncRhxg62U9S3Z6JJEXTRrixdn_Pdo3vO0ElMERB6T_CSYCI_bZe_bc1QlhTTaUSElvIVWpBO6ZZy3p2gBcactYQJforOStlijCll-g06ZVRozSlZoNUq1k1Ou7SGGFyztj4NIYb92ITY9BN-M22B3NjoG59D_BniuplH5aFUGMtb9Lq3Q4F3x_cc3X77enNx1V7_uPx-sbpuHdeythSwoBgTrCQRngDRXgglqVesFx25c4xpyYB7xgE4k1hz4XFHqOw5pcKyc_Rl5u72dyN4B7FmO5hdDqPNDybZYP7_iWFj1uneKCqkIGwCfDwCcvq1h1LNGIqDYbAR0r4YKhRnirEOvyzlRE8BlTpIP_wb62-exxNPgs-zwOVUSobeuFBtDemQMgyGYHPo02zN3Kc59GnmPiczf2J-5L9gO94KpkLuA2RTXIDowIcMrhqfwvOAP5VIuyk |
CitedBy_id | crossref_primary_10_1186_s41747_024_00451_3 crossref_primary_10_3390_molecules25235762 crossref_primary_10_1021_acsestengg_3c00377 crossref_primary_10_1016_j_envpol_2023_123163 crossref_primary_10_1016_j_jfca_2024_107106 crossref_primary_10_1021_acs_est_2c07726 crossref_primary_10_3390_molecules29010135 crossref_primary_10_1097_RLI_0000000000001172 crossref_primary_10_1016_j_envres_2021_112495 crossref_primary_10_1016_j_scitotenv_2023_162844 crossref_primary_10_1029_2024GB008125 crossref_primary_10_1016_j_watres_2021_117836 crossref_primary_10_1002_jmri_29132 crossref_primary_10_3390_ma18030699 crossref_primary_10_1016_j_scitotenv_2022_155909 crossref_primary_10_3390_jcm12010215 crossref_primary_10_1007_s10653_023_01743_0 crossref_primary_10_3389_fmars_2024_1304362 crossref_primary_10_1021_acs_jmedchem_2c00500 crossref_primary_10_1007_s00330_023_10456_y crossref_primary_10_1016_j_electacta_2022_141457 crossref_primary_10_1016_j_psep_2022_09_056 crossref_primary_10_1111_1754_9485_13581 crossref_primary_10_1016_j_radi_2024_06_007 crossref_primary_10_1212_WNL_0000000000210274 crossref_primary_10_3390_toxics12120904 crossref_primary_10_1016_j_jhazmat_2025_137941 crossref_primary_10_1016_j_rx_2024_05_012 crossref_primary_10_1002_jssc_202200575 crossref_primary_10_1016_j_radi_2023_09_006 crossref_primary_10_1002_pro_70101 crossref_primary_10_1097_RLI_0000000000000983 crossref_primary_10_1016_j_marpolbul_2022_113463 crossref_primary_10_1016_j_envpol_2023_121289 crossref_primary_10_1148_radiol_240020 crossref_primary_10_1007_s11845_024_03708_3 crossref_primary_10_1016_j_scitotenv_2024_175063 crossref_primary_10_1016_j_intimp_2023_110000 crossref_primary_10_3389_fmars_2024_1413033 crossref_primary_10_2214_AJR_24_30927 crossref_primary_10_1038_s41598_023_32596_3 crossref_primary_10_1016_j_psep_2024_03_115 crossref_primary_10_1039_D4DT02761B crossref_primary_10_1016_j_jhazmat_2023_131930 crossref_primary_10_1016_j_rxeng_2024_05_004 crossref_primary_10_3390_ijms23052876 crossref_primary_10_1002_jat_4774 crossref_primary_10_1007_s10661_023_11279_6 crossref_primary_10_1016_j_cclet_2024_109960 crossref_primary_10_1002_hyp_14979 crossref_primary_10_3390_oceans4040026 crossref_primary_10_1186_s41747_023_00337_w crossref_primary_10_1007_s00256_024_04682_8 crossref_primary_10_1016_j_scitotenv_2024_174819 crossref_primary_10_1021_acsami_4c22884 crossref_primary_10_1007_s10311_024_01815_2 crossref_primary_10_1016_j_rx_2023_06_007 crossref_primary_10_1021_acsearthspacechem_1c00238 crossref_primary_10_1016_j_scitotenv_2021_148506 crossref_primary_10_1039_D1CC06229H crossref_primary_10_1016_j_jglr_2023_03_004 crossref_primary_10_1016_j_jhydrol_2025_132704 crossref_primary_10_3390_su12177130 crossref_primary_10_1016_j_scitotenv_2022_159241 crossref_primary_10_1021_acsnanoscienceau_4c00032 crossref_primary_10_1007_s11604_024_01642_z crossref_primary_10_1016_j_coelec_2022_101169 crossref_primary_10_1016_j_neurad_2021_08_002 crossref_primary_10_1038_s41598_022_21762_8 crossref_primary_10_1016_j_envpol_2023_122428 crossref_primary_10_1016_j_jocmr_2025_101840 crossref_primary_10_1016_j_jhazmat_2021_125183 crossref_primary_10_1097_RLI_0000000000000955 crossref_primary_10_1007_s00330_024_11214_4 crossref_primary_10_1016_j_chemosphere_2024_142321 crossref_primary_10_1097_RLI_0000000000001025 crossref_primary_10_1016_j_ecoenv_2024_116442 crossref_primary_10_1002_jmri_28994 crossref_primary_10_1016_j_acra_2022_10_021 crossref_primary_10_1016_j_jhydrol_2024_130652 crossref_primary_10_1007_s00330_024_11150_3 crossref_primary_10_1016_j_envpol_2024_124740 crossref_primary_10_1007_s00330_024_11333_y crossref_primary_10_1007_s00234_024_03305_2 crossref_primary_10_1021_acs_est_1c02958 crossref_primary_10_1038_s41598_023_37342_3 crossref_primary_10_1016_j_jconhyd_2022_104057 crossref_primary_10_1021_acsomega_4c02296 crossref_primary_10_1016_j_chemosphere_2023_140950 crossref_primary_10_1016_j_envint_2023_107868 crossref_primary_10_1016_j_rxeng_2023_06_008 crossref_primary_10_1016_j_catcom_2022_106544 crossref_primary_10_1007_s10554_024_03089_9 crossref_primary_10_31466_kfbd_1184568 crossref_primary_10_1007_s11356_023_30439_2 crossref_primary_10_1038_s41569_024_01077_z crossref_primary_10_1007_s00244_024_01110_9 crossref_primary_10_1016_j_radi_2024_06_022 crossref_primary_10_1021_acs_biomac_3c01391 crossref_primary_10_1039_D3CC05989H crossref_primary_10_1016_j_scitotenv_2022_158464 crossref_primary_10_3389_fcvm_2024_1457498 crossref_primary_10_1007_s00723_024_01655_x crossref_primary_10_1016_j_mex_2022_101965 crossref_primary_10_1080_15226514_2021_1984388 crossref_primary_10_1002_jmri_29181 crossref_primary_10_1007_s42058_022_00103_8 crossref_primary_10_3390_jmse11050956 |
Cites_doi | 10.1021/es803278n 10.1007/s00216-012-6643-x 10.1016/j.apgeochem.2010.11.011 10.1016/j.scitotenv.2017.08.170 10.14512/gaia.27.1.10 10.1016/j.chemosphere.2020.126398 10.1016/j.ejrad.2006.06.021 10.1016/j.jhydrol.2009.02.029 10.1016/j.chemgeo.2007.10.010 10.1016/j.chemosphere.2016.12.135 10.1016/0016-7037(85)90090-0 10.1016/0016-7037(90)90002-3 10.1016/S0016-7037(00)00494-4 10.1016/0012-821X(88)90031-3 10.1016/j.mri.2018.11.015 10.1016/j.talanta.2016.03.022 10.1093/ndt/gfk062 10.1007/s00216-014-8368-5 10.1002/hyp.10735 10.2166/wst.1997.0474 10.1016/j.marchem.2013.06.001 10.1016/j.apgeochem.2014.04.006 10.1007/s10661-016-5282-7 10.1016/j.psep.2014.04.010 10.1021/es010235q 10.1016/j.watres.2016.01.012 10.1148/radiol.2018171105 10.1007/s10666-004-4269-x 10.1016/S1076-6332(98)80191-8 10.1016/j.chemosphere.2013.09.102 10.1016/0143-148X(80)90020-8 10.1021/ic00032a034 10.1016/j.ejrad.2008.01.023 10.3389/fmars.2018.00111 10.1016/j.mri.2016.08.016 10.1021/acs.est.5b04322 10.1021/es048456u 10.1016/j.tox.2008.03.012 10.1039/C5EM00533G 10.1016/j.jcis.2010.01.069 10.1016/j.apgeochem.2009.09.027 10.1016/j.scitotenv.2019.07.075 10.1007/s10534-008-9135-x 10.1016/0012-821X(96)00127-6 10.1016/j.chroma.2013.08.017 10.1111/jiec.12237 10.1016/j.marchem.2005.11.007 10.1016/j.trac.2017.12.011 10.1097/RLI.0b013e3181852171 10.1016/S0016-7037(00)00472-5 10.1016/j.scitotenv.2018.11.343 10.1016/j.apgeochem.2018.01.008 10.1007/s11604-015-0503-5 10.1016/j.chemer.2004.08.004 10.5004/dwt.2018.22844 10.1016/j.mri.2017.01.006 10.1002/etc.4116 10.3109/02841851.2010.515614 10.1002/mrc.1260311111 10.1007/s11356-015-5221-0 10.1021/es990633h 10.1007/s11356-017-0880-7 10.1039/C8MT00302E 10.2343/geochemj.40.463 10.1007/s10498-014-9247-6 10.1016/j.watres.2009.04.033 10.1002/hyp.6649 10.1021/es903888t 10.1016/S0043-1354(01)00370-0 10.1177/0284185116666419 10.1016/j.chemosphere.2003.10.062 10.2166/wst.2010.885 10.1016/j.jtemb.2018.10.021 10.1016/j.chemosphere.2015.09.044 10.1002/aheh.200300492 10.1021/es301981z 10.1016/j.molliq.2016.06.076 10.1016/j.jtemb.2017.10.004 10.1021/es400708w 10.1080/10643389.2013.866622 10.1016/j.apgeochem.2011.06.011 10.1021/es051270q 10.1016/j.jcis.2004.04.007 10.1016/j.ejrad.2008.01.025 10.1016/j.crte.2015.01.003 10.1021/es402219u 10.1016/j.apgeochem.2014.05.020 10.1016/j.ccr.2007.04.018 10.5194/hess-16-2405-2012 10.1001/jamaneurol.2015.2960 10.1002/jmri.21967 10.1016/j.scitotenv.2018.06.155 10.1007/s11356-018-3489-6 10.1021/cr980440x 10.1016/j.mri.2019.01.001 10.1681/ASN.2006060601 10.1016/j.chemer.2006.01.002 10.1021/acssuschemeng.7b01124 10.1038/d41586-020-00758-2 10.1016/j.marpolbul.2010.03.027 10.1016/j.ccr.2011.05.013 10.1016/S0016-7037(03)00495-2 10.1007/s10653-006-9040-6 10.1259/bjr/17111243 10.1016/j.chemosphere.2009.01.036 10.1007/s10040-011-0713-6 10.1016/j.chemosphere.2010.05.001 10.1021/acs.analchem.5b04493 10.1016/j.scitotenv.2015.06.042 10.1080/10643389.2013.829765 10.1016/j.scitotenv.2016.06.105 10.1016/j.gca.2004.08.020 10.1016/S0375-6742(00)00083-2 10.1002/mrm.1910380120 10.1016/j.epsl.2012.11.033 10.1007/s11356-017-8491-x 10.1016/j.envint.2011.02.018 |
ContentType | Journal Article |
Copyright | 2020 The Authors Copyright © 2020 The Authors. Published by Elsevier Ltd.. All rights reserved. 2020 The Authors 2020 |
Copyright_xml | – notice: 2020 The Authors – notice: Copyright © 2020 The Authors. Published by Elsevier Ltd.. All rights reserved. – notice: 2020 The Authors 2020 |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM |
DOI | 10.1016/j.watres.2020.115966 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-2448 |
EndPage | 115966 |
ExternalDocumentID | PMC7256513 32599421 10_1016_j_watres_2020_115966 S0043135420305030 |
Genre | Journal Article Review |
GroupedDBID | --- --K --M -DZ -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5VS 6I. 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFRF ABFYP ABJNI ABLST ABMAC ABQEM ABQYD ABYKQ ACDAQ ACGFO ACGFS ACLVX ACRLP ACSBN ADBBV ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA HMC IHE IMUCA J1W KCYFY KOM LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SCU SDF SDG SDP SES SPC SPCBC SSE SSJ SSZ T5K TAE TN5 TWZ WH7 XPP ZCA ZMT ~02 ~G- ~KM .55 186 29R 6TJ AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABWVN ABXDB ACKIV ACRPL ACVFH ADCNI ADMUD ADNMO AEGFY AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HMA HVGLF HZ~ H~9 MVM OHT R2- RIG SEN SEP SEW SSH WUQ X7M XOL YHZ YV5 ZXP ZY4 ~A~ CGR CUY CVF ECM EIF NPM 7X8 EFKBS 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c496t-2e05200107615d1e19d55762d73f581bc33963e4d34ee4360945d08126f4225a3 |
IEDL.DBID | .~1 |
ISSN | 0043-1354 1879-2448 |
IngestDate | Thu Aug 21 13:56:13 EDT 2025 Thu Jul 10 22:16:18 EDT 2025 Tue Aug 05 11:18:29 EDT 2025 Thu Apr 03 07:00:56 EDT 2025 Tue Jul 01 01:21:01 EDT 2025 Thu Apr 24 23:10:55 EDT 2025 Fri Feb 23 02:46:15 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | COVID-19 Drinking water Micropollutants Gadolinium anomaly Gadolinium-based contrast agents Anthropogenic gadolinium |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. Copyright © 2020 The Authors. Published by Elsevier Ltd.. All rights reserved. Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c496t-2e05200107615d1e19d55762d73f581bc33963e4d34ee4360945d08126f4225a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0043135420305030 |
PMID | 32599421 |
PQID | 2419094770 |
PQPubID | 23479 |
PageCount | 1 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7256513 proquest_miscellaneous_2574373380 proquest_miscellaneous_2419094770 pubmed_primary_32599421 crossref_citationtrail_10_1016_j_watres_2020_115966 crossref_primary_10_1016_j_watres_2020_115966 elsevier_sciencedirect_doi_10_1016_j_watres_2020_115966 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-09-01 |
PublicationDateYYYYMMDD | 2020-09-01 |
PublicationDate_xml | – month: 09 year: 2020 text: 2020-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Water research (Oxford) |
PublicationTitleAlternate | Water Res |
PublicationYear | 2020 |
Publisher | Elsevier Ltd The Authors. Published by Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd – name: The Authors. Published by Elsevier Ltd |
References | Vriens, Voegelin, Hug, Kaegi, Winkel, Buser, Berg (bib129) 2017; 7b01731 Pyrzynska, Kubiak, Wysocka (bib110) 2016; 154 Lerat-Hardy, Coynel, Dutruch, Pereto, Bossy, Gil-Diaz, Capdeville, Blanc, Schäfer (bib71) 2019; 656 Lindner, Lingott, Richter, Jiang, Jakubowski, Panne (bib73) 2015; 407 Barber, Murphy, Verplanck, Sandstrom, Taylor, Furlong (bib3) 2006; 40 Morcos (bib92) 2007; 80 Patra, Roy, Madhuri, Sharma (bib103) 2017; 5 Cobelo-García, Filella, Croot, Frazzoli, Du Laing, Ospina-Alvarez, Rauch, Salaun, Schäfer, Zimmermann (bib24) 2015; 22 Montagne, Toga, Zlokovic (bib90) 2016; 73 Richardson, Kimura (bib114) 2016; 88 Micskei, Powell, Helm, Brücher, Merbach (bib83) 1993; 31 Birka, Roscher, Holtkamp, Sperling, Karst (bib12) 2016; 91 Künnemeyer, Terborg, Meermann, Brauckmann, Möller, Scheffer, Karst (bib62) 2009; 43 Callaway, Cyranoski, Mallapaty, Stoye, Tollefson (bib19) 2020; 579 Klaver, Verheul, Bakker, Petelet-Giraud, Négrel (bib54) 2014; 47 Blinova, Lukjanova, Muna, Vija, Kahru (bib14) 2018; 642 Nozaki, Lerche, Alibo, Tsutsumi (bib98) 2000; 64 Reoyo-Prats, Aubert, Sellier, Roig, Palacios (bib113) 2018; 25 Lawrence, Bariel (bib65) 2010; 80 Rogowska, Olkowska, Ratajczyk, Wolska (bib115) 2018 Taylor, McLennan (bib123) 1985 Stepka, Dror, Berkowitz (bib121) 2018; 610–611 Massmann, Sültenfuß, Dünnbier, Knappe, Taute, Pekdeger (bib132) 2008; 22 Merschel, Bau (bib81) 2015; 533 Ogata, Terakado (bib99) 2006; 40 Pereao, Bode-Aluko, Fatoba, Laatikainen, Petrik (bib105) 2018; 130 Kulaksiz, Bau (bib58) 2013; 362 Elbaz-Poulichet, Seidel, Othoniel (bib33) 2002; 36 Holzbecher, Knappe, Pekdeger (bib48) 2005; 10 Pédrot, Dia, Davranche (bib104) 2010; 345 Möller, Paces, Dulski, Morteani (bib89) 2002; 36 Merbach, Helm, Tóth (bib80) 2013 Clases, Fingerhut, Jeibmann, Sperling, Doble, Karst (bib22) 2018; 51 Oturan, Aaron (bib101) 2014; 44 Clases, Sperling, Karst (bib23) 2018; 104 Rozemeijer, Siderius, Verheul, Pomarius (bib116) 2012; 16 de Campos, Enzweiler (bib30) 2016; 188 Luo, Byrne (bib75) 2004; 68 De Baar, Brewer, Bacon (bib29) 1985; 49 Grobner (bib42) 2006; 21 Bau, Dulski (bib4) 1996; 143 Chan, Wong (bib21) 2007; 251 Dulski, Möller, Pekdeger (bib32) 2011; 19 Le Fur, Caravan (bib69) 2019; 11 Tepe, Romero, Bau (bib125) 2014; 45 Gromet, Dymek, Haskin, Korotev (bib43) 1984; 48 Idée, Port, Medina, Lancelot, Fayoux, Ballet, Corot (bib49) 2008; 248 Fingerhut, Niehoff, Sperling, Jeibmann, Paulus, Niederstadt, Allkemper, Heindel, Holling, Karst (bib36) 2018; 45 Food and Drug Administration (bib38) 2017 Rabiet, Brissaud, Seidel, Pistre, Elbaz-Poulichet (bib111) 2009; 75 Joffe, Thomsen, Meusel (bib51) 1998; 5 Möller, Knappe, Dulski, Pekdeger (bib87) 2011; 26 Davranche, Gruau, Dia, Marsac, Pédrot, Pourret (bib26) 2015; 21 (bib35) 2017; 44 Kovalova, Siegrist, Von Gunten, Eugster, Hagenbuch, Wittmer, Moser, McArdell (bib56) 2013; 47 Lawrence, Kamber (bib66) 2006; 100 Kümmerer, Helmers (bib61) 2000; 34 Prybylski, Semelka, Jay (bib109) 2017; 38 Migaszewski, Gałuszka (bib84) 2015; 45 Hinck, Ferguson, Puhaakka (bib46) 1997; 35 Pourret, Houben (bib108) 2018 Semelka, Prybylski, Ramalho (bib119) 2019; 58 Idée, Port, Robic, Medina, Sabatou, Corot (bib50) 2009 Morcos (bib91) 2008; 66 Davranche, Pourret, Gruau, Dia, Jin, Gaertner (bib28) 2008; 247 Petelet-Giraud, Klaver, Negrel (bib106) 2009; 369 Rabiet, Letouzet, Hassanzadeh, Simon (bib112) 2014; 95 Lindner, Lingott, Richter, Jakubowski, Panne (bib72) 2013; 405 Möller, Dulski, Bau, Knappe, Pekdeger, Sommer-Von Jarmersted (bib86) 2000; 69–70 Organisation for Economic Cooperation and Development (OECD) (bib100) 2017 Anastopoulos, Bhatnagar, Lima (bib1) 2016; 221 Schmidt, Bau, Merschel, Tepe (bib118) 2019; 687 Brünjes, Höhn, Hofmann (bib16) 2017 Bazzicalupi, Bianchi, Giorgi, Clares, García-España (bib7) 2012; 256 Byrne, Kim (bib18) 1990; 54 Lawrence (bib64) 2010; 60 Goldstein, Jacobsen (bib41) 1988; 89 Telgmann, Wehe, Birka, Künnemeyer, Nowak, Sperling, Karst (bib124) 2012; 46 Hissler, Hostache, Iffly, Pfister, Stille (bib47) 2015; 347 Marckmann (bib76) 2006; 17 Davranche, Pourret, Gruau, Dia (bib27) 2004; 277 Nassar, Du, Graedel (bib94) 2015; 19 Hathorne, Haley, Stichel, Grasse, Zieringer, Frank (bib44) 2012; 13 Wang, Jin, Comblin, Lopez-Mut, Merciny, Desreux (bib130) 1992; 31 Kulaksiz, Bau (bib60) 2011; 37 Kamber, Greig, Collerson (bib52) 2005; 69 Brünjes, Bichler, Hoehn, Lange, Brauch, Hofmann (bib15) 2016; 571 Hatje, Bruland, Flegal (bib45) 2016; 50 Lawrence, Keller, Poussade (bib67) 2010; 61 McLennan (bib77) 1989 Bichler, Muellegger, Brünjes, Hofmann (bib11) 2016; 30 Means, Kucak, Crerar (bib78) 1980; 1 Cyris, Knolle, Richard, Dopp, Von Sonntag, Schmidt (bib25) 2013; 47 Bau, Knappe, Dulski (bib5) 2006; 66 Kulaksiz, Bau (bib59) 2011; 26 Swaminathan (bib122) 2016; 34 Verplanck, Taylor, Nordstrom, Barber (bib128) 2005; 39 Parant, Perrat, Wagner, Rosin, Py, Cossu-Leguille (bib102) 2018 Schijf, Christy (bib117) 2018; 5 Burai, Hietapelto, Király, Tóth, Brücher (bib17) 1997; 38 Birka, Wehe, Telgmann, Sperling, Karst (bib13) 2013; 1308 Elizalde-González, García-Díaz, González-Perea, Mattusch (bib34) 2017; 24 Food and Drug Administration (bib37) 2018 Xia, Davis, Crawford, Abraham (bib131) 2010; 51 Caravan, Ellison, McMurry, Lauffer (bib20) 1999; 99 Port, Idée, Medina, Robic, Sabatou, Corot (bib107) 2008; 21 Lee, Robinson, Chong (bib70) 2014; 92 Nehra, McDonald, Bluhm, Gunderson, Murray, Jannetto, Kallmes, Eckel, McDonald (bib95) 2018; 288 Morteani, Möller, Fuganti, Paces (bib93) 2006; 28 Lagerström, Field, Séguret, Fischer, Hann, Sherrell (bib63) 2013; 155 Neubert (bib96) 2008 Lingott, Lindner, Telgmann, Esteban-Fernández, Jakubowski, Panne (bib74) 2016; 18 Lawrence, Ort, Keller (bib68) 2009; 43 Bau, Schmidt, Pack, Bendel, Kraemer (bib6) 2018; 90 Menahem, Dror, Berkowitz (bib79) 2016 Thomsen (bib126) 2017; 58 Kanda, Oba, Toyoda, Kitajima, Furui (bib53) 2016; 34 Metsärinne, Rantanen, Aksela, Tuhkanen (bib82) 2004; 55 Song, Shin, Ryu, Seon (bib120) 2017; 172 Möller, Morteani, Dulski (bib88) 2003; 31 Niederste-Hollenberg, Eckartz, Peters, Hillenbrand, Maier, Beer, Reszt (bib97) 2018; 27 Frenzel, Lengsfeld, Schirmer, Hütter, Weinmann (bib39) 2008; 43 Atinkpahoun, Pons, Louis, Leclerc, Soclo (bib2) 2020; 251 Verplanck, Furlong, Gray, Phillips, Wolf, Esposito (bib127) 2010; 44 Bellin (bib8) 2006; 60 Bellin, Van Der Molen (bib9) 2008; 66 Gibby, Parish, Merrill, Fernandez, Anderson, Merchel, Parr (bib40) 2019; 58 Knappe, Möller, Dulski, Pekdeger (bib55) 2005; 65 Möller, Dulski (bib85) 2010; 25 Dia, Gruau, Olivié-Lauquet, Riou, Molénat, Curmi (bib31) 2000; 64 Kulaksiz (bib57) 2012 Beyer, Angulo Cornejo (bib10) 2012 Petelet-Giraud (10.1016/j.watres.2020.115966_bib106) 2009; 369 Grobner (10.1016/j.watres.2020.115966_bib42) 2006; 21 Rabiet (10.1016/j.watres.2020.115966_bib112) 2014; 95 Organisation for Economic Cooperation and Development (OECD) (10.1016/j.watres.2020.115966_bib100) 2017 Swaminathan (10.1016/j.watres.2020.115966_bib122) 2016; 34 Caravan (10.1016/j.watres.2020.115966_bib20) 1999; 99 Bau (10.1016/j.watres.2020.115966_bib4) 1996; 143 Brünjes (10.1016/j.watres.2020.115966_bib16) 2017 Cyris (10.1016/j.watres.2020.115966_bib25) 2013; 47 Thomsen (10.1016/j.watres.2020.115966_bib126) 2017; 58 Clases (10.1016/j.watres.2020.115966_bib23) 2018; 104 Nassar (10.1016/j.watres.2020.115966_bib94) 2015; 19 Pyrzynska (10.1016/j.watres.2020.115966_bib110) 2016; 154 Dia (10.1016/j.watres.2020.115966_bib31) 2000; 64 (10.1016/j.watres.2020.115966_bib35) 2017; 44 Telgmann (10.1016/j.watres.2020.115966_bib124) 2012; 46 Kanda (10.1016/j.watres.2020.115966_bib53) 2016; 34 Lawrence (10.1016/j.watres.2020.115966_bib67) 2010; 61 Bellin (10.1016/j.watres.2020.115966_bib9) 2008; 66 McLennan (10.1016/j.watres.2020.115966_bib77) 1989 Chan (10.1016/j.watres.2020.115966_bib21) 2007; 251 Prybylski (10.1016/j.watres.2020.115966_bib109) 2017; 38 Anastopoulos (10.1016/j.watres.2020.115966_bib1) 2016; 221 Pédrot (10.1016/j.watres.2020.115966_bib104) 2010; 345 Holzbecher (10.1016/j.watres.2020.115966_bib48) 2005; 10 Oturan (10.1016/j.watres.2020.115966_bib101) 2014; 44 Birka (10.1016/j.watres.2020.115966_bib12) 2016; 91 Port (10.1016/j.watres.2020.115966_bib107) 2008; 21 Burai (10.1016/j.watres.2020.115966_bib17) 1997; 38 Metsärinne (10.1016/j.watres.2020.115966_bib82) 2004; 55 Stepka (10.1016/j.watres.2020.115966_bib121) 2018; 610–611 Pereao (10.1016/j.watres.2020.115966_bib105) 2018; 130 Möller (10.1016/j.watres.2020.115966_bib87) 2011; 26 Künnemeyer (10.1016/j.watres.2020.115966_bib62) 2009; 43 Lawrence (10.1016/j.watres.2020.115966_bib66) 2006; 100 Lawrence (10.1016/j.watres.2020.115966_bib68) 2009; 43 Parant (10.1016/j.watres.2020.115966_bib102) 2018 Luo (10.1016/j.watres.2020.115966_bib75) 2004; 68 Ogata (10.1016/j.watres.2020.115966_bib99) 2006; 40 Morcos (10.1016/j.watres.2020.115966_bib91) 2008; 66 Bau (10.1016/j.watres.2020.115966_bib6) 2018; 90 Nehra (10.1016/j.watres.2020.115966_bib95) 2018; 288 Fingerhut (10.1016/j.watres.2020.115966_bib36) 2018; 45 Blinova (10.1016/j.watres.2020.115966_bib14) 2018; 642 Goldstein (10.1016/j.watres.2020.115966_bib41) 1988; 89 Brünjes (10.1016/j.watres.2020.115966_bib15) 2016; 571 Niederste-Hollenberg (10.1016/j.watres.2020.115966_bib97) 2018; 27 Dulski (10.1016/j.watres.2020.115966_bib32) 2011; 19 Bazzicalupi (10.1016/j.watres.2020.115966_bib7) 2012; 256 Klaver (10.1016/j.watres.2020.115966_bib54) 2014; 47 De Baar (10.1016/j.watres.2020.115966_bib29) 1985; 49 Hathorne (10.1016/j.watres.2020.115966_bib44) 2012; 13 Vriens (10.1016/j.watres.2020.115966_bib129) 2017; 7b01731 Bellin (10.1016/j.watres.2020.115966_bib8) 2006; 60 de Campos (10.1016/j.watres.2020.115966_bib30) 2016; 188 Bichler (10.1016/j.watres.2020.115966_bib11) 2016; 30 Marckmann (10.1016/j.watres.2020.115966_bib76) 2006; 17 Möller (10.1016/j.watres.2020.115966_bib85) 2010; 25 Hinck (10.1016/j.watres.2020.115966_bib46) 1997; 35 Hissler (10.1016/j.watres.2020.115966_bib47) 2015; 347 Lingott (10.1016/j.watres.2020.115966_bib74) 2016; 18 Birka (10.1016/j.watres.2020.115966_bib13) 2013; 1308 Kulaksiz (10.1016/j.watres.2020.115966_bib60) 2011; 37 Atinkpahoun (10.1016/j.watres.2020.115966_bib2) 2020; 251 Micskei (10.1016/j.watres.2020.115966_bib83) 1993; 31 Montagne (10.1016/j.watres.2020.115966_bib90) 2016; 73 Callaway (10.1016/j.watres.2020.115966_bib19) 2020; 579 Lee (10.1016/j.watres.2020.115966_bib70) 2014; 92 Food and Drug Administration (10.1016/j.watres.2020.115966_bib37) Frenzel (10.1016/j.watres.2020.115966_bib39) 2008; 43 Barber (10.1016/j.watres.2020.115966_bib3) 2006; 40 Food and Drug Administration (10.1016/j.watres.2020.115966_bib38) Verplanck (10.1016/j.watres.2020.115966_bib127) 2010; 44 Tepe (10.1016/j.watres.2020.115966_bib125) 2014; 45 Merbach (10.1016/j.watres.2020.115966_bib80) 2013 Clases (10.1016/j.watres.2020.115966_bib22) 2018; 51 Kulaksiz (10.1016/j.watres.2020.115966_bib57) 2012 Lawrence (10.1016/j.watres.2020.115966_bib65) 2010; 80 Knappe (10.1016/j.watres.2020.115966_bib55) 2005; 65 Reoyo-Prats (10.1016/j.watres.2020.115966_bib113) 2018; 25 Byrne (10.1016/j.watres.2020.115966_bib18) 1990; 54 Cobelo-García (10.1016/j.watres.2020.115966_bib24) 2015; 22 Kulaksiz (10.1016/j.watres.2020.115966_bib59) 2011; 26 Lawrence (10.1016/j.watres.2020.115966_bib64) 2010; 60 Means (10.1016/j.watres.2020.115966_bib78) 1980; 1 Rozemeijer (10.1016/j.watres.2020.115966_bib116) 2012; 16 Elizalde-González (10.1016/j.watres.2020.115966_bib34) 2017; 24 Davranche (10.1016/j.watres.2020.115966_bib26) 2015; 21 Lindner (10.1016/j.watres.2020.115966_bib72) 2013; 405 Merschel (10.1016/j.watres.2020.115966_bib81) 2015; 533 Elbaz-Poulichet (10.1016/j.watres.2020.115966_bib33) 2002; 36 Wang (10.1016/j.watres.2020.115966_bib130) 1992; 31 Migaszewski (10.1016/j.watres.2020.115966_bib84) 2015; 45 Richardson (10.1016/j.watres.2020.115966_bib114) 2016; 88 Bau (10.1016/j.watres.2020.115966_bib5) 2006; 66 Lindner (10.1016/j.watres.2020.115966_bib73) 2015; 407 Schijf (10.1016/j.watres.2020.115966_bib117) 2018; 5 Semelka (10.1016/j.watres.2020.115966_bib119) 2019; 58 Kamber (10.1016/j.watres.2020.115966_bib52) 2005; 69 Kovalova (10.1016/j.watres.2020.115966_bib56) 2013; 47 Massmann (10.1016/j.watres.2020.115966_bib132) 2008; 22 Joffe (10.1016/j.watres.2020.115966_bib51) 1998; 5 Möller (10.1016/j.watres.2020.115966_bib86) 2000; 69–70 Idée (10.1016/j.watres.2020.115966_bib49) 2008; 248 Patra (10.1016/j.watres.2020.115966_bib103) 2017; 5 Verplanck (10.1016/j.watres.2020.115966_bib128) 2005; 39 Taylor (10.1016/j.watres.2020.115966_bib123) 1985 Gromet (10.1016/j.watres.2020.115966_bib43) 1984; 48 Nozaki (10.1016/j.watres.2020.115966_bib98) 2000; 64 Beyer (10.1016/j.watres.2020.115966_bib10) 2012 Möller (10.1016/j.watres.2020.115966_bib88) 2003; 31 Rabiet (10.1016/j.watres.2020.115966_bib111) 2009; 75 Morteani (10.1016/j.watres.2020.115966_bib93) 2006; 28 Menahem (10.1016/j.watres.2020.115966_bib79) 2016 Lerat-Hardy (10.1016/j.watres.2020.115966_bib71) 2019; 656 Neubert (10.1016/j.watres.2020.115966_bib96) 2008 Kümmerer (10.1016/j.watres.2020.115966_bib61) 2000; 34 Idée (10.1016/j.watres.2020.115966_bib50) 2009 Morcos (10.1016/j.watres.2020.115966_bib92) 2007; 80 Song (10.1016/j.watres.2020.115966_bib120) 2017; 172 Le Fur (10.1016/j.watres.2020.115966_bib69) 2019; 11 Hatje (10.1016/j.watres.2020.115966_bib45) 2016; 50 Davranche (10.1016/j.watres.2020.115966_bib27) 2004; 277 Xia (10.1016/j.watres.2020.115966_bib131) 2010; 51 Rogowska (10.1016/j.watres.2020.115966_bib115) 2018 Davranche (10.1016/j.watres.2020.115966_bib28) 2008; 247 Möller (10.1016/j.watres.2020.115966_bib89) 2002; 36 Schmidt (10.1016/j.watres.2020.115966_bib118) 2019; 687 Kulaksiz (10.1016/j.watres.2020.115966_bib58) 2013; 362 Gibby (10.1016/j.watres.2020.115966_bib40) 2019; 58 Lagerström (10.1016/j.watres.2020.115966_bib63) 2013; 155 Pourret (10.1016/j.watres.2020.115966_bib108) |
References_xml | – year: 2016 ident: bib79 article-title: Transport of gadolinium- and arsenic-based pharmaceuticals in saturated soil under various redox conditions publication-title: Chemosphere – year: 2017 ident: bib100 article-title: Magnetic resonance imaging (MRI) exams [WWW Document] publication-title: OECD Heal. Stat. Heal. Care Util – volume: 571 start-page: 1432 year: 2016 end-page: 1440 ident: bib15 article-title: Anthropogenic gadolinium as a transient tracer for investigating river bank filtration publication-title: Sci. Total Environ. – volume: 58 start-page: 76 year: 2019 end-page: 81 ident: bib40 article-title: The use of a binary chelate formulation: could gadolinium based linear contrast agents be rescued by the addition of zinc selective chelates? publication-title: Magn. Reson. Imaging – volume: 26 start-page: 1877 year: 2011 end-page: 1885 ident: bib59 article-title: Anthropogenic gadolinium as a microcontaminant in tap water used as drinking water in urban areas and megacities publication-title: Appl. Geochem. – volume: 26 start-page: 140 year: 2011 end-page: 149 ident: bib87 article-title: Behavior of Gd-DTPA in simulated bank filtration publication-title: Appl. Geochem. – volume: 22 start-page: 788 year: 2008 end-page: 801 ident: bib132 article-title: Investigation of groundwater residence times during bank filtration in Berlin: a multi-tracer approach publication-title: Hydrol. Process. Int. J. – volume: 277 start-page: 271 year: 2004 end-page: 279 ident: bib27 article-title: Impact of humate complexation on the adsorption of REE onto Fe oxyhydroxide publication-title: J. Colloid Interface Sci. – volume: 533 start-page: 91 year: 2015 end-page: 101 ident: bib81 article-title: Rare earth elements in the aragonitic shell of freshwater mussel Corbicula fluminea and the bioavailability of anthropogenic lanthanum, samarium and gadolinium in river water publication-title: Sci. Total Environ. – volume: 58 start-page: 174 year: 2019 end-page: 178 ident: bib119 article-title: Influence of excess ligand on Nephrogenic Systemic Fibrosis associated with nonionic, linear gadolinium-based contrast agents publication-title: Magn. Reson. Imaging – year: 2018 ident: bib37 article-title: Update on FDA approach to safety issue of gadolinium retention after administration of gadolinium-based contrast agents – volume: 18 start-page: 200 year: 2016 end-page: 207 ident: bib74 article-title: Gadolinium-uptake by aquatic and terrestrial organisms-distribution determined by laser ablation inductively coupled plasma mass spectrometry publication-title: Environ. Sci. Process. Impacts – volume: 46 start-page: 11929 year: 2012 end-page: 11936 ident: bib124 article-title: Speciation and isotope dilution analysis of gadolinium-based contrast agents in wastewater publication-title: Environ. Sci. Technol. – volume: 31 start-page: 225 year: 2003 end-page: 239 ident: bib88 article-title: Anomalous gadolinium, cerium, and yttrium contents in the adige and isarco river waters and in the water of their tributaries (provinces trento and bolzano/bozen, NE Italy) publication-title: Acta Hydrochim. Hydrobiol. – volume: 75 start-page: 1057 year: 2009 end-page: 1064 ident: bib111 article-title: Positive gadolinium anomalies in wastewater treatment plant effluents and aquatic environment in the Hérault watershed (South France) publication-title: Chemosphere – volume: 21 start-page: 1104 year: 2006 end-page: 1108 ident: bib42 article-title: Gadolinium – a specific trigger for the development of nephrogenic fibrosing dermopathy and nephrogenic systemic fibrosis? publication-title: Nephrol. Dial. Transplant. – volume: 19 start-page: 1044 year: 2015 end-page: 1054 ident: bib94 article-title: Criticality of the rare earth elements publication-title: J. Ind. Ecol. – volume: 73 start-page: 13 year: 2016 end-page: 14 ident: bib90 article-title: Blood-brain barrier permeability and gadolinium benefits and potential pitfalls in research publication-title: JAMA Neurol. – volume: 65 start-page: 167 year: 2005 end-page: 189 ident: bib55 article-title: Positive gadolinium anomaly in surface water and ground water of the urban area Berlin, Germany publication-title: Chem. Erde - Geochem. – volume: 21 start-page: 469 year: 2008 end-page: 490 ident: bib107 article-title: Efficiency, thermodynamic and kinetic stability of marketed gadolinium chelates and their possible clinical consequences: a critical review publication-title: Biometals – volume: 407 start-page: 2415 year: 2015 end-page: 2422 ident: bib73 article-title: Analysis of Gadolinium-based contrast agents in tap water with a new hydrophilic interaction chromatography (ZIC-cHILIC) hyphenated with inductively coupled plasma mass spectrometry publication-title: Anal. Bioanal. Chem. – volume: 25 start-page: 48 year: 2010 end-page: 59 ident: bib85 article-title: Transmetallation of Gd-DTPA by Cu, Y and lanthanides and its impact on the hydrosphere publication-title: Appl. Geochem. – volume: 247 start-page: 154 year: 2008 end-page: 170 ident: bib28 article-title: Competitive binding of REE to humic acid and manganese oxide: impact of reaction kinetics on development of cerium anomaly and REE adsorption publication-title: Chem. Geol. – volume: 47 start-page: 7899 year: 2013 end-page: 7908 ident: bib56 article-title: Elimination of micropollutants during post-treatment of hospital wastewater with powdered activated carbon, ozone, and UV publication-title: Environ. Sci. Technol. – volume: 25 start-page: 6107 year: 2018 end-page: 6121 ident: bib113 article-title: Dynamics and sources of pharmaceutically active compounds in a coastal Mediterranean river during heavy rains publication-title: Environ. Sci. Pollut. Res. – volume: 248 start-page: 77 year: 2008 end-page: 88 ident: bib49 article-title: Possible involvement of gadolinium chelates in the pathophysiology of nephrogenic systemic fibrosis: a critical review publication-title: Toxicology – volume: 30 start-page: 1742 year: 2016 end-page: 1756 ident: bib11 article-title: Quantification of river water infiltration in shallow aquifers using acesulfame and anthropogenic gadolinium publication-title: Hydrol. Process. – volume: 49 start-page: 1961 year: 1985 end-page: 1969 ident: bib29 article-title: Anomalies in rare earth distributions in seawater: Gd and Tb publication-title: Geochem. Cosmochim. Acta – volume: 43 start-page: 3534 year: 2009 end-page: 3540 ident: bib68 article-title: Detection of anthropogenic gadolinium in treated wastewater in South East Queensland, Australia publication-title: Water Res. – volume: 40 start-page: 475 year: 2006 end-page: 486 ident: bib3 article-title: Chemical loading into surface water along a hydrological, biogeochemical, and land use gradient: a holistic watershed approach publication-title: Environ. Sci. Technol. – volume: 27 start-page: 147 year: 2018 end-page: 155 ident: bib97 article-title: Reducing the emission of X-Ray contrast agents to the environment publication-title: Gaia – volume: 39 start-page: 6923 year: 2005 end-page: 6929 ident: bib128 article-title: Aqueous stability of gadolinium in surface waters receiving sewage treatment plant effluent Boulder Creek, Colorado publication-title: Environ. Sci. Technol. – volume: 69 start-page: 1041 year: 2005 end-page: 1058 ident: bib52 article-title: A new estimate for the composition of weathered young upper continental crust from alluvial sediments, Queensland, Australia publication-title: Geochem. Cosmochim. Acta – volume: 51 start-page: 212 year: 2018 end-page: 218 ident: bib22 article-title: LA-ICP-MS/MS improves limits of detection in elemental bioimaging of gadolinium deposition originating from MRI contrast agents in skin and brain tissues publication-title: J. Trace Elem. Med. Biol. – volume: 61 start-page: 685 year: 2010 end-page: 692 ident: bib67 article-title: Removal of magnetic resonance imaging contrast agents through advanced water treatment plants publication-title: Water Sci. Technol. – volume: 7b01731 year: 2017 ident: bib129 article-title: Quantification of element fluxes in wastewaters: a nationwide survey in Switzerland publication-title: Environ. Sci. Technol. – volume: 40 start-page: 463 year: 2006 end-page: 474 ident: bib99 article-title: Rare earth element abundances in some seawaters and related river waters from the Osaka Bay area, Japan: significance of anthropogenic Gd publication-title: Geochem. J. – volume: 100 start-page: 147 year: 2006 end-page: 161 ident: bib66 article-title: The behaviour of the rare earth elements during estuarine mixing-revisited publication-title: Mar. Chem. – volume: 10 start-page: 1 year: 2005 end-page: 8 ident: bib48 article-title: Identification of degradation characteristics - exemplified by Gd-DTPA in a large experimental column publication-title: Environ. Model. Assess. – volume: 13 start-page: 1 year: 2012 end-page: 12 ident: bib44 article-title: Online preconcentration ICP-MS analysis of rare earth elements in seawater publication-title: G-cubed – volume: 405 start-page: 1865 year: 2013 end-page: 1873 ident: bib72 article-title: Speciation of gadolinium in surface water samples and plants by hydrophilic interaction chromatography hyphenated with inductively coupled plasma mass spectrometry publication-title: Anal. Bioanal. Chem. – volume: 5 start-page: 1 year: 2018 end-page: 17 ident: bib117 article-title: Effect of Mg and Ca on the stability of the MRI contrast agent Gd–DTPA in seawater publication-title: Front. Mar. Sci. – volume: 80 start-page: 794 year: 2010 end-page: 799 ident: bib65 article-title: Tracing treated wastewater in an inland catchment using anthropogenic gadolinium publication-title: Chemosphere – start-page: 538 year: 2017 end-page: 543 ident: bib16 article-title: Stabilitätsunterschiede von Gadolinium-Komplexen – volume: 80 start-page: 586 year: 2007 ident: bib92 article-title: Nephrogenic systemic fibrosis following the administration of extracellular gadolinium based contrast agents: is the stability of the contrast agent molecule an important factor in the pathogenesis of this condition? publication-title: Br. J. Radiol. – volume: 37 start-page: 973 year: 2011 end-page: 979 ident: bib60 article-title: Rare earth elements in the Rhine River, Germany: first case of anthropogenic lanthanum as a dissolved microcontaminant in the hydrosphere publication-title: Environ. Int. – volume: 45 start-page: 191 year: 2014 end-page: 197 ident: bib125 article-title: High-technology metals as emerging contaminants: strong increase of anthropogenic gadolinium levels in tap water of Berlin, Germany, from 2009 to 2012 publication-title: Appl. Geochem. – volume: 188 start-page: 281 year: 2016 ident: bib30 article-title: Anthropogenic gadolinium anomalies and rare earth elements in the water of Atibaia River and Anhumas Creek, Southeast Brazil publication-title: Environ. Monit. Assess. – year: 2012 ident: bib57 article-title: Rare Earth Elements as Emerging Contaminants in the Rhine River , Germany and its Tributaries – volume: 66 start-page: 143 year: 2006 end-page: 152 ident: bib5 article-title: Anthropogenic gadolinium as a micropollutant in river waters in Pennsylvania and in Lake Erie, northeastern United States publication-title: Chem. Erde – volume: 91 start-page: 244 year: 2016 end-page: 250 ident: bib12 article-title: Investigating the stability of gadolinium based contrast agents towards UV radiation publication-title: Water Res. – volume: 19 start-page: 823 year: 2011 end-page: 834 ident: bib32 article-title: Comparison of gadopentetic acid (Gd-DTPA) and bromide in a dual-tracer field experiment publication-title: Hydrogeol. J. – year: 2018 ident: bib108 article-title: Characterization of metal binding sites onto biochar using rare earth elements as a fingerprint. Heliyon e00543 – volume: 347 start-page: 294 year: 2015 end-page: 303 ident: bib47 article-title: Anthropogenic rare earth element fluxes into floodplains: coupling between geochemical monitoring and hydrodynamic sediment transport modelling publication-title: Compt. Rendus Geosci. – start-page: 1249 year: 2009 end-page: 1258 ident: bib50 article-title: Role of thermodynamic and kinetic parameters in gadolinium chelate stability publication-title: J. Magn. Reson. Imag. – volume: 31 start-page: 1011 year: 1993 end-page: 1020 ident: bib83 article-title: Water exchange on [Gd(H2O)8]3+ and [Gd(PDTA)(H2O)2]- in aqueous solution: a variable-pressure, -temperature and -magnetic field 17O NMR study publication-title: Magn. Reson. Chem. – volume: 38 start-page: 145 year: 2017 end-page: 151 ident: bib109 article-title: The stability of gadolinium-based contrast agents in human serum: a reanalysis of literature data and association with clinical outcomes publication-title: Magn. Reson. Imaging – volume: 66 start-page: 160 year: 2008 end-page: 167 ident: bib9 article-title: Extracellular gadolinium-based contrast media: an overview publication-title: Eur. J. Radiol. – start-page: 169 year: 1989 end-page: 200 ident: bib77 article-title: Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes publication-title: Geochemistry and Mineralogy of Rare Earth Elements – volume: 345 start-page: 206 year: 2010 end-page: 213 ident: bib104 article-title: Dynamic structure of humic substances: rare earth elements as a fingerprint publication-title: J. Colloid Interface Sci. – volume: 154 start-page: 15 year: 2016 end-page: 22 ident: bib110 article-title: Application of solid phase extraction procedures for rare earth elements determination in environmental samples publication-title: Talanta – volume: 43 start-page: 2884 year: 2009 end-page: 2890 ident: bib62 article-title: Speciation analysis of gadolinium chelates in hospital effluents and wastewater treatment plant sewage by a novel HILIC/ICP-MS method publication-title: Environ. Sci. Technol. – volume: 172 start-page: 155 year: 2017 end-page: 165 ident: bib120 article-title: Anthropogenic rare earth elements and their spatial distributions in the Han River, South Korea publication-title: Chemosphere – volume: 89 start-page: 35 year: 1988 end-page: 47 ident: bib41 article-title: Rare earth elements in river waters publication-title: Earth Planet Sci. Lett. – volume: 36 start-page: 1102 year: 2002 end-page: 1105 ident: bib33 article-title: Occurrence of an anthropogenic gadolinium anomaly in river and coastal waters of Southern France publication-title: Water Res. – volume: 35 start-page: 25 year: 1997 end-page: 31 ident: bib46 article-title: Resistance of EDTA and DTPA to aerobic biodegradation publication-title: Water Sci. Technol. – volume: 22 start-page: 15188 year: 2015 end-page: 15194 ident: bib24 article-title: COST action TD1407: network on technology-critical elements (NOTICE)—from environmental processes to human health threats publication-title: Environ. Sci. Pollut. Res. – volume: 5 start-page: 491 year: 1998 end-page: 502 ident: bib51 article-title: Pharmacokinetics of gadodiamide injection in patients with severe renal insufficiency and patients undergoing hemodialysis or continuous ambulatory peritoneal dialysis publication-title: Acad. Radiol. – volume: 656 start-page: 409 year: 2019 end-page: 420 ident: bib71 article-title: Rare Earth Element fluxes over 15 years into a major European Estuary (Garonne-Gironde, SW France): hospital effluents as a source of increasing gadolinium anomalies publication-title: Sci. Total Environ. – volume: 288 start-page: 416 year: 2018 end-page: 423 ident: bib95 article-title: Accumulation of gadolinium in human cerebrospinal fluid after gadobutrol-enhanced MR imaging: a prospective observational cohort study publication-title: Radiology – volume: 610–611 start-page: 1083 year: 2018 end-page: 1091 ident: bib121 article-title: The effect of nanoparticles and humic acid on technology critical element concentrations in aqueous solutions with soil and sand publication-title: Sci. Total Environ. – volume: 88 start-page: 546 year: 2016 end-page: 582 ident: bib114 article-title: Water analysis: emerging contaminants and current issues publication-title: Anal. Chem. – volume: 642 start-page: 1100 year: 2018 end-page: 1107 ident: bib14 article-title: Evaluation of the potential hazard of lanthanides to freshwater microcrustaceans publication-title: Sci. Total Environ. – volume: 1 start-page: 45 year: 1980 end-page: 60 ident: bib78 article-title: Relative degradation rates of NTA, EDTA and DTPA and environmental implications publication-title: Environ. Pollut. Ser. B Chem. Phys. – volume: 45 start-page: 429 year: 2015 end-page: 471 ident: bib84 article-title: The characteristics, occurrence, and geochemical behavior of rare earth elements in the environment: a review publication-title: Crit. Rev. Environ. Sci. Technol. – year: 2008 ident: bib96 article-title: Umweltverhalten und Ökotoxikologie von gadoliniumhaltigen Magnetresonanztomographie-Kontrastmitteln – volume: 51 start-page: 1126 year: 2010 end-page: 1136 ident: bib131 article-title: Gadolinium released from MR contrast agents is deposited in brain tumors: in situ demonstration using scanning electron microscopy with energy dispersive X-ray spectroscopy publication-title: Acta Radiol. – volume: 5 start-page: 6910 year: 2017 end-page: 6923 ident: bib103 article-title: Removal and recycling of precious rare earth element from wastewater samples using imprinted magnetic ordered mesoporous carbon publication-title: ACS Sustain. Chem. Eng. – volume: 90 start-page: 142 year: 2018 end-page: 149 ident: bib6 article-title: The European Shale: an improved data set for normalisation of rare earth element and yttrium concentrations in environmental and biological samples from Europe publication-title: Appl. Geochem. – volume: 28 start-page: 257 year: 2006 end-page: 264 ident: bib93 article-title: Input and fate of anthropogenic estrogens and gadolinium in surface water and sewage plants in the hydrological basin of Prague (Czech Republic) publication-title: Environ. Geochem. Health – volume: 362 start-page: 43 year: 2013 end-page: 50 ident: bib58 article-title: Anthropogenic dissolved and colloid/nanoparticle-bound samarium, lanthanum and gadolinium in the Rhine River and the impending destruction of the natural rare earth element distribution in rivers publication-title: Earth Planet Sci. Lett. – volume: 69–70 start-page: 409 year: 2000 end-page: 414 ident: bib86 article-title: Anthropogenic gadolinium as a conservative tracer in hydrology publication-title: J. Geochem. Explor. – volume: 143 start-page: 245 year: 1996 end-page: 255 ident: bib4 article-title: Anthropogenic origin of positive gadolinium anomalies in river waters publication-title: Earth Planet Sci. Lett. – volume: 60 start-page: 314 year: 2006 end-page: 323 ident: bib8 article-title: MR contrast agents, the old and the new publication-title: Eur. J. Radiol. – volume: 155 start-page: 71 year: 2013 end-page: 80 ident: bib63 article-title: Automated on-line flow-injection ICP-MS determination of trace metals (Mn, Fe, Co, Ni, Cu and Zn) in open ocean seawater: application to the GEOTRACES program publication-title: Mar. Chem. – volume: 50 start-page: 4159 year: 2016 end-page: 4168 ident: bib45 article-title: Increases in anthropogenic gadolinium anomalies and rare earth element concentrations in san francisco bay over a 20 Year record publication-title: Environ. Sci. Technol. – volume: 369 start-page: 336 year: 2009 end-page: 349 ident: bib106 article-title: Natural versus anthropogenic sources in the surface- and groundwater dissolved load of the Dommel river (Meuse basin): constraints by boron and strontium isotopes and gadolinium anomaly publication-title: J. Hydrol. – volume: 31 start-page: 1095 year: 1992 end-page: 1099 ident: bib130 article-title: A kinetic investigation of the lanthanide DOTA chelates. Stability and rates of formation and of dissociation of a macrocyclic gadolinium(III) polyaza polycarboxylic MRI contrast agent publication-title: Inorg. Chem. – volume: 34 start-page: 3 year: 2016 end-page: 9 ident: bib53 article-title: Brain gadolinium deposition after administration of gadolinium-based contrast agents publication-title: Jpn. J. Radiol. – volume: 687 start-page: 1401 year: 2019 end-page: 1408 ident: bib118 article-title: Anthropogenic gadolinium in tap water and in tap water-based beverages from fast-food franchises in six major cities in Germany publication-title: Sci. Total Environ. – volume: 251 start-page: 2428 year: 2007 end-page: 2451 ident: bib21 article-title: Small molecular gadolinium(III) complexes as MRI contrast agents for diagnostic imaging publication-title: Coord. Chem. Rev. – volume: 17 start-page: 2359 year: 2006 end-page: 2362 ident: bib76 article-title: Nephrogenic systemic fibrosis: suspected causative role of gadodiamide used for contrast-enhanced magnetic resonance imaging publication-title: J. Am. Soc. Nephrol. – volume: 104 start-page: 135 year: 2018 end-page: 147 ident: bib23 article-title: Analysis of metal-based contrast agents in medicine and the environment publication-title: TrAC Trends Anal. Chem. (Reference Ed.) – volume: 11 year: 2019 ident: bib69 article-title: The biological fate of gadolinium-based MRI contrast agents: a call to action for bioinorganic chemists publication-title: Metall – volume: 47 start-page: 186 year: 2014 end-page: 197 ident: bib54 article-title: Anthropogenic rare earth element in rivers: gadoliniumand lanthanum. Partitioning between the dissolved and particulate phases in the rhine river and spatial propagation through the rhine-meuse delta (The Netherlands) publication-title: Appl. Geochem. – volume: 36 start-page: 2387 year: 2002 end-page: 2394 ident: bib89 article-title: Anthropogenic Gd in surface water, drainage system, and the water supply of the City of Prague, Czech Republic publication-title: Environ. Sci. Technol. – volume: 1308 start-page: 125 year: 2013 end-page: 131 ident: bib13 article-title: Sensitive quantification of gadolinium-based magnetic resonance imaging contrast agents in surface waters using hydrophilic interaction liquid chromatography and inductively coupled plasma sector field mass spectrometry publication-title: J. Chromatogr. A – volume: 60 start-page: 1113 year: 2010 end-page: 1116 ident: bib64 article-title: Detection of anthropogenic gadolinium in the brisbane river plume in moreton bay, Queensland, Australia publication-title: Mar. Pollut. Bull. – volume: 221 start-page: 954 year: 2016 end-page: 962 ident: bib1 article-title: Adsorption of rare earth metals: a review of recent literature publication-title: J. Mol. Liq. – volume: 43 start-page: 817 year: 2008 end-page: 828 ident: bib39 article-title: Stability of gadolinium-based magnetic resonance imaging contrast agents in human serum at 37°C publication-title: Invest. Radiol. – volume: 92 start-page: 489 year: 2014 end-page: 508 ident: bib70 article-title: A review on application of flocculants in wastewater treatment publication-title: Process Saf. Environ. Protect. – volume: 68 start-page: 691 year: 2004 end-page: 699 ident: bib75 article-title: Carbonate complexation of yttrium and the rare earth elements in natural waters publication-title: Geochem. Cosmochim. Acta – volume: 47 start-page: 9942 year: 2013 end-page: 9949 ident: bib25 article-title: Reaction of gadolinium chelates with ozone and hydroxyl radicals publication-title: Environ. Sci. Technol. – volume: 251 year: 2020 ident: bib2 article-title: Rare earth elements (REE) in the urban wastewater of Cotonou (Benin, West Africa) publication-title: Chemosphere – volume: 66 start-page: 175 year: 2008 end-page: 179 ident: bib91 article-title: Extracellular gadolinium contrast agents: differences in stability publication-title: Eur. J. Radiol. – volume: 16 start-page: 2405 year: 2012 end-page: 2415 ident: bib116 article-title: Tracing the spatial propagation of river inlet water into an agricultural polder area using anthropogenic gadolinium publication-title: Hydrol. Earth Syst. Sci. – volume: 24 start-page: 8164 year: 2017 end-page: 8175 ident: bib34 article-title: Removal of gadolinium-based contrast agents: adsorption on activated carbon publication-title: Environ. Sci. Pollut. Res. – year: 2012 ident: bib10 article-title: Koordinationschemie: Grundlagen-Synthesen-Anwendungen – volume: 48 start-page: 2469 year: 1984 end-page: 2482 ident: bib43 article-title: The “North American shale composite” - its compilation, major and trace element characteristics publication-title: G-cubed – volume: 38 start-page: 146 year: 1997 end-page: 150 ident: bib17 article-title: Stability constants and 1H relaxation effects of ternary complexes formed between Gd-DTPA, Gd-DTPA-BMA, Gd-DOTA, and Gd-EDTA and citrate, phosphate, and carbonate ions publication-title: Magn. Reson. Med. – volume: 64 start-page: 4131 year: 2000 end-page: 4148 ident: bib31 article-title: The distribution of rare earth elements in groundwaters: assessing the role of source-rock composition, redox changes and colloidal particles publication-title: Geochem. Cosmochim. Acta – volume: 99 start-page: 2293 year: 1999 end-page: 2352 ident: bib20 article-title: Gadolinium(III) chelates as MRI contrast agents: structure, dynamics, and applications publication-title: Chem. Rev. – volume: 44 start-page: 5 year: 2017 end-page: 8 ident: bib35 article-title: EMA’s final opinion confirms restrictions on use of linear gadolinium agents in body scans Recommendations conclude publication-title: EMA’s Sci. Rev. Gadolinium Deposit. – volume: 54 start-page: 2645 year: 1990 end-page: 2656 ident: bib18 article-title: Rare earth element scavenging in seawater publication-title: Geochem. Cosmochim. Acta – volume: 34 start-page: 573 year: 2000 end-page: 577 ident: bib61 article-title: Hospital effluents as a source of gadolinium in the aquatic environment publication-title: Environ. Sci. Technol. – volume: 34 start-page: 1373 year: 2016 end-page: 1376 ident: bib122 article-title: Gadolinium toxicity: iron and ferroportin as central targets publication-title: Magn. Reson. Imaging – volume: 130 start-page: 71 year: 2018 end-page: 86 ident: bib105 article-title: Rare earth elements removal techniques from water/wastewater: a review publication-title: Desalin. Water Treat. – volume: 579 start-page: 482 year: 2020 end-page: 483 ident: bib19 article-title: The coronavirus pandemic in five powerful charts publication-title: Nature – volume: 58 start-page: 259 year: 2017 end-page: 263 ident: bib126 article-title: Are the increasing amounts of gadolinium in surface and tap water dangerous? publication-title: Acta Radiol. – volume: 95 start-page: 639 year: 2014 end-page: 642 ident: bib112 article-title: Transmetallation of Gd-DTPA by Fe3+, Cu2+and Zn2+in water: batch experiments and coagulation-flocculation simulations publication-title: Chemosphere – year: 2018 ident: bib102 article-title: Variations of anthropogenic gadolinium in rivers close to waste water treatment plant discharges publication-title: Environ. Sci. Pollut. Res. – volume: 256 start-page: 13 year: 2012 end-page: 27 ident: bib7 article-title: Addressing selectivity criteria in binding equilibria publication-title: Coord. Chem. Rev. – volume: 55 start-page: 379 year: 2004 end-page: 388 ident: bib82 article-title: Biological and photochemical degradation rates of diethylenetriaminepentaacetic acid (DTPA) in the presence and absence of Fe(III) publication-title: Chemosphere – year: 1985 ident: bib123 article-title: The Continental Crust: its Composition and Evolution. An Examination of the Geochemical Record Preserved in Sedimentary Rocks – volume: 44 start-page: 2577 year: 2014 end-page: 2641 ident: bib101 article-title: Advanced oxidation processes in water/wastewater treatment: principles and applications. A review publication-title: Crit. Rev. Environ. Sci. Technol. – volume: 45 start-page: 125 year: 2018 end-page: 130 ident: bib36 article-title: Spatially resolved quantification of gadolinium deposited in the brain of a patient treated with gadolinium-based contrast agents publication-title: J. Trace Elem. Med. Biol. – year: 2017 ident: bib38 article-title: FDA Safety Announcement - FDA warns that gadolinium-based contrast agents (GBCAs) are retained in the body; requires new class warnings – volume: 64 start-page: 3975 year: 2000 end-page: 3982 ident: bib98 article-title: Dissolved indium and rare earth elements in three Japanese rivers and Tokyo Bay: evidence for anthropogenic Gd and in publication-title: Geochem. Cosmochim. Acta – year: 2013 ident: bib80 article-title: The Chemistry of Contrast Agents – year: 2018 ident: bib115 article-title: Gadolinium as a new emerging contaminant of aquatic environment publication-title: Environ. Toxicol. Chem. – volume: 21 start-page: 197 year: 2015 end-page: 215 ident: bib26 article-title: Biogeochemical factors affecting rare earth element distribution in shallow wetland groundwater publication-title: Aquat. Geochem. – volume: 44 start-page: 3876 year: 2010 end-page: 3882 ident: bib127 article-title: Evaluating the behavior of gadolinium and other rare earth elements through large metropolitan sewage treatment plants publication-title: Environ. Sci. Technol. – volume: 43 start-page: 2884 year: 2009 ident: 10.1016/j.watres.2020.115966_bib62 article-title: Speciation analysis of gadolinium chelates in hospital effluents and wastewater treatment plant sewage by a novel HILIC/ICP-MS method publication-title: Environ. Sci. Technol. doi: 10.1021/es803278n – volume: 405 start-page: 1865 year: 2013 ident: 10.1016/j.watres.2020.115966_bib72 article-title: Speciation of gadolinium in surface water samples and plants by hydrophilic interaction chromatography hyphenated with inductively coupled plasma mass spectrometry publication-title: Anal. Bioanal. Chem. doi: 10.1007/s00216-012-6643-x – start-page: 538 year: 2017 ident: 10.1016/j.watres.2020.115966_bib16 – ident: 10.1016/j.watres.2020.115966_bib38 – volume: 26 start-page: 140 year: 2011 ident: 10.1016/j.watres.2020.115966_bib87 article-title: Behavior of Gd-DTPA in simulated bank filtration publication-title: Appl. Geochem. doi: 10.1016/j.apgeochem.2010.11.011 – volume: 610–611 start-page: 1083 year: 2018 ident: 10.1016/j.watres.2020.115966_bib121 article-title: The effect of nanoparticles and humic acid on technology critical element concentrations in aqueous solutions with soil and sand publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.08.170 – volume: 27 start-page: 147 year: 2018 ident: 10.1016/j.watres.2020.115966_bib97 article-title: Reducing the emission of X-Ray contrast agents to the environment publication-title: Gaia doi: 10.14512/gaia.27.1.10 – volume: 251 year: 2020 ident: 10.1016/j.watres.2020.115966_bib2 article-title: Rare earth elements (REE) in the urban wastewater of Cotonou (Benin, West Africa) publication-title: Chemosphere doi: 10.1016/j.chemosphere.2020.126398 – volume: 60 start-page: 314 year: 2006 ident: 10.1016/j.watres.2020.115966_bib8 article-title: MR contrast agents, the old and the new publication-title: Eur. J. Radiol. doi: 10.1016/j.ejrad.2006.06.021 – volume: 369 start-page: 336 year: 2009 ident: 10.1016/j.watres.2020.115966_bib106 article-title: Natural versus anthropogenic sources in the surface- and groundwater dissolved load of the Dommel river (Meuse basin): constraints by boron and strontium isotopes and gadolinium anomaly publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2009.02.029 – volume: 247 start-page: 154 year: 2008 ident: 10.1016/j.watres.2020.115966_bib28 article-title: Competitive binding of REE to humic acid and manganese oxide: impact of reaction kinetics on development of cerium anomaly and REE adsorption publication-title: Chem. Geol. doi: 10.1016/j.chemgeo.2007.10.010 – volume: 172 start-page: 155 year: 2017 ident: 10.1016/j.watres.2020.115966_bib120 article-title: Anthropogenic rare earth elements and their spatial distributions in the Han River, South Korea publication-title: Chemosphere doi: 10.1016/j.chemosphere.2016.12.135 – volume: 49 start-page: 1961 year: 1985 ident: 10.1016/j.watres.2020.115966_bib29 article-title: Anomalies in rare earth distributions in seawater: Gd and Tb publication-title: Geochem. Cosmochim. Acta doi: 10.1016/0016-7037(85)90090-0 – volume: 13 start-page: 1 year: 2012 ident: 10.1016/j.watres.2020.115966_bib44 article-title: Online preconcentration ICP-MS analysis of rare earth elements in seawater publication-title: G-cubed – volume: 54 start-page: 2645 year: 1990 ident: 10.1016/j.watres.2020.115966_bib18 article-title: Rare earth element scavenging in seawater publication-title: Geochem. Cosmochim. Acta doi: 10.1016/0016-7037(90)90002-3 – volume: 64 start-page: 4131 year: 2000 ident: 10.1016/j.watres.2020.115966_bib31 article-title: The distribution of rare earth elements in groundwaters: assessing the role of source-rock composition, redox changes and colloidal particles publication-title: Geochem. Cosmochim. Acta doi: 10.1016/S0016-7037(00)00494-4 – volume: 89 start-page: 35 year: 1988 ident: 10.1016/j.watres.2020.115966_bib41 article-title: Rare earth elements in river waters publication-title: Earth Planet Sci. Lett. doi: 10.1016/0012-821X(88)90031-3 – volume: 58 start-page: 174 year: 2019 ident: 10.1016/j.watres.2020.115966_bib119 article-title: Influence of excess ligand on Nephrogenic Systemic Fibrosis associated with nonionic, linear gadolinium-based contrast agents publication-title: Magn. Reson. Imaging doi: 10.1016/j.mri.2018.11.015 – volume: 154 start-page: 15 year: 2016 ident: 10.1016/j.watres.2020.115966_bib110 article-title: Application of solid phase extraction procedures for rare earth elements determination in environmental samples publication-title: Talanta doi: 10.1016/j.talanta.2016.03.022 – volume: 21 start-page: 1104 year: 2006 ident: 10.1016/j.watres.2020.115966_bib42 article-title: Gadolinium – a specific trigger for the development of nephrogenic fibrosing dermopathy and nephrogenic systemic fibrosis? publication-title: Nephrol. Dial. Transplant. doi: 10.1093/ndt/gfk062 – volume: 407 start-page: 2415 year: 2015 ident: 10.1016/j.watres.2020.115966_bib73 article-title: Analysis of Gadolinium-based contrast agents in tap water with a new hydrophilic interaction chromatography (ZIC-cHILIC) hyphenated with inductively coupled plasma mass spectrometry publication-title: Anal. Bioanal. Chem. doi: 10.1007/s00216-014-8368-5 – volume: 30 start-page: 1742 year: 2016 ident: 10.1016/j.watres.2020.115966_bib11 article-title: Quantification of river water infiltration in shallow aquifers using acesulfame and anthropogenic gadolinium publication-title: Hydrol. Process. doi: 10.1002/hyp.10735 – volume: 35 start-page: 25 year: 1997 ident: 10.1016/j.watres.2020.115966_bib46 article-title: Resistance of EDTA and DTPA to aerobic biodegradation publication-title: Water Sci. Technol. doi: 10.2166/wst.1997.0474 – volume: 155 start-page: 71 year: 2013 ident: 10.1016/j.watres.2020.115966_bib63 article-title: Automated on-line flow-injection ICP-MS determination of trace metals (Mn, Fe, Co, Ni, Cu and Zn) in open ocean seawater: application to the GEOTRACES program publication-title: Mar. Chem. doi: 10.1016/j.marchem.2013.06.001 – volume: 45 start-page: 191 year: 2014 ident: 10.1016/j.watres.2020.115966_bib125 article-title: High-technology metals as emerging contaminants: strong increase of anthropogenic gadolinium levels in tap water of Berlin, Germany, from 2009 to 2012 publication-title: Appl. Geochem. doi: 10.1016/j.apgeochem.2014.04.006 – volume: 188 start-page: 281 year: 2016 ident: 10.1016/j.watres.2020.115966_bib30 article-title: Anthropogenic gadolinium anomalies and rare earth elements in the water of Atibaia River and Anhumas Creek, Southeast Brazil publication-title: Environ. Monit. Assess. doi: 10.1007/s10661-016-5282-7 – volume: 92 start-page: 489 year: 2014 ident: 10.1016/j.watres.2020.115966_bib70 article-title: A review on application of flocculants in wastewater treatment publication-title: Process Saf. Environ. Protect. doi: 10.1016/j.psep.2014.04.010 – year: 2012 ident: 10.1016/j.watres.2020.115966_bib57 – volume: 36 start-page: 2387 year: 2002 ident: 10.1016/j.watres.2020.115966_bib89 article-title: Anthropogenic Gd in surface water, drainage system, and the water supply of the City of Prague, Czech Republic publication-title: Environ. Sci. Technol. doi: 10.1021/es010235q – volume: 91 start-page: 244 year: 2016 ident: 10.1016/j.watres.2020.115966_bib12 article-title: Investigating the stability of gadolinium based contrast agents towards UV radiation publication-title: Water Res. doi: 10.1016/j.watres.2016.01.012 – volume: 288 start-page: 416 year: 2018 ident: 10.1016/j.watres.2020.115966_bib95 article-title: Accumulation of gadolinium in human cerebrospinal fluid after gadobutrol-enhanced MR imaging: a prospective observational cohort study publication-title: Radiology doi: 10.1148/radiol.2018171105 – volume: 10 start-page: 1 year: 2005 ident: 10.1016/j.watres.2020.115966_bib48 article-title: Identification of degradation characteristics - exemplified by Gd-DTPA in a large experimental column publication-title: Environ. Model. Assess. doi: 10.1007/s10666-004-4269-x – year: 2012 ident: 10.1016/j.watres.2020.115966_bib10 – volume: 5 start-page: 491 year: 1998 ident: 10.1016/j.watres.2020.115966_bib51 article-title: Pharmacokinetics of gadodiamide injection in patients with severe renal insufficiency and patients undergoing hemodialysis or continuous ambulatory peritoneal dialysis publication-title: Acad. Radiol. doi: 10.1016/S1076-6332(98)80191-8 – volume: 95 start-page: 639 year: 2014 ident: 10.1016/j.watres.2020.115966_bib112 article-title: Transmetallation of Gd-DTPA by Fe3+, Cu2+and Zn2+in water: batch experiments and coagulation-flocculation simulations publication-title: Chemosphere doi: 10.1016/j.chemosphere.2013.09.102 – volume: 1 start-page: 45 year: 1980 ident: 10.1016/j.watres.2020.115966_bib78 article-title: Relative degradation rates of NTA, EDTA and DTPA and environmental implications publication-title: Environ. Pollut. Ser. B Chem. Phys. doi: 10.1016/0143-148X(80)90020-8 – volume: 31 start-page: 1095 year: 1992 ident: 10.1016/j.watres.2020.115966_bib130 article-title: A kinetic investigation of the lanthanide DOTA chelates. Stability and rates of formation and of dissociation of a macrocyclic gadolinium(III) polyaza polycarboxylic MRI contrast agent publication-title: Inorg. Chem. doi: 10.1021/ic00032a034 – volume: 66 start-page: 160 year: 2008 ident: 10.1016/j.watres.2020.115966_bib9 article-title: Extracellular gadolinium-based contrast media: an overview publication-title: Eur. J. Radiol. doi: 10.1016/j.ejrad.2008.01.023 – volume: 5 start-page: 1 year: 2018 ident: 10.1016/j.watres.2020.115966_bib117 article-title: Effect of Mg and Ca on the stability of the MRI contrast agent Gd–DTPA in seawater publication-title: Front. Mar. Sci. doi: 10.3389/fmars.2018.00111 – volume: 34 start-page: 1373 year: 2016 ident: 10.1016/j.watres.2020.115966_bib122 article-title: Gadolinium toxicity: iron and ferroportin as central targets publication-title: Magn. Reson. Imaging doi: 10.1016/j.mri.2016.08.016 – volume: 50 start-page: 4159 year: 2016 ident: 10.1016/j.watres.2020.115966_bib45 article-title: Increases in anthropogenic gadolinium anomalies and rare earth element concentrations in san francisco bay over a 20 Year record publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.5b04322 – volume: 39 start-page: 6923 year: 2005 ident: 10.1016/j.watres.2020.115966_bib128 article-title: Aqueous stability of gadolinium in surface waters receiving sewage treatment plant effluent Boulder Creek, Colorado publication-title: Environ. Sci. Technol. doi: 10.1021/es048456u – volume: 248 start-page: 77 year: 2008 ident: 10.1016/j.watres.2020.115966_bib49 article-title: Possible involvement of gadolinium chelates in the pathophysiology of nephrogenic systemic fibrosis: a critical review publication-title: Toxicology doi: 10.1016/j.tox.2008.03.012 – volume: 18 start-page: 200 year: 2016 ident: 10.1016/j.watres.2020.115966_bib74 article-title: Gadolinium-uptake by aquatic and terrestrial organisms-distribution determined by laser ablation inductively coupled plasma mass spectrometry publication-title: Environ. Sci. Process. Impacts doi: 10.1039/C5EM00533G – volume: 345 start-page: 206 year: 2010 ident: 10.1016/j.watres.2020.115966_bib104 article-title: Dynamic structure of humic substances: rare earth elements as a fingerprint publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2010.01.069 – volume: 25 start-page: 48 year: 2010 ident: 10.1016/j.watres.2020.115966_bib85 article-title: Transmetallation of Gd-DTPA by Cu, Y and lanthanides and its impact on the hydrosphere publication-title: Appl. Geochem. doi: 10.1016/j.apgeochem.2009.09.027 – volume: 687 start-page: 1401 year: 2019 ident: 10.1016/j.watres.2020.115966_bib118 article-title: Anthropogenic gadolinium in tap water and in tap water-based beverages from fast-food franchises in six major cities in Germany publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.07.075 – volume: 21 start-page: 469 year: 2008 ident: 10.1016/j.watres.2020.115966_bib107 article-title: Efficiency, thermodynamic and kinetic stability of marketed gadolinium chelates and their possible clinical consequences: a critical review publication-title: Biometals doi: 10.1007/s10534-008-9135-x – volume: 143 start-page: 245 year: 1996 ident: 10.1016/j.watres.2020.115966_bib4 article-title: Anthropogenic origin of positive gadolinium anomalies in river waters publication-title: Earth Planet Sci. Lett. doi: 10.1016/0012-821X(96)00127-6 – volume: 1308 start-page: 125 year: 2013 ident: 10.1016/j.watres.2020.115966_bib13 article-title: Sensitive quantification of gadolinium-based magnetic resonance imaging contrast agents in surface waters using hydrophilic interaction liquid chromatography and inductively coupled plasma sector field mass spectrometry publication-title: J. Chromatogr. A doi: 10.1016/j.chroma.2013.08.017 – year: 1985 ident: 10.1016/j.watres.2020.115966_bib123 – volume: 19 start-page: 1044 year: 2015 ident: 10.1016/j.watres.2020.115966_bib94 article-title: Criticality of the rare earth elements publication-title: J. Ind. Ecol. doi: 10.1111/jiec.12237 – ident: 10.1016/j.watres.2020.115966_bib108 – volume: 7b01731 year: 2017 ident: 10.1016/j.watres.2020.115966_bib129 article-title: Quantification of element fluxes in wastewaters: a nationwide survey in Switzerland publication-title: Environ. Sci. Technol. – volume: 100 start-page: 147 year: 2006 ident: 10.1016/j.watres.2020.115966_bib66 article-title: The behaviour of the rare earth elements during estuarine mixing-revisited publication-title: Mar. Chem. doi: 10.1016/j.marchem.2005.11.007 – volume: 104 start-page: 135 year: 2018 ident: 10.1016/j.watres.2020.115966_bib23 article-title: Analysis of metal-based contrast agents in medicine and the environment publication-title: TrAC Trends Anal. Chem. (Reference Ed.) doi: 10.1016/j.trac.2017.12.011 – volume: 43 start-page: 817 year: 2008 ident: 10.1016/j.watres.2020.115966_bib39 article-title: Stability of gadolinium-based magnetic resonance imaging contrast agents in human serum at 37°C publication-title: Invest. Radiol. doi: 10.1097/RLI.0b013e3181852171 – volume: 64 start-page: 3975 year: 2000 ident: 10.1016/j.watres.2020.115966_bib98 article-title: Dissolved indium and rare earth elements in three Japanese rivers and Tokyo Bay: evidence for anthropogenic Gd and in publication-title: Geochem. Cosmochim. Acta doi: 10.1016/S0016-7037(00)00472-5 – volume: 44 start-page: 5 year: 2017 ident: 10.1016/j.watres.2020.115966_bib35 article-title: EMA’s final opinion confirms restrictions on use of linear gadolinium agents in body scans Recommendations conclude publication-title: EMA’s Sci. Rev. Gadolinium Deposit. – volume: 656 start-page: 409 year: 2019 ident: 10.1016/j.watres.2020.115966_bib71 article-title: Rare Earth Element fluxes over 15 years into a major European Estuary (Garonne-Gironde, SW France): hospital effluents as a source of increasing gadolinium anomalies publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.11.343 – volume: 90 start-page: 142 year: 2018 ident: 10.1016/j.watres.2020.115966_bib6 article-title: The European Shale: an improved data set for normalisation of rare earth element and yttrium concentrations in environmental and biological samples from Europe publication-title: Appl. Geochem. doi: 10.1016/j.apgeochem.2018.01.008 – volume: 34 start-page: 3 year: 2016 ident: 10.1016/j.watres.2020.115966_bib53 article-title: Brain gadolinium deposition after administration of gadolinium-based contrast agents publication-title: Jpn. J. Radiol. doi: 10.1007/s11604-015-0503-5 – volume: 65 start-page: 167 year: 2005 ident: 10.1016/j.watres.2020.115966_bib55 article-title: Positive gadolinium anomaly in surface water and ground water of the urban area Berlin, Germany publication-title: Chem. Erde - Geochem. doi: 10.1016/j.chemer.2004.08.004 – volume: 130 start-page: 71 year: 2018 ident: 10.1016/j.watres.2020.115966_bib105 article-title: Rare earth elements removal techniques from water/wastewater: a review publication-title: Desalin. Water Treat. doi: 10.5004/dwt.2018.22844 – volume: 38 start-page: 145 year: 2017 ident: 10.1016/j.watres.2020.115966_bib109 article-title: The stability of gadolinium-based contrast agents in human serum: a reanalysis of literature data and association with clinical outcomes publication-title: Magn. Reson. Imaging doi: 10.1016/j.mri.2017.01.006 – year: 2018 ident: 10.1016/j.watres.2020.115966_bib115 article-title: Gadolinium as a new emerging contaminant of aquatic environment publication-title: Environ. Toxicol. Chem. doi: 10.1002/etc.4116 – volume: 51 start-page: 1126 year: 2010 ident: 10.1016/j.watres.2020.115966_bib131 article-title: Gadolinium released from MR contrast agents is deposited in brain tumors: in situ demonstration using scanning electron microscopy with energy dispersive X-ray spectroscopy publication-title: Acta Radiol. doi: 10.3109/02841851.2010.515614 – volume: 31 start-page: 1011 year: 1993 ident: 10.1016/j.watres.2020.115966_bib83 article-title: Water exchange on [Gd(H2O)8]3+ and [Gd(PDTA)(H2O)2]- in aqueous solution: a variable-pressure, -temperature and -magnetic field 17O NMR study publication-title: Magn. Reson. Chem. doi: 10.1002/mrc.1260311111 – volume: 22 start-page: 15188 year: 2015 ident: 10.1016/j.watres.2020.115966_bib24 article-title: COST action TD1407: network on technology-critical elements (NOTICE)—from environmental processes to human health threats publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-015-5221-0 – volume: 34 start-page: 573 year: 2000 ident: 10.1016/j.watres.2020.115966_bib61 article-title: Hospital effluents as a source of gadolinium in the aquatic environment publication-title: Environ. Sci. Technol. doi: 10.1021/es990633h – volume: 25 start-page: 6107 year: 2018 ident: 10.1016/j.watres.2020.115966_bib113 article-title: Dynamics and sources of pharmaceutically active compounds in a coastal Mediterranean river during heavy rains publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-017-0880-7 – volume: 11 year: 2019 ident: 10.1016/j.watres.2020.115966_bib69 article-title: The biological fate of gadolinium-based MRI contrast agents: a call to action for bioinorganic chemists publication-title: Metall doi: 10.1039/C8MT00302E – volume: 40 start-page: 463 year: 2006 ident: 10.1016/j.watres.2020.115966_bib99 article-title: Rare earth element abundances in some seawaters and related river waters from the Osaka Bay area, Japan: significance of anthropogenic Gd publication-title: Geochem. J. doi: 10.2343/geochemj.40.463 – volume: 21 start-page: 197 year: 2015 ident: 10.1016/j.watres.2020.115966_bib26 article-title: Biogeochemical factors affecting rare earth element distribution in shallow wetland groundwater publication-title: Aquat. Geochem. doi: 10.1007/s10498-014-9247-6 – volume: 43 start-page: 3534 year: 2009 ident: 10.1016/j.watres.2020.115966_bib68 article-title: Detection of anthropogenic gadolinium in treated wastewater in South East Queensland, Australia publication-title: Water Res. doi: 10.1016/j.watres.2009.04.033 – volume: 22 start-page: 788 year: 2008 ident: 10.1016/j.watres.2020.115966_bib132 article-title: Investigation of groundwater residence times during bank filtration in Berlin: a multi-tracer approach publication-title: Hydrol. Process. Int. J. doi: 10.1002/hyp.6649 – volume: 44 start-page: 3876 year: 2010 ident: 10.1016/j.watres.2020.115966_bib127 article-title: Evaluating the behavior of gadolinium and other rare earth elements through large metropolitan sewage treatment plants publication-title: Environ. Sci. Technol. doi: 10.1021/es903888t – volume: 36 start-page: 1102 year: 2002 ident: 10.1016/j.watres.2020.115966_bib33 article-title: Occurrence of an anthropogenic gadolinium anomaly in river and coastal waters of Southern France publication-title: Water Res. doi: 10.1016/S0043-1354(01)00370-0 – volume: 58 start-page: 259 year: 2017 ident: 10.1016/j.watres.2020.115966_bib126 article-title: Are the increasing amounts of gadolinium in surface and tap water dangerous? publication-title: Acta Radiol. doi: 10.1177/0284185116666419 – volume: 55 start-page: 379 year: 2004 ident: 10.1016/j.watres.2020.115966_bib82 article-title: Biological and photochemical degradation rates of diethylenetriaminepentaacetic acid (DTPA) in the presence and absence of Fe(III) publication-title: Chemosphere doi: 10.1016/j.chemosphere.2003.10.062 – volume: 61 start-page: 685 year: 2010 ident: 10.1016/j.watres.2020.115966_bib67 article-title: Removal of magnetic resonance imaging contrast agents through advanced water treatment plants publication-title: Water Sci. Technol. doi: 10.2166/wst.2010.885 – volume: 51 start-page: 212 year: 2018 ident: 10.1016/j.watres.2020.115966_bib22 article-title: LA-ICP-MS/MS improves limits of detection in elemental bioimaging of gadolinium deposition originating from MRI contrast agents in skin and brain tissues publication-title: J. Trace Elem. Med. Biol. doi: 10.1016/j.jtemb.2018.10.021 – year: 2016 ident: 10.1016/j.watres.2020.115966_bib79 article-title: Transport of gadolinium- and arsenic-based pharmaceuticals in saturated soil under various redox conditions publication-title: Chemosphere doi: 10.1016/j.chemosphere.2015.09.044 – volume: 31 start-page: 225 year: 2003 ident: 10.1016/j.watres.2020.115966_bib88 article-title: Anomalous gadolinium, cerium, and yttrium contents in the adige and isarco river waters and in the water of their tributaries (provinces trento and bolzano/bozen, NE Italy) publication-title: Acta Hydrochim. Hydrobiol. doi: 10.1002/aheh.200300492 – volume: 46 start-page: 11929 year: 2012 ident: 10.1016/j.watres.2020.115966_bib124 article-title: Speciation and isotope dilution analysis of gadolinium-based contrast agents in wastewater publication-title: Environ. Sci. Technol. doi: 10.1021/es301981z – volume: 221 start-page: 954 year: 2016 ident: 10.1016/j.watres.2020.115966_bib1 article-title: Adsorption of rare earth metals: a review of recent literature publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2016.06.076 – volume: 45 start-page: 125 year: 2018 ident: 10.1016/j.watres.2020.115966_bib36 article-title: Spatially resolved quantification of gadolinium deposited in the brain of a patient treated with gadolinium-based contrast agents publication-title: J. Trace Elem. Med. Biol. doi: 10.1016/j.jtemb.2017.10.004 – volume: 47 start-page: 7899 year: 2013 ident: 10.1016/j.watres.2020.115966_bib56 article-title: Elimination of micropollutants during post-treatment of hospital wastewater with powdered activated carbon, ozone, and UV publication-title: Environ. Sci. Technol. doi: 10.1021/es400708w – volume: 45 start-page: 429 year: 2015 ident: 10.1016/j.watres.2020.115966_bib84 article-title: The characteristics, occurrence, and geochemical behavior of rare earth elements in the environment: a review publication-title: Crit. Rev. Environ. Sci. Technol. doi: 10.1080/10643389.2013.866622 – volume: 26 start-page: 1877 year: 2011 ident: 10.1016/j.watres.2020.115966_bib59 article-title: Anthropogenic gadolinium as a microcontaminant in tap water used as drinking water in urban areas and megacities publication-title: Appl. Geochem. doi: 10.1016/j.apgeochem.2011.06.011 – year: 2008 ident: 10.1016/j.watres.2020.115966_bib96 – volume: 40 start-page: 475 year: 2006 ident: 10.1016/j.watres.2020.115966_bib3 article-title: Chemical loading into surface water along a hydrological, biogeochemical, and land use gradient: a holistic watershed approach publication-title: Environ. Sci. Technol. doi: 10.1021/es051270q – volume: 277 start-page: 271 year: 2004 ident: 10.1016/j.watres.2020.115966_bib27 article-title: Impact of humate complexation on the adsorption of REE onto Fe oxyhydroxide publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2004.04.007 – volume: 66 start-page: 175 year: 2008 ident: 10.1016/j.watres.2020.115966_bib91 article-title: Extracellular gadolinium contrast agents: differences in stability publication-title: Eur. J. Radiol. doi: 10.1016/j.ejrad.2008.01.025 – volume: 347 start-page: 294 year: 2015 ident: 10.1016/j.watres.2020.115966_bib47 article-title: Anthropogenic rare earth element fluxes into floodplains: coupling between geochemical monitoring and hydrodynamic sediment transport modelling publication-title: Compt. Rendus Geosci. doi: 10.1016/j.crte.2015.01.003 – volume: 47 start-page: 9942 year: 2013 ident: 10.1016/j.watres.2020.115966_bib25 article-title: Reaction of gadolinium chelates with ozone and hydroxyl radicals publication-title: Environ. Sci. Technol. doi: 10.1021/es402219u – volume: 47 start-page: 186 year: 2014 ident: 10.1016/j.watres.2020.115966_bib54 article-title: Anthropogenic rare earth element in rivers: gadoliniumand lanthanum. Partitioning between the dissolved and particulate phases in the rhine river and spatial propagation through the rhine-meuse delta (The Netherlands) publication-title: Appl. Geochem. doi: 10.1016/j.apgeochem.2014.05.020 – volume: 251 start-page: 2428 year: 2007 ident: 10.1016/j.watres.2020.115966_bib21 article-title: Small molecular gadolinium(III) complexes as MRI contrast agents for diagnostic imaging publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2007.04.018 – volume: 16 start-page: 2405 year: 2012 ident: 10.1016/j.watres.2020.115966_bib116 article-title: Tracing the spatial propagation of river inlet water into an agricultural polder area using anthropogenic gadolinium publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-16-2405-2012 – volume: 73 start-page: 13 year: 2016 ident: 10.1016/j.watres.2020.115966_bib90 article-title: Blood-brain barrier permeability and gadolinium benefits and potential pitfalls in research publication-title: JAMA Neurol. doi: 10.1001/jamaneurol.2015.2960 – start-page: 1249 year: 2009 ident: 10.1016/j.watres.2020.115966_bib50 article-title: Role of thermodynamic and kinetic parameters in gadolinium chelate stability publication-title: J. Magn. Reson. Imag. doi: 10.1002/jmri.21967 – volume: 642 start-page: 1100 year: 2018 ident: 10.1016/j.watres.2020.115966_bib14 article-title: Evaluation of the potential hazard of lanthanides to freshwater microcrustaceans publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.06.155 – year: 2018 ident: 10.1016/j.watres.2020.115966_bib102 article-title: Variations of anthropogenic gadolinium in rivers close to waste water treatment plant discharges publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-018-3489-6 – volume: 99 start-page: 2293 year: 1999 ident: 10.1016/j.watres.2020.115966_bib20 article-title: Gadolinium(III) chelates as MRI contrast agents: structure, dynamics, and applications publication-title: Chem. Rev. doi: 10.1021/cr980440x – volume: 58 start-page: 76 year: 2019 ident: 10.1016/j.watres.2020.115966_bib40 article-title: The use of a binary chelate formulation: could gadolinium based linear contrast agents be rescued by the addition of zinc selective chelates? publication-title: Magn. Reson. Imaging doi: 10.1016/j.mri.2019.01.001 – volume: 17 start-page: 2359 year: 2006 ident: 10.1016/j.watres.2020.115966_bib76 article-title: Nephrogenic systemic fibrosis: suspected causative role of gadodiamide used for contrast-enhanced magnetic resonance imaging publication-title: J. Am. Soc. Nephrol. doi: 10.1681/ASN.2006060601 – volume: 66 start-page: 143 year: 2006 ident: 10.1016/j.watres.2020.115966_bib5 article-title: Anthropogenic gadolinium as a micropollutant in river waters in Pennsylvania and in Lake Erie, northeastern United States publication-title: Chem. Erde doi: 10.1016/j.chemer.2006.01.002 – volume: 5 start-page: 6910 year: 2017 ident: 10.1016/j.watres.2020.115966_bib103 article-title: Removal and recycling of precious rare earth element from wastewater samples using imprinted magnetic ordered mesoporous carbon publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.7b01124 – volume: 579 start-page: 482 year: 2020 ident: 10.1016/j.watres.2020.115966_bib19 article-title: The coronavirus pandemic in five powerful charts publication-title: Nature doi: 10.1038/d41586-020-00758-2 – volume: 60 start-page: 1113 year: 2010 ident: 10.1016/j.watres.2020.115966_bib64 article-title: Detection of anthropogenic gadolinium in the brisbane river plume in moreton bay, Queensland, Australia publication-title: Mar. Pollut. Bull. doi: 10.1016/j.marpolbul.2010.03.027 – year: 2013 ident: 10.1016/j.watres.2020.115966_bib80 – volume: 256 start-page: 13 year: 2012 ident: 10.1016/j.watres.2020.115966_bib7 article-title: Addressing selectivity criteria in binding equilibria publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2011.05.013 – volume: 68 start-page: 691 year: 2004 ident: 10.1016/j.watres.2020.115966_bib75 article-title: Carbonate complexation of yttrium and the rare earth elements in natural waters publication-title: Geochem. Cosmochim. Acta doi: 10.1016/S0016-7037(03)00495-2 – start-page: 169 year: 1989 ident: 10.1016/j.watres.2020.115966_bib77 article-title: Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes – volume: 28 start-page: 257 year: 2006 ident: 10.1016/j.watres.2020.115966_bib93 article-title: Input and fate of anthropogenic estrogens and gadolinium in surface water and sewage plants in the hydrological basin of Prague (Czech Republic) publication-title: Environ. Geochem. Health doi: 10.1007/s10653-006-9040-6 – ident: 10.1016/j.watres.2020.115966_bib37 – year: 2017 ident: 10.1016/j.watres.2020.115966_bib100 article-title: Magnetic resonance imaging (MRI) exams [WWW Document] publication-title: OECD Heal. Stat. Heal. Care Util – volume: 80 start-page: 586 year: 2007 ident: 10.1016/j.watres.2020.115966_bib92 article-title: Nephrogenic systemic fibrosis following the administration of extracellular gadolinium based contrast agents: is the stability of the contrast agent molecule an important factor in the pathogenesis of this condition? publication-title: Br. J. Radiol. doi: 10.1259/bjr/17111243 – volume: 75 start-page: 1057 year: 2009 ident: 10.1016/j.watres.2020.115966_bib111 article-title: Positive gadolinium anomalies in wastewater treatment plant effluents and aquatic environment in the Hérault watershed (South France) publication-title: Chemosphere doi: 10.1016/j.chemosphere.2009.01.036 – volume: 19 start-page: 823 year: 2011 ident: 10.1016/j.watres.2020.115966_bib32 article-title: Comparison of gadopentetic acid (Gd-DTPA) and bromide in a dual-tracer field experiment publication-title: Hydrogeol. J. doi: 10.1007/s10040-011-0713-6 – volume: 80 start-page: 794 year: 2010 ident: 10.1016/j.watres.2020.115966_bib65 article-title: Tracing treated wastewater in an inland catchment using anthropogenic gadolinium publication-title: Chemosphere doi: 10.1016/j.chemosphere.2010.05.001 – volume: 88 start-page: 546 year: 2016 ident: 10.1016/j.watres.2020.115966_bib114 article-title: Water analysis: emerging contaminants and current issues publication-title: Anal. Chem. doi: 10.1021/acs.analchem.5b04493 – volume: 533 start-page: 91 year: 2015 ident: 10.1016/j.watres.2020.115966_bib81 article-title: Rare earth elements in the aragonitic shell of freshwater mussel Corbicula fluminea and the bioavailability of anthropogenic lanthanum, samarium and gadolinium in river water publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2015.06.042 – volume: 44 start-page: 2577 year: 2014 ident: 10.1016/j.watres.2020.115966_bib101 article-title: Advanced oxidation processes in water/wastewater treatment: principles and applications. A review publication-title: Crit. Rev. Environ. Sci. Technol. doi: 10.1080/10643389.2013.829765 – volume: 571 start-page: 1432 year: 2016 ident: 10.1016/j.watres.2020.115966_bib15 article-title: Anthropogenic gadolinium as a transient tracer for investigating river bank filtration publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2016.06.105 – volume: 69 start-page: 1041 year: 2005 ident: 10.1016/j.watres.2020.115966_bib52 article-title: A new estimate for the composition of weathered young upper continental crust from alluvial sediments, Queensland, Australia publication-title: Geochem. Cosmochim. Acta doi: 10.1016/j.gca.2004.08.020 – volume: 69–70 start-page: 409 year: 2000 ident: 10.1016/j.watres.2020.115966_bib86 article-title: Anthropogenic gadolinium as a conservative tracer in hydrology publication-title: J. Geochem. Explor. doi: 10.1016/S0375-6742(00)00083-2 – volume: 38 start-page: 146 year: 1997 ident: 10.1016/j.watres.2020.115966_bib17 article-title: Stability constants and 1H relaxation effects of ternary complexes formed between Gd-DTPA, Gd-DTPA-BMA, Gd-DOTA, and Gd-EDTA and citrate, phosphate, and carbonate ions publication-title: Magn. Reson. Med. doi: 10.1002/mrm.1910380120 – volume: 362 start-page: 43 year: 2013 ident: 10.1016/j.watres.2020.115966_bib58 article-title: Anthropogenic dissolved and colloid/nanoparticle-bound samarium, lanthanum and gadolinium in the Rhine River and the impending destruction of the natural rare earth element distribution in rivers publication-title: Earth Planet Sci. Lett. doi: 10.1016/j.epsl.2012.11.033 – volume: 24 start-page: 8164 year: 2017 ident: 10.1016/j.watres.2020.115966_bib34 article-title: Removal of gadolinium-based contrast agents: adsorption on activated carbon publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-017-8491-x – volume: 37 start-page: 973 year: 2011 ident: 10.1016/j.watres.2020.115966_bib60 article-title: Rare earth elements in the Rhine River, Germany: first case of anthropogenic lanthanum as a dissolved microcontaminant in the hydrosphere publication-title: Environ. Int. doi: 10.1016/j.envint.2011.02.018 – volume: 48 start-page: 2469 year: 1984 ident: 10.1016/j.watres.2020.115966_bib43 article-title: The “North American shale composite” - its compilation, major and trace element characteristics publication-title: G-cubed |
SSID | ssj0002239 |
Score | 2.6229813 |
SecondaryResourceType | review_article |
Snippet | The increasing use of gadolinium-based contrast agents (GBCAs) for magnetic resonance imaging is leading to widespread contamination of freshwater and drinking... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 115966 |
SubjectTerms | Anthropogenic gadolinium Betacoronavirus Contrast Media Coronavirus Infections COVID-19 COVID-19 infection Drinking Water Fresh Water freshwater Gadolinium Gadolinium anomaly Gadolinium-based contrast agents groundwater flow Humans hydrologic cycle ligands magnetism Micropollutants Pandemics Pneumonia, Viral Review risk river water SARS-CoV-2 uncertainty urine Water Pollutants, Chemical - analysis water reuse |
Title | Anthropogenic gadolinium in freshwater and drinking water systems |
URI | https://dx.doi.org/10.1016/j.watres.2020.115966 https://www.ncbi.nlm.nih.gov/pubmed/32599421 https://www.proquest.com/docview/2419094770 https://www.proquest.com/docview/2574373380 https://pubmed.ncbi.nlm.nih.gov/PMC7256513 |
Volume | 182 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jXvQgfjs_RgSvdWs-GnscwzEVd3KwW2mbxFU0ytzw5t_uS9PMTcWBhR6avsLry8v7aN_7BaFzpdupyjUJciZzSFCUDjISpwEX4K-4hqOsdr8bRP0huxnxUQ11fS-MLausbL-z6aW1rkZalTRbr0Vhe3zB-VHOiNVZOG0HOxNWyy8-vso8wP3F_i-zpfbtc2WN13tqGzIgSyTWdvC4xEr81T39DD-_V1EuuKXeFtqs4knccSxvo5oyO2hjAWVwF3X8ZgigK0WOHyyIU2GK2TMuDNbA2RgYVBOcGonlxO2lgN2Qw3l-20PD3tV9tx9UOyeAyONoGhBVwimF9iMFl6EKY8khsSBSUM0hUM0phYWnmKRMKUYjyPG4hOCARJrBAk_pPqqbF6MOERYk4yrLiKS5ZlEoUwgppMgySlKQoVYNRL3AkryCFbe7Wzwlvn7sMXFiTqyYEyfmBgrmT706WI0V9MLPRbKkHglY_hVPnvmpS2Dl2N8hqVEvMyBiEAzFTIj2HzRcWOwnegk0B2665_xSyBxjRkLgbUkR5gQWuXv5jinGJYK3gECTh_To3291jNbtlSt2O0H16WSmTiE6mmbNUv2baK1zfdsffALnqxBv |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT8IwFG8QD-rB-C1-zsTrhPVjdUdCJKjACRJuzba2MqODIMSbf7uv64agRhKX7NK9Jm-vfV_b6-8hdK10LVSxxm5MZQwJitJuhIPQZRz8FdNwZdXuna7f6tOHARuUUKM4C2PKKnPbb216Zq3zkWouzeo4ScwZX3B-hFFs9izca2idgvqaNgY3H191HuD_guI3syEvzs9lRV7voTmRAWkiNsaDBRlY4q_-6Wf8-b2McsEvNXfQdh5QOnXL8y4qqXQPbS3ADO6jetENATZLEjtPBsUpSZPZq5OkjgbOhsCgmjhhKh05sc0UHDtkgZ7fDlC_eddrtNy8dQLIPPCnLlYZnpJnvlIw6SkvkAwyCyw50Qwi1ZgQ0DxFJaFKUeJDksckRAfY1xQ0PCSHqJyOUnWMHI4jpqIISxJr6nsyhJhC8igiOAQZalVBpBCYiHNccdPe4kUUBWTPwopZGDELK-YKcuezxhZXYwU9L9ZCLO0PAaZ_xcyrYukEqI75HxKmajQDIgrRUEA5r_1Bw7gBfyK3QHNkl3vOL4HUMaDYA96WNsKcwEB3Lz9Jk2EG4c0h0mQeOfn3W12ijVav0xbt--7jKdo0T2zl2xkqTyczdQ6h0jS6yFThE_1KEf0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Anthropogenic+gadolinium+in+freshwater+and+drinking+water+systems&rft.jtitle=Water+research+%28Oxford%29&rft.au=Br%C3%BCnjes%2C+Robert&rft.au=Hofmann%2C+Thilo&rft.date=2020-09-01&rft.issn=1879-2448&rft.eissn=1879-2448&rft.volume=182&rft.spage=115966&rft_id=info:doi/10.1016%2Fj.watres.2020.115966&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-1354&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-1354&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-1354&client=summon |