Is the use of deep learning an appropriate means to locate debris in the ocean without harming aquatic wildlife?

With the global issue of marine debris ever expanding, it is imperative that the technology industry steps in. The aim is to find if deep learning can successfully distinguish between marine life and synthetic debris underwater. This study assesses whether we could safely clean up our oceans with Ar...

Full description

Saved in:
Bibliographic Details
Published inMarine pollution bulletin Vol. 181; p. 113853
Main Authors Moorton, Zoe, Kurt, Zeyneb, Woo, Wai Lok
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.08.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract With the global issue of marine debris ever expanding, it is imperative that the technology industry steps in. The aim is to find if deep learning can successfully distinguish between marine life and synthetic debris underwater. This study assesses whether we could safely clean up our oceans with Artificial Intelligence without disrupting the delicate balance of aquatic ecosystems. Our research compares a simple convolutional neural network with a VGG-16 model using an original database of 1644 underwater images and a binary classification to sort synthetic material from aquatic life. Our results show first insights to safely distinguishing between debris and life. •Deep learning to distinguish between synthetic debris and marine life•Original database of underwater imagery•Convolutional neural network binary classification
AbstractList With the global issue of marine debris ever expanding, it is imperative that the technology industry steps in. The aim is to find if deep learning can successfully distinguish between marine life and synthetic debris underwater. This study assesses whether we could safely clean up our oceans with Artificial Intelligence without disrupting the delicate balance of aquatic ecosystems. Our research compares a simple convolutional neural network with a VGG-16 model using an original database of 1644 underwater images and a binary classification to sort synthetic material from aquatic life. Our results show first insights to safely distinguishing between debris and life.
With the global issue of marine debris ever expanding, it is imperative that the technology industry steps in. The aim is to find if deep learning can successfully distinguish between marine life and synthetic debris underwater. This study assesses whether we could safely clean up our oceans with Artificial Intelligence without disrupting the delicate balance of aquatic ecosystems. Our research compares a simple convolutional neural network with a VGG-16 model using an original database of 1644 underwater images and a binary classification to sort synthetic material from aquatic life. Our results show first insights to safely distinguishing between debris and life. •Deep learning to distinguish between synthetic debris and marine life•Original database of underwater imagery•Convolutional neural network binary classification
With the global issue of marine debris ever expanding, it is imperative that the technology industry steps in. The aim is to find if deep learning can successfully distinguish between marine life and synthetic debris underwater. This study assesses whether we could safely clean up our oceans with Artificial Intelligence without disrupting the delicate balance of aquatic ecosystems. Our research compares a simple convolutional neural network with a VGG-16 model using an original database of 1644 underwater images and a binary classification to sort synthetic material from aquatic life. Our results show first insights to safely distinguishing between debris and life.With the global issue of marine debris ever expanding, it is imperative that the technology industry steps in. The aim is to find if deep learning can successfully distinguish between marine life and synthetic debris underwater. This study assesses whether we could safely clean up our oceans with Artificial Intelligence without disrupting the delicate balance of aquatic ecosystems. Our research compares a simple convolutional neural network with a VGG-16 model using an original database of 1644 underwater images and a binary classification to sort synthetic material from aquatic life. Our results show first insights to safely distinguishing between debris and life.
ArticleNumber 113853
Author Moorton, Zoe
Woo, Wai Lok
Kurt, Zeyneb
Author_xml – sequence: 1
  givenname: Zoe
  surname: Moorton
  fullname: Moorton, Zoe
  email: zoemoorton@gmail.com
– sequence: 2
  givenname: Zeyneb
  surname: Kurt
  fullname: Kurt, Zeyneb
– sequence: 3
  givenname: Wai Lok
  surname: Woo
  fullname: Woo, Wai Lok
BookMark eNqNUU1PGzEQtSqQGqC_oT5y2dQfidd7QAihUpCQuIDUm2V7x40jx15sL1X_fR2CeugFTqOZee9p5r0TdBRTBIS-UrKkhIpv2-VO5ykFM4clI4wtKeVyzT-hBZX90HEu-BFaEMLWHWfi52d0UsqWENKzni7QdFdw3QCeC-Dk8Agw4QA6Rx9_YR2xnqacpux1BbwDHRs64ZDsvh_BZF-wj68KybY1_u3rJs0Vb3TevUo8z7p62-ZhDN7B5Rk6djoU-PJWT9HTzffH69vu_uHH3fXVfWdXg6gds4S5oSdcGj7yYTRGGGmIJIxrsdKMGU1db411g6OMCLfizDGnnRw1EZLyU3R-0G33P89Qqtr5YiEEHSHNRbXvJVsTKcX7UCHXhDM-DA3aH6A2p1IyONW8af7_UZSofRxqq_7FofZxqEMcjXnxH9P62qxJsWbtwwf4Vwc-NNNePGRVrIdoYfQZbFVj8u9q_AUIRq-V
CitedBy_id crossref_primary_10_1016_j_asej_2024_103227
crossref_primary_10_1016_j_scitotenv_2024_173843
crossref_primary_10_1007_s11554_024_01494_w
crossref_primary_10_1007_s10661_022_10519_5
crossref_primary_10_62520_fujece_1443818
crossref_primary_10_4031_MTSJ_57_1_15
crossref_primary_10_1016_j_ocecoaman_2022_106466
crossref_primary_10_1016_j_ocecoaman_2023_106765
crossref_primary_10_1016_j_psep_2023_09_072
crossref_primary_10_2208_journalofjsce_24_17241
crossref_primary_10_1016_j_marpolbul_2024_116751
crossref_primary_10_1007_s11042_024_18731_w
crossref_primary_10_3390_jmse13040636
Cites_doi 10.1016/j.neucom.2015.09.116
10.1016/j.marpolbul.2016.06.034
10.3390/rs13173401
10.1038/ncomms15611
10.1016/j.envpol.2021.116490
10.1016/j.marpolbul.2011.09.010
10.1016/j.scitotenv.2020.137768
10.1016/j.marpolbul.2013.01.033
10.1016/j.chemosphere.2020.126569
10.1126/science.abe5041
10.1016/j.jhazmat.2020.124020
10.1111/j.1740-9713.2017.01072.x
10.1007/s11356-019-05148-4
10.1021/es0010498
10.7185/geochemlet.1829
10.1007/s10924-007-0074-3
10.1016/j.scitotenv.2019.07.246
ContentType Journal Article
Copyright 2022 The Authors
Copyright © 2022 The Authors. Published by Elsevier Ltd.. All rights reserved.
Copyright_xml – notice: 2022 The Authors
– notice: Copyright © 2022 The Authors. Published by Elsevier Ltd.. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
7X8
7S9
L.6
DOI 10.1016/j.marpolbul.2022.113853
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Oceanography
Environmental Sciences
EISSN 1879-3363
ExternalDocumentID 10_1016_j_marpolbul_2022_113853
S0025326X22005355
GroupedDBID ---
--K
--M
-~X
..I
.~1
0R~
1B1
1RT
1~.
1~5
29M
4.4
457
4G.
53G
5GY
5VS
6I.
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAFTH
AAFWJ
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
AAYOK
ABFNM
ABFRF
ABGRD
ABJNI
ABMAC
ABPPZ
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACLVX
ACPRK
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CBWCG
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMA
HMC
HVGLF
HZ~
IHE
IMUCA
J1W
K-O
KOM
LY3
LY9
M41
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SCC
SCU
SDF
SDG
SDP
SEN
SEP
SES
SEW
SPC
SPCBC
SSA
SSE
SSJ
SSZ
T5K
UQL
VQA
WH7
WUQ
XPP
YQT
YV5
ZMT
ZXP
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
ADXHL
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7X8
EFKBS
7S9
L.6
ID FETCH-LOGICAL-c496t-2c02f97038b3d39dbb6b8b08023a64a22ba1f7cbcf9f1206f432f2faf8da06813
IEDL.DBID .~1
ISSN 0025-326X
1879-3363
IngestDate Fri Jul 11 08:52:42 EDT 2025
Tue Aug 05 10:09:12 EDT 2025
Tue Jul 01 01:09:09 EDT 2025
Thu Apr 24 23:05:54 EDT 2025
Fri Feb 23 02:39:25 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Neural network
Artificial intelligence
Ocean pollution
Marine debris
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c496t-2c02f97038b3d39dbb6b8b08023a64a22ba1f7cbcf9f1206f432f2faf8da06813
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0025326X22005355
PQID 2685032399
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2718250886
proquest_miscellaneous_2685032399
crossref_primary_10_1016_j_marpolbul_2022_113853
crossref_citationtrail_10_1016_j_marpolbul_2022_113853
elsevier_sciencedirect_doi_10_1016_j_marpolbul_2022_113853
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2022
2022-08-00
20220801
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: August 2022
PublicationDecade 2020
PublicationTitle Marine pollution bulletin
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Lebreton, Joost van der Zwet, Damsteeg, Slat, Andrady, Reisser (bb0090) 2017; 8
Chazhoor, Zhu, Ho, Gao, Woo (bb0020) 2021
D’Aurelio (bb0025) 2019
Stelfox, Hudgins, Sweet (bb0145) 2016; 111
Fulton, Hong, Islam, Sattar (bb0055) 2019
Vethaak, J (bb0155) 2021; 371
Luo, Zhang, Aimuzi, Wang, Nian, Zhang (bb0005) 2020; 20
Chami, Cosimano, Fullenkamp, Oztosun (bb0015) 2019
Day (bb0030) 1980
France-Presse (bb0050) 2011
Garcia-Garin, Sala, Aguilar, Vighi, Vikingsson, Chosson, Eljarrat, Borrell (bb0060) 2020; 721
Lebreton, Slat, Ferrari, Sainte-Rose, Aitken, Marthouse, Hajbane, Cunsolo, Schwarz, Levivier, Noble, Debeljak, Maral, Schoeneich-Argent, Brambini, Reisser (bb0100) 2018; 8
Bjornadal, Bolten, Laguex (bb0010) 1994; 28
Peng, Chen, Chen, Dasgupta, Xu, Ta, Du, Li, Guo, Bai (bb0120) 2018
Sreelakshmi, Akarsh, Vinayakumar, Soman (bb0140) 2019
Tekman, Walther, Peter, Gutow, Bergmann (bb0150) 2022
de Vries, Egger, Mani, Lebreton (bb0040) 2021; 13
WAP (bb0175) 2018
Sharma, Chatterjee (bb0130) 1987; 18
Garcia-Garin, Monleon-Getino, Lopez-Brosa, Borrell, Aguilar, Borja-Robalino, Cardona, Vighi (bb0070) 2021; 273
de Stephanis, Gim´enez, Carpinelli, Gutierrez-Exposito, Ca~nadas (bb0035) 2013; 69
Ferries (bb0045) 2021
Liu, Li, Dong, Han, Guo, Fu, Zhang, Chen (bb0105) 2021; 404
Wang, Yao, Wang, Hao, Shrestha, Xue, Xie, Peng (bb0165) 2019; 693
Viehman, Pluym, Schellinger (bb0160) 2011; 62
WAP (bb0170) 2014
Jambeck, Geyer, Wilcox, Siegler, Perryman, Andrady, Narayan, Law (bb0080) 2015
Kylili, Kyriakides, Artusi, Hadjistasso (bb0085) 2018; 26
Garcia-Garin, Vighi, Sala, Aguilar, Tsangaris, Digka, Kaberi, Eljarrat, Borrell (bb0065) 2020; 252
Guo, Liu, Oerlemans, Lao, Wu, Lewa (bb0075) 2016; 187
Sala, Balasch, Eljarrat, Cardona (bb0125) 2021; 283
Sheavly, Register (bb0135) 2007; 15
McAdam (bb0115) 2017; 14
Mato, Isobe, Takada, Kanehiro, Ohtake, Kaminuma (bb0110) 2001; 35
Sala (10.1016/j.marpolbul.2022.113853_bb0125) 2021; 283
Luo (10.1016/j.marpolbul.2022.113853_bb0005) 2020; 20
Ferries (10.1016/j.marpolbul.2022.113853_bb0045) 2021
de Vries (10.1016/j.marpolbul.2022.113853_bb0040) 2021; 13
Garcia-Garin (10.1016/j.marpolbul.2022.113853_bb0070) 2021; 273
Wang (10.1016/j.marpolbul.2022.113853_bb0165) 2019; 693
Bjornadal (10.1016/j.marpolbul.2022.113853_bb0010) 1994; 28
WAP (10.1016/j.marpolbul.2022.113853_bb0175)
Garcia-Garin (10.1016/j.marpolbul.2022.113853_bb0065) 2020; 252
Sreelakshmi (10.1016/j.marpolbul.2022.113853_bb0140) 2019
de Stephanis (10.1016/j.marpolbul.2022.113853_bb0035) 2013; 69
Day (10.1016/j.marpolbul.2022.113853_bb0030) 1980
Jambeck (10.1016/j.marpolbul.2022.113853_bb0080) 2015
Viehman (10.1016/j.marpolbul.2022.113853_bb0160) 2011; 62
Liu (10.1016/j.marpolbul.2022.113853_bb0105) 2021; 404
Stelfox (10.1016/j.marpolbul.2022.113853_bb0145) 2016; 111
Lebreton (10.1016/j.marpolbul.2022.113853_bb0100) 2018; 8
Mato (10.1016/j.marpolbul.2022.113853_bb0110) 2001; 35
D’Aurelio (10.1016/j.marpolbul.2022.113853_bb0025) 2019
Lebreton (10.1016/j.marpolbul.2022.113853_bb0090) 2017; 8
France-Presse (10.1016/j.marpolbul.2022.113853_bb0050) 2011
Chami (10.1016/j.marpolbul.2022.113853_bb0015) 2019
Kylili (10.1016/j.marpolbul.2022.113853_bb0085) 2018; 26
Peng (10.1016/j.marpolbul.2022.113853_bb0120) 2018
Sharma (10.1016/j.marpolbul.2022.113853_bb0130) 1987; 18
WAP (10.1016/j.marpolbul.2022.113853_bb0170)
Chazhoor (10.1016/j.marpolbul.2022.113853_bb0020) 2021
McAdam (10.1016/j.marpolbul.2022.113853_bb0115) 2017; 14
Tekman (10.1016/j.marpolbul.2022.113853_bb0150)
Sheavly (10.1016/j.marpolbul.2022.113853_bb0135) 2007; 15
Guo (10.1016/j.marpolbul.2022.113853_bb0075) 2016; 187
Vethaak (10.1016/j.marpolbul.2022.113853_bb0155) 2021; 371
Garcia-Garin (10.1016/j.marpolbul.2022.113853_bb0060) 2020; 721
Fulton (10.1016/j.marpolbul.2022.113853_bb0055) 2019
References_xml – volume: 15
  start-page: 301
  year: 2007
  end-page: 305
  ident: bb0135
  article-title: Marine debris plastics: environmental concerns, sources, impacts and solutions
  publication-title: J. Polym. Environ.
– volume: 371
  start-page: 672
  year: 2021
  end-page: 674
  ident: bb0155
  article-title: Microplastics and human health
  publication-title: Science
– start-page: 190
  year: 2021
  end-page: 195
  ident: bb0020
  article-title: Classification of different types of plastics using deep transfer learning
  publication-title: Proc. of 2nd International Conference on Robotics, Computer Vision and Intelligent Systems
– volume: 283
  year: 2021
  ident: bb0125
  article-title: First study on the presence of plastic additives in loggerhead sea turtles (caretta caretta) from the mediterranean sea
  publication-title: Environ. Pollut.
– volume: 62
  year: 2011
  ident: bb0160
  article-title: Characterization of marine debris in North Carolina salt marshes
  publication-title: Marine Pollution Bulletin
– volume: 187
  year: 2016
  ident: bb0075
  article-title: Deep learning for visual understanding: a review
  publication-title: Neurocomputing
– year: 2019
  ident: bb0055
  article-title: Robotic detection of marine litter using deep visual detection models
  publication-title: International Conference on Robotics and Automation (ICRA)
– year: 2019
  ident: bb0025
  article-title: Delfini e rifiuti di plastica: Dall’ingestione al danni a lungo termine [dolphins and plastic waste: From ingestion to long term damages]
– volume: 26
  start-page: 17091
  year: 2018
  end-page: 17099
  ident: bb0085
  article-title: Identifying floating plastic marine debris using a deep learning approach
  publication-title: Environ. Sci. Pollut. Res.
– volume: 13
  start-page: 3401
  year: 2021
  ident: bb0040
  article-title: Quantifying floating plastic debris at sea using vessel-based optical data and artificial intelligence
  publication-title: Remote Sensing
– volume: 8
  start-page: 15611
  year: 2017
  ident: bb0090
  article-title: River plastic emissions to the world’s oceans
  publication-title: Nature Communications.
– year: 2014
  ident: bb0170
  article-title: Ghosts beneath the waves
– volume: 111
  start-page: 6
  year: 2016
  end-page: 17
  ident: bb0145
  article-title: A review of ghost gear entanglement amongst marine mammals, reptiles and elasmobranchs
  publication-title: Mar. Pollut. Bull.
– volume: 69
  start-page: 206
  year: 2013
  end-page: 214
  ident: bb0035
  article-title: As main meal for sperm whales: Plastics debris
  publication-title: Marine Pollution Bulletin.
– volume: 18
  year: 1987
  ident: bb0130
  article-title: Marine debris and northern fur seals: a case study
  publication-title: Mar. Pollut. Bull.
– volume: 28
  year: 1994
  ident: bb0010
  article-title: Ingestion of marine debris by juvenile sea turtles in coastal florida habitats
  publication-title: Marine Pollution Bulletin
– year: 2011
  ident: bb0050
  article-title: ‘Death by plastic’: is ocean garbage killing whales?
  publication-title: Mar. Pollut. Bull.
– volume: 404
  start-page: 124020
  year: 2021
  ident: bb0105
  article-title: The risk and impact of organophosphate esters on the development of female specific cancers: comparative analysis of patients with benign and malignant tumors
  publication-title: J. Hazard. Mater.
– volume: 273
  start-page: 116490
  year: 2021
  ident: bb0070
  article-title: Automatic detection and quantification of floating marine macro-litter in aerial images: introducing a novel deep learning approach connected to a web application in r
  publication-title: Environmental Pollution
– year: 2019
  ident: bb0140
  article-title: Capsule neural networks and visualization for segregation of plastic and non-plastic wastes
  publication-title: International Conference on Advanced Computing Communication Systems (ICACCS)
– year: 1980
  ident: bb0030
  article-title: The Occurrence and Characteristics of Plastic Pollution in Alaska's Marine Birds
– volume: 8
  start-page: 4666
  year: 2018
  ident: bb0100
  article-title: Evidence that the great pacific garbage patch is rapidly accumulating plastic
  publication-title: Sci. Reports.
– volume: 14
  start-page: 24
  year: 2017
  end-page: 27
  ident: bb0115
  article-title: Plastic in the ocean: how much is out there?
  publication-title: Significance
– volume: 252
  start-page: 126569
  year: 2020
  ident: bb0065
  article-title: Assessment of organophosphate flame retardants in mediterranean boops boops and their relationship to anthropization levels and microplastic ingestion
  publication-title: Chemosphere
– year: 2022
  ident: bb0150
  article-title: Impacts of plastic pollution in the oceans on marine species, biodiversity and ecosystems
– year: 2019
  ident: bb0015
  article-title: Nature’s solution to climate change: A strategy to protect whales can limit greenhouse gases and global warming
  publication-title: International Monetary Fund
– year: 2015
  ident: bb0080
  article-title: Plastic waste inputs from land into the ocean
– start-page: 1
  year: 2018
  end-page: 5
  ident: bb0120
  article-title: Microplastics contaminate the deepest part of the world’s ocean
  publication-title: Geochem. Perspect. Lett.
– year: 2021
  ident: bb0045
  article-title: Plastic in the oceans: statistics 2020–2021
  publication-title: NA
– year: 2018
  ident: bb0175
  article-title: Ghosts beneath the waves, second edition
– volume: 721
  start-page: 137768
  year: 2020
  ident: bb0060
  article-title: Organophosphate contaminants in North Atlantic fin whales
  publication-title: Sci. Total Environ.
– volume: 35
  start-page: 318
  year: 2001
  end-page: 324
  ident: bb0110
  article-title: Plastic resin pellets as a transport medium for toxic chemicals in the marine environment
  publication-title: Environ. Sci. Technol.
– volume: 20
  year: 2020
  ident: bb0005
  article-title: Exposure to organophosphate esters and metabolic syndrome in adults
  publication-title: Environ. Int.
– volume: 693
  start-page: 133440
  year: 2019
  ident: bb0165
  article-title: Exploring the application of artificial intelligence technology for identification of water pollution characteristics and tracing the source of water quality pollutants
  publication-title: Sci. Total Environ.
– volume: 18
  year: 1987
  ident: 10.1016/j.marpolbul.2022.113853_bb0130
  article-title: Marine debris and northern fur seals: a case study
  publication-title: Mar. Pollut. Bull.
– volume: 187
  year: 2016
  ident: 10.1016/j.marpolbul.2022.113853_bb0075
  article-title: Deep learning for visual understanding: a review
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.09.116
– volume: 111
  start-page: 6
  issue: 1–2
  year: 2016
  ident: 10.1016/j.marpolbul.2022.113853_bb0145
  article-title: A review of ghost gear entanglement amongst marine mammals, reptiles and elasmobranchs
  publication-title: Mar. Pollut. Bull.
  doi: 10.1016/j.marpolbul.2016.06.034
– year: 2019
  ident: 10.1016/j.marpolbul.2022.113853_bb0025
– ident: 10.1016/j.marpolbul.2022.113853_bb0175
– volume: 13
  start-page: 3401
  issue: 17
  year: 2021
  ident: 10.1016/j.marpolbul.2022.113853_bb0040
  article-title: Quantifying floating plastic debris at sea using vessel-based optical data and artificial intelligence
  publication-title: Remote Sensing
  doi: 10.3390/rs13173401
– volume: 8
  start-page: 15611
  year: 2017
  ident: 10.1016/j.marpolbul.2022.113853_bb0090
  article-title: River plastic emissions to the world’s oceans
  publication-title: Nature Communications.
  doi: 10.1038/ncomms15611
– volume: 273
  start-page: 116490
  year: 2021
  ident: 10.1016/j.marpolbul.2022.113853_bb0070
  article-title: Automatic detection and quantification of floating marine macro-litter in aerial images: introducing a novel deep learning approach connected to a web application in r
  publication-title: Environmental Pollution
  doi: 10.1016/j.envpol.2021.116490
– ident: 10.1016/j.marpolbul.2022.113853_bb0150
– volume: 62
  year: 2011
  ident: 10.1016/j.marpolbul.2022.113853_bb0160
  article-title: Characterization of marine debris in North Carolina salt marshes
  publication-title: Marine Pollution Bulletin
  doi: 10.1016/j.marpolbul.2011.09.010
– volume: 721
  start-page: 137768
  year: 2020
  ident: 10.1016/j.marpolbul.2022.113853_bb0060
  article-title: Organophosphate contaminants in North Atlantic fin whales
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.137768
– volume: 8
  start-page: 4666
  year: 2018
  ident: 10.1016/j.marpolbul.2022.113853_bb0100
  article-title: Evidence that the great pacific garbage patch is rapidly accumulating plastic
  publication-title: Sci. Reports.
– year: 2019
  ident: 10.1016/j.marpolbul.2022.113853_bb0140
  article-title: Capsule neural networks and visualization for segregation of plastic and non-plastic wastes
– year: 2021
  ident: 10.1016/j.marpolbul.2022.113853_bb0045
  article-title: Plastic in the oceans: statistics 2020–2021
– volume: 69
  start-page: 206
  issue: 1–2
  year: 2013
  ident: 10.1016/j.marpolbul.2022.113853_bb0035
  article-title: As main meal for sperm whales: Plastics debris
  publication-title: Marine Pollution Bulletin.
  doi: 10.1016/j.marpolbul.2013.01.033
– ident: 10.1016/j.marpolbul.2022.113853_bb0170
– volume: 252
  start-page: 126569
  year: 2020
  ident: 10.1016/j.marpolbul.2022.113853_bb0065
  article-title: Assessment of organophosphate flame retardants in mediterranean boops boops and their relationship to anthropization levels and microplastic ingestion
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2020.126569
– year: 2019
  ident: 10.1016/j.marpolbul.2022.113853_bb0015
  article-title: Nature’s solution to climate change: A strategy to protect whales can limit greenhouse gases and global warming
– volume: 371
  start-page: 672
  issue: 6530
  year: 2021
  ident: 10.1016/j.marpolbul.2022.113853_bb0155
  article-title: Microplastics and human health
  publication-title: Science
  doi: 10.1126/science.abe5041
– volume: 20
  year: 2020
  ident: 10.1016/j.marpolbul.2022.113853_bb0005
  article-title: Exposure to organophosphate esters and metabolic syndrome in adults
  publication-title: Environ. Int.
– volume: 404
  start-page: 124020
  year: 2021
  ident: 10.1016/j.marpolbul.2022.113853_bb0105
  article-title: The risk and impact of organophosphate esters on the development of female specific cancers: comparative analysis of patients with benign and malignant tumors
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2020.124020
– year: 2011
  ident: 10.1016/j.marpolbul.2022.113853_bb0050
  article-title: ‘Death by plastic’: is ocean garbage killing whales?
  publication-title: Mar. Pollut. Bull.
– volume: 14
  start-page: 24
  issue: 5
  year: 2017
  ident: 10.1016/j.marpolbul.2022.113853_bb0115
  article-title: Plastic in the ocean: how much is out there?
  publication-title: Significance
  doi: 10.1111/j.1740-9713.2017.01072.x
– start-page: 190
  year: 2021
  ident: 10.1016/j.marpolbul.2022.113853_bb0020
  article-title: Classification of different types of plastics using deep transfer learning
– volume: 26
  start-page: 17091
  issue: 17
  year: 2018
  ident: 10.1016/j.marpolbul.2022.113853_bb0085
  article-title: Identifying floating plastic marine debris using a deep learning approach
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-019-05148-4
– year: 1980
  ident: 10.1016/j.marpolbul.2022.113853_bb0030
– volume: 35
  start-page: 318
  issue: 2
  year: 2001
  ident: 10.1016/j.marpolbul.2022.113853_bb0110
  article-title: Plastic resin pellets as a transport medium for toxic chemicals in the marine environment
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es0010498
– volume: 28
  year: 1994
  ident: 10.1016/j.marpolbul.2022.113853_bb0010
  article-title: Ingestion of marine debris by juvenile sea turtles in coastal florida habitats
  publication-title: Marine Pollution Bulletin
– year: 2019
  ident: 10.1016/j.marpolbul.2022.113853_bb0055
  article-title: Robotic detection of marine litter using deep visual detection models
– start-page: 1
  year: 2018
  ident: 10.1016/j.marpolbul.2022.113853_bb0120
  article-title: Microplastics contaminate the deepest part of the world’s ocean
  publication-title: Geochem. Perspect. Lett.
  doi: 10.7185/geochemlet.1829
– volume: 15
  start-page: 301
  year: 2007
  ident: 10.1016/j.marpolbul.2022.113853_bb0135
  article-title: Marine debris plastics: environmental concerns, sources, impacts and solutions
  publication-title: J. Polym. Environ.
  doi: 10.1007/s10924-007-0074-3
– volume: 283
  issue: 117108
  year: 2021
  ident: 10.1016/j.marpolbul.2022.113853_bb0125
  article-title: First study on the presence of plastic additives in loggerhead sea turtles (caretta caretta) from the mediterranean sea
  publication-title: Environ. Pollut.
– year: 2015
  ident: 10.1016/j.marpolbul.2022.113853_bb0080
– volume: 693
  start-page: 133440
  year: 2019
  ident: 10.1016/j.marpolbul.2022.113853_bb0165
  article-title: Exploring the application of artificial intelligence technology for identification of water pollution characteristics and tracing the source of water quality pollutants
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.07.246
SSID ssj0007271
Score 2.4584086
Snippet With the global issue of marine debris ever expanding, it is imperative that the technology industry steps in. The aim is to find if deep learning can...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 113853
SubjectTerms aquatic organisms
Artificial intelligence
Deep learning
industry
Marine debris
marine pollution
Neural network
neural networks
Ocean pollution
synthetic products
wildlife
Title Is the use of deep learning an appropriate means to locate debris in the ocean without harming aquatic wildlife?
URI https://dx.doi.org/10.1016/j.marpolbul.2022.113853
https://www.proquest.com/docview/2685032399
https://www.proquest.com/docview/2718250886
Volume 181
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR3LTtww0EL0gipVlBZBaZEr9ZqS2F6v00uFEGgpAi5F2pvlJ9pqSVI2ufbbO5M4IJCAA0c7nonlGc-M7XkQ8i3nzEenYhaCgQOKimVmSuYz0D1KWDhyhD6-4vxCzq7Er_lkvkaOxlgYdKtMsn-Q6b20Tj0HaTUPmsUCY3zZBIyPOWN9khIMNBdiilz-_d-9mwfo52Is24qjH_h43Zjbpl7aDt8gGMP6JmrCn9JQj2R1r4BONsm7ZDnSw2Fy78laqLbI9vF9oBp8TDt1tUXeXrpgqpSP-gNpTlcUTD3arQKtI_UhNDQVjLimpqJ9avEGmLEN9AYAYXRNUc9B2weMCqCLqsdQI16K17d111JMfN2j-Ispwx30L_1yEcPPj-Tq5Pj30SxLxRYyJ0rZZszlLJaw_5XlnpfeWmmVxUhcbqQwjFlTxKmzLpaxYLmMgrPIoonKm1yqgm-T9aquwg6hTnKRB0DmfBRTOP_lzMlpAeQX3MNfdokcF1i7lIkcC2Is9ehy9kffUUYjZfRAmV2S3wE2QzKOl0F-jBTUD_hKg8p4GfjrSHMNuw6fUkwV6m6lmVQTYHOw7p4ZA2qfof0rP71mEntkA1uD0-Fnst7eduELGEKt3e85fZ-8OTw9m138B2s7Crg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR3LbtQw0CrlAEJCUKhoeRmJa2hiO16HC0JVqy205dJKe7P8rBZtk9BNrv12ZhKnVZGgB46xPRPLM54Z2_Mg5GPOmY9OxSwEAwcUFavMVMxnoHuUsHDkCEN8xcmpnJ-Lb4tysUH2p1gYdKtMsn-U6YO0Ti17aTX32uUSY3xZCcbHgrEhSUn5gDwUsH2xjMGn61s_D1DQxVS3FYffcfK6NFdts7I9PkIwhgVOVMn_pqL-ENaDBjp8Rp4m05F-HWf3nGyEeotsH9xGqkFn2qrrLfLkhwumTgmpX5D2aE3B1qP9OtAmUh9CS1PFiAtqajrkFm-BG7tALwEQRjcUFR18-4BhAXRZDxgaxEvx_rbpO4qZrwcUvzBnuIP2lV8tY_jykpwfHpztz7NUbSFzopJdxlzOYgUCQFnueeWtlVZZDMXlRgrDmDVFnDnrYhULlssoOIssmqi8yaUq-DbZrJs6vCLUSS7yAMicj2IGB8CcOTkrgP6Ce_jLDpHTAmuXUpFjRYyVnnzOfuobymikjB4ps0PyG8B2zMZxP8jniYL6DmNp0Bn3A3-YaK5h2-FbiqlD0681k6oEPgfz7h9jQO8zNIDl7v9M4j15ND87OdbHR6ffX5PH2DN6IL4hm91VH96CVdTZdwPX_wZlEQxG
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Is+the+use+of+deep+learning+an+appropriate+means+to+locate+debris+in+the+ocean+without+harming+aquatic+wildlife%3F&rft.jtitle=Marine+pollution+bulletin&rft.au=Moorton%2C+Zoe&rft.au=Kurt%2C+Zeyneb&rft.au=Woo%2C+Wai+Lok&rft.date=2022-08-01&rft.pub=Elsevier+Ltd&rft.issn=0025-326X&rft.eissn=1879-3363&rft.volume=181&rft_id=info:doi/10.1016%2Fj.marpolbul.2022.113853&rft.externalDocID=S0025326X22005355
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-326X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-326X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-326X&client=summon