Is the use of deep learning an appropriate means to locate debris in the ocean without harming aquatic wildlife?
With the global issue of marine debris ever expanding, it is imperative that the technology industry steps in. The aim is to find if deep learning can successfully distinguish between marine life and synthetic debris underwater. This study assesses whether we could safely clean up our oceans with Ar...
Saved in:
Published in | Marine pollution bulletin Vol. 181; p. 113853 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.08.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | With the global issue of marine debris ever expanding, it is imperative that the technology industry steps in. The aim is to find if deep learning can successfully distinguish between marine life and synthetic debris underwater. This study assesses whether we could safely clean up our oceans with Artificial Intelligence without disrupting the delicate balance of aquatic ecosystems.
Our research compares a simple convolutional neural network with a VGG-16 model using an original database of 1644 underwater images and a binary classification to sort synthetic material from aquatic life. Our results show first insights to safely distinguishing between debris and life.
•Deep learning to distinguish between synthetic debris and marine life•Original database of underwater imagery•Convolutional neural network binary classification |
---|---|
AbstractList | With the global issue of marine debris ever expanding, it is imperative that the technology industry steps in. The aim is to find if deep learning can successfully distinguish between marine life and synthetic debris underwater. This study assesses whether we could safely clean up our oceans with Artificial Intelligence without disrupting the delicate balance of aquatic ecosystems. Our research compares a simple convolutional neural network with a VGG-16 model using an original database of 1644 underwater images and a binary classification to sort synthetic material from aquatic life. Our results show first insights to safely distinguishing between debris and life. With the global issue of marine debris ever expanding, it is imperative that the technology industry steps in. The aim is to find if deep learning can successfully distinguish between marine life and synthetic debris underwater. This study assesses whether we could safely clean up our oceans with Artificial Intelligence without disrupting the delicate balance of aquatic ecosystems. Our research compares a simple convolutional neural network with a VGG-16 model using an original database of 1644 underwater images and a binary classification to sort synthetic material from aquatic life. Our results show first insights to safely distinguishing between debris and life. •Deep learning to distinguish between synthetic debris and marine life•Original database of underwater imagery•Convolutional neural network binary classification With the global issue of marine debris ever expanding, it is imperative that the technology industry steps in. The aim is to find if deep learning can successfully distinguish between marine life and synthetic debris underwater. This study assesses whether we could safely clean up our oceans with Artificial Intelligence without disrupting the delicate balance of aquatic ecosystems. Our research compares a simple convolutional neural network with a VGG-16 model using an original database of 1644 underwater images and a binary classification to sort synthetic material from aquatic life. Our results show first insights to safely distinguishing between debris and life.With the global issue of marine debris ever expanding, it is imperative that the technology industry steps in. The aim is to find if deep learning can successfully distinguish between marine life and synthetic debris underwater. This study assesses whether we could safely clean up our oceans with Artificial Intelligence without disrupting the delicate balance of aquatic ecosystems. Our research compares a simple convolutional neural network with a VGG-16 model using an original database of 1644 underwater images and a binary classification to sort synthetic material from aquatic life. Our results show first insights to safely distinguishing between debris and life. |
ArticleNumber | 113853 |
Author | Moorton, Zoe Woo, Wai Lok Kurt, Zeyneb |
Author_xml | – sequence: 1 givenname: Zoe surname: Moorton fullname: Moorton, Zoe email: zoemoorton@gmail.com – sequence: 2 givenname: Zeyneb surname: Kurt fullname: Kurt, Zeyneb – sequence: 3 givenname: Wai Lok surname: Woo fullname: Woo, Wai Lok |
BookMark | eNqNUU1PGzEQtSqQGqC_oT5y2dQfidd7QAihUpCQuIDUm2V7x40jx15sL1X_fR2CeugFTqOZee9p5r0TdBRTBIS-UrKkhIpv2-VO5ykFM4clI4wtKeVyzT-hBZX90HEu-BFaEMLWHWfi52d0UsqWENKzni7QdFdw3QCeC-Dk8Agw4QA6Rx9_YR2xnqacpux1BbwDHRs64ZDsvh_BZF-wj68KybY1_u3rJs0Vb3TevUo8z7p62-ZhDN7B5Rk6djoU-PJWT9HTzffH69vu_uHH3fXVfWdXg6gds4S5oSdcGj7yYTRGGGmIJIxrsdKMGU1db411g6OMCLfizDGnnRw1EZLyU3R-0G33P89Qqtr5YiEEHSHNRbXvJVsTKcX7UCHXhDM-DA3aH6A2p1IyONW8af7_UZSofRxqq_7FofZxqEMcjXnxH9P62qxJsWbtwwf4Vwc-NNNePGRVrIdoYfQZbFVj8u9q_AUIRq-V |
CitedBy_id | crossref_primary_10_1016_j_asej_2024_103227 crossref_primary_10_1016_j_scitotenv_2024_173843 crossref_primary_10_1007_s11554_024_01494_w crossref_primary_10_1007_s10661_022_10519_5 crossref_primary_10_62520_fujece_1443818 crossref_primary_10_4031_MTSJ_57_1_15 crossref_primary_10_1016_j_ocecoaman_2022_106466 crossref_primary_10_1016_j_ocecoaman_2023_106765 crossref_primary_10_1016_j_psep_2023_09_072 crossref_primary_10_2208_journalofjsce_24_17241 crossref_primary_10_1016_j_marpolbul_2024_116751 crossref_primary_10_1007_s11042_024_18731_w crossref_primary_10_3390_jmse13040636 |
Cites_doi | 10.1016/j.neucom.2015.09.116 10.1016/j.marpolbul.2016.06.034 10.3390/rs13173401 10.1038/ncomms15611 10.1016/j.envpol.2021.116490 10.1016/j.marpolbul.2011.09.010 10.1016/j.scitotenv.2020.137768 10.1016/j.marpolbul.2013.01.033 10.1016/j.chemosphere.2020.126569 10.1126/science.abe5041 10.1016/j.jhazmat.2020.124020 10.1111/j.1740-9713.2017.01072.x 10.1007/s11356-019-05148-4 10.1021/es0010498 10.7185/geochemlet.1829 10.1007/s10924-007-0074-3 10.1016/j.scitotenv.2019.07.246 |
ContentType | Journal Article |
Copyright | 2022 The Authors Copyright © 2022 The Authors. Published by Elsevier Ltd.. All rights reserved. |
Copyright_xml | – notice: 2022 The Authors – notice: Copyright © 2022 The Authors. Published by Elsevier Ltd.. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION 7X8 7S9 L.6 |
DOI | 10.1016/j.marpolbul.2022.113853 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Oceanography Environmental Sciences |
EISSN | 1879-3363 |
ExternalDocumentID | 10_1016_j_marpolbul_2022_113853 S0025326X22005355 |
GroupedDBID | --- --K --M -~X ..I .~1 0R~ 1B1 1RT 1~. 1~5 29M 4.4 457 4G. 53G 5GY 5VS 6I. 6TJ 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAFTH AAFWJ AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO AAYOK ABFNM ABFRF ABGRD ABJNI ABMAC ABPPZ ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFO ACGFS ACLVX ACPRK ACRLP ACSBN ADBBV ADEZE ADMUD ADQTV AEBSH AEFWE AEKER AENEX AEQOU AFKWA AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CBWCG CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMA HMC HVGLF HZ~ IHE IMUCA J1W K-O KOM LY3 LY9 M41 MO0 N9A NCXOZ O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SCC SCU SDF SDG SDP SEN SEP SES SEW SPC SPCBC SSA SSE SSJ SSZ T5K UQL VQA WH7 WUQ XPP YQT YV5 ZMT ZXP ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN ADXHL AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7X8 EFKBS 7S9 L.6 |
ID | FETCH-LOGICAL-c496t-2c02f97038b3d39dbb6b8b08023a64a22ba1f7cbcf9f1206f432f2faf8da06813 |
IEDL.DBID | .~1 |
ISSN | 0025-326X 1879-3363 |
IngestDate | Fri Jul 11 08:52:42 EDT 2025 Tue Aug 05 10:09:12 EDT 2025 Tue Jul 01 01:09:09 EDT 2025 Thu Apr 24 23:05:54 EDT 2025 Fri Feb 23 02:39:25 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Deep learning Neural network Artificial intelligence Ocean pollution Marine debris |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c496t-2c02f97038b3d39dbb6b8b08023a64a22ba1f7cbcf9f1206f432f2faf8da06813 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0025326X22005355 |
PQID | 2685032399 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2718250886 proquest_miscellaneous_2685032399 crossref_primary_10_1016_j_marpolbul_2022_113853 crossref_citationtrail_10_1016_j_marpolbul_2022_113853 elsevier_sciencedirect_doi_10_1016_j_marpolbul_2022_113853 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2022 2022-08-00 20220801 |
PublicationDateYYYYMMDD | 2022-08-01 |
PublicationDate_xml | – month: 08 year: 2022 text: August 2022 |
PublicationDecade | 2020 |
PublicationTitle | Marine pollution bulletin |
PublicationYear | 2022 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Lebreton, Joost van der Zwet, Damsteeg, Slat, Andrady, Reisser (bb0090) 2017; 8 Chazhoor, Zhu, Ho, Gao, Woo (bb0020) 2021 D’Aurelio (bb0025) 2019 Stelfox, Hudgins, Sweet (bb0145) 2016; 111 Fulton, Hong, Islam, Sattar (bb0055) 2019 Vethaak, J (bb0155) 2021; 371 Luo, Zhang, Aimuzi, Wang, Nian, Zhang (bb0005) 2020; 20 Chami, Cosimano, Fullenkamp, Oztosun (bb0015) 2019 Day (bb0030) 1980 France-Presse (bb0050) 2011 Garcia-Garin, Sala, Aguilar, Vighi, Vikingsson, Chosson, Eljarrat, Borrell (bb0060) 2020; 721 Lebreton, Slat, Ferrari, Sainte-Rose, Aitken, Marthouse, Hajbane, Cunsolo, Schwarz, Levivier, Noble, Debeljak, Maral, Schoeneich-Argent, Brambini, Reisser (bb0100) 2018; 8 Bjornadal, Bolten, Laguex (bb0010) 1994; 28 Peng, Chen, Chen, Dasgupta, Xu, Ta, Du, Li, Guo, Bai (bb0120) 2018 Sreelakshmi, Akarsh, Vinayakumar, Soman (bb0140) 2019 Tekman, Walther, Peter, Gutow, Bergmann (bb0150) 2022 de Vries, Egger, Mani, Lebreton (bb0040) 2021; 13 WAP (bb0175) 2018 Sharma, Chatterjee (bb0130) 1987; 18 Garcia-Garin, Monleon-Getino, Lopez-Brosa, Borrell, Aguilar, Borja-Robalino, Cardona, Vighi (bb0070) 2021; 273 de Stephanis, Gim´enez, Carpinelli, Gutierrez-Exposito, Ca~nadas (bb0035) 2013; 69 Ferries (bb0045) 2021 Liu, Li, Dong, Han, Guo, Fu, Zhang, Chen (bb0105) 2021; 404 Wang, Yao, Wang, Hao, Shrestha, Xue, Xie, Peng (bb0165) 2019; 693 Viehman, Pluym, Schellinger (bb0160) 2011; 62 WAP (bb0170) 2014 Jambeck, Geyer, Wilcox, Siegler, Perryman, Andrady, Narayan, Law (bb0080) 2015 Kylili, Kyriakides, Artusi, Hadjistasso (bb0085) 2018; 26 Garcia-Garin, Vighi, Sala, Aguilar, Tsangaris, Digka, Kaberi, Eljarrat, Borrell (bb0065) 2020; 252 Guo, Liu, Oerlemans, Lao, Wu, Lewa (bb0075) 2016; 187 Sala, Balasch, Eljarrat, Cardona (bb0125) 2021; 283 Sheavly, Register (bb0135) 2007; 15 McAdam (bb0115) 2017; 14 Mato, Isobe, Takada, Kanehiro, Ohtake, Kaminuma (bb0110) 2001; 35 Sala (10.1016/j.marpolbul.2022.113853_bb0125) 2021; 283 Luo (10.1016/j.marpolbul.2022.113853_bb0005) 2020; 20 Ferries (10.1016/j.marpolbul.2022.113853_bb0045) 2021 de Vries (10.1016/j.marpolbul.2022.113853_bb0040) 2021; 13 Garcia-Garin (10.1016/j.marpolbul.2022.113853_bb0070) 2021; 273 Wang (10.1016/j.marpolbul.2022.113853_bb0165) 2019; 693 Bjornadal (10.1016/j.marpolbul.2022.113853_bb0010) 1994; 28 WAP (10.1016/j.marpolbul.2022.113853_bb0175) Garcia-Garin (10.1016/j.marpolbul.2022.113853_bb0065) 2020; 252 Sreelakshmi (10.1016/j.marpolbul.2022.113853_bb0140) 2019 de Stephanis (10.1016/j.marpolbul.2022.113853_bb0035) 2013; 69 Day (10.1016/j.marpolbul.2022.113853_bb0030) 1980 Jambeck (10.1016/j.marpolbul.2022.113853_bb0080) 2015 Viehman (10.1016/j.marpolbul.2022.113853_bb0160) 2011; 62 Liu (10.1016/j.marpolbul.2022.113853_bb0105) 2021; 404 Stelfox (10.1016/j.marpolbul.2022.113853_bb0145) 2016; 111 Lebreton (10.1016/j.marpolbul.2022.113853_bb0100) 2018; 8 Mato (10.1016/j.marpolbul.2022.113853_bb0110) 2001; 35 D’Aurelio (10.1016/j.marpolbul.2022.113853_bb0025) 2019 Lebreton (10.1016/j.marpolbul.2022.113853_bb0090) 2017; 8 France-Presse (10.1016/j.marpolbul.2022.113853_bb0050) 2011 Chami (10.1016/j.marpolbul.2022.113853_bb0015) 2019 Kylili (10.1016/j.marpolbul.2022.113853_bb0085) 2018; 26 Peng (10.1016/j.marpolbul.2022.113853_bb0120) 2018 Sharma (10.1016/j.marpolbul.2022.113853_bb0130) 1987; 18 WAP (10.1016/j.marpolbul.2022.113853_bb0170) Chazhoor (10.1016/j.marpolbul.2022.113853_bb0020) 2021 McAdam (10.1016/j.marpolbul.2022.113853_bb0115) 2017; 14 Tekman (10.1016/j.marpolbul.2022.113853_bb0150) Sheavly (10.1016/j.marpolbul.2022.113853_bb0135) 2007; 15 Guo (10.1016/j.marpolbul.2022.113853_bb0075) 2016; 187 Vethaak (10.1016/j.marpolbul.2022.113853_bb0155) 2021; 371 Garcia-Garin (10.1016/j.marpolbul.2022.113853_bb0060) 2020; 721 Fulton (10.1016/j.marpolbul.2022.113853_bb0055) 2019 |
References_xml | – volume: 15 start-page: 301 year: 2007 end-page: 305 ident: bb0135 article-title: Marine debris plastics: environmental concerns, sources, impacts and solutions publication-title: J. Polym. Environ. – volume: 371 start-page: 672 year: 2021 end-page: 674 ident: bb0155 article-title: Microplastics and human health publication-title: Science – start-page: 190 year: 2021 end-page: 195 ident: bb0020 article-title: Classification of different types of plastics using deep transfer learning publication-title: Proc. of 2nd International Conference on Robotics, Computer Vision and Intelligent Systems – volume: 283 year: 2021 ident: bb0125 article-title: First study on the presence of plastic additives in loggerhead sea turtles (caretta caretta) from the mediterranean sea publication-title: Environ. Pollut. – volume: 62 year: 2011 ident: bb0160 article-title: Characterization of marine debris in North Carolina salt marshes publication-title: Marine Pollution Bulletin – volume: 187 year: 2016 ident: bb0075 article-title: Deep learning for visual understanding: a review publication-title: Neurocomputing – year: 2019 ident: bb0055 article-title: Robotic detection of marine litter using deep visual detection models publication-title: International Conference on Robotics and Automation (ICRA) – year: 2019 ident: bb0025 article-title: Delfini e rifiuti di plastica: Dall’ingestione al danni a lungo termine [dolphins and plastic waste: From ingestion to long term damages] – volume: 26 start-page: 17091 year: 2018 end-page: 17099 ident: bb0085 article-title: Identifying floating plastic marine debris using a deep learning approach publication-title: Environ. Sci. Pollut. Res. – volume: 13 start-page: 3401 year: 2021 ident: bb0040 article-title: Quantifying floating plastic debris at sea using vessel-based optical data and artificial intelligence publication-title: Remote Sensing – volume: 8 start-page: 15611 year: 2017 ident: bb0090 article-title: River plastic emissions to the world’s oceans publication-title: Nature Communications. – year: 2014 ident: bb0170 article-title: Ghosts beneath the waves – volume: 111 start-page: 6 year: 2016 end-page: 17 ident: bb0145 article-title: A review of ghost gear entanglement amongst marine mammals, reptiles and elasmobranchs publication-title: Mar. Pollut. Bull. – volume: 69 start-page: 206 year: 2013 end-page: 214 ident: bb0035 article-title: As main meal for sperm whales: Plastics debris publication-title: Marine Pollution Bulletin. – volume: 18 year: 1987 ident: bb0130 article-title: Marine debris and northern fur seals: a case study publication-title: Mar. Pollut. Bull. – volume: 28 year: 1994 ident: bb0010 article-title: Ingestion of marine debris by juvenile sea turtles in coastal florida habitats publication-title: Marine Pollution Bulletin – year: 2011 ident: bb0050 article-title: ‘Death by plastic’: is ocean garbage killing whales? publication-title: Mar. Pollut. Bull. – volume: 404 start-page: 124020 year: 2021 ident: bb0105 article-title: The risk and impact of organophosphate esters on the development of female specific cancers: comparative analysis of patients with benign and malignant tumors publication-title: J. Hazard. Mater. – volume: 273 start-page: 116490 year: 2021 ident: bb0070 article-title: Automatic detection and quantification of floating marine macro-litter in aerial images: introducing a novel deep learning approach connected to a web application in r publication-title: Environmental Pollution – year: 2019 ident: bb0140 article-title: Capsule neural networks and visualization for segregation of plastic and non-plastic wastes publication-title: International Conference on Advanced Computing Communication Systems (ICACCS) – year: 1980 ident: bb0030 article-title: The Occurrence and Characteristics of Plastic Pollution in Alaska's Marine Birds – volume: 8 start-page: 4666 year: 2018 ident: bb0100 article-title: Evidence that the great pacific garbage patch is rapidly accumulating plastic publication-title: Sci. Reports. – volume: 14 start-page: 24 year: 2017 end-page: 27 ident: bb0115 article-title: Plastic in the ocean: how much is out there? publication-title: Significance – volume: 252 start-page: 126569 year: 2020 ident: bb0065 article-title: Assessment of organophosphate flame retardants in mediterranean boops boops and their relationship to anthropization levels and microplastic ingestion publication-title: Chemosphere – year: 2022 ident: bb0150 article-title: Impacts of plastic pollution in the oceans on marine species, biodiversity and ecosystems – year: 2019 ident: bb0015 article-title: Nature’s solution to climate change: A strategy to protect whales can limit greenhouse gases and global warming publication-title: International Monetary Fund – year: 2015 ident: bb0080 article-title: Plastic waste inputs from land into the ocean – start-page: 1 year: 2018 end-page: 5 ident: bb0120 article-title: Microplastics contaminate the deepest part of the world’s ocean publication-title: Geochem. Perspect. Lett. – year: 2021 ident: bb0045 article-title: Plastic in the oceans: statistics 2020–2021 publication-title: NA – year: 2018 ident: bb0175 article-title: Ghosts beneath the waves, second edition – volume: 721 start-page: 137768 year: 2020 ident: bb0060 article-title: Organophosphate contaminants in North Atlantic fin whales publication-title: Sci. Total Environ. – volume: 35 start-page: 318 year: 2001 end-page: 324 ident: bb0110 article-title: Plastic resin pellets as a transport medium for toxic chemicals in the marine environment publication-title: Environ. Sci. Technol. – volume: 20 year: 2020 ident: bb0005 article-title: Exposure to organophosphate esters and metabolic syndrome in adults publication-title: Environ. Int. – volume: 693 start-page: 133440 year: 2019 ident: bb0165 article-title: Exploring the application of artificial intelligence technology for identification of water pollution characteristics and tracing the source of water quality pollutants publication-title: Sci. Total Environ. – volume: 18 year: 1987 ident: 10.1016/j.marpolbul.2022.113853_bb0130 article-title: Marine debris and northern fur seals: a case study publication-title: Mar. Pollut. Bull. – volume: 187 year: 2016 ident: 10.1016/j.marpolbul.2022.113853_bb0075 article-title: Deep learning for visual understanding: a review publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.09.116 – volume: 111 start-page: 6 issue: 1–2 year: 2016 ident: 10.1016/j.marpolbul.2022.113853_bb0145 article-title: A review of ghost gear entanglement amongst marine mammals, reptiles and elasmobranchs publication-title: Mar. Pollut. Bull. doi: 10.1016/j.marpolbul.2016.06.034 – year: 2019 ident: 10.1016/j.marpolbul.2022.113853_bb0025 – ident: 10.1016/j.marpolbul.2022.113853_bb0175 – volume: 13 start-page: 3401 issue: 17 year: 2021 ident: 10.1016/j.marpolbul.2022.113853_bb0040 article-title: Quantifying floating plastic debris at sea using vessel-based optical data and artificial intelligence publication-title: Remote Sensing doi: 10.3390/rs13173401 – volume: 8 start-page: 15611 year: 2017 ident: 10.1016/j.marpolbul.2022.113853_bb0090 article-title: River plastic emissions to the world’s oceans publication-title: Nature Communications. doi: 10.1038/ncomms15611 – volume: 273 start-page: 116490 year: 2021 ident: 10.1016/j.marpolbul.2022.113853_bb0070 article-title: Automatic detection and quantification of floating marine macro-litter in aerial images: introducing a novel deep learning approach connected to a web application in r publication-title: Environmental Pollution doi: 10.1016/j.envpol.2021.116490 – ident: 10.1016/j.marpolbul.2022.113853_bb0150 – volume: 62 year: 2011 ident: 10.1016/j.marpolbul.2022.113853_bb0160 article-title: Characterization of marine debris in North Carolina salt marshes publication-title: Marine Pollution Bulletin doi: 10.1016/j.marpolbul.2011.09.010 – volume: 721 start-page: 137768 year: 2020 ident: 10.1016/j.marpolbul.2022.113853_bb0060 article-title: Organophosphate contaminants in North Atlantic fin whales publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.137768 – volume: 8 start-page: 4666 year: 2018 ident: 10.1016/j.marpolbul.2022.113853_bb0100 article-title: Evidence that the great pacific garbage patch is rapidly accumulating plastic publication-title: Sci. Reports. – year: 2019 ident: 10.1016/j.marpolbul.2022.113853_bb0140 article-title: Capsule neural networks and visualization for segregation of plastic and non-plastic wastes – year: 2021 ident: 10.1016/j.marpolbul.2022.113853_bb0045 article-title: Plastic in the oceans: statistics 2020–2021 – volume: 69 start-page: 206 issue: 1–2 year: 2013 ident: 10.1016/j.marpolbul.2022.113853_bb0035 article-title: As main meal for sperm whales: Plastics debris publication-title: Marine Pollution Bulletin. doi: 10.1016/j.marpolbul.2013.01.033 – ident: 10.1016/j.marpolbul.2022.113853_bb0170 – volume: 252 start-page: 126569 year: 2020 ident: 10.1016/j.marpolbul.2022.113853_bb0065 article-title: Assessment of organophosphate flame retardants in mediterranean boops boops and their relationship to anthropization levels and microplastic ingestion publication-title: Chemosphere doi: 10.1016/j.chemosphere.2020.126569 – year: 2019 ident: 10.1016/j.marpolbul.2022.113853_bb0015 article-title: Nature’s solution to climate change: A strategy to protect whales can limit greenhouse gases and global warming – volume: 371 start-page: 672 issue: 6530 year: 2021 ident: 10.1016/j.marpolbul.2022.113853_bb0155 article-title: Microplastics and human health publication-title: Science doi: 10.1126/science.abe5041 – volume: 20 year: 2020 ident: 10.1016/j.marpolbul.2022.113853_bb0005 article-title: Exposure to organophosphate esters and metabolic syndrome in adults publication-title: Environ. Int. – volume: 404 start-page: 124020 year: 2021 ident: 10.1016/j.marpolbul.2022.113853_bb0105 article-title: The risk and impact of organophosphate esters on the development of female specific cancers: comparative analysis of patients with benign and malignant tumors publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2020.124020 – year: 2011 ident: 10.1016/j.marpolbul.2022.113853_bb0050 article-title: ‘Death by plastic’: is ocean garbage killing whales? publication-title: Mar. Pollut. Bull. – volume: 14 start-page: 24 issue: 5 year: 2017 ident: 10.1016/j.marpolbul.2022.113853_bb0115 article-title: Plastic in the ocean: how much is out there? publication-title: Significance doi: 10.1111/j.1740-9713.2017.01072.x – start-page: 190 year: 2021 ident: 10.1016/j.marpolbul.2022.113853_bb0020 article-title: Classification of different types of plastics using deep transfer learning – volume: 26 start-page: 17091 issue: 17 year: 2018 ident: 10.1016/j.marpolbul.2022.113853_bb0085 article-title: Identifying floating plastic marine debris using a deep learning approach publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-019-05148-4 – year: 1980 ident: 10.1016/j.marpolbul.2022.113853_bb0030 – volume: 35 start-page: 318 issue: 2 year: 2001 ident: 10.1016/j.marpolbul.2022.113853_bb0110 article-title: Plastic resin pellets as a transport medium for toxic chemicals in the marine environment publication-title: Environ. Sci. Technol. doi: 10.1021/es0010498 – volume: 28 year: 1994 ident: 10.1016/j.marpolbul.2022.113853_bb0010 article-title: Ingestion of marine debris by juvenile sea turtles in coastal florida habitats publication-title: Marine Pollution Bulletin – year: 2019 ident: 10.1016/j.marpolbul.2022.113853_bb0055 article-title: Robotic detection of marine litter using deep visual detection models – start-page: 1 year: 2018 ident: 10.1016/j.marpolbul.2022.113853_bb0120 article-title: Microplastics contaminate the deepest part of the world’s ocean publication-title: Geochem. Perspect. Lett. doi: 10.7185/geochemlet.1829 – volume: 15 start-page: 301 year: 2007 ident: 10.1016/j.marpolbul.2022.113853_bb0135 article-title: Marine debris plastics: environmental concerns, sources, impacts and solutions publication-title: J. Polym. Environ. doi: 10.1007/s10924-007-0074-3 – volume: 283 issue: 117108 year: 2021 ident: 10.1016/j.marpolbul.2022.113853_bb0125 article-title: First study on the presence of plastic additives in loggerhead sea turtles (caretta caretta) from the mediterranean sea publication-title: Environ. Pollut. – year: 2015 ident: 10.1016/j.marpolbul.2022.113853_bb0080 – volume: 693 start-page: 133440 year: 2019 ident: 10.1016/j.marpolbul.2022.113853_bb0165 article-title: Exploring the application of artificial intelligence technology for identification of water pollution characteristics and tracing the source of water quality pollutants publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.07.246 |
SSID | ssj0007271 |
Score | 2.4584086 |
Snippet | With the global issue of marine debris ever expanding, it is imperative that the technology industry steps in. The aim is to find if deep learning can... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 113853 |
SubjectTerms | aquatic organisms Artificial intelligence Deep learning industry Marine debris marine pollution Neural network neural networks Ocean pollution synthetic products wildlife |
Title | Is the use of deep learning an appropriate means to locate debris in the ocean without harming aquatic wildlife? |
URI | https://dx.doi.org/10.1016/j.marpolbul.2022.113853 https://www.proquest.com/docview/2685032399 https://www.proquest.com/docview/2718250886 |
Volume | 181 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR3LTtww0EL0gipVlBZBaZEr9ZqS2F6v00uFEGgpAi5F2pvlJ9pqSVI2ufbbO5M4IJCAA0c7nonlGc-M7XkQ8i3nzEenYhaCgQOKimVmSuYz0D1KWDhyhD6-4vxCzq7Er_lkvkaOxlgYdKtMsn-Q6b20Tj0HaTUPmsUCY3zZBIyPOWN9khIMNBdiilz-_d-9mwfo52Is24qjH_h43Zjbpl7aDt8gGMP6JmrCn9JQj2R1r4BONsm7ZDnSw2Fy78laqLbI9vF9oBp8TDt1tUXeXrpgqpSP-gNpTlcUTD3arQKtI_UhNDQVjLimpqJ9avEGmLEN9AYAYXRNUc9B2weMCqCLqsdQI16K17d111JMfN2j-Ispwx30L_1yEcPPj-Tq5Pj30SxLxRYyJ0rZZszlLJaw_5XlnpfeWmmVxUhcbqQwjFlTxKmzLpaxYLmMgrPIoonKm1yqgm-T9aquwg6hTnKRB0DmfBRTOP_lzMlpAeQX3MNfdokcF1i7lIkcC2Is9ehy9kffUUYjZfRAmV2S3wE2QzKOl0F-jBTUD_hKg8p4GfjrSHMNuw6fUkwV6m6lmVQTYHOw7p4ZA2qfof0rP71mEntkA1uD0-Fnst7eduELGEKt3e85fZ-8OTw9m138B2s7Crg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR3LbtQw0CrlAEJCUKhoeRmJa2hiO16HC0JVqy205dJKe7P8rBZtk9BNrv12ZhKnVZGgB46xPRPLM54Z2_Mg5GPOmY9OxSwEAwcUFavMVMxnoHuUsHDkCEN8xcmpnJ-Lb4tysUH2p1gYdKtMsn-U6YO0Ti17aTX32uUSY3xZCcbHgrEhSUn5gDwUsH2xjMGn61s_D1DQxVS3FYffcfK6NFdts7I9PkIwhgVOVMn_pqL-ENaDBjp8Rp4m05F-HWf3nGyEeotsH9xGqkFn2qrrLfLkhwumTgmpX5D2aE3B1qP9OtAmUh9CS1PFiAtqajrkFm-BG7tALwEQRjcUFR18-4BhAXRZDxgaxEvx_rbpO4qZrwcUvzBnuIP2lV8tY_jykpwfHpztz7NUbSFzopJdxlzOYgUCQFnueeWtlVZZDMXlRgrDmDVFnDnrYhULlssoOIssmqi8yaUq-DbZrJs6vCLUSS7yAMicj2IGB8CcOTkrgP6Ce_jLDpHTAmuXUpFjRYyVnnzOfuobymikjB4ps0PyG8B2zMZxP8jniYL6DmNp0Bn3A3-YaK5h2-FbiqlD0681k6oEPgfz7h9jQO8zNIDl7v9M4j15ND87OdbHR6ffX5PH2DN6IL4hm91VH96CVdTZdwPX_wZlEQxG |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Is+the+use+of+deep+learning+an+appropriate+means+to+locate+debris+in+the+ocean+without+harming+aquatic+wildlife%3F&rft.jtitle=Marine+pollution+bulletin&rft.au=Moorton%2C+Zoe&rft.au=Kurt%2C+Zeyneb&rft.au=Woo%2C+Wai+Lok&rft.date=2022-08-01&rft.pub=Elsevier+Ltd&rft.issn=0025-326X&rft.eissn=1879-3363&rft.volume=181&rft_id=info:doi/10.1016%2Fj.marpolbul.2022.113853&rft.externalDocID=S0025326X22005355 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-326X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-326X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-326X&client=summon |