Observation of chiral phonons

Chirality is associated with the breaking of symmetry, often described as left- or right-handed behavior. Such asymmetry can be seen, for example, in the electronic responses of particular materials or the reactions between particular chemical species. Zhu et al. observed a chiral phonon mode in a m...

Full description

Saved in:
Bibliographic Details
Published inScience (American Association for the Advancement of Science) Vol. 359; no. 6375; pp. 579 - 582
Main Authors Zhu, Hanyu, Yi, Jun, Li, Ming-Yang, Xiao, Jun, Zhang, Lifa, Yang, Chih-Wen, Kaindl, Robert A., Li, Lain-Jong, Wang, Yuan, Zhang, Xiang
Format Journal Article
LanguageEnglish
Published United States The American Association for the Advancement of Science 02.02.2018
American Association for the Advancement of Science (AAAS)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Chirality is associated with the breaking of symmetry, often described as left- or right-handed behavior. Such asymmetry can be seen, for example, in the electronic responses of particular materials or the reactions between particular chemical species. Zhu et al. observed a chiral phonon mode in a monolayer of the transition metal dichalcogenide WSe 2 , detected spectroscopically as the circular dichroism of the phonon-assisted transition of holes. Phonon chirality could be used to control the electron-phonon coupling and/or the phonon-driven topological states of solids. Science , this issue p. 579 A chiral response of phonons is observed in a monolayer of tungsten diselenide. Chirality reveals symmetry breaking of the fundamental interaction of elementary particles. In condensed matter, for example, the chirality of electrons governs many unconventional transport phenomena such as the quantum Hall effect. Here we show that phonons can exhibit intrinsic chirality in monolayer tungsten diselenide. The broken inversion symmetry of the lattice lifts the degeneracy of clockwise and counterclockwise phonon modes at the corners of the Brillouin zone. We identified the phonons by the intervalley transfer of holes through hole-phonon interactions during the indirect infrared absorption, and we confirmed their chirality by the infrared circular dichroism arising from pseudoangular momentum conservation. The chiral phonons are important for electron-phonon coupling in solids, phonon-driven topological states, and energy-efficient information processing.
AbstractList Chirality reveals symmetry breaking of the fundamental interaction of elementary particles. In condensed matter, for example, the chirality of electrons governs many unconventional transport phenomena such as the quantum Hall effect. Here we show that phonons can exhibit intrinsic chirality in monolayer tungsten diselenide. The broken inversion symmetry of the lattice lifts the degeneracy of clockwise and counterclockwise phonon modes at the corners of the Brillouin zone. We identified the phonons by the intervalley transfer of holes through hole-phonon interactions during the indirect infrared absorption, and we confirmed their chirality by the infrared circular dichroism arising from pseudoangular momentum conservation. The chiral phonons are important for electron-phonon coupling in solids, phonon-driven topological states, and energy-efficient information processing.
A phonon merry-go-roundChirality is associated with the breaking of symmetry, often described as left- or right-handed behavior. Such asymmetry can be seen, for example, in the electronic responses of particular materials or the reactions between particular chemical species. Zhu et al. observed a chiral phonon mode in a monolayer of the transition metal dichalcogenide WSe2, detected spectroscopically as the circular dichroism of the phonon-assisted transition of holes. Phonon chirality could be used to control the electron-phonon coupling and/or the phonon-driven topological states of solids.Science, this issue p. 579Chirality reveals symmetry breaking of the fundamental interaction of elementary particles. In condensed matter, for example, the chirality of electrons governs many unconventional transport phenomena such as the quantum Hall effect. Here we show that phonons can exhibit intrinsic chirality in monolayer tungsten diselenide. The broken inversion symmetry of the lattice lifts the degeneracy of clockwise and counterclockwise phonon modes at the corners of the Brillouin zone. We identified the phonons by the intervalley transfer of holes through hole-phonon interactions during the indirect infrared absorption, and we confirmed their chirality by the infrared circular dichroism arising from pseudoangular momentum conservation. The chiral phonons are important for electron-phonon coupling in solids, phonon-driven topological states, and energy-efficient information processing.
Chirality is associated with the breaking of symmetry, often described as left- or right-handed behavior. Such asymmetry can be seen, for example, in the electronic responses of particular materials or the reactions between particular chemical species. Zhu et al. observed a chiral phonon mode in a monolayer of the transition metal dichalcogenide WSe 2 , detected spectroscopically as the circular dichroism of the phonon-assisted transition of holes. Phonon chirality could be used to control the electron-phonon coupling and/or the phonon-driven topological states of solids. Science , this issue p. 579 A chiral response of phonons is observed in a monolayer of tungsten diselenide. Chirality reveals symmetry breaking of the fundamental interaction of elementary particles. In condensed matter, for example, the chirality of electrons governs many unconventional transport phenomena such as the quantum Hall effect. Here we show that phonons can exhibit intrinsic chirality in monolayer tungsten diselenide. The broken inversion symmetry of the lattice lifts the degeneracy of clockwise and counterclockwise phonon modes at the corners of the Brillouin zone. We identified the phonons by the intervalley transfer of holes through hole-phonon interactions during the indirect infrared absorption, and we confirmed their chirality by the infrared circular dichroism arising from pseudoangular momentum conservation. The chiral phonons are important for electron-phonon coupling in solids, phonon-driven topological states, and energy-efficient information processing.
Chirality reveals symmetry breaking of the fundamental interaction of elementary particles. In condensed matter, for example, the chirality of electrons governs many unconventional transport phenomena such as the quantum Hall effect. Here we show that phonons can exhibit intrinsic chirality in monolayer tungsten diselenide. The broken inversion symmetry of the lattice lifts the degeneracy of clockwise and counterclockwise phonon modes at the corners of the Brillouin zone. We identified the phonons by the intervalley transfer of holes through hole-phonon interactions during the indirect infrared absorption, and we confirmed their chirality by the infrared circular dichroism arising from pseudoangular momentum conservation. The chiral phonons are important for electron-phonon coupling in solids, phonon-driven topological states, and energy-efficient information processing.Chirality reveals symmetry breaking of the fundamental interaction of elementary particles. In condensed matter, for example, the chirality of electrons governs many unconventional transport phenomena such as the quantum Hall effect. Here we show that phonons can exhibit intrinsic chirality in monolayer tungsten diselenide. The broken inversion symmetry of the lattice lifts the degeneracy of clockwise and counterclockwise phonon modes at the corners of the Brillouin zone. We identified the phonons by the intervalley transfer of holes through hole-phonon interactions during the indirect infrared absorption, and we confirmed their chirality by the infrared circular dichroism arising from pseudoangular momentum conservation. The chiral phonons are important for electron-phonon coupling in solids, phonon-driven topological states, and energy-efficient information processing.
Author Zhang, Lifa
Xiao, Jun
Kaindl, Robert A.
Li, Lain-Jong
Yang, Chih-Wen
Wang, Yuan
Zhu, Hanyu
Yi, Jun
Li, Ming-Yang
Zhang, Xiang
Author_xml – sequence: 1
  givenname: Hanyu
  orcidid: 0000-0003-3376-5352
  surname: Zhu
  fullname: Zhu, Hanyu
  organization: Nanoscale Science and Engineering Center, University of California, Berkeley, CA 94720, USA., Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
– sequence: 2
  givenname: Jun
  orcidid: 0000-0003-2186-6615
  surname: Yi
  fullname: Yi, Jun
  organization: Nanoscale Science and Engineering Center, University of California, Berkeley, CA 94720, USA
– sequence: 3
  givenname: Ming-Yang
  orcidid: 0000-0001-8392-9752
  surname: Li
  fullname: Li, Ming-Yang
  organization: Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
– sequence: 4
  givenname: Jun
  surname: Xiao
  fullname: Xiao, Jun
  organization: Nanoscale Science and Engineering Center, University of California, Berkeley, CA 94720, USA
– sequence: 5
  givenname: Lifa
  orcidid: 0000-0001-6108-1404
  surname: Zhang
  fullname: Zhang, Lifa
  organization: Department of Physics, Nanjing Normal University, Nanjing, Jiangsu 210023, China
– sequence: 6
  givenname: Chih-Wen
  surname: Yang
  fullname: Yang, Chih-Wen
  organization: Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
– sequence: 7
  givenname: Robert A.
  orcidid: 0000-0003-3639-5625
  surname: Kaindl
  fullname: Kaindl, Robert A.
  organization: Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
– sequence: 8
  givenname: Lain-Jong
  orcidid: 0000-0002-4059-7783
  surname: Li
  fullname: Li, Lain-Jong
  organization: Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
– sequence: 9
  givenname: Yuan
  orcidid: 0000-0001-7892-2812
  surname: Wang
  fullname: Wang, Yuan
  organization: Nanoscale Science and Engineering Center, University of California, Berkeley, CA 94720, USA., Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
– sequence: 10
  givenname: Xiang
  orcidid: 0000-0002-3272-894X
  surname: Zhang
  fullname: Zhang, Xiang
  organization: Nanoscale Science and Engineering Center, University of California, Berkeley, CA 94720, USA., Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29420291$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/1436889$$D View this record in Osti.gov
BookMark eNp10DtPwzAUBWALFdEHzEygChaWtNd24tojqnhJlbrAbDnOjZoqjYudIPHvMTQwVGLy4O_YOmdMBo1rkJBLCjNKmZgHW2FjcWaMZwtKT8iIgsoSxYAPyAiAi0TCIhuScQhbgHin-BkZMpUyYIqOyNU6D-g_TFu5ZurKqd1U3tTT_cbFn8I5OS1NHfCiPyfk7fHhdfmcrNZPL8v7VWJTJdqEIkohsRTSFMrmwNEUKAuTFVIUShXSSgQqJWUSeVlIyCxLTYkiqnKRl3xCbg7vutBWOpZq0W6saxq0raYpF1KqiO4OaO_de4eh1bsqWKxr06DrgmYAFARImUZ6e0S3rvNNrKCpUpyrNPaP6rpXXb7DQu99tTP-U_-uE8H8AKx3IXgs_wgF_b2_7vfX_f4xkR0lYpefcVtvqvrf3BfGXIsZ
CitedBy_id crossref_primary_10_1038_s41535_022_00447_5
crossref_primary_10_1103_PhysRevB_104_054103
crossref_primary_10_1038_s41467_021_22728_6
crossref_primary_10_1126_sciadv_adj4074
crossref_primary_10_1063_5_0198953
crossref_primary_10_1098_rspa_2020_0764
crossref_primary_10_1063_5_0095281
crossref_primary_10_1115_1_4066973
crossref_primary_10_1088_1367_2630_ad8957
crossref_primary_10_1103_PhysRevB_98_241405
crossref_primary_10_1063_5_0097217
crossref_primary_10_1016_j_carbon_2022_09_025
crossref_primary_10_1103_PhysRevB_104_165411
crossref_primary_10_1103_PhysRevB_105_235204
crossref_primary_10_1021_acsnano_2c05601
crossref_primary_10_1103_PhysRevB_110_104433
crossref_primary_10_1103_PhysRevB_109_104413
crossref_primary_10_1038_s41467_019_11366_8
crossref_primary_10_1021_acs_nanolett_9b02132
crossref_primary_10_1016_j_commatsci_2023_112545
crossref_primary_10_1021_acs_nanolett_4c01797
crossref_primary_10_1103_PhysRevB_110_024423
crossref_primary_10_1021_acs_nanolett_2c03095
crossref_primary_10_1038_s41586_024_07175_9
crossref_primary_10_1021_acs_jpclett_4c01179
crossref_primary_10_1021_acs_nanolett_1c03692
crossref_primary_10_1002_chem_202400685
crossref_primary_10_1007_s11467_021_1051_3
crossref_primary_10_1088_1367_2630_ac57e8
crossref_primary_10_1103_PhysRevB_101_144306
crossref_primary_10_1103_PhysRevB_105_024312
crossref_primary_10_1038_s41566_019_0387_5
crossref_primary_10_1021_acsnano_4c15485
crossref_primary_10_1088_2053_1583_aaf292
crossref_primary_10_1103_PhysRevB_110_L041116
crossref_primary_10_1039_D2CP03510C
crossref_primary_10_1103_PhysRevLett_127_186403
crossref_primary_10_1103_PhysRevLett_124_196802
crossref_primary_10_1063_5_0118263
crossref_primary_10_1103_PhysRevB_109_155426
crossref_primary_10_1002_asia_201900288
crossref_primary_10_1021_acs_nanolett_3c01904
crossref_primary_10_1093_mam_ozae044_212
crossref_primary_10_1021_acs_nanolett_1c04990
crossref_primary_10_1016_j_mtcomm_2023_105888
crossref_primary_10_1103_PhysRevB_99_174110
crossref_primary_10_1126_sciadv_abm4005
crossref_primary_10_1021_jacs_2c04817
crossref_primary_10_1088_1361_648X_abfee5
crossref_primary_10_1103_PhysRevApplied_11_034059
crossref_primary_10_1364_OE_506405
crossref_primary_10_1038_s41578_023_00543_3
crossref_primary_10_34133_2019_5173580
crossref_primary_10_1103_PhysRevB_109_104306
crossref_primary_10_1007_s12274_020_2943_1
crossref_primary_10_1063_5_0191558
crossref_primary_10_1088_1367_2630_aacf22
crossref_primary_10_1103_PhysRevLett_126_225703
crossref_primary_10_1021_acs_nanolett_4c02787
crossref_primary_10_1103_PhysRevB_109_155410
crossref_primary_10_1103_PhysRevLett_134_026501
crossref_primary_10_1002_adfm_201903929
crossref_primary_10_1103_PhysRevB_105_195117
crossref_primary_10_1103_PhysRevMaterials_6_104410
crossref_primary_10_1002_adma_202101618
crossref_primary_10_1103_PhysRevB_110_094401
crossref_primary_10_1103_PhysRevX_14_011041
crossref_primary_10_1038_s41467_024_54511_8
crossref_primary_10_1038_s41567_023_02210_4
crossref_primary_10_1103_PhysRevB_104_L081101
crossref_primary_10_1103_RevModPhys_96_021002
crossref_primary_10_35848_1882_0786_acd35f
crossref_primary_10_1103_PhysRevB_105_104301
crossref_primary_10_1103_PhysRevB_107_125147
crossref_primary_10_1038_s41567_018_0366_7
crossref_primary_10_7498_aps_72_20231546
crossref_primary_10_1103_PhysRevLett_134_036305
crossref_primary_10_7566_JPSJ_93_072001
crossref_primary_10_1103_PhysRevLett_130_226302
crossref_primary_10_1038_s42005_018_0094_4
crossref_primary_10_1103_PhysRevB_110_184301
crossref_primary_10_1088_1674_1056_ad8eca
crossref_primary_10_1103_PhysRevB_107_214306
crossref_primary_10_1103_PhysRevB_100_060302
crossref_primary_10_1103_PhysRevLett_131_196801
crossref_primary_10_7566_JPSJ_93_123705
crossref_primary_10_1063_5_0196731
crossref_primary_10_1126_sciadv_ado0722
crossref_primary_10_1016_j_physrep_2023_01_002
crossref_primary_10_1021_acs_nanolett_0c04368
crossref_primary_10_1103_PhysRevB_111_014432
crossref_primary_10_1103_PhysRevB_106_115102
crossref_primary_10_1002_lpor_201900422
crossref_primary_10_1021_acsnano_3c13228
crossref_primary_10_1038_s41586_021_03342_4
crossref_primary_10_1021_acs_nanolett_3c03787
crossref_primary_10_1063_5_0159948
crossref_primary_10_1103_PhysRevMaterials_3_064405
crossref_primary_10_1073_pnas_1817866116
crossref_primary_10_1016_j_rinp_2023_107156
crossref_primary_10_1038_s41467_019_10477_6
crossref_primary_10_1038_s41563_021_00972_x
crossref_primary_10_1039_D1CP05217A
crossref_primary_10_1103_PhysRevB_98_035423
crossref_primary_10_1103_PhysRevLett_133_246604
crossref_primary_10_1021_acs_nanolett_4c04502
crossref_primary_10_1039_D3NH00433C
crossref_primary_10_1038_s41467_021_25104_6
crossref_primary_10_1063_1_5143008
crossref_primary_10_1021_acs_nanolett_3c03316
crossref_primary_10_1088_1361_648X_adb674
crossref_primary_10_1038_s41467_020_14472_0
crossref_primary_10_1039_D4NR03998J
crossref_primary_10_1063_5_0233566
crossref_primary_10_1103_PhysRevB_111_035126
crossref_primary_10_1088_1361_648X_aabf5e
crossref_primary_10_1126_science_adi9601
crossref_primary_10_1021_acs_nanolett_2c00850
crossref_primary_10_1103_PhysRevA_108_062409
crossref_primary_10_1093_pnasnexus_pgaf002
crossref_primary_10_1103_PhysRevB_106_184104
crossref_primary_10_1002_adma_202308746
crossref_primary_10_1038_s41566_022_00969_1
crossref_primary_10_1038_s41699_021_00268_3
crossref_primary_10_1088_2053_1583_aba567
crossref_primary_10_1007_s44214_022_00025_7
crossref_primary_10_1002_adfm_202419841
crossref_primary_10_1021_acs_nanolett_8b01487
crossref_primary_10_1103_PhysRevB_105_L041408
crossref_primary_10_1002_ange_202406502
crossref_primary_10_1002_chem_202400436
crossref_primary_10_3390_nano14070607
crossref_primary_10_1038_s41467_022_32008_6
crossref_primary_10_1063_5_0201725
crossref_primary_10_1103_PhysRevResearch_3_043198
crossref_primary_10_1038_s41567_022_01790_x
crossref_primary_10_1364_OE_445743
crossref_primary_10_1038_s41467_021_21293_2
crossref_primary_10_1021_acs_nanolett_0c01983
crossref_primary_10_1021_acs_nanolett_4c00606
crossref_primary_10_1103_PhysRevApplied_10_064037
crossref_primary_10_1002_anie_202406502
crossref_primary_10_1016_j_ccr_2020_213329
crossref_primary_10_1038_s42005_022_00882_7
crossref_primary_10_1021_acs_jpcc_2c04332
crossref_primary_10_1073_pnas_2305755120
crossref_primary_10_1134_S1063776121120098
crossref_primary_10_1103_PhysRevB_108_125401
crossref_primary_10_1103_PhysRevLett_125_107702
crossref_primary_10_1134_S1063776121100022
crossref_primary_10_1103_PhysRevResearch_2_023275
crossref_primary_10_1038_s41586_021_04306_4
crossref_primary_10_1021_acsnano_9b06682
crossref_primary_10_1103_PhysRevB_100_081204
crossref_primary_10_1038_s41699_024_00479_4
crossref_primary_10_1103_PhysRevB_110_085425
crossref_primary_10_1186_s40580_022_00322_w
crossref_primary_10_1103_PhysRevB_111_024311
crossref_primary_10_1103_PhysRevB_105_085410
crossref_primary_10_1021_acsnano_4c05978
crossref_primary_10_1103_PhysRevB_107_085419
crossref_primary_10_1088_2516_1075_ad1614
crossref_primary_10_1126_science_adl3521
crossref_primary_10_1103_PhysRevB_111_094413
crossref_primary_10_1002_anie_201805671
crossref_primary_10_1021_acs_nanolett_3c02132
crossref_primary_10_1073_pnas_2304360121
crossref_primary_10_1103_PhysRevResearch_4_L012024
crossref_primary_10_1103_PhysRevB_110_195403
crossref_primary_10_1002_smll_202402139
crossref_primary_10_1088_1367_2630_ab4330
crossref_primary_10_1103_PhysRevB_98_134304
crossref_primary_10_1021_acs_nanolett_3c01851
crossref_primary_10_1038_s41563_024_01814_2
crossref_primary_10_1002_aenm_202302440
crossref_primary_10_1038_s41563_023_01473_9
crossref_primary_10_1021_acs_nanolett_1c04705
crossref_primary_10_1103_PhysRevB_109_L201409
crossref_primary_10_1103_PhysRevB_108_214402
crossref_primary_10_1016_j_mtphys_2021_100548
crossref_primary_10_1088_2040_8986_ac8493
crossref_primary_10_1063_5_0063622
crossref_primary_10_1103_PhysRevB_108_174426
crossref_primary_10_1021_acs_nanolett_4c05408
crossref_primary_10_1103_PhysRevB_99_205410
crossref_primary_10_1021_acsphotonics_2c00850
crossref_primary_10_1038_s41563_024_01880_6
crossref_primary_10_1088_1361_648X_ac4dbd
crossref_primary_10_1088_1674_4926_40_7_071903
crossref_primary_10_1021_acs_chemmater_4c00427
crossref_primary_10_1103_PhysRevResearch_1_032007
crossref_primary_10_1038_s41467_021_25547_x
crossref_primary_10_1002_adfm_201904734
crossref_primary_10_1103_PhysRevLett_134_026902
crossref_primary_10_1021_acs_nanolett_0c03292
crossref_primary_10_1103_PhysRevB_100_094303
crossref_primary_10_1103_PhysRevB_106_144302
crossref_primary_10_1038_s41467_023_39123_y
crossref_primary_10_1103_PhysRevB_100_041301
crossref_primary_10_1021_acs_nanolett_3c00780
crossref_primary_10_1063_5_0207915
crossref_primary_10_1002_advs_202304698
crossref_primary_10_1103_PhysRevB_104_054305
crossref_primary_10_1103_PhysRevB_105_L121302
crossref_primary_10_1103_PhysRevB_108_064510
crossref_primary_10_1002_pssb_201800013
crossref_primary_10_1103_PhysRevB_108_134307
crossref_primary_10_1103_PhysRevResearch_5_L022039
crossref_primary_10_1088_0256_307X_42_2_027405
crossref_primary_10_1126_sciadv_ado2504
crossref_primary_10_3389_fmech_2021_704192
crossref_primary_10_1063_5_0064464
crossref_primary_10_1103_PhysRevLett_132_153801
crossref_primary_10_1103_PhysRevLett_128_066801
crossref_primary_10_1002_pssr_202400060
crossref_primary_10_1103_PhysRevB_103_214302
crossref_primary_10_1038_s42005_020_0289_3
crossref_primary_10_1088_1361_6633_ac97aa
crossref_primary_10_1002_inf2_12093
crossref_primary_10_1103_PhysRevLett_130_086701
crossref_primary_10_1002_chir_23544
crossref_primary_10_1016_j_rinp_2024_108023
crossref_primary_10_1103_PhysRevB_105_184412
crossref_primary_10_1038_s41524_024_01440_1
crossref_primary_10_1038_s42254_018_0018_y
crossref_primary_10_1039_D4NR00058G
crossref_primary_10_1038_s42254_020_00276_0
crossref_primary_10_1103_PhysRevA_106_033711
crossref_primary_10_1103_PhysRevA_107_013702
crossref_primary_10_7566_JPSJ_93_034708
crossref_primary_10_1103_PhysRevB_110_L201405
crossref_primary_10_1002_adma_202402925
crossref_primary_10_1007_s11433_023_2281_x
crossref_primary_10_1007_s11426_021_1119_4
crossref_primary_10_1016_j_ymssp_2022_109922
crossref_primary_10_1038_s41563_018_0131_4
crossref_primary_10_1063_5_0186917
crossref_primary_10_1038_s41565_024_01719_w
crossref_primary_10_1002_jrs_5746
crossref_primary_10_1515_nanoph_2020_0054
crossref_primary_10_1038_s41586_024_07200_x
crossref_primary_10_1103_PhysRevLett_125_245302
crossref_primary_10_1016_j_commatsci_2024_113421
crossref_primary_10_1103_PhysRevB_108_L220304
crossref_primary_10_1002_ange_201805671
crossref_primary_10_1002_pssb_201900445
crossref_primary_10_1103_PhysRevLett_133_046802
crossref_primary_10_1103_PhysRevResearch_4_013129
crossref_primary_10_1021_acs_nanolett_0c05043
crossref_primary_10_1038_s41566_021_00836_5
crossref_primary_10_1088_1361_6528_ac18d9
crossref_primary_10_7566_JPSJ_92_023601
crossref_primary_10_1016_j_progsurf_2022_100664
crossref_primary_10_1038_s41586_023_06016_5
crossref_primary_10_1103_PhysRevB_102_174301
crossref_primary_10_1021_acs_nanolett_1c00236
crossref_primary_10_1002_adom_202201528
crossref_primary_10_1038_s41467_019_10774_0
crossref_primary_10_1103_PhysRevLett_132_236201
crossref_primary_10_1039_D3CP05109A
crossref_primary_10_1103_PhysRevB_106_094310
crossref_primary_10_1103_PhysRevB_106_094311
crossref_primary_10_1021_acs_jpclett_2c01034
crossref_primary_10_1038_s41578_023_00620_7
crossref_primary_10_1038_s41586_022_04520_8
crossref_primary_10_1103_PhysRevMaterials_6_124201
crossref_primary_10_1063_4_0000242
crossref_primary_10_1038_s41467_020_16934_x
crossref_primary_10_1021_acsnano_1c08286
crossref_primary_10_1038_s41467_022_28965_7
crossref_primary_10_1103_PhysRevLett_129_116401
crossref_primary_10_1063_1_5129025
crossref_primary_10_3390_cryst12030436
crossref_primary_10_1002_adfm_201904784
crossref_primary_10_1103_PhysRevB_97_195444
crossref_primary_10_1103_PhysRevB_105_195431
crossref_primary_10_1103_PhysRevB_103_L100409
crossref_primary_10_1007_s11433_022_1952_3
crossref_primary_10_1038_s41467_021_25499_2
crossref_primary_10_1002_adma_201807742
Cites_doi 10.1038/ncomms3801
10.1021/ar500391x
10.1016/0370-2693(82)90134-4
10.1038/nmat4356
10.1038/ncomms14670
10.1103/PhysRevB.89.205303
10.1038/natrevmats.2016.55
10.1073/pnas.1615503114
10.1038/ncomms9963
10.1103/PhysRevB.87.115418
10.1038/nature06119
10.1103/PhysRevB.84.153402
10.1038/nature13915
10.1016/j.wavemoti.2009.04.002
10.1126/science.aab0239
10.1038/nphoton.2015.104
10.1146/annurev-conmatphys-031016-025225
10.1038/nmat4792
10.1038/ncomms14927
10.1039/C6NR02516A
10.1007/BF00844959
10.1021/acs.nanolett.6b04422
10.1103/PhysRevB.90.161302
10.1103/PhysRevB.91.195411
10.1038/nnano.2012.95
10.1063/1.455427
10.1126/science.1211914
10.1021/acs.nanolett.5b00092
10.1038/nnano.2017.105
10.1103/PhysRevB.90.045422
10.1039/B613962K
10.1103/PhysRevLett.115.115502
10.1109/JQE.1983.1071889
10.1103/PhysRevB.14.1605
10.1039/C6CP07208A
10.1038/nphys3925
10.1103/RevModPhys.84.1045
10.1088/0953-8984/27/18/182201
10.1088/0022-3719/9/11/009
10.1103/RevModPhys.83.407
10.1103/PhysRevB.90.205422
10.1103/PhysRevD.45.1410
10.1103/PhysRevLett.114.097403
10.1016/0022-3697(59)90337-3
10.1103/PhysRevLett.61.2015
ContentType Journal Article
Copyright Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works
Copyright_xml – notice: Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
– notice: Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works
CorporateAuthor Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
CorporateAuthor_xml – name: Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
DBID AAYXX
CITATION
NPM
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
OTOTI
DOI 10.1126/science.aar2711
DatabaseName CrossRef
PubMed
Aluminium Industry Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Solid State and Superconductivity Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
OSTI.GOV
DatabaseTitle CrossRef
PubMed
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Ecology Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Entomology Abstracts
Animal Behavior Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList
PubMed
Materials Research Database
CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Biology
EISSN 1095-9203
EndPage 582
ExternalDocumentID 1436889
29420291
10_1126_science_aar2711
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--Z
-DZ
-ET
-~X
.-4
..I
.55
.DC
08G
0R~
0WA
123
18M
2FS
2KS
2WC
2XV
34G
36B
39C
3R3
53G
5RE
66.
6OB
6TJ
7X2
7~K
85S
8F7
AABCJ
AACGO
AAIKC
AAMNW
AANCE
AAWTO
AAYXX
ABBHK
ABCQX
ABDBF
ABDEX
ABDQB
ABEFU
ABIVO
ABJNI
ABOCM
ABPLY
ABPPZ
ABQIJ
ABTLG
ABWJO
ABXSQ
ABZEH
ACBEA
ACBEC
ACGFO
ACGFS
ACGOD
ACIWK
ACMJI
ACNCT
ACPRK
ACQOY
ACUHS
ADDRP
ADMHC
ADUKH
ADXHL
AEGBM
AENEX
AETEA
AEUPB
AEXZC
AFBNE
AFFDN
AFFNX
AFHKK
AFQFN
AFRAH
AGFXO
AGNAY
AGSOS
AHMBA
AIDAL
AIDUJ
AJGZS
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALSLI
ASPBG
AVWKF
BKF
BLC
C45
C51
CITATION
CS3
DB2
DCCCD
DU5
EBS
EJD
EMOBN
F5P
FA8
FEDTE
HZ~
I.T
IAO
IEA
IGS
IH2
IHR
INH
INR
IOF
IOV
IPO
IPSME
IPY
ISE
JAAYA
JBMMH
JCF
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
K-O
KCC
L7B
LSO
LU7
M0P
MQT
MVM
N9A
NEJ
NHB
O9-
OCB
OFXIZ
OGEVE
OMK
OVD
P-O
P2P
PQQKQ
PZZ
QS-
RHI
RXW
SA0
SC5
SJN
TAE
TEORI
TN5
TWZ
UBW
UCV
UHB
UKR
UMD
UNMZH
UQL
USG
VVN
WH7
WI4
X7M
XJF
XZL
Y6R
YK4
YKV
YNT
YOJ
YR2
YR5
YRY
YSQ
YV5
YWH
YYP
YYQ
YZZ
ZCA
ZE2
~02
~G0
~KM
~ZZ
NPM
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
0B8
63O
6XO
79B
ABPTK
ABQIS
AFUVZ
AGCDD
ANJGP
B-7
ESX
GX1
IGG
OK1
OTOTI
PK8
PQEST
RHF
UMP
VQA
XFK
YCJ
ZA5
ZKG
ID FETCH-LOGICAL-c496t-1ee868ef68ad9cb03eade8da5d86d99d8c8e0188128e3fd805c24afe6de8f7bf3
ISSN 0036-8075
1095-9203
IngestDate Thu May 18 22:26:38 EDT 2023
Mon Jul 21 11:07:06 EDT 2025
Fri Jul 25 10:44:13 EDT 2025
Mon Jul 21 06:08:24 EDT 2025
Tue Jul 01 01:51:12 EDT 2025
Thu Apr 24 23:02:00 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6375
Language English
License Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c496t-1ee868ef68ad9cb03eade8da5d86d99d8c8e0188128e3fd805c24afe6de8f7bf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
USDOE
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22). Materials Sciences & Engineering Division
AC02-05-CH11231, program KCWF16; AC02-05-CH11231, program KC2203; AC02-05CH11231
ORCID 0000-0002-3272-894X
0000-0001-8392-9752
0000-0001-6108-1404
0000-0002-4059-7783
0000-0001-7892-2812
0000-0003-3376-5352
0000-0003-2186-6615
0000-0003-3639-5625
0000000336395625
0000000183929752
0000000178922812
000000023272894X
0000000333765352
0000000161081404
0000000240597783
0000000321866615
OpenAccessLink https://www.osti.gov/biblio/1436889
PMID 29420291
PQID 1993394420
PQPubID 1256
PageCount 4
ParticipantIDs osti_scitechconnect_1436889
proquest_miscellaneous_2001060884
proquest_journals_1993394420
pubmed_primary_29420291
crossref_primary_10_1126_science_aar2711
crossref_citationtrail_10_1126_science_aar2711
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-02-02
PublicationDateYYYYMMDD 2018-02-02
PublicationDate_xml – month: 02
  year: 2018
  text: 2018-02-02
  day: 02
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Science (American Association for the Advancement of Science)
PublicationTitleAlternate Science
PublicationYear 2018
Publisher The American Association for the Advancement of Science
American Association for the Advancement of Science (AAAS)
Publisher_xml – name: The American Association for the Advancement of Science
– name: American Association for the Advancement of Science (AAAS)
References e_1_3_2_26_2
e_1_3_2_27_2
e_1_3_2_28_2
e_1_3_2_29_2
e_1_3_2_41_2
e_1_3_2_40_2
e_1_3_2_20_2
e_1_3_2_43_2
e_1_3_2_21_2
e_1_3_2_42_2
e_1_3_2_22_2
e_1_3_2_45_2
e_1_3_2_23_2
e_1_3_2_44_2
e_1_3_2_24_2
e_1_3_2_47_2
e_1_3_2_25_2
e_1_3_2_46_2
e_1_3_2_9_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_17_2
e_1_3_2_6_2
e_1_3_2_18_2
e_1_3_2_39_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_32_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_5_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_4_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_3_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_2_2
e_1_3_2_14_2
e_1_3_2_35_2
References_xml – ident: e_1_3_2_7_2
  doi: 10.1038/ncomms3801
– ident: e_1_3_2_11_2
  doi: 10.1021/ar500391x
– ident: e_1_3_2_14_2
  doi: 10.1016/0370-2693(82)90134-4
– ident: e_1_3_2_28_2
  doi: 10.1038/nmat4356
– ident: e_1_3_2_9_2
  doi: 10.1038/ncomms14670
– ident: e_1_3_2_26_2
  doi: 10.1103/PhysRevB.89.205303
– ident: e_1_3_2_5_2
  doi: 10.1038/natrevmats.2016.55
– ident: e_1_3_2_21_2
  doi: 10.1073/pnas.1615503114
– ident: e_1_3_2_33_2
  doi: 10.1038/ncomms9963
– ident: e_1_3_2_39_2
  doi: 10.1103/PhysRevB.87.115418
– ident: e_1_3_2_10_2
  doi: 10.1038/nature06119
– ident: e_1_3_2_44_2
  doi: 10.1103/PhysRevB.84.153402
– ident: e_1_3_2_12_2
  doi: 10.1038/nature13915
– ident: e_1_3_2_19_2
  doi: 10.1016/j.wavemoti.2009.04.002
– ident: e_1_3_2_20_2
  doi: 10.1126/science.aab0239
– ident: e_1_3_2_36_2
  doi: 10.1038/nphoton.2015.104
– ident: e_1_3_2_2_2
  doi: 10.1146/annurev-conmatphys-031016-025225
– ident: e_1_3_2_22_2
  doi: 10.1038/nmat4792
– ident: e_1_3_2_25_2
  doi: 10.1038/ncomms14927
– ident: e_1_3_2_23_2
  doi: 10.1039/C6NR02516A
– ident: e_1_3_2_37_2
  doi: 10.1007/BF00844959
– ident: e_1_3_2_24_2
  doi: 10.1021/acs.nanolett.6b04422
– ident: e_1_3_2_32_2
  doi: 10.1103/PhysRevB.90.161302
– ident: e_1_3_2_43_2
  doi: 10.1103/PhysRevB.91.195411
– ident: e_1_3_2_8_2
  doi: 10.1038/nnano.2012.95
– ident: e_1_3_2_38_2
  doi: 10.1063/1.455427
– ident: e_1_3_2_13_2
  doi: 10.1126/science.1211914
– ident: e_1_3_2_16_2
  doi: 10.1021/acs.nanolett.5b00092
– ident: e_1_3_2_29_2
  doi: 10.1038/nnano.2017.105
– ident: e_1_3_2_40_2
  doi: 10.1103/PhysRevB.90.045422
– ident: e_1_3_2_42_2
  doi: 10.1039/B613962K
– ident: e_1_3_2_6_2
  doi: 10.1103/PhysRevLett.115.115502
– ident: e_1_3_2_35_2
  doi: 10.1109/JQE.1983.1071889
– ident: e_1_3_2_41_2
  doi: 10.1103/PhysRevB.14.1605
– ident: e_1_3_2_27_2
  doi: 10.1039/C6CP07208A
– ident: e_1_3_2_17_2
  doi: 10.1038/nphys3925
– ident: e_1_3_2_31_2
  doi: 10.1103/RevModPhys.84.1045
– ident: e_1_3_2_46_2
  doi: 10.1088/0953-8984/27/18/182201
– ident: e_1_3_2_18_2
  doi: 10.1088/0022-3719/9/11/009
– ident: e_1_3_2_4_2
  doi: 10.1103/RevModPhys.83.407
– ident: e_1_3_2_45_2
  doi: 10.1103/PhysRevB.90.205422
– ident: e_1_3_2_30_2
  doi: 10.1103/PhysRevD.45.1410
– ident: e_1_3_2_47_2
  doi: 10.1103/PhysRevLett.114.097403
– ident: e_1_3_2_34_2
  doi: 10.1016/0022-3697(59)90337-3
– ident: e_1_3_2_3_2
  doi: 10.1103/PhysRevLett.61.2015
SSID ssj0009593
Score 2.668433
Snippet Chirality is associated with the breaking of symmetry, often described as left- or right-handed behavior. Such asymmetry can be seen, for example, in the...
Chirality reveals symmetry breaking of the fundamental interaction of elementary particles. In condensed matter, for example, the chirality of electrons...
A phonon merry-go-roundChirality is associated with the breaking of symmetry, often described as left- or right-handed behavior. Such asymmetry can be seen,...
SourceID osti
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 579
SubjectTerms Asymmetry
Brillouin zones
Broken symmetry
Chemical reactions
Chemical speciation
Chirality
Circular dichroism
Condensed matter physics
Coupling
Data processing
Dichroism
Elementary particles
Energy efficiency
Hall effect
Handedness
Information processing
Infrared absorption
Lattice vibration
Lifts
Monolayers
Phonons
Quantum Hall effect
Selenides
Symmetry
Transport phenomena
Tungsten
Tungsten compounds
Title Observation of chiral phonons
URI https://www.ncbi.nlm.nih.gov/pubmed/29420291
https://www.proquest.com/docview/1993394420
https://www.proquest.com/docview/2001060884
https://www.osti.gov/biblio/1436889
Volume 359
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLegExIXxMZX2IaCxGEcUiWO49jHDlZNaGyXVipcIsexWSXUojU9wF_Pc_ziZbBJg0tUuXZi-ff8y3vO-yDkXZGZRglFE1s2MmFg9ySS2zJhkmnBYeqUuXjnz-f8dM4-LYpFX8Mdo0vaeqx_3RpX8j-oQhvg6qJk_wHZcFNogN-AL1wBYbjeC-OLOpypdu7hl0sXbu-8zftDOFQ7-x0M6mT4RDMAJvgaTrxHQO8ggMMGpwVfL7fdywooZBsIY-nDO66de5beIX_1Lfmi8M0IzYulWg974llDJjr35MHxY5a6yo409ZRkbmlDTs0xzbcXHp6XxYAkC18-5m_yHpSbNGOlrmiJRHwjTfb5RTWdn51Vs5PF7CHZoWAfAMHtTI4_Hk__zLccJodZnQbxUv0DbigkozUQ693GRqd0zJ6SJ2gtxBMP_S55YFZ75JGvH_pzj-wiQJv4CNOHv39GDgdSEa9t7KUiRql4TubTk9mH0wSLYCSaSd4mmTGCC2O5UI3UdZo7D3fRqKIRvJGyEVoYQAr0NGFy24i00JQpazj0smVt8xdkBLc3r0gM2p9tiqw2smYsh60LhJ2VZQ0qnQa1Xkdk3K9EpTFDvCtU8r3qLEXKK1y6CpcuIkdhwA-fHOXurvtuaV2zS06snReXbsHwzLkQMiIH_YpXuL82lXMtdWHbNI3I2_A3sJ_7pKVWZr3duCKqWcrhTcki8tIjFWZCJQylMnt9j9H75PG1vB-QUXu1NYegbbb1G5Ss33SRf7A
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Observation+of+chiral+phonons&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Zhu%2C+Hanyu&rft.au=Yi%2C+Jun&rft.au=Li%2C+Ming-Yang&rft.au=Xiao%2C+Jun&rft.date=2018-02-02&rft.issn=1095-9203&rft.eissn=1095-9203&rft.volume=359&rft.issue=6375&rft.spage=579&rft_id=info:doi/10.1126%2Fscience.aar2711&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon