Observation of chiral phonons
Chirality is associated with the breaking of symmetry, often described as left- or right-handed behavior. Such asymmetry can be seen, for example, in the electronic responses of particular materials or the reactions between particular chemical species. Zhu et al. observed a chiral phonon mode in a m...
Saved in:
Published in | Science (American Association for the Advancement of Science) Vol. 359; no. 6375; pp. 579 - 582 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
The American Association for the Advancement of Science
02.02.2018
American Association for the Advancement of Science (AAAS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Chirality is associated with the breaking of symmetry, often described as left- or right-handed behavior. Such asymmetry can be seen, for example, in the electronic responses of particular materials or the reactions between particular chemical species. Zhu
et al.
observed a chiral phonon mode in a monolayer of the transition metal dichalcogenide WSe
2
, detected spectroscopically as the circular dichroism of the phonon-assisted transition of holes. Phonon chirality could be used to control the electron-phonon coupling and/or the phonon-driven topological states of solids.
Science
, this issue p.
579
A chiral response of phonons is observed in a monolayer of tungsten diselenide.
Chirality reveals symmetry breaking of the fundamental interaction of elementary particles. In condensed matter, for example, the chirality of electrons governs many unconventional transport phenomena such as the quantum Hall effect. Here we show that phonons can exhibit intrinsic chirality in monolayer tungsten diselenide. The broken inversion symmetry of the lattice lifts the degeneracy of clockwise and counterclockwise phonon modes at the corners of the Brillouin zone. We identified the phonons by the intervalley transfer of holes through hole-phonon interactions during the indirect infrared absorption, and we confirmed their chirality by the infrared circular dichroism arising from pseudoangular momentum conservation. The chiral phonons are important for electron-phonon coupling in solids, phonon-driven topological states, and energy-efficient information processing. |
---|---|
AbstractList | Chirality reveals symmetry breaking of the fundamental interaction of elementary particles. In condensed matter, for example, the chirality of electrons governs many unconventional transport phenomena such as the quantum Hall effect. Here we show that phonons can exhibit intrinsic chirality in monolayer tungsten diselenide. The broken inversion symmetry of the lattice lifts the degeneracy of clockwise and counterclockwise phonon modes at the corners of the Brillouin zone. We identified the phonons by the intervalley transfer of holes through hole-phonon interactions during the indirect infrared absorption, and we confirmed their chirality by the infrared circular dichroism arising from pseudoangular momentum conservation. The chiral phonons are important for electron-phonon coupling in solids, phonon-driven topological states, and energy-efficient information processing. A phonon merry-go-roundChirality is associated with the breaking of symmetry, often described as left- or right-handed behavior. Such asymmetry can be seen, for example, in the electronic responses of particular materials or the reactions between particular chemical species. Zhu et al. observed a chiral phonon mode in a monolayer of the transition metal dichalcogenide WSe2, detected spectroscopically as the circular dichroism of the phonon-assisted transition of holes. Phonon chirality could be used to control the electron-phonon coupling and/or the phonon-driven topological states of solids.Science, this issue p. 579Chirality reveals symmetry breaking of the fundamental interaction of elementary particles. In condensed matter, for example, the chirality of electrons governs many unconventional transport phenomena such as the quantum Hall effect. Here we show that phonons can exhibit intrinsic chirality in monolayer tungsten diselenide. The broken inversion symmetry of the lattice lifts the degeneracy of clockwise and counterclockwise phonon modes at the corners of the Brillouin zone. We identified the phonons by the intervalley transfer of holes through hole-phonon interactions during the indirect infrared absorption, and we confirmed their chirality by the infrared circular dichroism arising from pseudoangular momentum conservation. The chiral phonons are important for electron-phonon coupling in solids, phonon-driven topological states, and energy-efficient information processing. Chirality is associated with the breaking of symmetry, often described as left- or right-handed behavior. Such asymmetry can be seen, for example, in the electronic responses of particular materials or the reactions between particular chemical species. Zhu et al. observed a chiral phonon mode in a monolayer of the transition metal dichalcogenide WSe 2 , detected spectroscopically as the circular dichroism of the phonon-assisted transition of holes. Phonon chirality could be used to control the electron-phonon coupling and/or the phonon-driven topological states of solids. Science , this issue p. 579 A chiral response of phonons is observed in a monolayer of tungsten diselenide. Chirality reveals symmetry breaking of the fundamental interaction of elementary particles. In condensed matter, for example, the chirality of electrons governs many unconventional transport phenomena such as the quantum Hall effect. Here we show that phonons can exhibit intrinsic chirality in monolayer tungsten diselenide. The broken inversion symmetry of the lattice lifts the degeneracy of clockwise and counterclockwise phonon modes at the corners of the Brillouin zone. We identified the phonons by the intervalley transfer of holes through hole-phonon interactions during the indirect infrared absorption, and we confirmed their chirality by the infrared circular dichroism arising from pseudoangular momentum conservation. The chiral phonons are important for electron-phonon coupling in solids, phonon-driven topological states, and energy-efficient information processing. Chirality reveals symmetry breaking of the fundamental interaction of elementary particles. In condensed matter, for example, the chirality of electrons governs many unconventional transport phenomena such as the quantum Hall effect. Here we show that phonons can exhibit intrinsic chirality in monolayer tungsten diselenide. The broken inversion symmetry of the lattice lifts the degeneracy of clockwise and counterclockwise phonon modes at the corners of the Brillouin zone. We identified the phonons by the intervalley transfer of holes through hole-phonon interactions during the indirect infrared absorption, and we confirmed their chirality by the infrared circular dichroism arising from pseudoangular momentum conservation. The chiral phonons are important for electron-phonon coupling in solids, phonon-driven topological states, and energy-efficient information processing.Chirality reveals symmetry breaking of the fundamental interaction of elementary particles. In condensed matter, for example, the chirality of electrons governs many unconventional transport phenomena such as the quantum Hall effect. Here we show that phonons can exhibit intrinsic chirality in monolayer tungsten diselenide. The broken inversion symmetry of the lattice lifts the degeneracy of clockwise and counterclockwise phonon modes at the corners of the Brillouin zone. We identified the phonons by the intervalley transfer of holes through hole-phonon interactions during the indirect infrared absorption, and we confirmed their chirality by the infrared circular dichroism arising from pseudoangular momentum conservation. The chiral phonons are important for electron-phonon coupling in solids, phonon-driven topological states, and energy-efficient information processing. |
Author | Zhang, Lifa Xiao, Jun Kaindl, Robert A. Li, Lain-Jong Yang, Chih-Wen Wang, Yuan Zhu, Hanyu Yi, Jun Li, Ming-Yang Zhang, Xiang |
Author_xml | – sequence: 1 givenname: Hanyu orcidid: 0000-0003-3376-5352 surname: Zhu fullname: Zhu, Hanyu organization: Nanoscale Science and Engineering Center, University of California, Berkeley, CA 94720, USA., Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA – sequence: 2 givenname: Jun orcidid: 0000-0003-2186-6615 surname: Yi fullname: Yi, Jun organization: Nanoscale Science and Engineering Center, University of California, Berkeley, CA 94720, USA – sequence: 3 givenname: Ming-Yang orcidid: 0000-0001-8392-9752 surname: Li fullname: Li, Ming-Yang organization: Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia – sequence: 4 givenname: Jun surname: Xiao fullname: Xiao, Jun organization: Nanoscale Science and Engineering Center, University of California, Berkeley, CA 94720, USA – sequence: 5 givenname: Lifa orcidid: 0000-0001-6108-1404 surname: Zhang fullname: Zhang, Lifa organization: Department of Physics, Nanjing Normal University, Nanjing, Jiangsu 210023, China – sequence: 6 givenname: Chih-Wen surname: Yang fullname: Yang, Chih-Wen organization: Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia – sequence: 7 givenname: Robert A. orcidid: 0000-0003-3639-5625 surname: Kaindl fullname: Kaindl, Robert A. organization: Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA – sequence: 8 givenname: Lain-Jong orcidid: 0000-0002-4059-7783 surname: Li fullname: Li, Lain-Jong organization: Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia – sequence: 9 givenname: Yuan orcidid: 0000-0001-7892-2812 surname: Wang fullname: Wang, Yuan organization: Nanoscale Science and Engineering Center, University of California, Berkeley, CA 94720, USA., Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA – sequence: 10 givenname: Xiang orcidid: 0000-0002-3272-894X surname: Zhang fullname: Zhang, Xiang organization: Nanoscale Science and Engineering Center, University of California, Berkeley, CA 94720, USA., Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29420291$$D View this record in MEDLINE/PubMed https://www.osti.gov/biblio/1436889$$D View this record in Osti.gov |
BookMark | eNp10DtPwzAUBWALFdEHzEygChaWtNd24tojqnhJlbrAbDnOjZoqjYudIPHvMTQwVGLy4O_YOmdMBo1rkJBLCjNKmZgHW2FjcWaMZwtKT8iIgsoSxYAPyAiAi0TCIhuScQhbgHin-BkZMpUyYIqOyNU6D-g_TFu5ZurKqd1U3tTT_cbFn8I5OS1NHfCiPyfk7fHhdfmcrNZPL8v7VWJTJdqEIkohsRTSFMrmwNEUKAuTFVIUShXSSgQqJWUSeVlIyCxLTYkiqnKRl3xCbg7vutBWOpZq0W6saxq0raYpF1KqiO4OaO_de4eh1bsqWKxr06DrgmYAFARImUZ6e0S3rvNNrKCpUpyrNPaP6rpXXb7DQu99tTP-U_-uE8H8AKx3IXgs_wgF_b2_7vfX_f4xkR0lYpefcVtvqvrf3BfGXIsZ |
CitedBy_id | crossref_primary_10_1038_s41535_022_00447_5 crossref_primary_10_1103_PhysRevB_104_054103 crossref_primary_10_1038_s41467_021_22728_6 crossref_primary_10_1126_sciadv_adj4074 crossref_primary_10_1063_5_0198953 crossref_primary_10_1098_rspa_2020_0764 crossref_primary_10_1063_5_0095281 crossref_primary_10_1115_1_4066973 crossref_primary_10_1088_1367_2630_ad8957 crossref_primary_10_1103_PhysRevB_98_241405 crossref_primary_10_1063_5_0097217 crossref_primary_10_1016_j_carbon_2022_09_025 crossref_primary_10_1103_PhysRevB_104_165411 crossref_primary_10_1103_PhysRevB_105_235204 crossref_primary_10_1021_acsnano_2c05601 crossref_primary_10_1103_PhysRevB_110_104433 crossref_primary_10_1103_PhysRevB_109_104413 crossref_primary_10_1038_s41467_019_11366_8 crossref_primary_10_1021_acs_nanolett_9b02132 crossref_primary_10_1016_j_commatsci_2023_112545 crossref_primary_10_1021_acs_nanolett_4c01797 crossref_primary_10_1103_PhysRevB_110_024423 crossref_primary_10_1021_acs_nanolett_2c03095 crossref_primary_10_1038_s41586_024_07175_9 crossref_primary_10_1021_acs_jpclett_4c01179 crossref_primary_10_1021_acs_nanolett_1c03692 crossref_primary_10_1002_chem_202400685 crossref_primary_10_1007_s11467_021_1051_3 crossref_primary_10_1088_1367_2630_ac57e8 crossref_primary_10_1103_PhysRevB_101_144306 crossref_primary_10_1103_PhysRevB_105_024312 crossref_primary_10_1038_s41566_019_0387_5 crossref_primary_10_1021_acsnano_4c15485 crossref_primary_10_1088_2053_1583_aaf292 crossref_primary_10_1103_PhysRevB_110_L041116 crossref_primary_10_1039_D2CP03510C crossref_primary_10_1103_PhysRevLett_127_186403 crossref_primary_10_1103_PhysRevLett_124_196802 crossref_primary_10_1063_5_0118263 crossref_primary_10_1103_PhysRevB_109_155426 crossref_primary_10_1002_asia_201900288 crossref_primary_10_1021_acs_nanolett_3c01904 crossref_primary_10_1093_mam_ozae044_212 crossref_primary_10_1021_acs_nanolett_1c04990 crossref_primary_10_1016_j_mtcomm_2023_105888 crossref_primary_10_1103_PhysRevB_99_174110 crossref_primary_10_1126_sciadv_abm4005 crossref_primary_10_1021_jacs_2c04817 crossref_primary_10_1088_1361_648X_abfee5 crossref_primary_10_1103_PhysRevApplied_11_034059 crossref_primary_10_1364_OE_506405 crossref_primary_10_1038_s41578_023_00543_3 crossref_primary_10_34133_2019_5173580 crossref_primary_10_1103_PhysRevB_109_104306 crossref_primary_10_1007_s12274_020_2943_1 crossref_primary_10_1063_5_0191558 crossref_primary_10_1088_1367_2630_aacf22 crossref_primary_10_1103_PhysRevLett_126_225703 crossref_primary_10_1021_acs_nanolett_4c02787 crossref_primary_10_1103_PhysRevB_109_155410 crossref_primary_10_1103_PhysRevLett_134_026501 crossref_primary_10_1002_adfm_201903929 crossref_primary_10_1103_PhysRevB_105_195117 crossref_primary_10_1103_PhysRevMaterials_6_104410 crossref_primary_10_1002_adma_202101618 crossref_primary_10_1103_PhysRevB_110_094401 crossref_primary_10_1103_PhysRevX_14_011041 crossref_primary_10_1038_s41467_024_54511_8 crossref_primary_10_1038_s41567_023_02210_4 crossref_primary_10_1103_PhysRevB_104_L081101 crossref_primary_10_1103_RevModPhys_96_021002 crossref_primary_10_35848_1882_0786_acd35f crossref_primary_10_1103_PhysRevB_105_104301 crossref_primary_10_1103_PhysRevB_107_125147 crossref_primary_10_1038_s41567_018_0366_7 crossref_primary_10_7498_aps_72_20231546 crossref_primary_10_1103_PhysRevLett_134_036305 crossref_primary_10_7566_JPSJ_93_072001 crossref_primary_10_1103_PhysRevLett_130_226302 crossref_primary_10_1038_s42005_018_0094_4 crossref_primary_10_1103_PhysRevB_110_184301 crossref_primary_10_1088_1674_1056_ad8eca crossref_primary_10_1103_PhysRevB_107_214306 crossref_primary_10_1103_PhysRevB_100_060302 crossref_primary_10_1103_PhysRevLett_131_196801 crossref_primary_10_7566_JPSJ_93_123705 crossref_primary_10_1063_5_0196731 crossref_primary_10_1126_sciadv_ado0722 crossref_primary_10_1016_j_physrep_2023_01_002 crossref_primary_10_1021_acs_nanolett_0c04368 crossref_primary_10_1103_PhysRevB_111_014432 crossref_primary_10_1103_PhysRevB_106_115102 crossref_primary_10_1002_lpor_201900422 crossref_primary_10_1021_acsnano_3c13228 crossref_primary_10_1038_s41586_021_03342_4 crossref_primary_10_1021_acs_nanolett_3c03787 crossref_primary_10_1063_5_0159948 crossref_primary_10_1103_PhysRevMaterials_3_064405 crossref_primary_10_1073_pnas_1817866116 crossref_primary_10_1016_j_rinp_2023_107156 crossref_primary_10_1038_s41467_019_10477_6 crossref_primary_10_1038_s41563_021_00972_x crossref_primary_10_1039_D1CP05217A crossref_primary_10_1103_PhysRevB_98_035423 crossref_primary_10_1103_PhysRevLett_133_246604 crossref_primary_10_1021_acs_nanolett_4c04502 crossref_primary_10_1039_D3NH00433C crossref_primary_10_1038_s41467_021_25104_6 crossref_primary_10_1063_1_5143008 crossref_primary_10_1021_acs_nanolett_3c03316 crossref_primary_10_1088_1361_648X_adb674 crossref_primary_10_1038_s41467_020_14472_0 crossref_primary_10_1039_D4NR03998J crossref_primary_10_1063_5_0233566 crossref_primary_10_1103_PhysRevB_111_035126 crossref_primary_10_1088_1361_648X_aabf5e crossref_primary_10_1126_science_adi9601 crossref_primary_10_1021_acs_nanolett_2c00850 crossref_primary_10_1103_PhysRevA_108_062409 crossref_primary_10_1093_pnasnexus_pgaf002 crossref_primary_10_1103_PhysRevB_106_184104 crossref_primary_10_1002_adma_202308746 crossref_primary_10_1038_s41566_022_00969_1 crossref_primary_10_1038_s41699_021_00268_3 crossref_primary_10_1088_2053_1583_aba567 crossref_primary_10_1007_s44214_022_00025_7 crossref_primary_10_1002_adfm_202419841 crossref_primary_10_1021_acs_nanolett_8b01487 crossref_primary_10_1103_PhysRevB_105_L041408 crossref_primary_10_1002_ange_202406502 crossref_primary_10_1002_chem_202400436 crossref_primary_10_3390_nano14070607 crossref_primary_10_1038_s41467_022_32008_6 crossref_primary_10_1063_5_0201725 crossref_primary_10_1103_PhysRevResearch_3_043198 crossref_primary_10_1038_s41567_022_01790_x crossref_primary_10_1364_OE_445743 crossref_primary_10_1038_s41467_021_21293_2 crossref_primary_10_1021_acs_nanolett_0c01983 crossref_primary_10_1021_acs_nanolett_4c00606 crossref_primary_10_1103_PhysRevApplied_10_064037 crossref_primary_10_1002_anie_202406502 crossref_primary_10_1016_j_ccr_2020_213329 crossref_primary_10_1038_s42005_022_00882_7 crossref_primary_10_1021_acs_jpcc_2c04332 crossref_primary_10_1073_pnas_2305755120 crossref_primary_10_1134_S1063776121120098 crossref_primary_10_1103_PhysRevB_108_125401 crossref_primary_10_1103_PhysRevLett_125_107702 crossref_primary_10_1134_S1063776121100022 crossref_primary_10_1103_PhysRevResearch_2_023275 crossref_primary_10_1038_s41586_021_04306_4 crossref_primary_10_1021_acsnano_9b06682 crossref_primary_10_1103_PhysRevB_100_081204 crossref_primary_10_1038_s41699_024_00479_4 crossref_primary_10_1103_PhysRevB_110_085425 crossref_primary_10_1186_s40580_022_00322_w crossref_primary_10_1103_PhysRevB_111_024311 crossref_primary_10_1103_PhysRevB_105_085410 crossref_primary_10_1021_acsnano_4c05978 crossref_primary_10_1103_PhysRevB_107_085419 crossref_primary_10_1088_2516_1075_ad1614 crossref_primary_10_1126_science_adl3521 crossref_primary_10_1103_PhysRevB_111_094413 crossref_primary_10_1002_anie_201805671 crossref_primary_10_1021_acs_nanolett_3c02132 crossref_primary_10_1073_pnas_2304360121 crossref_primary_10_1103_PhysRevResearch_4_L012024 crossref_primary_10_1103_PhysRevB_110_195403 crossref_primary_10_1002_smll_202402139 crossref_primary_10_1088_1367_2630_ab4330 crossref_primary_10_1103_PhysRevB_98_134304 crossref_primary_10_1021_acs_nanolett_3c01851 crossref_primary_10_1038_s41563_024_01814_2 crossref_primary_10_1002_aenm_202302440 crossref_primary_10_1038_s41563_023_01473_9 crossref_primary_10_1021_acs_nanolett_1c04705 crossref_primary_10_1103_PhysRevB_109_L201409 crossref_primary_10_1103_PhysRevB_108_214402 crossref_primary_10_1016_j_mtphys_2021_100548 crossref_primary_10_1088_2040_8986_ac8493 crossref_primary_10_1063_5_0063622 crossref_primary_10_1103_PhysRevB_108_174426 crossref_primary_10_1021_acs_nanolett_4c05408 crossref_primary_10_1103_PhysRevB_99_205410 crossref_primary_10_1021_acsphotonics_2c00850 crossref_primary_10_1038_s41563_024_01880_6 crossref_primary_10_1088_1361_648X_ac4dbd crossref_primary_10_1088_1674_4926_40_7_071903 crossref_primary_10_1021_acs_chemmater_4c00427 crossref_primary_10_1103_PhysRevResearch_1_032007 crossref_primary_10_1038_s41467_021_25547_x crossref_primary_10_1002_adfm_201904734 crossref_primary_10_1103_PhysRevLett_134_026902 crossref_primary_10_1021_acs_nanolett_0c03292 crossref_primary_10_1103_PhysRevB_100_094303 crossref_primary_10_1103_PhysRevB_106_144302 crossref_primary_10_1038_s41467_023_39123_y crossref_primary_10_1103_PhysRevB_100_041301 crossref_primary_10_1021_acs_nanolett_3c00780 crossref_primary_10_1063_5_0207915 crossref_primary_10_1002_advs_202304698 crossref_primary_10_1103_PhysRevB_104_054305 crossref_primary_10_1103_PhysRevB_105_L121302 crossref_primary_10_1103_PhysRevB_108_064510 crossref_primary_10_1002_pssb_201800013 crossref_primary_10_1103_PhysRevB_108_134307 crossref_primary_10_1103_PhysRevResearch_5_L022039 crossref_primary_10_1088_0256_307X_42_2_027405 crossref_primary_10_1126_sciadv_ado2504 crossref_primary_10_3389_fmech_2021_704192 crossref_primary_10_1063_5_0064464 crossref_primary_10_1103_PhysRevLett_132_153801 crossref_primary_10_1103_PhysRevLett_128_066801 crossref_primary_10_1002_pssr_202400060 crossref_primary_10_1103_PhysRevB_103_214302 crossref_primary_10_1038_s42005_020_0289_3 crossref_primary_10_1088_1361_6633_ac97aa crossref_primary_10_1002_inf2_12093 crossref_primary_10_1103_PhysRevLett_130_086701 crossref_primary_10_1002_chir_23544 crossref_primary_10_1016_j_rinp_2024_108023 crossref_primary_10_1103_PhysRevB_105_184412 crossref_primary_10_1038_s41524_024_01440_1 crossref_primary_10_1038_s42254_018_0018_y crossref_primary_10_1039_D4NR00058G crossref_primary_10_1038_s42254_020_00276_0 crossref_primary_10_1103_PhysRevA_106_033711 crossref_primary_10_1103_PhysRevA_107_013702 crossref_primary_10_7566_JPSJ_93_034708 crossref_primary_10_1103_PhysRevB_110_L201405 crossref_primary_10_1002_adma_202402925 crossref_primary_10_1007_s11433_023_2281_x crossref_primary_10_1007_s11426_021_1119_4 crossref_primary_10_1016_j_ymssp_2022_109922 crossref_primary_10_1038_s41563_018_0131_4 crossref_primary_10_1063_5_0186917 crossref_primary_10_1038_s41565_024_01719_w crossref_primary_10_1002_jrs_5746 crossref_primary_10_1515_nanoph_2020_0054 crossref_primary_10_1038_s41586_024_07200_x crossref_primary_10_1103_PhysRevLett_125_245302 crossref_primary_10_1016_j_commatsci_2024_113421 crossref_primary_10_1103_PhysRevB_108_L220304 crossref_primary_10_1002_ange_201805671 crossref_primary_10_1002_pssb_201900445 crossref_primary_10_1103_PhysRevLett_133_046802 crossref_primary_10_1103_PhysRevResearch_4_013129 crossref_primary_10_1021_acs_nanolett_0c05043 crossref_primary_10_1038_s41566_021_00836_5 crossref_primary_10_1088_1361_6528_ac18d9 crossref_primary_10_7566_JPSJ_92_023601 crossref_primary_10_1016_j_progsurf_2022_100664 crossref_primary_10_1038_s41586_023_06016_5 crossref_primary_10_1103_PhysRevB_102_174301 crossref_primary_10_1021_acs_nanolett_1c00236 crossref_primary_10_1002_adom_202201528 crossref_primary_10_1038_s41467_019_10774_0 crossref_primary_10_1103_PhysRevLett_132_236201 crossref_primary_10_1039_D3CP05109A crossref_primary_10_1103_PhysRevB_106_094310 crossref_primary_10_1103_PhysRevB_106_094311 crossref_primary_10_1021_acs_jpclett_2c01034 crossref_primary_10_1038_s41578_023_00620_7 crossref_primary_10_1038_s41586_022_04520_8 crossref_primary_10_1103_PhysRevMaterials_6_124201 crossref_primary_10_1063_4_0000242 crossref_primary_10_1038_s41467_020_16934_x crossref_primary_10_1021_acsnano_1c08286 crossref_primary_10_1038_s41467_022_28965_7 crossref_primary_10_1103_PhysRevLett_129_116401 crossref_primary_10_1063_1_5129025 crossref_primary_10_3390_cryst12030436 crossref_primary_10_1002_adfm_201904784 crossref_primary_10_1103_PhysRevB_97_195444 crossref_primary_10_1103_PhysRevB_105_195431 crossref_primary_10_1103_PhysRevB_103_L100409 crossref_primary_10_1007_s11433_022_1952_3 crossref_primary_10_1038_s41467_021_25499_2 crossref_primary_10_1002_adma_201807742 |
Cites_doi | 10.1038/ncomms3801 10.1021/ar500391x 10.1016/0370-2693(82)90134-4 10.1038/nmat4356 10.1038/ncomms14670 10.1103/PhysRevB.89.205303 10.1038/natrevmats.2016.55 10.1073/pnas.1615503114 10.1038/ncomms9963 10.1103/PhysRevB.87.115418 10.1038/nature06119 10.1103/PhysRevB.84.153402 10.1038/nature13915 10.1016/j.wavemoti.2009.04.002 10.1126/science.aab0239 10.1038/nphoton.2015.104 10.1146/annurev-conmatphys-031016-025225 10.1038/nmat4792 10.1038/ncomms14927 10.1039/C6NR02516A 10.1007/BF00844959 10.1021/acs.nanolett.6b04422 10.1103/PhysRevB.90.161302 10.1103/PhysRevB.91.195411 10.1038/nnano.2012.95 10.1063/1.455427 10.1126/science.1211914 10.1021/acs.nanolett.5b00092 10.1038/nnano.2017.105 10.1103/PhysRevB.90.045422 10.1039/B613962K 10.1103/PhysRevLett.115.115502 10.1109/JQE.1983.1071889 10.1103/PhysRevB.14.1605 10.1039/C6CP07208A 10.1038/nphys3925 10.1103/RevModPhys.84.1045 10.1088/0953-8984/27/18/182201 10.1088/0022-3719/9/11/009 10.1103/RevModPhys.83.407 10.1103/PhysRevB.90.205422 10.1103/PhysRevD.45.1410 10.1103/PhysRevLett.114.097403 10.1016/0022-3697(59)90337-3 10.1103/PhysRevLett.61.2015 |
ContentType | Journal Article |
Copyright | Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works |
Copyright_xml | – notice: Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. – notice: Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works |
CorporateAuthor | Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States) |
CorporateAuthor_xml | – name: Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States) |
DBID | AAYXX CITATION NPM 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 OTOTI |
DOI | 10.1126/science.aar2711 |
DatabaseName | CrossRef PubMed Aluminium Industry Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Solid State and Superconductivity Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic OSTI.GOV |
DatabaseTitle | CrossRef PubMed Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Electronics & Communications Abstracts Ceramic Abstracts Ecology Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Entomology Abstracts Animal Behavior Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | PubMed Materials Research Database CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Biology |
EISSN | 1095-9203 |
EndPage | 582 |
ExternalDocumentID | 1436889 29420291 10_1126_science_aar2711 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --Z -DZ -ET -~X .-4 ..I .55 .DC 08G 0R~ 0WA 123 18M 2FS 2KS 2WC 2XV 34G 36B 39C 3R3 53G 5RE 66. 6OB 6TJ 7X2 7~K 85S 8F7 AABCJ AACGO AAIKC AAMNW AANCE AAWTO AAYXX ABBHK ABCQX ABDBF ABDEX ABDQB ABEFU ABIVO ABJNI ABOCM ABPLY ABPPZ ABQIJ ABTLG ABWJO ABXSQ ABZEH ACBEA ACBEC ACGFO ACGFS ACGOD ACIWK ACMJI ACNCT ACPRK ACQOY ACUHS ADDRP ADMHC ADUKH ADXHL AEGBM AENEX AETEA AEUPB AEXZC AFBNE AFFDN AFFNX AFHKK AFQFN AFRAH AGFXO AGNAY AGSOS AHMBA AIDAL AIDUJ AJGZS ALIPV ALMA_UNASSIGNED_HOLDINGS ALSLI ASPBG AVWKF BKF BLC C45 C51 CITATION CS3 DB2 DCCCD DU5 EBS EJD EMOBN F5P FA8 FEDTE HZ~ I.T IAO IEA IGS IH2 IHR INH INR IOF IOV IPO IPSME IPY ISE JAAYA JBMMH JCF JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST K-O KCC L7B LSO LU7 M0P MQT MVM N9A NEJ NHB O9- OCB OFXIZ OGEVE OMK OVD P-O P2P PQQKQ PZZ QS- RHI RXW SA0 SC5 SJN TAE TEORI TN5 TWZ UBW UCV UHB UKR UMD UNMZH UQL USG VVN WH7 WI4 X7M XJF XZL Y6R YK4 YKV YNT YOJ YR2 YR5 YRY YSQ YV5 YWH YYP YYQ YZZ ZCA ZE2 ~02 ~G0 ~KM ~ZZ NPM 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 0B8 63O 6XO 79B ABPTK ABQIS AFUVZ AGCDD ANJGP B-7 ESX GX1 IGG OK1 OTOTI PK8 PQEST RHF UMP VQA XFK YCJ ZA5 ZKG |
ID | FETCH-LOGICAL-c496t-1ee868ef68ad9cb03eade8da5d86d99d8c8e0188128e3fd805c24afe6de8f7bf3 |
ISSN | 0036-8075 1095-9203 |
IngestDate | Thu May 18 22:26:38 EDT 2023 Mon Jul 21 11:07:06 EDT 2025 Fri Jul 25 10:44:13 EDT 2025 Mon Jul 21 06:08:24 EDT 2025 Tue Jul 01 01:51:12 EDT 2025 Thu Apr 24 23:02:00 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6375 |
Language | English |
License | Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c496t-1ee868ef68ad9cb03eade8da5d86d99d8c8e0188128e3fd805c24afe6de8f7bf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 USDOE USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22). Materials Sciences & Engineering Division AC02-05-CH11231, program KCWF16; AC02-05-CH11231, program KC2203; AC02-05CH11231 |
ORCID | 0000-0002-3272-894X 0000-0001-8392-9752 0000-0001-6108-1404 0000-0002-4059-7783 0000-0001-7892-2812 0000-0003-3376-5352 0000-0003-2186-6615 0000-0003-3639-5625 0000000336395625 0000000183929752 0000000178922812 000000023272894X 0000000333765352 0000000161081404 0000000240597783 0000000321866615 |
OpenAccessLink | https://www.osti.gov/biblio/1436889 |
PMID | 29420291 |
PQID | 1993394420 |
PQPubID | 1256 |
PageCount | 4 |
ParticipantIDs | osti_scitechconnect_1436889 proquest_miscellaneous_2001060884 proquest_journals_1993394420 pubmed_primary_29420291 crossref_primary_10_1126_science_aar2711 crossref_citationtrail_10_1126_science_aar2711 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-02-02 |
PublicationDateYYYYMMDD | 2018-02-02 |
PublicationDate_xml | – month: 02 year: 2018 text: 2018-02-02 day: 02 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Science (American Association for the Advancement of Science) |
PublicationTitleAlternate | Science |
PublicationYear | 2018 |
Publisher | The American Association for the Advancement of Science American Association for the Advancement of Science (AAAS) |
Publisher_xml | – name: The American Association for the Advancement of Science – name: American Association for the Advancement of Science (AAAS) |
References | e_1_3_2_26_2 e_1_3_2_27_2 e_1_3_2_28_2 e_1_3_2_29_2 e_1_3_2_41_2 e_1_3_2_40_2 e_1_3_2_20_2 e_1_3_2_43_2 e_1_3_2_21_2 e_1_3_2_42_2 e_1_3_2_22_2 e_1_3_2_45_2 e_1_3_2_23_2 e_1_3_2_44_2 e_1_3_2_24_2 e_1_3_2_47_2 e_1_3_2_25_2 e_1_3_2_46_2 e_1_3_2_9_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_16_2 e_1_3_2_37_2 e_1_3_2_7_2 e_1_3_2_17_2 e_1_3_2_6_2 e_1_3_2_18_2 e_1_3_2_39_2 e_1_3_2_19_2 e_1_3_2_30_2 e_1_3_2_32_2 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_5_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_4_2 e_1_3_2_12_2 e_1_3_2_33_2 e_1_3_2_3_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_2_2 e_1_3_2_14_2 e_1_3_2_35_2 |
References_xml | – ident: e_1_3_2_7_2 doi: 10.1038/ncomms3801 – ident: e_1_3_2_11_2 doi: 10.1021/ar500391x – ident: e_1_3_2_14_2 doi: 10.1016/0370-2693(82)90134-4 – ident: e_1_3_2_28_2 doi: 10.1038/nmat4356 – ident: e_1_3_2_9_2 doi: 10.1038/ncomms14670 – ident: e_1_3_2_26_2 doi: 10.1103/PhysRevB.89.205303 – ident: e_1_3_2_5_2 doi: 10.1038/natrevmats.2016.55 – ident: e_1_3_2_21_2 doi: 10.1073/pnas.1615503114 – ident: e_1_3_2_33_2 doi: 10.1038/ncomms9963 – ident: e_1_3_2_39_2 doi: 10.1103/PhysRevB.87.115418 – ident: e_1_3_2_10_2 doi: 10.1038/nature06119 – ident: e_1_3_2_44_2 doi: 10.1103/PhysRevB.84.153402 – ident: e_1_3_2_12_2 doi: 10.1038/nature13915 – ident: e_1_3_2_19_2 doi: 10.1016/j.wavemoti.2009.04.002 – ident: e_1_3_2_20_2 doi: 10.1126/science.aab0239 – ident: e_1_3_2_36_2 doi: 10.1038/nphoton.2015.104 – ident: e_1_3_2_2_2 doi: 10.1146/annurev-conmatphys-031016-025225 – ident: e_1_3_2_22_2 doi: 10.1038/nmat4792 – ident: e_1_3_2_25_2 doi: 10.1038/ncomms14927 – ident: e_1_3_2_23_2 doi: 10.1039/C6NR02516A – ident: e_1_3_2_37_2 doi: 10.1007/BF00844959 – ident: e_1_3_2_24_2 doi: 10.1021/acs.nanolett.6b04422 – ident: e_1_3_2_32_2 doi: 10.1103/PhysRevB.90.161302 – ident: e_1_3_2_43_2 doi: 10.1103/PhysRevB.91.195411 – ident: e_1_3_2_8_2 doi: 10.1038/nnano.2012.95 – ident: e_1_3_2_38_2 doi: 10.1063/1.455427 – ident: e_1_3_2_13_2 doi: 10.1126/science.1211914 – ident: e_1_3_2_16_2 doi: 10.1021/acs.nanolett.5b00092 – ident: e_1_3_2_29_2 doi: 10.1038/nnano.2017.105 – ident: e_1_3_2_40_2 doi: 10.1103/PhysRevB.90.045422 – ident: e_1_3_2_42_2 doi: 10.1039/B613962K – ident: e_1_3_2_6_2 doi: 10.1103/PhysRevLett.115.115502 – ident: e_1_3_2_35_2 doi: 10.1109/JQE.1983.1071889 – ident: e_1_3_2_41_2 doi: 10.1103/PhysRevB.14.1605 – ident: e_1_3_2_27_2 doi: 10.1039/C6CP07208A – ident: e_1_3_2_17_2 doi: 10.1038/nphys3925 – ident: e_1_3_2_31_2 doi: 10.1103/RevModPhys.84.1045 – ident: e_1_3_2_46_2 doi: 10.1088/0953-8984/27/18/182201 – ident: e_1_3_2_18_2 doi: 10.1088/0022-3719/9/11/009 – ident: e_1_3_2_4_2 doi: 10.1103/RevModPhys.83.407 – ident: e_1_3_2_45_2 doi: 10.1103/PhysRevB.90.205422 – ident: e_1_3_2_30_2 doi: 10.1103/PhysRevD.45.1410 – ident: e_1_3_2_47_2 doi: 10.1103/PhysRevLett.114.097403 – ident: e_1_3_2_34_2 doi: 10.1016/0022-3697(59)90337-3 – ident: e_1_3_2_3_2 doi: 10.1103/PhysRevLett.61.2015 |
SSID | ssj0009593 |
Score | 2.668433 |
Snippet | Chirality is associated with the breaking of symmetry, often described as left- or right-handed behavior. Such asymmetry can be seen, for example, in the... Chirality reveals symmetry breaking of the fundamental interaction of elementary particles. In condensed matter, for example, the chirality of electrons... A phonon merry-go-roundChirality is associated with the breaking of symmetry, often described as left- or right-handed behavior. Such asymmetry can be seen,... |
SourceID | osti proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 579 |
SubjectTerms | Asymmetry Brillouin zones Broken symmetry Chemical reactions Chemical speciation Chirality Circular dichroism Condensed matter physics Coupling Data processing Dichroism Elementary particles Energy efficiency Hall effect Handedness Information processing Infrared absorption Lattice vibration Lifts Monolayers Phonons Quantum Hall effect Selenides Symmetry Transport phenomena Tungsten Tungsten compounds |
Title | Observation of chiral phonons |
URI | https://www.ncbi.nlm.nih.gov/pubmed/29420291 https://www.proquest.com/docview/1993394420 https://www.proquest.com/docview/2001060884 https://www.osti.gov/biblio/1436889 |
Volume | 359 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLegExIXxMZX2IaCxGEcUiWO49jHDlZNaGyXVipcIsexWSXUojU9wF_Pc_ziZbBJg0tUuXZi-ff8y3vO-yDkXZGZRglFE1s2MmFg9ySS2zJhkmnBYeqUuXjnz-f8dM4-LYpFX8Mdo0vaeqx_3RpX8j-oQhvg6qJk_wHZcFNogN-AL1wBYbjeC-OLOpypdu7hl0sXbu-8zftDOFQ7-x0M6mT4RDMAJvgaTrxHQO8ggMMGpwVfL7fdywooZBsIY-nDO66de5beIX_1Lfmi8M0IzYulWg974llDJjr35MHxY5a6yo409ZRkbmlDTs0xzbcXHp6XxYAkC18-5m_yHpSbNGOlrmiJRHwjTfb5RTWdn51Vs5PF7CHZoWAfAMHtTI4_Hk__zLccJodZnQbxUv0DbigkozUQ693GRqd0zJ6SJ2gtxBMP_S55YFZ75JGvH_pzj-wiQJv4CNOHv39GDgdSEa9t7KUiRql4TubTk9mH0wSLYCSaSd4mmTGCC2O5UI3UdZo7D3fRqKIRvJGyEVoYQAr0NGFy24i00JQpazj0smVt8xdkBLc3r0gM2p9tiqw2smYsh60LhJ2VZQ0qnQa1Xkdk3K9EpTFDvCtU8r3qLEXKK1y6CpcuIkdhwA-fHOXurvtuaV2zS06snReXbsHwzLkQMiIH_YpXuL82lXMtdWHbNI3I2_A3sJ_7pKVWZr3duCKqWcrhTcki8tIjFWZCJQylMnt9j9H75PG1vB-QUXu1NYegbbb1G5Ss33SRf7A |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Observation+of+chiral+phonons&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Zhu%2C+Hanyu&rft.au=Yi%2C+Jun&rft.au=Li%2C+Ming-Yang&rft.au=Xiao%2C+Jun&rft.date=2018-02-02&rft.issn=1095-9203&rft.eissn=1095-9203&rft.volume=359&rft.issue=6375&rft.spage=579&rft_id=info:doi/10.1126%2Fscience.aar2711&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon |