The Universally Conserved Prokaryotic GTPases

Article Usage Stats Services MMBR Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue MMBR About MMBR Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions &...

Full description

Saved in:
Bibliographic Details
Published inMicrobiology and Molecular Biology Reviews Vol. 75; no. 3; pp. 507 - 542
Main Authors Verstraeten, Natalie, Fauvart, Maarten, Versées, Wim, Michiels, Jan
Format Journal Article
LanguageEnglish
Published Washington, DC American Society for Microbiology 01.09.2011
Subjects
Online AccessGet full text
ISSN1092-2172
1098-5557
1098-5557
DOI10.1128/MMBR.00009-11

Cover

Loading…
Abstract Article Usage Stats Services MMBR Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue MMBR About MMBR Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commercial Reprints ASM Journals Public Access Policy MMBR RSS Feeds 1752 N Street N.W. • Washington DC 20036 202.737.3600 • 202.942.9355 fax • journals@asmusa.org Print ISSN: 1092-2172 Online ISSN: 1098-5557 Copyright © 2014 by the American Society for Microbiology.   For an alternate route to MMBR .asm.org, visit: MMBR       
AbstractList Members of the large superclass of P-loop GTPases share a core domain with a conserved three-dimensional structure. In eukaryotes, these proteins are implicated in various crucial cellular processes, including translation, membrane trafficking, cell cycle progression, and membrane signaling. As targets of mutation and toxins, GTPases are involved in the pathogenesis of cancer and infectious diseases. In prokaryotes also, it is hard to overestimate the importance of GTPases in cell physiology. Numerous papers have shed new light on the role of bacterial GTPases in cell cycle regulation, ribosome assembly, the stress response, and other cellular processes. Moreover, bacterial GTPases have been identified as high-potential drug targets. A key paper published over 2 decades ago stated that, "It may never again be possible to capture [GTPases] in a family portrait" (H. R. Bourne, D. A. Sanders, and F. McCormick, Nature 348:125-132, 1990) and indeed, the last 20 years have seen a tremendous increase in publications on the subject. Sequence analysis identified 13 bacterial GTPases that are conserved in at least 75% of all bacterial species. We here provide an overview of these 13 protein subfamilies, covering their cellular functions as well as cellular localization and expression levels, three-dimensional structures, biochemical properties, and gene organization. Conserved roles in eukaryotic homologs will be discussed as well. A comprehensive overview summarizing current knowledge on prokaryotic GTPases will aid in further elucidating the function of these important proteins.Members of the large superclass of P-loop GTPases share a core domain with a conserved three-dimensional structure. In eukaryotes, these proteins are implicated in various crucial cellular processes, including translation, membrane trafficking, cell cycle progression, and membrane signaling. As targets of mutation and toxins, GTPases are involved in the pathogenesis of cancer and infectious diseases. In prokaryotes also, it is hard to overestimate the importance of GTPases in cell physiology. Numerous papers have shed new light on the role of bacterial GTPases in cell cycle regulation, ribosome assembly, the stress response, and other cellular processes. Moreover, bacterial GTPases have been identified as high-potential drug targets. A key paper published over 2 decades ago stated that, "It may never again be possible to capture [GTPases] in a family portrait" (H. R. Bourne, D. A. Sanders, and F. McCormick, Nature 348:125-132, 1990) and indeed, the last 20 years have seen a tremendous increase in publications on the subject. Sequence analysis identified 13 bacterial GTPases that are conserved in at least 75% of all bacterial species. We here provide an overview of these 13 protein subfamilies, covering their cellular functions as well as cellular localization and expression levels, three-dimensional structures, biochemical properties, and gene organization. Conserved roles in eukaryotic homologs will be discussed as well. A comprehensive overview summarizing current knowledge on prokaryotic GTPases will aid in further elucidating the function of these important proteins.
Members of the large superclass of P-loop GTPases share a core domain with a conserved three-dimensional structure. In eukaryotes, these proteins are implicated in various crucial cellular processes, including translation, membrane trafficking, cell cycle progression, and membrane signaling. As targets of mutation and toxins, GTPases are involved in the pathogenesis of cancer and infectious diseases. In prokaryotes also, it is hard to overestimate the importance of GTPases in cell physiology. Numerous papers have shed new light on the role of bacterial GTPases in cell cycle regulation, ribosome assembly, the stress response, and other cellular processes. Moreover, bacterial GTPases have been identified as high-potential drug targets. A key paper published over 2 decades ago stated that, "It may never again be possible to capture [GTPases] in a family portrait" (H. R. Bourne, D. A. Sanders, and F. McCormick, Nature 348:125-132, 1990) and indeed, the last 20 years have seen a tremendous increase in publications on the subject. Sequence analysis identified 13 bacterial GTPases that are conserved in at least 75% of all bacterial species. We here provide an overview of these 13 protein subfamilies, covering their cellular functions as well as cellular localization and expression levels, three-dimensional structures, biochemical properties, and gene organization. Conserved roles in eukaryotic homologs will be discussed as well. A comprehensive overview summarizing current knowledge on prokaryotic GTPases will aid in further elucidating the function of these important proteins.
Article Usage Stats Services MMBR Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue MMBR About MMBR Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commercial Reprints ASM Journals Public Access Policy MMBR RSS Feeds 1752 N Street N.W. • Washington DC 20036 202.737.3600 • 202.942.9355 fax • journals@asmusa.org Print ISSN: 1092-2172 Online ISSN: 1098-5557 Copyright © 2014 by the American Society for Microbiology.   For an alternate route to MMBR .asm.org, visit: MMBR       
Members of the large superclass of P-loop GTPases share a core domain with a conserved three-dimensional structure. In eukaryotes, these proteins are implicated in various crucial cellular processes, including translation, membrane trafficking, cell cycle progression, and membrane signaling. As targets of mutation and toxins, GTPases are involved in the pathogenesis of cancer and infectious diseases. In prokaryotes also, it is hard to overestimate the importance of GTPases in cell physiology. Numerous papers have shed new light on the role of bacterial GTPases in cell cycle regulation, ribosome assembly, the stress response, and other cellular processes. Moreover, bacterial GTPases have been identified as high-potential drug targets. A key paper published over 2 decades ago stated that, “It may never again be possible to capture [GTPases] in a family portrait” (H. R. Bourne, D. A. Sanders, and F. McCormick, Nature 348 :125-132, 1990) and indeed, the last 20 years have seen a tremendous increase in publications on the subject. Sequence analysis identified 13 bacterial GTPases that are conserved in at least 75% of all bacterial species. We here provide an overview of these 13 protein subfamilies, covering their cellular functions as well as cellular localization and expression levels, three-dimensional structures, biochemical properties, and gene organization. Conserved roles in eukaryotic homologs will be discussed as well. A comprehensive overview summarizing current knowledge on prokaryotic GTPases will aid in further elucidating the function of these important proteins.
Members of the large superclass of P-loop GTPases share a core domain with a conserved three-dimensional structure. In eukaryotes, these proteins are implicated in various crucial cellular processes, including translation, membrane trafficking, cell cycle progression, and membrane signaling. As targets of mutation and toxins, GTPases are involved in the pathogenesis of cancer and infectious diseases. In prokaryotes also, it is hard to overestimate the importance of GTPases in cell physiology. Numerous papers have shed new light on the role of bacterial GTPases in cell cycle regulation, ribosome assembly, the stress response, and other cellular processes. Moreover, bacterial GTPases have been identified as high-potential drug targets. A key paper published over 2 decades ago stated that, "It may never again be possible to capture [GTPases] in a family portrait" (H. R. Bourne, D. A. Sanders, and F. McCormick, Nature 348:125-132, 1990) and indeed, the last 20 years have seen a tremendous increase in publications on the subject. Sequence analysis identified 13 bacterial GTPases that are conserved in at least 75% of all bacterial species. We here provide an overview of these 13 protein subfamilies, covering their cellular functions as well as cellular localization and expression levels, three-dimensional structures, biochemical properties, and gene organization. Conserved roles in eukaryotic homologs will be discussed as well. A comprehensive overview summarizing current knowledge on prokaryotic GTPases will aid in further elucidating the function of these important proteins. [PUBLICATION ABSTRACT]
Author Wim Versées
Maarten Fauvart
Jan Michiels
Natalie Verstraeten
Author_xml – sequence: 1
  givenname: Natalie
  surname: Verstraeten
  fullname: Verstraeten, Natalie
  organization: Centre of Microbial and Plant Genetics, K. U. Leuven, Kasteelpark Arenberg 20, 3001 Leuven, Belgium
– sequence: 2
  givenname: Maarten
  surname: Fauvart
  fullname: Fauvart, Maarten
  organization: Centre of Microbial and Plant Genetics, K. U. Leuven, Kasteelpark Arenberg 20, 3001 Leuven, Belgium
– sequence: 3
  givenname: Wim
  surname: Versées
  fullname: Versées, Wim
  organization: Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium, Department of Molecular and Cellular Interactions, VIB, Pleinlaan 2, 1050 Brussels, Belgium
– sequence: 4
  givenname: Jan
  surname: Michiels
  fullname: Michiels, Jan
  organization: Centre of Microbial and Plant Genetics, K. U. Leuven, Kasteelpark Arenberg 20, 3001 Leuven, Belgium
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24504681$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/21885683$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1v1DAQxS1URD_gyBUtSIhTiu3YiX1BoisoSK2o0PY8mjh21yWxi53dqv893u6Wj0r4Yo_8m6c38w7JXojBEvKS0WPGuHp_fn7y_ZiWoyvGnpADRrWqpJTt3v2bV5y1fJ8c5nxdICG1fkb2OVNKNqo-INViaWeXwa9tyjgMd7N5DNmmte1nFyn-wHQXJ29mp4sLzDY_J08dDtm-2N1H5PLzp8X8S3X27fTr_ONZZYRupmKEo9BUojZOtz1KbIRoJVLR9Z1xCo3psGu0Mw0613dtzRqhqHFUMiO5rI_Ih63uzaobbW9smBIOcJP8WBxBRA___gS_hKu4hiIkpeBF4N1OIMWfK5snGH02dhgw2LjKoFQraVurppBvHpHXcZVCmQ6UFpyVHdYFevW3n99GHvZYgLc7ALPBwSUMxuc_nJBUNIoVrt5yJsWck3Vg_ISTj5sx_ACMwiZV2KQK96mWunRVj7oehP_Hv97yS3-1vPXJAuYRxrFL0EqoYTP6L-F7rcs
CODEN MMBRF7
CitedBy_id crossref_primary_10_1016_j_jbc_2023_105163
crossref_primary_10_1093_femsre_fuv049
crossref_primary_10_18632_oncotarget_7224
crossref_primary_10_1128_mbio_00859_23
crossref_primary_10_1111_mmi_14382
crossref_primary_10_18632_oncotarget_6496
crossref_primary_10_18632_aging_102797
crossref_primary_10_1016_j_str_2024_06_016
crossref_primary_10_1017_S0031182018000501
crossref_primary_10_3389_fmicb_2024_1304325
crossref_primary_10_1128_mBio_00703_21
crossref_primary_10_1177_1087057113486001
crossref_primary_10_1093_jxb_ert360
crossref_primary_10_1093_nar_gkad127
crossref_primary_10_1128_mBio_02189_19
crossref_primary_10_1590_1519_6984_250700
crossref_primary_10_1089_ars_2015_6272
crossref_primary_10_1007_s12038_018_9807_9
crossref_primary_10_1093_nar_gku213
crossref_primary_10_1038_nsmb_3103
crossref_primary_10_7554_eLife_37373
crossref_primary_10_1091_mbc_E20_07_0457
crossref_primary_10_3389_fmolb_2023_1263433
crossref_primary_10_1093_gbe_evac079
crossref_primary_10_1016_j_protis_2024_126017
crossref_primary_10_1002_1873_3468_13775
crossref_primary_10_15406_ijmboa_2016_01_00004
crossref_primary_10_1111_febs_14067
crossref_primary_10_1177_15330338241241935
crossref_primary_10_1111_1462_2920_13893
crossref_primary_10_3389_fpls_2014_00386
crossref_primary_10_3390_cells8111313
crossref_primary_10_1002_1873_3468_14516
crossref_primary_10_1073_pnas_1505297112
crossref_primary_10_1080_07391102_2016_1224732
crossref_primary_10_1093_nar_gkaa1131
crossref_primary_10_1016_j_bbamcr_2020_118896
crossref_primary_10_1016_j_ijbiomac_2024_135337
crossref_primary_10_1016_j_dnarep_2013_08_011
crossref_primary_10_1016_j_bbrc_2015_04_079
crossref_primary_10_1111_febs_14333
crossref_primary_10_1111_j_1742_4658_2012_08731_x
crossref_primary_10_1128_mBio_01726_17
crossref_primary_10_1007_s00018_021_03961_0
crossref_primary_10_1371_journal_pone_0148222
crossref_primary_10_1074_jbc_M116_761809
crossref_primary_10_1002_cphc_202401057
crossref_primary_10_1186_s12866_015_0453_1
crossref_primary_10_1016_j_gep_2019_02_002
crossref_primary_10_1016_j_isci_2024_110027
crossref_primary_10_1016_j_molcel_2012_11_025
crossref_primary_10_3390_ijms21010016
crossref_primary_10_1016_j_jsps_2017_05_007
crossref_primary_10_1128_JB_00399_21
crossref_primary_10_1128_JB_00159_16
crossref_primary_10_1021_acscatal_5b02491
crossref_primary_10_1093_nar_gks1351
crossref_primary_10_1128_mBio_02679_21
crossref_primary_10_1371_journal_pone_0092215
crossref_primary_10_1371_journal_pgen_1008059
crossref_primary_10_3390_microorganisms10010014
crossref_primary_10_1080_07391102_2016_1195284
crossref_primary_10_3390_md18070360
crossref_primary_10_1016_j_molcel_2015_05_011
crossref_primary_10_1186_s12896_015_0132_1
crossref_primary_10_1371_journal_pone_0073954
crossref_primary_10_1002_2211_5463_12065
crossref_primary_10_1007_s00239_019_09915_2
crossref_primary_10_1128_mBio_01935_15
crossref_primary_10_1128_mBio_01785_16
crossref_primary_10_1021_acs_chemrev_3c00622
crossref_primary_10_1016_j_bmcl_2023_129276
crossref_primary_10_1016_j_isci_2024_110215
crossref_primary_10_1128_MCB_00137_16
crossref_primary_10_1186_s40168_021_01095_w
crossref_primary_10_1128_AEM_02483_17
crossref_primary_10_1134_S1062359020300019
crossref_primary_10_1038_s41388_018_0647_8
crossref_primary_10_1007_s12275_022_2146_4
crossref_primary_10_1074_jbc_M114_598227
crossref_primary_10_1111_febs_14959
crossref_primary_10_1038_s42003_020_01368_4
crossref_primary_10_1371_journal_pgen_1004363
crossref_primary_10_1021_ja504125v
crossref_primary_10_1371_journal_pone_0100147
crossref_primary_10_1158_1541_7786_MCR_18_0269
crossref_primary_10_1021_acs_biochem_6b00706
crossref_primary_10_1111_mmi_13412
crossref_primary_10_1016_j_molcel_2018_05_003
crossref_primary_10_3389_fmolb_2021_643696
crossref_primary_10_3389_fmicb_2022_999176
crossref_primary_10_1186_s12864_015_1289_7
crossref_primary_10_3389_fpls_2016_00873
crossref_primary_10_3389_fpls_2014_00678
crossref_primary_10_1111_1574_6968_12403
crossref_primary_10_1016_j_bbagrm_2017_06_003
crossref_primary_10_1128_JB_00023_15
crossref_primary_10_1016_j_bbabio_2024_149514
crossref_primary_10_1093_femsre_fuy005
crossref_primary_10_1093_nar_gkt320
crossref_primary_10_1016_j_microb_2025_100261
crossref_primary_10_1128_JB_00192_19
crossref_primary_10_1128_spectrum_02098_22
crossref_primary_10_1098_rstb_2016_0189
crossref_primary_10_1016_j_febslet_2012_06_030
crossref_primary_10_1111_mmi_14332
crossref_primary_10_1128_JB_01758_12
crossref_primary_10_3389_fmicb_2021_781760
crossref_primary_10_1073_pnas_2006717118
crossref_primary_10_1016_j_celrep_2023_112850
crossref_primary_10_1038_s41467_024_53980_1
crossref_primary_10_1083_jcb_201711131
crossref_primary_10_1099_mic_0_001200
crossref_primary_10_1002_bip_22813
crossref_primary_10_1007_s00299_021_02739_9
crossref_primary_10_1038_srep33723
crossref_primary_10_1074_jbc_M112_413070
crossref_primary_10_1038_s42003_024_06737_x
crossref_primary_10_1111_gtc_12942
crossref_primary_10_1007_s00294_018_0905_x
crossref_primary_10_1038_srep13241
crossref_primary_10_1016_j_gim_2023_100893
crossref_primary_10_1111_mmi_14842
crossref_primary_10_1111_ppl_12603
crossref_primary_10_3390_genes11080842
crossref_primary_10_1007_s11103_017_0664_y
crossref_primary_10_1042_BCJ20180803
crossref_primary_10_1038_srep15817
crossref_primary_10_1016_j_scitotenv_2024_173775
crossref_primary_10_1016_j_gene_2023_147436
crossref_primary_10_1016_j_micres_2017_11_016
crossref_primary_10_1371_journal_pone_0194528
crossref_primary_10_1093_plphys_kiac078
crossref_primary_10_1007_s00253_015_6434_3
crossref_primary_10_1093_pcp_pcad082
crossref_primary_10_3390_biology11121738
crossref_primary_10_1016_j_cell_2023_12_027
crossref_primary_10_1016_j_febslet_2015_03_001
crossref_primary_10_1093_nar_gku1135
crossref_primary_10_3389_fmicb_2023_1242616
crossref_primary_10_1042_BJ20121792
crossref_primary_10_3389_fphar_2020_00666
crossref_primary_10_1016_j_iliver_2023_08_007
crossref_primary_10_3389_fmicb_2016_01569
crossref_primary_10_1016_j_bbapap_2017_06_014
crossref_primary_10_1016_j_jmb_2020_01_038
crossref_primary_10_1093_nar_gkw490
crossref_primary_10_1021_bi301600z
crossref_primary_10_1038_s41589_018_0183_4
crossref_primary_10_1016_j_ymeth_2016_12_002
crossref_primary_10_1016_j_molcel_2021_02_006
crossref_primary_10_1186_1471_2180_13_77
crossref_primary_10_3109_1040841X_2013_776510
Cites_doi 10.1128/jb.175.16.5242-5252.1993
10.1128/jb.179.1.170-179.1997
10.1016/S0092-8674(00)00181-1
10.1111/j.1365-2958.2007.05811.x
10.1128/JB.00508-06
10.1002/bip.20762
10.1007/s11103-009-9529-3
10.1074/mcp.M500303-MCP200
10.1016/j.resmic.2004.03.005
10.1515/BC.2009.102
10.1006/jmbi.1993.1371
10.1111/j.1365-2443.2005.00851.x
10.1038/415141a
10.1128/JB.188.3.1205-1210.2006
10.1016/S1046-5928(03)00107-4
10.1111/j.1365-2958.2004.04312.x
10.1111/j.1365-2958.2009.06614.x
10.1128/jb.176.23.7155-7160.1994
10.1073/pnas.87.15.5589
10.1038/385361a0
10.1099/00221287-148-11-3539
10.1073/pnas.0907213106
10.1016/0092-8674(90)90018-A
10.1016/j.bbrc.2004.07.154
10.1094/MPMI-23-1-0067
10.1046/j.1365-2958.1996.01529.x
10.1016/j.resmic.2009.11.002
10.1146/annurev.biochem.73.011303.074048
10.1128/JB.00959-06
10.1107/S1744309106011456
10.1016/j.febslet.2005.09.010
10.1128/jb.161.2.556-562.1985
10.1128/JB.01758-07
10.1046/j.1365-2958.2003.03475.x
10.1128/jb.171.5.2581-2590.1989
10.1111/j.1469-8137.2008.02473.x
10.1128/jb.176.21.6528-6537.1994
10.1046/j.1365-2958.2002.02878.x
10.1099/00221287-147-1-183
10.1006/jmbi.2001.5378
10.1126/science.1062023
10.1046/j.1365-2958.1998.00719.x
10.1111/j.1365-2958.1992.tb00845.x
10.1073/pnas.82.22.7500
10.1093/nar/gkp762
10.1002/prot.22599
10.1038/348125a0
10.1128/JB.00444-06
10.1128/jb.176.1.44-49.1994
10.1073/pnas.0307512101
10.18388/abp.2001_3850
10.1128/JB.181.18.5825-5832.1999
10.1128/JB.181.17.5242-5249.1999
10.1073/pnas.0904032106
10.1016/S0968-0004(99)01429-2
10.1091/mbc.e04-07-0622
10.1128/MMBR.69.1.101-123.2005
10.1080/713803743
10.1016/j.cell.2006.09.037
10.1128/jb.176.23.7161-7168.1994
10.1111/j.1365-2443.2006.01017.x
10.1073/pnas.81.18.5704
10.1371/journal.pbio.1000212
10.1016/j.ymgme.2004.07.009
10.1128/jb.171.3.1362-1371.1989
10.1016/j.tibtech.2006.07.005
10.1128/EC.00356-08
10.1074/jbc.275.6.4251
10.1128/JB.184.19.5323-5329.2002
10.1016/j.ijpara.2008.05.019
10.1261/rna.7470904
10.1046/j.1365-2958.1998.01042.x
10.1016/S0959-440X(97)80157-1
10.1093/genetics/158.1.41
10.1128/MCB.22.21.7701-7711.2002
10.1128/MCB.00946-08
10.1111/j.1365-2958.2004.04354.x
10.1128/JB.182.10.2771-2777.2000
10.1099/mic.0.2008/022137-0
10.1128/jb.177.11.3308-3311.1995
10.1128/jb.173.7.2265-2270.1991
10.1016/S0021-9258(17)39594-7
10.1093/nar/gkq305
10.1093/genetics/145.4.867
10.1073/pnas.96.15.8396
10.1073/pnas.90.22.10866
10.1074/jbc.273.35.22480
10.1046/j.1365-2958.2000.02198.x
10.1006/jmbi.1998.2162
10.1128/AAC.48.3.890-896.2004
10.1128/jb.176.21.6518-6527.1994
10.1016/0923-2508(91)90045-C
10.1126/science.277.5324.333
10.1038/nbt0998-851
10.1016/0165-1110(75)90002-0
10.1099/00221287-148-11-3457
10.1128/JB.185.14.4031-4037.2003
10.1093/jb/mvq039
10.1186/1471-2180-11-43
10.1128/jb.171.9.5017-5024.1989
10.1073/pnas.0801308105
10.1016/0959-440X(95)80015-8
10.1128/IAI.01721-07
10.1128/jb.177.8.2194-2196.1995
10.1128/JB.00799-08
10.1099/00221287-146-5-1071
10.1111/j.1365-2958.2005.04794.x
10.1002/(SICI)1097-0134(199706)28:2<285::AID-PROT15>3.0.CO;2-E
10.1159/000076741
10.1016/j.coph.2006.05.005
10.1046/j.1365-2958.2001.02350.x
10.1046/j.1365-2958.2001.02536.x
10.1177/1087057109352240
10.1038/nrm1589
10.1111/j.1365-2958.2009.06767.x
10.1007/s00284-002-3713-x
10.1046/j.1432-1033.2001.02493.x
10.1093/nar/29.3.638
10.1128/jb.179.20.6426-6431.1997
10.1074/jbc.M109.096131
10.1111/j.1574-6968.1992.tb05356.x
10.1128/JB.185.19.5673-5684.2003
10.1093/emboj/20.17.4794
10.1016/j.jmb.2010.02.036
10.1111/j.1365-2958.1994.tb01009.x
10.1006/jmbi.1997.1134
10.1099/mic.0.26292-0
10.1128/JB.186.2.481-489.2004
10.1186/1471-2180-8-65
10.1016/j.cbpa.2010.06.169
10.1016/S0960-9822(98)70445-2
10.1002/j.1460-2075.1989.tb08504.x
10.1128/IAI.72.10.5783-5790.2004
10.2478/s11658-008-0023-8
10.1074/jbc.273.43.27945
10.1128/JB.00045-10
10.1016/S1369-5274(03)00037-7
10.1074/jbc.M503223200
10.1128/JB.01744-07
10.1006/jmbi.1998.2197
10.1093/nar/gkq973
10.1093/emboj/20.17.4863
10.1002/prot.21186
10.1128/jb.174.5.1544-1553.1992
10.1046/j.1365-2958.2001.02574.x
10.1016/j.cell.2007.05.018
10.1002/ajmg.b.30454
10.1074/jbc.M001854200
10.1073/pnas.83.23.8849
10.1016/S0014-5793(00)02402-9
10.1016/j.tim.2005.11.006
10.1016/j.jmb.2004.01.047
10.1039/b716357f
10.1016/j.jmb.2004.03.043
10.1186/1471-2180-9-266
10.1016/j.molcel.2005.01.012
10.1111/j.1574-6968.1998.tb12867.x
10.1159/000092818
10.1073/pnas.0602585103
10.1128/AEM.01157-07
10.1006/geno.2000.6243
10.1016/j.molcel.2007.08.026
10.1046/j.1365-2443.2001.00480.x
10.1126/science.286.5447.2165
10.1266/ggs.82.281
10.1073/pnas.0907262106
10.1073/pnas.2535394100
10.1093/emboj/cdf656
10.1016/S0300-9084(97)86726-0
10.1093/nar/gkl752
10.1111/j.1574-6968.2007.00860.x
10.1371/journal.pone.0012597
10.1016/j.jmb.2009.07.004
10.1016/j.cub.2006.12.029
10.1016/j.sbi.2005.05.004
10.1073/pnas.0611650104
10.1017/S0033583509990060
10.1111/j.1365-2958.2005.04710.x
10.1093/nar/gkh185
10.1146/annurev.micro.091208.073225
10.1038/385365a0
10.1093/genetics/154.2.523
10.1007/s00203-006-0099-3
10.1016/0300-9084(94)90046-9
10.1038/nature03239
10.1038/nature02250
10.1016/j.bbrc.2005.11.129
10.1099/13500872-145-4-791
10.1046/j.1365-2958.1999.01553.x
10.1016/S0378-1119(96)00813-X
10.1111/j.1365-2958.1994.tb00400.x
10.1007/s00284-007-9030-7
10.1128/MMBR.00013-07
10.1046/j.1432-1033.2003.03813.x
10.1128/JB.02021-07
10.1128/JB.01353-08
10.1016/S0969-2126(02)00882-1
10.1128/JB.181.15.4653-4660.1999
10.1074/jbc.270.9.4822
10.1111/j.1574-6968.1995.tb07432.x
10.1074/jbc.M703894200
10.1101/gad.207701
10.1002/prot.20413
10.1128/JB.01193-07
10.1016/j.bbrc.2008.12.072
10.1371/journal.pone.0009944
10.1128/JB.182.12.3460-3466.2000
10.1631/jzus.B0910009
10.1038/sj.emboj.7601171
10.1038/sj.onc.1206287
10.1016/S0300-9084(96)80004-6
10.1128/JB.182.24.7078-7082.2000
10.1128/JB.00315-07
10.1016/j.ceb.2010.04.007
10.1074/jbc.M110.172080
10.1016/j.jmb.2010.04.040
10.1074/jbc.M700541200
10.1128/jb.174.7.2281-2287.1992
10.1128/jb.178.19.5719-5731.1996
10.1128/jb.173.19.6018-6024.1991
10.1016/S0079-6603(00)66028-2
10.1016/0378-1119(93)90327-Y
10.1038/sj.emboj.7600507
10.1128/IAI.67.9.4510-4516.1999
10.1093/emboj/18.24.7063
10.4161/rna.2.2.1610
10.1107/S0907444903024910
10.1016/S0147-619X(03)00021-0
10.1007/s00018-008-7495-6
10.1093/nar/12.8.3521
10.1016/j.micinf.2005.05.018
10.1128/JB.186.16.5249-5257.2004
10.1007/s00018-008-8416-4
10.1016/S0092-8674(02)00773-0
10.1128/JB.184.10.2692-2698.2002
10.1261/rna.5210803
10.1111/j.1365-2958.2006.05348.x
10.1006/bbrc.1999.1471
10.1093/mp/ssp073
10.1128/JB.180.19.5243-5246.1998
10.1023/B:JNMR.0000013693.80516.57
10.1016/S1097-2765(00)00035-6
10.1128/jb.152.3.1211-1219.1982
10.1016/j.bbamcr.2004.03.009
10.1146/annurev.biochem.70.1.755
10.1016/j.jmb.2008.04.072
10.1093/hmg/7.3.407
10.1093/nar/gkp107
10.1016/S0021-9258(19)39884-9
10.1074/jbc.M409306200
10.1128/JB.184.22.6389-6394.2002
10.1099/mic.0.27421-0
10.1016/S0092-8674(00)81418-X
10.1016/S0969-2126(02)00905-X
10.1016/j.tibs.2009.05.004
10.1128/jb.169.9.4076-4085.1987
10.1021/bi901074h
10.2174/138920207780368141
10.1074/jbc.M301381200
10.1111/j.1365-2958.1991.tb00770.x
10.1039/b905518p
10.1016/S0300-9084(99)00207-2
10.1038/nrm2689
10.1111/j.1365-2958.2006.05574.x
10.1111/j.1574-6968.1996.tb08025.x
10.1110/ps.072900907
10.1128/AEM.01523-08
10.1038/349117a0
10.1128/JB.182.23.6819-6823.2000
10.1006/geno.1993.1230
10.1042/BJ20100757
10.1006/jmbi.1998.2196
10.1107/S1744309109013591
10.1046/j.1365-2958.2001.02285.x
10.1128/JB.183.7.2316-2321.2001
10.1016/j.pep.2011.02.009
10.1016/j.jmb.2004.05.029
10.1016/j.febslet.2004.11.049
10.1016/j.str.2009.03.013
10.1016/j.jmb.2009.11.026
10.1016/S0014-5793(00)01145-5
10.1128/jb.179.14.4575-4582.1997
10.1128/jb.179.7.2181-2188.1997
10.1074/jbc.M104455200
10.1093/nar/27.19.3821
10.1007/BF00330746
10.1016/j.molcel.2005.03.028
10.1128/JB.01213-06
10.1093/nar/gkl1158
ContentType Journal Article
Copyright 2015 INIST-CNRS
Copyright American Society for Microbiology Sep 2011
Copyright © 2011, American Society for Microbiology. All Rights Reserved. 2011 American Society for Microbiology
Copyright_xml – notice: 2015 INIST-CNRS
– notice: Copyright American Society for Microbiology Sep 2011
– notice: Copyright © 2011, American Society for Microbiology. All Rights Reserved. 2011 American Society for Microbiology
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QP
7QR
7TK
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1128/MMBR.00009-11
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Technology Research Database
Nucleic Acids Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE


Virology and AIDS Abstracts
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1098-5557
EndPage 542
ExternalDocumentID PMC3165542
2469346171
21885683
24504681
10_1128_MMBR_00009_11
mmbr_75_3_507
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
Feature
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
186
18M
1KJ
29M
2KS
2WC
39C
3O-
4.4
53G
5RE
5VS
6TJ
85S
9M8
AAGFI
AAIKC
AAMNW
AAYJJ
AAYXX
ABPPZ
ACGFO
ACGOD
ACIWK
ACNCT
ACPRK
ADBBV
AENEX
AFFNX
AFRAH
AGHSJ
AGVNZ
AIDAL
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BKOMP
BTFSW
C1A
CITATION
CJ0
CS3
D0L
DIK
DU5
E3Z
EBS
EJD
F5P
GX1
H13
HF~
HYE
HZ~
H~9
KQ8
L7B
MVM
NEJ
NHB
O9-
OHT
OMK
P2P
PQQKQ
RHI
RNS
RPM
RSF
RXW
TAE
TR2
UKR
VQP
W8F
WH7
WHG
WOQ
X7M
YNT
YQT
ZGI
ZXP
~02
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QP
7QR
7TK
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c496t-112a4905a9cf97da5a64475a04bdbcf8accbab69fc6affdb7316480cf051c5253
ISSN 1092-2172
1098-5557
IngestDate Thu Aug 21 18:10:10 EDT 2025
Fri Jul 11 16:13:46 EDT 2025
Mon Jun 30 10:37:02 EDT 2025
Mon Jul 21 06:03:07 EDT 2025
Mon Jul 21 09:13:13 EDT 2025
Tue Jul 01 04:14:25 EDT 2025
Thu Apr 24 22:57:56 EDT 2025
Wed May 18 15:25:43 EDT 2016
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords dGTPase
Hydrolases
Esterases
Review
Enzyme
Triphosphoric monoester hydrolases
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c496t-112a4905a9cf97da5a64475a04bdbcf8accbab69fc6affdb7316480cf051c5253
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
PMID 21885683
PQID 894211093
PQPubID 42367
PageCount 36
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3165542
crossref_citationtrail_10_1128_MMBR_00009_11
pubmed_primary_21885683
highwire_asm_mmbr_75_3_507
crossref_primary_10_1128_MMBR_00009_11
pascalfrancis_primary_24504681
proquest_journals_894211093
proquest_miscellaneous_887507386
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-09-01
PublicationDateYYYYMMDD 2011-09-01
PublicationDate_xml – month: 09
  year: 2011
  text: 2011-09-01
  day: 01
PublicationDecade 2010
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
– name: United States
– name: Washington
– name: 1752 N St., N.W., Washington, DC
PublicationTitle Microbiology and Molecular Biology Reviews
PublicationTitleAlternate Microbiol Mol Biol Rev
PublicationYear 2011
Publisher American Society for Microbiology
Publisher_xml – name: American Society for Microbiology
References e_1_3_2_232_2
e_1_3_2_255_2
e_1_3_2_278_2
e_1_3_2_195_2
e_1_3_2_217_2
e_1_3_2_172_2
e_1_3_2_62_2
e_1_3_2_85_2
e_1_3_2_24_2
e_1_3_2_47_2
e_1_3_2_100_2
e_1_3_2_123_2
e_1_3_2_146_2
e_1_3_2_169_2
e_1_3_2_281_2
e_1_3_2_108_2
e_1_3_2_220_2
e_1_3_2_243_2
e_1_3_2_266_2
e_1_3_2_289_2
e_1_3_2_7_2
e_1_3_2_161_2
e_1_3_2_184_2
e_1_3_2_228_2
e_1_3_2_73_2
e_1_3_2_205_2
e_1_3_2_12_2
e_1_3_2_58_2
e_1_3_2_96_2
e_1_3_2_35_2
e_1_3_2_112_2
e_1_3_2_135_2
e_1_3_2_158_2
e_1_3_2_50_2
e_1_3_2_196_2
e_1_3_2_292_2
e_1_3_2_48_2
e_1_3_2_210_2
e_1_3_2_256_2
e_1_3_2_279_2
e_1_3_2_194_2
e_1_3_2_233_2
e_1_3_2_40_2
e_1_3_2_86_2
e_1_3_2_218_2
e_1_3_2_63_2
e_1_3_2_25_2
e_1_3_2_145_2
e_1_3_2_168_2
e_1_3_2_122_2
e_1_3_2_282_2
e_1_3_2_107_2
e_1_3_2_221_2
e_1_3_2_267_2
e_1_3_2_59_2
e_1_3_2_6_2
e_1_3_2_244_2
e_1_3_2_206_2
e_1_3_2_229_2
e_1_3_2_183_2
e_1_3_2_51_2
e_1_3_2_74_2
e_1_3_2_160_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_97_2
e_1_3_2_134_2
e_1_3_2_157_2
e_1_3_2_111_2
e_1_3_2_270_2
e_1_3_2_293_2
e_1_3_2_119_2
Polkinghorne A. (e_1_3_2_207_2) 2011
e_1_3_2_257_2
e_1_3_2_211_2
e_1_3_2_234_2
e_1_3_2_151_2
e_1_3_2_22_2
e_1_3_2_45_2
e_1_3_2_68_2
e_1_3_2_219_2
e_1_3_2_125_2
e_1_3_2_148_2
e_1_3_2_60_2
e_1_3_2_83_2
e_1_3_2_102_2
e_1_3_2_163_2
e_1_3_2_186_2
e_1_3_2_260_2
e_1_3_2_283_2
e_1_3_2_268_2
e_1_3_2_18_2
e_1_3_2_222_2
e_1_3_2_245_2
e_1_3_2_140_2
e_1_3_2_10_2
e_1_3_2_5_2
e_1_3_2_33_2
e_1_3_2_79_2
e_1_3_2_56_2
e_1_3_2_114_2
e_1_3_2_137_2
e_1_3_2_94_2
e_1_3_2_71_2
e_1_3_2_152_2
e_1_3_2_175_2
e_1_3_2_294_2
e_1_3_2_198_2
e_1_3_2_271_2
March P. E. (e_1_3_2_171_2) 1988; 2
e_1_3_2_258_2
e_1_3_2_235_2
e_1_3_2_273_2
e_1_3_2_212_2
e_1_3_2_150_2
e_1_3_2_173_2
e_1_3_2_84_2
e_1_3_2_23_2
e_1_3_2_69_2
e_1_3_2_46_2
e_1_3_2_124_2
e_1_3_2_147_2
e_1_3_2_61_2
e_1_3_2_101_2
e_1_3_2_185_2
e_1_3_2_109_2
e_1_3_2_261_2
e_1_3_2_269_2
e_1_3_2_19_2
e_1_3_2_246_2
e_1_3_2_284_2
e_1_3_2_200_2
e_1_3_2_223_2
e_1_3_2_162_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_57_2
e_1_3_2_95_2
e_1_3_2_4_2
e_1_3_2_208_2
e_1_3_2_113_2
e_1_3_2_159_2
e_1_3_2_136_2
e_1_3_2_72_2
e_1_3_2_174_2
e_1_3_2_197_2
e_1_3_2_272_2
e_1_3_2_28_2
e_1_3_2_191_2
e_1_3_2_213_2
e_1_3_2_236_2
e_1_3_2_251_2
e_1_3_2_274_2
e_1_3_2_20_2
e_1_3_2_43_2
e_1_3_2_259_2
e_1_3_2_66_2
e_1_3_2_89_2
e_1_3_2_104_2
e_1_3_2_142_2
e_1_3_2_165_2
e_1_3_2_188_2
e_1_3_2_81_2
e_1_3_2_127_2
e_1_3_2_16_2
e_1_3_2_39_2
Garcia C. (e_1_3_2_87_2) 2010; 63
e_1_3_2_224_2
e_1_3_2_247_2
e_1_3_2_262_2
e_1_3_2_285_2
e_1_3_2_201_2
e_1_3_2_54_2
e_1_3_2_31_2
e_1_3_2_180_2
e_1_3_2_3_2
e_1_3_2_77_2
e_1_3_2_209_2
e_1_3_2_92_2
e_1_3_2_131_2
e_1_3_2_154_2
e_1_3_2_177_2
e_1_3_2_250_2
e_1_3_2_116_2
e_1_3_2_139_2
e_1_3_2_190_2
e_1_3_2_29_2
e_1_3_2_214_2
e_1_3_2_252_2
e_1_3_2_275_2
e_1_3_2_21_2
e_1_3_2_237_2
e_1_3_2_44_2
e_1_3_2_67_2
e_1_3_2_126_2
e_1_3_2_82_2
e_1_3_2_103_2
e_1_3_2_141_2
e_1_3_2_187_2
e_1_3_2_164_2
e_1_3_2_149_2
e_1_3_2_17_2
e_1_3_2_240_2
e_1_3_2_202_2
e_1_3_2_225_2
e_1_3_2_263_2
e_1_3_2_286_2
e_1_3_2_32_2
e_1_3_2_248_2
e_1_3_2_55_2
e_1_3_2_78_2
e_1_3_2_2_2
e_1_3_2_93_2
e_1_3_2_115_2
e_1_3_2_130_2
e_1_3_2_176_2
e_1_3_2_70_2
e_1_3_2_153_2
e_1_3_2_199_2
e_1_3_2_138_2
Wu H. (e_1_3_2_277_2) 2010; 78
e_1_3_2_26_2
e_1_3_2_49_2
e_1_3_2_230_2
e_1_3_2_193_2
e_1_3_2_253_2
e_1_3_2_276_2
e_1_3_2_41_2
e_1_3_2_64_2
e_1_3_2_215_2
e_1_3_2_238_2
e_1_3_2_170_2
e_1_3_2_167_2
e_1_3_2_121_2
e_1_3_2_144_2
e_1_3_2_106_2
e_1_3_2_129_2
e_1_3_2_9_2
e_1_3_2_37_2
e_1_3_2_241_2
e_1_3_2_203_2
e_1_3_2_264_2
e_1_3_2_287_2
e_1_3_2_75_2
e_1_3_2_182_2
e_1_3_2_249_2
e_1_3_2_52_2
e_1_3_2_226_2
e_1_3_2_14_2
e_1_3_2_98_2
e_1_3_2_156_2
e_1_3_2_179_2
e_1_3_2_110_2
e_1_3_2_133_2
e_1_3_2_90_2
e_1_3_2_290_2
e_1_3_2_118_2
e_1_3_2_27_2
e_1_3_2_231_2
e_1_3_2_192_2
e_1_3_2_254_2
e_1_3_2_65_2
e_1_3_2_239_2
e_1_3_2_42_2
e_1_3_2_216_2
e_1_3_2_88_2
e_1_3_2_189_2
e_1_3_2_120_2
e_1_3_2_166_2
e_1_3_2_80_2
e_1_3_2_143_2
e_1_3_2_280_2
e_1_3_2_105_2
e_1_3_2_128_2
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_242_2
e_1_3_2_288_2
e_1_3_2_265_2
e_1_3_2_30_2
e_1_3_2_53_2
e_1_3_2_76_2
e_1_3_2_99_2
e_1_3_2_204_2
e_1_3_2_227_2
e_1_3_2_181_2
e_1_3_2_91_2
e_1_3_2_178_2
e_1_3_2_155_2
e_1_3_2_132_2
e_1_3_2_291_2
e_1_3_2_117_2
10675533 - FEBS Lett. 2000 Feb 11;467(2-3):175-8
16343907 - Trends Microbiol. 2006 Jan;14(1):45-54
19995735 - Mol Plant. 2009 Nov;2(6):1373-83
20008126 - J Biomol Screen. 2010 Jan;15(1):10-20
7876255 - J Biol Chem. 1995 Mar 3;270(9):4822-39
10591650 - Science. 1999 Dec 10;286(5447):2165-9
15136032 - J Mol Biol. 2004 May 28;339(2):265-78
7961486 - J Bacteriol. 1994 Dec;176(23):7155-60
10464193 - J Bacteriol. 1999 Sep;181(17):5242-9
1551846 - J Bacteriol. 1992 Apr;174(7):2281-7
19958140 - Mol Plant Microbe Interact. 2010 Jan;23(1):67-81
20598937 - Curr Opin Chem Biol. 2010 Aug;14(4):481-8
16825789 - J Mol Microbiol Biotechnol. 2006;11(1-2):41-52
19181811 - J Bacteriol. 2009 Apr;191(7):2307-14
1898771 - Nature. 1991 Jan 10;349(6305):117-27
20188109 - J Mol Biol. 2010 Apr 23;398(1):1-7
12110181 - Cell. 2002 Jun 28;109(7):835-48
2105934 - J Biol Chem. 1990 Feb 15;265(5):2888-95
11244072 - J Bacteriol. 2001 Apr;183(7):2316-21
19246542 - Nucleic Acids Res. 2009 Apr;37(7):2359-70
2199064 - Cell. 1990 Aug 10;62(3):539-48
2999765 - Proc Natl Acad Sci U S A. 1985 Nov;82(22):7500-4
8824618 - J Bacteriol. 1996 Oct;178(19):5719-31
14684918 - Acta Crystallogr D Biol Crystallogr. 2004 Jan;60(Pt 1):166-8
17015655 - J Bacteriol. 2006 Oct;188(20):7165-75
2838786 - Oncogene. 1988 Jun;2(6):539-44
19407389 - Acta Crystallogr Sect F Struct Biol Cryst Commun. 2009 May 1;65(Pt 5):508-11
16284124 - Mol Cell Proteomics. 2006 Feb;5(2):366-78
10431174 - Trends Biochem Sci. 1999 Aug;24(8):306-11
11387344 - J Biol Chem. 2001 Aug 17;276(33):31415-21
17062623 - Nucleic Acids Res. 2006;34(20):5892-905
19220752 - Mol Microbiol. 2009 Mar;71(6):1435-50
11231024 - FEBS Lett. 2001 Jan 26;489(1):108-11
12753192 - Mol Microbiol. 2003 May;48(4):1005-16
19806182 - PLoS Biol. 2009 Oct;7(10):e1000212
20353943 - J Biol Chem. 2010 May 28;285(22):16991-7000
7721709 - J Bacteriol. 1995 Apr;177(8):2194-6
7984093 - Mol Microbiol. 1994 Jul;13(1):35-49
16269262 - Microbes Infect. 2006 Jan;8(1):61-72
19636801 - Plant Mol Biol. 2009 Nov;71(4-5):379-90
17651431 - FEMS Microbiol Lett. 2007 Oct;275(1):8-15
2527846 - J Bacteriol. 1989 Sep;171(9):5017-24
9826502 - J Mol Biol. 1998 Dec 4;284(3):609-20
9219684 - Science. 1997 Jul 18;277(5324):333-8
12618759 - Oncogene. 2003 Mar 6;22(9):1340-8
10601028 - EMBO J. 1999 Dec 15;18(24):7063-76
1917835 - J Bacteriol. 1991 Oct;173(19):6018-24
11092873 - J Bacteriol. 2000 Dec;182(24):7078-82
15546656 - Biochim Biophys Acta. 2004 Nov 11;1694(1-3):37-53
10411886 - Proc Natl Acad Sci U S A. 1999 Jul 20;96(15):8396-401
17804668 - Microbiol Mol Biol Rev. 2007 Sep;71(3):477-94
14982780 - Antimicrob Agents Chemother. 2004 Mar;48(3):890-6
18660847 - Curr Genomics. 2007 Apr;8(2):129-36
9002524 - Nature. 1997 Jan 23;385(6614):361-4
14673075 - Proc Natl Acad Sci U S A. 2003 Dec 23;100(26):15971-6
7729673 - FEMS Microbiol Lett. 1995 Mar 1;126(3):291-8
15325267 - Biochem Biophys Res Commun. 2004 Sep 17;322(2):565-9
11967071 - Mol Microbiol. 2002 Apr;44(1):89-105
15836769 - Genes Cells. 2005 May;10(5):393-408
18362332 - Proc Natl Acad Sci U S A. 2008 Mar 25;105(12):4673-8
17578452 - Mol Microbiol. 2007 Jul;65(2):569-81
11251813 - Mol Microbiol. 2001 Feb;39(4):924-34
19591841 - J Mol Biol. 2009 Oct 2;392(4):910-22
17613524 - J Biol Chem. 2007 Aug 31;282(35):25270-7
17272300 - Nucleic Acids Res. 2007;35(6):e37
9079902 - J Bacteriol. 1997 Apr;179(7):2181-8
7961487 - J Bacteriol. 1994 Dec;176(23):7161-8
21354313 - Protein Expr Purif. 2011 Jul;78(1):102-12
18213444 - Cell Mol Life Sci. 2008 May;65(9):1335-46
1526446 - FEMS Microbiol Lett. 1992 Aug 15;74(2-3):137-42
20172997 - J Bacteriol. 2010 Apr;192(8):2277-83
14715921 - Nucleic Acids Res. 2004;32(1):223-38
9515700 - Mol Microbiol. 1998 Feb;27(4):739-50
10456893 - Infect Immun. 1999 Sep;67(9):4510-6
20021644 - BMC Microbiol. 2009;9:266
2537815 - J Bacteriol. 1989 Mar;171(3):1362-71
1925028 - Res Microbiol. 1991 Feb-Apr;142(2-3):301-7
15583165 - Microbiology. 2004 Dec;150(Pt 12):4125-36
17514744 - Biopolymers. 2007 Sep;87(1):1-11
15922593 - Curr Opin Struct Biol. 2005 Jun;15(3):349-54
10527840 - Biochem Biophys Res Commun. 1999 Oct 14;264(1):51-4
3097637 - Proc Natl Acad Sci U S A. 1986 Dec;83(23):8849-53
17132941 - RNA Biol. 2005 Apr;2(2):41-4
16518617 - Arch Microbiol. 2006 Jun;185(5):340-7
1537799 - J Bacteriol. 1992 Mar;174(5):1544-53
2540151 - J Bacteriol. 1989 May;171(5):2581-90
11916378 - J Mol Biol. 2002 Mar 15;317(1):41-72
15292126 - J Bacteriol. 2004 Aug;186(16):5249-57
15509579 - J Biol Chem. 2005 Jan 14;280(2):1613-24
9743119 - Nat Biotechnol. 1998 Sep;16(9):851-6
21352546 - BMC Microbiol. 2011;11:43
20434458 - J Mol Biol. 2010 Jun 25;399(5):759-72
18437264 - Mol Biosyst. 2008 Mar;4(3):213-22
19448108 - Eukaryot Cell. 2009 Jul;8(7):1061-71
12456664 - EMBO J. 2002 Dec 2;21(23):6581-9
15866174 - Mol Cell. 2005 Apr 29;18(3):319-29
8392589 - J Mol Biol. 1993 Jul 5;232(1):79-88
18223068 - J Bacteriol. 2008 Apr;190(7):2537-45
11733036 - Genes Cells. 2001 Nov;6(11):987-1001
9188744 - Proteins. 1997 Jun;28(2):285-8
10220158 - Microbiology. 1999 Apr;145 ( Pt 4):791-800
11544186 - Genes Dev. 2001 Sep 1;15(17):2295-306
10852878 - J Bacteriol. 2000 Jun;182(12):3460-6
15128949 - Proc Natl Acad Sci U S A. 2004 May 18;101(20):7618-23
15591131 - Mol Biol Cell. 2005 Feb;16(2):954-63
7748952 - Biochimie. 1994;76(12):1168-77
1901053 - J Bacteriol. 1991 Apr;173(7):2265-70
19767610 - Nucleic Acids Res. 2009 Nov;37(21):7177-93
11114334 - Cell. 2000 Nov 22;103(5):781-92
8919456 - FEMS Microbiol Lett. 1996 Feb 1;136(1):57-62
17909889 - Curr Microbiol. 2008 Jan;56(1):14-20
20830302 - PLoS One. 2010;5(9):e12597
20604745 - Biochem J. 2010 Sep 15;430(3):551-8
10945472 - Genomics. 2000 Jul 1;67(1):78-82
17921262 - Appl Environ Microbiol. 2007 Dec;73(23):7789-92
7686882 - Genomics. 1993 Jun;16(3):551-61
9712873 - J Biol Chem. 1998 Aug 28;273(35):22480-9
18957606 - Microbiology. 2008 Nov;154(Pt 11):3537-46
8248183 - Proc Natl Acad Sci U S A. 1993 Nov 15;90(22):10866-70
9226268 - J Bacteriol. 1997 Jul;179(14):4575-82
6148751 - Proc Natl Acad Sci U S A. 1984 Sep;81(18):5704-8
14702318 - J Bacteriol. 2004 Jan;186(2):481-9
8749370 - Curr Opin Struct Biol. 1995 Dec;5(6):810-7
17110332 - Cell. 2006 Nov 17;127(4):721-33
20376346 - PLoS One. 2010;5(4):e9944
19555460 - Mol Microbiol. 2009 Jul;73(2):253-66
10655208 - Genetics. 2000 Feb;154(2):523-32
18565343 - J Mol Biol. 2008 Jul 11;380(3):532-47
12370316 - Mol Cell Biol. 2002 Nov;22(21):7701-11
10781545 - J Bacteriol. 2000 May;182(10):2771-7
11160884 - Nucleic Acids Res. 2001 Feb 1;29(3):638-43
12855728 - Microbiology. 2003 Jul;149(Pt 7):1763-70
11995995 - Acta Biochim Pol. 2001;48(4):829-50
8981995 - J Bacteriol. 1997 Jan;179(1):170-9
1640828 - Mol Microbiol. 1992 May;6(10):1253-7
11532950 - EMBO J. 2001 Sep 3;20(17):4863-73
6427754 - Nucleic Acids Res. 1984 Apr 25;12(8):3521-34
15738986 - Nat Rev Mol Cell Biol. 2005 Mar;6(3):197-208
2987248 - J Biol Chem. 1985 Jun 25;260(12):7206-13
15313254 - Res Microbiol. 2004 Sep;155(7):543-52
17981968 - J Bacteriol. 2008 Jan;190(2):681-90
8462872 - Gene. 1993 Mar 30;125(2):191-3
19424291 - Nat Rev Mol Cell Biol. 2009 Jun;10(6):423-9
17616600 - J Bacteriol. 2007 Sep;189(17):6140-7
12427945 - Microbiology. 2002 Nov;148(Pt 11):3539-52
19429554 - Appl Environ Microbiol. 2009 Jul;75(13):4419-26
15721258 - Mol Cell. 2005 Feb 18;17(4):549-60
20400571 - J Biochem. 2010 Jul;148(1):103-13
17905831 - Protein Sci. 2007 Nov;16(11):2391-402
9150881 - Biochimie. 1996;78(11-12):1025-34
2122258 - Nature. 1990 Nov 8;348(6297):125-32
9466997 - Hum Mol Genet. 1998 Mar;7(3):407-14
9161408 - Gene. 1997 Apr 11;189(1):31-4
1906969 - Mol Microbiol. 1991 Apr;5(4):951-7
18423011 - BMC Microbiol. 2008;8:65
19841256 - Proc Natl Acad Sci U S A. 2009 Oct 27;106(43):18183-8
15044829 - J Mol Microbiol Biotechnol. 2003;6(2):109-26
12402086 - Curr Microbiol. 2002 Dec;45(6):440-5
765790 - Mutat Res. 1975;32(2):115-32
11160812 - Microbiology. 2001 Jan;147(Pt 1):183-91
7961402 - J Bacteriol. 1994 Nov;176(21):6518-27
9434906 - Curr Opin Struct Biol. 1997 Dec;7(6):849-56
15726588 - Proteins. 2005 May 1;59(2):332-8
20466531 - Curr Opin Cell Biol. 2010 Aug;22(4):461-70
11327306 - IUBMB Life. 2000 Dec;50(6):347-54
12756333 - RNA. 2003 Jun;9(6):760-8
19086295 - New Phytol. 2008 Jul;179(2):530-45
7961403 - J Bacteriol. 1994 Nov;176(21):6528-37
11976298 - J Bacteriol. 2002 May;184(10):2692-8
16997968 - J Bacteriol. 2006 Dec;188(23):8252-8
10983982 - Mol Cell. 2000 Aug;6(2):349-60
11532943 - EMBO J. 2001 Sep 3;20(17):4794-802
14519129 - Eur J Biochem. 2003 Oct;270(20):4164-72
12427937 - Microbiology. 2002 Nov;148(Pt 11):3457-66
9002525 - Nature. 1997 Jan 23;385(6614):365-8
19706445 - Proc Natl Acad Sci U S A. 2009 Sep 1;106(35):14843-8
21195156 - Microb Pathog. 2011 Mar-Apr;50(3-4):200-6
16343434 - Biochem Biophys Res Commun. 2006 Jan 27;339(4):1165-70
11683880 - Eur J Biochem. 2001 Nov;268(21):5570-7
12730230 - J Biol Chem. 2003 Aug 1;278(31):28378-87
3162077 - Mol Gen Genet. 1985;199(3):381-7
19109926 - Biochem Biophys Res Commun. 2009 Feb 6;379(2):201-5
17307049 - Curr Biol. 2007 Feb 20;17(4):R136-9
14724630 - Nature. 2004 Jan 15;427(6971):215-21
11333217 - Genetics. 2001 May;158(1):41-64
10481021 - Nucleic Acids Res. 1999 Oct 1;27(19):3821-35
10572302 - Biochimie. 1999 Aug-Sep;81(8-9):889-95
17238926 - Mol Microbiol. 2007 Feb;63(4):941-50
15019792 - J Mol Biol. 2004 Mar 26;337(3):761-70
11073929 - J Bacteriol. 2000 Dec;182(23):6819-23
9811540 - J Mol Biol. 1998 Nov 20;284(1):33-42
6183253 - J Bacteriol. 1982 Dec;152(3):1211-9
10510227 - Mol Microbiol. 1999 Sep;33(6):1118-31
10419966 - J Bacteriol. 1999 Aug;181(15):4653-60
15542390 - Mol Genet Metab. 2004 Nov;83(3):199-206
11489118 - Mol Microbiol. 2001 Jul;41(2):289-97
17143896 - Proteins. 2007 Feb 15;66(3):726-39
15554976 - Mol Microbiol. 2004 Dec;54(5):1379-92
16428430 - J Bacteriol. 2006 Feb;188(3):1205-10
10832634 - Microbiology. 2000 May;146 ( Pt 5):1071-83
18689482 - J Bacteriol. 2008 Oct;190(20):6625-35
16963571 - J Bacteriol. 2006 Nov;188(22):7992-6
13129938 - J Bacteriol. 2003 Oct;185(19):5673-84
10482526 - J Bacteriol. 1999 Sep;181(18):5825-32
11805826 - Nature. 2002 Jan 10;415(6868):141-7
12399511 - J Bacteriol. 20
References_xml – ident: e_1_3_2_56_2
  doi: 10.1128/jb.175.16.5242-5252.1993
– ident: e_1_3_2_197_2
  doi: 10.1128/jb.179.1.170-179.1997
– ident: e_1_3_2_216_2
  doi: 10.1016/S0092-8674(00)00181-1
– ident: e_1_3_2_83_2
  doi: 10.1111/j.1365-2958.2007.05811.x
– ident: e_1_3_2_272_2
  doi: 10.1128/JB.00508-06
– ident: e_1_3_2_133_2
  doi: 10.1002/bip.20762
– ident: e_1_3_2_15_2
  doi: 10.1007/s11103-009-9529-3
– ident: e_1_3_2_101_2
  doi: 10.1074/mcp.M500303-MCP200
– ident: e_1_3_2_8_2
  doi: 10.1016/j.resmic.2004.03.005
– ident: e_1_3_2_100_2
  doi: 10.1515/BC.2009.102
– ident: e_1_3_2_70_2
  doi: 10.1006/jmbi.1993.1371
– ident: e_1_3_2_219_2
  doi: 10.1111/j.1365-2443.2005.00851.x
– ident: e_1_3_2_89_2
  doi: 10.1038/415141a
– ident: e_1_3_2_238_2
  doi: 10.1128/JB.188.3.1205-1210.2006
– ident: e_1_3_2_153_2
  doi: 10.1016/S1046-5928(03)00107-4
– ident: e_1_3_2_97_2
  doi: 10.1111/j.1365-2958.2004.04312.x
– ident: e_1_3_2_223_2
  doi: 10.1111/j.1365-2958.2009.06614.x
– ident: e_1_3_2_140_2
  doi: 10.1128/jb.176.23.7155-7160.1994
– ident: e_1_3_2_266_2
  doi: 10.1073/pnas.87.15.5589
– ident: e_1_3_2_85_2
  doi: 10.1038/385361a0
– ident: e_1_3_2_189_2
  doi: 10.1099/00221287-148-11-3539
– ident: e_1_3_2_288_2
  doi: 10.1073/pnas.0907213106
– ident: e_1_3_2_142_2
  doi: 10.1016/0092-8674(90)90018-A
– ident: e_1_3_2_290_2
  doi: 10.1016/j.bbrc.2004.07.154
– ident: e_1_3_2_107_2
  doi: 10.1094/MPMI-23-1-0067
– ident: e_1_3_2_173_2
  doi: 10.1046/j.1365-2958.1996.01529.x
– ident: e_1_3_2_242_2
  doi: 10.1016/j.resmic.2009.11.002
– ident: e_1_3_2_72_2
  doi: 10.1146/annurev.biochem.73.011303.074048
– ident: e_1_3_2_21_2
  doi: 10.1128/JB.00959-06
– ident: e_1_3_2_278_2
  doi: 10.1107/S1744309106011456
– ident: e_1_3_2_231_2
  doi: 10.1016/j.febslet.2005.09.010
– ident: e_1_3_2_82_2
  doi: 10.1128/jb.161.2.556-562.1985
– ident: e_1_3_2_118_2
  doi: 10.1128/JB.01758-07
– ident: e_1_3_2_122_2
  doi: 10.1046/j.1365-2958.2003.03475.x
– ident: e_1_3_2_250_2
  doi: 10.1128/jb.171.5.2581-2590.1989
– ident: e_1_3_2_52_2
  doi: 10.1111/j.1469-8137.2008.02473.x
– ident: e_1_3_2_226_2
  doi: 10.1128/jb.176.21.6528-6537.1994
– ident: e_1_3_2_136_2
  doi: 10.1046/j.1365-2958.2002.02878.x
– ident: e_1_3_2_62_2
  doi: 10.1099/00221287-147-1-183
– ident: e_1_3_2_154_2
  doi: 10.1006/jmbi.2001.5378
– ident: e_1_3_2_268_2
  doi: 10.1126/science.1062023
– ident: e_1_3_2_33_2
  doi: 10.1046/j.1365-2958.1998.00719.x
– ident: e_1_3_2_168_2
  doi: 10.1111/j.1365-2958.1992.tb00845.x
– ident: e_1_3_2_170_2
  doi: 10.1073/pnas.82.22.7500
– ident: e_1_3_2_190_2
  doi: 10.1093/nar/gkp762
– volume: 78
  start-page: 705
  year: 2010
  ident: e_1_3_2_277_2
  article-title: Structure of the ribosome associating GTPase HflX
  publication-title: Proteins
  doi: 10.1002/prot.22599
– ident: e_1_3_2_24_2
  doi: 10.1038/348125a0
– volume: 63
  start-page: 73
  year: 2010
  ident: e_1_3_2_87_2
  article-title: The chloroplast protein CPSAR1, dually localized in the stroma and the inner envelope membrane, is involved in thylakoid biogenesis
  publication-title: Plant J
– ident: e_1_3_2_127_2
  doi: 10.1128/JB.00444-06
– ident: e_1_3_2_164_2
  doi: 10.1128/jb.176.1.44-49.1994
– ident: e_1_3_2_86_2
  doi: 10.1073/pnas.0307512101
– ident: e_1_3_2_201_2
  doi: 10.18388/abp.2001_3850
– ident: e_1_3_2_160_2
  doi: 10.1128/JB.181.18.5825-5832.1999
– ident: e_1_3_2_176_2
  doi: 10.1128/JB.181.17.5242-5249.1999
– ident: e_1_3_2_259_2
  doi: 10.1073/pnas.0904032106
– ident: e_1_3_2_50_2
  doi: 10.1016/S0968-0004(99)01429-2
– ident: e_1_3_2_67_2
  doi: 10.1091/mbc.e04-07-0622
– ident: e_1_3_2_150_2
  doi: 10.1128/MMBR.69.1.101-123.2005
– ident: e_1_3_2_188_2
  doi: 10.1080/713803743
– ident: e_1_3_2_211_2
  doi: 10.1016/j.cell.2006.09.037
– ident: e_1_3_2_273_2
  doi: 10.1128/jb.176.23.7161-7168.1994
– ident: e_1_3_2_109_2
  doi: 10.1111/j.1365-2443.2006.01017.x
– ident: e_1_3_2_92_2
  doi: 10.1073/pnas.81.18.5704
– ident: e_1_3_2_179_2
  doi: 10.1371/journal.pbio.1000212
– ident: e_1_3_2_40_2
  doi: 10.1016/j.ymgme.2004.07.009
– ident: e_1_3_2_255_2
  doi: 10.1128/jb.171.3.1362-1371.1989
– ident: e_1_3_2_49_2
  doi: 10.1016/j.tibtech.2006.07.005
– ident: e_1_3_2_276_2
  doi: 10.1128/EC.00356-08
– ident: e_1_3_2_282_2
  doi: 10.1074/jbc.275.6.4251
– ident: e_1_3_2_287_2
  doi: 10.1128/JB.184.19.5323-5329.2002
– ident: e_1_3_2_98_2
  doi: 10.1016/j.ijpara.2008.05.019
– ident: e_1_3_2_36_2
  doi: 10.1261/rna.7470904
– ident: e_1_3_2_198_2
  doi: 10.1046/j.1365-2958.1998.01042.x
– ident: e_1_3_2_244_2
  doi: 10.1016/S0959-440X(97)80157-1
– ident: e_1_3_2_60_2
  doi: 10.1093/genetics/158.1.41
– ident: e_1_3_2_159_2
  doi: 10.1128/MCB.22.21.7701-7711.2002
– ident: e_1_3_2_270_2
  doi: 10.1128/MCB.00946-08
– ident: e_1_3_2_68_2
  doi: 10.1111/j.1365-2958.2004.04354.x
– ident: e_1_3_2_228_2
  doi: 10.1128/JB.182.10.2771-2777.2000
– ident: e_1_3_2_208_2
  doi: 10.1099/mic.0.2008/022137-0
– ident: e_1_3_2_269_2
  doi: 10.1128/jb.177.11.3308-3311.1995
– ident: e_1_3_2_95_2
  doi: 10.1128/jb.173.7.2265-2270.1991
– ident: e_1_3_2_169_2
  doi: 10.1016/S0021-9258(17)39594-7
– ident: e_1_3_2_261_2
  doi: 10.1093/nar/gkq305
– ident: e_1_3_2_31_2
  doi: 10.1093/genetics/145.4.867
– ident: e_1_3_2_48_2
  doi: 10.1073/pnas.96.15.8396
– ident: e_1_3_2_196_2
  doi: 10.1073/pnas.90.22.10866
– ident: e_1_3_2_93_2
  doi: 10.1074/jbc.273.35.22480
– ident: e_1_3_2_106_2
  doi: 10.1046/j.1365-2958.2000.02198.x
– ident: e_1_3_2_102_2
  doi: 10.1006/jmbi.1998.2162
– ident: e_1_3_2_132_2
  doi: 10.1128/AAC.48.3.890-896.2004
– ident: e_1_3_2_214_2
  doi: 10.1128/jb.176.21.6518-6527.1994
– ident: e_1_3_2_96_2
  doi: 10.1016/0923-2508(91)90045-C
– ident: e_1_3_2_225_2
  doi: 10.1126/science.277.5324.333
– ident: e_1_3_2_12_2
  doi: 10.1038/nbt0998-851
– ident: e_1_3_2_253_2
  doi: 10.1016/0165-1110(75)90002-0
– ident: e_1_3_2_61_2
  doi: 10.1099/00221287-148-11-3457
– ident: e_1_3_2_252_2
  doi: 10.1128/JB.185.14.4031-4037.2003
– ident: e_1_3_2_110_2
  doi: 10.1093/jb/mvq039
– ident: e_1_3_2_218_2
  doi: 10.1186/1471-2180-11-43
– ident: e_1_3_2_120_2
  doi: 10.1128/jb.171.9.5017-5024.1989
– ident: e_1_3_2_80_2
  doi: 10.1073/pnas.0801308105
– ident: e_1_3_2_108_2
  doi: 10.1016/0959-440X(95)80015-8
– ident: e_1_3_2_54_2
  doi: 10.1128/IAI.01721-07
– ident: e_1_3_2_204_2
  doi: 10.1128/jb.177.8.2194-2196.1995
– ident: e_1_3_2_146_2
  doi: 10.1128/JB.00799-08
– volume: 2
  start-page: 539
  year: 1988
  ident: e_1_3_2_171_2
  article-title: The Escherichia coli Ras-like protein (Era) has GTPase activity and is essential for cell growth
  publication-title: Oncogene
– ident: e_1_3_2_177_2
  doi: 10.1099/00221287-146-5-1071
– ident: e_1_3_2_260_2
  doi: 10.1111/j.1365-2958.2005.04794.x
– ident: e_1_3_2_187_2
  doi: 10.1002/(SICI)1097-0134(199706)28:2<285::AID-PROT15>3.0.CO;2-E
– ident: e_1_3_2_286_2
  doi: 10.1159/000076741
– ident: e_1_3_2_58_2
  doi: 10.1016/j.coph.2006.05.005
– ident: e_1_3_2_221_2
  doi: 10.1046/j.1365-2958.2001.02350.x
– ident: e_1_3_2_44_2
  doi: 10.1046/j.1365-2958.2001.02536.x
– ident: e_1_3_2_246_2
  doi: 10.1177/1087057109352240
– ident: e_1_3_2_76_2
  doi: 10.1038/nrm1589
– ident: e_1_3_2_203_2
  doi: 10.1111/j.1365-2958.2009.06767.x
– ident: e_1_3_2_74_2
  doi: 10.1007/s00284-002-3713-x
– ident: e_1_3_2_103_2
  doi: 10.1046/j.1432-1033.2001.02493.x
– ident: e_1_3_2_99_2
  doi: 10.1093/nar/29.3.638
– ident: e_1_3_2_167_2
  doi: 10.1128/jb.179.20.6426-6431.1997
– ident: e_1_3_2_22_2
  doi: 10.1074/jbc.M109.096131
– ident: e_1_3_2_157_2
  doi: 10.1111/j.1574-6968.1992.tb05356.x
– ident: e_1_3_2_90_2
  doi: 10.1128/JB.185.19.5673-5684.2003
– ident: e_1_3_2_280_2
  doi: 10.1093/emboj/20.17.4794
– ident: e_1_3_2_37_2
  doi: 10.1016/j.jmb.2010.02.036
– ident: e_1_3_2_243_2
  doi: 10.1111/j.1365-2958.1994.tb01009.x
– ident: e_1_3_2_28_2
  doi: 10.1006/jmbi.1997.1134
– ident: e_1_3_2_293_2
  doi: 10.1099/mic.0.26292-0
– ident: e_1_3_2_163_2
  doi: 10.1128/JB.186.2.481-489.2004
– ident: e_1_3_2_81_2
  doi: 10.1186/1471-2180-8-65
– ident: e_1_3_2_178_2
  doi: 10.1016/j.cbpa.2010.06.169
– ident: e_1_3_2_121_2
  doi: 10.1016/S0960-9822(98)70445-2
– ident: e_1_3_2_17_2
  doi: 10.1002/j.1460-2075.1989.tb08504.x
– ident: e_1_3_2_64_2
  doi: 10.1128/IAI.72.10.5783-5790.2004
– ident: e_1_3_2_137_2
  doi: 10.2478/s11658-008-0023-8
– ident: e_1_3_2_57_2
  doi: 10.1074/jbc.273.43.27945
– ident: e_1_3_2_117_2
  doi: 10.1128/JB.00045-10
– ident: e_1_3_2_43_2
  doi: 10.1016/S1369-5274(03)00037-7
– ident: e_1_3_2_172_2
  doi: 10.1074/jbc.M503223200
– ident: e_1_3_2_45_2
  doi: 10.1128/JB.01744-07
– ident: e_1_3_2_144_2
  doi: 10.1006/jmbi.1998.2197
– ident: e_1_3_2_248_2
  doi: 10.1093/nar/gkq973
– ident: e_1_3_2_264_2
  doi: 10.1093/emboj/20.17.4863
– ident: e_1_3_2_184_2
  doi: 10.1002/prot.21186
– ident: e_1_3_2_249_2
  doi: 10.1128/jb.174.5.1544-1553.1992
– ident: e_1_3_2_139_2
  doi: 10.1046/j.1365-2958.2001.02574.x
– ident: e_1_3_2_23_2
  doi: 10.1016/j.cell.2007.05.018
– ident: e_1_3_2_267_2
  doi: 10.1002/ajmg.b.30454
– ident: e_1_3_2_42_2
  doi: 10.1074/jbc.M001854200
– ident: e_1_3_2_4_2
  doi: 10.1073/pnas.83.23.8849
– start-page: 200
  volume-title: Microb. Pathog
  year: 2011
  ident: e_1_3_2_207_2
– ident: e_1_3_2_161_2
  doi: 10.1016/S0014-5793(00)02402-9
– ident: e_1_3_2_26_2
  doi: 10.1016/j.tim.2005.11.006
– ident: e_1_3_2_145_2
  doi: 10.1016/j.jmb.2004.01.047
– ident: e_1_3_2_125_2
  doi: 10.1039/b716357f
– ident: e_1_3_2_217_2
  doi: 10.1016/j.jmb.2004.03.043
– ident: e_1_3_2_59_2
  doi: 10.1186/1471-2180-9-266
– ident: e_1_3_2_84_2
  doi: 10.1016/j.molcel.2005.01.012
– ident: e_1_3_2_220_2
  doi: 10.1111/j.1574-6968.1998.tb12867.x
– ident: e_1_3_2_123_2
  doi: 10.1159/000092818
– ident: e_1_3_2_191_2
  doi: 10.1073/pnas.0602585103
– ident: e_1_3_2_13_2
  doi: 10.1128/AEM.01157-07
– ident: e_1_3_2_30_2
  doi: 10.1006/geno.2000.6243
– ident: e_1_3_2_69_2
  doi: 10.1016/j.molcel.2007.08.026
– ident: e_1_3_2_5_2
  doi: 10.1046/j.1365-2443.2001.00480.x
– ident: e_1_3_2_114_2
  doi: 10.1126/science.286.5447.2165
– ident: e_1_3_2_165_2
  doi: 10.1266/ggs.82.281
– ident: e_1_3_2_202_2
  doi: 10.1073/pnas.0907262106
– ident: e_1_3_2_19_2
  doi: 10.1073/pnas.2535394100
– ident: e_1_3_2_247_2
  doi: 10.1093/emboj/cdf656
– ident: e_1_3_2_10_2
  doi: 10.1016/S0300-9084(97)86726-0
– ident: e_1_3_2_284_2
  doi: 10.1093/nar/gkl752
– ident: e_1_3_2_112_2
  doi: 10.1111/j.1574-6968.2007.00860.x
– ident: e_1_3_2_152_2
  doi: 10.1371/journal.pone.0012597
– ident: e_1_3_2_181_2
  doi: 10.1016/j.jmb.2009.07.004
– ident: e_1_3_2_285_2
  doi: 10.1016/j.cub.2006.12.029
– ident: e_1_3_2_194_2
  doi: 10.1016/j.sbi.2005.05.004
– ident: e_1_3_2_212_2
  doi: 10.1073/pnas.0611650104
– ident: e_1_3_2_2_2
  doi: 10.1017/S0033583509990060
– ident: e_1_3_2_79_2
  doi: 10.1111/j.1365-2958.2005.04710.x
– ident: e_1_3_2_3_2
  doi: 10.1093/nar/gkh185
– ident: e_1_3_2_29_2
  doi: 10.1146/annurev.micro.091208.073225
– ident: e_1_3_2_186_2
  doi: 10.1038/385365a0
– ident: e_1_3_2_175_2
  doi: 10.1093/genetics/154.2.523
– ident: e_1_3_2_239_2
  doi: 10.1007/s00203-006-0099-3
– ident: e_1_3_2_258_2
  doi: 10.1016/0300-9084(94)90046-9
– ident: e_1_3_2_39_2
  doi: 10.1038/nature03239
– ident: e_1_3_2_77_2
  doi: 10.1038/nature02250
– ident: e_1_3_2_237_2
  doi: 10.1016/j.bbrc.2005.11.129
– ident: e_1_3_2_292_2
  doi: 10.1099/13500872-145-4-791
– ident: e_1_3_2_129_2
  doi: 10.1046/j.1365-2958.1999.01553.x
– ident: e_1_3_2_294_2
  doi: 10.1016/S0378-1119(96)00813-X
– ident: e_1_3_2_257_2
  doi: 10.1111/j.1365-2958.1994.tb00400.x
– ident: e_1_3_2_111_2
  doi: 10.1007/s00284-007-9030-7
– ident: e_1_3_2_131_2
  doi: 10.1128/MMBR.00013-07
– ident: e_1_3_2_104_2
  doi: 10.1046/j.1432-1033.2003.03813.x
– ident: e_1_3_2_232_2
  doi: 10.1128/JB.02021-07
– ident: e_1_3_2_75_2
  doi: 10.1128/JB.01353-08
– ident: e_1_3_2_35_2
  doi: 10.1016/S0969-2126(02)00882-1
– ident: e_1_3_2_227_2
  doi: 10.1128/JB.181.15.4653-4660.1999
– ident: e_1_3_2_209_2
  doi: 10.1074/jbc.270.9.4822
– ident: e_1_3_2_155_2
  doi: 10.1111/j.1574-6968.1995.tb07432.x
– ident: e_1_3_2_174_2
  doi: 10.1074/jbc.M703894200
– ident: e_1_3_2_27_2
  doi: 10.1101/gad.207701
– ident: e_1_3_2_183_2
  doi: 10.1002/prot.20413
– ident: e_1_3_2_274_2
  doi: 10.1128/JB.01193-07
– ident: e_1_3_2_126_2
  doi: 10.1016/j.bbrc.2008.12.072
– ident: e_1_3_2_9_2
  doi: 10.1371/journal.pone.0009944
– ident: e_1_3_2_245_2
  doi: 10.1128/JB.182.12.3460-3466.2000
– ident: e_1_3_2_289_2
  doi: 10.1631/jzus.B0910009
– ident: e_1_3_2_230_2
  doi: 10.1038/sj.emboj.7601171
– ident: e_1_3_2_205_2
– ident: e_1_3_2_94_2
  doi: 10.1038/sj.onc.1206287
– ident: e_1_3_2_148_2
  doi: 10.1016/S0300-9084(96)80004-6
– ident: e_1_3_2_279_2
  doi: 10.1128/JB.182.24.7078-7082.2000
– ident: e_1_3_2_128_2
  doi: 10.1128/JB.00315-07
– ident: e_1_3_2_18_2
  doi: 10.1016/j.ceb.2010.04.007
– ident: e_1_3_2_51_2
  doi: 10.1074/jbc.M110.172080
– ident: e_1_3_2_115_2
  doi: 10.1016/j.jmb.2010.04.040
– ident: e_1_3_2_141_2
  doi: 10.1074/jbc.M700541200
– ident: e_1_3_2_124_2
  doi: 10.1128/jb.174.7.2281-2287.1992
– ident: e_1_3_2_256_2
  doi: 10.1128/jb.178.19.5719-5731.1996
– ident: e_1_3_2_6_2
  doi: 10.1128/jb.173.19.6018-6024.1991
– ident: e_1_3_2_192_2
  doi: 10.1016/S0079-6603(00)66028-2
– ident: e_1_3_2_113_2
  doi: 10.1016/0378-1119(93)90327-Y
– ident: e_1_3_2_229_2
  doi: 10.1038/sj.emboj.7600507
– ident: e_1_3_2_14_2
  doi: 10.1128/IAI.67.9.4510-4516.1999
– ident: e_1_3_2_41_2
  doi: 10.1093/emboj/18.24.7063
– ident: e_1_3_2_138_2
  doi: 10.4161/rna.2.2.1610
– ident: e_1_3_2_65_2
  doi: 10.1107/S0907444903024910
– ident: e_1_3_2_262_2
  doi: 10.1016/S0147-619X(03)00021-0
– ident: e_1_3_2_195_2
  doi: 10.1007/s00018-008-7495-6
– ident: e_1_3_2_78_2
  doi: 10.1093/nar/12.8.3521
– ident: e_1_3_2_206_2
  doi: 10.1016/j.micinf.2005.05.018
– ident: e_1_3_2_275_2
  doi: 10.1128/JB.186.16.5249-5257.2004
– ident: e_1_3_2_240_2
  doi: 10.1007/s00018-008-8416-4
– ident: e_1_3_2_73_2
  doi: 10.1016/S0092-8674(02)00773-0
– ident: e_1_3_2_251_2
  doi: 10.1128/JB.184.10.2692-2698.2002
– ident: e_1_3_2_265_2
  doi: 10.1261/rna.5210803
– ident: e_1_3_2_119_2
  doi: 10.1111/j.1365-2958.2006.05348.x
– ident: e_1_3_2_222_2
  doi: 10.1006/bbrc.1999.1471
– ident: e_1_3_2_53_2
  doi: 10.1093/mp/ssp073
– ident: e_1_3_2_166_2
  doi: 10.1128/JB.180.19.5243-5246.1998
– ident: e_1_3_2_185_2
  doi: 10.1023/B:JNMR.0000013693.80516.57
– ident: e_1_3_2_34_2
  doi: 10.1016/S1097-2765(00)00035-6
– ident: e_1_3_2_130_2
  doi: 10.1128/jb.152.3.1211-1219.1982
– ident: e_1_3_2_63_2
  doi: 10.1016/j.bbamcr.2004.03.009
– ident: e_1_3_2_134_2
  doi: 10.1146/annurev.biochem.70.1.755
– ident: e_1_3_2_180_2
  doi: 10.1016/j.jmb.2008.04.072
– ident: e_1_3_2_91_2
  doi: 10.1093/hmg/7.3.407
– ident: e_1_3_2_254_2
  doi: 10.1093/nar/gkp107
– ident: e_1_3_2_47_2
  doi: 10.1016/S0021-9258(19)39884-9
– ident: e_1_3_2_263_2
  doi: 10.1074/jbc.M409306200
– ident: e_1_3_2_182_2
  doi: 10.1128/JB.184.22.6389-6394.2002
– ident: e_1_3_2_147_2
  doi: 10.1099/mic.0.27421-0
– ident: e_1_3_2_135_2
  doi: 10.1016/S0092-8674(00)81418-X
– ident: e_1_3_2_215_2
  doi: 10.1016/S0969-2126(02)00905-X
– ident: e_1_3_2_20_2
  doi: 10.1016/j.tibs.2009.05.004
– ident: e_1_3_2_16_2
  doi: 10.1128/jb.169.9.4076-4085.1987
– ident: e_1_3_2_235_2
  doi: 10.1021/bi901074h
– ident: e_1_3_2_105_2
  doi: 10.2174/138920207780368141
– ident: e_1_3_2_283_2
  doi: 10.1074/jbc.M301381200
– ident: e_1_3_2_156_2
  doi: 10.1111/j.1365-2958.1991.tb00770.x
– ident: e_1_3_2_11_2
  doi: 10.1039/b905518p
– ident: e_1_3_2_66_2
  doi: 10.1016/S0300-9084(99)00207-2
– ident: e_1_3_2_88_2
  doi: 10.1038/nrm2689
– ident: e_1_3_2_7_2
  doi: 10.1111/j.1365-2958.2006.05574.x
– ident: e_1_3_2_236_2
  doi: 10.1111/j.1574-6968.1996.tb08025.x
– ident: e_1_3_2_149_2
  doi: 10.1110/ps.072900907
– ident: e_1_3_2_241_2
  doi: 10.1128/AEM.01523-08
– ident: e_1_3_2_25_2
  doi: 10.1038/349117a0
– ident: e_1_3_2_210_2
  doi: 10.1128/JB.182.23.6819-6823.2000
– ident: e_1_3_2_38_2
  doi: 10.1006/geno.1993.1230
– ident: e_1_3_2_71_2
  doi: 10.1042/BJ20100757
– ident: e_1_3_2_143_2
  doi: 10.1006/jmbi.1998.2196
– ident: e_1_3_2_199_2
  doi: 10.1107/S1744309109013591
– ident: e_1_3_2_162_2
  doi: 10.1046/j.1365-2958.2001.02285.x
– ident: e_1_3_2_291_2
  doi: 10.1128/JB.183.7.2316-2321.2001
– ident: e_1_3_2_151_2
  doi: 10.1016/j.pep.2011.02.009
– ident: e_1_3_2_158_2
  doi: 10.1016/j.jmb.2004.05.029
– ident: e_1_3_2_233_2
  doi: 10.1016/j.febslet.2004.11.049
– ident: e_1_3_2_200_2
  doi: 10.1016/j.str.2009.03.013
– ident: e_1_3_2_46_2
  doi: 10.1016/j.jmb.2009.11.026
– ident: e_1_3_2_281_2
  doi: 10.1016/S0014-5793(00)01145-5
– ident: e_1_3_2_32_2
  doi: 10.1128/jb.179.14.4575-4582.1997
– ident: e_1_3_2_55_2
  doi: 10.1128/jb.179.7.2181-2188.1997
– ident: e_1_3_2_116_2
  doi: 10.1074/jbc.M104455200
– ident: e_1_3_2_213_2
  doi: 10.1093/nar/27.19.3821
– ident: e_1_3_2_193_2
  doi: 10.1007/BF00330746
– ident: e_1_3_2_234_2
  doi: 10.1016/j.molcel.2005.03.028
– ident: e_1_3_2_224_2
  doi: 10.1128/JB.01213-06
– ident: e_1_3_2_271_2
  doi: 10.1093/nar/gkl1158
– reference: 12427937 - Microbiology. 2002 Nov;148(Pt 11):3457-66
– reference: 19086295 - New Phytol. 2008 Jul;179(2):530-45
– reference: 13129938 - J Bacteriol. 2003 Oct;185(19):5673-84
– reference: 7686882 - Genomics. 1993 Jun;16(3):551-61
– reference: 7961486 - J Bacteriol. 1994 Dec;176(23):7155-60
– reference: 15836769 - Genes Cells. 2005 May;10(5):393-408
– reference: 2999765 - Proc Natl Acad Sci U S A. 1985 Nov;82(22):7500-4
– reference: 20172997 - J Bacteriol. 2010 Apr;192(8):2277-83
– reference: 8392589 - J Mol Biol. 1993 Jul 5;232(1):79-88
– reference: 11401686 - Mol Microbiol. 2001 May;40(4):786-94
– reference: 15542390 - Mol Genet Metab. 2004 Nov;83(3):199-206
– reference: 2583104 - EMBO J. 1989 Nov;8(11):3401-7
– reference: 11092873 - J Bacteriol. 2000 Dec;182(24):7078-82
– reference: 2838786 - Oncogene. 1988 Jun;2(6):539-44
– reference: 11916378 - J Mol Biol. 2002 Mar 15;317(1):41-72
– reference: 15755955 - Microbiol Mol Biol Rev. 2005 Mar;69(1):101-23
– reference: 2527846 - J Bacteriol. 1989 Sep;171(9):5017-24
– reference: 19220752 - Mol Microbiol. 2009 Mar;71(6):1435-50
– reference: 10832634 - Microbiology. 2000 May;146 ( Pt 5):1071-83
– reference: 21195156 - Microb Pathog. 2011 Mar-Apr;50(3-4):200-6
– reference: 12880769 - Protein Expr Purif. 2003 Aug;30(2):203-9
– reference: 15616586 - EMBO J. 2005 Jan 12;24(1):23-33
– reference: 9002525 - Nature. 1997 Jan 23;385(6614):365-8
– reference: 9188744 - Proteins. 1997 Jun;28(2):285-8
– reference: 11114334 - Cell. 2000 Nov 22;103(5):781-92
– reference: 18426891 - Infect Immun. 2008 Jul;76(7):3176-86
– reference: 16343434 - Biochem Biophys Res Commun. 2006 Jan 27;339(4):1165-70
– reference: 17143896 - Proteins. 2007 Feb 15;66(3):726-39
– reference: 6183253 - J Bacteriol. 1982 Dec;152(3):1211-9
– reference: 20025795 - Q Rev Biophys. 2009 Aug;42(3):159-200
– reference: 19555460 - Mol Microbiol. 2009 Jul;73(2):253-66
– reference: 15726588 - Proteins. 2005 May 1;59(2):332-8
– reference: 17360576 - Proc Natl Acad Sci U S A. 2007 Mar 13;104(11):4636-41
– reference: 8462872 - Gene. 1993 Mar 30;125(2):191-3
– reference: 15978086 - Mol Microbiol. 2005 Jul;57(2):576-91
– reference: 10601028 - EMBO J. 1999 Dec 15;18(24):7063-76
– reference: 15128949 - Proc Natl Acad Sci U S A. 2004 May 18;101(20):7618-23
– reference: 11244072 - J Bacteriol. 2001 Apr;183(7):2316-21
– reference: 19407389 - Acta Crystallogr Sect F Struct Biol Cryst Commun. 2009 May 1;65(Pt 5):508-11
– reference: 11333217 - Genetics. 2001 May;158(1):41-64
– reference: 19706445 - Proc Natl Acad Sci U S A. 2009 Sep 1;106(35):14843-8
– reference: 17921262 - Appl Environ Microbiol. 2007 Dec;73(23):7789-92
– reference: 2122258 - Nature. 1990 Nov 8;348(6297):125-32
– reference: 19917289 - J Mol Biol. 2010 Feb 12;396(1):118-29
– reference: 12429099 - Structure. 2002 Nov;10(11):1581-92
– reference: 18456812 - J Bacteriol. 2008 Jul;190(13):4764-71
– reference: 2105934 - J Biol Chem. 1990 Feb 15;265(5):2888-95
– reference: 17651431 - FEMS Microbiol Lett. 2007 Oct;275(1):8-15
– reference: 12427945 - Microbiology. 2002 Nov;148(Pt 11):3539-52
– reference: 15866174 - Mol Cell. 2005 Apr 29;18(3):319-29
– reference: 15522079 - Mol Microbiol. 2004 Nov;54(4):948-61
– reference: 15690043 - Nature. 2005 Feb 3;433(7025):531-7
– reference: 11160812 - Microbiology. 2001 Jan;147(Pt 1):183-91
– reference: 11995995 - Acta Biochim Pol. 2001;48(4):829-50
– reference: 19806182 - PLoS Biol. 2009 Oct;7(10):e1000212
– reference: 11327306 - IUBMB Life. 2000 Dec;50(6):347-54
– reference: 19591841 - J Mol Biol. 2009 Oct 2;392(4):910-22
– reference: 10456893 - Infect Immun. 1999 Sep;67(9):4510-6
– reference: 14673075 - Proc Natl Acad Sci U S A. 2003 Dec 23;100(26):15971-6
– reference: 15292126 - J Bacteriol. 2004 Aug;186(16):5249-57
– reference: 15554976 - Mol Microbiol. 2004 Dec;54(5):1379-92
– reference: 16980477 - J Bacteriol. 2006 Oct;188(19):6757-70
– reference: 1551846 - J Bacteriol. 1992 Apr;174(7):2281-7
– reference: 11051763 - Prog Nucleic Acid Res Mol Biol. 2001;66:107-57
– reference: 1925028 - Res Microbiol. 1991 Feb-Apr;142(2-3):301-7
– reference: 9219684 - Science. 1997 Jul 18;277(5324):333-8
– reference: 1901053 - J Bacteriol. 1991 Apr;173(7):2265-70
– reference: 19729310 - Trends Biochem Sci. 2009 Sep;34(9):429-34
– reference: 8981995 - J Bacteriol. 1997 Jan;179(1):170-9
– reference: 16763562 - EMBO J. 2006 Jun 21;25(12):2940-51
– reference: 15247431 - RNA. 2004 Aug;10(8):1236-42
– reference: 17272300 - Nucleic Acids Res. 2007;35(6):e37
– reference: 14982780 - Antimicrob Agents Chemother. 2004 Mar;48(3):890-6
– reference: 10748051 - J Biol Chem. 2000 Jun 2;275(22):16414-9
– reference: 8971718 - Mol Microbiol. 1996 Dec;22(5):977-89
– reference: 14519129 - Eur J Biochem. 2003 Oct;270(20):4164-72
– reference: 14752268 - J Biomol NMR. 2004 Mar;28(3):307-8
– reference: 20466531 - Curr Opin Cell Biol. 2010 Aug;22(4):461-70
– reference: 7961487 - J Bacteriol. 1994 Dec;176(23):7161-8
– reference: 9503617 - FEMS Microbiol Lett. 1998 Feb 15;159(2):241-5
– reference: 20353943 - J Biol Chem. 2010 May 28;285(22):16991-7000
– reference: 21354313 - Protein Expr Purif. 2011 Jul;78(1):102-12
– reference: 18296517 - J Bacteriol. 2008 May;190(9):3236-43
– reference: 1526446 - FEMS Microbiol Lett. 1992 Aug 15;74(2-3):137-42
– reference: 16269262 - Microbes Infect. 2006 Jan;8(1):61-72
– reference: 9237903 - J Mol Biol. 1997 Jul 18;270(3):360-73
– reference: 11387344 - J Biol Chem. 2001 Aug 17;276(33):31415-21
– reference: 10781545 - J Bacteriol. 2000 May;182(10):2771-7
– reference: 18213444 - Cell Mol Life Sci. 2008 May;65(9):1335-46
– reference: 10852878 - J Bacteriol. 2000 Jun;182(12):3460-6
– reference: 12826057 - Plasmid. 2003 Jul;50(1):45-52
– reference: 9826502 - J Mol Biol. 1998 Dec 4;284(3):609-20
– reference: 15044829 - J Mol Microbiol Biotechnol. 2003;6(2):109-26
– reference: 17981968 - J Bacteriol. 2008 Jan;190(2):681-90
– reference: 17307049 - Curr Biol. 2007 Feb 20;17(4):R136-9
– reference: 15136032 - J Mol Biol. 2004 May 28;339(2):265-78
– reference: 19944148 - Res Microbiol. 2010 Jan-Feb;161(1):46-50
– reference: 19636801 - Plant Mol Biol. 2009 Nov;71(4-5):379-90
– reference: 9434906 - Curr Opin Struct Biol. 1997 Dec;7(6):849-56
– reference: 1537799 - J Bacteriol. 1992 Mar;174(5):1544-53
– reference: 15223319 - J Mol Biol. 2004 Jul 16;340(4):767-82
– reference: 2537815 - J Bacteriol. 1989 Mar;171(3):1362-71
– reference: 19109926 - Biochem Biophys Res Commun. 2009 Feb 6;379(2):201-5
– reference: 9079902 - J Bacteriol. 1997 Apr;179(7):2181-8
– reference: 16135227 - Mol Microbiol. 2005 Sep;57(6):1593-607
– reference: 12837776 - J Bacteriol. 2003 Jul;185(14):4031-7
– reference: 16682769 - Acta Crystallogr Sect F Struct Biol Cryst Commun. 2006 May 1;62(Pt 5):435-7
– reference: 10510227 - Mol Microbiol. 1999 Sep;33(6):1118-31
– reference: 21352546 - BMC Microbiol. 2011;11:43
– reference: 9335292 - J Bacteriol. 1997 Oct;179(20):6426-31
– reference: 7984093 - Mol Microbiol. 1994 Jul;13(1):35-49
– reference: 9826503 - J Mol Biol. 1998 Dec 4;284(3):621-31
– reference: 9768362 - Curr Biol. 1998 Sep 24;8(19):1079-82
– reference: 9786189 - Mol Microbiol. 1998 Oct;30(1):107-19
– reference: 18362332 - Proc Natl Acad Sci U S A. 2008 Mar 25;105(12):4673-8
– reference: 15922593 - Curr Opin Struct Biol. 2005 Jun;15(3):349-54
– reference: 12456664 - EMBO J. 2002 Dec 2;21(23):6581-9
– reference: 9774408 - J Biol Chem. 1998 Oct 23;273(43):27945-52
– reference: 10481021 - Nucleic Acids Res. 1999 Oct 1;27(19):3821-35
– reference: 1898771 - Nature. 1991 Jan 10;349(6305):117-27
– reference: 20376346 - PLoS One. 2010;5(4):e9944
– reference: 3162077 - Mol Gen Genet. 1985;199(3):381-7
– reference: 9515700 - Mol Microbiol. 1998 Feb;27(4):739-50
– reference: 20021644 - BMC Microbiol. 2009;9:266
– reference: 18957606 - Microbiology. 2008 Nov;154(Pt 11):3537-46
– reference: 6148751 - Proc Natl Acad Sci U S A. 1984 Sep;81(18):5704-8
– reference: 16343907 - Trends Microbiol. 2006 Jan;14(1):45-54
– reference: 11160884 - Nucleic Acids Res. 2001 Feb 1;29(3):638-43
– reference: 10675533 - FEBS Lett. 2000 Feb 11;467(2-3):175-8
– reference: 18423011 - BMC Microbiol. 2008;8:65
– reference: 16825789 - J Mol Microbiol Biotechnol. 2006;11(1-2):41-52
– reference: 19787775 - Proteins. 2010 Feb 15;78(3):705-13
– reference: 17514744 - Biopolymers. 2007 Sep;87(1):1-11
– reference: 15583165 - Microbiology. 2004 Dec;150(Pt 12):4125-36
– reference: 17578452 - Mol Microbiol. 2007 Jul;65(2):569-81
– reference: 20604745 - Biochem J. 2010 Sep 15;430(3):551-8
– reference: 17238926 - Mol Microbiol. 2007 Feb;63(4):941-50
– reference: 11805826 - Nature. 2002 Jan 10;415(6868):141-7
– reference: 9002524 - Nature. 1997 Jan 23;385(6614):361-4
– reference: 20830302 - PLoS One. 2010;5(9):e12597
– reference: 15189152 - Annu Rev Biochem. 2004;73:539-57
– reference: 17110332 - Cell. 2006 Nov 17;127(4):721-33
– reference: 10945472 - Genomics. 2000 Jul 1;67(1):78-82
– reference: 19424291 - Nat Rev Mol Cell Biol. 2009 Jun;10(6):423-9
– reference: 19706404 - Proc Natl Acad Sci U S A. 2009 Sep 8;106(36):15356-61
– reference: 11967071 - Mol Microbiol. 2002 Apr;44(1):89-105
– reference: 2198567 - Proc Natl Acad Sci U S A. 1990 Aug;87(15):5589-93
– reference: 2199064 - Cell. 1990 Aug 10;62(3):539-48
– reference: 20430825 - Nucleic Acids Res. 2010 Sep;38(16):5554-68
– reference: 20188109 - J Mol Biol. 2010 Apr 23;398(1):1-7
– reference: 11701921 - Science. 2001 Nov 9;294(5545):1299-304
– reference: 17804668 - Microbiol Mol Biol Rev. 2007 Sep;71(3):477-94
– reference: 12730230 - J Biol Chem. 2003 Aug 1;278(31):28378-87
– reference: 16894162 - Proc Natl Acad Sci U S A. 2006 Aug 15;103(33):12359-64
– reference: 12756333 - RNA. 2003 Jun;9(6):760-8
– reference: 9712873 - J Biol Chem. 1998 Aug 28;273(35):22480-9
– reference: 9161408 - Gene. 1997 Apr 11;189(1):31-4
– reference: 12618759 - Oncogene. 2003 Mar 6;22(9):1340-8
– reference: 15019792 - J Mol Biol. 2004 Mar 26;337(3):761-70
– reference: 10655208 - Genetics. 2000 Feb;154(2):523-32
– reference: 8749370 - Curr Opin Struct Biol. 1995 Dec;5(6):810-7
– reference: 19246542 - Nucleic Acids Res. 2009 Apr;37(7):2359-70
– reference: 16284124 - Mol Cell Proteomics. 2006 Feb;5(2):366-78
– reference: 765790 - Mutat Res. 1975;32(2):115-32
– reference: 17430889 - J Biol Chem. 2007 Jul 6;282(27):19928-37
– reference: 16428430 - J Bacteriol. 2006 Feb;188(3):1205-10
– reference: 1906969 - Mol Microbiol. 1991 Apr;5(4):951-7
– reference: 15983041 - J Biol Chem. 2005 Sep 2;280(35):30660-70
– reference: 17996707 - Mol Cell. 2007 Nov 9;28(3):434-45
– reference: 15546656 - Biochim Biophys Acta. 2004 Nov 11;1694(1-3):37-53
– reference: 11683880 - Eur J Biochem. 2001 Nov;268(21):5570-7
– reference: 17895579 - Genes Genet Syst. 2007 Aug;82(4):281-9
– reference: 17054726 - Genes Cells. 2006 Nov;11(11):1295-304
– reference: 19882753 - J Zhejiang Univ Sci B. 2009 Nov;10(11):796-804
– reference: 10464193 - J Bacteriol. 1999 Sep;181(17):5242-9
– reference: 16518617 - Arch Microbiol. 2006 Jun;185(5):340-7
– reference: 11231024 - FEBS Lett. 2001 Jan 26;489(1):108-11
– reference: 17540168 - Cell. 2007 Jun 1;129(5):865-77
– reference: 15509579 - J Biol Chem. 2005 Jan 14;280(2):1613-24
– reference: 14684918 - Acta Crystallogr D Biol Crystallogr. 2004 Jan;60(Pt 1):166-8
– reference: 8248183 - Proc Natl Acad Sci U S A. 1993 Nov 15;90(22):10866-70
– reference: 10591650 - Science. 1999 Dec 10;286(5447):2165-9
– reference: 12732302 - Curr Opin Microbiol. 2003 Apr;6(2):135-9
– reference: 16213500 - FEBS Lett. 2005 Oct 24;579(25):5439-42
– reference: 19958140 - Mol Plant Microbe Interact. 2010 Jan;23(1):67-81
– reference: 17909889 - Curr Microbiol. 2008 Jan;56(1):14-20
– reference: 11123669 - Mol Microbiol. 2000 Dec;38(5):927-39
– reference: 3918016 - J Bacteriol. 1985 Feb;161(2):556-62
– reference: 14724630 - Nature. 2004 Jan 15;427(6971):215-21
– reference: 20400571 - J Biochem. 2010 Jul;148(1):103-13
– reference: 19446527 - Structure. 2009 May 13;17(5):713-24
– reference: 18689482 - J Bacteriol. 2008 Oct;190(20):6625-35
– reference: 15385478 - Infect Immun. 2004 Oct;72(10):5783-90
– reference: 8349564 - J Bacteriol. 1993 Aug;175(16):5242-52
– reference: 16876893 - Trends Biotechnol. 2006 Oct;24(10):435-42
– reference: 8955901 - Biochimie. 1996;78(7):577-89
– reference: 9695947 - Cell. 1998 Jul 24;94(2):181-91
– reference: 19011758 - Cell Mol Life Sci. 2009 Feb;66(3):423-36
– reference: 18437264 - Mol Biosyst. 2008 Mar;4(3):213-22
– reference: 17015655 - J Bacteriol. 2006 Oct;188(20):7165-75
– reference: 16890019 - Curr Opin Pharmacol. 2006 Oct;6(5):453-8
– reference: 12370316 - Mol Cell Biol. 2002 Nov;22(21):7701-11
– reference: 15738986 - Nat Rev Mol Cell Biol. 2005 Mar;6(3):197-208
– reference: 9748462 - J Bacteriol. 1998 Oct;180(19):5243-6
– reference: 3040675 - J Bacteriol. 1987 Sep;169(9):4076-85
– reference: 17347996 - Am J Med Genet B Neuropsychiatr Genet. 2007 Sep 5;144B(6):728-34
– reference: 15680975 - FEBS Lett. 2005 Feb 7;579(4):921-6
– reference: 18660847 - Curr Genomics. 2007 Apr;8(2):129-36
– reference: 19558326 - Biol Chem. 2009 Aug;390(8):775-82
– reference: 18565343 - J Mol Biol. 2008 Jul 11;380(3):532-47
– reference: 7721709 - J Bacteriol. 1995 Apr;177(8):2194-6
– reference: 17132941 - RNA Biol. 2005 Apr;2(2):41-4
– reference: 12399511 - J Bacteriol. 2002 Nov;184(22):6389-94
– reference: 15325267 - Biochem Biophys Res Commun. 2004 Sep 17;322(2):565-9
– reference: 20408996 - Plant J. 2010 Jul 1;63(1):73-85
– reference: 11733036 - Genes Cells. 2001 Nov;6(11):987-1001
– reference: 9811540 - J Mol Biol. 1998 Nov 20;284(1):33-42
– reference: 11976298 - J Bacteriol. 2002 May;184(10):2692-8
– reference: 12402086 - Curr Microbiol. 2002 Dec;45(6):440-5
– reference: 11251813 - Mol Microbiol. 2001 Feb;39(4):924-34
– reference: 19429554 - Appl Environ Microbiol. 2009 Jul;75(13):4419-26
– reference: 18713637 - Int J Parasitol. 2009 Jan;39(1):49-58
– reference: 14702318 - J Bacteriol. 2004 Jan;186(2):481-9
– reference: 19767610 - Nucleic Acids Res. 2009 Nov;37(21):7177-93
– reference: 2987248 - J Biol Chem. 1985 Jun 25;260(12):7206-13
– reference: 18223068 - J Bacteriol. 2008 Apr;190(7):2537-45
– reference: 17616600 - J Bacteriol. 2007 Sep;189(17):6140-7
– reference: 7961402 - J Bacteriol. 1994 Nov;176(21):6518-27
– reference: 20434458 - J Mol Biol. 2010 Jun 25;399(5):759-72
– reference: 16930151 - Mol Microbiol. 2006 Sep;61(6):1660-72
– reference: 10527840 - Biochem Biophys Res Commun. 1999 Oct 14;264(1):51-4
– reference: 10220158 - Microbiology. 1999 Apr;145 ( Pt 4):791-800
– reference: 10482526 - J Bacteriol. 1999 Sep;181(18):5825-32
– reference: 12218018 - J Bacteriol. 2002 Oct;184(19):5323-9
– reference: 9743119 - Nat Biotechnol. 1998 Sep;16(9):851-6
– reference: 3097637 - Proc Natl Acad Sci U S A. 1986 Dec;83(23):8849-53
– reference: 7729673 - FEMS Microbiol Lett. 1995 Mar 1;126(3):291-8
– reference: 19575570 - Annu Rev Microbiol. 2009;63:155-76
– reference: 12753192 - Mol Microbiol. 2003 May;48(4):1005-16
– reference: 21045058 - Nucleic Acids Res. 2011 Jan;39(Database issue):D561-8
– reference: 17062623 - Nucleic Acids Res. 2006;34(20):5892-905
– reference: 7876255 - J Biol Chem. 1995 Mar 3;270(9):4822-39
– reference: 15591131 - Mol Biol Cell. 2005 Feb;16(2):954-63
– reference: 19841256 - Proc Natl Acad Sci U S A. 2009 Oct 27;106(43):18183-8
– reference: 10983982 - Mol Cell. 2000 Aug;6(2):349-60
– reference: 2540151 - J Bacteriol. 1989 May;171(5):2581-90
– reference: 11073929 - J Bacteriol. 2000 Dec;182(23):6819-23
– reference: 16997968 - J Bacteriol. 2006 Dec;188(23):8252-8
– reference: 19995735 - Mol Plant. 2009 Nov;2(6):1373-83
– reference: 11555285 - Mol Microbiol. 2001 Sep;41(5):1037-51
– reference: 11489118 - Mol Microbiol. 2001 Jul;41(2):289-97
– reference: 9093842 - Genetics. 1997 Apr;145(4):867-75
– reference: 8282709 - J Bacteriol. 1994 Jan;176(1):44-9
– reference: 7748952 - Biochimie. 1994;76(12):1168-77
– reference: 8057845 - Mol Microbiol. 1994 Apr;12(2):201-8
– reference: 1917835 - J Bacteriol. 1991 Oct;173(19):6018-24
– reference: 18852288 - Mol Cell Biol. 2008 Dec;28(24):7514-31
– reference: 12855728 - Microbiology. 2003 Jul;149(Pt 7):1763-70
– reference: 18536999 - Cell Mol Biol Lett. 2008;13(4):570-84
– reference: 11395422 - Annu Rev Biochem. 2001;70:755-75
– reference: 10431174 - Trends Biochem Sci. 1999 Aug;24(8):306-11
– reference: 10660592 - J Biol Chem. 2000 Feb 11;275(6):4251-7
– reference: 1640828 - Mol Microbiol. 1992 May;6(10):1253-7
– reference: 9466997 - Hum Mol Genet. 1998 Mar;7(3):407-14
– reference: 16963571 - J Bacteriol. 2006 Nov;188(22):7992-6
– reference: 9150881 - Biochimie. 1996;78(11-12):1025-34
– reference: 7768831 - J Bacteriol. 1995 Jun;177(11):3308-11
– reference: 11532950 - EMBO J. 2001 Sep 3;20(17):4863-73
– reference: 6427754 - Nucleic Acids Res. 1984 Apr 25;12(8):3521-34
– reference: 19448108 - Eukaryot Cell. 2009 Jul;8(7):1061-71
– reference: 20876569 - J Biol Chem. 2010 Nov 26;285(48):37359-69
– reference: 19181811 - J Bacteriol. 2009 Apr;191(7):2307-14
– reference: 9226268 - J Bacteriol. 1997 Jul;179(14):4575-82
– reference: 10419966 - J Bacteriol. 1999 Aug;181(15):4653-60
– reference: 15313254 - Res Microbiol. 2004 Sep;155(7):543-52
– reference: 17905831 - Protein Sci. 2007 Nov;16(11):2391-402
– reference: 7961403 - J Bacteriol. 1994 Nov;176(21):6528-37
– reference: 8824618 - J Bacteriol. 1996 Oct;178(19):5719-31
– reference: 8919456 - FEMS Microbiol Lett. 1996 Feb 1;136(1):57-62
– reference: 10572302 - Biochimie. 1999 Aug-Sep;81(8-9):889-95
– reference: 11544186 - Genes Dev. 2001 Sep 1;15(17):2295-306
– reference: 19824612 - Biochemistry. 2009 Nov 17;48(45):10793-802
– reference: 19763328 - Mol Biosyst. 2009 Dec;5(12):1752-7
– reference: 10411886 - Proc Natl Acad Sci U S A. 1999 Jul 20;96(15):8396-401
– reference: 12467572 - Structure. 2002 Dec;10(12):1649-58
– reference: 20598937 - Curr Opin Chem Biol. 2010 Aug;14(4):481-8
– reference: 12110181 - Cell. 2002 Jun 28;109(7):835-48
– reference: 20008126 - J Biomol Screen. 2010 Jan;15(1):10-20
– reference: 17613524 - J Biol Chem. 2007 Aug 31;282(35):25270-7
– reference: 14715921 - Nucleic Acids Res. 2004;32(1):223-38
– reference: 11532943 - EMBO J. 2001 Sep 3;20(17):4794-802
– reference: 15721258 - Mol Cell. 2005 Feb 18;17(4):549-60
SSID ssj0004599
Score 2.4509804
SecondaryResourceType review_article
Snippet Article Usage Stats Services MMBR Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley...
Members of the large superclass of P-loop GTPases share a core domain with a conserved three-dimensional structure. In eukaryotes, these proteins are...
SourceID pubmedcentral
proquest
pubmed
pascalfrancis
crossref
highwire
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 507
SubjectTerms Amino Acid Sequence
Archaea - enzymology
Bacteria
Bacteria - enzymology
Biological and medical sciences
Cell cycle
Conserved Sequence - genetics
Eukaryotes
Fundamental and applied biological sciences. Psychology
GTP Phosphohydrolases - chemistry
GTP Phosphohydrolases - genetics
GTP Phosphohydrolases - metabolism
Infectious diseases
Intracellular Space - metabolism
Microbiology
Molecular Sequence Data
Pathogenesis
Proteins
Reviews
Toxins
Title The Universally Conserved Prokaryotic GTPases
URI http://mmbr.asm.org/content/75/3/507.abstract
https://www.ncbi.nlm.nih.gov/pubmed/21885683
https://www.proquest.com/docview/894211093
https://www.proquest.com/docview/887507386
https://pubmed.ncbi.nlm.nih.gov/PMC3165542
Volume 75
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELeqISReEN90gykPiBcIZEmc2I-AVia0DoRa0Tfr7CRaxZqifkwafwN_NHdxnDljIOAlav0Vx3c-39nn3zH2LEMlOE-KMiyzKAlTEelQyFKHwFPMKoAfNAh845PsaJp-mPHZYPDD81rabvQr8_3aeyX_Q1VMQ7rSLdl_oGzXKCbgb6QvPpHC-PxrGreeFXBGOMXkGr06Lxv__6-wulgSHOv7ySdcqta-GjqeX8FfWrgouS9cagtT6ghC-2qbFZCKbYUyISd2TDGC7Tm4yz_kJVr79exhvJVHX-aLjsZzczrHpdk669b-_gNtqMqeL4c7WPK9TP2v8IRrJOOQAmLZtceliZBzC1LtJLKNpdJyXuKJV24j5P4q9mO6yjAev_3c4FHKsBXgPXjtk49qND0-VpPD2aSf2yzncZrJJEWFDm3pGzEaHQdu76fDnm-ikXZf4RBbY_G69-a-huNQp8npFtY47yobMOU6i-aqY66n6UzusNutiRK8sfx2lw3K-h67aYOWXtxnIXJd4HFd0HFd4HFd0HLdAzYdHU7eHYVt0I3QpDLbYP9jSGXEQZpK5jhZISNMSIhSXWhTCTBGg85kZTKoqkJT5DOc4qZC6W54zJOHbKde1uVjFhhTFlrkBSfEp6oCIQEKAisSAiIZ5UP20g2UMi0iPQVGOVONZRoLReOqmnHF_0P2vCv-zUKx_K7grht1BeuFWiz0SuVcJYrTS_d7dOiailMeYdew9p4jjGrn-loJmdJOiUyGLOhyURDT6RrU5XKLRdDyjyiE7pA9slS8bPpACJ4JrJz36NsVIIz3fk49P22w3nF0UeGPd__YqT1263JmPmE7m9W2fIq68kbvNyz8E3bKwVs
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Universally+Conserved+Prokaryotic+GTPases&rft.jtitle=Microbiology+and+molecular+biology+reviews&rft.au=Verstraeten%2C+Natalie&rft.au=Fauvart%2C+Maarten&rft.au=Vers%C3%A9es%2C+Wim&rft.au=Michiels%2C+Jan&rft.date=2011-09-01&rft.pub=American+Society+for+Microbiology&rft.issn=1092-2172&rft.eissn=1098-5557&rft.volume=75&rft.issue=3&rft.spage=507&rft_id=info:doi/10.1128%2FMMBR.00009-11&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=2469346171
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1092-2172&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1092-2172&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1092-2172&client=summon