The Universally Conserved Prokaryotic GTPases
Article Usage Stats Services MMBR Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue MMBR About MMBR Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions &...
Saved in:
Published in | Microbiology and Molecular Biology Reviews Vol. 75; no. 3; pp. 507 - 542 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Washington, DC
American Society for Microbiology
01.09.2011
|
Subjects | |
Online Access | Get full text |
ISSN | 1092-2172 1098-5557 1098-5557 |
DOI | 10.1128/MMBR.00009-11 |
Cover
Loading…
Abstract | Article Usage Stats
Services
MMBR
Citing Articles
Google Scholar
PubMed
Related Content
Social Bookmarking
CiteULike
Delicious
Digg
Facebook
Google+
Mendeley
Reddit
StumbleUpon
Twitter
current issue
MMBR
About
MMBR
Subscribers
Authors
Reviewers
Advertisers
Inquiries from the Press
Permissions & Commercial Reprints
ASM Journals Public Access Policy
MMBR
RSS Feeds
1752 N Street N.W. • Washington DC 20036
202.737.3600 • 202.942.9355 fax • journals@asmusa.org
Print ISSN:
1092-2172
Online ISSN:
1098-5557
Copyright © 2014
by the
American Society for Microbiology.
For an alternate route to
MMBR
.asm.org, visit:
MMBR
|
---|---|
AbstractList | Members of the large superclass of P-loop GTPases share a core domain with a conserved three-dimensional structure. In eukaryotes, these proteins are implicated in various crucial cellular processes, including translation, membrane trafficking, cell cycle progression, and membrane signaling. As targets of mutation and toxins, GTPases are involved in the pathogenesis of cancer and infectious diseases. In prokaryotes also, it is hard to overestimate the importance of GTPases in cell physiology. Numerous papers have shed new light on the role of bacterial GTPases in cell cycle regulation, ribosome assembly, the stress response, and other cellular processes. Moreover, bacterial GTPases have been identified as high-potential drug targets. A key paper published over 2 decades ago stated that, "It may never again be possible to capture [GTPases] in a family portrait" (H. R. Bourne, D. A. Sanders, and F. McCormick, Nature 348:125-132, 1990) and indeed, the last 20 years have seen a tremendous increase in publications on the subject. Sequence analysis identified 13 bacterial GTPases that are conserved in at least 75% of all bacterial species. We here provide an overview of these 13 protein subfamilies, covering their cellular functions as well as cellular localization and expression levels, three-dimensional structures, biochemical properties, and gene organization. Conserved roles in eukaryotic homologs will be discussed as well. A comprehensive overview summarizing current knowledge on prokaryotic GTPases will aid in further elucidating the function of these important proteins.Members of the large superclass of P-loop GTPases share a core domain with a conserved three-dimensional structure. In eukaryotes, these proteins are implicated in various crucial cellular processes, including translation, membrane trafficking, cell cycle progression, and membrane signaling. As targets of mutation and toxins, GTPases are involved in the pathogenesis of cancer and infectious diseases. In prokaryotes also, it is hard to overestimate the importance of GTPases in cell physiology. Numerous papers have shed new light on the role of bacterial GTPases in cell cycle regulation, ribosome assembly, the stress response, and other cellular processes. Moreover, bacterial GTPases have been identified as high-potential drug targets. A key paper published over 2 decades ago stated that, "It may never again be possible to capture [GTPases] in a family portrait" (H. R. Bourne, D. A. Sanders, and F. McCormick, Nature 348:125-132, 1990) and indeed, the last 20 years have seen a tremendous increase in publications on the subject. Sequence analysis identified 13 bacterial GTPases that are conserved in at least 75% of all bacterial species. We here provide an overview of these 13 protein subfamilies, covering their cellular functions as well as cellular localization and expression levels, three-dimensional structures, biochemical properties, and gene organization. Conserved roles in eukaryotic homologs will be discussed as well. A comprehensive overview summarizing current knowledge on prokaryotic GTPases will aid in further elucidating the function of these important proteins. Members of the large superclass of P-loop GTPases share a core domain with a conserved three-dimensional structure. In eukaryotes, these proteins are implicated in various crucial cellular processes, including translation, membrane trafficking, cell cycle progression, and membrane signaling. As targets of mutation and toxins, GTPases are involved in the pathogenesis of cancer and infectious diseases. In prokaryotes also, it is hard to overestimate the importance of GTPases in cell physiology. Numerous papers have shed new light on the role of bacterial GTPases in cell cycle regulation, ribosome assembly, the stress response, and other cellular processes. Moreover, bacterial GTPases have been identified as high-potential drug targets. A key paper published over 2 decades ago stated that, "It may never again be possible to capture [GTPases] in a family portrait" (H. R. Bourne, D. A. Sanders, and F. McCormick, Nature 348:125-132, 1990) and indeed, the last 20 years have seen a tremendous increase in publications on the subject. Sequence analysis identified 13 bacterial GTPases that are conserved in at least 75% of all bacterial species. We here provide an overview of these 13 protein subfamilies, covering their cellular functions as well as cellular localization and expression levels, three-dimensional structures, biochemical properties, and gene organization. Conserved roles in eukaryotic homologs will be discussed as well. A comprehensive overview summarizing current knowledge on prokaryotic GTPases will aid in further elucidating the function of these important proteins. Article Usage Stats Services MMBR Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue MMBR About MMBR Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commercial Reprints ASM Journals Public Access Policy MMBR RSS Feeds 1752 N Street N.W. • Washington DC 20036 202.737.3600 • 202.942.9355 fax • journals@asmusa.org Print ISSN: 1092-2172 Online ISSN: 1098-5557 Copyright © 2014 by the American Society for Microbiology. For an alternate route to MMBR .asm.org, visit: MMBR Members of the large superclass of P-loop GTPases share a core domain with a conserved three-dimensional structure. In eukaryotes, these proteins are implicated in various crucial cellular processes, including translation, membrane trafficking, cell cycle progression, and membrane signaling. As targets of mutation and toxins, GTPases are involved in the pathogenesis of cancer and infectious diseases. In prokaryotes also, it is hard to overestimate the importance of GTPases in cell physiology. Numerous papers have shed new light on the role of bacterial GTPases in cell cycle regulation, ribosome assembly, the stress response, and other cellular processes. Moreover, bacterial GTPases have been identified as high-potential drug targets. A key paper published over 2 decades ago stated that, “It may never again be possible to capture [GTPases] in a family portrait” (H. R. Bourne, D. A. Sanders, and F. McCormick, Nature 348 :125-132, 1990) and indeed, the last 20 years have seen a tremendous increase in publications on the subject. Sequence analysis identified 13 bacterial GTPases that are conserved in at least 75% of all bacterial species. We here provide an overview of these 13 protein subfamilies, covering their cellular functions as well as cellular localization and expression levels, three-dimensional structures, biochemical properties, and gene organization. Conserved roles in eukaryotic homologs will be discussed as well. A comprehensive overview summarizing current knowledge on prokaryotic GTPases will aid in further elucidating the function of these important proteins. Members of the large superclass of P-loop GTPases share a core domain with a conserved three-dimensional structure. In eukaryotes, these proteins are implicated in various crucial cellular processes, including translation, membrane trafficking, cell cycle progression, and membrane signaling. As targets of mutation and toxins, GTPases are involved in the pathogenesis of cancer and infectious diseases. In prokaryotes also, it is hard to overestimate the importance of GTPases in cell physiology. Numerous papers have shed new light on the role of bacterial GTPases in cell cycle regulation, ribosome assembly, the stress response, and other cellular processes. Moreover, bacterial GTPases have been identified as high-potential drug targets. A key paper published over 2 decades ago stated that, "It may never again be possible to capture [GTPases] in a family portrait" (H. R. Bourne, D. A. Sanders, and F. McCormick, Nature 348:125-132, 1990) and indeed, the last 20 years have seen a tremendous increase in publications on the subject. Sequence analysis identified 13 bacterial GTPases that are conserved in at least 75% of all bacterial species. We here provide an overview of these 13 protein subfamilies, covering their cellular functions as well as cellular localization and expression levels, three-dimensional structures, biochemical properties, and gene organization. Conserved roles in eukaryotic homologs will be discussed as well. A comprehensive overview summarizing current knowledge on prokaryotic GTPases will aid in further elucidating the function of these important proteins. [PUBLICATION ABSTRACT] |
Author | Wim Versées Maarten Fauvart Jan Michiels Natalie Verstraeten |
Author_xml | – sequence: 1 givenname: Natalie surname: Verstraeten fullname: Verstraeten, Natalie organization: Centre of Microbial and Plant Genetics, K. U. Leuven, Kasteelpark Arenberg 20, 3001 Leuven, Belgium – sequence: 2 givenname: Maarten surname: Fauvart fullname: Fauvart, Maarten organization: Centre of Microbial and Plant Genetics, K. U. Leuven, Kasteelpark Arenberg 20, 3001 Leuven, Belgium – sequence: 3 givenname: Wim surname: Versées fullname: Versées, Wim organization: Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium, Department of Molecular and Cellular Interactions, VIB, Pleinlaan 2, 1050 Brussels, Belgium – sequence: 4 givenname: Jan surname: Michiels fullname: Michiels, Jan organization: Centre of Microbial and Plant Genetics, K. U. Leuven, Kasteelpark Arenberg 20, 3001 Leuven, Belgium |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24504681$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/21885683$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc1v1DAQxS1URD_gyBUtSIhTiu3YiX1BoisoSK2o0PY8mjh21yWxi53dqv893u6Wj0r4Yo_8m6c38w7JXojBEvKS0WPGuHp_fn7y_ZiWoyvGnpADRrWqpJTt3v2bV5y1fJ8c5nxdICG1fkb2OVNKNqo-INViaWeXwa9tyjgMd7N5DNmmte1nFyn-wHQXJ29mp4sLzDY_J08dDtm-2N1H5PLzp8X8S3X27fTr_ONZZYRupmKEo9BUojZOtz1KbIRoJVLR9Z1xCo3psGu0Mw0613dtzRqhqHFUMiO5rI_Ih63uzaobbW9smBIOcJP8WBxBRA___gS_hKu4hiIkpeBF4N1OIMWfK5snGH02dhgw2LjKoFQraVurppBvHpHXcZVCmQ6UFpyVHdYFevW3n99GHvZYgLc7ALPBwSUMxuc_nJBUNIoVrt5yJsWck3Vg_ISTj5sx_ACMwiZV2KQK96mWunRVj7oehP_Hv97yS3-1vPXJAuYRxrFL0EqoYTP6L-F7rcs |
CODEN | MMBRF7 |
CitedBy_id | crossref_primary_10_1016_j_jbc_2023_105163 crossref_primary_10_1093_femsre_fuv049 crossref_primary_10_18632_oncotarget_7224 crossref_primary_10_1128_mbio_00859_23 crossref_primary_10_1111_mmi_14382 crossref_primary_10_18632_oncotarget_6496 crossref_primary_10_18632_aging_102797 crossref_primary_10_1016_j_str_2024_06_016 crossref_primary_10_1017_S0031182018000501 crossref_primary_10_3389_fmicb_2024_1304325 crossref_primary_10_1128_mBio_00703_21 crossref_primary_10_1177_1087057113486001 crossref_primary_10_1093_jxb_ert360 crossref_primary_10_1093_nar_gkad127 crossref_primary_10_1128_mBio_02189_19 crossref_primary_10_1590_1519_6984_250700 crossref_primary_10_1089_ars_2015_6272 crossref_primary_10_1007_s12038_018_9807_9 crossref_primary_10_1093_nar_gku213 crossref_primary_10_1038_nsmb_3103 crossref_primary_10_7554_eLife_37373 crossref_primary_10_1091_mbc_E20_07_0457 crossref_primary_10_3389_fmolb_2023_1263433 crossref_primary_10_1093_gbe_evac079 crossref_primary_10_1016_j_protis_2024_126017 crossref_primary_10_1002_1873_3468_13775 crossref_primary_10_15406_ijmboa_2016_01_00004 crossref_primary_10_1111_febs_14067 crossref_primary_10_1177_15330338241241935 crossref_primary_10_1111_1462_2920_13893 crossref_primary_10_3389_fpls_2014_00386 crossref_primary_10_3390_cells8111313 crossref_primary_10_1002_1873_3468_14516 crossref_primary_10_1073_pnas_1505297112 crossref_primary_10_1080_07391102_2016_1224732 crossref_primary_10_1093_nar_gkaa1131 crossref_primary_10_1016_j_bbamcr_2020_118896 crossref_primary_10_1016_j_ijbiomac_2024_135337 crossref_primary_10_1016_j_dnarep_2013_08_011 crossref_primary_10_1016_j_bbrc_2015_04_079 crossref_primary_10_1111_febs_14333 crossref_primary_10_1111_j_1742_4658_2012_08731_x crossref_primary_10_1128_mBio_01726_17 crossref_primary_10_1007_s00018_021_03961_0 crossref_primary_10_1371_journal_pone_0148222 crossref_primary_10_1074_jbc_M116_761809 crossref_primary_10_1002_cphc_202401057 crossref_primary_10_1186_s12866_015_0453_1 crossref_primary_10_1016_j_gep_2019_02_002 crossref_primary_10_1016_j_isci_2024_110027 crossref_primary_10_1016_j_molcel_2012_11_025 crossref_primary_10_3390_ijms21010016 crossref_primary_10_1016_j_jsps_2017_05_007 crossref_primary_10_1128_JB_00399_21 crossref_primary_10_1128_JB_00159_16 crossref_primary_10_1021_acscatal_5b02491 crossref_primary_10_1093_nar_gks1351 crossref_primary_10_1128_mBio_02679_21 crossref_primary_10_1371_journal_pone_0092215 crossref_primary_10_1371_journal_pgen_1008059 crossref_primary_10_3390_microorganisms10010014 crossref_primary_10_1080_07391102_2016_1195284 crossref_primary_10_3390_md18070360 crossref_primary_10_1016_j_molcel_2015_05_011 crossref_primary_10_1186_s12896_015_0132_1 crossref_primary_10_1371_journal_pone_0073954 crossref_primary_10_1002_2211_5463_12065 crossref_primary_10_1007_s00239_019_09915_2 crossref_primary_10_1128_mBio_01935_15 crossref_primary_10_1128_mBio_01785_16 crossref_primary_10_1021_acs_chemrev_3c00622 crossref_primary_10_1016_j_bmcl_2023_129276 crossref_primary_10_1016_j_isci_2024_110215 crossref_primary_10_1128_MCB_00137_16 crossref_primary_10_1186_s40168_021_01095_w crossref_primary_10_1128_AEM_02483_17 crossref_primary_10_1134_S1062359020300019 crossref_primary_10_1038_s41388_018_0647_8 crossref_primary_10_1007_s12275_022_2146_4 crossref_primary_10_1074_jbc_M114_598227 crossref_primary_10_1111_febs_14959 crossref_primary_10_1038_s42003_020_01368_4 crossref_primary_10_1371_journal_pgen_1004363 crossref_primary_10_1021_ja504125v crossref_primary_10_1371_journal_pone_0100147 crossref_primary_10_1158_1541_7786_MCR_18_0269 crossref_primary_10_1021_acs_biochem_6b00706 crossref_primary_10_1111_mmi_13412 crossref_primary_10_1016_j_molcel_2018_05_003 crossref_primary_10_3389_fmolb_2021_643696 crossref_primary_10_3389_fmicb_2022_999176 crossref_primary_10_1186_s12864_015_1289_7 crossref_primary_10_3389_fpls_2016_00873 crossref_primary_10_3389_fpls_2014_00678 crossref_primary_10_1111_1574_6968_12403 crossref_primary_10_1016_j_bbagrm_2017_06_003 crossref_primary_10_1128_JB_00023_15 crossref_primary_10_1016_j_bbabio_2024_149514 crossref_primary_10_1093_femsre_fuy005 crossref_primary_10_1093_nar_gkt320 crossref_primary_10_1016_j_microb_2025_100261 crossref_primary_10_1128_JB_00192_19 crossref_primary_10_1128_spectrum_02098_22 crossref_primary_10_1098_rstb_2016_0189 crossref_primary_10_1016_j_febslet_2012_06_030 crossref_primary_10_1111_mmi_14332 crossref_primary_10_1128_JB_01758_12 crossref_primary_10_3389_fmicb_2021_781760 crossref_primary_10_1073_pnas_2006717118 crossref_primary_10_1016_j_celrep_2023_112850 crossref_primary_10_1038_s41467_024_53980_1 crossref_primary_10_1083_jcb_201711131 crossref_primary_10_1099_mic_0_001200 crossref_primary_10_1002_bip_22813 crossref_primary_10_1007_s00299_021_02739_9 crossref_primary_10_1038_srep33723 crossref_primary_10_1074_jbc_M112_413070 crossref_primary_10_1038_s42003_024_06737_x crossref_primary_10_1111_gtc_12942 crossref_primary_10_1007_s00294_018_0905_x crossref_primary_10_1038_srep13241 crossref_primary_10_1016_j_gim_2023_100893 crossref_primary_10_1111_mmi_14842 crossref_primary_10_1111_ppl_12603 crossref_primary_10_3390_genes11080842 crossref_primary_10_1007_s11103_017_0664_y crossref_primary_10_1042_BCJ20180803 crossref_primary_10_1038_srep15817 crossref_primary_10_1016_j_scitotenv_2024_173775 crossref_primary_10_1016_j_gene_2023_147436 crossref_primary_10_1016_j_micres_2017_11_016 crossref_primary_10_1371_journal_pone_0194528 crossref_primary_10_1093_plphys_kiac078 crossref_primary_10_1007_s00253_015_6434_3 crossref_primary_10_1093_pcp_pcad082 crossref_primary_10_3390_biology11121738 crossref_primary_10_1016_j_cell_2023_12_027 crossref_primary_10_1016_j_febslet_2015_03_001 crossref_primary_10_1093_nar_gku1135 crossref_primary_10_3389_fmicb_2023_1242616 crossref_primary_10_1042_BJ20121792 crossref_primary_10_3389_fphar_2020_00666 crossref_primary_10_1016_j_iliver_2023_08_007 crossref_primary_10_3389_fmicb_2016_01569 crossref_primary_10_1016_j_bbapap_2017_06_014 crossref_primary_10_1016_j_jmb_2020_01_038 crossref_primary_10_1093_nar_gkw490 crossref_primary_10_1021_bi301600z crossref_primary_10_1038_s41589_018_0183_4 crossref_primary_10_1016_j_ymeth_2016_12_002 crossref_primary_10_1016_j_molcel_2021_02_006 crossref_primary_10_1186_1471_2180_13_77 crossref_primary_10_3109_1040841X_2013_776510 |
Cites_doi | 10.1128/jb.175.16.5242-5252.1993 10.1128/jb.179.1.170-179.1997 10.1016/S0092-8674(00)00181-1 10.1111/j.1365-2958.2007.05811.x 10.1128/JB.00508-06 10.1002/bip.20762 10.1007/s11103-009-9529-3 10.1074/mcp.M500303-MCP200 10.1016/j.resmic.2004.03.005 10.1515/BC.2009.102 10.1006/jmbi.1993.1371 10.1111/j.1365-2443.2005.00851.x 10.1038/415141a 10.1128/JB.188.3.1205-1210.2006 10.1016/S1046-5928(03)00107-4 10.1111/j.1365-2958.2004.04312.x 10.1111/j.1365-2958.2009.06614.x 10.1128/jb.176.23.7155-7160.1994 10.1073/pnas.87.15.5589 10.1038/385361a0 10.1099/00221287-148-11-3539 10.1073/pnas.0907213106 10.1016/0092-8674(90)90018-A 10.1016/j.bbrc.2004.07.154 10.1094/MPMI-23-1-0067 10.1046/j.1365-2958.1996.01529.x 10.1016/j.resmic.2009.11.002 10.1146/annurev.biochem.73.011303.074048 10.1128/JB.00959-06 10.1107/S1744309106011456 10.1016/j.febslet.2005.09.010 10.1128/jb.161.2.556-562.1985 10.1128/JB.01758-07 10.1046/j.1365-2958.2003.03475.x 10.1128/jb.171.5.2581-2590.1989 10.1111/j.1469-8137.2008.02473.x 10.1128/jb.176.21.6528-6537.1994 10.1046/j.1365-2958.2002.02878.x 10.1099/00221287-147-1-183 10.1006/jmbi.2001.5378 10.1126/science.1062023 10.1046/j.1365-2958.1998.00719.x 10.1111/j.1365-2958.1992.tb00845.x 10.1073/pnas.82.22.7500 10.1093/nar/gkp762 10.1002/prot.22599 10.1038/348125a0 10.1128/JB.00444-06 10.1128/jb.176.1.44-49.1994 10.1073/pnas.0307512101 10.18388/abp.2001_3850 10.1128/JB.181.18.5825-5832.1999 10.1128/JB.181.17.5242-5249.1999 10.1073/pnas.0904032106 10.1016/S0968-0004(99)01429-2 10.1091/mbc.e04-07-0622 10.1128/MMBR.69.1.101-123.2005 10.1080/713803743 10.1016/j.cell.2006.09.037 10.1128/jb.176.23.7161-7168.1994 10.1111/j.1365-2443.2006.01017.x 10.1073/pnas.81.18.5704 10.1371/journal.pbio.1000212 10.1016/j.ymgme.2004.07.009 10.1128/jb.171.3.1362-1371.1989 10.1016/j.tibtech.2006.07.005 10.1128/EC.00356-08 10.1074/jbc.275.6.4251 10.1128/JB.184.19.5323-5329.2002 10.1016/j.ijpara.2008.05.019 10.1261/rna.7470904 10.1046/j.1365-2958.1998.01042.x 10.1016/S0959-440X(97)80157-1 10.1093/genetics/158.1.41 10.1128/MCB.22.21.7701-7711.2002 10.1128/MCB.00946-08 10.1111/j.1365-2958.2004.04354.x 10.1128/JB.182.10.2771-2777.2000 10.1099/mic.0.2008/022137-0 10.1128/jb.177.11.3308-3311.1995 10.1128/jb.173.7.2265-2270.1991 10.1016/S0021-9258(17)39594-7 10.1093/nar/gkq305 10.1093/genetics/145.4.867 10.1073/pnas.96.15.8396 10.1073/pnas.90.22.10866 10.1074/jbc.273.35.22480 10.1046/j.1365-2958.2000.02198.x 10.1006/jmbi.1998.2162 10.1128/AAC.48.3.890-896.2004 10.1128/jb.176.21.6518-6527.1994 10.1016/0923-2508(91)90045-C 10.1126/science.277.5324.333 10.1038/nbt0998-851 10.1016/0165-1110(75)90002-0 10.1099/00221287-148-11-3457 10.1128/JB.185.14.4031-4037.2003 10.1093/jb/mvq039 10.1186/1471-2180-11-43 10.1128/jb.171.9.5017-5024.1989 10.1073/pnas.0801308105 10.1016/0959-440X(95)80015-8 10.1128/IAI.01721-07 10.1128/jb.177.8.2194-2196.1995 10.1128/JB.00799-08 10.1099/00221287-146-5-1071 10.1111/j.1365-2958.2005.04794.x 10.1002/(SICI)1097-0134(199706)28:2<285::AID-PROT15>3.0.CO;2-E 10.1159/000076741 10.1016/j.coph.2006.05.005 10.1046/j.1365-2958.2001.02350.x 10.1046/j.1365-2958.2001.02536.x 10.1177/1087057109352240 10.1038/nrm1589 10.1111/j.1365-2958.2009.06767.x 10.1007/s00284-002-3713-x 10.1046/j.1432-1033.2001.02493.x 10.1093/nar/29.3.638 10.1128/jb.179.20.6426-6431.1997 10.1074/jbc.M109.096131 10.1111/j.1574-6968.1992.tb05356.x 10.1128/JB.185.19.5673-5684.2003 10.1093/emboj/20.17.4794 10.1016/j.jmb.2010.02.036 10.1111/j.1365-2958.1994.tb01009.x 10.1006/jmbi.1997.1134 10.1099/mic.0.26292-0 10.1128/JB.186.2.481-489.2004 10.1186/1471-2180-8-65 10.1016/j.cbpa.2010.06.169 10.1016/S0960-9822(98)70445-2 10.1002/j.1460-2075.1989.tb08504.x 10.1128/IAI.72.10.5783-5790.2004 10.2478/s11658-008-0023-8 10.1074/jbc.273.43.27945 10.1128/JB.00045-10 10.1016/S1369-5274(03)00037-7 10.1074/jbc.M503223200 10.1128/JB.01744-07 10.1006/jmbi.1998.2197 10.1093/nar/gkq973 10.1093/emboj/20.17.4863 10.1002/prot.21186 10.1128/jb.174.5.1544-1553.1992 10.1046/j.1365-2958.2001.02574.x 10.1016/j.cell.2007.05.018 10.1002/ajmg.b.30454 10.1074/jbc.M001854200 10.1073/pnas.83.23.8849 10.1016/S0014-5793(00)02402-9 10.1016/j.tim.2005.11.006 10.1016/j.jmb.2004.01.047 10.1039/b716357f 10.1016/j.jmb.2004.03.043 10.1186/1471-2180-9-266 10.1016/j.molcel.2005.01.012 10.1111/j.1574-6968.1998.tb12867.x 10.1159/000092818 10.1073/pnas.0602585103 10.1128/AEM.01157-07 10.1006/geno.2000.6243 10.1016/j.molcel.2007.08.026 10.1046/j.1365-2443.2001.00480.x 10.1126/science.286.5447.2165 10.1266/ggs.82.281 10.1073/pnas.0907262106 10.1073/pnas.2535394100 10.1093/emboj/cdf656 10.1016/S0300-9084(97)86726-0 10.1093/nar/gkl752 10.1111/j.1574-6968.2007.00860.x 10.1371/journal.pone.0012597 10.1016/j.jmb.2009.07.004 10.1016/j.cub.2006.12.029 10.1016/j.sbi.2005.05.004 10.1073/pnas.0611650104 10.1017/S0033583509990060 10.1111/j.1365-2958.2005.04710.x 10.1093/nar/gkh185 10.1146/annurev.micro.091208.073225 10.1038/385365a0 10.1093/genetics/154.2.523 10.1007/s00203-006-0099-3 10.1016/0300-9084(94)90046-9 10.1038/nature03239 10.1038/nature02250 10.1016/j.bbrc.2005.11.129 10.1099/13500872-145-4-791 10.1046/j.1365-2958.1999.01553.x 10.1016/S0378-1119(96)00813-X 10.1111/j.1365-2958.1994.tb00400.x 10.1007/s00284-007-9030-7 10.1128/MMBR.00013-07 10.1046/j.1432-1033.2003.03813.x 10.1128/JB.02021-07 10.1128/JB.01353-08 10.1016/S0969-2126(02)00882-1 10.1128/JB.181.15.4653-4660.1999 10.1074/jbc.270.9.4822 10.1111/j.1574-6968.1995.tb07432.x 10.1074/jbc.M703894200 10.1101/gad.207701 10.1002/prot.20413 10.1128/JB.01193-07 10.1016/j.bbrc.2008.12.072 10.1371/journal.pone.0009944 10.1128/JB.182.12.3460-3466.2000 10.1631/jzus.B0910009 10.1038/sj.emboj.7601171 10.1038/sj.onc.1206287 10.1016/S0300-9084(96)80004-6 10.1128/JB.182.24.7078-7082.2000 10.1128/JB.00315-07 10.1016/j.ceb.2010.04.007 10.1074/jbc.M110.172080 10.1016/j.jmb.2010.04.040 10.1074/jbc.M700541200 10.1128/jb.174.7.2281-2287.1992 10.1128/jb.178.19.5719-5731.1996 10.1128/jb.173.19.6018-6024.1991 10.1016/S0079-6603(00)66028-2 10.1016/0378-1119(93)90327-Y 10.1038/sj.emboj.7600507 10.1128/IAI.67.9.4510-4516.1999 10.1093/emboj/18.24.7063 10.4161/rna.2.2.1610 10.1107/S0907444903024910 10.1016/S0147-619X(03)00021-0 10.1007/s00018-008-7495-6 10.1093/nar/12.8.3521 10.1016/j.micinf.2005.05.018 10.1128/JB.186.16.5249-5257.2004 10.1007/s00018-008-8416-4 10.1016/S0092-8674(02)00773-0 10.1128/JB.184.10.2692-2698.2002 10.1261/rna.5210803 10.1111/j.1365-2958.2006.05348.x 10.1006/bbrc.1999.1471 10.1093/mp/ssp073 10.1128/JB.180.19.5243-5246.1998 10.1023/B:JNMR.0000013693.80516.57 10.1016/S1097-2765(00)00035-6 10.1128/jb.152.3.1211-1219.1982 10.1016/j.bbamcr.2004.03.009 10.1146/annurev.biochem.70.1.755 10.1016/j.jmb.2008.04.072 10.1093/hmg/7.3.407 10.1093/nar/gkp107 10.1016/S0021-9258(19)39884-9 10.1074/jbc.M409306200 10.1128/JB.184.22.6389-6394.2002 10.1099/mic.0.27421-0 10.1016/S0092-8674(00)81418-X 10.1016/S0969-2126(02)00905-X 10.1016/j.tibs.2009.05.004 10.1128/jb.169.9.4076-4085.1987 10.1021/bi901074h 10.2174/138920207780368141 10.1074/jbc.M301381200 10.1111/j.1365-2958.1991.tb00770.x 10.1039/b905518p 10.1016/S0300-9084(99)00207-2 10.1038/nrm2689 10.1111/j.1365-2958.2006.05574.x 10.1111/j.1574-6968.1996.tb08025.x 10.1110/ps.072900907 10.1128/AEM.01523-08 10.1038/349117a0 10.1128/JB.182.23.6819-6823.2000 10.1006/geno.1993.1230 10.1042/BJ20100757 10.1006/jmbi.1998.2196 10.1107/S1744309109013591 10.1046/j.1365-2958.2001.02285.x 10.1128/JB.183.7.2316-2321.2001 10.1016/j.pep.2011.02.009 10.1016/j.jmb.2004.05.029 10.1016/j.febslet.2004.11.049 10.1016/j.str.2009.03.013 10.1016/j.jmb.2009.11.026 10.1016/S0014-5793(00)01145-5 10.1128/jb.179.14.4575-4582.1997 10.1128/jb.179.7.2181-2188.1997 10.1074/jbc.M104455200 10.1093/nar/27.19.3821 10.1007/BF00330746 10.1016/j.molcel.2005.03.028 10.1128/JB.01213-06 10.1093/nar/gkl1158 |
ContentType | Journal Article |
Copyright | 2015 INIST-CNRS Copyright American Society for Microbiology Sep 2011 Copyright © 2011, American Society for Microbiology. All Rights Reserved. 2011 American Society for Microbiology |
Copyright_xml | – notice: 2015 INIST-CNRS – notice: Copyright American Society for Microbiology Sep 2011 – notice: Copyright © 2011, American Society for Microbiology. All Rights Reserved. 2011 American Society for Microbiology |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7QL 7QP 7QR 7TK 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1128/MMBR.00009-11 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Technology Research Database Nucleic Acids Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Virology and AIDS Abstracts CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1098-5557 |
EndPage | 542 |
ExternalDocumentID | PMC3165542 2469346171 21885683 24504681 10_1128_MMBR_00009_11 mmbr_75_3_507 |
Genre | Research Support, Non-U.S. Gov't Journal Article Review Feature |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 123 186 18M 1KJ 29M 2KS 2WC 39C 3O- 4.4 53G 5RE 5VS 6TJ 85S 9M8 AAGFI AAIKC AAMNW AAYJJ AAYXX ABPPZ ACGFO ACGOD ACIWK ACNCT ACPRK ADBBV AENEX AFFNX AFRAH AGHSJ AGVNZ AIDAL ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BKOMP BTFSW C1A CITATION CJ0 CS3 D0L DIK DU5 E3Z EBS EJD F5P GX1 H13 HF~ HYE HZ~ H~9 KQ8 L7B MVM NEJ NHB O9- OHT OMK P2P PQQKQ RHI RNS RPM RSF RXW TAE TR2 UKR VQP W8F WH7 WHG WOQ X7M YNT YQT ZGI ZXP ~02 IQODW CGR CUY CVF ECM EIF NPM 7QL 7QP 7QR 7TK 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c496t-112a4905a9cf97da5a64475a04bdbcf8accbab69fc6affdb7316480cf051c5253 |
ISSN | 1092-2172 1098-5557 |
IngestDate | Thu Aug 21 18:10:10 EDT 2025 Fri Jul 11 16:13:46 EDT 2025 Mon Jun 30 10:37:02 EDT 2025 Mon Jul 21 06:03:07 EDT 2025 Mon Jul 21 09:13:13 EDT 2025 Tue Jul 01 04:14:25 EDT 2025 Thu Apr 24 22:57:56 EDT 2025 Wed May 18 15:25:43 EDT 2016 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | dGTPase Hydrolases Esterases Review Enzyme Triphosphoric monoester hydrolases |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c496t-112a4905a9cf97da5a64475a04bdbcf8accbab69fc6affdb7316480cf051c5253 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
PMID | 21885683 |
PQID | 894211093 |
PQPubID | 42367 |
PageCount | 36 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3165542 crossref_citationtrail_10_1128_MMBR_00009_11 pubmed_primary_21885683 highwire_asm_mmbr_75_3_507 crossref_primary_10_1128_MMBR_00009_11 pascalfrancis_primary_24504681 proquest_journals_894211093 proquest_miscellaneous_887507386 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-09-01 |
PublicationDateYYYYMMDD | 2011-09-01 |
PublicationDate_xml | – month: 09 year: 2011 text: 2011-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Washington, DC |
PublicationPlace_xml | – name: Washington, DC – name: United States – name: Washington – name: 1752 N St., N.W., Washington, DC |
PublicationTitle | Microbiology and Molecular Biology Reviews |
PublicationTitleAlternate | Microbiol Mol Biol Rev |
PublicationYear | 2011 |
Publisher | American Society for Microbiology |
Publisher_xml | – name: American Society for Microbiology |
References | e_1_3_2_232_2 e_1_3_2_255_2 e_1_3_2_278_2 e_1_3_2_195_2 e_1_3_2_217_2 e_1_3_2_172_2 e_1_3_2_62_2 e_1_3_2_85_2 e_1_3_2_24_2 e_1_3_2_47_2 e_1_3_2_100_2 e_1_3_2_123_2 e_1_3_2_146_2 e_1_3_2_169_2 e_1_3_2_281_2 e_1_3_2_108_2 e_1_3_2_220_2 e_1_3_2_243_2 e_1_3_2_266_2 e_1_3_2_289_2 e_1_3_2_7_2 e_1_3_2_161_2 e_1_3_2_184_2 e_1_3_2_228_2 e_1_3_2_73_2 e_1_3_2_205_2 e_1_3_2_12_2 e_1_3_2_58_2 e_1_3_2_96_2 e_1_3_2_35_2 e_1_3_2_112_2 e_1_3_2_135_2 e_1_3_2_158_2 e_1_3_2_50_2 e_1_3_2_196_2 e_1_3_2_292_2 e_1_3_2_48_2 e_1_3_2_210_2 e_1_3_2_256_2 e_1_3_2_279_2 e_1_3_2_194_2 e_1_3_2_233_2 e_1_3_2_40_2 e_1_3_2_86_2 e_1_3_2_218_2 e_1_3_2_63_2 e_1_3_2_25_2 e_1_3_2_145_2 e_1_3_2_168_2 e_1_3_2_122_2 e_1_3_2_282_2 e_1_3_2_107_2 e_1_3_2_221_2 e_1_3_2_267_2 e_1_3_2_59_2 e_1_3_2_6_2 e_1_3_2_244_2 e_1_3_2_206_2 e_1_3_2_229_2 e_1_3_2_183_2 e_1_3_2_51_2 e_1_3_2_74_2 e_1_3_2_160_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_97_2 e_1_3_2_134_2 e_1_3_2_157_2 e_1_3_2_111_2 e_1_3_2_270_2 e_1_3_2_293_2 e_1_3_2_119_2 Polkinghorne A. (e_1_3_2_207_2) 2011 e_1_3_2_257_2 e_1_3_2_211_2 e_1_3_2_234_2 e_1_3_2_151_2 e_1_3_2_22_2 e_1_3_2_45_2 e_1_3_2_68_2 e_1_3_2_219_2 e_1_3_2_125_2 e_1_3_2_148_2 e_1_3_2_60_2 e_1_3_2_83_2 e_1_3_2_102_2 e_1_3_2_163_2 e_1_3_2_186_2 e_1_3_2_260_2 e_1_3_2_283_2 e_1_3_2_268_2 e_1_3_2_18_2 e_1_3_2_222_2 e_1_3_2_245_2 e_1_3_2_140_2 e_1_3_2_10_2 e_1_3_2_5_2 e_1_3_2_33_2 e_1_3_2_79_2 e_1_3_2_56_2 e_1_3_2_114_2 e_1_3_2_137_2 e_1_3_2_94_2 e_1_3_2_71_2 e_1_3_2_152_2 e_1_3_2_175_2 e_1_3_2_294_2 e_1_3_2_198_2 e_1_3_2_271_2 March P. E. (e_1_3_2_171_2) 1988; 2 e_1_3_2_258_2 e_1_3_2_235_2 e_1_3_2_273_2 e_1_3_2_212_2 e_1_3_2_150_2 e_1_3_2_173_2 e_1_3_2_84_2 e_1_3_2_23_2 e_1_3_2_69_2 e_1_3_2_46_2 e_1_3_2_124_2 e_1_3_2_147_2 e_1_3_2_61_2 e_1_3_2_101_2 e_1_3_2_185_2 e_1_3_2_109_2 e_1_3_2_261_2 e_1_3_2_269_2 e_1_3_2_19_2 e_1_3_2_246_2 e_1_3_2_284_2 e_1_3_2_200_2 e_1_3_2_223_2 e_1_3_2_162_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_57_2 e_1_3_2_95_2 e_1_3_2_4_2 e_1_3_2_208_2 e_1_3_2_113_2 e_1_3_2_159_2 e_1_3_2_136_2 e_1_3_2_72_2 e_1_3_2_174_2 e_1_3_2_197_2 e_1_3_2_272_2 e_1_3_2_28_2 e_1_3_2_191_2 e_1_3_2_213_2 e_1_3_2_236_2 e_1_3_2_251_2 e_1_3_2_274_2 e_1_3_2_20_2 e_1_3_2_43_2 e_1_3_2_259_2 e_1_3_2_66_2 e_1_3_2_89_2 e_1_3_2_104_2 e_1_3_2_142_2 e_1_3_2_165_2 e_1_3_2_188_2 e_1_3_2_81_2 e_1_3_2_127_2 e_1_3_2_16_2 e_1_3_2_39_2 Garcia C. (e_1_3_2_87_2) 2010; 63 e_1_3_2_224_2 e_1_3_2_247_2 e_1_3_2_262_2 e_1_3_2_285_2 e_1_3_2_201_2 e_1_3_2_54_2 e_1_3_2_31_2 e_1_3_2_180_2 e_1_3_2_3_2 e_1_3_2_77_2 e_1_3_2_209_2 e_1_3_2_92_2 e_1_3_2_131_2 e_1_3_2_154_2 e_1_3_2_177_2 e_1_3_2_250_2 e_1_3_2_116_2 e_1_3_2_139_2 e_1_3_2_190_2 e_1_3_2_29_2 e_1_3_2_214_2 e_1_3_2_252_2 e_1_3_2_275_2 e_1_3_2_21_2 e_1_3_2_237_2 e_1_3_2_44_2 e_1_3_2_67_2 e_1_3_2_126_2 e_1_3_2_82_2 e_1_3_2_103_2 e_1_3_2_141_2 e_1_3_2_187_2 e_1_3_2_164_2 e_1_3_2_149_2 e_1_3_2_17_2 e_1_3_2_240_2 e_1_3_2_202_2 e_1_3_2_225_2 e_1_3_2_263_2 e_1_3_2_286_2 e_1_3_2_32_2 e_1_3_2_248_2 e_1_3_2_55_2 e_1_3_2_78_2 e_1_3_2_2_2 e_1_3_2_93_2 e_1_3_2_115_2 e_1_3_2_130_2 e_1_3_2_176_2 e_1_3_2_70_2 e_1_3_2_153_2 e_1_3_2_199_2 e_1_3_2_138_2 Wu H. (e_1_3_2_277_2) 2010; 78 e_1_3_2_26_2 e_1_3_2_49_2 e_1_3_2_230_2 e_1_3_2_193_2 e_1_3_2_253_2 e_1_3_2_276_2 e_1_3_2_41_2 e_1_3_2_64_2 e_1_3_2_215_2 e_1_3_2_238_2 e_1_3_2_170_2 e_1_3_2_167_2 e_1_3_2_121_2 e_1_3_2_144_2 e_1_3_2_106_2 e_1_3_2_129_2 e_1_3_2_9_2 e_1_3_2_37_2 e_1_3_2_241_2 e_1_3_2_203_2 e_1_3_2_264_2 e_1_3_2_287_2 e_1_3_2_75_2 e_1_3_2_182_2 e_1_3_2_249_2 e_1_3_2_52_2 e_1_3_2_226_2 e_1_3_2_14_2 e_1_3_2_98_2 e_1_3_2_156_2 e_1_3_2_179_2 e_1_3_2_110_2 e_1_3_2_133_2 e_1_3_2_90_2 e_1_3_2_290_2 e_1_3_2_118_2 e_1_3_2_27_2 e_1_3_2_231_2 e_1_3_2_192_2 e_1_3_2_254_2 e_1_3_2_65_2 e_1_3_2_239_2 e_1_3_2_42_2 e_1_3_2_216_2 e_1_3_2_88_2 e_1_3_2_189_2 e_1_3_2_120_2 e_1_3_2_166_2 e_1_3_2_80_2 e_1_3_2_143_2 e_1_3_2_280_2 e_1_3_2_105_2 e_1_3_2_128_2 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_242_2 e_1_3_2_288_2 e_1_3_2_265_2 e_1_3_2_30_2 e_1_3_2_53_2 e_1_3_2_76_2 e_1_3_2_99_2 e_1_3_2_204_2 e_1_3_2_227_2 e_1_3_2_181_2 e_1_3_2_91_2 e_1_3_2_178_2 e_1_3_2_155_2 e_1_3_2_132_2 e_1_3_2_291_2 e_1_3_2_117_2 10675533 - FEBS Lett. 2000 Feb 11;467(2-3):175-8 16343907 - Trends Microbiol. 2006 Jan;14(1):45-54 19995735 - Mol Plant. 2009 Nov;2(6):1373-83 20008126 - J Biomol Screen. 2010 Jan;15(1):10-20 7876255 - J Biol Chem. 1995 Mar 3;270(9):4822-39 10591650 - Science. 1999 Dec 10;286(5447):2165-9 15136032 - J Mol Biol. 2004 May 28;339(2):265-78 7961486 - J Bacteriol. 1994 Dec;176(23):7155-60 10464193 - J Bacteriol. 1999 Sep;181(17):5242-9 1551846 - J Bacteriol. 1992 Apr;174(7):2281-7 19958140 - Mol Plant Microbe Interact. 2010 Jan;23(1):67-81 20598937 - Curr Opin Chem Biol. 2010 Aug;14(4):481-8 16825789 - J Mol Microbiol Biotechnol. 2006;11(1-2):41-52 19181811 - J Bacteriol. 2009 Apr;191(7):2307-14 1898771 - Nature. 1991 Jan 10;349(6305):117-27 20188109 - J Mol Biol. 2010 Apr 23;398(1):1-7 12110181 - Cell. 2002 Jun 28;109(7):835-48 2105934 - J Biol Chem. 1990 Feb 15;265(5):2888-95 11244072 - J Bacteriol. 2001 Apr;183(7):2316-21 19246542 - Nucleic Acids Res. 2009 Apr;37(7):2359-70 2199064 - Cell. 1990 Aug 10;62(3):539-48 2999765 - Proc Natl Acad Sci U S A. 1985 Nov;82(22):7500-4 8824618 - J Bacteriol. 1996 Oct;178(19):5719-31 14684918 - Acta Crystallogr D Biol Crystallogr. 2004 Jan;60(Pt 1):166-8 17015655 - J Bacteriol. 2006 Oct;188(20):7165-75 2838786 - Oncogene. 1988 Jun;2(6):539-44 19407389 - Acta Crystallogr Sect F Struct Biol Cryst Commun. 2009 May 1;65(Pt 5):508-11 16284124 - Mol Cell Proteomics. 2006 Feb;5(2):366-78 10431174 - Trends Biochem Sci. 1999 Aug;24(8):306-11 11387344 - J Biol Chem. 2001 Aug 17;276(33):31415-21 17062623 - Nucleic Acids Res. 2006;34(20):5892-905 19220752 - Mol Microbiol. 2009 Mar;71(6):1435-50 11231024 - FEBS Lett. 2001 Jan 26;489(1):108-11 12753192 - Mol Microbiol. 2003 May;48(4):1005-16 19806182 - PLoS Biol. 2009 Oct;7(10):e1000212 20353943 - J Biol Chem. 2010 May 28;285(22):16991-7000 7721709 - J Bacteriol. 1995 Apr;177(8):2194-6 7984093 - Mol Microbiol. 1994 Jul;13(1):35-49 16269262 - Microbes Infect. 2006 Jan;8(1):61-72 19636801 - Plant Mol Biol. 2009 Nov;71(4-5):379-90 17651431 - FEMS Microbiol Lett. 2007 Oct;275(1):8-15 2527846 - J Bacteriol. 1989 Sep;171(9):5017-24 9826502 - J Mol Biol. 1998 Dec 4;284(3):609-20 9219684 - Science. 1997 Jul 18;277(5324):333-8 12618759 - Oncogene. 2003 Mar 6;22(9):1340-8 10601028 - EMBO J. 1999 Dec 15;18(24):7063-76 1917835 - J Bacteriol. 1991 Oct;173(19):6018-24 11092873 - J Bacteriol. 2000 Dec;182(24):7078-82 15546656 - Biochim Biophys Acta. 2004 Nov 11;1694(1-3):37-53 10411886 - Proc Natl Acad Sci U S A. 1999 Jul 20;96(15):8396-401 17804668 - Microbiol Mol Biol Rev. 2007 Sep;71(3):477-94 14982780 - Antimicrob Agents Chemother. 2004 Mar;48(3):890-6 18660847 - Curr Genomics. 2007 Apr;8(2):129-36 9002524 - Nature. 1997 Jan 23;385(6614):361-4 14673075 - Proc Natl Acad Sci U S A. 2003 Dec 23;100(26):15971-6 7729673 - FEMS Microbiol Lett. 1995 Mar 1;126(3):291-8 15325267 - Biochem Biophys Res Commun. 2004 Sep 17;322(2):565-9 11967071 - Mol Microbiol. 2002 Apr;44(1):89-105 15836769 - Genes Cells. 2005 May;10(5):393-408 18362332 - Proc Natl Acad Sci U S A. 2008 Mar 25;105(12):4673-8 17578452 - Mol Microbiol. 2007 Jul;65(2):569-81 11251813 - Mol Microbiol. 2001 Feb;39(4):924-34 19591841 - J Mol Biol. 2009 Oct 2;392(4):910-22 17613524 - J Biol Chem. 2007 Aug 31;282(35):25270-7 17272300 - Nucleic Acids Res. 2007;35(6):e37 9079902 - J Bacteriol. 1997 Apr;179(7):2181-8 7961487 - J Bacteriol. 1994 Dec;176(23):7161-8 21354313 - Protein Expr Purif. 2011 Jul;78(1):102-12 18213444 - Cell Mol Life Sci. 2008 May;65(9):1335-46 1526446 - FEMS Microbiol Lett. 1992 Aug 15;74(2-3):137-42 20172997 - J Bacteriol. 2010 Apr;192(8):2277-83 14715921 - Nucleic Acids Res. 2004;32(1):223-38 9515700 - Mol Microbiol. 1998 Feb;27(4):739-50 10456893 - Infect Immun. 1999 Sep;67(9):4510-6 20021644 - BMC Microbiol. 2009;9:266 2537815 - J Bacteriol. 1989 Mar;171(3):1362-71 1925028 - Res Microbiol. 1991 Feb-Apr;142(2-3):301-7 15583165 - Microbiology. 2004 Dec;150(Pt 12):4125-36 17514744 - Biopolymers. 2007 Sep;87(1):1-11 15922593 - Curr Opin Struct Biol. 2005 Jun;15(3):349-54 10527840 - Biochem Biophys Res Commun. 1999 Oct 14;264(1):51-4 3097637 - Proc Natl Acad Sci U S A. 1986 Dec;83(23):8849-53 17132941 - RNA Biol. 2005 Apr;2(2):41-4 16518617 - Arch Microbiol. 2006 Jun;185(5):340-7 1537799 - J Bacteriol. 1992 Mar;174(5):1544-53 2540151 - J Bacteriol. 1989 May;171(5):2581-90 11916378 - J Mol Biol. 2002 Mar 15;317(1):41-72 15292126 - J Bacteriol. 2004 Aug;186(16):5249-57 15509579 - J Biol Chem. 2005 Jan 14;280(2):1613-24 9743119 - Nat Biotechnol. 1998 Sep;16(9):851-6 21352546 - BMC Microbiol. 2011;11:43 20434458 - J Mol Biol. 2010 Jun 25;399(5):759-72 18437264 - Mol Biosyst. 2008 Mar;4(3):213-22 19448108 - Eukaryot Cell. 2009 Jul;8(7):1061-71 12456664 - EMBO J. 2002 Dec 2;21(23):6581-9 15866174 - Mol Cell. 2005 Apr 29;18(3):319-29 8392589 - J Mol Biol. 1993 Jul 5;232(1):79-88 18223068 - J Bacteriol. 2008 Apr;190(7):2537-45 11733036 - Genes Cells. 2001 Nov;6(11):987-1001 9188744 - Proteins. 1997 Jun;28(2):285-8 10220158 - Microbiology. 1999 Apr;145 ( Pt 4):791-800 11544186 - Genes Dev. 2001 Sep 1;15(17):2295-306 10852878 - J Bacteriol. 2000 Jun;182(12):3460-6 15128949 - Proc Natl Acad Sci U S A. 2004 May 18;101(20):7618-23 15591131 - Mol Biol Cell. 2005 Feb;16(2):954-63 7748952 - Biochimie. 1994;76(12):1168-77 1901053 - J Bacteriol. 1991 Apr;173(7):2265-70 19767610 - Nucleic Acids Res. 2009 Nov;37(21):7177-93 11114334 - Cell. 2000 Nov 22;103(5):781-92 8919456 - FEMS Microbiol Lett. 1996 Feb 1;136(1):57-62 17909889 - Curr Microbiol. 2008 Jan;56(1):14-20 20830302 - PLoS One. 2010;5(9):e12597 20604745 - Biochem J. 2010 Sep 15;430(3):551-8 10945472 - Genomics. 2000 Jul 1;67(1):78-82 17921262 - Appl Environ Microbiol. 2007 Dec;73(23):7789-92 7686882 - Genomics. 1993 Jun;16(3):551-61 9712873 - J Biol Chem. 1998 Aug 28;273(35):22480-9 18957606 - Microbiology. 2008 Nov;154(Pt 11):3537-46 8248183 - Proc Natl Acad Sci U S A. 1993 Nov 15;90(22):10866-70 9226268 - J Bacteriol. 1997 Jul;179(14):4575-82 6148751 - Proc Natl Acad Sci U S A. 1984 Sep;81(18):5704-8 14702318 - J Bacteriol. 2004 Jan;186(2):481-9 8749370 - Curr Opin Struct Biol. 1995 Dec;5(6):810-7 17110332 - Cell. 2006 Nov 17;127(4):721-33 20376346 - PLoS One. 2010;5(4):e9944 19555460 - Mol Microbiol. 2009 Jul;73(2):253-66 10655208 - Genetics. 2000 Feb;154(2):523-32 18565343 - J Mol Biol. 2008 Jul 11;380(3):532-47 12370316 - Mol Cell Biol. 2002 Nov;22(21):7701-11 10781545 - J Bacteriol. 2000 May;182(10):2771-7 11160884 - Nucleic Acids Res. 2001 Feb 1;29(3):638-43 12855728 - Microbiology. 2003 Jul;149(Pt 7):1763-70 11995995 - Acta Biochim Pol. 2001;48(4):829-50 8981995 - J Bacteriol. 1997 Jan;179(1):170-9 1640828 - Mol Microbiol. 1992 May;6(10):1253-7 11532950 - EMBO J. 2001 Sep 3;20(17):4863-73 6427754 - Nucleic Acids Res. 1984 Apr 25;12(8):3521-34 15738986 - Nat Rev Mol Cell Biol. 2005 Mar;6(3):197-208 2987248 - J Biol Chem. 1985 Jun 25;260(12):7206-13 15313254 - Res Microbiol. 2004 Sep;155(7):543-52 17981968 - J Bacteriol. 2008 Jan;190(2):681-90 8462872 - Gene. 1993 Mar 30;125(2):191-3 19424291 - Nat Rev Mol Cell Biol. 2009 Jun;10(6):423-9 17616600 - J Bacteriol. 2007 Sep;189(17):6140-7 12427945 - Microbiology. 2002 Nov;148(Pt 11):3539-52 19429554 - Appl Environ Microbiol. 2009 Jul;75(13):4419-26 15721258 - Mol Cell. 2005 Feb 18;17(4):549-60 20400571 - J Biochem. 2010 Jul;148(1):103-13 17905831 - Protein Sci. 2007 Nov;16(11):2391-402 9150881 - Biochimie. 1996;78(11-12):1025-34 2122258 - Nature. 1990 Nov 8;348(6297):125-32 9466997 - Hum Mol Genet. 1998 Mar;7(3):407-14 9161408 - Gene. 1997 Apr 11;189(1):31-4 1906969 - Mol Microbiol. 1991 Apr;5(4):951-7 18423011 - BMC Microbiol. 2008;8:65 19841256 - Proc Natl Acad Sci U S A. 2009 Oct 27;106(43):18183-8 15044829 - J Mol Microbiol Biotechnol. 2003;6(2):109-26 12402086 - Curr Microbiol. 2002 Dec;45(6):440-5 765790 - Mutat Res. 1975;32(2):115-32 11160812 - Microbiology. 2001 Jan;147(Pt 1):183-91 7961402 - J Bacteriol. 1994 Nov;176(21):6518-27 9434906 - Curr Opin Struct Biol. 1997 Dec;7(6):849-56 15726588 - Proteins. 2005 May 1;59(2):332-8 20466531 - Curr Opin Cell Biol. 2010 Aug;22(4):461-70 11327306 - IUBMB Life. 2000 Dec;50(6):347-54 12756333 - RNA. 2003 Jun;9(6):760-8 19086295 - New Phytol. 2008 Jul;179(2):530-45 7961403 - J Bacteriol. 1994 Nov;176(21):6528-37 11976298 - J Bacteriol. 2002 May;184(10):2692-8 16997968 - J Bacteriol. 2006 Dec;188(23):8252-8 10983982 - Mol Cell. 2000 Aug;6(2):349-60 11532943 - EMBO J. 2001 Sep 3;20(17):4794-802 14519129 - Eur J Biochem. 2003 Oct;270(20):4164-72 12427937 - Microbiology. 2002 Nov;148(Pt 11):3457-66 9002525 - Nature. 1997 Jan 23;385(6614):365-8 19706445 - Proc Natl Acad Sci U S A. 2009 Sep 1;106(35):14843-8 21195156 - Microb Pathog. 2011 Mar-Apr;50(3-4):200-6 16343434 - Biochem Biophys Res Commun. 2006 Jan 27;339(4):1165-70 11683880 - Eur J Biochem. 2001 Nov;268(21):5570-7 12730230 - J Biol Chem. 2003 Aug 1;278(31):28378-87 3162077 - Mol Gen Genet. 1985;199(3):381-7 19109926 - Biochem Biophys Res Commun. 2009 Feb 6;379(2):201-5 17307049 - Curr Biol. 2007 Feb 20;17(4):R136-9 14724630 - Nature. 2004 Jan 15;427(6971):215-21 11333217 - Genetics. 2001 May;158(1):41-64 10481021 - Nucleic Acids Res. 1999 Oct 1;27(19):3821-35 10572302 - Biochimie. 1999 Aug-Sep;81(8-9):889-95 17238926 - Mol Microbiol. 2007 Feb;63(4):941-50 15019792 - J Mol Biol. 2004 Mar 26;337(3):761-70 11073929 - J Bacteriol. 2000 Dec;182(23):6819-23 9811540 - J Mol Biol. 1998 Nov 20;284(1):33-42 6183253 - J Bacteriol. 1982 Dec;152(3):1211-9 10510227 - Mol Microbiol. 1999 Sep;33(6):1118-31 10419966 - J Bacteriol. 1999 Aug;181(15):4653-60 15542390 - Mol Genet Metab. 2004 Nov;83(3):199-206 11489118 - Mol Microbiol. 2001 Jul;41(2):289-97 17143896 - Proteins. 2007 Feb 15;66(3):726-39 15554976 - Mol Microbiol. 2004 Dec;54(5):1379-92 16428430 - J Bacteriol. 2006 Feb;188(3):1205-10 10832634 - Microbiology. 2000 May;146 ( Pt 5):1071-83 18689482 - J Bacteriol. 2008 Oct;190(20):6625-35 16963571 - J Bacteriol. 2006 Nov;188(22):7992-6 13129938 - J Bacteriol. 2003 Oct;185(19):5673-84 10482526 - J Bacteriol. 1999 Sep;181(18):5825-32 11805826 - Nature. 2002 Jan 10;415(6868):141-7 12399511 - J Bacteriol. 20 |
References_xml | – ident: e_1_3_2_56_2 doi: 10.1128/jb.175.16.5242-5252.1993 – ident: e_1_3_2_197_2 doi: 10.1128/jb.179.1.170-179.1997 – ident: e_1_3_2_216_2 doi: 10.1016/S0092-8674(00)00181-1 – ident: e_1_3_2_83_2 doi: 10.1111/j.1365-2958.2007.05811.x – ident: e_1_3_2_272_2 doi: 10.1128/JB.00508-06 – ident: e_1_3_2_133_2 doi: 10.1002/bip.20762 – ident: e_1_3_2_15_2 doi: 10.1007/s11103-009-9529-3 – ident: e_1_3_2_101_2 doi: 10.1074/mcp.M500303-MCP200 – ident: e_1_3_2_8_2 doi: 10.1016/j.resmic.2004.03.005 – ident: e_1_3_2_100_2 doi: 10.1515/BC.2009.102 – ident: e_1_3_2_70_2 doi: 10.1006/jmbi.1993.1371 – ident: e_1_3_2_219_2 doi: 10.1111/j.1365-2443.2005.00851.x – ident: e_1_3_2_89_2 doi: 10.1038/415141a – ident: e_1_3_2_238_2 doi: 10.1128/JB.188.3.1205-1210.2006 – ident: e_1_3_2_153_2 doi: 10.1016/S1046-5928(03)00107-4 – ident: e_1_3_2_97_2 doi: 10.1111/j.1365-2958.2004.04312.x – ident: e_1_3_2_223_2 doi: 10.1111/j.1365-2958.2009.06614.x – ident: e_1_3_2_140_2 doi: 10.1128/jb.176.23.7155-7160.1994 – ident: e_1_3_2_266_2 doi: 10.1073/pnas.87.15.5589 – ident: e_1_3_2_85_2 doi: 10.1038/385361a0 – ident: e_1_3_2_189_2 doi: 10.1099/00221287-148-11-3539 – ident: e_1_3_2_288_2 doi: 10.1073/pnas.0907213106 – ident: e_1_3_2_142_2 doi: 10.1016/0092-8674(90)90018-A – ident: e_1_3_2_290_2 doi: 10.1016/j.bbrc.2004.07.154 – ident: e_1_3_2_107_2 doi: 10.1094/MPMI-23-1-0067 – ident: e_1_3_2_173_2 doi: 10.1046/j.1365-2958.1996.01529.x – ident: e_1_3_2_242_2 doi: 10.1016/j.resmic.2009.11.002 – ident: e_1_3_2_72_2 doi: 10.1146/annurev.biochem.73.011303.074048 – ident: e_1_3_2_21_2 doi: 10.1128/JB.00959-06 – ident: e_1_3_2_278_2 doi: 10.1107/S1744309106011456 – ident: e_1_3_2_231_2 doi: 10.1016/j.febslet.2005.09.010 – ident: e_1_3_2_82_2 doi: 10.1128/jb.161.2.556-562.1985 – ident: e_1_3_2_118_2 doi: 10.1128/JB.01758-07 – ident: e_1_3_2_122_2 doi: 10.1046/j.1365-2958.2003.03475.x – ident: e_1_3_2_250_2 doi: 10.1128/jb.171.5.2581-2590.1989 – ident: e_1_3_2_52_2 doi: 10.1111/j.1469-8137.2008.02473.x – ident: e_1_3_2_226_2 doi: 10.1128/jb.176.21.6528-6537.1994 – ident: e_1_3_2_136_2 doi: 10.1046/j.1365-2958.2002.02878.x – ident: e_1_3_2_62_2 doi: 10.1099/00221287-147-1-183 – ident: e_1_3_2_154_2 doi: 10.1006/jmbi.2001.5378 – ident: e_1_3_2_268_2 doi: 10.1126/science.1062023 – ident: e_1_3_2_33_2 doi: 10.1046/j.1365-2958.1998.00719.x – ident: e_1_3_2_168_2 doi: 10.1111/j.1365-2958.1992.tb00845.x – ident: e_1_3_2_170_2 doi: 10.1073/pnas.82.22.7500 – ident: e_1_3_2_190_2 doi: 10.1093/nar/gkp762 – volume: 78 start-page: 705 year: 2010 ident: e_1_3_2_277_2 article-title: Structure of the ribosome associating GTPase HflX publication-title: Proteins doi: 10.1002/prot.22599 – ident: e_1_3_2_24_2 doi: 10.1038/348125a0 – volume: 63 start-page: 73 year: 2010 ident: e_1_3_2_87_2 article-title: The chloroplast protein CPSAR1, dually localized in the stroma and the inner envelope membrane, is involved in thylakoid biogenesis publication-title: Plant J – ident: e_1_3_2_127_2 doi: 10.1128/JB.00444-06 – ident: e_1_3_2_164_2 doi: 10.1128/jb.176.1.44-49.1994 – ident: e_1_3_2_86_2 doi: 10.1073/pnas.0307512101 – ident: e_1_3_2_201_2 doi: 10.18388/abp.2001_3850 – ident: e_1_3_2_160_2 doi: 10.1128/JB.181.18.5825-5832.1999 – ident: e_1_3_2_176_2 doi: 10.1128/JB.181.17.5242-5249.1999 – ident: e_1_3_2_259_2 doi: 10.1073/pnas.0904032106 – ident: e_1_3_2_50_2 doi: 10.1016/S0968-0004(99)01429-2 – ident: e_1_3_2_67_2 doi: 10.1091/mbc.e04-07-0622 – ident: e_1_3_2_150_2 doi: 10.1128/MMBR.69.1.101-123.2005 – ident: e_1_3_2_188_2 doi: 10.1080/713803743 – ident: e_1_3_2_211_2 doi: 10.1016/j.cell.2006.09.037 – ident: e_1_3_2_273_2 doi: 10.1128/jb.176.23.7161-7168.1994 – ident: e_1_3_2_109_2 doi: 10.1111/j.1365-2443.2006.01017.x – ident: e_1_3_2_92_2 doi: 10.1073/pnas.81.18.5704 – ident: e_1_3_2_179_2 doi: 10.1371/journal.pbio.1000212 – ident: e_1_3_2_40_2 doi: 10.1016/j.ymgme.2004.07.009 – ident: e_1_3_2_255_2 doi: 10.1128/jb.171.3.1362-1371.1989 – ident: e_1_3_2_49_2 doi: 10.1016/j.tibtech.2006.07.005 – ident: e_1_3_2_276_2 doi: 10.1128/EC.00356-08 – ident: e_1_3_2_282_2 doi: 10.1074/jbc.275.6.4251 – ident: e_1_3_2_287_2 doi: 10.1128/JB.184.19.5323-5329.2002 – ident: e_1_3_2_98_2 doi: 10.1016/j.ijpara.2008.05.019 – ident: e_1_3_2_36_2 doi: 10.1261/rna.7470904 – ident: e_1_3_2_198_2 doi: 10.1046/j.1365-2958.1998.01042.x – ident: e_1_3_2_244_2 doi: 10.1016/S0959-440X(97)80157-1 – ident: e_1_3_2_60_2 doi: 10.1093/genetics/158.1.41 – ident: e_1_3_2_159_2 doi: 10.1128/MCB.22.21.7701-7711.2002 – ident: e_1_3_2_270_2 doi: 10.1128/MCB.00946-08 – ident: e_1_3_2_68_2 doi: 10.1111/j.1365-2958.2004.04354.x – ident: e_1_3_2_228_2 doi: 10.1128/JB.182.10.2771-2777.2000 – ident: e_1_3_2_208_2 doi: 10.1099/mic.0.2008/022137-0 – ident: e_1_3_2_269_2 doi: 10.1128/jb.177.11.3308-3311.1995 – ident: e_1_3_2_95_2 doi: 10.1128/jb.173.7.2265-2270.1991 – ident: e_1_3_2_169_2 doi: 10.1016/S0021-9258(17)39594-7 – ident: e_1_3_2_261_2 doi: 10.1093/nar/gkq305 – ident: e_1_3_2_31_2 doi: 10.1093/genetics/145.4.867 – ident: e_1_3_2_48_2 doi: 10.1073/pnas.96.15.8396 – ident: e_1_3_2_196_2 doi: 10.1073/pnas.90.22.10866 – ident: e_1_3_2_93_2 doi: 10.1074/jbc.273.35.22480 – ident: e_1_3_2_106_2 doi: 10.1046/j.1365-2958.2000.02198.x – ident: e_1_3_2_102_2 doi: 10.1006/jmbi.1998.2162 – ident: e_1_3_2_132_2 doi: 10.1128/AAC.48.3.890-896.2004 – ident: e_1_3_2_214_2 doi: 10.1128/jb.176.21.6518-6527.1994 – ident: e_1_3_2_96_2 doi: 10.1016/0923-2508(91)90045-C – ident: e_1_3_2_225_2 doi: 10.1126/science.277.5324.333 – ident: e_1_3_2_12_2 doi: 10.1038/nbt0998-851 – ident: e_1_3_2_253_2 doi: 10.1016/0165-1110(75)90002-0 – ident: e_1_3_2_61_2 doi: 10.1099/00221287-148-11-3457 – ident: e_1_3_2_252_2 doi: 10.1128/JB.185.14.4031-4037.2003 – ident: e_1_3_2_110_2 doi: 10.1093/jb/mvq039 – ident: e_1_3_2_218_2 doi: 10.1186/1471-2180-11-43 – ident: e_1_3_2_120_2 doi: 10.1128/jb.171.9.5017-5024.1989 – ident: e_1_3_2_80_2 doi: 10.1073/pnas.0801308105 – ident: e_1_3_2_108_2 doi: 10.1016/0959-440X(95)80015-8 – ident: e_1_3_2_54_2 doi: 10.1128/IAI.01721-07 – ident: e_1_3_2_204_2 doi: 10.1128/jb.177.8.2194-2196.1995 – ident: e_1_3_2_146_2 doi: 10.1128/JB.00799-08 – volume: 2 start-page: 539 year: 1988 ident: e_1_3_2_171_2 article-title: The Escherichia coli Ras-like protein (Era) has GTPase activity and is essential for cell growth publication-title: Oncogene – ident: e_1_3_2_177_2 doi: 10.1099/00221287-146-5-1071 – ident: e_1_3_2_260_2 doi: 10.1111/j.1365-2958.2005.04794.x – ident: e_1_3_2_187_2 doi: 10.1002/(SICI)1097-0134(199706)28:2<285::AID-PROT15>3.0.CO;2-E – ident: e_1_3_2_286_2 doi: 10.1159/000076741 – ident: e_1_3_2_58_2 doi: 10.1016/j.coph.2006.05.005 – ident: e_1_3_2_221_2 doi: 10.1046/j.1365-2958.2001.02350.x – ident: e_1_3_2_44_2 doi: 10.1046/j.1365-2958.2001.02536.x – ident: e_1_3_2_246_2 doi: 10.1177/1087057109352240 – ident: e_1_3_2_76_2 doi: 10.1038/nrm1589 – ident: e_1_3_2_203_2 doi: 10.1111/j.1365-2958.2009.06767.x – ident: e_1_3_2_74_2 doi: 10.1007/s00284-002-3713-x – ident: e_1_3_2_103_2 doi: 10.1046/j.1432-1033.2001.02493.x – ident: e_1_3_2_99_2 doi: 10.1093/nar/29.3.638 – ident: e_1_3_2_167_2 doi: 10.1128/jb.179.20.6426-6431.1997 – ident: e_1_3_2_22_2 doi: 10.1074/jbc.M109.096131 – ident: e_1_3_2_157_2 doi: 10.1111/j.1574-6968.1992.tb05356.x – ident: e_1_3_2_90_2 doi: 10.1128/JB.185.19.5673-5684.2003 – ident: e_1_3_2_280_2 doi: 10.1093/emboj/20.17.4794 – ident: e_1_3_2_37_2 doi: 10.1016/j.jmb.2010.02.036 – ident: e_1_3_2_243_2 doi: 10.1111/j.1365-2958.1994.tb01009.x – ident: e_1_3_2_28_2 doi: 10.1006/jmbi.1997.1134 – ident: e_1_3_2_293_2 doi: 10.1099/mic.0.26292-0 – ident: e_1_3_2_163_2 doi: 10.1128/JB.186.2.481-489.2004 – ident: e_1_3_2_81_2 doi: 10.1186/1471-2180-8-65 – ident: e_1_3_2_178_2 doi: 10.1016/j.cbpa.2010.06.169 – ident: e_1_3_2_121_2 doi: 10.1016/S0960-9822(98)70445-2 – ident: e_1_3_2_17_2 doi: 10.1002/j.1460-2075.1989.tb08504.x – ident: e_1_3_2_64_2 doi: 10.1128/IAI.72.10.5783-5790.2004 – ident: e_1_3_2_137_2 doi: 10.2478/s11658-008-0023-8 – ident: e_1_3_2_57_2 doi: 10.1074/jbc.273.43.27945 – ident: e_1_3_2_117_2 doi: 10.1128/JB.00045-10 – ident: e_1_3_2_43_2 doi: 10.1016/S1369-5274(03)00037-7 – ident: e_1_3_2_172_2 doi: 10.1074/jbc.M503223200 – ident: e_1_3_2_45_2 doi: 10.1128/JB.01744-07 – ident: e_1_3_2_144_2 doi: 10.1006/jmbi.1998.2197 – ident: e_1_3_2_248_2 doi: 10.1093/nar/gkq973 – ident: e_1_3_2_264_2 doi: 10.1093/emboj/20.17.4863 – ident: e_1_3_2_184_2 doi: 10.1002/prot.21186 – ident: e_1_3_2_249_2 doi: 10.1128/jb.174.5.1544-1553.1992 – ident: e_1_3_2_139_2 doi: 10.1046/j.1365-2958.2001.02574.x – ident: e_1_3_2_23_2 doi: 10.1016/j.cell.2007.05.018 – ident: e_1_3_2_267_2 doi: 10.1002/ajmg.b.30454 – ident: e_1_3_2_42_2 doi: 10.1074/jbc.M001854200 – ident: e_1_3_2_4_2 doi: 10.1073/pnas.83.23.8849 – start-page: 200 volume-title: Microb. Pathog year: 2011 ident: e_1_3_2_207_2 – ident: e_1_3_2_161_2 doi: 10.1016/S0014-5793(00)02402-9 – ident: e_1_3_2_26_2 doi: 10.1016/j.tim.2005.11.006 – ident: e_1_3_2_145_2 doi: 10.1016/j.jmb.2004.01.047 – ident: e_1_3_2_125_2 doi: 10.1039/b716357f – ident: e_1_3_2_217_2 doi: 10.1016/j.jmb.2004.03.043 – ident: e_1_3_2_59_2 doi: 10.1186/1471-2180-9-266 – ident: e_1_3_2_84_2 doi: 10.1016/j.molcel.2005.01.012 – ident: e_1_3_2_220_2 doi: 10.1111/j.1574-6968.1998.tb12867.x – ident: e_1_3_2_123_2 doi: 10.1159/000092818 – ident: e_1_3_2_191_2 doi: 10.1073/pnas.0602585103 – ident: e_1_3_2_13_2 doi: 10.1128/AEM.01157-07 – ident: e_1_3_2_30_2 doi: 10.1006/geno.2000.6243 – ident: e_1_3_2_69_2 doi: 10.1016/j.molcel.2007.08.026 – ident: e_1_3_2_5_2 doi: 10.1046/j.1365-2443.2001.00480.x – ident: e_1_3_2_114_2 doi: 10.1126/science.286.5447.2165 – ident: e_1_3_2_165_2 doi: 10.1266/ggs.82.281 – ident: e_1_3_2_202_2 doi: 10.1073/pnas.0907262106 – ident: e_1_3_2_19_2 doi: 10.1073/pnas.2535394100 – ident: e_1_3_2_247_2 doi: 10.1093/emboj/cdf656 – ident: e_1_3_2_10_2 doi: 10.1016/S0300-9084(97)86726-0 – ident: e_1_3_2_284_2 doi: 10.1093/nar/gkl752 – ident: e_1_3_2_112_2 doi: 10.1111/j.1574-6968.2007.00860.x – ident: e_1_3_2_152_2 doi: 10.1371/journal.pone.0012597 – ident: e_1_3_2_181_2 doi: 10.1016/j.jmb.2009.07.004 – ident: e_1_3_2_285_2 doi: 10.1016/j.cub.2006.12.029 – ident: e_1_3_2_194_2 doi: 10.1016/j.sbi.2005.05.004 – ident: e_1_3_2_212_2 doi: 10.1073/pnas.0611650104 – ident: e_1_3_2_2_2 doi: 10.1017/S0033583509990060 – ident: e_1_3_2_79_2 doi: 10.1111/j.1365-2958.2005.04710.x – ident: e_1_3_2_3_2 doi: 10.1093/nar/gkh185 – ident: e_1_3_2_29_2 doi: 10.1146/annurev.micro.091208.073225 – ident: e_1_3_2_186_2 doi: 10.1038/385365a0 – ident: e_1_3_2_175_2 doi: 10.1093/genetics/154.2.523 – ident: e_1_3_2_239_2 doi: 10.1007/s00203-006-0099-3 – ident: e_1_3_2_258_2 doi: 10.1016/0300-9084(94)90046-9 – ident: e_1_3_2_39_2 doi: 10.1038/nature03239 – ident: e_1_3_2_77_2 doi: 10.1038/nature02250 – ident: e_1_3_2_237_2 doi: 10.1016/j.bbrc.2005.11.129 – ident: e_1_3_2_292_2 doi: 10.1099/13500872-145-4-791 – ident: e_1_3_2_129_2 doi: 10.1046/j.1365-2958.1999.01553.x – ident: e_1_3_2_294_2 doi: 10.1016/S0378-1119(96)00813-X – ident: e_1_3_2_257_2 doi: 10.1111/j.1365-2958.1994.tb00400.x – ident: e_1_3_2_111_2 doi: 10.1007/s00284-007-9030-7 – ident: e_1_3_2_131_2 doi: 10.1128/MMBR.00013-07 – ident: e_1_3_2_104_2 doi: 10.1046/j.1432-1033.2003.03813.x – ident: e_1_3_2_232_2 doi: 10.1128/JB.02021-07 – ident: e_1_3_2_75_2 doi: 10.1128/JB.01353-08 – ident: e_1_3_2_35_2 doi: 10.1016/S0969-2126(02)00882-1 – ident: e_1_3_2_227_2 doi: 10.1128/JB.181.15.4653-4660.1999 – ident: e_1_3_2_209_2 doi: 10.1074/jbc.270.9.4822 – ident: e_1_3_2_155_2 doi: 10.1111/j.1574-6968.1995.tb07432.x – ident: e_1_3_2_174_2 doi: 10.1074/jbc.M703894200 – ident: e_1_3_2_27_2 doi: 10.1101/gad.207701 – ident: e_1_3_2_183_2 doi: 10.1002/prot.20413 – ident: e_1_3_2_274_2 doi: 10.1128/JB.01193-07 – ident: e_1_3_2_126_2 doi: 10.1016/j.bbrc.2008.12.072 – ident: e_1_3_2_9_2 doi: 10.1371/journal.pone.0009944 – ident: e_1_3_2_245_2 doi: 10.1128/JB.182.12.3460-3466.2000 – ident: e_1_3_2_289_2 doi: 10.1631/jzus.B0910009 – ident: e_1_3_2_230_2 doi: 10.1038/sj.emboj.7601171 – ident: e_1_3_2_205_2 – ident: e_1_3_2_94_2 doi: 10.1038/sj.onc.1206287 – ident: e_1_3_2_148_2 doi: 10.1016/S0300-9084(96)80004-6 – ident: e_1_3_2_279_2 doi: 10.1128/JB.182.24.7078-7082.2000 – ident: e_1_3_2_128_2 doi: 10.1128/JB.00315-07 – ident: e_1_3_2_18_2 doi: 10.1016/j.ceb.2010.04.007 – ident: e_1_3_2_51_2 doi: 10.1074/jbc.M110.172080 – ident: e_1_3_2_115_2 doi: 10.1016/j.jmb.2010.04.040 – ident: e_1_3_2_141_2 doi: 10.1074/jbc.M700541200 – ident: e_1_3_2_124_2 doi: 10.1128/jb.174.7.2281-2287.1992 – ident: e_1_3_2_256_2 doi: 10.1128/jb.178.19.5719-5731.1996 – ident: e_1_3_2_6_2 doi: 10.1128/jb.173.19.6018-6024.1991 – ident: e_1_3_2_192_2 doi: 10.1016/S0079-6603(00)66028-2 – ident: e_1_3_2_113_2 doi: 10.1016/0378-1119(93)90327-Y – ident: e_1_3_2_229_2 doi: 10.1038/sj.emboj.7600507 – ident: e_1_3_2_14_2 doi: 10.1128/IAI.67.9.4510-4516.1999 – ident: e_1_3_2_41_2 doi: 10.1093/emboj/18.24.7063 – ident: e_1_3_2_138_2 doi: 10.4161/rna.2.2.1610 – ident: e_1_3_2_65_2 doi: 10.1107/S0907444903024910 – ident: e_1_3_2_262_2 doi: 10.1016/S0147-619X(03)00021-0 – ident: e_1_3_2_195_2 doi: 10.1007/s00018-008-7495-6 – ident: e_1_3_2_78_2 doi: 10.1093/nar/12.8.3521 – ident: e_1_3_2_206_2 doi: 10.1016/j.micinf.2005.05.018 – ident: e_1_3_2_275_2 doi: 10.1128/JB.186.16.5249-5257.2004 – ident: e_1_3_2_240_2 doi: 10.1007/s00018-008-8416-4 – ident: e_1_3_2_73_2 doi: 10.1016/S0092-8674(02)00773-0 – ident: e_1_3_2_251_2 doi: 10.1128/JB.184.10.2692-2698.2002 – ident: e_1_3_2_265_2 doi: 10.1261/rna.5210803 – ident: e_1_3_2_119_2 doi: 10.1111/j.1365-2958.2006.05348.x – ident: e_1_3_2_222_2 doi: 10.1006/bbrc.1999.1471 – ident: e_1_3_2_53_2 doi: 10.1093/mp/ssp073 – ident: e_1_3_2_166_2 doi: 10.1128/JB.180.19.5243-5246.1998 – ident: e_1_3_2_185_2 doi: 10.1023/B:JNMR.0000013693.80516.57 – ident: e_1_3_2_34_2 doi: 10.1016/S1097-2765(00)00035-6 – ident: e_1_3_2_130_2 doi: 10.1128/jb.152.3.1211-1219.1982 – ident: e_1_3_2_63_2 doi: 10.1016/j.bbamcr.2004.03.009 – ident: e_1_3_2_134_2 doi: 10.1146/annurev.biochem.70.1.755 – ident: e_1_3_2_180_2 doi: 10.1016/j.jmb.2008.04.072 – ident: e_1_3_2_91_2 doi: 10.1093/hmg/7.3.407 – ident: e_1_3_2_254_2 doi: 10.1093/nar/gkp107 – ident: e_1_3_2_47_2 doi: 10.1016/S0021-9258(19)39884-9 – ident: e_1_3_2_263_2 doi: 10.1074/jbc.M409306200 – ident: e_1_3_2_182_2 doi: 10.1128/JB.184.22.6389-6394.2002 – ident: e_1_3_2_147_2 doi: 10.1099/mic.0.27421-0 – ident: e_1_3_2_135_2 doi: 10.1016/S0092-8674(00)81418-X – ident: e_1_3_2_215_2 doi: 10.1016/S0969-2126(02)00905-X – ident: e_1_3_2_20_2 doi: 10.1016/j.tibs.2009.05.004 – ident: e_1_3_2_16_2 doi: 10.1128/jb.169.9.4076-4085.1987 – ident: e_1_3_2_235_2 doi: 10.1021/bi901074h – ident: e_1_3_2_105_2 doi: 10.2174/138920207780368141 – ident: e_1_3_2_283_2 doi: 10.1074/jbc.M301381200 – ident: e_1_3_2_156_2 doi: 10.1111/j.1365-2958.1991.tb00770.x – ident: e_1_3_2_11_2 doi: 10.1039/b905518p – ident: e_1_3_2_66_2 doi: 10.1016/S0300-9084(99)00207-2 – ident: e_1_3_2_88_2 doi: 10.1038/nrm2689 – ident: e_1_3_2_7_2 doi: 10.1111/j.1365-2958.2006.05574.x – ident: e_1_3_2_236_2 doi: 10.1111/j.1574-6968.1996.tb08025.x – ident: e_1_3_2_149_2 doi: 10.1110/ps.072900907 – ident: e_1_3_2_241_2 doi: 10.1128/AEM.01523-08 – ident: e_1_3_2_25_2 doi: 10.1038/349117a0 – ident: e_1_3_2_210_2 doi: 10.1128/JB.182.23.6819-6823.2000 – ident: e_1_3_2_38_2 doi: 10.1006/geno.1993.1230 – ident: e_1_3_2_71_2 doi: 10.1042/BJ20100757 – ident: e_1_3_2_143_2 doi: 10.1006/jmbi.1998.2196 – ident: e_1_3_2_199_2 doi: 10.1107/S1744309109013591 – ident: e_1_3_2_162_2 doi: 10.1046/j.1365-2958.2001.02285.x – ident: e_1_3_2_291_2 doi: 10.1128/JB.183.7.2316-2321.2001 – ident: e_1_3_2_151_2 doi: 10.1016/j.pep.2011.02.009 – ident: e_1_3_2_158_2 doi: 10.1016/j.jmb.2004.05.029 – ident: e_1_3_2_233_2 doi: 10.1016/j.febslet.2004.11.049 – ident: e_1_3_2_200_2 doi: 10.1016/j.str.2009.03.013 – ident: e_1_3_2_46_2 doi: 10.1016/j.jmb.2009.11.026 – ident: e_1_3_2_281_2 doi: 10.1016/S0014-5793(00)01145-5 – ident: e_1_3_2_32_2 doi: 10.1128/jb.179.14.4575-4582.1997 – ident: e_1_3_2_55_2 doi: 10.1128/jb.179.7.2181-2188.1997 – ident: e_1_3_2_116_2 doi: 10.1074/jbc.M104455200 – ident: e_1_3_2_213_2 doi: 10.1093/nar/27.19.3821 – ident: e_1_3_2_193_2 doi: 10.1007/BF00330746 – ident: e_1_3_2_234_2 doi: 10.1016/j.molcel.2005.03.028 – ident: e_1_3_2_224_2 doi: 10.1128/JB.01213-06 – ident: e_1_3_2_271_2 doi: 10.1093/nar/gkl1158 – reference: 12427937 - Microbiology. 2002 Nov;148(Pt 11):3457-66 – reference: 19086295 - New Phytol. 2008 Jul;179(2):530-45 – reference: 13129938 - J Bacteriol. 2003 Oct;185(19):5673-84 – reference: 7686882 - Genomics. 1993 Jun;16(3):551-61 – reference: 7961486 - J Bacteriol. 1994 Dec;176(23):7155-60 – reference: 15836769 - Genes Cells. 2005 May;10(5):393-408 – reference: 2999765 - Proc Natl Acad Sci U S A. 1985 Nov;82(22):7500-4 – reference: 20172997 - J Bacteriol. 2010 Apr;192(8):2277-83 – reference: 8392589 - J Mol Biol. 1993 Jul 5;232(1):79-88 – reference: 11401686 - Mol Microbiol. 2001 May;40(4):786-94 – reference: 15542390 - Mol Genet Metab. 2004 Nov;83(3):199-206 – reference: 2583104 - EMBO J. 1989 Nov;8(11):3401-7 – reference: 11092873 - J Bacteriol. 2000 Dec;182(24):7078-82 – reference: 2838786 - Oncogene. 1988 Jun;2(6):539-44 – reference: 11916378 - J Mol Biol. 2002 Mar 15;317(1):41-72 – reference: 15755955 - Microbiol Mol Biol Rev. 2005 Mar;69(1):101-23 – reference: 2527846 - J Bacteriol. 1989 Sep;171(9):5017-24 – reference: 19220752 - Mol Microbiol. 2009 Mar;71(6):1435-50 – reference: 10832634 - Microbiology. 2000 May;146 ( Pt 5):1071-83 – reference: 21195156 - Microb Pathog. 2011 Mar-Apr;50(3-4):200-6 – reference: 12880769 - Protein Expr Purif. 2003 Aug;30(2):203-9 – reference: 15616586 - EMBO J. 2005 Jan 12;24(1):23-33 – reference: 9002525 - Nature. 1997 Jan 23;385(6614):365-8 – reference: 9188744 - Proteins. 1997 Jun;28(2):285-8 – reference: 11114334 - Cell. 2000 Nov 22;103(5):781-92 – reference: 18426891 - Infect Immun. 2008 Jul;76(7):3176-86 – reference: 16343434 - Biochem Biophys Res Commun. 2006 Jan 27;339(4):1165-70 – reference: 17143896 - Proteins. 2007 Feb 15;66(3):726-39 – reference: 6183253 - J Bacteriol. 1982 Dec;152(3):1211-9 – reference: 20025795 - Q Rev Biophys. 2009 Aug;42(3):159-200 – reference: 19555460 - Mol Microbiol. 2009 Jul;73(2):253-66 – reference: 15726588 - Proteins. 2005 May 1;59(2):332-8 – reference: 17360576 - Proc Natl Acad Sci U S A. 2007 Mar 13;104(11):4636-41 – reference: 8462872 - Gene. 1993 Mar 30;125(2):191-3 – reference: 15978086 - Mol Microbiol. 2005 Jul;57(2):576-91 – reference: 10601028 - EMBO J. 1999 Dec 15;18(24):7063-76 – reference: 15128949 - Proc Natl Acad Sci U S A. 2004 May 18;101(20):7618-23 – reference: 11244072 - J Bacteriol. 2001 Apr;183(7):2316-21 – reference: 19407389 - Acta Crystallogr Sect F Struct Biol Cryst Commun. 2009 May 1;65(Pt 5):508-11 – reference: 11333217 - Genetics. 2001 May;158(1):41-64 – reference: 19706445 - Proc Natl Acad Sci U S A. 2009 Sep 1;106(35):14843-8 – reference: 17921262 - Appl Environ Microbiol. 2007 Dec;73(23):7789-92 – reference: 2122258 - Nature. 1990 Nov 8;348(6297):125-32 – reference: 19917289 - J Mol Biol. 2010 Feb 12;396(1):118-29 – reference: 12429099 - Structure. 2002 Nov;10(11):1581-92 – reference: 18456812 - J Bacteriol. 2008 Jul;190(13):4764-71 – reference: 2105934 - J Biol Chem. 1990 Feb 15;265(5):2888-95 – reference: 17651431 - FEMS Microbiol Lett. 2007 Oct;275(1):8-15 – reference: 12427945 - Microbiology. 2002 Nov;148(Pt 11):3539-52 – reference: 15866174 - Mol Cell. 2005 Apr 29;18(3):319-29 – reference: 15522079 - Mol Microbiol. 2004 Nov;54(4):948-61 – reference: 15690043 - Nature. 2005 Feb 3;433(7025):531-7 – reference: 11160812 - Microbiology. 2001 Jan;147(Pt 1):183-91 – reference: 11995995 - Acta Biochim Pol. 2001;48(4):829-50 – reference: 19806182 - PLoS Biol. 2009 Oct;7(10):e1000212 – reference: 11327306 - IUBMB Life. 2000 Dec;50(6):347-54 – reference: 19591841 - J Mol Biol. 2009 Oct 2;392(4):910-22 – reference: 10456893 - Infect Immun. 1999 Sep;67(9):4510-6 – reference: 14673075 - Proc Natl Acad Sci U S A. 2003 Dec 23;100(26):15971-6 – reference: 15292126 - J Bacteriol. 2004 Aug;186(16):5249-57 – reference: 15554976 - Mol Microbiol. 2004 Dec;54(5):1379-92 – reference: 16980477 - J Bacteriol. 2006 Oct;188(19):6757-70 – reference: 1551846 - J Bacteriol. 1992 Apr;174(7):2281-7 – reference: 11051763 - Prog Nucleic Acid Res Mol Biol. 2001;66:107-57 – reference: 1925028 - Res Microbiol. 1991 Feb-Apr;142(2-3):301-7 – reference: 9219684 - Science. 1997 Jul 18;277(5324):333-8 – reference: 1901053 - J Bacteriol. 1991 Apr;173(7):2265-70 – reference: 19729310 - Trends Biochem Sci. 2009 Sep;34(9):429-34 – reference: 8981995 - J Bacteriol. 1997 Jan;179(1):170-9 – reference: 16763562 - EMBO J. 2006 Jun 21;25(12):2940-51 – reference: 15247431 - RNA. 2004 Aug;10(8):1236-42 – reference: 17272300 - Nucleic Acids Res. 2007;35(6):e37 – reference: 14982780 - Antimicrob Agents Chemother. 2004 Mar;48(3):890-6 – reference: 10748051 - J Biol Chem. 2000 Jun 2;275(22):16414-9 – reference: 8971718 - Mol Microbiol. 1996 Dec;22(5):977-89 – reference: 14519129 - Eur J Biochem. 2003 Oct;270(20):4164-72 – reference: 14752268 - J Biomol NMR. 2004 Mar;28(3):307-8 – reference: 20466531 - Curr Opin Cell Biol. 2010 Aug;22(4):461-70 – reference: 7961487 - J Bacteriol. 1994 Dec;176(23):7161-8 – reference: 9503617 - FEMS Microbiol Lett. 1998 Feb 15;159(2):241-5 – reference: 20353943 - J Biol Chem. 2010 May 28;285(22):16991-7000 – reference: 21354313 - Protein Expr Purif. 2011 Jul;78(1):102-12 – reference: 18296517 - J Bacteriol. 2008 May;190(9):3236-43 – reference: 1526446 - FEMS Microbiol Lett. 1992 Aug 15;74(2-3):137-42 – reference: 16269262 - Microbes Infect. 2006 Jan;8(1):61-72 – reference: 9237903 - J Mol Biol. 1997 Jul 18;270(3):360-73 – reference: 11387344 - J Biol Chem. 2001 Aug 17;276(33):31415-21 – reference: 10781545 - J Bacteriol. 2000 May;182(10):2771-7 – reference: 18213444 - Cell Mol Life Sci. 2008 May;65(9):1335-46 – reference: 10852878 - J Bacteriol. 2000 Jun;182(12):3460-6 – reference: 12826057 - Plasmid. 2003 Jul;50(1):45-52 – reference: 9826502 - J Mol Biol. 1998 Dec 4;284(3):609-20 – reference: 15044829 - J Mol Microbiol Biotechnol. 2003;6(2):109-26 – reference: 17981968 - J Bacteriol. 2008 Jan;190(2):681-90 – reference: 17307049 - Curr Biol. 2007 Feb 20;17(4):R136-9 – reference: 15136032 - J Mol Biol. 2004 May 28;339(2):265-78 – reference: 19944148 - Res Microbiol. 2010 Jan-Feb;161(1):46-50 – reference: 19636801 - Plant Mol Biol. 2009 Nov;71(4-5):379-90 – reference: 9434906 - Curr Opin Struct Biol. 1997 Dec;7(6):849-56 – reference: 1537799 - J Bacteriol. 1992 Mar;174(5):1544-53 – reference: 15223319 - J Mol Biol. 2004 Jul 16;340(4):767-82 – reference: 2537815 - J Bacteriol. 1989 Mar;171(3):1362-71 – reference: 19109926 - Biochem Biophys Res Commun. 2009 Feb 6;379(2):201-5 – reference: 9079902 - J Bacteriol. 1997 Apr;179(7):2181-8 – reference: 16135227 - Mol Microbiol. 2005 Sep;57(6):1593-607 – reference: 12837776 - J Bacteriol. 2003 Jul;185(14):4031-7 – reference: 16682769 - Acta Crystallogr Sect F Struct Biol Cryst Commun. 2006 May 1;62(Pt 5):435-7 – reference: 10510227 - Mol Microbiol. 1999 Sep;33(6):1118-31 – reference: 21352546 - BMC Microbiol. 2011;11:43 – reference: 9335292 - J Bacteriol. 1997 Oct;179(20):6426-31 – reference: 7984093 - Mol Microbiol. 1994 Jul;13(1):35-49 – reference: 9826503 - J Mol Biol. 1998 Dec 4;284(3):621-31 – reference: 9768362 - Curr Biol. 1998 Sep 24;8(19):1079-82 – reference: 9786189 - Mol Microbiol. 1998 Oct;30(1):107-19 – reference: 18362332 - Proc Natl Acad Sci U S A. 2008 Mar 25;105(12):4673-8 – reference: 15922593 - Curr Opin Struct Biol. 2005 Jun;15(3):349-54 – reference: 12456664 - EMBO J. 2002 Dec 2;21(23):6581-9 – reference: 9774408 - J Biol Chem. 1998 Oct 23;273(43):27945-52 – reference: 10481021 - Nucleic Acids Res. 1999 Oct 1;27(19):3821-35 – reference: 1898771 - Nature. 1991 Jan 10;349(6305):117-27 – reference: 20376346 - PLoS One. 2010;5(4):e9944 – reference: 3162077 - Mol Gen Genet. 1985;199(3):381-7 – reference: 9515700 - Mol Microbiol. 1998 Feb;27(4):739-50 – reference: 20021644 - BMC Microbiol. 2009;9:266 – reference: 18957606 - Microbiology. 2008 Nov;154(Pt 11):3537-46 – reference: 6148751 - Proc Natl Acad Sci U S A. 1984 Sep;81(18):5704-8 – reference: 16343907 - Trends Microbiol. 2006 Jan;14(1):45-54 – reference: 11160884 - Nucleic Acids Res. 2001 Feb 1;29(3):638-43 – reference: 10675533 - FEBS Lett. 2000 Feb 11;467(2-3):175-8 – reference: 18423011 - BMC Microbiol. 2008;8:65 – reference: 16825789 - J Mol Microbiol Biotechnol. 2006;11(1-2):41-52 – reference: 19787775 - Proteins. 2010 Feb 15;78(3):705-13 – reference: 17514744 - Biopolymers. 2007 Sep;87(1):1-11 – reference: 15583165 - Microbiology. 2004 Dec;150(Pt 12):4125-36 – reference: 17578452 - Mol Microbiol. 2007 Jul;65(2):569-81 – reference: 20604745 - Biochem J. 2010 Sep 15;430(3):551-8 – reference: 17238926 - Mol Microbiol. 2007 Feb;63(4):941-50 – reference: 11805826 - Nature. 2002 Jan 10;415(6868):141-7 – reference: 9002524 - Nature. 1997 Jan 23;385(6614):361-4 – reference: 20830302 - PLoS One. 2010;5(9):e12597 – reference: 15189152 - Annu Rev Biochem. 2004;73:539-57 – reference: 17110332 - Cell. 2006 Nov 17;127(4):721-33 – reference: 10945472 - Genomics. 2000 Jul 1;67(1):78-82 – reference: 19424291 - Nat Rev Mol Cell Biol. 2009 Jun;10(6):423-9 – reference: 19706404 - Proc Natl Acad Sci U S A. 2009 Sep 8;106(36):15356-61 – reference: 11967071 - Mol Microbiol. 2002 Apr;44(1):89-105 – reference: 2198567 - Proc Natl Acad Sci U S A. 1990 Aug;87(15):5589-93 – reference: 2199064 - Cell. 1990 Aug 10;62(3):539-48 – reference: 20430825 - Nucleic Acids Res. 2010 Sep;38(16):5554-68 – reference: 20188109 - J Mol Biol. 2010 Apr 23;398(1):1-7 – reference: 11701921 - Science. 2001 Nov 9;294(5545):1299-304 – reference: 17804668 - Microbiol Mol Biol Rev. 2007 Sep;71(3):477-94 – reference: 12730230 - J Biol Chem. 2003 Aug 1;278(31):28378-87 – reference: 16894162 - Proc Natl Acad Sci U S A. 2006 Aug 15;103(33):12359-64 – reference: 12756333 - RNA. 2003 Jun;9(6):760-8 – reference: 9712873 - J Biol Chem. 1998 Aug 28;273(35):22480-9 – reference: 9161408 - Gene. 1997 Apr 11;189(1):31-4 – reference: 12618759 - Oncogene. 2003 Mar 6;22(9):1340-8 – reference: 15019792 - J Mol Biol. 2004 Mar 26;337(3):761-70 – reference: 10655208 - Genetics. 2000 Feb;154(2):523-32 – reference: 8749370 - Curr Opin Struct Biol. 1995 Dec;5(6):810-7 – reference: 19246542 - Nucleic Acids Res. 2009 Apr;37(7):2359-70 – reference: 16284124 - Mol Cell Proteomics. 2006 Feb;5(2):366-78 – reference: 765790 - Mutat Res. 1975;32(2):115-32 – reference: 17430889 - J Biol Chem. 2007 Jul 6;282(27):19928-37 – reference: 16428430 - J Bacteriol. 2006 Feb;188(3):1205-10 – reference: 1906969 - Mol Microbiol. 1991 Apr;5(4):951-7 – reference: 15983041 - J Biol Chem. 2005 Sep 2;280(35):30660-70 – reference: 17996707 - Mol Cell. 2007 Nov 9;28(3):434-45 – reference: 15546656 - Biochim Biophys Acta. 2004 Nov 11;1694(1-3):37-53 – reference: 11683880 - Eur J Biochem. 2001 Nov;268(21):5570-7 – reference: 17895579 - Genes Genet Syst. 2007 Aug;82(4):281-9 – reference: 17054726 - Genes Cells. 2006 Nov;11(11):1295-304 – reference: 19882753 - J Zhejiang Univ Sci B. 2009 Nov;10(11):796-804 – reference: 10464193 - J Bacteriol. 1999 Sep;181(17):5242-9 – reference: 16518617 - Arch Microbiol. 2006 Jun;185(5):340-7 – reference: 11231024 - FEBS Lett. 2001 Jan 26;489(1):108-11 – reference: 17540168 - Cell. 2007 Jun 1;129(5):865-77 – reference: 15509579 - J Biol Chem. 2005 Jan 14;280(2):1613-24 – reference: 14684918 - Acta Crystallogr D Biol Crystallogr. 2004 Jan;60(Pt 1):166-8 – reference: 8248183 - Proc Natl Acad Sci U S A. 1993 Nov 15;90(22):10866-70 – reference: 10591650 - Science. 1999 Dec 10;286(5447):2165-9 – reference: 12732302 - Curr Opin Microbiol. 2003 Apr;6(2):135-9 – reference: 16213500 - FEBS Lett. 2005 Oct 24;579(25):5439-42 – reference: 19958140 - Mol Plant Microbe Interact. 2010 Jan;23(1):67-81 – reference: 17909889 - Curr Microbiol. 2008 Jan;56(1):14-20 – reference: 11123669 - Mol Microbiol. 2000 Dec;38(5):927-39 – reference: 3918016 - J Bacteriol. 1985 Feb;161(2):556-62 – reference: 14724630 - Nature. 2004 Jan 15;427(6971):215-21 – reference: 20400571 - J Biochem. 2010 Jul;148(1):103-13 – reference: 19446527 - Structure. 2009 May 13;17(5):713-24 – reference: 18689482 - J Bacteriol. 2008 Oct;190(20):6625-35 – reference: 15385478 - Infect Immun. 2004 Oct;72(10):5783-90 – reference: 8349564 - J Bacteriol. 1993 Aug;175(16):5242-52 – reference: 16876893 - Trends Biotechnol. 2006 Oct;24(10):435-42 – reference: 8955901 - Biochimie. 1996;78(7):577-89 – reference: 9695947 - Cell. 1998 Jul 24;94(2):181-91 – reference: 19011758 - Cell Mol Life Sci. 2009 Feb;66(3):423-36 – reference: 18437264 - Mol Biosyst. 2008 Mar;4(3):213-22 – reference: 17015655 - J Bacteriol. 2006 Oct;188(20):7165-75 – reference: 16890019 - Curr Opin Pharmacol. 2006 Oct;6(5):453-8 – reference: 12370316 - Mol Cell Biol. 2002 Nov;22(21):7701-11 – reference: 15738986 - Nat Rev Mol Cell Biol. 2005 Mar;6(3):197-208 – reference: 9748462 - J Bacteriol. 1998 Oct;180(19):5243-6 – reference: 3040675 - J Bacteriol. 1987 Sep;169(9):4076-85 – reference: 17347996 - Am J Med Genet B Neuropsychiatr Genet. 2007 Sep 5;144B(6):728-34 – reference: 15680975 - FEBS Lett. 2005 Feb 7;579(4):921-6 – reference: 18660847 - Curr Genomics. 2007 Apr;8(2):129-36 – reference: 19558326 - Biol Chem. 2009 Aug;390(8):775-82 – reference: 18565343 - J Mol Biol. 2008 Jul 11;380(3):532-47 – reference: 7721709 - J Bacteriol. 1995 Apr;177(8):2194-6 – reference: 17132941 - RNA Biol. 2005 Apr;2(2):41-4 – reference: 12399511 - J Bacteriol. 2002 Nov;184(22):6389-94 – reference: 15325267 - Biochem Biophys Res Commun. 2004 Sep 17;322(2):565-9 – reference: 20408996 - Plant J. 2010 Jul 1;63(1):73-85 – reference: 11733036 - Genes Cells. 2001 Nov;6(11):987-1001 – reference: 9811540 - J Mol Biol. 1998 Nov 20;284(1):33-42 – reference: 11976298 - J Bacteriol. 2002 May;184(10):2692-8 – reference: 12402086 - Curr Microbiol. 2002 Dec;45(6):440-5 – reference: 11251813 - Mol Microbiol. 2001 Feb;39(4):924-34 – reference: 19429554 - Appl Environ Microbiol. 2009 Jul;75(13):4419-26 – reference: 18713637 - Int J Parasitol. 2009 Jan;39(1):49-58 – reference: 14702318 - J Bacteriol. 2004 Jan;186(2):481-9 – reference: 19767610 - Nucleic Acids Res. 2009 Nov;37(21):7177-93 – reference: 2987248 - J Biol Chem. 1985 Jun 25;260(12):7206-13 – reference: 18223068 - J Bacteriol. 2008 Apr;190(7):2537-45 – reference: 17616600 - J Bacteriol. 2007 Sep;189(17):6140-7 – reference: 7961402 - J Bacteriol. 1994 Nov;176(21):6518-27 – reference: 20434458 - J Mol Biol. 2010 Jun 25;399(5):759-72 – reference: 16930151 - Mol Microbiol. 2006 Sep;61(6):1660-72 – reference: 10527840 - Biochem Biophys Res Commun. 1999 Oct 14;264(1):51-4 – reference: 10220158 - Microbiology. 1999 Apr;145 ( Pt 4):791-800 – reference: 10482526 - J Bacteriol. 1999 Sep;181(18):5825-32 – reference: 12218018 - J Bacteriol. 2002 Oct;184(19):5323-9 – reference: 9743119 - Nat Biotechnol. 1998 Sep;16(9):851-6 – reference: 3097637 - Proc Natl Acad Sci U S A. 1986 Dec;83(23):8849-53 – reference: 7729673 - FEMS Microbiol Lett. 1995 Mar 1;126(3):291-8 – reference: 19575570 - Annu Rev Microbiol. 2009;63:155-76 – reference: 12753192 - Mol Microbiol. 2003 May;48(4):1005-16 – reference: 21045058 - Nucleic Acids Res. 2011 Jan;39(Database issue):D561-8 – reference: 17062623 - Nucleic Acids Res. 2006;34(20):5892-905 – reference: 7876255 - J Biol Chem. 1995 Mar 3;270(9):4822-39 – reference: 15591131 - Mol Biol Cell. 2005 Feb;16(2):954-63 – reference: 19841256 - Proc Natl Acad Sci U S A. 2009 Oct 27;106(43):18183-8 – reference: 10983982 - Mol Cell. 2000 Aug;6(2):349-60 – reference: 2540151 - J Bacteriol. 1989 May;171(5):2581-90 – reference: 11073929 - J Bacteriol. 2000 Dec;182(23):6819-23 – reference: 16997968 - J Bacteriol. 2006 Dec;188(23):8252-8 – reference: 19995735 - Mol Plant. 2009 Nov;2(6):1373-83 – reference: 11555285 - Mol Microbiol. 2001 Sep;41(5):1037-51 – reference: 11489118 - Mol Microbiol. 2001 Jul;41(2):289-97 – reference: 9093842 - Genetics. 1997 Apr;145(4):867-75 – reference: 8282709 - J Bacteriol. 1994 Jan;176(1):44-9 – reference: 7748952 - Biochimie. 1994;76(12):1168-77 – reference: 8057845 - Mol Microbiol. 1994 Apr;12(2):201-8 – reference: 1917835 - J Bacteriol. 1991 Oct;173(19):6018-24 – reference: 18852288 - Mol Cell Biol. 2008 Dec;28(24):7514-31 – reference: 12855728 - Microbiology. 2003 Jul;149(Pt 7):1763-70 – reference: 18536999 - Cell Mol Biol Lett. 2008;13(4):570-84 – reference: 11395422 - Annu Rev Biochem. 2001;70:755-75 – reference: 10431174 - Trends Biochem Sci. 1999 Aug;24(8):306-11 – reference: 10660592 - J Biol Chem. 2000 Feb 11;275(6):4251-7 – reference: 1640828 - Mol Microbiol. 1992 May;6(10):1253-7 – reference: 9466997 - Hum Mol Genet. 1998 Mar;7(3):407-14 – reference: 16963571 - J Bacteriol. 2006 Nov;188(22):7992-6 – reference: 9150881 - Biochimie. 1996;78(11-12):1025-34 – reference: 7768831 - J Bacteriol. 1995 Jun;177(11):3308-11 – reference: 11532950 - EMBO J. 2001 Sep 3;20(17):4863-73 – reference: 6427754 - Nucleic Acids Res. 1984 Apr 25;12(8):3521-34 – reference: 19448108 - Eukaryot Cell. 2009 Jul;8(7):1061-71 – reference: 20876569 - J Biol Chem. 2010 Nov 26;285(48):37359-69 – reference: 19181811 - J Bacteriol. 2009 Apr;191(7):2307-14 – reference: 9226268 - J Bacteriol. 1997 Jul;179(14):4575-82 – reference: 10419966 - J Bacteriol. 1999 Aug;181(15):4653-60 – reference: 15313254 - Res Microbiol. 2004 Sep;155(7):543-52 – reference: 17905831 - Protein Sci. 2007 Nov;16(11):2391-402 – reference: 7961403 - J Bacteriol. 1994 Nov;176(21):6528-37 – reference: 8824618 - J Bacteriol. 1996 Oct;178(19):5719-31 – reference: 8919456 - FEMS Microbiol Lett. 1996 Feb 1;136(1):57-62 – reference: 10572302 - Biochimie. 1999 Aug-Sep;81(8-9):889-95 – reference: 11544186 - Genes Dev. 2001 Sep 1;15(17):2295-306 – reference: 19824612 - Biochemistry. 2009 Nov 17;48(45):10793-802 – reference: 19763328 - Mol Biosyst. 2009 Dec;5(12):1752-7 – reference: 10411886 - Proc Natl Acad Sci U S A. 1999 Jul 20;96(15):8396-401 – reference: 12467572 - Structure. 2002 Dec;10(12):1649-58 – reference: 20598937 - Curr Opin Chem Biol. 2010 Aug;14(4):481-8 – reference: 12110181 - Cell. 2002 Jun 28;109(7):835-48 – reference: 20008126 - J Biomol Screen. 2010 Jan;15(1):10-20 – reference: 17613524 - J Biol Chem. 2007 Aug 31;282(35):25270-7 – reference: 14715921 - Nucleic Acids Res. 2004;32(1):223-38 – reference: 11532943 - EMBO J. 2001 Sep 3;20(17):4794-802 – reference: 15721258 - Mol Cell. 2005 Feb 18;17(4):549-60 |
SSID | ssj0004599 |
Score | 2.4509804 |
SecondaryResourceType | review_article |
Snippet | Article Usage Stats
Services
MMBR
Citing Articles
Google Scholar
PubMed
Related Content
Social Bookmarking
CiteULike
Delicious
Digg
Facebook
Google+
Mendeley... Members of the large superclass of P-loop GTPases share a core domain with a conserved three-dimensional structure. In eukaryotes, these proteins are... |
SourceID | pubmedcentral proquest pubmed pascalfrancis crossref highwire |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 507 |
SubjectTerms | Amino Acid Sequence Archaea - enzymology Bacteria Bacteria - enzymology Biological and medical sciences Cell cycle Conserved Sequence - genetics Eukaryotes Fundamental and applied biological sciences. Psychology GTP Phosphohydrolases - chemistry GTP Phosphohydrolases - genetics GTP Phosphohydrolases - metabolism Infectious diseases Intracellular Space - metabolism Microbiology Molecular Sequence Data Pathogenesis Proteins Reviews Toxins |
Title | The Universally Conserved Prokaryotic GTPases |
URI | http://mmbr.asm.org/content/75/3/507.abstract https://www.ncbi.nlm.nih.gov/pubmed/21885683 https://www.proquest.com/docview/894211093 https://www.proquest.com/docview/887507386 https://pubmed.ncbi.nlm.nih.gov/PMC3165542 |
Volume | 75 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELeqISReEN90gykPiBcIZEmc2I-AVia0DoRa0Tfr7CRaxZqifkwafwN_NHdxnDljIOAlav0Vx3c-39nn3zH2LEMlOE-KMiyzKAlTEelQyFKHwFPMKoAfNAh845PsaJp-mPHZYPDD81rabvQr8_3aeyX_Q1VMQ7rSLdl_oGzXKCbgb6QvPpHC-PxrGreeFXBGOMXkGr06Lxv__6-wulgSHOv7ySdcqta-GjqeX8FfWrgouS9cagtT6ghC-2qbFZCKbYUyISd2TDGC7Tm4yz_kJVr79exhvJVHX-aLjsZzczrHpdk669b-_gNtqMqeL4c7WPK9TP2v8IRrJOOQAmLZtceliZBzC1LtJLKNpdJyXuKJV24j5P4q9mO6yjAev_3c4FHKsBXgPXjtk49qND0-VpPD2aSf2yzncZrJJEWFDm3pGzEaHQdu76fDnm-ikXZf4RBbY_G69-a-huNQp8npFtY47yobMOU6i-aqY66n6UzusNutiRK8sfx2lw3K-h67aYOWXtxnIXJd4HFd0HFd4HFd0HLdAzYdHU7eHYVt0I3QpDLbYP9jSGXEQZpK5jhZISNMSIhSXWhTCTBGg85kZTKoqkJT5DOc4qZC6W54zJOHbKde1uVjFhhTFlrkBSfEp6oCIQEKAisSAiIZ5UP20g2UMi0iPQVGOVONZRoLReOqmnHF_0P2vCv-zUKx_K7grht1BeuFWiz0SuVcJYrTS_d7dOiailMeYdew9p4jjGrn-loJmdJOiUyGLOhyURDT6RrU5XKLRdDyjyiE7pA9slS8bPpACJ4JrJz36NsVIIz3fk49P22w3nF0UeGPd__YqT1263JmPmE7m9W2fIq68kbvNyz8E3bKwVs |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Universally+Conserved+Prokaryotic+GTPases&rft.jtitle=Microbiology+and+molecular+biology+reviews&rft.au=Verstraeten%2C+Natalie&rft.au=Fauvart%2C+Maarten&rft.au=Vers%C3%A9es%2C+Wim&rft.au=Michiels%2C+Jan&rft.date=2011-09-01&rft.pub=American+Society+for+Microbiology&rft.issn=1092-2172&rft.eissn=1098-5557&rft.volume=75&rft.issue=3&rft.spage=507&rft_id=info:doi/10.1128%2FMMBR.00009-11&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=2469346171 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1092-2172&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1092-2172&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1092-2172&client=summon |