Transmural Dispersion of Repolarization in Failing and Nonfailing Human Ventricle

RATIONALE:Transmural dispersion of repolarization has been shown to play a role in the genesis of ventricular tachycardia and fibrillation in different animal models of heart failure (HF). Heterogeneous changes of repolarization within the midmyocardial population of ventricular cells have been cons...

Full description

Saved in:
Bibliographic Details
Published inCirculation research Vol. 106; no. 5; pp. 981 - 991
Main Authors Glukhov, Alexey V, Fedorov, Vadim V, Lou, Qing, Ravikumar, Vinod K, Kalish, Paul W, Schuessler, Richard B, Moazami, Nader, Efimov, Igor R
Format Journal Article
LanguageEnglish
Published Hagerstown, MD American Heart Association, Inc 19.03.2010
Lippincott Williams & Wilkins
Subjects
Online AccessGet full text

Cover

Loading…
Abstract RATIONALE:Transmural dispersion of repolarization has been shown to play a role in the genesis of ventricular tachycardia and fibrillation in different animal models of heart failure (HF). Heterogeneous changes of repolarization within the midmyocardial population of ventricular cells have been considered an important contributor to the HF phenotype. However, there is limited electrophysiological data from the human heart. OBJECTIVE:To study electrophysiological remodeling of transmural repolarization in the failing and nonfailing human hearts. METHODS AND RESULTS:We optically mapped the action potential duration (APD) in the coronary-perfused scar-free posterior-lateral left ventricular free wall wedge preparations from failing (n=5) and nonfailing (n=5) human hearts. During slow pacing (S1S1=2000 ms), in the nonfailing hearts we observed significant transmural APD gradientsubepicardial, midmyocardial, and subendocardial APD80 were 383±21, 455±20, and 494±22 ms, respectively. In 60% of nonfailing hearts (3 of 5), we found midmyocardial islands of cells that presented a distinctly long APD (537±40 ms) and a steep local APD gradient (27±7 ms/mm) compared with the neighboring myocardium. HF resulted in prolongation of APD80477±22 ms, 495±29 ms, and 506±35 ms for the subepi-, mid-, and subendocardium, respectively, while reducing transmural APD80 difference from 111±13 to 29±6 ms (P<0.005) and presence of any prominent local APD gradient. In HF, immunostaining revealed a significant reduction of connexin43 expression on the subepicardium. CONCLUSIONS:We present for the first time direct experimental evidence of a transmural APD gradient in the human heart. HF results in the heterogeneous prolongation of APD, which significantly reduces the transmural and local APD gradients.
AbstractList Rationale: Transmural dispersion of repolarization has been shown to play a role in the genesis of ventricular tachycardia and fibrillation in different animal models of heart failure (HF). Heterogeneous changes of repolarization within the midmyocardial population of ventricular cells have been considered an important contributor to the HF phenotype. However, there is limited electrophysiological data from the human heart. Objective: To study electrophysiological remodeling of transmural repolarization in the failing and nonfailing human hearts. Methods and Results: We optically mapped the action potential duration (APD) in the coronary-perfused scar-free posterior-lateral left ventricular free wall wedge preparations from failing (n=5) and nonfailing (n=5) human hearts. During slow pacing (S1S1=2000 ms), in the nonfailing hearts we observed significant transmural APD gradient: subepicardial, midmyocardial, and subendocardial APD80 were 383±21, 455±20, and 494±22 ms, respectively. In 60% of nonfailing hearts (3 of 5), we found midmyocardial islands of cells that presented a distinctly long APD (537±40 ms) and a steep local APD gradient (27±7 ms/mm) compared with the neighboring myocardium. HF resulted in prolongation of APD80: 477±22 ms, 495±29 ms, and 506±35 ms for the subepi-, mid-, and subendocardium, respectively, while reducing transmural APD80 difference from 111±13 to 29±6 ms ( P <0.005) and presence of any prominent local APD gradient. In HF, immunostaining revealed a significant reduction of connexin43 expression on the subepicardium. Conclusions: We present for the first time direct experimental evidence of a transmural APD gradient in the human heart. HF results in the heterogeneous prolongation of APD, which significantly reduces the transmural and local APD gradients.
RATIONALETransmural dispersion of repolarization has been shown to play a role in the genesis of ventricular tachycardia and fibrillation in different animal models of heart failure (HF). Heterogeneous changes of repolarization within the midmyocardial population of ventricular cells have been considered an important contributor to the HF phenotype. However, there is limited electrophysiological data from the human heart. OBJECTIVETo study electrophysiological remodeling of transmural repolarization in the failing and nonfailing human hearts. METHODS AND RESULTSWe optically mapped the action potential duration (APD) in the coronary-perfused scar-free posterior-lateral left ventricular free wall wedge preparations from failing (n=5) and nonfailing (n=5) human hearts. During slow pacing (S1S1=2000 ms), in the nonfailing hearts we observed significant transmural APD gradient: subepicardial, midmyocardial, and subendocardial APD80 were 383+/-21, 455+/-20, and 494+/-22 ms, respectively. In 60% of nonfailing hearts (3 of 5), we found midmyocardial islands of cells that presented a distinctly long APD (537+/-40 ms) and a steep local APD gradient (27+/-7 ms/mm) compared with the neighboring myocardium. HF resulted in prolongation of APD80: 477+/-22 ms, 495+/-29 ms, and 506+/-35 ms for the subepi-, mid-, and subendocardium, respectively, while reducing transmural APD80 difference from 111+/-13 to 29+/-6 ms (P<0.005) and presence of any prominent local APD gradient. In HF, immunostaining revealed a significant reduction of connexin43 expression on the subepicardium. CONCLUSIONSWe present for the first time direct experimental evidence of a transmural APD gradient in the human heart. HF results in the heterogeneous prolongation of APD, which significantly reduces the transmural and local APD gradients.
RATIONALE:Transmural dispersion of repolarization has been shown to play a role in the genesis of ventricular tachycardia and fibrillation in different animal models of heart failure (HF). Heterogeneous changes of repolarization within the midmyocardial population of ventricular cells have been considered an important contributor to the HF phenotype. However, there is limited electrophysiological data from the human heart. OBJECTIVE:To study electrophysiological remodeling of transmural repolarization in the failing and nonfailing human hearts. METHODS AND RESULTS:We optically mapped the action potential duration (APD) in the coronary-perfused scar-free posterior-lateral left ventricular free wall wedge preparations from failing (n=5) and nonfailing (n=5) human hearts. During slow pacing (S1S1=2000 ms), in the nonfailing hearts we observed significant transmural APD gradientsubepicardial, midmyocardial, and subendocardial APD80 were 383±21, 455±20, and 494±22 ms, respectively. In 60% of nonfailing hearts (3 of 5), we found midmyocardial islands of cells that presented a distinctly long APD (537±40 ms) and a steep local APD gradient (27±7 ms/mm) compared with the neighboring myocardium. HF resulted in prolongation of APD80477±22 ms, 495±29 ms, and 506±35 ms for the subepi-, mid-, and subendocardium, respectively, while reducing transmural APD80 difference from 111±13 to 29±6 ms (P<0.005) and presence of any prominent local APD gradient. In HF, immunostaining revealed a significant reduction of connexin43 expression on the subepicardium. CONCLUSIONS:We present for the first time direct experimental evidence of a transmural APD gradient in the human heart. HF results in the heterogeneous prolongation of APD, which significantly reduces the transmural and local APD gradients.
Transmural dispersion of repolarization has been shown to play a role in the genesis of ventricular tachycardia and fibrillation in different animal models of heart failure (HF). Heterogeneous changes of repolarization within the midmyocardial population of ventricular cells have been considered an important contributor to the HF phenotype. However, there is limited electrophysiological data from the human heart. To study electrophysiological remodeling of transmural repolarization in the failing and nonfailing human hearts. We optically mapped the action potential duration (APD) in the coronary-perfused scar-free posterior-lateral left ventricular free wall wedge preparations from failing (n=5) and nonfailing (n=5) human hearts. During slow pacing (S1S1=2000 ms), in the nonfailing hearts we observed significant transmural APD gradient: subepicardial, midmyocardial, and subendocardial APD80 were 383+/-21, 455+/-20, and 494+/-22 ms, respectively. In 60% of nonfailing hearts (3 of 5), we found midmyocardial islands of cells that presented a distinctly long APD (537+/-40 ms) and a steep local APD gradient (27+/-7 ms/mm) compared with the neighboring myocardium. HF resulted in prolongation of APD80: 477+/-22 ms, 495+/-29 ms, and 506+/-35 ms for the subepi-, mid-, and subendocardium, respectively, while reducing transmural APD80 difference from 111+/-13 to 29+/-6 ms (P<0.005) and presence of any prominent local APD gradient. In HF, immunostaining revealed a significant reduction of connexin43 expression on the subepicardium. We present for the first time direct experimental evidence of a transmural APD gradient in the human heart. HF results in the heterogeneous prolongation of APD, which significantly reduces the transmural and local APD gradients.
Author Moazami, Nader
Ravikumar, Vinod K
Schuessler, Richard B
Glukhov, Alexey V
Efimov, Igor R
Lou, Qing
Kalish, Paul W
Fedorov, Vadim V
AuthorAffiliation From the Departments of Biomedical Engineering (A.V.G., V.V.F., Q.L., V.K.R., P.W.K., I.R.E.) and Surgery (R.B.S., N.M.), Washington University, St Louis, Mo
AuthorAffiliation_xml – name: From the Departments of Biomedical Engineering (A.V.G., V.V.F., Q.L., V.K.R., P.W.K., I.R.E.) and Surgery (R.B.S., N.M.), Washington University, St Louis, Mo
Author_xml – sequence: 1
  givenname: Alexey
  surname: Glukhov
  middlename: V
  fullname: Glukhov, Alexey V
  organization: From the Departments of Biomedical Engineering (A.V.G., V.V.F., Q.L., V.K.R., P.W.K., I.R.E.) and Surgery (R.B.S., N.M.), Washington University, St Louis, Mo
– sequence: 2
  givenname: Vadim
  surname: Fedorov
  middlename: V
  fullname: Fedorov, Vadim V
– sequence: 3
  givenname: Qing
  surname: Lou
  fullname: Lou, Qing
– sequence: 4
  givenname: Vinod
  surname: Ravikumar
  middlename: K
  fullname: Ravikumar, Vinod K
– sequence: 5
  givenname: Paul
  surname: Kalish
  middlename: W
  fullname: Kalish, Paul W
– sequence: 6
  givenname: Richard
  surname: Schuessler
  middlename: B
  fullname: Schuessler, Richard B
– sequence: 7
  givenname: Nader
  surname: Moazami
  fullname: Moazami, Nader
– sequence: 8
  givenname: Igor
  surname: Efimov
  middlename: R
  fullname: Efimov, Igor R
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22607328$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/20093630$$D View this record in MEDLINE/PubMed
BookMark eNpFkV1vFCEUholpY7fVn6CZG-PVrOcA88HlZm3dJo1Nt9VbwjCMRRnYwkya9tdLs6u9Al6ec8h5OCVHPnhDyAeEJWKNX9aX2_X2_Ha1WS0RxJICbwW-IQusKC951eARWQCAKBvG4IScpvQbADmj4i05ofmC1QwW5OYuKp_GOSpXfLVpZ2KywRdhKLZmF5yK9llNL4n1xYWyzvpfhfJ98T344XDczKPyxU_jp2i1M-_I8aBcMu8P6xn5cXF-t96UV9ffLterq1JzUYuybTpOB2Si75QasNJGt31VDx3reJWHUQpM22GH1LQtsLpD1NBzzpBTU6mGnZHP-767GB5mkyY52qSNc8qbMCeZ527aRlQ0k9We1DGkFM0gd9GOKj5JBPkiU77KzJGQe5m57uPhhbkbTf-_6p-9DHw6ACpp5YasUtv0ytEaGkbbzPE99xjclA3_cfOjifLeKDfdy_xLwABpSQHzDgWUOUHB_gI_S47u
CODEN CIRUAL
CitedBy_id crossref_primary_10_1016_j_pbiomolbio_2016_05_009
crossref_primary_10_3390_math8050776
crossref_primary_10_1038_srep28798
crossref_primary_10_1371_journal_pone_0054635
crossref_primary_10_3389_fphys_2017_00404
crossref_primary_10_1371_journal_pone_0106602
crossref_primary_10_1586_17512433_2016_1100073
crossref_primary_10_1007_s00424_023_02866_0
crossref_primary_10_1109_TBME_2010_2097597
crossref_primary_10_1007_s12195_023_00781_z
crossref_primary_10_1161_CIRCULATIONAHA_111_064816
crossref_primary_10_1177_026119291003801S12
crossref_primary_10_1113_JP271282
crossref_primary_10_3389_fphys_2018_01259
crossref_primary_10_1016_j_pbiomolbio_2011_07_008
crossref_primary_10_1113_JP271728
crossref_primary_10_1016_j_ebiom_2020_102845
crossref_primary_10_1161_CIRCEP_113_001050
crossref_primary_10_3390_cells10113203
crossref_primary_10_1093_cvr_cvr259
crossref_primary_10_1063_1_4999603
crossref_primary_10_1016_j_vascn_2011_05_001
crossref_primary_10_1371_journal_pcbi_1006856
crossref_primary_10_1016_j_compbiomed_2015_05_008
crossref_primary_10_1093_europace_euad350
crossref_primary_10_1161_CIRCULATIONAHA_110_989707
crossref_primary_10_3390_jcm12206590
crossref_primary_10_1016_j_compbiomed_2017_08_017
crossref_primary_10_1371_journal_pone_0182979
crossref_primary_10_3389_fphar_2021_617922
crossref_primary_10_1097_MD_0000000000007071
crossref_primary_10_1161_JAHA_118_009598
crossref_primary_10_1113_JP271739
crossref_primary_10_1134_S0006350912050235
crossref_primary_10_1111_bph_14357
crossref_primary_10_1016_j_jelectrocard_2011_08_007
crossref_primary_10_1016_j_hrthm_2013_08_010
crossref_primary_10_1016_j_jelectrocard_2020_03_009
crossref_primary_10_1103_PhysRevE_87_042717
crossref_primary_10_1007_s12576_017_0541_0
crossref_primary_10_1016_j_hrthm_2011_01_026
crossref_primary_10_1016_j_yjmcc_2015_06_008
crossref_primary_10_1038_s41467_017_01946_x
crossref_primary_10_1111_pace_12057
crossref_primary_10_1152_ajpheart_00572_2021
crossref_primary_10_1109_JBHI_2015_2442833
crossref_primary_10_3389_fphys_2017_00757
crossref_primary_10_1016_S1166_4568_13_53177_9
crossref_primary_10_1016_j_pbiomolbio_2018_08_005
crossref_primary_10_1016_j_crphys_2022_01_002
crossref_primary_10_1113_JP271869
crossref_primary_10_1016_j_yjmcc_2015_10_016
crossref_primary_10_1152_ajpheart_00711_2011
crossref_primary_10_18705_2311_4495_2018_5_4_35_43
crossref_primary_10_1161_JAHA_112_004713
crossref_primary_10_1016_j_bspc_2013_06_016
crossref_primary_10_1155_2018_4798512
crossref_primary_10_1016_j_yjmcc_2011_06_018
crossref_primary_10_1152_ajpheart_00741_2016
crossref_primary_10_1016_j_bspc_2014_08_008
crossref_primary_10_1016_j_ccep_2010_10_013
crossref_primary_10_1016_j_jelectrocard_2010_11_009
crossref_primary_10_1016_j_yjmcc_2012_10_017
crossref_primary_10_1093_cvr_cvu165
crossref_primary_10_1299_jsmemag_116_1131_74
crossref_primary_10_1161_CIRCRESAHA_119_316404
crossref_primary_10_1161_CIRCULATIONAHA_111_047274
crossref_primary_10_1016_j_yjmcc_2021_05_007
crossref_primary_10_1016_S0120_5633_11_70164_4
crossref_primary_10_3390_app11052189
crossref_primary_10_1103_PhysRevE_88_062703
crossref_primary_10_1111_j_1748_1716_2012_02428_x
crossref_primary_10_1002_wsbm_1434
crossref_primary_10_1016_j_pbiomolbio_2018_06_001
crossref_primary_10_1371_journal_pone_0188867
crossref_primary_10_1152_ajpheart_00770_2011
crossref_primary_10_1371_journal_pone_0032659
crossref_primary_10_4161_chan_24905
crossref_primary_10_1002_cnm_2970
crossref_primary_10_1098_rsfs_2010_0005
crossref_primary_10_1016_j_ijcard_2013_12_232
crossref_primary_10_1111_apha_12071
crossref_primary_10_1371_journal_pone_0063141
crossref_primary_10_1371_journal_pcbi_1004968
crossref_primary_10_3389_fphys_2014_00451
crossref_primary_10_1109_RBME_2021_3093042
crossref_primary_10_1016_j_hroo_2021_05_003
crossref_primary_10_1016_j_media_2014_04_011
crossref_primary_10_1371_journal_pone_0082689
crossref_primary_10_1152_ajpheart_00419_2010
crossref_primary_10_1007_s00249_010_0663_2
crossref_primary_10_1371_journal_pcbi_1003543
crossref_primary_10_1042_CS20170121
crossref_primary_10_1093_europace_euu264
crossref_primary_10_1038_srep30573
crossref_primary_10_3389_fphys_2018_00678
crossref_primary_10_1115_1_4026221
crossref_primary_10_1093_europace_euaa288
crossref_primary_10_1016_j_jelectrocard_2023_11_003
crossref_primary_10_1113_jphysiol_2011_214239
crossref_primary_10_1161_CIRCEP_114_002296
crossref_primary_10_1016_j_jacbts_2017_02_002
crossref_primary_10_1161_JAHA_116_005310
crossref_primary_10_4330_wjc_v11_i10_221
crossref_primary_10_14814_phy2_15607
crossref_primary_10_1152_ajpheart_00457_2012
crossref_primary_10_1038_s41597_022_01253_1
crossref_primary_10_1113_jphysiol_2013_255109
crossref_primary_10_1016_j_jocs_2017_11_009
crossref_primary_10_1371_journal_pone_0079607
crossref_primary_10_1097_SHK_0000000000001262
crossref_primary_10_1115_1_4041042
crossref_primary_10_1161_CIRCRESAHA_112_281006
crossref_primary_10_18501_arrhythmia_2017_016
crossref_primary_10_1016_j_hrthm_2012_06_030
crossref_primary_10_1016_j_coche_2014_11_004
crossref_primary_10_1161_CIRCEP_113_001477
crossref_primary_10_1016_j_yjmcc_2020_12_004
crossref_primary_10_1152_japplphysiol_00609_2011
crossref_primary_10_1136_heartjnl_2016_309730
crossref_primary_10_1152_ajpheart_00894_2012
crossref_primary_10_1371_journal_pone_0305248
crossref_primary_10_1002_bdr2_2010
crossref_primary_10_1016_j_ccep_2017_08_004
crossref_primary_10_1016_j_mbs_2016_08_003
crossref_primary_10_1161_CIRCRESAHA_110_224733
crossref_primary_10_1063_1_4940238
crossref_primary_10_1038_s41598_017_16218_3
crossref_primary_10_3389_fphys_2020_00314
crossref_primary_10_1093_cvr_cvv202
crossref_primary_10_1016_j_hrthm_2010_10_048
crossref_primary_10_1113_JP272883
crossref_primary_10_1016_j_compbiomed_2017_03_021
crossref_primary_10_1126_scitranslmed_3002588
crossref_primary_10_1161_CIRCRESAHA_112_265041
crossref_primary_10_1371_journal_pone_0065809
crossref_primary_10_3389_fphys_2019_00308
crossref_primary_10_4330_wjc_v12_i9_437
crossref_primary_10_1016_j_hrthm_2016_05_017
crossref_primary_10_1152_ajpheart_00518_2010
crossref_primary_10_1172_JCI88950
crossref_primary_10_1371_journal_pone_0160999
crossref_primary_10_1161_CIRCRESAHA_110_224048
crossref_primary_10_1093_europace_eus275
crossref_primary_10_1016_j_pbiomolbio_2017_05_011
crossref_primary_10_1016_j_pbiomolbio_2012_03_001
crossref_primary_10_1152_ajpheart_00381_2021
crossref_primary_10_1038_ncomms3370
crossref_primary_10_1161_CIRCRESAHA_113_301971
crossref_primary_10_1093_cvr_cvs082
crossref_primary_10_1152_ajpheart_01241_2010
crossref_primary_10_3390_ijms22052475
crossref_primary_10_1016_j_euromechsol_2012_03_001
crossref_primary_10_1038_s41598_018_38263_2
crossref_primary_10_1007_s11010_018_3269_0
crossref_primary_10_1111_ijcp_12949
crossref_primary_10_3389_fphys_2021_740389
crossref_primary_10_1111_j_1476_5381_2012_02200_x
crossref_primary_10_1016_j_yjmcc_2011_04_016
crossref_primary_10_1038_srep29397
crossref_primary_10_1016_j_ccep_2010_10_005
crossref_primary_10_1016_j_media_2021_102080
crossref_primary_10_3389_fphys_2021_708435
crossref_primary_10_3389_fcvm_2019_00135
crossref_primary_10_1016_j_pharmthera_2013_10_007
crossref_primary_10_1002_nbm_3733
crossref_primary_10_1113_JP276239
crossref_primary_10_1161_CIRCEP_117_005914
crossref_primary_10_1371_journal_pone_0186152
crossref_primary_10_1038_s41598_020_77076_0
crossref_primary_10_1016_j_jelectrocard_2015_03_010
crossref_primary_10_1113_jphysiol_2013_251710
crossref_primary_10_1111_cts_12032
crossref_primary_10_1152_ajpheart_00524_2011
crossref_primary_10_1002_phy2_158
crossref_primary_10_1109_TBME_2014_2310515
crossref_primary_10_1371_journal_pcbi_1006637
crossref_primary_10_1161_CIRCRESAHA_111_247494
crossref_primary_10_1016_j_cmpb_2022_107062
crossref_primary_10_1093_cvr_cvaa238
crossref_primary_10_1161_CIRCRESAHA_116_308698
crossref_primary_10_3390_bioengineering10020171
crossref_primary_10_1113_JP271992
crossref_primary_10_1002_cnm_2570
crossref_primary_10_1113_JP273142
crossref_primary_10_1371_journal_pone_0191514
crossref_primary_10_1113_JP284391
crossref_primary_10_1007_s10840_015_0016_2
crossref_primary_10_1016_j_cmpb_2023_107350
crossref_primary_10_1161_CIRCULATIONAHA_110_976092
crossref_primary_10_1111_apha_12902
crossref_primary_10_1371_journal_pone_0056359
crossref_primary_10_1016_j_physrep_2022_06_003
crossref_primary_10_1371_journal_pone_0103150
crossref_primary_10_1007_s11596_023_2706_9
crossref_primary_10_1371_journal_pone_0103273
crossref_primary_10_1016_j_hrthm_2011_06_002
crossref_primary_10_1038_srep31262
crossref_primary_10_1371_journal_pcbi_1002061
crossref_primary_10_3389_fphys_2018_00718
crossref_primary_10_1016_j_pbiomolbio_2016_01_008
crossref_primary_10_1016_j_pbiomolbio_2016_01_007
crossref_primary_10_1098_rsfs_2023_0035
crossref_primary_10_1016_j_cellsig_2021_110134
crossref_primary_10_1109_RBME_2013_2286296
crossref_primary_10_1016_j_yjmcc_2012_06_006
crossref_primary_10_1161_CIRCEP_113_001622
crossref_primary_10_1152_ajpheart_01151_2011
crossref_primary_10_1113_expphysiol_2011_058503
crossref_primary_10_1109_TBME_2011_2168397
crossref_primary_10_1016_j_hrthm_2015_08_009
crossref_primary_10_1371_journal_pone_0086896
crossref_primary_10_1016_j_yjmcc_2017_12_001
crossref_primary_10_1134_S0021364016140034
crossref_primary_10_1152_ajpheart_00410_2014
crossref_primary_10_1016_j_hrcr_2017_08_010
crossref_primary_10_1016_j_hrthm_2020_03_021
crossref_primary_10_1016_j_ymeth_2020_01_010
Cites_doi 10.1161/circ.98.18.1921
10.1016/j.hrthm.2008.08.030
10.1038/ncpcardio1130
10.1111/j.1540-8159.2008.01134.x
10.1016/0735-1097(95)00167-X
10.1161/circ.41.6.899
10.1152/ajpheart.00346.2004
10.1161/01.res.0000145047.14691.db
10.1161/01.res.0000092248.59479.ae
10.1016/S0008-6363(99)00017-6
10.1152/ajpheart.00987.2003
10.1161/circ.94.8.1981
10.1161/circ.96.11.4011
10.1111/j.1540-8167.1999.tb00287.x
10.1161/circresaha.108.193193
10.1152/ajpcell.00551.2006
10.1152/ajpheart.00526.2004
10.1002/ar.20631
10.1016/j.jacc.2007.10.011
10.1161/res.68.6.2036721
10.1161/circ.105.10.1247
10.1016/j.yjmcc.2009.08.026
10.1161/res.69.6.1659499
10.1161/res.65.5.2805251
10.1016/j.cardiores.2004.02.016
10.1016/j.hrthm.2008.01.026
10.1111/j.1540-8167.1999.tb00667.x
10.1152/ajpheart.00355.2007
10.1016/S0008-6363(01)00223-1
10.1016/j.hrthm.2006.12.047
10.1016/j.hrthm.2009.03.028
10.1161/circ.99.18.2466
10.1111/j.1540-8167.2000.tb01798.x
10.1152/ajpregu.00447.2005
10.1161/circ.90.3.8087954
ContentType Journal Article
Copyright 2010 American Heart Association, Inc.
2015 INIST-CNRS
Copyright_xml – notice: 2010 American Heart Association, Inc.
– notice: 2015 INIST-CNRS
DBID IQODW
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
DOI 10.1161/CIRCRESAHA.109.204891
DatabaseName Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1524-4571
EndPage 991
ExternalDocumentID 10_1161_CIRCRESAHA_109_204891
20093630
22607328
00003012-201003190-00019
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: R01 HL067322-07
– fundername: NHLBI NIH HHS
  grantid: R01 HL114395
– fundername: NHLBI NIH HHS
  grantid: R01 HL085369
– fundername: NHLBI NIH HHS
  grantid: R01 HL059464-03
– fundername: NHLBI NIH HHS
  grantid: R01 HL085369-02
– fundername: NHLBI NIH HHS
  grantid: R01 HL067322
– fundername: NHLBI NIH HHS
  grantid: R01 HL074283
GroupedDBID -
.Z2
01R
0R
1J1
29B
2WC
40H
4Q1
4Q2
4Q3
53G
55
5GY
5RE
5VS
71W
77Y
7O
7O~
AAAXR
AAMOA
AAMTA
AAPBV
AARTV
AAXQO
ABBUW
ABFLS
ABOCM
ABXVJ
ABZAD
ACDDN
ACEWG
ACGFS
ACPRK
ACWDW
ACWRI
ACXNZ
ADACO
ADBBV
ADNKB
AE3
AENEX
AFUWQ
AHMBA
AHULI
AHVBC
AIJEX
AJIOK
AJNYG
AJYGW
ALMA_UNASSIGNED_HOLDINGS
AMJPA
ASCII
AWKKM
BAWUL
BOYCO
BQLVK
C45
CS3
DIK
DU5
DUNZO
E.X
E3Z
EBS
EJD
EX3
F2K
F2L
F2M
F2N
F5P
FL-
FRP
FW0
GX1
H0
H0~
H13
HZ
IKYAY
IN
IN~
J5H
JK3
JK8
K8S
KD2
KMI
KQ8
L-C
L7B
LI0
N9A
N~7
N~B
O0-
O9-
OAG
OAH
OB2
ODA
OHASI
OK1
OL1
OLG
OLH
OLU
OLV
OLW
OLY
OLZ
OPUJH
OUVQU
OVD
OVDNE
OVIDH
OVLEI
OWW
OWY
OXXIT
P2P
PQEST
PQQKQ
RAH
RHF
RLZ
RSW
S4R
S4S
UPT
V2I
WH7
WOQ
WOW
X
X3V
X3W
X7M
Z2
ZA5
---
-~X
.-D
.3C
.55
.GJ
08R
0R~
18M
1CY
41~
AAGIX
AAHPQ
AAQKA
AASOK
AAUGY
ABASU
ABDIG
ABQRW
ACCJW
ACGFO
ACILI
ACNWC
ADFPA
ADGGA
AE6
AEETU
AFDTB
AFFNX
AGINI
AHOMT
AHRYX
AJNWD
AKALU
AKULP
ALMTX
AMKUR
AMNEI
AOHHW
BS7
C1A
DIWNM
EEVPB
FCALG
GNXGY
GQDEL
HZ~
H~9
IKREB
IPNFZ
IQODW
JF9
JG8
MVM
N~M
OCUKA
OJAPA
ORVUJ
OWU
OWV
OWX
OWZ
P-K
R58
RIG
T8P
TEORI
TR2
TSPGW
VVN
W3M
W8F
XXN
XYM
YFH
YOC
ZFV
ZGI
ZZMQN
AAAAV
AAIQE
ABJNI
ADHPY
AHQNM
AINUH
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
AJZMW
CITATION
7X8
ID FETCH-LOGICAL-c4969-87b42f139dbaaf15cec8d56fb3b45048aa0e8b1b12e88036b11c0d443142e5a73
ISSN 0009-7330
IngestDate Fri Aug 16 05:42:44 EDT 2024
Fri Aug 23 01:42:07 EDT 2024
Thu May 23 23:51:29 EDT 2024
Sun Oct 22 16:06:41 EDT 2023
Thu Aug 13 19:50:26 EDT 2020
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Human
Heart failure
Repolarization
Gradient
connexin43
Cardiovascular disease
Dispersion
Connexin
Vertebrata
Mammalia
Heart disease
transmural gradient
optical mapping
Circulatory system
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c4969-87b42f139dbaaf15cec8d56fb3b45048aa0e8b1b12e88036b11c0d443142e5a73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.ahajournals.org/doi/pdf/10.1161/CIRCRESAHA.109.204891
PMID 20093630
PQID 733787952
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_733787952
crossref_primary_10_1161_CIRCRESAHA_109_204891
pubmed_primary_20093630
pascalfrancis_primary_22607328
wolterskluwer_health_00003012-201003190-00019
ProviderPackageCode L-C
C45
7O~
AARTV
OLH
ASCII
OLG
AAMOA
ODA
ABZAD
ABBUW
JK3
ADNKB
JK8
H0~
1J1
OLV
OLU
OLW
OLZ
OLY
F2K
F2M
F2L
F2N
OHASI
AHVBC
AJNYG
FL-
KMI
K8S
OVLEI
AJIOK
OPUJH
V2I
S4R
S4S
4Q1
DUNZO
OAG
4Q2
OVDNE
4Q3
AMJPA
OAH
OVD
71W
AHULI
OB2
ACEWG
.Z2
N~7
IKYAY
OVIDH
AWKKM
40H
N~B
OUVQU
X3V
X3W
ACDDN
ACWRI
BOYCO
AIJEX
AAXQO
AAMTA
AAAXR
E.X
OWW
OWY
01R
ACXNZ
OL1
ABXVJ
IN~
KD2
OXXIT
77Y
ACWDW
FW0
PublicationCentury 2000
PublicationDate 2010-March-19
PublicationDateYYYYMMDD 2010-03-19
PublicationDate_xml – month: 03
  year: 2010
  text: 2010-March-19
  day: 19
PublicationDecade 2010
PublicationPlace Hagerstown, MD
PublicationPlace_xml – name: Hagerstown, MD
– name: United States
PublicationTitle Circulation research
PublicationTitleAlternate Circ Res
PublicationYear 2010
Publisher American Heart Association, Inc
Lippincott Williams & Wilkins
Publisher_xml – name: American Heart Association, Inc
– name: Lippincott Williams & Wilkins
References 20689067 - Circ Res. 2010 Aug 6;107(3):e9; author reply e10
20299671 - Circ Res. 2010 Mar 19;106(5):815-7
e_1_3_2_26_2
e_1_3_2_27_2
e_1_3_2_28_2
e_1_3_2_29_2
(e_1_3_2_32_2) 1997; 272
e_1_3_2_20_2
e_1_3_2_21_2
e_1_3_2_22_2
e_1_3_2_23_2
e_1_3_2_24_2
e_1_3_2_25_2
(e_1_3_2_36_2) 1997; 273
e_1_3_2_9_2
e_1_3_2_15_2
e_1_3_2_8_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_17_2
e_1_3_2_6_2
e_1_3_2_18_2
e_1_3_2_19_2
e_1_3_2_1_2
e_1_3_2_30_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_5_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_4_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_3_2
e_1_3_2_13_2
e_1_3_2_2_2
e_1_3_2_14_2
e_1_3_2_35_2
References_xml – ident: e_1_3_2_33_2
  doi: 10.1161/circ.98.18.1921
– ident: e_1_3_2_25_2
  doi: 10.1016/j.hrthm.2008.08.030
– ident: e_1_3_2_3_2
  doi: 10.1038/ncpcardio1130
– ident: e_1_3_2_1_2
  doi: 10.1111/j.1540-8159.2008.01134.x
– ident: e_1_3_2_13_2
  doi: 10.1016/0735-1097(95)00167-X
– ident: e_1_3_2_29_2
  doi: 10.1161/circ.41.6.899
– ident: e_1_3_2_15_2
  doi: 10.1152/ajpheart.00346.2004
– ident: e_1_3_2_2_2
  doi: 10.1161/01.res.0000145047.14691.db
– ident: e_1_3_2_4_2
  doi: 10.1161/01.res.0000092248.59479.ae
– ident: e_1_3_2_5_2
  doi: 10.1016/S0008-6363(99)00017-6
– ident: e_1_3_2_6_2
  doi: 10.1152/ajpheart.00987.2003
– ident: e_1_3_2_9_2
  doi: 10.1161/circ.94.8.1981
– ident: e_1_3_2_10_2
  doi: 10.1161/circ.96.11.4011
– ident: e_1_3_2_20_2
  doi: 10.1111/j.1540-8167.1999.tb00287.x
– ident: e_1_3_2_27_2
  doi: 10.1161/circresaha.108.193193
– ident: e_1_3_2_21_2
  doi: 10.1152/ajpcell.00551.2006
– ident: e_1_3_2_17_2
  doi: 10.1152/ajpheart.00526.2004
– ident: e_1_3_2_28_2
  doi: 10.1002/ar.20631
– ident: e_1_3_2_26_2
  doi: 10.1016/j.jacc.2007.10.011
– ident: e_1_3_2_30_2
  doi: 10.1161/res.68.6.2036721
– ident: e_1_3_2_7_2
  doi: 10.1161/circ.105.10.1247
– ident: e_1_3_2_23_2
  doi: 10.1016/j.yjmcc.2009.08.026
– volume: 272
  start-page: H107
  year: 1997
  ident: e_1_3_2_32_2
  publication-title: Am J Physiol
– ident: e_1_3_2_11_2
  doi: 10.1161/res.69.6.1659499
– ident: e_1_3_2_34_2
  doi: 10.1161/res.65.5.2805251
– ident: e_1_3_2_35_2
  doi: 10.1016/j.cardiores.2004.02.016
– ident: e_1_3_2_24_2
  doi: 10.1016/j.hrthm.2008.01.026
– ident: e_1_3_2_19_2
  doi: 10.1111/j.1540-8167.1999.tb00667.x
– ident: e_1_3_2_8_2
  doi: 10.1152/ajpheart.00355.2007
– ident: e_1_3_2_16_2
  doi: 10.1016/S0008-6363(01)00223-1
– ident: e_1_3_2_22_2
  doi: 10.1016/j.hrthm.2006.12.047
– ident: e_1_3_2_18_2
  doi: 10.1016/j.hrthm.2009.03.028
– ident: e_1_3_2_37_2
  doi: 10.1161/circ.99.18.2466
– ident: e_1_3_2_12_2
  doi: 10.1111/j.1540-8167.2000.tb01798.x
– ident: e_1_3_2_14_2
  doi: 10.1152/ajpregu.00447.2005
– ident: e_1_3_2_31_2
  doi: 10.1161/circ.90.3.8087954
– volume: 273
  start-page: H1205
  year: 1997
  ident: e_1_3_2_36_2
  publication-title: Am J Physiol
SSID ssj0014329
Score 2.5046782
Snippet RATIONALE:Transmural dispersion of repolarization has been shown to play a role in the genesis of ventricular tachycardia and fibrillation in different animal...
Transmural dispersion of repolarization has been shown to play a role in the genesis of ventricular tachycardia and fibrillation in different animal models of...
Rationale: Transmural dispersion of repolarization has been shown to play a role in the genesis of ventricular tachycardia and fibrillation in different animal...
RATIONALETransmural dispersion of repolarization has been shown to play a role in the genesis of ventricular tachycardia and fibrillation in different animal...
SourceID proquest
crossref
pubmed
pascalfrancis
wolterskluwer
SourceType Aggregation Database
Index Database
Publisher
StartPage 981
SubjectTerms Action Potentials
Adult
Biological and medical sciences
Cardiac Pacing, Artificial
Cardiology. Vascular system
Case-Control Studies
Connexin 43 - metabolism
Female
Fundamental and applied biological sciences. Psychology
Heart
Heart Failure - complications
Heart Failure - metabolism
Heart Failure - physiopathology
Heart failure, cardiogenic pulmonary edema, cardiac enlargement
Heart Ventricles - metabolism
Heart Ventricles - physiopathology
Humans
Immunohistochemistry
Male
Medical sciences
Middle Aged
Myocardium - metabolism
Myocardium - pathology
Tachycardia, Ventricular - etiology
Tachycardia, Ventricular - metabolism
Tachycardia, Ventricular - physiopathology
Time Factors
Ventricular Fibrillation - etiology
Ventricular Fibrillation - metabolism
Ventricular Fibrillation - physiopathology
Ventricular Remodeling
Vertebrates: cardiovascular system
Voltage-Sensitive Dye Imaging
Title Transmural Dispersion of Repolarization in Failing and Nonfailing Human Ventricle
URI http://ovidsp.ovid.com/ovidweb.cgi?T=JS&NEWS=n&CSC=Y&PAGE=fulltext&D=ovft&AN=00003012-201003190-00019
https://www.ncbi.nlm.nih.gov/pubmed/20093630
https://search.proquest.com/docview/733787952
Volume 106
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Za9swGBdbB2Mwyu55R9HD3oYz25Js6zFkzdIt7ehISt6M5IOatHHJ0cL--n2fJdsJC-x4MYkdy0Tfz999EPIhilSuo0C7oCp72FTbd3UYZy4LlcBuKZwxrHc-PQtHU_51JmZdQ4W6umSte-nPvXUl_0NVOAd0xSrZf6BsuyicgM9AXzgCheH4dzRGQXNdN87ISmz5vbLqH0YCwGS1NZbo0yhUedXUI4LF33w1I_ow53HZLt70LSiXqZ3t9dG2BGpdx1-uNvPL6rapkAG-0ubKDnF2ibl0obLyursyrjZ49rwRlnV06bacN0neF-Wiyqzb1fohMITOXMvtcss7Aw7UNhNVWubqhVsoElusUppRLVbqSjOz63eGHiJDH5z8GAAg-6M-tr_qYbNh6XcSrInan31PhtPxOJkczyb3yYMgkgLt8c8n39rAEmeBtIVcsPSnvQvvqCiPb9QK3pbCjDnZZ4fAb-4qTG1YzevKhi39ZPKEHFrDgvYNSp6Se_niGXl4alMnnpPzDiy0AwutCroLFlouqEUHBbDQDiy0BgttwfKCTIfHk8HItfM03JTLUILg0zwoQOXPtFKFL9I8jTMRFpppLuCfK-Xlsfa1H-TA1VmofT_1Mg4qJg9yoSL2khzAQ_PXhEZeUQjp6VRInxdBIWPOFCjPChT6NI61Q3rNFiY3pm1KUpuboZ90e47pD4nZc4cc7Wx0exeYBx42lHIIbXY-AQ6IYS21yKvNKokYA6kjReCQV4Yi3c3osAuZ5xB3h0SJKTLGzAt0CQQuAhrr-eouC7588-eHvSWPurfgHTlYLzf5e9BP1_qoRtwvRIuRLg
link.rule.ids 315,786,790,27957,27958
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transmural+dispersion+of+repolarization+in+failing+and+nonfailing+human+ventricle&rft.jtitle=Circulation+research&rft.au=Glukhov%2C+Alexey+V&rft.au=Fedorov%2C+Vadim+V&rft.au=Lou%2C+Qing&rft.au=Ravikumar%2C+Vinod+K&rft.date=2010-03-19&rft.eissn=1524-4571&rft.volume=106&rft.issue=5&rft.spage=981&rft.epage=991&rft_id=info:doi/10.1161%2FCIRCRESAHA.109.204891&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0009-7330&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0009-7330&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0009-7330&client=summon