Electrostatic interactions between charged defects in supercells
Most theoretical calculations for point defects employ the supercell approach. The supercell consists of a few dozen or 100 atoms of the bulk material with a single defect, and is subject to periodic boundary conditions. However, the large density and periodic arrangement of the defects introduce ar...
Saved in:
Published in | Physica Status Solidi (b) Vol. 248; no. 5; pp. 1067 - 1076 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Berlin
WILEY-VCH Verlag
01.05.2011
WILEY‐VCH Verlag Wiley-VCH |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Most theoretical calculations for point defects employ the supercell approach. The supercell consists of a few dozen or 100 atoms of the bulk material with a single defect, and is subject to periodic boundary conditions. However, the large density and periodic arrangement of the defects introduce artifacts. They need to be corrected for to extrapolate to the isolated‐defect limit. This is particularly important for electrostatic interactions between charged defects, which decay only very slowly (asymptotically like L−1) with increasing supercell lattice constant L. In this paper, we summarize the underlying electrostatics in condensed matter. A novel defect scheme is derived from this analysis. It overcomes limitations of previous schemes with respect to applicability, systematic improvement, and formal justification. Good performance is demonstrated for vacancies in diamond and GaAs. |
---|---|
AbstractList | Most theoretical calculations for point defects employ the supercell approach. The supercell consists of a few dozen or 100 atoms of the bulk material with a single defect, and is subject to periodic boundary conditions. However, the large density and periodic arrangement of the defects introduce artifacts. They need to be corrected for to extrapolate to the isolated‐defect limit. This is particularly important for electrostatic interactions between charged defects, which decay only very slowly (asymptotically like L−1) with increasing supercell lattice constant L. In this paper, we summarize the underlying electrostatics in condensed matter. A novel defect scheme is derived from this analysis. It overcomes limitations of previous schemes with respect to applicability, systematic improvement, and formal justification. Good performance is demonstrated for vacancies in diamond and GaAs. Most theoretical calculations for point defects employ the supercell approach. The supercell consists of a few dozen or 100 atoms of the bulk material with a single defect, and is subject to periodic boundary conditions. However, the large density and periodic arrangement of the defects introduce artifacts. They need to be corrected for to extrapolate to the isolated-defect limit. This is particularly important for electrostatic interactions between charged defects, which decay only very slowly (asymptotically like L-1) with increasing supercell lattice constant L. In this paper, we summarize the underlying electrostatics in condensed matter. A novel defect scheme is derived from this analysis. It overcomes limitations of previous schemes with respect to applicability, systematic improvement, and formal justification. Good performance is demonstrated for vacancies in diamond and GaAs. Most theoretical calculations for point defects employ the supercell approach. The supercell consists of a few dozen or 100 atoms of the bulk material with a single defect, and is subject to periodic boundary conditions. However, the large density and periodic arrangement of the defects introduce artifacts. They need to be corrected for to extrapolate to the isolated‐defect limit. This is particularly important for electrostatic interactions between charged defects, which decay only very slowly (asymptotically like L −1 ) with increasing supercell lattice constant L . In this paper, we summarize the underlying electrostatics in condensed matter. A novel defect scheme is derived from this analysis. It overcomes limitations of previous schemes with respect to applicability, systematic improvement, and formal justification. Good performance is demonstrated for vacancies in diamond and GaAs. |
Author | Freysoldt, Christoph Van de Walle, Chris G. Neugebauer, Jörg |
Author_xml | – sequence: 1 givenname: Christoph surname: Freysoldt fullname: Freysoldt, Christoph email: freysoldt@mpie.de organization: Max-Planck-Institut für Eisenforschung, Max-Planck-Str. 1, 40237 Düsseldorf, Germany – sequence: 2 givenname: Jörg surname: Neugebauer fullname: Neugebauer, Jörg organization: Max-Planck-Institut für Eisenforschung, Max-Planck-Str. 1, 40237 Düsseldorf, Germany – sequence: 3 givenname: Chris G. surname: Van de Walle fullname: Van de Walle, Chris G. organization: Materials Department, University of California, Santa Barbara, California 93106-5050, USA |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24134250$$DView record in Pascal Francis |
BookMark | eNqFkMFPFDEUxhsDiQt69TwXEy-z9rWddntTCCKBgIqGY9N980arw8zS1w3y3zObRWJMDKd3-f2-fO_bEzvDOJAQr0DOQUr1dsW8nCsJ0li18M_EDBoFtfYN7IiZ1E7W4J16LvaYf0opHWiYiXdHPWHJI5dYElZpKJQjljQOXC2p3BINFf6I-Tu1VUvdxPIEVbxeUUbqe34hdrvYM718uPvi24ejr4cf67OL45PD92c1Gm99rQwYi9ZTQ-A6J1vdObVY2LgARECLmmxrTWM0ou3QO2r10liLcukRndX74s02d5XHmzVxCdeJNw3iQOOaA0gNylsHMKGvH9DIGPsuxwETh1VO1zHfhamKNqqRE2e2HE7_c6YuYNrMMA4lx9RPkWEzbNgMGx6HnbT5P9qf5P8Kfivcpp7unqDDp8vLg7_deusmLvT70Y35V7BOuyZcnR-H84Mvn0-vvAte3wOCm50y |
CODEN | PSSBBD |
CitedBy_id | crossref_primary_10_1016_j_diamond_2022_109072 crossref_primary_10_1088_0953_8984_28_6_06LT01 crossref_primary_10_1016_j_mtchem_2024_102461 crossref_primary_10_1103_PhysRevMaterials_6_125002 crossref_primary_10_1038_srep04909 crossref_primary_10_1063_5_0088197 crossref_primary_10_1103_PhysRevApplied_14_024064 crossref_primary_10_1063_1_5047808 crossref_primary_10_1021_jp5114152 crossref_primary_10_1103_PhysRevB_98_125207 crossref_primary_10_1103_PhysRevMaterials_9_026201 crossref_primary_10_1088_1402_4896_ad75c6 crossref_primary_10_1016_j_mtcomm_2024_109141 crossref_primary_10_1021_acs_jpcc_2c03456 crossref_primary_10_1103_PhysRevB_90_125202 crossref_primary_10_1103_PhysRevApplied_14_014034 crossref_primary_10_1103_PhysRevB_90_045205 crossref_primary_10_1016_j_commatsci_2016_03_033 crossref_primary_10_1016_j_commatsci_2024_113384 crossref_primary_10_1063_1_4989482 crossref_primary_10_1142_S0217984921504716 crossref_primary_10_1016_j_commatsci_2024_113226 crossref_primary_10_1038_s41524_019_0200_5 crossref_primary_10_1103_PhysRevApplied_3_024013 crossref_primary_10_1063_5_0255859 crossref_primary_10_1063_5_0173761 crossref_primary_10_1002_pssr_201510165 crossref_primary_10_1103_PhysRevLett_113_156803 crossref_primary_10_1016_j_commatsci_2022_111950 crossref_primary_10_1088_1361_648X_aab819 crossref_primary_10_1063_1_5110165 crossref_primary_10_1021_acs_nanolett_4c06343 crossref_primary_10_1038_nmat4203 crossref_primary_10_1038_s41467_022_35048_0 crossref_primary_10_1016_j_joule_2022_07_009 crossref_primary_10_1007_s43939_022_00029_z crossref_primary_10_1021_acs_jpcc_4c04988 crossref_primary_10_1021_acs_chemrev_1c00929 crossref_primary_10_1016_j_cpc_2019_02_018 crossref_primary_10_1039_D4CE00624K crossref_primary_10_1063_1_5044627 crossref_primary_10_1016_j_mee_2013_03_151 crossref_primary_10_1039_D3CP04600A crossref_primary_10_1038_s41699_022_00350_4 crossref_primary_10_1103_PhysRevLett_110_095505 crossref_primary_10_1021_acs_jpca_9b03233 crossref_primary_10_1016_j_physb_2022_413674 crossref_primary_10_1063_1_4875658 crossref_primary_10_1103_PhysRevApplied_2_064005 crossref_primary_10_1103_PhysRevB_102_041115 crossref_primary_10_1103_PhysRevB_93_161201 crossref_primary_10_1007_s11664_019_07900_5 crossref_primary_10_1103_PhysRevB_98_214111 crossref_primary_10_1021_acs_jpcc_1c03701 crossref_primary_10_1103_PhysRevMaterials_4_064004 crossref_primary_10_1021_acs_jpcc_0c04264 crossref_primary_10_1016_j_mssp_2023_107531 crossref_primary_10_1002_admi_201600496 crossref_primary_10_1002_pssb_201046290 crossref_primary_10_1103_PhysRevB_89_075202 crossref_primary_10_12677_APP_2023_138039 crossref_primary_10_1140_epjd_e2020_10299_8 crossref_primary_10_1016_j_commatsci_2016_01_002 crossref_primary_10_1016_j_jpcs_2020_109448 crossref_primary_10_1021_acs_chemrev_8b00481 crossref_primary_10_1016_j_commatsci_2016_12_040 crossref_primary_10_1103_PhysRevB_96_094107 crossref_primary_10_1039_C9TC06919D crossref_primary_10_1021_acs_jpcc_3c01972 crossref_primary_10_1063_5_0077030 crossref_primary_10_1016_j_nimb_2019_01_014 crossref_primary_10_1103_PhysRevMaterials_3_114601 crossref_primary_10_1103_PhysRevMaterials_4_076002 crossref_primary_10_1063_5_0012685 crossref_primary_10_1093_amrx_abw010 crossref_primary_10_1038_s41524_022_00958_6 crossref_primary_10_1063_5_0192047 crossref_primary_10_1063_1_4999479 crossref_primary_10_1103_PhysRevB_98_205201 crossref_primary_10_1021_acs_jpcc_1c06092 crossref_primary_10_1103_PhysRevB_95_134103 crossref_primary_10_1016_j_commatsci_2022_111867 crossref_primary_10_1063_1_4958716 crossref_primary_10_1002_cphc_201601208 crossref_primary_10_1063_1_4784114 crossref_primary_10_1039_c3ta12167d crossref_primary_10_1063_5_0204688 crossref_primary_10_1039_C6TC01643J crossref_primary_10_1088_0022_3727_49_3_035101 crossref_primary_10_1016_j_apsusc_2013_09_063 crossref_primary_10_1016_j_commatsci_2023_112396 crossref_primary_10_1021_acs_chemmater_3c02178 crossref_primary_10_1002_pssr_201800234 crossref_primary_10_1103_PhysRevB_104_075201 crossref_primary_10_1103_PhysRevB_106_155201 crossref_primary_10_1021_acs_jpcc_4c04322 crossref_primary_10_1103_PhysRevB_100_155206 crossref_primary_10_1103_PhysRevMaterials_4_083808 crossref_primary_10_1063_5_0211069 crossref_primary_10_20517_jmi_2024_41 crossref_primary_10_1039_D3NR01677C crossref_primary_10_1021_jp506691h crossref_primary_10_1039_c4cp00454j crossref_primary_10_1103_PhysRevApplied_19_024060 crossref_primary_10_1063_5_0069390 crossref_primary_10_1103_PhysRevB_95_205204 crossref_primary_10_1021_acs_chemmater_4c01049 crossref_primary_10_1007_s11664_024_11292_6 crossref_primary_10_1103_PhysRevB_95_205205 crossref_primary_10_1007_s11837_022_05554_z crossref_primary_10_1039_C4TA06210H crossref_primary_10_1103_PhysRevB_99_205202 crossref_primary_10_1021_acs_jpcc_6b00765 crossref_primary_10_1039_C5CP06946G crossref_primary_10_1103_PhysRevB_106_035206 crossref_primary_10_1088_1361_6641_aaba98 crossref_primary_10_1103_PhysRevB_108_035204 crossref_primary_10_1016_j_mtcomm_2024_109434 crossref_primary_10_1103_PhysRevApplied_19_014018 crossref_primary_10_1021_acs_jpcc_0c09986 crossref_primary_10_1088_1361_648X_acd3cf crossref_primary_10_1039_C9CP06614D crossref_primary_10_1063_1_4887135 crossref_primary_10_1063_1_4995404 crossref_primary_10_1103_PhysRevB_108_L041102 crossref_primary_10_1103_PhysRevB_94_180101 crossref_primary_10_1002_ange_201911436 crossref_primary_10_1021_acsmaterialslett_1c00139 crossref_primary_10_1103_PhysRevB_95_235310 crossref_primary_10_1016_j_jocs_2016_02_002 crossref_primary_10_1103_PhysRevB_88_214117 crossref_primary_10_1103_PhysRevB_88_085203 crossref_primary_10_1103_PhysRevB_104_075410 crossref_primary_10_1103_PhysRevB_95_014106 crossref_primary_10_1080_27660400_2022_2093094 crossref_primary_10_1088_0953_8984_24_5_055505 crossref_primary_10_1039_C3RA44822C crossref_primary_10_1103_PhysRevMaterials_4_015402 crossref_primary_10_1103_PhysRevMaterials_8_015402 crossref_primary_10_1021_jz502646d crossref_primary_10_1063_1_4992128 crossref_primary_10_1063_5_0049334 crossref_primary_10_1063_1_4819492 crossref_primary_10_1007_s11664_016_5062_8 crossref_primary_10_1016_j_jpowsour_2021_230602 crossref_primary_10_1063_1_4974949 crossref_primary_10_1038_s41524_023_01015_6 crossref_primary_10_1021_acs_jpcc_0c10835 crossref_primary_10_1021_acsenergylett_1c01249 crossref_primary_10_1103_PhysRevB_102_115102 crossref_primary_10_1007_s11664_023_10902_z crossref_primary_10_1007_s11837_024_06975_8 crossref_primary_10_1103_PhysRevB_93_115316 crossref_primary_10_1002_pssb_201046327 crossref_primary_10_1103_PhysRevB_92_054103 crossref_primary_10_1088_0953_8984_27_13_133202 crossref_primary_10_1039_D1CP04449D crossref_primary_10_1016_j_ssi_2013_08_017 crossref_primary_10_1021_acs_jpclett_2c01976 crossref_primary_10_1002_pssb_202000498 crossref_primary_10_1103_PhysRevMaterials_5_124004 crossref_primary_10_1021_acs_jpcc_2c00824 crossref_primary_10_1002_pssb_201900534 crossref_primary_10_1103_PhysRevB_110_L220101 crossref_primary_10_1063_1_4817012 crossref_primary_10_1016_j_commatsci_2023_112071 crossref_primary_10_1103_PhysRevB_86_045112 crossref_primary_10_1021_acs_jpcc_6b12789 crossref_primary_10_1103_PhysRevB_96_235203 crossref_primary_10_1016_j_nimb_2023_165138 crossref_primary_10_1103_PhysRevMaterials_6_104609 crossref_primary_10_1039_D2TC04937F crossref_primary_10_1016_j_jcou_2023_102619 crossref_primary_10_1021_acsami_3c06725 crossref_primary_10_1002_pssr_202100218 crossref_primary_10_1021_acscatal_5b01133 crossref_primary_10_1007_s10825_024_02179_0 crossref_primary_10_1063_5_0083877 crossref_primary_10_1063_1_4894195 crossref_primary_10_1039_C4TA00673A crossref_primary_10_1088_2053_1591_3_10_105901 crossref_primary_10_1039_C8TC01341A crossref_primary_10_1063_1_4717623 crossref_primary_10_1088_2053_1591_ab17be crossref_primary_10_1063_1_5058134 crossref_primary_10_1038_s41524_021_00529_1 crossref_primary_10_1063_5_0112915 crossref_primary_10_1002_pssb_202000159 crossref_primary_10_1088_1361_6463_ad33f9 crossref_primary_10_1021_acsaem_8b02222 crossref_primary_10_1021_acs_chemmater_9b00708 crossref_primary_10_1038_s41598_020_73872_w crossref_primary_10_1103_PhysRevB_104_205106 crossref_primary_10_1016_j_mtcomm_2021_102482 crossref_primary_10_1021_acs_chemmater_7b02909 crossref_primary_10_1103_PhysRevB_107_184103 crossref_primary_10_1134_S2635167623600475 crossref_primary_10_1016_j_cplett_2019_04_065 crossref_primary_10_1063_1_4818484 crossref_primary_10_1002_anie_201911436 crossref_primary_10_1103_PhysRevB_105_155201 crossref_primary_10_1103_PhysRevLett_122_167701 crossref_primary_10_1103_PhysRevApplied_21_044011 crossref_primary_10_1016_j_apsusc_2022_155981 crossref_primary_10_1103_PhysRevLett_126_027401 crossref_primary_10_1021_acs_jpcc_8b09134 crossref_primary_10_1038_s42005_022_00948_6 crossref_primary_10_1039_C8CP02741B crossref_primary_10_1016_j_commatsci_2021_110922 crossref_primary_10_1103_PhysRevLett_123_127401 crossref_primary_10_1063_5_0061396 crossref_primary_10_1088_1361_6463_ad4a82 crossref_primary_10_1039_D0TA01103G crossref_primary_10_1002_andp_202400317 crossref_primary_10_1063_1_4819068 crossref_primary_10_1103_PhysRevB_90_085202 crossref_primary_10_1016_j_mejo_2024_106168 crossref_primary_10_1063_1_5029818 crossref_primary_10_1002_aenm_201903752 crossref_primary_10_1103_PhysRevB_92_045208 crossref_primary_10_1063_5_0191539 crossref_primary_10_1103_PhysRevB_106_174113 crossref_primary_10_1103_PhysRevB_88_115104 crossref_primary_10_1088_1361_648X_ad0a11 crossref_primary_10_1039_D1CP01902C crossref_primary_10_1016_j_jlumin_2016_12_008 crossref_primary_10_1021_acs_jpcc_9b09909 crossref_primary_10_1103_PhysRevB_90_085435 crossref_primary_10_1016_j_jpcs_2018_04_018 crossref_primary_10_1038_s42005_022_01037_4 crossref_primary_10_1103_PhysRevMaterials_6_044601 crossref_primary_10_1039_C7CP01471F crossref_primary_10_1103_PhysRevB_102_174110 crossref_primary_10_1007_s11664_020_07952_y crossref_primary_10_1063_5_0187006 crossref_primary_10_1007_s11664_023_10215_1 crossref_primary_10_1021_acsnano_4c07184 crossref_primary_10_1038_s41524_017_0014_2 crossref_primary_10_1103_RevModPhys_86_253 crossref_primary_10_1063_1_5050200 crossref_primary_10_1016_j_actamat_2016_07_003 crossref_primary_10_1021_acs_jpcc_0c09222 crossref_primary_10_1021_acs_jpcc_7b03083 crossref_primary_10_1103_PhysRevResearch_3_013121 crossref_primary_10_1021_acs_chemmater_0c01669 crossref_primary_10_1103_PhysRevB_94_085426 crossref_primary_10_1016_j_commatsci_2022_111273 crossref_primary_10_1039_C7TA04330A crossref_primary_10_1039_C4CP03677H crossref_primary_10_1021_acs_jpcc_4c00944 crossref_primary_10_1063_1_5011295 crossref_primary_10_1016_j_jlumin_2021_118032 crossref_primary_10_1103_PhysRevMaterials_5_034601 crossref_primary_10_1002_pssb_202100392 crossref_primary_10_1002_aelm_201600353 crossref_primary_10_1088_2516_1075_ace014 crossref_primary_10_1021_acs_jpcc_3c02581 crossref_primary_10_1103_PhysRevB_90_245101 crossref_primary_10_1063_5_0210247 crossref_primary_10_1021_acs_chemmater_9b04663 crossref_primary_10_1016_j_apsusc_2020_146001 crossref_primary_10_1103_PhysRevApplied_1_014001 crossref_primary_10_1103_PhysRevMaterials_4_063803 crossref_primary_10_1016_j_mtcomm_2024_110715 crossref_primary_10_1016_j_mtcomm_2023_107492 crossref_primary_10_1103_PhysRevB_97_054112 crossref_primary_10_1063_1_5130747 crossref_primary_10_1002_aenm_202301539 crossref_primary_10_1021_acs_jpclett_7b02727 crossref_primary_10_1039_D1CP01294K crossref_primary_10_1103_PhysRevApplied_13_024025 crossref_primary_10_1088_0953_8984_25_40_405501 crossref_primary_10_1103_PhysRevB_90_075202 crossref_primary_10_1016_j_jssc_2016_02_003 crossref_primary_10_1038_s43588_021_00041_y crossref_primary_10_1063_5_0211543 crossref_primary_10_1111_jace_19130 crossref_primary_10_1021_acsomega_0c03685 crossref_primary_10_1063_1_4895786 crossref_primary_10_1063_5_0219021 crossref_primary_10_1088_1361_648X_ad42f3 crossref_primary_10_1103_PhysRevMaterials_7_015402 crossref_primary_10_1016_j_mssp_2018_09_001 crossref_primary_10_1063_5_0041506 crossref_primary_10_1039_D1EE00260K crossref_primary_10_35848_1347_4065_acaeb3 crossref_primary_10_1063_1_5140661 crossref_primary_10_1103_PhysRevMaterials_3_053401 crossref_primary_10_1021_acs_jpcc_0c09391 crossref_primary_10_1016_j_ijhydene_2016_01_156 crossref_primary_10_1103_PhysRevB_93_155202 crossref_primary_10_1103_PhysRevLett_131_056402 crossref_primary_10_1149_2_0101411jes crossref_primary_10_1007_s10854_014_2576_9 crossref_primary_10_1021_acs_jpcc_8b08460 crossref_primary_10_1016_j_jallcom_2021_163133 crossref_primary_10_1016_j_physb_2015_08_015 crossref_primary_10_1103_PhysRevMaterials_9_024601 crossref_primary_10_1021_acs_chemrev_0c00608 crossref_primary_10_1016_j_jallcom_2020_156761 crossref_primary_10_1016_j_npe_2020_11_002 crossref_primary_10_1016_j_commatsci_2023_112687 crossref_primary_10_1021_acs_chemmater_8b00677 crossref_primary_10_1103_PhysRevB_104_045303 crossref_primary_10_1209_0295_5075_106_16001 crossref_primary_10_1016_j_apmt_2022_101380 crossref_primary_10_1002_pssa_201600889 crossref_primary_10_1039_D0TA11742K crossref_primary_10_1063_1_4983453 crossref_primary_10_1021_acs_jpcc_9b02698 crossref_primary_10_1063_1_4964831 crossref_primary_10_1002_pssb_202000303 crossref_primary_10_1088_1361_648X_aba295 crossref_primary_10_1039_D1EE00801C crossref_primary_10_1063_1_4983452 crossref_primary_10_1103_PhysRevMaterials_6_064602 crossref_primary_10_1021_acs_jpclett_1c02380 crossref_primary_10_1103_PhysRevB_109_214106 crossref_primary_10_1063_1_5063581 crossref_primary_10_1103_PhysRevApplied_19_054046 crossref_primary_10_1103_PhysRevB_93_165206 crossref_primary_10_1016_j_cpc_2021_108056 crossref_primary_10_1103_PhysRevB_89_184109 crossref_primary_10_1103_PhysRevB_93_165203 crossref_primary_10_1016_j_jpowsour_2016_11_077 crossref_primary_10_1103_PhysRevB_92_144104 crossref_primary_10_1007_s00269_013_0611_7 crossref_primary_10_1103_PhysRevMaterials_4_064604 crossref_primary_10_1103_PhysRevB_106_125119 crossref_primary_10_1103_PhysRevMaterials_5_124601 crossref_primary_10_1021_acs_chemmater_4c00511 crossref_primary_10_1103_PhysRevB_97_205205 crossref_primary_10_1103_PhysRevLett_126_076401 crossref_primary_10_1063_5_0053491 crossref_primary_10_1021_acs_chemmater_6b04479 crossref_primary_10_1063_5_0190043 crossref_primary_10_1063_1_4942529 crossref_primary_10_1103_PhysRevB_101_020102 crossref_primary_10_1063_5_0207498 crossref_primary_10_1088_1674_4926_24050032 crossref_primary_10_1021_acsaom_3c00218 crossref_primary_10_1021_acsomega_3c05557 crossref_primary_10_1063_1_4892407 crossref_primary_10_1515_psr_2018_0001 crossref_primary_10_1016_j_jnucmat_2018_09_030 crossref_primary_10_1140_epjp_s13360_021_02084_6 crossref_primary_10_1002_adfm_201301333 crossref_primary_10_1016_j_physe_2018_07_013 crossref_primary_10_1116_1_4901234 crossref_primary_10_1063_5_0161929 crossref_primary_10_1063_5_0069970 crossref_primary_10_1021_acs_jpclett_3c01580 crossref_primary_10_1063_1_4788746 crossref_primary_10_1016_j_saa_2024_124488 crossref_primary_10_1039_D4CE01306A crossref_primary_10_1103_PhysRevB_89_035204 crossref_primary_10_1063_5_0079881 crossref_primary_10_1039_D1MH01371H crossref_primary_10_1039_D3TA00532A crossref_primary_10_1103_PhysRevB_96_054101 crossref_primary_10_1016_j_mtphys_2024_101463 crossref_primary_10_1103_PhysRevB_98_214107 crossref_primary_10_1021_acs_jpcc_1c10382 crossref_primary_10_1063_1_4999790 crossref_primary_10_1103_PhysRevMaterials_7_126201 crossref_primary_10_1021_acsnano_3c04774 crossref_primary_10_1103_PhysRevB_107_125305 crossref_primary_10_1103_PhysRevLett_119_105501 crossref_primary_10_3390_app9245276 crossref_primary_10_1103_PhysRevB_88_195201 crossref_primary_10_1002_pssb_201552062 crossref_primary_10_1063_1_5020134 crossref_primary_10_1063_1_5020376 crossref_primary_10_1016_j_jallcom_2021_163431 crossref_primary_10_1007_s11664_016_5026_z crossref_primary_10_1016_j_ssi_2014_04_001 crossref_primary_10_1016_j_physb_2011_08_028 crossref_primary_10_1016_j_nimb_2017_04_044 crossref_primary_10_1038_s41524_020_00448_7 crossref_primary_10_1103_PhysRevB_104_245203 crossref_primary_10_1021_acs_chemmater_5b04219 crossref_primary_10_1103_PhysRevB_87_094111 crossref_primary_10_1063_5_0039388 crossref_primary_10_1103_PhysRevB_93_201304 crossref_primary_10_1016_j_cocom_2016_07_003 crossref_primary_10_1103_PhysRevApplied_17_024024 crossref_primary_10_1103_PhysRevB_96_100102 crossref_primary_10_1088_1361_6463_ad80a3 crossref_primary_10_1142_S0217979219503727 crossref_primary_10_1103_PhysRevB_92_214114 crossref_primary_10_1021_acsami_1c08236 crossref_primary_10_1103_PhysRevB_97_214104 crossref_primary_10_1063_1_4952434 crossref_primary_10_1103_PhysRevApplied_19_064036 crossref_primary_10_1103_PhysRevB_89_195205 crossref_primary_10_1016_j_commatsci_2014_05_032 crossref_primary_10_1142_S0217984921501487 crossref_primary_10_1103_PhysRevB_94_195203 crossref_primary_10_1063_1_4942674 crossref_primary_10_1063_5_0077796 crossref_primary_10_1016_j_actamat_2024_119854 crossref_primary_10_1103_PhysRevB_102_085305 crossref_primary_10_1016_j_ssi_2019_04_023 crossref_primary_10_1002_pssb_201140804 crossref_primary_10_1016_j_commatsci_2017_09_016 crossref_primary_10_1111_jace_18427 crossref_primary_10_1039_D3MA00308F crossref_primary_10_1063_5_0204392 crossref_primary_10_1063_1_4895843 crossref_primary_10_1063_5_0055515 crossref_primary_10_1021_acs_chemmater_8b01593 crossref_primary_10_1021_am4057997 crossref_primary_10_1063_1_4934935 crossref_primary_10_1103_PhysRevB_92_085420 crossref_primary_10_1103_PhysRevB_86_144101 crossref_primary_10_1039_C4TA04116J crossref_primary_10_1103_PhysRevApplied_6_064002 crossref_primary_10_1103_PhysRevB_97_205425 crossref_primary_10_1016_j_ijhydene_2018_10_199 crossref_primary_10_1007_s10853_019_03627_0 crossref_primary_10_1103_PhysRevMaterials_3_034601 crossref_primary_10_1063_1_4801497 crossref_primary_10_1021_acsmaterialslett_4c00923 crossref_primary_10_1103_PhysRevB_110_035203 crossref_primary_10_1016_j_nimb_2017_05_045 crossref_primary_10_1088_1367_2630_aaaf44 crossref_primary_10_1103_PhysRevB_110_035206 |
Cites_doi | 10.1088/0022-3719/18/5/005 10.1103/PhysRevLett.102.026402 10.1021/j100004a039 10.1103/PhysRevB.74.235209 10.1063/1.1682673 10.1103/PhysRevB.51.4014 10.1088/0965-0393/17/8/084002 10.1103/PhysRevB.55.10355 10.1088/0965-0393/17/8/084001 10.1103/PhysRevLett.102.016402 10.1103/PhysRevLett.96.246401 10.1103/PhysRevB.59.1758 10.1103/PhysRevB.73.035215 10.1088/0965-0393/17/8/084003 10.1103/PhysRevLett.51.686 10.1103/RevModPhys.66.899 10.1103/PhysRevLett.84.1942 10.1016/S0010-4655(97)00117-3 10.1103/PhysRevB.34.7146 10.1103/PhysRevB.33.7017 10.1103/PhysRevB.71.035206 10.1016/j.mser.2006.01.002 10.1063/1.3303987 10.1103/PhysRevB.73.205119 10.1016/j.physb.2003.09.111 10.1103/PhysRevB.78.235104 |
ContentType | Journal Article |
Copyright | Copyright © 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2015 INIST-CNRS |
Copyright_xml | – notice: Copyright © 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2015 INIST-CNRS |
DBID | BSCLL AAYXX CITATION IQODW 7U5 8FD L7M |
DOI | 10.1002/pssb.201046289 |
DatabaseName | Istex CrossRef Pascal-Francis Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Solid State and Superconductivity Abstracts |
DatabaseTitleList | Technology Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1521-3951 |
EndPage | 1076 |
ExternalDocumentID | 24134250 10_1002_pssb_201046289 PSSB201046289 ark_67375_WNG_NBRQKW97_9 |
Genre | article |
GroupedDBID | .GA 05W 0R~ 10A 1L6 1OB 1OC 33P 3SF 3WU 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5VS 66C 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ACAHQ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEIGN AEIMD AEUQT AEUYR AFFNX AFFPM AFGKR AFPWT AHBTC AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS AMBMR AMYDB AUFTA AZBYB AZFZN AZVAB BAFTC BHBCM BMNLL BMXJE BNHUX BROTX BSCLL BY8 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 FEDTE G.N GNP GODZA GYQRN H.T H.X HGLYW HHY HVGLF HZ~ IX1 J0M JPC LATKE LAW LC2 LC3 LEEKS LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ O66 O9- OIG P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 SAMSI W8V W99 WBKPD WGJPS WIH WIK WOHZO WQJ WRC WXSBR WYISQ XG1 XV2 ZZTAW ~IA ~WT AAHQN AAMNL AAYCA AFWVQ ALVPJ AAYXX AEYWJ AGHNM AGYGG CITATION IQODW 7U5 8FD L7M |
ID | FETCH-LOGICAL-c4969-24146c69e5e17f70d3f72886a81cc1c6c3e6d64543cc6fc97ed3b466c0b9cc763 |
IEDL.DBID | DR2 |
ISSN | 0370-1972 1521-3951 |
IngestDate | Fri Jul 11 01:10:33 EDT 2025 Mon Jul 21 09:16:33 EDT 2025 Thu Apr 24 23:03:34 EDT 2025 Tue Jul 01 00:57:48 EDT 2025 Wed Jan 22 16:52:37 EST 2025 Wed Oct 30 09:52:18 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Screening Gallium arsenides Point defects Vacancies Diamonds Electrostatic interaction Density functional method Boundary conditions Lattice parameters |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4969-24146c69e5e17f70d3f72886a81cc1c6c3e6d64543cc6fc97ed3b466c0b9cc763 |
Notes | ark:/67375/WNG-NBRQKW97-9 istex:E4E94DEC0B9BFBDD05CE4D4FC10A26639CCE7DFE ArticleID:PSSB201046289 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/pssb.201046289 |
PQID | 1031296711 |
PQPubID | 23500 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_1031296711 pascalfrancis_primary_24134250 crossref_citationtrail_10_1002_pssb_201046289 crossref_primary_10_1002_pssb_201046289 wiley_primary_10_1002_pssb_201046289_PSSB201046289 istex_primary_ark_67375_WNG_NBRQKW97_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2011 |
PublicationDateYYYYMMDD | 2011-05-01 |
PublicationDate_xml | – month: 05 year: 2011 text: May 2011 |
PublicationDecade | 2010 |
PublicationPlace | Berlin |
PublicationPlace_xml | – name: Berlin |
PublicationTitle | Physica Status Solidi (b) |
PublicationTitleAlternate | Phys. Status Solidi B |
PublicationYear | 2011 |
Publisher | WILEY-VCH Verlag WILEY‐VCH Verlag Wiley-VCH |
Publisher_xml | – name: WILEY-VCH Verlag – name: WILEY‐VCH Verlag – name: Wiley-VCH |
References | S. Baroni and R. Resta, Phys. Rev. B 33, 7017 (1986). J. Lento, J. L. Mozos, and R. M. Nieminen, J. Phys.: Condens. Matter 14, 2637 (2002). C. Freysoldt, J. Neugebauer, and C. G. Van de Walle, Phys. Rev. Lett. 102, 016402 (2009). S. Lany and A. Zunger, Modell. Simul. Mater. Sci. Eng. 17, 084002 (2009). C. G. Van de Walle and J. Neugebauer, J. Appl. Phys. 95, 3851 (2004). U. Gerstmann, P. Deák, R. Rurali, B. Aradi, T. Frauenheim, and H. Overhof, Physica B 340-342, 190 (2003). K. Kunc and R. Resta, Phys. Rev. Lett. 51, 686 (1983). R. Resta and K. Kunc, Phys. Rev. B 34, 7146 (1986). P. A. Schultz, Phys. Rev. Lett. 84, 1942 (2000). R. J. Needs, in: Theory of Defects in Semiconductors, Topics in Applied Physics, Vol. 104, edited by D. A. Drabold and S. K. Estreicher ( Springer, Berlin, Heidelberg, New York, 2007), p. 141. C. W. M. Castleton, A. Höglund, and S. Mirbt, Modell. Simul. Mater. Sci. Eng. 17, 084003 (2009). X. Gonze and C. Lee, Phys. Rev. B 55, 10355 (1997). R. Nieminen, Modell. Simul. Mater. Sci. Eng. 17, 084001 (2009). A. F. Wright and N. A. Modine, Phys. Rev. B 74, 235209 (2006). M. Bockstedte, A. Kley, J. Neugebauer, and M. Scheffler, Comput. Phys. Commun. 107, 187 (1997). M. Leslie and M. J. Gillan, J. Phys. C, Solid State 18, 973 (1985). P. Carloni, P. Blöchl, and M. Parinello, J. Phys. Chem. 99, 1338 (1995). R. Resta, Rev. Mod. Phys. 66, 899 (1994). G. Makov and M. C. Payne, Phys. Rev. B 51, 4014 (1995). C. A. Rozzi, D. Varsano, A. Marini, E. K. U. Gross, and A. Rubio, Phys. Rev. B 73, 205119 (2006). G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999). J. Shim, E. K. Lee, Y. J. Lee, and R. M. Nieminen, Phys. Rev. B 71, 035206 (2005). C. W. M. Castleton, A. Höglund, and S. Mirbt, Phys. Rev. B 73, 035215 (2006). E. G. Seebauer and M. C. Kratzer, Mater. Sci. Eng. R 55, 57 (2006). T. A. Pham, T. Li, S. Shankar, F. Gygi, and G. Galli, Appl. Phys. Lett. 96, 062902 (2010). P. Rinke, C. G. V. de Walle, and M. Scheffler, Phys. Rev. Lett. 102, 026402 (2009). P. A. Schultz, Phys. Rev. Lett. 96, 246401 (2006). S. Lany and A. Zunger, Phys. Rev. B 78, 235104 (2008). 2007; 104 1995; 51 2002; 14 1985; 18 2006; 74 2006; 96 2004; 95 1997; 107 2006; 73 1997; 55 2006; 55 1986; 33 1986; 34 1995; 99 1999; 59 2003; 340–342 2000; 84 1994; 66 2008; 78 1983; 51 2009; 102 2005; 71 2010; 96 2009; 17 e_1_2_8_27_2 e_1_2_8_28_2 e_1_2_8_29_2 e_1_2_8_23_2 e_1_2_8_24_2 e_1_2_8_25_2 e_1_2_8_26_2 e_1_2_8_9_2 e_1_2_8_2_2 e_1_2_8_1_2 e_1_2_8_3_2 e_1_2_8_6_2 e_1_2_8_5_2 e_1_2_8_8_2 e_1_2_8_7_2 e_1_2_8_20_2 e_1_2_8_21_2 e_1_2_8_22_2 e_1_2_8_16_2 e_1_2_8_17_2 e_1_2_8_18_2 e_1_2_8_19_2 e_1_2_8_12_2 e_1_2_8_13_2 e_1_2_8_14_2 Lento J. (e_1_2_8_15_2) 2002; 14 Needs R. J. (e_1_2_8_4_2) 2007 e_1_2_8_30_2 e_1_2_8_10_2 e_1_2_8_11_2 |
References_xml | – reference: S. Lany and A. Zunger, Phys. Rev. B 78, 235104 (2008). – reference: M. Bockstedte, A. Kley, J. Neugebauer, and M. Scheffler, Comput. Phys. Commun. 107, 187 (1997). – reference: R. Resta and K. Kunc, Phys. Rev. B 34, 7146 (1986). – reference: M. Leslie and M. J. Gillan, J. Phys. C, Solid State 18, 973 (1985). – reference: P. Rinke, C. G. V. de Walle, and M. Scheffler, Phys. Rev. Lett. 102, 026402 (2009). – reference: R. Resta, Rev. Mod. Phys. 66, 899 (1994). – reference: S. Lany and A. Zunger, Modell. Simul. Mater. Sci. Eng. 17, 084002 (2009). – reference: U. Gerstmann, P. Deák, R. Rurali, B. Aradi, T. Frauenheim, and H. Overhof, Physica B 340-342, 190 (2003). – reference: S. Baroni and R. Resta, Phys. Rev. B 33, 7017 (1986). – reference: J. Shim, E. K. Lee, Y. J. Lee, and R. M. Nieminen, Phys. Rev. B 71, 035206 (2005). – reference: E. G. Seebauer and M. C. Kratzer, Mater. Sci. Eng. R 55, 57 (2006). – reference: R. J. Needs, in: Theory of Defects in Semiconductors, Topics in Applied Physics, Vol. 104, edited by D. A. Drabold and S. K. Estreicher ( Springer, Berlin, Heidelberg, New York, 2007), p. 141. – reference: T. A. Pham, T. Li, S. Shankar, F. Gygi, and G. Galli, Appl. Phys. Lett. 96, 062902 (2010). – reference: K. Kunc and R. Resta, Phys. Rev. Lett. 51, 686 (1983). – reference: G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999). – reference: C. W. M. Castleton, A. Höglund, and S. Mirbt, Phys. Rev. B 73, 035215 (2006). – reference: C. W. M. Castleton, A. Höglund, and S. Mirbt, Modell. Simul. Mater. Sci. Eng. 17, 084003 (2009). – reference: P. A. Schultz, Phys. Rev. Lett. 96, 246401 (2006). – reference: C. Freysoldt, J. Neugebauer, and C. G. Van de Walle, Phys. Rev. Lett. 102, 016402 (2009). – reference: A. F. Wright and N. A. Modine, Phys. Rev. B 74, 235209 (2006). – reference: P. A. Schultz, Phys. Rev. Lett. 84, 1942 (2000). – reference: J. Lento, J. L. Mozos, and R. M. Nieminen, J. Phys.: Condens. Matter 14, 2637 (2002). – reference: C. A. Rozzi, D. Varsano, A. Marini, E. K. U. Gross, and A. Rubio, Phys. Rev. B 73, 205119 (2006). – reference: C. G. Van de Walle and J. Neugebauer, J. Appl. Phys. 95, 3851 (2004). – reference: X. Gonze and C. Lee, Phys. Rev. B 55, 10355 (1997). – reference: P. Carloni, P. Blöchl, and M. Parinello, J. Phys. Chem. 99, 1338 (1995). – reference: R. Nieminen, Modell. Simul. Mater. Sci. Eng. 17, 084001 (2009). – reference: G. Makov and M. C. Payne, Phys. Rev. B 51, 4014 (1995). – volume: 17 start-page: 084002 year: 2009 publication-title: Modell. Simul. Mater. Sci. Eng. – volume: 18 start-page: 973 year: 1985 publication-title: J. Phys. C, Solid State – volume: 14 start-page: 2637 year: 2002 publication-title: J. Phys.: Condens. Matter – volume: 107 start-page: 187 year: 1997 publication-title: Comput. Phys. Commun. – volume: 73 start-page: 205119 year: 2006 publication-title: Phys. Rev. B – volume: 34 start-page: 7146 year: 1986 publication-title: Phys. Rev. B – volume: 99 start-page: 1338 year: 1995 publication-title: J. Phys. Chem. – volume: 96 start-page: 246401 year: 2006 publication-title: Phys. Rev. Lett. – volume: 96 start-page: 062902 year: 2010 publication-title: Appl. Phys. Lett. – volume: 17 start-page: 084001 year: 2009 publication-title: Modell. Simul. Mater. Sci. Eng. – volume: 51 start-page: 4014 year: 1995 publication-title: Phys. Rev. B – volume: 59 start-page: 1758 year: 1999 publication-title: Phys. Rev. B – volume: 95 start-page: 3851 year: 2004 publication-title: J. Appl. Phys. – volume: 66 start-page: 899 year: 1994 publication-title: Rev. Mod. Phys. – volume: 33 start-page: 7017 year: 1986 publication-title: Phys. Rev. B – volume: 78 start-page: 235104 year: 2008 publication-title: Phys. Rev. B – volume: 340–342 start-page: 190 year: 2003 publication-title: Physica B – volume: 55 start-page: 10355 year: 1997 publication-title: Phys. Rev. B – volume: 17 start-page: 084003 year: 2009 publication-title: Modell. Simul. Mater. Sci. Eng. – volume: 71 start-page: 035206 year: 2005 publication-title: Phys. Rev. B – volume: 55 start-page: 57 year: 2006 publication-title: Mater. Sci. Eng. R – volume: 84 start-page: 1942 year: 2000 publication-title: Phys. Rev. Lett. – volume: 104 start-page: 141 year: 2007 – volume: 73 start-page: 035215 year: 2006 publication-title: Phys. Rev. B – volume: 74 start-page: 235209 year: 2006 publication-title: Phys. Rev. B – volume: 102 start-page: 026402 year: 2009 publication-title: Phys. Rev. Lett. – volume: 102 start-page: 016402 year: 2009 publication-title: Phys. Rev. Lett. – volume: 51 start-page: 686 year: 1983 publication-title: Phys. Rev. Lett. – ident: e_1_2_8_7_2 doi: 10.1088/0022-3719/18/5/005 – ident: e_1_2_8_5_2 – ident: e_1_2_8_3_2 doi: 10.1103/PhysRevLett.102.026402 – ident: e_1_2_8_17_2 doi: 10.1021/j100004a039 – ident: e_1_2_8_9_2 doi: 10.1103/PhysRevB.74.235209 – ident: e_1_2_8_2_2 doi: 10.1063/1.1682673 – ident: e_1_2_8_8_2 doi: 10.1103/PhysRevB.51.4014 – ident: e_1_2_8_14_2 doi: 10.1088/0965-0393/17/8/084002 – ident: e_1_2_8_25_2 doi: 10.1103/PhysRevB.55.10355 – ident: e_1_2_8_6_2 doi: 10.1088/0965-0393/17/8/084001 – ident: e_1_2_8_23_2 doi: 10.1103/PhysRevLett.102.016402 – start-page: 141 volume-title: Theory of Defects in Semiconductors, Topics in Applied Physics year: 2007 ident: e_1_2_8_4_2 – ident: e_1_2_8_20_2 doi: 10.1103/PhysRevLett.96.246401 – ident: e_1_2_8_30_2 doi: 10.1103/PhysRevB.59.1758 – ident: e_1_2_8_11_2 doi: 10.1103/PhysRevB.73.035215 – ident: e_1_2_8_12_2 doi: 10.1088/0965-0393/17/8/084003 – ident: e_1_2_8_26_2 doi: 10.1103/PhysRevLett.51.686 – ident: e_1_2_8_21_2 doi: 10.1103/RevModPhys.66.899 – ident: e_1_2_8_18_2 doi: 10.1103/PhysRevLett.84.1942 – ident: e_1_2_8_29_2 doi: 10.1016/S0010-4655(97)00117-3 – ident: e_1_2_8_22_2 doi: 10.1103/PhysRevB.34.7146 – volume: 14 start-page: 2637 year: 2002 ident: e_1_2_8_15_2 publication-title: J. Phys.: Condens. Matter – ident: e_1_2_8_24_2 doi: 10.1103/PhysRevB.33.7017 – ident: e_1_2_8_10_2 doi: 10.1103/PhysRevB.71.035206 – ident: e_1_2_8_1_2 doi: 10.1016/j.mser.2006.01.002 – ident: e_1_2_8_28_2 – ident: e_1_2_8_27_2 doi: 10.1063/1.3303987 – ident: e_1_2_8_19_2 doi: 10.1103/PhysRevB.73.205119 – ident: e_1_2_8_16_2 doi: 10.1016/j.physb.2003.09.111 – ident: e_1_2_8_13_2 doi: 10.1103/PhysRevB.78.235104 |
SSID | ssj0007131 ssj0047196 |
Score | 2.5000782 |
Snippet | Most theoretical calculations for point defects employ the supercell approach. The supercell consists of a few dozen or 100 atoms of the bulk material with a... |
SourceID | proquest pascalfrancis crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1067 |
SubjectTerms | Asymptotic properties Charging Condensed matter Condensed matter: electronic structure, electrical, magnetic, and optical properties Defects Density Electron states Electrostatics Elemental semiconductors Exact sciences and technology formation energy Gallium arsenide Iii-v semiconductors Impurity and defect levels Lattice vacancies Physics point defects supercells |
Title | Electrostatic interactions between charged defects in supercells |
URI | https://api.istex.fr/ark:/67375/WNG-NBRQKW97-9/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpssb.201046289 https://www.proquest.com/docview/1031296711 |
Volume | 248 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dSxwxEA9FKfjiR6t4ao8tSPu0up_J5k2vnEqlR-tV9C0kkyyIch6XOxD_ejPJ3d6dIAX7uDC7bGYyySTzm98QcphL5nYtMLEu8zIuUiZjpQDcKYVLFyADgAfR_OrRi-vi5215u1DFH_ghmgs39Ay_XqODS2WP56ShQ2uVh2ZhdSVW8CFgC6Oiqzl_lDuBNYAPtwrzkLlkSYzNtmYUjkl2vPytpS1qFbX9hJBJaZ3W6tDuYikeXYxq_bZ0tkHkbEABjXJ_NBmrI3h-xfX4PyPeJOvTmDU6DZNsi3wwg0_ko8eOgv1MTrqhlQ7WJt1BhAQUo1AuYaMpDCzyhExGR9p4-IgTiuxkaHzewG6T67Pu3x8X8bQxQwwFp5iRcesrUG5Kk7KaJTqvWVZVVFYpQAoUckM1UoXlALQGzozOVUEpJIo749N8h6wMHgdml0RIf6a1VEld0ELzvDJJXYELw0pIqaSyReKZLQRMWcuxecaDCHzLmUCtiEYrLfK9kR8Gvo43Jb950zZicnSPKDdWipveueh1rv5c3nAmnGB7yfbNC5iSdEte0iJfZ5NBOOdEzcmBeZxYgT00Mk5ZmrZI5k37j58Sv_v9TvO0956X9slauPdGUOYBWRmPJuaLC5zGqu2d4wWdSw5V |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dSxwxEB9apdQX-42n1m6htE-r-5ls3qxVe616tH5g30IyyYIo53F7B9K_vpnkdvUKUrCPC7PLZiaTTDK_-Q3Ah1xxt2uhjU2Zl3GRchVrjehOKUK5ABkRPYjmaMD6Z8X3X2WLJqRamMAP0V24kWf49ZocnC6kt25ZQ0dNoz02i8orxWNYpLbeRJ-_e3zLIOXOYB3kw63DIuQueRJTu62WxDHJtuY_NrdJLZK-bwg0qRqntzo0vJiLSO_GtX5j2n8Guh1SwKNcbk4nehN__8X2-F9jfg7Ls7A1-hzm2Qt4ZIcv4YmHj2LzCrb3QjcdKk-6wIg4KMahYqKJZkiwyHMyWRMZ6xEkTihqpiPrUwfNazjb3zv90o9nvRliLASjpIxbYpEJW9qU1zwxec2zqmKqShFTZJhbZogtLEdkNQpuTa4LxjDRwtmf5W9gYXg9tCsQEQOaMUondcEKI_LKJnWFLhIrMWWKqR7ErTEkzojLqX_GlQyUy5kkrchOKz341MmPAmXHvZIfvW07MTW-JKAbL-X54Ksc7Bz_PDgXXDrBjTnjdy9QVtKtekkP3rezQTr_JM2pob2eNpLaaGSC8TTtQeZt-4-fkj9OTna6p9WHvPQOnvZPjw7l4bfBwRoshWtwwmiuw8JkPLVvXRw10RveU_4AgNUScQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dSxwxEB-qovSltrXSqx_dQtGn1f1MNm9-Xm2thx-V8y1kJ1kolvO4vQPxrzeT3K2eIIJ9XJhdNjOZZJL5zW8AvqeK210LTajzNA-zmKuwLBHtKUUoGyAjogPRnHTY0WX26yq_elTF7_khmgs38gy3XpOD93W1_UAa2q_r0kGzqLpSzMBcxiJBzRsOzh8IpOwRrEF82GVY-NQlj0LqtjXhcIyS7emPTe1Rc6TuW8JMqtqqrfL9LqYC0sdhrduX2ougJiPycJTrrdGw3MK7J2SP_zPk9_BuHLQGu36WfYA3pvcR5h14FOsl2Dn0vXSoOOkvBsRAMfD1EnUwxoEFjpHJ6EAbhx-xQkE96huXOKg_wWX78M_-UTjuzBBiJhilZOwCi0yY3MS84pFOK54UBVNFjBgjw9QwTVxhKSKrUHCj0zJjDKNSWOuzdBlmezc98xkC4j_TWpVRlbFMi7QwUVWgjcNyjJliqgXhxBYSx7Tl1D3jn_SEy4kkrchGKy3YbOT7nrDjWckNZ9pGTA2uCebGc9nt_JCdvfOz467g0gquT9m-eYFyknbNi1rwbTIZpPVO0pzqmZtRLamJRiIYj-MWJM60L_yUPL242Guevrzmpa-wcHrQlr9_do5X4K2_AyeA5irMDgcjs2aDqGG57vzkHjbCESA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrostatic+interactions+between+charged+defects+in+supercells&rft.jtitle=Physica+status+solidi.+B.+Basic+research&rft.au=FREYSOLDT%2C+Christoph&rft.au=NEUGEBAUER%2C+J%C3%B6rg&rft.au=VAN+DE+WALLE%2C+Chris+G&rft.date=2011-05-01&rft.pub=Wiley-VCH&rft.issn=0370-1972&rft.volume=248&rft.issue=5&rft.spage=1067&rft.epage=1076&rft_id=info:doi/10.1002%2Fpssb.201046289&rft.externalDBID=n%2Fa&rft.externalDocID=24134250 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0370-1972&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0370-1972&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0370-1972&client=summon |