Electrostatic interactions between charged defects in supercells

Most theoretical calculations for point defects employ the supercell approach. The supercell consists of a few dozen or 100 atoms of the bulk material with a single defect, and is subject to periodic boundary conditions. However, the large density and periodic arrangement of the defects introduce ar...

Full description

Saved in:
Bibliographic Details
Published inPhysica Status Solidi (b) Vol. 248; no. 5; pp. 1067 - 1076
Main Authors Freysoldt, Christoph, Neugebauer, Jörg, Van de Walle, Chris G.
Format Journal Article
LanguageEnglish
Published Berlin WILEY-VCH Verlag 01.05.2011
WILEY‐VCH Verlag
Wiley-VCH
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Most theoretical calculations for point defects employ the supercell approach. The supercell consists of a few dozen or 100 atoms of the bulk material with a single defect, and is subject to periodic boundary conditions. However, the large density and periodic arrangement of the defects introduce artifacts. They need to be corrected for to extrapolate to the isolated‐defect limit. This is particularly important for electrostatic interactions between charged defects, which decay only very slowly (asymptotically like L−1) with increasing supercell lattice constant L. In this paper, we summarize the underlying electrostatics in condensed matter. A novel defect scheme is derived from this analysis. It overcomes limitations of previous schemes with respect to applicability, systematic improvement, and formal justification. Good performance is demonstrated for vacancies in diamond and GaAs.
AbstractList Most theoretical calculations for point defects employ the supercell approach. The supercell consists of a few dozen or 100 atoms of the bulk material with a single defect, and is subject to periodic boundary conditions. However, the large density and periodic arrangement of the defects introduce artifacts. They need to be corrected for to extrapolate to the isolated‐defect limit. This is particularly important for electrostatic interactions between charged defects, which decay only very slowly (asymptotically like L−1) with increasing supercell lattice constant L. In this paper, we summarize the underlying electrostatics in condensed matter. A novel defect scheme is derived from this analysis. It overcomes limitations of previous schemes with respect to applicability, systematic improvement, and formal justification. Good performance is demonstrated for vacancies in diamond and GaAs.
Most theoretical calculations for point defects employ the supercell approach. The supercell consists of a few dozen or 100 atoms of the bulk material with a single defect, and is subject to periodic boundary conditions. However, the large density and periodic arrangement of the defects introduce artifacts. They need to be corrected for to extrapolate to the isolated-defect limit. This is particularly important for electrostatic interactions between charged defects, which decay only very slowly (asymptotically like L-1) with increasing supercell lattice constant L. In this paper, we summarize the underlying electrostatics in condensed matter. A novel defect scheme is derived from this analysis. It overcomes limitations of previous schemes with respect to applicability, systematic improvement, and formal justification. Good performance is demonstrated for vacancies in diamond and GaAs.
Most theoretical calculations for point defects employ the supercell approach. The supercell consists of a few dozen or 100 atoms of the bulk material with a single defect, and is subject to periodic boundary conditions. However, the large density and periodic arrangement of the defects introduce artifacts. They need to be corrected for to extrapolate to the isolated‐defect limit. This is particularly important for electrostatic interactions between charged defects, which decay only very slowly (asymptotically like L −1 ) with increasing supercell lattice constant L . In this paper, we summarize the underlying electrostatics in condensed matter. A novel defect scheme is derived from this analysis. It overcomes limitations of previous schemes with respect to applicability, systematic improvement, and formal justification. Good performance is demonstrated for vacancies in diamond and GaAs.
Author Freysoldt, Christoph
Van de Walle, Chris G.
Neugebauer, Jörg
Author_xml – sequence: 1
  givenname: Christoph
  surname: Freysoldt
  fullname: Freysoldt, Christoph
  email: freysoldt@mpie.de
  organization: Max-Planck-Institut für Eisenforschung, Max-Planck-Str. 1, 40237 Düsseldorf, Germany
– sequence: 2
  givenname: Jörg
  surname: Neugebauer
  fullname: Neugebauer, Jörg
  organization: Max-Planck-Institut für Eisenforschung, Max-Planck-Str. 1, 40237 Düsseldorf, Germany
– sequence: 3
  givenname: Chris G.
  surname: Van de Walle
  fullname: Van de Walle, Chris G.
  organization: Materials Department, University of California, Santa Barbara, California 93106-5050, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24134250$$DView record in Pascal Francis
BookMark eNqFkMFPFDEUxhsDiQt69TwXEy-z9rWddntTCCKBgIqGY9N980arw8zS1w3y3zObRWJMDKd3-f2-fO_bEzvDOJAQr0DOQUr1dsW8nCsJ0li18M_EDBoFtfYN7IiZ1E7W4J16LvaYf0opHWiYiXdHPWHJI5dYElZpKJQjljQOXC2p3BINFf6I-Tu1VUvdxPIEVbxeUUbqe34hdrvYM718uPvi24ejr4cf67OL45PD92c1Gm99rQwYi9ZTQ-A6J1vdObVY2LgARECLmmxrTWM0ou3QO2r10liLcukRndX74s02d5XHmzVxCdeJNw3iQOOaA0gNylsHMKGvH9DIGPsuxwETh1VO1zHfhamKNqqRE2e2HE7_c6YuYNrMMA4lx9RPkWEzbNgMGx6HnbT5P9qf5P8Kfivcpp7unqDDp8vLg7_deusmLvT70Y35V7BOuyZcnR-H84Mvn0-vvAte3wOCm50y
CODEN PSSBBD
CitedBy_id crossref_primary_10_1016_j_diamond_2022_109072
crossref_primary_10_1088_0953_8984_28_6_06LT01
crossref_primary_10_1016_j_mtchem_2024_102461
crossref_primary_10_1103_PhysRevMaterials_6_125002
crossref_primary_10_1038_srep04909
crossref_primary_10_1063_5_0088197
crossref_primary_10_1103_PhysRevApplied_14_024064
crossref_primary_10_1063_1_5047808
crossref_primary_10_1021_jp5114152
crossref_primary_10_1103_PhysRevB_98_125207
crossref_primary_10_1103_PhysRevMaterials_9_026201
crossref_primary_10_1088_1402_4896_ad75c6
crossref_primary_10_1016_j_mtcomm_2024_109141
crossref_primary_10_1021_acs_jpcc_2c03456
crossref_primary_10_1103_PhysRevB_90_125202
crossref_primary_10_1103_PhysRevApplied_14_014034
crossref_primary_10_1103_PhysRevB_90_045205
crossref_primary_10_1016_j_commatsci_2016_03_033
crossref_primary_10_1016_j_commatsci_2024_113384
crossref_primary_10_1063_1_4989482
crossref_primary_10_1142_S0217984921504716
crossref_primary_10_1016_j_commatsci_2024_113226
crossref_primary_10_1038_s41524_019_0200_5
crossref_primary_10_1103_PhysRevApplied_3_024013
crossref_primary_10_1063_5_0255859
crossref_primary_10_1063_5_0173761
crossref_primary_10_1002_pssr_201510165
crossref_primary_10_1103_PhysRevLett_113_156803
crossref_primary_10_1016_j_commatsci_2022_111950
crossref_primary_10_1088_1361_648X_aab819
crossref_primary_10_1063_1_5110165
crossref_primary_10_1021_acs_nanolett_4c06343
crossref_primary_10_1038_nmat4203
crossref_primary_10_1038_s41467_022_35048_0
crossref_primary_10_1016_j_joule_2022_07_009
crossref_primary_10_1007_s43939_022_00029_z
crossref_primary_10_1021_acs_jpcc_4c04988
crossref_primary_10_1021_acs_chemrev_1c00929
crossref_primary_10_1016_j_cpc_2019_02_018
crossref_primary_10_1039_D4CE00624K
crossref_primary_10_1063_1_5044627
crossref_primary_10_1016_j_mee_2013_03_151
crossref_primary_10_1039_D3CP04600A
crossref_primary_10_1038_s41699_022_00350_4
crossref_primary_10_1103_PhysRevLett_110_095505
crossref_primary_10_1021_acs_jpca_9b03233
crossref_primary_10_1016_j_physb_2022_413674
crossref_primary_10_1063_1_4875658
crossref_primary_10_1103_PhysRevApplied_2_064005
crossref_primary_10_1103_PhysRevB_102_041115
crossref_primary_10_1103_PhysRevB_93_161201
crossref_primary_10_1007_s11664_019_07900_5
crossref_primary_10_1103_PhysRevB_98_214111
crossref_primary_10_1021_acs_jpcc_1c03701
crossref_primary_10_1103_PhysRevMaterials_4_064004
crossref_primary_10_1021_acs_jpcc_0c04264
crossref_primary_10_1016_j_mssp_2023_107531
crossref_primary_10_1002_admi_201600496
crossref_primary_10_1002_pssb_201046290
crossref_primary_10_1103_PhysRevB_89_075202
crossref_primary_10_12677_APP_2023_138039
crossref_primary_10_1140_epjd_e2020_10299_8
crossref_primary_10_1016_j_commatsci_2016_01_002
crossref_primary_10_1016_j_jpcs_2020_109448
crossref_primary_10_1021_acs_chemrev_8b00481
crossref_primary_10_1016_j_commatsci_2016_12_040
crossref_primary_10_1103_PhysRevB_96_094107
crossref_primary_10_1039_C9TC06919D
crossref_primary_10_1021_acs_jpcc_3c01972
crossref_primary_10_1063_5_0077030
crossref_primary_10_1016_j_nimb_2019_01_014
crossref_primary_10_1103_PhysRevMaterials_3_114601
crossref_primary_10_1103_PhysRevMaterials_4_076002
crossref_primary_10_1063_5_0012685
crossref_primary_10_1093_amrx_abw010
crossref_primary_10_1038_s41524_022_00958_6
crossref_primary_10_1063_5_0192047
crossref_primary_10_1063_1_4999479
crossref_primary_10_1103_PhysRevB_98_205201
crossref_primary_10_1021_acs_jpcc_1c06092
crossref_primary_10_1103_PhysRevB_95_134103
crossref_primary_10_1016_j_commatsci_2022_111867
crossref_primary_10_1063_1_4958716
crossref_primary_10_1002_cphc_201601208
crossref_primary_10_1063_1_4784114
crossref_primary_10_1039_c3ta12167d
crossref_primary_10_1063_5_0204688
crossref_primary_10_1039_C6TC01643J
crossref_primary_10_1088_0022_3727_49_3_035101
crossref_primary_10_1016_j_apsusc_2013_09_063
crossref_primary_10_1016_j_commatsci_2023_112396
crossref_primary_10_1021_acs_chemmater_3c02178
crossref_primary_10_1002_pssr_201800234
crossref_primary_10_1103_PhysRevB_104_075201
crossref_primary_10_1103_PhysRevB_106_155201
crossref_primary_10_1021_acs_jpcc_4c04322
crossref_primary_10_1103_PhysRevB_100_155206
crossref_primary_10_1103_PhysRevMaterials_4_083808
crossref_primary_10_1063_5_0211069
crossref_primary_10_20517_jmi_2024_41
crossref_primary_10_1039_D3NR01677C
crossref_primary_10_1021_jp506691h
crossref_primary_10_1039_c4cp00454j
crossref_primary_10_1103_PhysRevApplied_19_024060
crossref_primary_10_1063_5_0069390
crossref_primary_10_1103_PhysRevB_95_205204
crossref_primary_10_1021_acs_chemmater_4c01049
crossref_primary_10_1007_s11664_024_11292_6
crossref_primary_10_1103_PhysRevB_95_205205
crossref_primary_10_1007_s11837_022_05554_z
crossref_primary_10_1039_C4TA06210H
crossref_primary_10_1103_PhysRevB_99_205202
crossref_primary_10_1021_acs_jpcc_6b00765
crossref_primary_10_1039_C5CP06946G
crossref_primary_10_1103_PhysRevB_106_035206
crossref_primary_10_1088_1361_6641_aaba98
crossref_primary_10_1103_PhysRevB_108_035204
crossref_primary_10_1016_j_mtcomm_2024_109434
crossref_primary_10_1103_PhysRevApplied_19_014018
crossref_primary_10_1021_acs_jpcc_0c09986
crossref_primary_10_1088_1361_648X_acd3cf
crossref_primary_10_1039_C9CP06614D
crossref_primary_10_1063_1_4887135
crossref_primary_10_1063_1_4995404
crossref_primary_10_1103_PhysRevB_108_L041102
crossref_primary_10_1103_PhysRevB_94_180101
crossref_primary_10_1002_ange_201911436
crossref_primary_10_1021_acsmaterialslett_1c00139
crossref_primary_10_1103_PhysRevB_95_235310
crossref_primary_10_1016_j_jocs_2016_02_002
crossref_primary_10_1103_PhysRevB_88_214117
crossref_primary_10_1103_PhysRevB_88_085203
crossref_primary_10_1103_PhysRevB_104_075410
crossref_primary_10_1103_PhysRevB_95_014106
crossref_primary_10_1080_27660400_2022_2093094
crossref_primary_10_1088_0953_8984_24_5_055505
crossref_primary_10_1039_C3RA44822C
crossref_primary_10_1103_PhysRevMaterials_4_015402
crossref_primary_10_1103_PhysRevMaterials_8_015402
crossref_primary_10_1021_jz502646d
crossref_primary_10_1063_1_4992128
crossref_primary_10_1063_5_0049334
crossref_primary_10_1063_1_4819492
crossref_primary_10_1007_s11664_016_5062_8
crossref_primary_10_1016_j_jpowsour_2021_230602
crossref_primary_10_1063_1_4974949
crossref_primary_10_1038_s41524_023_01015_6
crossref_primary_10_1021_acs_jpcc_0c10835
crossref_primary_10_1021_acsenergylett_1c01249
crossref_primary_10_1103_PhysRevB_102_115102
crossref_primary_10_1007_s11664_023_10902_z
crossref_primary_10_1007_s11837_024_06975_8
crossref_primary_10_1103_PhysRevB_93_115316
crossref_primary_10_1002_pssb_201046327
crossref_primary_10_1103_PhysRevB_92_054103
crossref_primary_10_1088_0953_8984_27_13_133202
crossref_primary_10_1039_D1CP04449D
crossref_primary_10_1016_j_ssi_2013_08_017
crossref_primary_10_1021_acs_jpclett_2c01976
crossref_primary_10_1002_pssb_202000498
crossref_primary_10_1103_PhysRevMaterials_5_124004
crossref_primary_10_1021_acs_jpcc_2c00824
crossref_primary_10_1002_pssb_201900534
crossref_primary_10_1103_PhysRevB_110_L220101
crossref_primary_10_1063_1_4817012
crossref_primary_10_1016_j_commatsci_2023_112071
crossref_primary_10_1103_PhysRevB_86_045112
crossref_primary_10_1021_acs_jpcc_6b12789
crossref_primary_10_1103_PhysRevB_96_235203
crossref_primary_10_1016_j_nimb_2023_165138
crossref_primary_10_1103_PhysRevMaterials_6_104609
crossref_primary_10_1039_D2TC04937F
crossref_primary_10_1016_j_jcou_2023_102619
crossref_primary_10_1021_acsami_3c06725
crossref_primary_10_1002_pssr_202100218
crossref_primary_10_1021_acscatal_5b01133
crossref_primary_10_1007_s10825_024_02179_0
crossref_primary_10_1063_5_0083877
crossref_primary_10_1063_1_4894195
crossref_primary_10_1039_C4TA00673A
crossref_primary_10_1088_2053_1591_3_10_105901
crossref_primary_10_1039_C8TC01341A
crossref_primary_10_1063_1_4717623
crossref_primary_10_1088_2053_1591_ab17be
crossref_primary_10_1063_1_5058134
crossref_primary_10_1038_s41524_021_00529_1
crossref_primary_10_1063_5_0112915
crossref_primary_10_1002_pssb_202000159
crossref_primary_10_1088_1361_6463_ad33f9
crossref_primary_10_1021_acsaem_8b02222
crossref_primary_10_1021_acs_chemmater_9b00708
crossref_primary_10_1038_s41598_020_73872_w
crossref_primary_10_1103_PhysRevB_104_205106
crossref_primary_10_1016_j_mtcomm_2021_102482
crossref_primary_10_1021_acs_chemmater_7b02909
crossref_primary_10_1103_PhysRevB_107_184103
crossref_primary_10_1134_S2635167623600475
crossref_primary_10_1016_j_cplett_2019_04_065
crossref_primary_10_1063_1_4818484
crossref_primary_10_1002_anie_201911436
crossref_primary_10_1103_PhysRevB_105_155201
crossref_primary_10_1103_PhysRevLett_122_167701
crossref_primary_10_1103_PhysRevApplied_21_044011
crossref_primary_10_1016_j_apsusc_2022_155981
crossref_primary_10_1103_PhysRevLett_126_027401
crossref_primary_10_1021_acs_jpcc_8b09134
crossref_primary_10_1038_s42005_022_00948_6
crossref_primary_10_1039_C8CP02741B
crossref_primary_10_1016_j_commatsci_2021_110922
crossref_primary_10_1103_PhysRevLett_123_127401
crossref_primary_10_1063_5_0061396
crossref_primary_10_1088_1361_6463_ad4a82
crossref_primary_10_1039_D0TA01103G
crossref_primary_10_1002_andp_202400317
crossref_primary_10_1063_1_4819068
crossref_primary_10_1103_PhysRevB_90_085202
crossref_primary_10_1016_j_mejo_2024_106168
crossref_primary_10_1063_1_5029818
crossref_primary_10_1002_aenm_201903752
crossref_primary_10_1103_PhysRevB_92_045208
crossref_primary_10_1063_5_0191539
crossref_primary_10_1103_PhysRevB_106_174113
crossref_primary_10_1103_PhysRevB_88_115104
crossref_primary_10_1088_1361_648X_ad0a11
crossref_primary_10_1039_D1CP01902C
crossref_primary_10_1016_j_jlumin_2016_12_008
crossref_primary_10_1021_acs_jpcc_9b09909
crossref_primary_10_1103_PhysRevB_90_085435
crossref_primary_10_1016_j_jpcs_2018_04_018
crossref_primary_10_1038_s42005_022_01037_4
crossref_primary_10_1103_PhysRevMaterials_6_044601
crossref_primary_10_1039_C7CP01471F
crossref_primary_10_1103_PhysRevB_102_174110
crossref_primary_10_1007_s11664_020_07952_y
crossref_primary_10_1063_5_0187006
crossref_primary_10_1007_s11664_023_10215_1
crossref_primary_10_1021_acsnano_4c07184
crossref_primary_10_1038_s41524_017_0014_2
crossref_primary_10_1103_RevModPhys_86_253
crossref_primary_10_1063_1_5050200
crossref_primary_10_1016_j_actamat_2016_07_003
crossref_primary_10_1021_acs_jpcc_0c09222
crossref_primary_10_1021_acs_jpcc_7b03083
crossref_primary_10_1103_PhysRevResearch_3_013121
crossref_primary_10_1021_acs_chemmater_0c01669
crossref_primary_10_1103_PhysRevB_94_085426
crossref_primary_10_1016_j_commatsci_2022_111273
crossref_primary_10_1039_C7TA04330A
crossref_primary_10_1039_C4CP03677H
crossref_primary_10_1021_acs_jpcc_4c00944
crossref_primary_10_1063_1_5011295
crossref_primary_10_1016_j_jlumin_2021_118032
crossref_primary_10_1103_PhysRevMaterials_5_034601
crossref_primary_10_1002_pssb_202100392
crossref_primary_10_1002_aelm_201600353
crossref_primary_10_1088_2516_1075_ace014
crossref_primary_10_1021_acs_jpcc_3c02581
crossref_primary_10_1103_PhysRevB_90_245101
crossref_primary_10_1063_5_0210247
crossref_primary_10_1021_acs_chemmater_9b04663
crossref_primary_10_1016_j_apsusc_2020_146001
crossref_primary_10_1103_PhysRevApplied_1_014001
crossref_primary_10_1103_PhysRevMaterials_4_063803
crossref_primary_10_1016_j_mtcomm_2024_110715
crossref_primary_10_1016_j_mtcomm_2023_107492
crossref_primary_10_1103_PhysRevB_97_054112
crossref_primary_10_1063_1_5130747
crossref_primary_10_1002_aenm_202301539
crossref_primary_10_1021_acs_jpclett_7b02727
crossref_primary_10_1039_D1CP01294K
crossref_primary_10_1103_PhysRevApplied_13_024025
crossref_primary_10_1088_0953_8984_25_40_405501
crossref_primary_10_1103_PhysRevB_90_075202
crossref_primary_10_1016_j_jssc_2016_02_003
crossref_primary_10_1038_s43588_021_00041_y
crossref_primary_10_1063_5_0211543
crossref_primary_10_1111_jace_19130
crossref_primary_10_1021_acsomega_0c03685
crossref_primary_10_1063_1_4895786
crossref_primary_10_1063_5_0219021
crossref_primary_10_1088_1361_648X_ad42f3
crossref_primary_10_1103_PhysRevMaterials_7_015402
crossref_primary_10_1016_j_mssp_2018_09_001
crossref_primary_10_1063_5_0041506
crossref_primary_10_1039_D1EE00260K
crossref_primary_10_35848_1347_4065_acaeb3
crossref_primary_10_1063_1_5140661
crossref_primary_10_1103_PhysRevMaterials_3_053401
crossref_primary_10_1021_acs_jpcc_0c09391
crossref_primary_10_1016_j_ijhydene_2016_01_156
crossref_primary_10_1103_PhysRevB_93_155202
crossref_primary_10_1103_PhysRevLett_131_056402
crossref_primary_10_1149_2_0101411jes
crossref_primary_10_1007_s10854_014_2576_9
crossref_primary_10_1021_acs_jpcc_8b08460
crossref_primary_10_1016_j_jallcom_2021_163133
crossref_primary_10_1016_j_physb_2015_08_015
crossref_primary_10_1103_PhysRevMaterials_9_024601
crossref_primary_10_1021_acs_chemrev_0c00608
crossref_primary_10_1016_j_jallcom_2020_156761
crossref_primary_10_1016_j_npe_2020_11_002
crossref_primary_10_1016_j_commatsci_2023_112687
crossref_primary_10_1021_acs_chemmater_8b00677
crossref_primary_10_1103_PhysRevB_104_045303
crossref_primary_10_1209_0295_5075_106_16001
crossref_primary_10_1016_j_apmt_2022_101380
crossref_primary_10_1002_pssa_201600889
crossref_primary_10_1039_D0TA11742K
crossref_primary_10_1063_1_4983453
crossref_primary_10_1021_acs_jpcc_9b02698
crossref_primary_10_1063_1_4964831
crossref_primary_10_1002_pssb_202000303
crossref_primary_10_1088_1361_648X_aba295
crossref_primary_10_1039_D1EE00801C
crossref_primary_10_1063_1_4983452
crossref_primary_10_1103_PhysRevMaterials_6_064602
crossref_primary_10_1021_acs_jpclett_1c02380
crossref_primary_10_1103_PhysRevB_109_214106
crossref_primary_10_1063_1_5063581
crossref_primary_10_1103_PhysRevApplied_19_054046
crossref_primary_10_1103_PhysRevB_93_165206
crossref_primary_10_1016_j_cpc_2021_108056
crossref_primary_10_1103_PhysRevB_89_184109
crossref_primary_10_1103_PhysRevB_93_165203
crossref_primary_10_1016_j_jpowsour_2016_11_077
crossref_primary_10_1103_PhysRevB_92_144104
crossref_primary_10_1007_s00269_013_0611_7
crossref_primary_10_1103_PhysRevMaterials_4_064604
crossref_primary_10_1103_PhysRevB_106_125119
crossref_primary_10_1103_PhysRevMaterials_5_124601
crossref_primary_10_1021_acs_chemmater_4c00511
crossref_primary_10_1103_PhysRevB_97_205205
crossref_primary_10_1103_PhysRevLett_126_076401
crossref_primary_10_1063_5_0053491
crossref_primary_10_1021_acs_chemmater_6b04479
crossref_primary_10_1063_5_0190043
crossref_primary_10_1063_1_4942529
crossref_primary_10_1103_PhysRevB_101_020102
crossref_primary_10_1063_5_0207498
crossref_primary_10_1088_1674_4926_24050032
crossref_primary_10_1021_acsaom_3c00218
crossref_primary_10_1021_acsomega_3c05557
crossref_primary_10_1063_1_4892407
crossref_primary_10_1515_psr_2018_0001
crossref_primary_10_1016_j_jnucmat_2018_09_030
crossref_primary_10_1140_epjp_s13360_021_02084_6
crossref_primary_10_1002_adfm_201301333
crossref_primary_10_1016_j_physe_2018_07_013
crossref_primary_10_1116_1_4901234
crossref_primary_10_1063_5_0161929
crossref_primary_10_1063_5_0069970
crossref_primary_10_1021_acs_jpclett_3c01580
crossref_primary_10_1063_1_4788746
crossref_primary_10_1016_j_saa_2024_124488
crossref_primary_10_1039_D4CE01306A
crossref_primary_10_1103_PhysRevB_89_035204
crossref_primary_10_1063_5_0079881
crossref_primary_10_1039_D1MH01371H
crossref_primary_10_1039_D3TA00532A
crossref_primary_10_1103_PhysRevB_96_054101
crossref_primary_10_1016_j_mtphys_2024_101463
crossref_primary_10_1103_PhysRevB_98_214107
crossref_primary_10_1021_acs_jpcc_1c10382
crossref_primary_10_1063_1_4999790
crossref_primary_10_1103_PhysRevMaterials_7_126201
crossref_primary_10_1021_acsnano_3c04774
crossref_primary_10_1103_PhysRevB_107_125305
crossref_primary_10_1103_PhysRevLett_119_105501
crossref_primary_10_3390_app9245276
crossref_primary_10_1103_PhysRevB_88_195201
crossref_primary_10_1002_pssb_201552062
crossref_primary_10_1063_1_5020134
crossref_primary_10_1063_1_5020376
crossref_primary_10_1016_j_jallcom_2021_163431
crossref_primary_10_1007_s11664_016_5026_z
crossref_primary_10_1016_j_ssi_2014_04_001
crossref_primary_10_1016_j_physb_2011_08_028
crossref_primary_10_1016_j_nimb_2017_04_044
crossref_primary_10_1038_s41524_020_00448_7
crossref_primary_10_1103_PhysRevB_104_245203
crossref_primary_10_1021_acs_chemmater_5b04219
crossref_primary_10_1103_PhysRevB_87_094111
crossref_primary_10_1063_5_0039388
crossref_primary_10_1103_PhysRevB_93_201304
crossref_primary_10_1016_j_cocom_2016_07_003
crossref_primary_10_1103_PhysRevApplied_17_024024
crossref_primary_10_1103_PhysRevB_96_100102
crossref_primary_10_1088_1361_6463_ad80a3
crossref_primary_10_1142_S0217979219503727
crossref_primary_10_1103_PhysRevB_92_214114
crossref_primary_10_1021_acsami_1c08236
crossref_primary_10_1103_PhysRevB_97_214104
crossref_primary_10_1063_1_4952434
crossref_primary_10_1103_PhysRevApplied_19_064036
crossref_primary_10_1103_PhysRevB_89_195205
crossref_primary_10_1016_j_commatsci_2014_05_032
crossref_primary_10_1142_S0217984921501487
crossref_primary_10_1103_PhysRevB_94_195203
crossref_primary_10_1063_1_4942674
crossref_primary_10_1063_5_0077796
crossref_primary_10_1016_j_actamat_2024_119854
crossref_primary_10_1103_PhysRevB_102_085305
crossref_primary_10_1016_j_ssi_2019_04_023
crossref_primary_10_1002_pssb_201140804
crossref_primary_10_1016_j_commatsci_2017_09_016
crossref_primary_10_1111_jace_18427
crossref_primary_10_1039_D3MA00308F
crossref_primary_10_1063_5_0204392
crossref_primary_10_1063_1_4895843
crossref_primary_10_1063_5_0055515
crossref_primary_10_1021_acs_chemmater_8b01593
crossref_primary_10_1021_am4057997
crossref_primary_10_1063_1_4934935
crossref_primary_10_1103_PhysRevB_92_085420
crossref_primary_10_1103_PhysRevB_86_144101
crossref_primary_10_1039_C4TA04116J
crossref_primary_10_1103_PhysRevApplied_6_064002
crossref_primary_10_1103_PhysRevB_97_205425
crossref_primary_10_1016_j_ijhydene_2018_10_199
crossref_primary_10_1007_s10853_019_03627_0
crossref_primary_10_1103_PhysRevMaterials_3_034601
crossref_primary_10_1063_1_4801497
crossref_primary_10_1021_acsmaterialslett_4c00923
crossref_primary_10_1103_PhysRevB_110_035203
crossref_primary_10_1016_j_nimb_2017_05_045
crossref_primary_10_1088_1367_2630_aaaf44
crossref_primary_10_1103_PhysRevB_110_035206
Cites_doi 10.1088/0022-3719/18/5/005
10.1103/PhysRevLett.102.026402
10.1021/j100004a039
10.1103/PhysRevB.74.235209
10.1063/1.1682673
10.1103/PhysRevB.51.4014
10.1088/0965-0393/17/8/084002
10.1103/PhysRevB.55.10355
10.1088/0965-0393/17/8/084001
10.1103/PhysRevLett.102.016402
10.1103/PhysRevLett.96.246401
10.1103/PhysRevB.59.1758
10.1103/PhysRevB.73.035215
10.1088/0965-0393/17/8/084003
10.1103/PhysRevLett.51.686
10.1103/RevModPhys.66.899
10.1103/PhysRevLett.84.1942
10.1016/S0010-4655(97)00117-3
10.1103/PhysRevB.34.7146
10.1103/PhysRevB.33.7017
10.1103/PhysRevB.71.035206
10.1016/j.mser.2006.01.002
10.1063/1.3303987
10.1103/PhysRevB.73.205119
10.1016/j.physb.2003.09.111
10.1103/PhysRevB.78.235104
ContentType Journal Article
Copyright Copyright © 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2015 INIST-CNRS
Copyright_xml – notice: Copyright © 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2015 INIST-CNRS
DBID BSCLL
AAYXX
CITATION
IQODW
7U5
8FD
L7M
DOI 10.1002/pssb.201046289
DatabaseName Istex
CrossRef
Pascal-Francis
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Solid State and Superconductivity Abstracts
DatabaseTitleList
Technology Research Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1521-3951
EndPage 1076
ExternalDocumentID 24134250
10_1002_pssb_201046289
PSSB201046289
ark_67375_WNG_NBRQKW97_9
Genre article
GroupedDBID .GA
05W
0R~
10A
1L6
1OB
1OC
33P
3SF
3WU
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ACAHQ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEIGN
AEIMD
AEUQT
AEUYR
AFFNX
AFFPM
AFGKR
AFPWT
AHBTC
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
AMBMR
AMYDB
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BSCLL
BY8
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
FEDTE
G.N
GNP
GODZA
GYQRN
H.T
H.X
HGLYW
HHY
HVGLF
HZ~
IX1
J0M
JPC
LATKE
LAW
LC2
LC3
LEEKS
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
SAMSI
W8V
W99
WBKPD
WGJPS
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XV2
ZZTAW
~IA
~WT
AAHQN
AAMNL
AAYCA
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGHNM
AGYGG
CITATION
IQODW
7U5
8FD
L7M
ID FETCH-LOGICAL-c4969-24146c69e5e17f70d3f72886a81cc1c6c3e6d64543cc6fc97ed3b466c0b9cc763
IEDL.DBID DR2
ISSN 0370-1972
1521-3951
IngestDate Fri Jul 11 01:10:33 EDT 2025
Mon Jul 21 09:16:33 EDT 2025
Thu Apr 24 23:03:34 EDT 2025
Tue Jul 01 00:57:48 EDT 2025
Wed Jan 22 16:52:37 EST 2025
Wed Oct 30 09:52:18 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Screening
Gallium arsenides
Point defects
Vacancies
Diamonds
Electrostatic interaction
Density functional method
Boundary conditions
Lattice parameters
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4969-24146c69e5e17f70d3f72886a81cc1c6c3e6d64543cc6fc97ed3b466c0b9cc763
Notes ark:/67375/WNG-NBRQKW97-9
istex:E4E94DEC0B9BFBDD05CE4D4FC10A26639CCE7DFE
ArticleID:PSSB201046289
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/pssb.201046289
PQID 1031296711
PQPubID 23500
PageCount 10
ParticipantIDs proquest_miscellaneous_1031296711
pascalfrancis_primary_24134250
crossref_citationtrail_10_1002_pssb_201046289
crossref_primary_10_1002_pssb_201046289
wiley_primary_10_1002_pssb_201046289_PSSB201046289
istex_primary_ark_67375_WNG_NBRQKW97_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2011
PublicationDateYYYYMMDD 2011-05-01
PublicationDate_xml – month: 05
  year: 2011
  text: May 2011
PublicationDecade 2010
PublicationPlace Berlin
PublicationPlace_xml – name: Berlin
PublicationTitle Physica Status Solidi (b)
PublicationTitleAlternate Phys. Status Solidi B
PublicationYear 2011
Publisher WILEY-VCH Verlag
WILEY‐VCH Verlag
Wiley-VCH
Publisher_xml – name: WILEY-VCH Verlag
– name: WILEY‐VCH Verlag
– name: Wiley-VCH
References S. Baroni and R. Resta, Phys. Rev. B 33, 7017 (1986).
J. Lento, J. L. Mozos, and R. M. Nieminen, J. Phys.: Condens. Matter 14, 2637 (2002).
C. Freysoldt, J. Neugebauer, and C. G. Van de Walle, Phys. Rev. Lett. 102, 016402 (2009).
S. Lany and A. Zunger, Modell. Simul. Mater. Sci. Eng. 17, 084002 (2009).
C. G. Van de Walle and J. Neugebauer, J. Appl. Phys. 95, 3851 (2004).
U. Gerstmann, P. Deák, R. Rurali, B. Aradi, T. Frauenheim, and H. Overhof, Physica B 340-342, 190 (2003).
K. Kunc and R. Resta, Phys. Rev. Lett. 51, 686 (1983).
R. Resta and K. Kunc, Phys. Rev. B 34, 7146 (1986).
P. A. Schultz, Phys. Rev. Lett. 84, 1942 (2000).
R. J. Needs, in: Theory of Defects in Semiconductors, Topics in Applied Physics, Vol. 104, edited by D. A. Drabold and S. K. Estreicher ( Springer, Berlin, Heidelberg, New York, 2007), p. 141.
C. W. M. Castleton, A. Höglund, and S. Mirbt, Modell. Simul. Mater. Sci. Eng. 17, 084003 (2009).
X. Gonze and C. Lee, Phys. Rev. B 55, 10355 (1997).
R. Nieminen, Modell. Simul. Mater. Sci. Eng. 17, 084001 (2009).
A. F. Wright and N. A. Modine, Phys. Rev. B 74, 235209 (2006).
M. Bockstedte, A. Kley, J. Neugebauer, and M. Scheffler, Comput. Phys. Commun. 107, 187 (1997).
M. Leslie and M. J. Gillan, J. Phys. C, Solid State 18, 973 (1985).
P. Carloni, P. Blöchl, and M. Parinello, J. Phys. Chem. 99, 1338 (1995).
R. Resta, Rev. Mod. Phys. 66, 899 (1994).
G. Makov and M. C. Payne, Phys. Rev. B 51, 4014 (1995).
C. A. Rozzi, D. Varsano, A. Marini, E. K. U. Gross, and A. Rubio, Phys. Rev. B 73, 205119 (2006).
G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).
J. Shim, E. K. Lee, Y. J. Lee, and R. M. Nieminen, Phys. Rev. B 71, 035206 (2005).
C. W. M. Castleton, A. Höglund, and S. Mirbt, Phys. Rev. B 73, 035215 (2006).
E. G. Seebauer and M. C. Kratzer, Mater. Sci. Eng. R 55, 57 (2006).
T. A. Pham, T. Li, S. Shankar, F. Gygi, and G. Galli, Appl. Phys. Lett. 96, 062902 (2010).
P. Rinke, C. G. V. de Walle, and M. Scheffler, Phys. Rev. Lett. 102, 026402 (2009).
P. A. Schultz, Phys. Rev. Lett. 96, 246401 (2006).
S. Lany and A. Zunger, Phys. Rev. B 78, 235104 (2008).
2007; 104
1995; 51
2002; 14
1985; 18
2006; 74
2006; 96
2004; 95
1997; 107
2006; 73
1997; 55
2006; 55
1986; 33
1986; 34
1995; 99
1999; 59
2003; 340–342
2000; 84
1994; 66
2008; 78
1983; 51
2009; 102
2005; 71
2010; 96
2009; 17
e_1_2_8_27_2
e_1_2_8_28_2
e_1_2_8_29_2
e_1_2_8_23_2
e_1_2_8_24_2
e_1_2_8_25_2
e_1_2_8_26_2
e_1_2_8_9_2
e_1_2_8_2_2
e_1_2_8_1_2
e_1_2_8_3_2
e_1_2_8_6_2
e_1_2_8_5_2
e_1_2_8_8_2
e_1_2_8_7_2
e_1_2_8_20_2
e_1_2_8_21_2
e_1_2_8_22_2
e_1_2_8_16_2
e_1_2_8_17_2
e_1_2_8_18_2
e_1_2_8_19_2
e_1_2_8_12_2
e_1_2_8_13_2
e_1_2_8_14_2
Lento J. (e_1_2_8_15_2) 2002; 14
Needs R. J. (e_1_2_8_4_2) 2007
e_1_2_8_30_2
e_1_2_8_10_2
e_1_2_8_11_2
References_xml – reference: S. Lany and A. Zunger, Phys. Rev. B 78, 235104 (2008).
– reference: M. Bockstedte, A. Kley, J. Neugebauer, and M. Scheffler, Comput. Phys. Commun. 107, 187 (1997).
– reference: R. Resta and K. Kunc, Phys. Rev. B 34, 7146 (1986).
– reference: M. Leslie and M. J. Gillan, J. Phys. C, Solid State 18, 973 (1985).
– reference: P. Rinke, C. G. V. de Walle, and M. Scheffler, Phys. Rev. Lett. 102, 026402 (2009).
– reference: R. Resta, Rev. Mod. Phys. 66, 899 (1994).
– reference: S. Lany and A. Zunger, Modell. Simul. Mater. Sci. Eng. 17, 084002 (2009).
– reference: U. Gerstmann, P. Deák, R. Rurali, B. Aradi, T. Frauenheim, and H. Overhof, Physica B 340-342, 190 (2003).
– reference: S. Baroni and R. Resta, Phys. Rev. B 33, 7017 (1986).
– reference: J. Shim, E. K. Lee, Y. J. Lee, and R. M. Nieminen, Phys. Rev. B 71, 035206 (2005).
– reference: E. G. Seebauer and M. C. Kratzer, Mater. Sci. Eng. R 55, 57 (2006).
– reference: R. J. Needs, in: Theory of Defects in Semiconductors, Topics in Applied Physics, Vol. 104, edited by D. A. Drabold and S. K. Estreicher ( Springer, Berlin, Heidelberg, New York, 2007), p. 141.
– reference: T. A. Pham, T. Li, S. Shankar, F. Gygi, and G. Galli, Appl. Phys. Lett. 96, 062902 (2010).
– reference: K. Kunc and R. Resta, Phys. Rev. Lett. 51, 686 (1983).
– reference: G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).
– reference: C. W. M. Castleton, A. Höglund, and S. Mirbt, Phys. Rev. B 73, 035215 (2006).
– reference: C. W. M. Castleton, A. Höglund, and S. Mirbt, Modell. Simul. Mater. Sci. Eng. 17, 084003 (2009).
– reference: P. A. Schultz, Phys. Rev. Lett. 96, 246401 (2006).
– reference: C. Freysoldt, J. Neugebauer, and C. G. Van de Walle, Phys. Rev. Lett. 102, 016402 (2009).
– reference: A. F. Wright and N. A. Modine, Phys. Rev. B 74, 235209 (2006).
– reference: P. A. Schultz, Phys. Rev. Lett. 84, 1942 (2000).
– reference: J. Lento, J. L. Mozos, and R. M. Nieminen, J. Phys.: Condens. Matter 14, 2637 (2002).
– reference: C. A. Rozzi, D. Varsano, A. Marini, E. K. U. Gross, and A. Rubio, Phys. Rev. B 73, 205119 (2006).
– reference: C. G. Van de Walle and J. Neugebauer, J. Appl. Phys. 95, 3851 (2004).
– reference: X. Gonze and C. Lee, Phys. Rev. B 55, 10355 (1997).
– reference: P. Carloni, P. Blöchl, and M. Parinello, J. Phys. Chem. 99, 1338 (1995).
– reference: R. Nieminen, Modell. Simul. Mater. Sci. Eng. 17, 084001 (2009).
– reference: G. Makov and M. C. Payne, Phys. Rev. B 51, 4014 (1995).
– volume: 17
  start-page: 084002
  year: 2009
  publication-title: Modell. Simul. Mater. Sci. Eng.
– volume: 18
  start-page: 973
  year: 1985
  publication-title: J. Phys. C, Solid State
– volume: 14
  start-page: 2637
  year: 2002
  publication-title: J. Phys.: Condens. Matter
– volume: 107
  start-page: 187
  year: 1997
  publication-title: Comput. Phys. Commun.
– volume: 73
  start-page: 205119
  year: 2006
  publication-title: Phys. Rev. B
– volume: 34
  start-page: 7146
  year: 1986
  publication-title: Phys. Rev. B
– volume: 99
  start-page: 1338
  year: 1995
  publication-title: J. Phys. Chem.
– volume: 96
  start-page: 246401
  year: 2006
  publication-title: Phys. Rev. Lett.
– volume: 96
  start-page: 062902
  year: 2010
  publication-title: Appl. Phys. Lett.
– volume: 17
  start-page: 084001
  year: 2009
  publication-title: Modell. Simul. Mater. Sci. Eng.
– volume: 51
  start-page: 4014
  year: 1995
  publication-title: Phys. Rev. B
– volume: 59
  start-page: 1758
  year: 1999
  publication-title: Phys. Rev. B
– volume: 95
  start-page: 3851
  year: 2004
  publication-title: J. Appl. Phys.
– volume: 66
  start-page: 899
  year: 1994
  publication-title: Rev. Mod. Phys.
– volume: 33
  start-page: 7017
  year: 1986
  publication-title: Phys. Rev. B
– volume: 78
  start-page: 235104
  year: 2008
  publication-title: Phys. Rev. B
– volume: 340–342
  start-page: 190
  year: 2003
  publication-title: Physica B
– volume: 55
  start-page: 10355
  year: 1997
  publication-title: Phys. Rev. B
– volume: 17
  start-page: 084003
  year: 2009
  publication-title: Modell. Simul. Mater. Sci. Eng.
– volume: 71
  start-page: 035206
  year: 2005
  publication-title: Phys. Rev. B
– volume: 55
  start-page: 57
  year: 2006
  publication-title: Mater. Sci. Eng. R
– volume: 84
  start-page: 1942
  year: 2000
  publication-title: Phys. Rev. Lett.
– volume: 104
  start-page: 141
  year: 2007
– volume: 73
  start-page: 035215
  year: 2006
  publication-title: Phys. Rev. B
– volume: 74
  start-page: 235209
  year: 2006
  publication-title: Phys. Rev. B
– volume: 102
  start-page: 026402
  year: 2009
  publication-title: Phys. Rev. Lett.
– volume: 102
  start-page: 016402
  year: 2009
  publication-title: Phys. Rev. Lett.
– volume: 51
  start-page: 686
  year: 1983
  publication-title: Phys. Rev. Lett.
– ident: e_1_2_8_7_2
  doi: 10.1088/0022-3719/18/5/005
– ident: e_1_2_8_5_2
– ident: e_1_2_8_3_2
  doi: 10.1103/PhysRevLett.102.026402
– ident: e_1_2_8_17_2
  doi: 10.1021/j100004a039
– ident: e_1_2_8_9_2
  doi: 10.1103/PhysRevB.74.235209
– ident: e_1_2_8_2_2
  doi: 10.1063/1.1682673
– ident: e_1_2_8_8_2
  doi: 10.1103/PhysRevB.51.4014
– ident: e_1_2_8_14_2
  doi: 10.1088/0965-0393/17/8/084002
– ident: e_1_2_8_25_2
  doi: 10.1103/PhysRevB.55.10355
– ident: e_1_2_8_6_2
  doi: 10.1088/0965-0393/17/8/084001
– ident: e_1_2_8_23_2
  doi: 10.1103/PhysRevLett.102.016402
– start-page: 141
  volume-title: Theory of Defects in Semiconductors, Topics in Applied Physics
  year: 2007
  ident: e_1_2_8_4_2
– ident: e_1_2_8_20_2
  doi: 10.1103/PhysRevLett.96.246401
– ident: e_1_2_8_30_2
  doi: 10.1103/PhysRevB.59.1758
– ident: e_1_2_8_11_2
  doi: 10.1103/PhysRevB.73.035215
– ident: e_1_2_8_12_2
  doi: 10.1088/0965-0393/17/8/084003
– ident: e_1_2_8_26_2
  doi: 10.1103/PhysRevLett.51.686
– ident: e_1_2_8_21_2
  doi: 10.1103/RevModPhys.66.899
– ident: e_1_2_8_18_2
  doi: 10.1103/PhysRevLett.84.1942
– ident: e_1_2_8_29_2
  doi: 10.1016/S0010-4655(97)00117-3
– ident: e_1_2_8_22_2
  doi: 10.1103/PhysRevB.34.7146
– volume: 14
  start-page: 2637
  year: 2002
  ident: e_1_2_8_15_2
  publication-title: J. Phys.: Condens. Matter
– ident: e_1_2_8_24_2
  doi: 10.1103/PhysRevB.33.7017
– ident: e_1_2_8_10_2
  doi: 10.1103/PhysRevB.71.035206
– ident: e_1_2_8_1_2
  doi: 10.1016/j.mser.2006.01.002
– ident: e_1_2_8_28_2
– ident: e_1_2_8_27_2
  doi: 10.1063/1.3303987
– ident: e_1_2_8_19_2
  doi: 10.1103/PhysRevB.73.205119
– ident: e_1_2_8_16_2
  doi: 10.1016/j.physb.2003.09.111
– ident: e_1_2_8_13_2
  doi: 10.1103/PhysRevB.78.235104
SSID ssj0007131
ssj0047196
Score 2.5000782
Snippet Most theoretical calculations for point defects employ the supercell approach. The supercell consists of a few dozen or 100 atoms of the bulk material with a...
SourceID proquest
pascalfrancis
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1067
SubjectTerms Asymptotic properties
Charging
Condensed matter
Condensed matter: electronic structure, electrical, magnetic, and optical properties
Defects
Density
Electron states
Electrostatics
Elemental semiconductors
Exact sciences and technology
formation energy
Gallium arsenide
Iii-v semiconductors
Impurity and defect levels
Lattice vacancies
Physics
point defects
supercells
Title Electrostatic interactions between charged defects in supercells
URI https://api.istex.fr/ark:/67375/WNG-NBRQKW97-9/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpssb.201046289
https://www.proquest.com/docview/1031296711
Volume 248
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dSxwxEA9FKfjiR6t4ao8tSPu0up_J5k2vnEqlR-tV9C0kkyyIch6XOxD_ejPJ3d6dIAX7uDC7bGYyySTzm98QcphL5nYtMLEu8zIuUiZjpQDcKYVLFyADgAfR_OrRi-vi5215u1DFH_ghmgs39Ay_XqODS2WP56ShQ2uVh2ZhdSVW8CFgC6Oiqzl_lDuBNYAPtwrzkLlkSYzNtmYUjkl2vPytpS1qFbX9hJBJaZ3W6tDuYikeXYxq_bZ0tkHkbEABjXJ_NBmrI3h-xfX4PyPeJOvTmDU6DZNsi3wwg0_ko8eOgv1MTrqhlQ7WJt1BhAQUo1AuYaMpDCzyhExGR9p4-IgTiuxkaHzewG6T67Pu3x8X8bQxQwwFp5iRcesrUG5Kk7KaJTqvWVZVVFYpQAoUckM1UoXlALQGzozOVUEpJIo749N8h6wMHgdml0RIf6a1VEld0ELzvDJJXYELw0pIqaSyReKZLQRMWcuxecaDCHzLmUCtiEYrLfK9kR8Gvo43Jb950zZicnSPKDdWipveueh1rv5c3nAmnGB7yfbNC5iSdEte0iJfZ5NBOOdEzcmBeZxYgT00Mk5ZmrZI5k37j58Sv_v9TvO0956X9slauPdGUOYBWRmPJuaLC5zGqu2d4wWdSw5V
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dSxwxEB9apdQX-42n1m6htE-r-5ls3qxVe616tH5g30IyyYIo53F7B9K_vpnkdvUKUrCPC7PLZiaTTDK_-Q3Ah1xxt2uhjU2Zl3GRchVrjehOKUK5ABkRPYjmaMD6Z8X3X2WLJqRamMAP0V24kWf49ZocnC6kt25ZQ0dNoz02i8orxWNYpLbeRJ-_e3zLIOXOYB3kw63DIuQueRJTu62WxDHJtuY_NrdJLZK-bwg0qRqntzo0vJiLSO_GtX5j2n8Guh1SwKNcbk4nehN__8X2-F9jfg7Ls7A1-hzm2Qt4ZIcv4YmHj2LzCrb3QjcdKk-6wIg4KMahYqKJZkiwyHMyWRMZ6xEkTihqpiPrUwfNazjb3zv90o9nvRliLASjpIxbYpEJW9qU1zwxec2zqmKqShFTZJhbZogtLEdkNQpuTa4LxjDRwtmf5W9gYXg9tCsQEQOaMUondcEKI_LKJnWFLhIrMWWKqR7ErTEkzojLqX_GlQyUy5kkrchOKz341MmPAmXHvZIfvW07MTW-JKAbL-X54Ksc7Bz_PDgXXDrBjTnjdy9QVtKtekkP3rezQTr_JM2pob2eNpLaaGSC8TTtQeZt-4-fkj9OTna6p9WHvPQOnvZPjw7l4bfBwRoshWtwwmiuw8JkPLVvXRw10RveU_4AgNUScQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dSxwxEB-qovSltrXSqx_dQtGn1f1MNm9-Xm2thx-V8y1kJ1kolvO4vQPxrzeT3K2eIIJ9XJhdNjOZZJL5zW8AvqeK210LTajzNA-zmKuwLBHtKUUoGyAjogPRnHTY0WX26yq_elTF7_khmgs38gy3XpOD93W1_UAa2q_r0kGzqLpSzMBcxiJBzRsOzh8IpOwRrEF82GVY-NQlj0LqtjXhcIyS7emPTe1Rc6TuW8JMqtqqrfL9LqYC0sdhrduX2ougJiPycJTrrdGw3MK7J2SP_zPk9_BuHLQGu36WfYA3pvcR5h14FOsl2Dn0vXSoOOkvBsRAMfD1EnUwxoEFjpHJ6EAbhx-xQkE96huXOKg_wWX78M_-UTjuzBBiJhilZOwCi0yY3MS84pFOK54UBVNFjBgjw9QwTVxhKSKrUHCj0zJjDKNSWOuzdBlmezc98xkC4j_TWpVRlbFMi7QwUVWgjcNyjJliqgXhxBYSx7Tl1D3jn_SEy4kkrchGKy3YbOT7nrDjWckNZ9pGTA2uCebGc9nt_JCdvfOz467g0gquT9m-eYFyknbNi1rwbTIZpPVO0pzqmZtRLamJRiIYj-MWJM60L_yUPL242Guevrzmpa-wcHrQlr9_do5X4K2_AyeA5irMDgcjs2aDqGG57vzkHjbCESA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrostatic+interactions+between+charged+defects+in+supercells&rft.jtitle=Physica+status+solidi.+B.+Basic+research&rft.au=FREYSOLDT%2C+Christoph&rft.au=NEUGEBAUER%2C+J%C3%B6rg&rft.au=VAN+DE+WALLE%2C+Chris+G&rft.date=2011-05-01&rft.pub=Wiley-VCH&rft.issn=0370-1972&rft.volume=248&rft.issue=5&rft.spage=1067&rft.epage=1076&rft_id=info:doi/10.1002%2Fpssb.201046289&rft.externalDBID=n%2Fa&rft.externalDocID=24134250
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0370-1972&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0370-1972&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0370-1972&client=summon