Recent advances in intestinal smooth muscle research: from muscle strips and single cells, via ICC networks to whole organ physiology and assessment of human gut motor dysfunction
Gastrointestinal smooth muscle research has evolved from studies on muscle strips to spatiotemporal mapping of whole organ motor and electrical activities. Decades of research on single muscle cells and small sections of isolated musculature from animal models has given us the groundwork for interpr...
Saved in:
Published in | Journal of Smooth Muscle Research Vol. 55; pp. 68 - 80 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Japan
Japan Society of Smooth Muscle Research
2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Gastrointestinal smooth muscle research has evolved from studies on muscle strips to spatiotemporal mapping of whole organ motor and electrical activities. Decades of research on single muscle cells and small sections of isolated musculature from animal models has given us the groundwork for interpretation of human in vivo studies. Human gut motility studies have dramatically improved by high-resolution manometry and high-resolution electrophysiology. The details that emerge from spatiotemporal mapping of high-resolution data are now of such quality that hypotheses can be generated as to the physiology (in healthy subjects) and pathophysiology (in patients) of gastrointestinal (dys) motility. Such interpretation demands understanding of the musculature as a super-network of excitable cells (neurons, smooth muscle cells, other accessory cells) and oscillatory cells (the pacemaker interstitial cells of Cajal), for which mathematical modeling becomes essential. The developing deeper understanding of gastrointestinal motility will bring us soon to a level of precision in diagnosis of dysfunction that is far beyond what is currently available. |
---|---|
AbstractList | Gastrointestinal smooth muscle research has evolved from studies on muscle strips to
spatiotemporal mapping of whole organ motor and electrical activities. Decades of research
on single muscle cells and small sections of isolated musculature from animal models has
given us the groundwork for interpretation of human
in vivo
studies.
Human gut motility studies have dramatically improved by high-resolution manometry and
high-resolution electrophysiology. The details that emerge from spatiotemporal mapping of
high-resolution data are now of such quality that hypotheses can be generated as to the
physiology (in healthy subjects) and pathophysiology (in patients) of gastrointestinal
(dys) motility. Such interpretation demands understanding of the musculature as a
super-network of excitable cells (neurons, smooth muscle cells, other accessory cells) and
oscillatory cells (the pacemaker interstitial cells of Cajal), for which mathematical
modeling becomes essential. The developing deeper understanding of gastrointestinal
motility will bring us soon to a level of precision in diagnosis of dysfunction that is
far beyond what is currently available. Gastrointestinal smooth muscle research has evolved from studies on muscle strips to spatiotemporal mapping of whole organ motor and electrical activities. Decades of research on single muscle cells and small sections of isolated musculature from animal models has given us the groundwork for interpretation of human in vivo studies. Human gut motility studies have dramatically improved by high-resolution manometry and high-resolution electrophysiology. The details that emerge from spatiotemporal mapping of high-resolution data are now of such quality that hypotheses can be generated as to the physiology (in healthy subjects) and pathophysiology (in patients) of gastrointestinal (dys) motility. Such interpretation demands understanding of the musculature as a super-network of excitable cells (neurons, smooth muscle cells, other accessory cells) and oscillatory cells (the pacemaker interstitial cells of Cajal), for which mathematical modeling becomes essential. The developing deeper understanding of gastrointestinal motility will bring us soon to a level of precision in diagnosis of dysfunction that is far beyond what is currently available. |
Author | Huizinga, Jan D. |
Author_xml | – sequence: 1 fullname: Huizinga, Jan D. organization: Department of Medicine-Gastroenterology, McMaster University, Hamilton, Ontario, Canada |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31956167$$D View this record in MEDLINE/PubMed |
BookMark | eNptkd-KEzEUxoOsuN3VGx9Aci22JjNNJuOFIsU_CwuC6PVwmjkzkzqTlJy0S5_LFzTdukVFCEk45_d9Cd-5Yhc-eGTsuRQLqZbi9YamuFBqoc0jNpPGLOemqvUFm4la6nwvq0t2RbQRojCqrp-wy1LWSktdzdjPr2jRJw7tHrxF4s7nlZCS8zBymkJIA592ZEfkEQkh2uEN72KYHqqUotsSB99ycr7PFYvjSK_43gG_Wa24x3QX4g_iKfC7IWQgxB483w4HcmEM_eFeDERINB1_Ezo-7KaM9LvEp5BC5O2Bup23yQX_lD3uYCR89vu8Zt8_fvi2-jy__fLpZvX-dm6XtTZzVSqh6kJB3SljpZJrU2BVrVHqdVepssC2LgB1W3RaSQkgzVpYrAWIEqWB8pq9Pflud-sJ22NOEcZmG90E8dAEcM3fHe-Gpg_7Rte6KKXOBi_-NDgrH-LPwMsTYGMgitidESma42yb42wbpRptMiz-ga1LcAwkP-7G_0venSQbStDj2R1icnl0Z1Tcbzmuc8cOEBv05S9rqMUk |
CitedBy_id | crossref_primary_10_1152_ajpgi_00384_2019 crossref_primary_10_29254_2077_4214_2021_4_162_40_46 crossref_primary_10_1113_JP284753 |
Cites_doi | 10.1007/978-94-007-2917-9 10.1111/j.1742-4658.2009.07437.x 10.1113/jphysiol.2006.117093 10.1038/s41575-019-0167-1 10.1113/jphysiol.1913.sp001613 10.1113/EP087465 10.1111/nmo.13598 10.5056/jnm14060 10.1152/ajpgi.2001.280.4.G629 10.1152/jappl.1993.74.3.1454 10.1113/EP086077 10.1016/j.autneu.2015.07.258 10.1038/scientificamerican1293-102 10.1006/jtbi.1994.1020 10.1111/j.1365-2982.2004.00546.x 10.1016/j.febslet.2014.02.002 10.1002/jbio.201000056 10.1002/bjs.10074 10.1113/expphysiol.2011.058941 10.1111/j.1440-1827.2004.01607.x 10.1152/ajpgi.00127.2017 10.1038/srep41436 10.1111/nmo.12019 10.1111/nmo.13395 10.1111/nmo.13310 10.1016/j.jpedsurg.2012.05.006 10.1002/bjs.10808 10.1111/j.1476-5381.2010.00902.x 10.1152/ajpgi.00070.2005 10.1113/jphysiol.2010.196824 10.1113/expphysiol.2007.039180 10.1023/A:1024178303076 10.1113/JP273425 10.1111/j.1365-2982.2011.01729.x 10.3389/fnins.2016.00019 10.1093/jcag/gwy008.304 10.1136/gut.21.6.480 10.1007/s00360-007-0217-9 10.2170/jjphysiol.25.333 10.1016/0002-9149(84)90043-2 10.1007/978-0-387-88295-6_1 10.1113/EP086871 10.1111/nmo.12016 10.1053/j.gastro.2015.04.003 10.1038/ncomms4326 10.1113/jphysiol.2002.018614 10.1152/ajpgi.00338.2014 10.1152/ajpgi.2000.278.2.G297 10.1111/1440-1681.12288 10.1152/ajpheart.1979.237.4.H469 10.1111/apha.12371 10.1136/gut.2004.051045 10.3748/wjg.v12.i38.6172 10.1016/j.bios.2009.06.006 10.1186/1475-925X-7-2 10.3791/53263 10.1152/ajpgi.1999.277.5.G983 10.1046/j.1365-2982.2002.00306.x 10.1038/ajg.2016.341 10.3389/fnins.2014.00075 10.1046/j.1365-2982.2002.00337.x 10.1111/j.1365-2982.2008.01230.x 10.1038/srep42293 |
ContentType | Journal Article |
Copyright | 2019 by Japan Society of Smooth Muscle Research 2019 The Japan Society of Smooth Muscle Research 2019 |
Copyright_xml | – notice: 2019 by Japan Society of Smooth Muscle Research – notice: 2019 The Japan Society of Smooth Muscle Research 2019 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 5PM |
DOI | 10.1540/jsmr.55.68 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 1884-8796 |
EndPage | 80 |
ExternalDocumentID | PMC6962316 31956167 10_1540_jsmr_55_68 article_jsmr_55_0_55_0505_article_char_en |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: CIHR |
GroupedDBID | --- .55 29L 2WC 3O- 53G 5GY 5VS AAUGY ACGFO ACGFS ACPRK ADRAZ ALMA_UNASSIGNED_HOLDINGS CS3 DIK DU5 E3Z EBS EJD F5P GROUPED_DOAJ GX1 HYE JSF JSH KQ8 M48 M~E OK1 P2P RJT RNS RPM RZJ TR2 X7M XSB AAYXX ABJNI CITATION EMOBN OVT PGMZT SV3 CGR CUY CVF ECM EIF NPM 5PM |
ID | FETCH-LOGICAL-c4968-53505925a9f58c151b82e77be16bf7532ed92ae6d2f6511aa18b0ce90a03e18a3 |
IEDL.DBID | M48 |
ISSN | 0916-8737 |
IngestDate | Thu Aug 21 18:33:42 EDT 2025 Thu Jan 02 22:32:33 EST 2025 Thu Apr 24 23:02:32 EDT 2025 Tue Jul 01 01:09:47 EDT 2025 Thu Aug 17 20:31:51 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | gastrointestinal motility high-resolution manometry spatiotemporal mapping dysmotility interstitial cells of Cajal |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives (by-nc-nd) License. (CC-BY-NC-ND 4.0: http://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4968-53505925a9f58c151b82e77be16bf7532ed92ae6d2f6511aa18b0ce90a03e18a3 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1540/jsmr.55.68 |
PMID | 31956167 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6962316 pubmed_primary_31956167 crossref_primary_10_1540_jsmr_55_68 crossref_citationtrail_10_1540_jsmr_55_68 jstage_primary_article_jsmr_55_0_55_0505_article_char_en |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019 2019-00-00 20190101 |
PublicationDateYYYYMMDD | 2019-01-01 |
PublicationDate_xml | – year: 2019 text: 2019 |
PublicationDecade | 2010 |
PublicationPlace | Japan |
PublicationPlace_xml | – name: Japan |
PublicationTitle | Journal of Smooth Muscle Research |
PublicationTitleAlternate | Journal of Smooth Muscle Research |
PublicationYear | 2019 |
Publisher | Japan Society of Smooth Muscle Research |
Publisher_xml | – name: Japan Society of Smooth Muscle Research |
References | 67. Baevsky, RM, Chernikova, AG. 2017. Heart rate variability analysis: physiological foundations and main methods. Cardiometry 66–7. 60. Komuro, T. 2012. Atlas of interstitial cells of Cajal in the Gastrointestinal tract, (ed), Springer. 46. Corsetti, M, Pagliaro, G, Demedts, I, Deloose, E, Gevers, A, Scheerens, C, Rommel, N, Tack, J. Pan-colonic pressurizations associated with relaxation of the anal sphincter in health and disease: a new colonic motor pattern identified using high-resolution manometry. Am J Gastroenterol. 2017; 112(3): 479–89. 65. Vather, R, O’Grady, G, Lin, AY, Du, P, Wells, CI, Rowbotham, D, Arkwright, J, Cheng, LK, Dinning, PG, Bissett, IP. Hyperactive cyclic motor activity in the distal colon after colonic surgery as defined by high-resolution colonic manometry. Br J Surg. 2018; 105(7): 907–17. 34. Wei, R, Parsons, SP, Huizinga, JD. Network properties of interstitial cells of Cajal affect intestinal pacemaker activity and motor patterns, according to a mathematical model of weakly coupled oscillators. Exp Physiol. 2017; 102(3): 329–46. 8. Lammers, WJ, al-Kais, A, Singh, S, Arafat, K, el-Sharkawy, TY. Multielectrode mapping of slow-wave activity in the isolated rabbit duodenum. J Appl Physiol 1985. 1993; 74(3): 1454–61. 21. Blair, PJ, Rhee, PL, Sanders, KM, Ward, SM. The significance of interstitial cells in neurogastroenterology. J Neurogastroenterol Motil. 2014; 20(3): 294–317. 6. Chen, JH, Yu, Y, Yang, Z, Yu, WZ, Yu, H, Kim, JM, Huizinga, JD. The “simultaneous contractions” of the human colon are a fast propagating rhythmic neurogenic motor pattern associated internal anal sphincter relaxation and gas expulsion, not an artifact of abdominal pressure changes. Auton Neurosci Basic Clin. 2015; 192: 4 (abstract). 50. Bharucha, AE. High amplitude propagated contractions. Neurogastroenterol Motil. 2012; 24(11): 977–82. 58. Nakayama, S, Ohishi, R, Sawamura, K, Watanabe, K, Hirose, K. Microelectrode array evaluation of gut pacemaker activity in wild-type and W/W(v) mice. Biosens Bioelectron. 2009; 25(1): 61–7. 29. Imtiaz, MS, von der Weid, PY, van Helden, DF. Synchronization of Ca2+ oscillations: a coupled oscillator-based mechanism in smooth muscle. FEBS J. 2010; 277(2): 278–85. 10. Kendig, DM, Hurst, NR, Grider, JR. Spatiotemporal mapping of motility in ex vivo preparations of the intestines. J Vis Exp. 2016; (107): e53263. 39. Kashyap, P, Gomez-Pinilla, PJ, Pozo, MJ, Cima, RR, Dozois, EJ, Larson, DW, Ordog, T, Gibbons, SJ, Farrugia, G. Immunoreactivity for Ano1 detects depletion of Kit-positive interstitial cells of Cajal in patients with slow transit constipation. Neurogastroenterol Motil. 2011; 23(8): 760–5. 28. Paskaranandavadivel, N, Cheng, LK, Du, P, Rogers, JM, O’Grady, G. High-resolution mapping of gastric slow-wave recovery profiles: biophysical model, methodology, and demonstration of applications. Am J Physiol Gastrointest Liver Physiol. 2017; 313(3): G265–76. 52. De Schryver, AM, Samsom, M, Smout, AI. Effects of a meal and bisacodyl on colonic motility in healthy volunteers and patients with slow-transit constipation. Dig Dis Sci. 2003; 48(7): 1206–12. 55. Hertz, AF, Newton, A. The normal movements of the colon in man. J Physiol. 1913; 47(1-2): 57–65. 47. Corsetti, M, Costa, M, Bassotti, G, Bharucha, AE, Borelli, O, Dinning, P, Di Lorenzo, C, Huizinga, JD, Jimenez, M, Rao, SS, Spiller, R, Spencer, N, Lentle, R, Pannemans, J, Thys, A, Benninga, M, Tack, J. Translational consensus on terminology and definition of colonic motility by means of manometric and non-manometric techniques. Nat Rev Gastroenterol Hepatol. 2019. 16. Angeli, TR, Cheng, LK, Du, P, Wang, TH, Bernard, CE, Vannucchi, MG, Faussone-Pellegrini, MS, Lahr, C, Vather, R, Windsor, JA, Farrugia, G, Abell, TL, O’Grady, G. Loss of Interstitial Cells of Cajal and Patterns of Gastric Dysrhythmia in Patients With Chronic Unexplained Nausea and Vomiting. Gastroenterology. 2015; 149(1): 56–66.e5. 23. Huizinga, JD, Chen, JH, Zhu, YF, Pawelka, A, McGinn, RJ, Bardakjian, BL, Parsons, SP, Kunze, WA, Wu, RY, Bercik, P, Khoshdel, A, Chen, S, Yin, S, Zhang, Q, Yu, Y, Gao, Q, Li, K, Hu, X, Zarate, N, Collins, P, Pistilli, M, Ma, J, Zhang, R, Chen, D. The origin of segmentation motor activity in the intestine. Nat Commun. 2014; 5: 3326. 22. Lammers, WJ. Propagation of individual spikes as “patches” of activation in isolated feline duodenum. Am J Physiol Gastrointest Liver Physiol. 2000; 278(2): G297–307. 17. Huizinga, JD, Parsons, SP. Pacemaker network properties determine intestinal motor pattern behaviour. Exp Physiol. 2019; 104(5): 623–4. 4. Arts, T, Kruger, RT, van Gerven, W, Lambregts, JA, Reneman, RS. Propagation velocity and reflection of pressure waves in the canine coronary artery. Am J Physiol. 1979; 237(4): H469–74. 9. Marriott, HJ. Arrhythmia versus dysrhythmia. Am J Cardiol. 1984; 53(4): 628. 38. Battaglia, E, Bassotti, G, Bellone, G, Dughera, L, Serra, AM, Chiusa, L, Repici, A, Mioli, P, Emanuelli, G. Loss of interstitial cells of Cajal network in severe idiopathic gastroparesis. World J Gastroenterol. 2006; 12(38): 6172–7. 51. Rao, SS, Sadeghi, P, Beaty, J, Kavlock, R, Ackerson, K. Ambulatory 24-h colonic manometry in healthy humans. Am J Physiol Gastrointest Liver Physiol. 2001; 280(4): G6 44 45 46 47 48 49 50 51 52 53 10 54 11 55 12 56 13 57 14 58 15 59 16 17 18 19 1 2 3 4 5 6 7 8 9 60 61 62 63 20 64 21 65 22 66 23 24 25 26 27 28 29 (67) 2017 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
References_xml | – reference: 47. Corsetti, M, Costa, M, Bassotti, G, Bharucha, AE, Borelli, O, Dinning, P, Di Lorenzo, C, Huizinga, JD, Jimenez, M, Rao, SS, Spiller, R, Spencer, N, Lentle, R, Pannemans, J, Thys, A, Benninga, M, Tack, J. Translational consensus on terminology and definition of colonic motility by means of manometric and non-manometric techniques. Nat Rev Gastroenterol Hepatol. 2019. – reference: 2. Chen, JH, Parsons, SP, Shokrollahi, M, Wan, A, Vincent, AD, Yuan, Y, Pervez, M, Chen, WL, Xue, M, Zhang, KK, Eshtiaghi, A, Armstrong, D, Bercik, P, Moayyedi, P, Greenwald, E, Ratcliffe, EM, Huizinga, JD. Characterization of simultaneous pressure waves as biomarkers for colonic motility assessed by high-resolution colonic manometry. Frontiers in Physiology. Gastrointest Sci. 2018; 9: 1248. – reference: 48. Giorgio, V, Borrelli, O, Smith, VV, Rampling, D, Köglmeier, J, Shah, N, Thapar, N, Curry, J, Lindley, KJ. High-resolution colonic manometry accurately predicts colonic neuromuscular pathological phenotype in pediatric slow transit constipation. Neurogastroenterol Motil. 2013; 25(1): 70–8.e8 9. – reference: 18. Parsons, SP, Huizinga, JD. Slow wave contraction frequency plateaux in the small intestine are composed of discrete waves of interval increase associated with dislocations. Exp Physiol. 2018; 103(8): 1087–100. – reference: 38. Battaglia, E, Bassotti, G, Bellone, G, Dughera, L, Serra, AM, Chiusa, L, Repici, A, Mioli, P, Emanuelli, G. Loss of interstitial cells of Cajal network in severe idiopathic gastroparesis. World J Gastroenterol. 2006; 12(38): 6172–7. – reference: 24. Hirst, GD, Dickens, EJ, Edwards, FR. Pacemaker shift in the gastric antrum of guinea-pigs produced by excitatory vagal stimulation involves intramuscular interstitial cells. J Physiol. 2002; 541(Pt 3): 917–28. – reference: 63. Suzuki, H, Kito, Y, Hashitani, H, Nakamura, E. Factors modifying the frequency of spontaneous activity in gastric muscle. J Physiol. 2006; 576(Pt 3): 667–74. – reference: 41. Nagy, JI, Urena-Ramirez, V, Ghia, JE. Functional alterations in gut contractility after connexin36 ablation and evidence for gap junctions forming electrical synapses between nitrergic enteric neurons. FEBS Lett. 2014; 588(8): 1480–90. – reference: 39. Kashyap, P, Gomez-Pinilla, PJ, Pozo, MJ, Cima, RR, Dozois, EJ, Larson, DW, Ordog, T, Gibbons, SJ, Farrugia, G. Immunoreactivity for Ano1 detects depletion of Kit-positive interstitial cells of Cajal in patients with slow transit constipation. Neurogastroenterol Motil. 2011; 23(8): 760–5. – reference: 51. Rao, SS, Sadeghi, P, Beaty, J, Kavlock, R, Ackerson, K. Ambulatory 24-h colonic manometry in healthy humans. Am J Physiol Gastrointest Liver Physiol. 2001; 280(4): G629–39. – reference: 56. Hashitani, H, Lang, RJ, Suzuki, H. Role of perinuclear mitochondria in the spatiotemporal dynamics of spontaneous Ca2+ waves in interstitial cells of Cajal-like cells of the rabbit urethra. Br J Pharmacol. 2010; 161(3): 680–94. – reference: 4. Arts, T, Kruger, RT, van Gerven, W, Lambregts, JA, Reneman, RS. Propagation velocity and reflection of pressure waves in the canine coronary artery. Am J Physiol. 1979; 237(4): H469–74. – reference: 21. Blair, PJ, Rhee, PL, Sanders, KM, Ward, SM. The significance of interstitial cells in neurogastroenterology. J Neurogastroenterol Motil. 2014; 20(3): 294–317. – reference: 32. de Lorijn, F, de Jonge, WJ, Wedel, T, Vanderwinden, JM, Benninga, MA, Boeckxstaens, GE. Interstitial cells of Cajal are involved in the afferent limb of the rectoanal inhibitory reflex. Gut. 2005; 54(8): 1107–13. – reference: 16. Angeli, TR, Cheng, LK, Du, P, Wang, TH, Bernard, CE, Vannucchi, MG, Faussone-Pellegrini, MS, Lahr, C, Vather, R, Windsor, JA, Farrugia, G, Abell, TL, O’Grady, G. Loss of Interstitial Cells of Cajal and Patterns of Gastric Dysrhythmia in Patients With Chronic Unexplained Nausea and Vomiting. Gastroenterology. 2015; 149(1): 56–66.e5. – reference: 27. Parsons, SP, Huizinga, JD. Effects of gap junction inhibition on contraction waves in the murine small intestine in relation to coupled oscillator theory. Am J Physiol Gastrointest Liver Physiol. 2015; 308(4): G287–97. – reference: 30. Bardakjian, BL, Diamant, NE. A mapped clock oscillator model for transmembrane electrical rhythmic activity in excitable cells. J Theor Biol. 1994; 166(3): 225–35. – reference: 53. Chen, JH, Ratcliffe, E, Armstrong, D, Bercik, P, Huizinga, JD. Simultaneous pressure waves are a key component of human colonic motor function assessment, using high-resolution colonic manometry (HRCM). J Can Assoc Gastroenterol. 2018; 1: 527–8. – reference: 66. Angeli, TR, O’Grady, G, Vather, R, Bissett, IP, Cheng, LK. Intra-operative high-resolution mapping of slow wave propagation in the human jejunum: Feasibility and initial results. Neurogastroenterol Motil. 2018; 30(7): e13310. – reference: 7. Chen, JH, Yu, Y, Yang, Z, Yu, WZ, Chen, WL, Yu, H, Kim, MJ, Huang, M, Tan, S, Luo, H, Chen, J, Chen, JD, Huizinga, JD. Intraluminal pressure patterns in the human colon assessed by high-resolution manometry. Sci Rep. 2017; 7: 41436 . – reference: 42. Dinning, PG, Bampton, PA, Kennedy, ML, Cook, IJ. Relationship between terminal ileal pressure waves and propagating proximal colonic pressure waves. Am J Physiol. 1999; 277(5): G983–92. – reference: 55. Hertz, AF, Newton, A. The normal movements of the colon in man. J Physiol. 1913; 47(1-2): 57–65. – reference: 33. Lammers, WJ, Al-Bloushi, HM, Al-Eisaei, SA, Al-Dhaheri, FA, Stephen, B, John, R, Dhanasekaran, S, Karam, SM. Slow wave propagation and plasticity of interstitial cells of Cajal in the small intestine of diabetic rats. Exp Physiol. 2011; 96(10): 1039–48. – reference: 8. Lammers, WJ, al-Kais, A, Singh, S, Arafat, K, el-Sharkawy, TY. Multielectrode mapping of slow-wave activity in the isolated rabbit duodenum. J Appl Physiol 1985. 1993; 74(3): 1454–61. – reference: 9. Marriott, HJ. Arrhythmia versus dysrhythmia. Am J Cardiol. 1984; 53(4): 628. – reference: 11. Shokrollahi, M, Chen, JH, Huizinga, JD. Intraluminal prucalopride increases propulsive motor activities via luminal 5-HT4 receptors in the rabbit colon. Neurogastroenterol Motil. 2019; 31(10): e13598. – reference: 29. Imtiaz, MS, von der Weid, PY, van Helden, DF. Synchronization of Ca2+ oscillations: a coupled oscillator-based mechanism in smooth muscle. FEBS J. 2010; 277(2): 278–85. – reference: 44. Vather, R, O’Grady, G, Arkwright, JW, Rowbotham, DS, Cheng, LK, Dinning, PG, Bissett, IP. Restoration of normal colonic motor patterns and meal responses after distal colorectal resection. Br J Surg. 2016; 103(4): 451–61. – reference: 31. Strogatz, SH, Stewart, I. Coupled oscillators and biological synchronization. Sci Am. 1993; 269(6): 102–9. – reference: 50. Bharucha, AE. High amplitude propagated contractions. Neurogastroenterol Motil. 2012; 24(11): 977–82. – reference: 6. Chen, JH, Yu, Y, Yang, Z, Yu, WZ, Yu, H, Kim, JM, Huizinga, JD. The “simultaneous contractions” of the human colon are a fast propagating rhythmic neurogenic motor pattern associated internal anal sphincter relaxation and gas expulsion, not an artifact of abdominal pressure changes. Auton Neurosci Basic Clin. 2015; 192: 4 (abstract). – reference: 45. Dinning, PG. A new understanding of the physiology and pathophysiology of colonic motility? Neurogastroenterol Motil. 2018; 30(11): e13395. – reference: 12. Dinning, PG, Wiklendt, L, Omari, T, Arkwright, JW, Spencer, NJ, Brookes, SJ, Costa, M. Neural mechanisms of peristalsis in the isolated rabbit distal colon: a neuromechanical loop hypothesis. Front Neurosci. 2014; 8: 75. – reference: 52. De Schryver, AM, Samsom, M, Smout, AI. Effects of a meal and bisacodyl on colonic motility in healthy volunteers and patients with slow-transit constipation. Dig Dis Sci. 2003; 48(7): 1206–12. – reference: 35. O’Grady, G, Wang, TH, Du, P, Angeli, T, Lammers, WJ, Cheng, LK. Recent progress in gastric arrhythmia: pathophysiology, clinical significance and future horizons. Clin Exp Pharmacol Physiol. 2014; 41(10): 854–62. – reference: 64. Inoue, T, Suzuki, T, Nakagawa, K, Kurokawa, Y, Satomi, S, Moriya, T, Sasano, N, Sasano, H. Immunohistopathological and molecular genetic features of a case in which gastrointestinal stromal tumor recurred five times. Pathol Int. 2004; 54(3): 196–200. – reference: 67. Baevsky, RM, Chernikova, AG. 2017. Heart rate variability analysis: physiological foundations and main methods. Cardiometry 66–7. – reference: 46. Corsetti, M, Pagliaro, G, Demedts, I, Deloose, E, Gevers, A, Scheerens, C, Rommel, N, Tack, J. Pan-colonic pressurizations associated with relaxation of the anal sphincter in health and disease: a new colonic motor pattern identified using high-resolution manometry. Am J Gastroenterol. 2017; 112(3): 479–89. – reference: 58. Nakayama, S, Ohishi, R, Sawamura, K, Watanabe, K, Hirose, K. Microelectrode array evaluation of gut pacemaker activity in wild-type and W/W(v) mice. Biosens Bioelectron. 2009; 25(1): 61–7. – reference: 62. Ito, Y, Kuriyama, H. Responses to field stimulation of the smooth muscle cell membrane of the guinea pig stomach. Jpn J Physiol. 1975; 25(3): 333–44. – reference: 23. Huizinga, JD, Chen, JH, Zhu, YF, Pawelka, A, McGinn, RJ, Bardakjian, BL, Parsons, SP, Kunze, WA, Wu, RY, Bercik, P, Khoshdel, A, Chen, S, Yin, S, Zhang, Q, Yu, Y, Gao, Q, Li, K, Hu, X, Zarate, N, Collins, P, Pistilli, M, Ma, J, Zhang, R, Chen, D. The origin of segmentation motor activity in the intestine. Nat Commun. 2014; 5: 3326. – reference: 54. Bueno, L, Fioramonti, J, Ruckebusch, Y, Frexinos, J, Coulom, P. Evaluation of colonic myoelectrical activity in health and functional disorders. Gut. 1980; 21(6): 480–5. – reference: 14. Lammers, WJ. Normal and abnormal electrical propagation in the small intestine. Acta Physiol (Oxf). 2015; 213(2): 349–59. – reference: 13. Lentle, RG, Janssen, PW, Asvarujanon, P, Chambers, P, Stafford, KJ, Hemar, Y. High-definition spatiotemporal mapping of contractile activity in the isolated proximal colon of the rabbit. J Comp Physiol B. 2008; 178(3): 257–68. – reference: 10. Kendig, DM, Hurst, NR, Grider, JR. Spatiotemporal mapping of motility in ex vivo preparations of the intestines. J Vis Exp. 2016; (107): e53263. – reference: 34. Wei, R, Parsons, SP, Huizinga, JD. Network properties of interstitial cells of Cajal affect intestinal pacemaker activity and motor patterns, according to a mathematical model of weakly coupled oscillators. Exp Physiol. 2017; 102(3): 329–46. – reference: 28. Paskaranandavadivel, N, Cheng, LK, Du, P, Rogers, JM, O’Grady, G. High-resolution mapping of gastric slow-wave recovery profiles: biophysical model, methodology, and demonstration of applications. Am J Physiol Gastrointest Liver Physiol. 2017; 313(3): G265–76. – reference: 57. Tomita, T. 1981. Electrical activity (spikes and slow waves) in gastrointestinal smooth muscle, p. 127–56. In Bulbring, E, Brading, AF, Jones, AW, Tomita, T (ed), Smooth muscle; an assessment of current knowledge, Edward Arnold, London. – reference: 3. Lammers, WJ. Spatial and temporal coupling between slow waves and pendular contractions. Am J Physiol Gastrointest Liver Physiol. 2005; 289(5): G898–903. – reference: 40. Bayguinov, PO, Hennig, GW, Smith, TK. Ca2+ imaging of activity in ICC-MY during local mucosal reflexes and the colonic migrating motor complex in the murine large intestine. J Physiol. 2010; 588(Pt 22): 4453–74. – reference: 59. Torihashi, S, Ward, SM, Nishikawa, S, Nishi, K, Kobayashi, S, Sanders, KM. c-kit-dependent development of interstitial cells and electrical activity in the murine gastrointestinal tract. Cell Tissue Res. 1995; 280(1): 97–111. – reference: 1. Lammers, WJ, Cheng, LK. Simulation and analysis of spatio-temporal maps of gastrointestinal motility. Biomed Eng Online. 2008; 7: 2. – reference: 25. Conklin, J, Pimentel, M, Soffer, E. 2009. Color Atlas of High Resolution Manometry, (ed), Springer Science & Business Media, New York. – reference: 26. Andrews, JM, O’donovan, DG, Hebbard, GS, Malbert, CH, Doran, SM, Dent, J. Human duodenal phase III migrating motor complex activity is predominantly antegrade, as revealed by high-resolution manometry and colour pressure plots. Neurogastroenterol Motil. 2002; 14(4): 331–8. – reference: 61. Yoneda, S, Fukui, H, Takaki, M. Pacemaker activity from submucosal interstitial cells of Cajal drives high-frequency and low-amplitude circular muscle contractions in the mouse proximal colon. Neurogastroenterol Motil. 2004; 16(5): 621–7. – reference: 15. Lammers, WJ, Stephen, B. Origin and propagation of individual slow waves along the intact feline small intestine. Exp Physiol. 2008; 93(3): 334–46. – reference: 20. Parsons, SP, Huizinga, JD. Phase waves and trigger waves: emergent properties of oscillating and excitable networks in the gut. J Physiol. 2018; 596(20): 4819–29. – reference: 36. Faussone-Pellegrini, MS, Gay, J, Vannucchi, MG, Corsani, L, Fioramonti, J. Alterations of neurokinin receptors and interstitial cells of Cajal during and after jejunal inflammation induced by Nippostrongylus brasiliensis in the rat. Neurogastroenterol Motil. 2002; 14(1): 83–95. – reference: 22. Lammers, WJ. Propagation of individual spikes as “patches” of activation in isolated feline duodenum. Am J Physiol Gastrointest Liver Physiol. 2000; 278(2): G297–307. – reference: 17. Huizinga, JD, Parsons, SP. Pacemaker network properties determine intestinal motor pattern behaviour. Exp Physiol. 2019; 104(5): 623–4. – reference: 5. Quan, X, Yang, Z, Xue, M, Chen, JH, Huizinga, JD. Relationships between motor patterns and intraluminal pressure in the 3-taeniated proximal colon of the rabbit. Sci Rep. 2017; 7: 42293. – reference: 65. Vather, R, O’Grady, G, Lin, AY, Du, P, Wells, CI, Rowbotham, D, Arkwright, J, Cheng, LK, Dinning, PG, Bissett, IP. Hyperactive cyclic motor activity in the distal colon after colonic surgery as defined by high-resolution colonic manometry. Br J Surg. 2018; 105(7): 907–17. – reference: 49. Camilleri, M, Bharucha, AE, di Lorenzo, C, Hasler, WL, Prather, CM, Rao, SS, Wald, A. American Neurogastroenterology and Motility Society consensus statement on intraluminal measurement of gastrointestinal and colonic motility in clinical practice. Neurogastroenterol Motil. 2008; 20(12): 1269–82. – reference: 19. Parsons, SP, Huizinga, JD. Spatial noise in coupling strength and natural frequency within a pacemaker network: consequences for development of intestinal motor patterns according to a weakly coupled oscillator model. Front Neurosci. 2016; 10: 19 . – reference: 43. Arkwright, JW, Blenman, NG, Underhill, ID, Maunder, SA, Spencer, NJ, Costa, M, Brookes, SJ, Szczesniak, MM, Dinning, PG. A fibre optic catheter for simultaneous measurement of longitudinal and circumferential muscular activity in the gastrointestinal tract. J Biophotonics. 2011; 4(4): 244–51. – reference: 37. Bettolli, M, De Carli, C, Cornejo-Palma, D, Jolin-Dahel, K, Wang, XY, Huizinga, J, Krantis, A, Rubin, S, Staines, WA. Interstitial cell of Cajal loss correlates with the degree of inflammation in the human appendix and reverses after inflammation. J Pediatr Surg. 2012; 47(10): 1891–9. – reference: 60. Komuro, T. 2012. Atlas of interstitial cells of Cajal in the Gastrointestinal tract, (ed), Springer. – ident: 2 – ident: 60 doi: 10.1007/978-94-007-2917-9 – ident: 29 doi: 10.1111/j.1742-4658.2009.07437.x – ident: 63 doi: 10.1113/jphysiol.2006.117093 – ident: 47 doi: 10.1038/s41575-019-0167-1 – ident: 55 doi: 10.1113/jphysiol.1913.sp001613 – ident: 17 doi: 10.1113/EP087465 – ident: 11 doi: 10.1111/nmo.13598 – ident: 21 doi: 10.5056/jnm14060 – ident: 51 doi: 10.1152/ajpgi.2001.280.4.G629 – ident: 8 doi: 10.1152/jappl.1993.74.3.1454 – ident: 34 doi: 10.1113/EP086077 – ident: 6 doi: 10.1016/j.autneu.2015.07.258 – ident: 31 doi: 10.1038/scientificamerican1293-102 – ident: 30 doi: 10.1006/jtbi.1994.1020 – ident: 61 doi: 10.1111/j.1365-2982.2004.00546.x – ident: 41 doi: 10.1016/j.febslet.2014.02.002 – ident: 43 doi: 10.1002/jbio.201000056 – ident: 44 doi: 10.1002/bjs.10074 – ident: 33 doi: 10.1113/expphysiol.2011.058941 – ident: 64 doi: 10.1111/j.1440-1827.2004.01607.x – ident: 28 doi: 10.1152/ajpgi.00127.2017 – ident: 7 doi: 10.1038/srep41436 – ident: 50 doi: 10.1111/nmo.12019 – ident: 45 doi: 10.1111/nmo.13395 – ident: 66 doi: 10.1111/nmo.13310 – ident: 37 doi: 10.1016/j.jpedsurg.2012.05.006 – start-page: 66 issn: 2304-7232 year: 2017 ident: 67 publication-title: Cardiometry – ident: 65 doi: 10.1002/bjs.10808 – ident: 56 doi: 10.1111/j.1476-5381.2010.00902.x – ident: 3 doi: 10.1152/ajpgi.00070.2005 – ident: 40 doi: 10.1113/jphysiol.2010.196824 – ident: 15 doi: 10.1113/expphysiol.2007.039180 – ident: 52 doi: 10.1023/A:1024178303076 – ident: 59 – ident: 20 doi: 10.1113/JP273425 – ident: 39 doi: 10.1111/j.1365-2982.2011.01729.x – ident: 19 doi: 10.3389/fnins.2016.00019 – ident: 53 doi: 10.1093/jcag/gwy008.304 – ident: 54 doi: 10.1136/gut.21.6.480 – ident: 13 doi: 10.1007/s00360-007-0217-9 – ident: 62 doi: 10.2170/jjphysiol.25.333 – ident: 9 doi: 10.1016/0002-9149(84)90043-2 – ident: 25 doi: 10.1007/978-0-387-88295-6_1 – ident: 18 doi: 10.1113/EP086871 – ident: 48 doi: 10.1111/nmo.12016 – ident: 16 doi: 10.1053/j.gastro.2015.04.003 – ident: 23 doi: 10.1038/ncomms4326 – ident: 24 doi: 10.1113/jphysiol.2002.018614 – ident: 27 doi: 10.1152/ajpgi.00338.2014 – ident: 57 – ident: 22 doi: 10.1152/ajpgi.2000.278.2.G297 – ident: 35 doi: 10.1111/1440-1681.12288 – ident: 4 doi: 10.1152/ajpheart.1979.237.4.H469 – ident: 14 doi: 10.1111/apha.12371 – ident: 32 doi: 10.1136/gut.2004.051045 – ident: 38 doi: 10.3748/wjg.v12.i38.6172 – ident: 58 doi: 10.1016/j.bios.2009.06.006 – ident: 1 doi: 10.1186/1475-925X-7-2 – ident: 10 doi: 10.3791/53263 – ident: 42 doi: 10.1152/ajpgi.1999.277.5.G983 – ident: 36 doi: 10.1046/j.1365-2982.2002.00306.x – ident: 46 doi: 10.1038/ajg.2016.341 – ident: 12 doi: 10.3389/fnins.2014.00075 – ident: 26 doi: 10.1046/j.1365-2982.2002.00337.x – ident: 49 doi: 10.1111/j.1365-2982.2008.01230.x – ident: 5 doi: 10.1038/srep42293 |
SSID | ssj0028599 |
Score | 2.1328912 |
Snippet | Gastrointestinal smooth muscle research has evolved from studies on muscle strips to spatiotemporal mapping of whole organ motor and electrical activities.... Gastrointestinal smooth muscle research has evolved from studies on muscle strips to spatiotemporal mapping of whole organ motor and electrical activities.... |
SourceID | pubmedcentral pubmed crossref jstage |
SourceType | Open Access Repository Index Database Enrichment Source Publisher |
StartPage | 68 |
SubjectTerms | Biomedical Research dysmotility Enteric Nervous System - metabolism Enteric Nervous System - pathology Enteric Nervous System - physiopathology Gastrointestinal Motility high-resolution manometry Humans interstitial cells of Cajal Intestinal Diseases - metabolism Intestinal Diseases - pathology Intestinal Diseases - physiopathology Invited Review Muscle, Smooth - metabolism Muscle, Smooth - pathology Muscle, Smooth - physiopathology Myocytes, Smooth Muscle - metabolism Myocytes, Smooth Muscle - pathology spatiotemporal mapping |
Title | Recent advances in intestinal smooth muscle research: from muscle strips and single cells, via ICC networks to whole organ physiology and assessment of human gut motor dysfunction |
URI | https://www.jstage.jst.go.jp/article/jsmr/55/0/55_0505/_article/-char/en https://www.ncbi.nlm.nih.gov/pubmed/31956167 https://pubmed.ncbi.nlm.nih.gov/PMC6962316 |
Volume | 55 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Journal of Smooth Muscle Research, 2019, Vol.55, pp.68-80 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB6VglAvCMQrhVYjwQWJBL92bSNVFYqoWlArDkTqzVqv1zRVY7fZBNrf1T_YmbWzEKknLj7YM4dkZjwP73wfwPs4TlKtazNkbK5hIqhnVSEZJM1EVNWUEWvjDsieyMNJ8u1UnG7Air-z_wPtva0d80lN5hej66ubfQr4PcfekwSfzu1sPhJiJLMH8JAyUsoBepz4rwmM0dZh7oWSoj9Oe5jSdd0teBzz8lzoKOf_5qhH51Sm8f69z1Drpyf_SUcHT-FJX0fil87wz2DDNM_hlopAEsf-w77FaYOMB0FhzMJ21pJdcLa0pII9zM_ZZ-QVk9VdpvG4tKiaCnmKQHd4tG8_4u-pwqPxGJvu3LjFRYt_mFwXHTEUuhGJm9E7ZeURP7Gt0TEB4q_lAskz2jlWN5YTKjvFC5gcfP05Phz2rAxDneS8phVT0ZRHQuW1yDQVDGUWmTQtTSjLmpqfyFR5pIysolpSNafI9GWgTR6oIDZhpuKXsNm0jXkNKCsueHSZa2raalEqGRjFZ251Sf6j9QA-rOxQ6B6ynJkzLgpuXch8BZuvEKKQ2QDeednLDqjjXqmsM6eX6QPUywTuQj_RP-H1N3qHDOBVZ3evunKXAaRrHuEFGLp7_UkzPXMQ3jKnsjOU2_-t-Qa2qHTLu2HQW9hczJdmh8qjRblLjcHR910XAXQ9-XF8B9CZGkA |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+advances+in+intestinal+smooth+muscle+research%3A+from+muscle+strips+and+single+cells%2C+via+ICC+networks+to+whole+organ+physiology+and+assessment+of+human+gut+motor+dysfunction&rft.jtitle=Journal+of+smooth+muscle+research&rft.au=Huizinga%2C+Jan+D.&rft.date=2019&rft.issn=0916-8737&rft.eissn=1884-8796&rft.volume=55&rft.spage=68&rft.epage=80&rft_id=info:doi/10.1540%2Fjsmr.55.68&rft.externalDBID=n%2Fa&rft.externalDocID=10_1540_jsmr_55_68 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0916-8737&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0916-8737&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0916-8737&client=summon |