Recent advances in intestinal smooth muscle research: from muscle strips and single cells, via ICC networks to whole organ physiology and assessment of human gut motor dysfunction

Gastrointestinal smooth muscle research has evolved from studies on muscle strips to spatiotemporal mapping of whole organ motor and electrical activities. Decades of research on single muscle cells and small sections of isolated musculature from animal models has given us the groundwork for interpr...

Full description

Saved in:
Bibliographic Details
Published inJournal of Smooth Muscle Research Vol. 55; pp. 68 - 80
Main Author Huizinga, Jan D.
Format Journal Article
LanguageEnglish
Published Japan Japan Society of Smooth Muscle Research 2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Gastrointestinal smooth muscle research has evolved from studies on muscle strips to spatiotemporal mapping of whole organ motor and electrical activities. Decades of research on single muscle cells and small sections of isolated musculature from animal models has given us the groundwork for interpretation of human in vivo studies. Human gut motility studies have dramatically improved by high-resolution manometry and high-resolution electrophysiology. The details that emerge from spatiotemporal mapping of high-resolution data are now of such quality that hypotheses can be generated as to the physiology (in healthy subjects) and pathophysiology (in patients) of gastrointestinal (dys) motility. Such interpretation demands understanding of the musculature as a super-network of excitable cells (neurons, smooth muscle cells, other accessory cells) and oscillatory cells (the pacemaker interstitial cells of Cajal), for which mathematical modeling becomes essential. The developing deeper understanding of gastrointestinal motility will bring us soon to a level of precision in diagnosis of dysfunction that is far beyond what is currently available.
AbstractList Gastrointestinal smooth muscle research has evolved from studies on muscle strips to spatiotemporal mapping of whole organ motor and electrical activities. Decades of research on single muscle cells and small sections of isolated musculature from animal models has given us the groundwork for interpretation of human in vivo studies. Human gut motility studies have dramatically improved by high-resolution manometry and high-resolution electrophysiology. The details that emerge from spatiotemporal mapping of high-resolution data are now of such quality that hypotheses can be generated as to the physiology (in healthy subjects) and pathophysiology (in patients) of gastrointestinal (dys) motility. Such interpretation demands understanding of the musculature as a super-network of excitable cells (neurons, smooth muscle cells, other accessory cells) and oscillatory cells (the pacemaker interstitial cells of Cajal), for which mathematical modeling becomes essential. The developing deeper understanding of gastrointestinal motility will bring us soon to a level of precision in diagnosis of dysfunction that is far beyond what is currently available.
Gastrointestinal smooth muscle research has evolved from studies on muscle strips to spatiotemporal mapping of whole organ motor and electrical activities. Decades of research on single muscle cells and small sections of isolated musculature from animal models has given us the groundwork for interpretation of human in vivo studies. Human gut motility studies have dramatically improved by high-resolution manometry and high-resolution electrophysiology. The details that emerge from spatiotemporal mapping of high-resolution data are now of such quality that hypotheses can be generated as to the physiology (in healthy subjects) and pathophysiology (in patients) of gastrointestinal (dys) motility. Such interpretation demands understanding of the musculature as a super-network of excitable cells (neurons, smooth muscle cells, other accessory cells) and oscillatory cells (the pacemaker interstitial cells of Cajal), for which mathematical modeling becomes essential. The developing deeper understanding of gastrointestinal motility will bring us soon to a level of precision in diagnosis of dysfunction that is far beyond what is currently available.
Author Huizinga, Jan D.
Author_xml – sequence: 1
  fullname: Huizinga, Jan D.
  organization: Department of Medicine-Gastroenterology, McMaster University, Hamilton, Ontario, Canada
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31956167$$D View this record in MEDLINE/PubMed
BookMark eNptkd-KEzEUxoOsuN3VGx9Aci22JjNNJuOFIsU_CwuC6PVwmjkzkzqTlJy0S5_LFzTdukVFCEk45_d9Cd-5Yhc-eGTsuRQLqZbi9YamuFBqoc0jNpPGLOemqvUFm4la6nwvq0t2RbQRojCqrp-wy1LWSktdzdjPr2jRJw7tHrxF4s7nlZCS8zBymkJIA592ZEfkEQkh2uEN72KYHqqUotsSB99ycr7PFYvjSK_43gG_Wa24x3QX4g_iKfC7IWQgxB483w4HcmEM_eFeDERINB1_Ezo-7KaM9LvEp5BC5O2Bup23yQX_lD3uYCR89vu8Zt8_fvi2-jy__fLpZvX-dm6XtTZzVSqh6kJB3SljpZJrU2BVrVHqdVepssC2LgB1W3RaSQkgzVpYrAWIEqWB8pq9Pflud-sJ22NOEcZmG90E8dAEcM3fHe-Gpg_7Rte6KKXOBi_-NDgrH-LPwMsTYGMgitidESma42yb42wbpRptMiz-ga1LcAwkP-7G_0venSQbStDj2R1icnl0Z1Tcbzmuc8cOEBv05S9rqMUk
CitedBy_id crossref_primary_10_1152_ajpgi_00384_2019
crossref_primary_10_29254_2077_4214_2021_4_162_40_46
crossref_primary_10_1113_JP284753
Cites_doi 10.1007/978-94-007-2917-9
10.1111/j.1742-4658.2009.07437.x
10.1113/jphysiol.2006.117093
10.1038/s41575-019-0167-1
10.1113/jphysiol.1913.sp001613
10.1113/EP087465
10.1111/nmo.13598
10.5056/jnm14060
10.1152/ajpgi.2001.280.4.G629
10.1152/jappl.1993.74.3.1454
10.1113/EP086077
10.1016/j.autneu.2015.07.258
10.1038/scientificamerican1293-102
10.1006/jtbi.1994.1020
10.1111/j.1365-2982.2004.00546.x
10.1016/j.febslet.2014.02.002
10.1002/jbio.201000056
10.1002/bjs.10074
10.1113/expphysiol.2011.058941
10.1111/j.1440-1827.2004.01607.x
10.1152/ajpgi.00127.2017
10.1038/srep41436
10.1111/nmo.12019
10.1111/nmo.13395
10.1111/nmo.13310
10.1016/j.jpedsurg.2012.05.006
10.1002/bjs.10808
10.1111/j.1476-5381.2010.00902.x
10.1152/ajpgi.00070.2005
10.1113/jphysiol.2010.196824
10.1113/expphysiol.2007.039180
10.1023/A:1024178303076
10.1113/JP273425
10.1111/j.1365-2982.2011.01729.x
10.3389/fnins.2016.00019
10.1093/jcag/gwy008.304
10.1136/gut.21.6.480
10.1007/s00360-007-0217-9
10.2170/jjphysiol.25.333
10.1016/0002-9149(84)90043-2
10.1007/978-0-387-88295-6_1
10.1113/EP086871
10.1111/nmo.12016
10.1053/j.gastro.2015.04.003
10.1038/ncomms4326
10.1113/jphysiol.2002.018614
10.1152/ajpgi.00338.2014
10.1152/ajpgi.2000.278.2.G297
10.1111/1440-1681.12288
10.1152/ajpheart.1979.237.4.H469
10.1111/apha.12371
10.1136/gut.2004.051045
10.3748/wjg.v12.i38.6172
10.1016/j.bios.2009.06.006
10.1186/1475-925X-7-2
10.3791/53263
10.1152/ajpgi.1999.277.5.G983
10.1046/j.1365-2982.2002.00306.x
10.1038/ajg.2016.341
10.3389/fnins.2014.00075
10.1046/j.1365-2982.2002.00337.x
10.1111/j.1365-2982.2008.01230.x
10.1038/srep42293
ContentType Journal Article
Copyright 2019 by Japan Society of Smooth Muscle Research
2019 The Japan Society of Smooth Muscle Research 2019
Copyright_xml – notice: 2019 by Japan Society of Smooth Muscle Research
– notice: 2019 The Japan Society of Smooth Muscle Research 2019
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
5PM
DOI 10.1540/jsmr.55.68
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
EISSN 1884-8796
EndPage 80
ExternalDocumentID PMC6962316
31956167
10_1540_jsmr_55_68
article_jsmr_55_0_55_0505_article_char_en
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: CIHR
GroupedDBID ---
.55
29L
2WC
3O-
53G
5GY
5VS
AAUGY
ACGFO
ACGFS
ACPRK
ADRAZ
ALMA_UNASSIGNED_HOLDINGS
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
GROUPED_DOAJ
GX1
HYE
JSF
JSH
KQ8
M48
M~E
OK1
P2P
RJT
RNS
RPM
RZJ
TR2
X7M
XSB
AAYXX
ABJNI
CITATION
EMOBN
OVT
PGMZT
SV3
CGR
CUY
CVF
ECM
EIF
NPM
5PM
ID FETCH-LOGICAL-c4968-53505925a9f58c151b82e77be16bf7532ed92ae6d2f6511aa18b0ce90a03e18a3
IEDL.DBID M48
ISSN 0916-8737
IngestDate Thu Aug 21 18:33:42 EDT 2025
Thu Jan 02 22:32:33 EST 2025
Thu Apr 24 23:02:32 EDT 2025
Tue Jul 01 01:09:47 EDT 2025
Thu Aug 17 20:31:51 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords gastrointestinal motility
high-resolution manometry
spatiotemporal mapping
dysmotility
interstitial cells of Cajal
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives (by-nc-nd) License. (CC-BY-NC-ND 4.0: http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4968-53505925a9f58c151b82e77be16bf7532ed92ae6d2f6511aa18b0ce90a03e18a3
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1540/jsmr.55.68
PMID 31956167
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6962316
pubmed_primary_31956167
crossref_primary_10_1540_jsmr_55_68
crossref_citationtrail_10_1540_jsmr_55_68
jstage_primary_article_jsmr_55_0_55_0505_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019
2019-00-00
20190101
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – year: 2019
  text: 2019
PublicationDecade 2010
PublicationPlace Japan
PublicationPlace_xml – name: Japan
PublicationTitle Journal of Smooth Muscle Research
PublicationTitleAlternate Journal of Smooth Muscle Research
PublicationYear 2019
Publisher Japan Society of Smooth Muscle Research
Publisher_xml – name: Japan Society of Smooth Muscle Research
References 67. Baevsky, RM, Chernikova, AG. 2017. Heart rate variability analysis: physiological foundations and main methods. Cardiometry 66–7.
60. Komuro, T. 2012. Atlas of interstitial cells of Cajal in the Gastrointestinal tract, (ed), Springer.
46. Corsetti, M, Pagliaro, G, Demedts, I, Deloose, E, Gevers, A, Scheerens, C, Rommel, N, Tack, J. Pan-colonic pressurizations associated with relaxation of the anal sphincter in health and disease: a new colonic motor pattern identified using high-resolution manometry. Am J Gastroenterol. 2017; 112(3): 479–89.
65. Vather, R, O’Grady, G, Lin, AY, Du, P, Wells, CI, Rowbotham, D, Arkwright, J, Cheng, LK, Dinning, PG, Bissett, IP. Hyperactive cyclic motor activity in the distal colon after colonic surgery as defined by high-resolution colonic manometry. Br J Surg. 2018; 105(7): 907–17.
34. Wei, R, Parsons, SP, Huizinga, JD. Network properties of interstitial cells of Cajal affect intestinal pacemaker activity and motor patterns, according to a mathematical model of weakly coupled oscillators. Exp Physiol. 2017; 102(3): 329–46.
8. Lammers, WJ, al-Kais, A, Singh, S, Arafat, K, el-Sharkawy, TY. Multielectrode mapping of slow-wave activity in the isolated rabbit duodenum. J Appl Physiol 1985. 1993; 74(3): 1454–61.
21. Blair, PJ, Rhee, PL, Sanders, KM, Ward, SM. The significance of interstitial cells in neurogastroenterology. J Neurogastroenterol Motil. 2014; 20(3): 294–317.
6. Chen, JH, Yu, Y, Yang, Z, Yu, WZ, Yu, H, Kim, JM, Huizinga, JD. The “simultaneous contractions” of the human colon are a fast propagating rhythmic neurogenic motor pattern associated internal anal sphincter relaxation and gas expulsion, not an artifact of abdominal pressure changes. Auton Neurosci Basic Clin. 2015; 192: 4 (abstract).
50. Bharucha, AE. High amplitude propagated contractions. Neurogastroenterol Motil. 2012; 24(11): 977–82.
58. Nakayama, S, Ohishi, R, Sawamura, K, Watanabe, K, Hirose, K. Microelectrode array evaluation of gut pacemaker activity in wild-type and W/W(v) mice. Biosens Bioelectron. 2009; 25(1): 61–7.
29. Imtiaz, MS, von der Weid, PY, van Helden, DF. Synchronization of Ca2+ oscillations: a coupled oscillator-based mechanism in smooth muscle. FEBS J. 2010; 277(2): 278–85.
10. Kendig, DM, Hurst, NR, Grider, JR. Spatiotemporal mapping of motility in ex vivo preparations of the intestines. J Vis Exp. 2016; (107): e53263.
39. Kashyap, P, Gomez-Pinilla, PJ, Pozo, MJ, Cima, RR, Dozois, EJ, Larson, DW, Ordog, T, Gibbons, SJ, Farrugia, G. Immunoreactivity for Ano1 detects depletion of Kit-positive interstitial cells of Cajal in patients with slow transit constipation. Neurogastroenterol Motil. 2011; 23(8): 760–5.
28. Paskaranandavadivel, N, Cheng, LK, Du, P, Rogers, JM, O’Grady, G. High-resolution mapping of gastric slow-wave recovery profiles: biophysical model, methodology, and demonstration of applications. Am J Physiol Gastrointest Liver Physiol. 2017; 313(3): G265–76.
52. De Schryver, AM, Samsom, M, Smout, AI. Effects of a meal and bisacodyl on colonic motility in healthy volunteers and patients with slow-transit constipation. Dig Dis Sci. 2003; 48(7): 1206–12.
55. Hertz, AF, Newton, A. The normal movements of the colon in man. J Physiol. 1913; 47(1-2): 57–65.
47. Corsetti, M, Costa, M, Bassotti, G, Bharucha, AE, Borelli, O, Dinning, P, Di Lorenzo, C, Huizinga, JD, Jimenez, M, Rao, SS, Spiller, R, Spencer, N, Lentle, R, Pannemans, J, Thys, A, Benninga, M, Tack, J. Translational consensus on terminology and definition of colonic motility by means of manometric and non-manometric techniques. Nat Rev Gastroenterol Hepatol. 2019.
16. Angeli, TR, Cheng, LK, Du, P, Wang, TH, Bernard, CE, Vannucchi, MG, Faussone-Pellegrini, MS, Lahr, C, Vather, R, Windsor, JA, Farrugia, G, Abell, TL, O’Grady, G. Loss of Interstitial Cells of Cajal and Patterns of Gastric Dysrhythmia in Patients With Chronic Unexplained Nausea and Vomiting. Gastroenterology. 2015; 149(1): 56–66.e5.
23. Huizinga, JD, Chen, JH, Zhu, YF, Pawelka, A, McGinn, RJ, Bardakjian, BL, Parsons, SP, Kunze, WA, Wu, RY, Bercik, P, Khoshdel, A, Chen, S, Yin, S, Zhang, Q, Yu, Y, Gao, Q, Li, K, Hu, X, Zarate, N, Collins, P, Pistilli, M, Ma, J, Zhang, R, Chen, D. The origin of segmentation motor activity in the intestine. Nat Commun. 2014; 5: 3326.
22. Lammers, WJ. Propagation of individual spikes as “patches” of activation in isolated feline duodenum. Am J Physiol Gastrointest Liver Physiol. 2000; 278(2): G297–307.
17. Huizinga, JD, Parsons, SP. Pacemaker network properties determine intestinal motor pattern behaviour. Exp Physiol. 2019; 104(5): 623–4.
4. Arts, T, Kruger, RT, van Gerven, W, Lambregts, JA, Reneman, RS. Propagation velocity and reflection of pressure waves in the canine coronary artery. Am J Physiol. 1979; 237(4): H469–74.
9. Marriott, HJ. Arrhythmia versus dysrhythmia. Am J Cardiol. 1984; 53(4): 628.
38. Battaglia, E, Bassotti, G, Bellone, G, Dughera, L, Serra, AM, Chiusa, L, Repici, A, Mioli, P, Emanuelli, G. Loss of interstitial cells of Cajal network in severe idiopathic gastroparesis. World J Gastroenterol. 2006; 12(38): 6172–7.
51. Rao, SS, Sadeghi, P, Beaty, J, Kavlock, R, Ackerson, K. Ambulatory 24-h colonic manometry in healthy humans. Am J Physiol Gastrointest Liver Physiol. 2001; 280(4): G6
44
45
46
47
48
49
50
51
52
53
10
54
11
55
12
56
13
57
14
58
15
59
16
17
18
19
1
2
3
4
5
6
7
8
9
60
61
62
63
20
64
21
65
22
66
23
24
25
26
27
28
29
(67) 2017
30
31
32
33
34
35
36
37
38
39
40
41
42
43
References_xml – reference: 47. Corsetti, M, Costa, M, Bassotti, G, Bharucha, AE, Borelli, O, Dinning, P, Di Lorenzo, C, Huizinga, JD, Jimenez, M, Rao, SS, Spiller, R, Spencer, N, Lentle, R, Pannemans, J, Thys, A, Benninga, M, Tack, J. Translational consensus on terminology and definition of colonic motility by means of manometric and non-manometric techniques. Nat Rev Gastroenterol Hepatol. 2019.
– reference: 2. Chen, JH, Parsons, SP, Shokrollahi, M, Wan, A, Vincent, AD, Yuan, Y, Pervez, M, Chen, WL, Xue, M, Zhang, KK, Eshtiaghi, A, Armstrong, D, Bercik, P, Moayyedi, P, Greenwald, E, Ratcliffe, EM, Huizinga, JD. Characterization of simultaneous pressure waves as biomarkers for colonic motility assessed by high-resolution colonic manometry. Frontiers in Physiology. Gastrointest Sci. 2018; 9: 1248.
– reference: 48. Giorgio, V, Borrelli, O, Smith, VV, Rampling, D, Köglmeier, J, Shah, N, Thapar, N, Curry, J, Lindley, KJ. High-resolution colonic manometry accurately predicts colonic neuromuscular pathological phenotype in pediatric slow transit constipation. Neurogastroenterol Motil. 2013; 25(1): 70–8.e8 9.
– reference: 18. Parsons, SP, Huizinga, JD. Slow wave contraction frequency plateaux in the small intestine are composed of discrete waves of interval increase associated with dislocations. Exp Physiol. 2018; 103(8): 1087–100.
– reference: 38. Battaglia, E, Bassotti, G, Bellone, G, Dughera, L, Serra, AM, Chiusa, L, Repici, A, Mioli, P, Emanuelli, G. Loss of interstitial cells of Cajal network in severe idiopathic gastroparesis. World J Gastroenterol. 2006; 12(38): 6172–7.
– reference: 24. Hirst, GD, Dickens, EJ, Edwards, FR. Pacemaker shift in the gastric antrum of guinea-pigs produced by excitatory vagal stimulation involves intramuscular interstitial cells. J Physiol. 2002; 541(Pt 3): 917–28.
– reference: 63. Suzuki, H, Kito, Y, Hashitani, H, Nakamura, E. Factors modifying the frequency of spontaneous activity in gastric muscle. J Physiol. 2006; 576(Pt 3): 667–74.
– reference: 41. Nagy, JI, Urena-Ramirez, V, Ghia, JE. Functional alterations in gut contractility after connexin36 ablation and evidence for gap junctions forming electrical synapses between nitrergic enteric neurons. FEBS Lett. 2014; 588(8): 1480–90.
– reference: 39. Kashyap, P, Gomez-Pinilla, PJ, Pozo, MJ, Cima, RR, Dozois, EJ, Larson, DW, Ordog, T, Gibbons, SJ, Farrugia, G. Immunoreactivity for Ano1 detects depletion of Kit-positive interstitial cells of Cajal in patients with slow transit constipation. Neurogastroenterol Motil. 2011; 23(8): 760–5.
– reference: 51. Rao, SS, Sadeghi, P, Beaty, J, Kavlock, R, Ackerson, K. Ambulatory 24-h colonic manometry in healthy humans. Am J Physiol Gastrointest Liver Physiol. 2001; 280(4): G629–39.
– reference: 56. Hashitani, H, Lang, RJ, Suzuki, H. Role of perinuclear mitochondria in the spatiotemporal dynamics of spontaneous Ca2+ waves in interstitial cells of Cajal-like cells of the rabbit urethra. Br J Pharmacol. 2010; 161(3): 680–94.
– reference: 4. Arts, T, Kruger, RT, van Gerven, W, Lambregts, JA, Reneman, RS. Propagation velocity and reflection of pressure waves in the canine coronary artery. Am J Physiol. 1979; 237(4): H469–74.
– reference: 21. Blair, PJ, Rhee, PL, Sanders, KM, Ward, SM. The significance of interstitial cells in neurogastroenterology. J Neurogastroenterol Motil. 2014; 20(3): 294–317.
– reference: 32. de Lorijn, F, de Jonge, WJ, Wedel, T, Vanderwinden, JM, Benninga, MA, Boeckxstaens, GE. Interstitial cells of Cajal are involved in the afferent limb of the rectoanal inhibitory reflex. Gut. 2005; 54(8): 1107–13.
– reference: 16. Angeli, TR, Cheng, LK, Du, P, Wang, TH, Bernard, CE, Vannucchi, MG, Faussone-Pellegrini, MS, Lahr, C, Vather, R, Windsor, JA, Farrugia, G, Abell, TL, O’Grady, G. Loss of Interstitial Cells of Cajal and Patterns of Gastric Dysrhythmia in Patients With Chronic Unexplained Nausea and Vomiting. Gastroenterology. 2015; 149(1): 56–66.e5.
– reference: 27. Parsons, SP, Huizinga, JD. Effects of gap junction inhibition on contraction waves in the murine small intestine in relation to coupled oscillator theory. Am J Physiol Gastrointest Liver Physiol. 2015; 308(4): G287–97.
– reference: 30. Bardakjian, BL, Diamant, NE. A mapped clock oscillator model for transmembrane electrical rhythmic activity in excitable cells. J Theor Biol. 1994; 166(3): 225–35.
– reference: 53. Chen, JH, Ratcliffe, E, Armstrong, D, Bercik, P, Huizinga, JD. Simultaneous pressure waves are a key component of human colonic motor function assessment, using high-resolution colonic manometry (HRCM). J Can Assoc Gastroenterol. 2018; 1: 527–8.
– reference: 66. Angeli, TR, O’Grady, G, Vather, R, Bissett, IP, Cheng, LK. Intra-operative high-resolution mapping of slow wave propagation in the human jejunum: Feasibility and initial results. Neurogastroenterol Motil. 2018; 30(7): e13310.
– reference: 7. Chen, JH, Yu, Y, Yang, Z, Yu, WZ, Chen, WL, Yu, H, Kim, MJ, Huang, M, Tan, S, Luo, H, Chen, J, Chen, JD, Huizinga, JD. Intraluminal pressure patterns in the human colon assessed by high-resolution manometry. Sci Rep. 2017; 7: 41436 .
– reference: 42. Dinning, PG, Bampton, PA, Kennedy, ML, Cook, IJ. Relationship between terminal ileal pressure waves and propagating proximal colonic pressure waves. Am J Physiol. 1999; 277(5): G983–92.
– reference: 55. Hertz, AF, Newton, A. The normal movements of the colon in man. J Physiol. 1913; 47(1-2): 57–65.
– reference: 33. Lammers, WJ, Al-Bloushi, HM, Al-Eisaei, SA, Al-Dhaheri, FA, Stephen, B, John, R, Dhanasekaran, S, Karam, SM. Slow wave propagation and plasticity of interstitial cells of Cajal in the small intestine of diabetic rats. Exp Physiol. 2011; 96(10): 1039–48.
– reference: 8. Lammers, WJ, al-Kais, A, Singh, S, Arafat, K, el-Sharkawy, TY. Multielectrode mapping of slow-wave activity in the isolated rabbit duodenum. J Appl Physiol 1985. 1993; 74(3): 1454–61.
– reference: 9. Marriott, HJ. Arrhythmia versus dysrhythmia. Am J Cardiol. 1984; 53(4): 628.
– reference: 11. Shokrollahi, M, Chen, JH, Huizinga, JD. Intraluminal prucalopride increases propulsive motor activities via luminal 5-HT4 receptors in the rabbit colon. Neurogastroenterol Motil. 2019; 31(10): e13598.
– reference: 29. Imtiaz, MS, von der Weid, PY, van Helden, DF. Synchronization of Ca2+ oscillations: a coupled oscillator-based mechanism in smooth muscle. FEBS J. 2010; 277(2): 278–85.
– reference: 44. Vather, R, O’Grady, G, Arkwright, JW, Rowbotham, DS, Cheng, LK, Dinning, PG, Bissett, IP. Restoration of normal colonic motor patterns and meal responses after distal colorectal resection. Br J Surg. 2016; 103(4): 451–61.
– reference: 31. Strogatz, SH, Stewart, I. Coupled oscillators and biological synchronization. Sci Am. 1993; 269(6): 102–9.
– reference: 50. Bharucha, AE. High amplitude propagated contractions. Neurogastroenterol Motil. 2012; 24(11): 977–82.
– reference: 6. Chen, JH, Yu, Y, Yang, Z, Yu, WZ, Yu, H, Kim, JM, Huizinga, JD. The “simultaneous contractions” of the human colon are a fast propagating rhythmic neurogenic motor pattern associated internal anal sphincter relaxation and gas expulsion, not an artifact of abdominal pressure changes. Auton Neurosci Basic Clin. 2015; 192: 4 (abstract).
– reference: 45. Dinning, PG. A new understanding of the physiology and pathophysiology of colonic motility? Neurogastroenterol Motil. 2018; 30(11): e13395.
– reference: 12. Dinning, PG, Wiklendt, L, Omari, T, Arkwright, JW, Spencer, NJ, Brookes, SJ, Costa, M. Neural mechanisms of peristalsis in the isolated rabbit distal colon: a neuromechanical loop hypothesis. Front Neurosci. 2014; 8: 75.
– reference: 52. De Schryver, AM, Samsom, M, Smout, AI. Effects of a meal and bisacodyl on colonic motility in healthy volunteers and patients with slow-transit constipation. Dig Dis Sci. 2003; 48(7): 1206–12.
– reference: 35. O’Grady, G, Wang, TH, Du, P, Angeli, T, Lammers, WJ, Cheng, LK. Recent progress in gastric arrhythmia: pathophysiology, clinical significance and future horizons. Clin Exp Pharmacol Physiol. 2014; 41(10): 854–62.
– reference: 64. Inoue, T, Suzuki, T, Nakagawa, K, Kurokawa, Y, Satomi, S, Moriya, T, Sasano, N, Sasano, H. Immunohistopathological and molecular genetic features of a case in which gastrointestinal stromal tumor recurred five times. Pathol Int. 2004; 54(3): 196–200.
– reference: 67. Baevsky, RM, Chernikova, AG. 2017. Heart rate variability analysis: physiological foundations and main methods. Cardiometry 66–7.
– reference: 46. Corsetti, M, Pagliaro, G, Demedts, I, Deloose, E, Gevers, A, Scheerens, C, Rommel, N, Tack, J. Pan-colonic pressurizations associated with relaxation of the anal sphincter in health and disease: a new colonic motor pattern identified using high-resolution manometry. Am J Gastroenterol. 2017; 112(3): 479–89.
– reference: 58. Nakayama, S, Ohishi, R, Sawamura, K, Watanabe, K, Hirose, K. Microelectrode array evaluation of gut pacemaker activity in wild-type and W/W(v) mice. Biosens Bioelectron. 2009; 25(1): 61–7.
– reference: 62. Ito, Y, Kuriyama, H. Responses to field stimulation of the smooth muscle cell membrane of the guinea pig stomach. Jpn J Physiol. 1975; 25(3): 333–44.
– reference: 23. Huizinga, JD, Chen, JH, Zhu, YF, Pawelka, A, McGinn, RJ, Bardakjian, BL, Parsons, SP, Kunze, WA, Wu, RY, Bercik, P, Khoshdel, A, Chen, S, Yin, S, Zhang, Q, Yu, Y, Gao, Q, Li, K, Hu, X, Zarate, N, Collins, P, Pistilli, M, Ma, J, Zhang, R, Chen, D. The origin of segmentation motor activity in the intestine. Nat Commun. 2014; 5: 3326.
– reference: 54. Bueno, L, Fioramonti, J, Ruckebusch, Y, Frexinos, J, Coulom, P. Evaluation of colonic myoelectrical activity in health and functional disorders. Gut. 1980; 21(6): 480–5.
– reference: 14. Lammers, WJ. Normal and abnormal electrical propagation in the small intestine. Acta Physiol (Oxf). 2015; 213(2): 349–59.
– reference: 13. Lentle, RG, Janssen, PW, Asvarujanon, P, Chambers, P, Stafford, KJ, Hemar, Y. High-definition spatiotemporal mapping of contractile activity in the isolated proximal colon of the rabbit. J Comp Physiol B. 2008; 178(3): 257–68.
– reference: 10. Kendig, DM, Hurst, NR, Grider, JR. Spatiotemporal mapping of motility in ex vivo preparations of the intestines. J Vis Exp. 2016; (107): e53263.
– reference: 34. Wei, R, Parsons, SP, Huizinga, JD. Network properties of interstitial cells of Cajal affect intestinal pacemaker activity and motor patterns, according to a mathematical model of weakly coupled oscillators. Exp Physiol. 2017; 102(3): 329–46.
– reference: 28. Paskaranandavadivel, N, Cheng, LK, Du, P, Rogers, JM, O’Grady, G. High-resolution mapping of gastric slow-wave recovery profiles: biophysical model, methodology, and demonstration of applications. Am J Physiol Gastrointest Liver Physiol. 2017; 313(3): G265–76.
– reference: 57. Tomita, T. 1981. Electrical activity (spikes and slow waves) in gastrointestinal smooth muscle, p. 127–56. In Bulbring, E, Brading, AF, Jones, AW, Tomita, T (ed), Smooth muscle; an assessment of current knowledge, Edward Arnold, London.
– reference: 3. Lammers, WJ. Spatial and temporal coupling between slow waves and pendular contractions. Am J Physiol Gastrointest Liver Physiol. 2005; 289(5): G898–903.
– reference: 40. Bayguinov, PO, Hennig, GW, Smith, TK. Ca2+ imaging of activity in ICC-MY during local mucosal reflexes and the colonic migrating motor complex in the murine large intestine. J Physiol. 2010; 588(Pt 22): 4453–74.
– reference: 59. Torihashi, S, Ward, SM, Nishikawa, S, Nishi, K, Kobayashi, S, Sanders, KM. c-kit-dependent development of interstitial cells and electrical activity in the murine gastrointestinal tract. Cell Tissue Res. 1995; 280(1): 97–111.
– reference: 1. Lammers, WJ, Cheng, LK. Simulation and analysis of spatio-temporal maps of gastrointestinal motility. Biomed Eng Online. 2008; 7: 2.
– reference: 25. Conklin, J, Pimentel, M, Soffer, E. 2009. Color Atlas of High Resolution Manometry, (ed), Springer Science & Business Media, New York.
– reference: 26. Andrews, JM, O’donovan, DG, Hebbard, GS, Malbert, CH, Doran, SM, Dent, J. Human duodenal phase III migrating motor complex activity is predominantly antegrade, as revealed by high-resolution manometry and colour pressure plots. Neurogastroenterol Motil. 2002; 14(4): 331–8.
– reference: 61. Yoneda, S, Fukui, H, Takaki, M. Pacemaker activity from submucosal interstitial cells of Cajal drives high-frequency and low-amplitude circular muscle contractions in the mouse proximal colon. Neurogastroenterol Motil. 2004; 16(5): 621–7.
– reference: 15. Lammers, WJ, Stephen, B. Origin and propagation of individual slow waves along the intact feline small intestine. Exp Physiol. 2008; 93(3): 334–46.
– reference: 20. Parsons, SP, Huizinga, JD. Phase waves and trigger waves: emergent properties of oscillating and excitable networks in the gut. J Physiol. 2018; 596(20): 4819–29.
– reference: 36. Faussone-Pellegrini, MS, Gay, J, Vannucchi, MG, Corsani, L, Fioramonti, J. Alterations of neurokinin receptors and interstitial cells of Cajal during and after jejunal inflammation induced by Nippostrongylus brasiliensis in the rat. Neurogastroenterol Motil. 2002; 14(1): 83–95.
– reference: 22. Lammers, WJ. Propagation of individual spikes as “patches” of activation in isolated feline duodenum. Am J Physiol Gastrointest Liver Physiol. 2000; 278(2): G297–307.
– reference: 17. Huizinga, JD, Parsons, SP. Pacemaker network properties determine intestinal motor pattern behaviour. Exp Physiol. 2019; 104(5): 623–4.
– reference: 5. Quan, X, Yang, Z, Xue, M, Chen, JH, Huizinga, JD. Relationships between motor patterns and intraluminal pressure in the 3-taeniated proximal colon of the rabbit. Sci Rep. 2017; 7: 42293.
– reference: 65. Vather, R, O’Grady, G, Lin, AY, Du, P, Wells, CI, Rowbotham, D, Arkwright, J, Cheng, LK, Dinning, PG, Bissett, IP. Hyperactive cyclic motor activity in the distal colon after colonic surgery as defined by high-resolution colonic manometry. Br J Surg. 2018; 105(7): 907–17.
– reference: 49. Camilleri, M, Bharucha, AE, di Lorenzo, C, Hasler, WL, Prather, CM, Rao, SS, Wald, A. American Neurogastroenterology and Motility Society consensus statement on intraluminal measurement of gastrointestinal and colonic motility in clinical practice. Neurogastroenterol Motil. 2008; 20(12): 1269–82.
– reference: 19. Parsons, SP, Huizinga, JD. Spatial noise in coupling strength and natural frequency within a pacemaker network: consequences for development of intestinal motor patterns according to a weakly coupled oscillator model. Front Neurosci. 2016; 10: 19 .
– reference: 43. Arkwright, JW, Blenman, NG, Underhill, ID, Maunder, SA, Spencer, NJ, Costa, M, Brookes, SJ, Szczesniak, MM, Dinning, PG. A fibre optic catheter for simultaneous measurement of longitudinal and circumferential muscular activity in the gastrointestinal tract. J Biophotonics. 2011; 4(4): 244–51.
– reference: 37. Bettolli, M, De Carli, C, Cornejo-Palma, D, Jolin-Dahel, K, Wang, XY, Huizinga, J, Krantis, A, Rubin, S, Staines, WA. Interstitial cell of Cajal loss correlates with the degree of inflammation in the human appendix and reverses after inflammation. J Pediatr Surg. 2012; 47(10): 1891–9.
– reference: 60. Komuro, T. 2012. Atlas of interstitial cells of Cajal in the Gastrointestinal tract, (ed), Springer.
– ident: 2
– ident: 60
  doi: 10.1007/978-94-007-2917-9
– ident: 29
  doi: 10.1111/j.1742-4658.2009.07437.x
– ident: 63
  doi: 10.1113/jphysiol.2006.117093
– ident: 47
  doi: 10.1038/s41575-019-0167-1
– ident: 55
  doi: 10.1113/jphysiol.1913.sp001613
– ident: 17
  doi: 10.1113/EP087465
– ident: 11
  doi: 10.1111/nmo.13598
– ident: 21
  doi: 10.5056/jnm14060
– ident: 51
  doi: 10.1152/ajpgi.2001.280.4.G629
– ident: 8
  doi: 10.1152/jappl.1993.74.3.1454
– ident: 34
  doi: 10.1113/EP086077
– ident: 6
  doi: 10.1016/j.autneu.2015.07.258
– ident: 31
  doi: 10.1038/scientificamerican1293-102
– ident: 30
  doi: 10.1006/jtbi.1994.1020
– ident: 61
  doi: 10.1111/j.1365-2982.2004.00546.x
– ident: 41
  doi: 10.1016/j.febslet.2014.02.002
– ident: 43
  doi: 10.1002/jbio.201000056
– ident: 44
  doi: 10.1002/bjs.10074
– ident: 33
  doi: 10.1113/expphysiol.2011.058941
– ident: 64
  doi: 10.1111/j.1440-1827.2004.01607.x
– ident: 28
  doi: 10.1152/ajpgi.00127.2017
– ident: 7
  doi: 10.1038/srep41436
– ident: 50
  doi: 10.1111/nmo.12019
– ident: 45
  doi: 10.1111/nmo.13395
– ident: 66
  doi: 10.1111/nmo.13310
– ident: 37
  doi: 10.1016/j.jpedsurg.2012.05.006
– start-page: 66
  issn: 2304-7232
  year: 2017
  ident: 67
  publication-title: Cardiometry
– ident: 65
  doi: 10.1002/bjs.10808
– ident: 56
  doi: 10.1111/j.1476-5381.2010.00902.x
– ident: 3
  doi: 10.1152/ajpgi.00070.2005
– ident: 40
  doi: 10.1113/jphysiol.2010.196824
– ident: 15
  doi: 10.1113/expphysiol.2007.039180
– ident: 52
  doi: 10.1023/A:1024178303076
– ident: 59
– ident: 20
  doi: 10.1113/JP273425
– ident: 39
  doi: 10.1111/j.1365-2982.2011.01729.x
– ident: 19
  doi: 10.3389/fnins.2016.00019
– ident: 53
  doi: 10.1093/jcag/gwy008.304
– ident: 54
  doi: 10.1136/gut.21.6.480
– ident: 13
  doi: 10.1007/s00360-007-0217-9
– ident: 62
  doi: 10.2170/jjphysiol.25.333
– ident: 9
  doi: 10.1016/0002-9149(84)90043-2
– ident: 25
  doi: 10.1007/978-0-387-88295-6_1
– ident: 18
  doi: 10.1113/EP086871
– ident: 48
  doi: 10.1111/nmo.12016
– ident: 16
  doi: 10.1053/j.gastro.2015.04.003
– ident: 23
  doi: 10.1038/ncomms4326
– ident: 24
  doi: 10.1113/jphysiol.2002.018614
– ident: 27
  doi: 10.1152/ajpgi.00338.2014
– ident: 57
– ident: 22
  doi: 10.1152/ajpgi.2000.278.2.G297
– ident: 35
  doi: 10.1111/1440-1681.12288
– ident: 4
  doi: 10.1152/ajpheart.1979.237.4.H469
– ident: 14
  doi: 10.1111/apha.12371
– ident: 32
  doi: 10.1136/gut.2004.051045
– ident: 38
  doi: 10.3748/wjg.v12.i38.6172
– ident: 58
  doi: 10.1016/j.bios.2009.06.006
– ident: 1
  doi: 10.1186/1475-925X-7-2
– ident: 10
  doi: 10.3791/53263
– ident: 42
  doi: 10.1152/ajpgi.1999.277.5.G983
– ident: 36
  doi: 10.1046/j.1365-2982.2002.00306.x
– ident: 46
  doi: 10.1038/ajg.2016.341
– ident: 12
  doi: 10.3389/fnins.2014.00075
– ident: 26
  doi: 10.1046/j.1365-2982.2002.00337.x
– ident: 49
  doi: 10.1111/j.1365-2982.2008.01230.x
– ident: 5
  doi: 10.1038/srep42293
SSID ssj0028599
Score 2.1328912
Snippet Gastrointestinal smooth muscle research has evolved from studies on muscle strips to spatiotemporal mapping of whole organ motor and electrical activities....
Gastrointestinal smooth muscle research has evolved from studies on muscle strips to spatiotemporal mapping of whole organ motor and electrical activities....
SourceID pubmedcentral
pubmed
crossref
jstage
SourceType Open Access Repository
Index Database
Enrichment Source
Publisher
StartPage 68
SubjectTerms Biomedical Research
dysmotility
Enteric Nervous System - metabolism
Enteric Nervous System - pathology
Enteric Nervous System - physiopathology
Gastrointestinal Motility
high-resolution manometry
Humans
interstitial cells of Cajal
Intestinal Diseases - metabolism
Intestinal Diseases - pathology
Intestinal Diseases - physiopathology
Invited Review
Muscle, Smooth - metabolism
Muscle, Smooth - pathology
Muscle, Smooth - physiopathology
Myocytes, Smooth Muscle - metabolism
Myocytes, Smooth Muscle - pathology
spatiotemporal mapping
Title Recent advances in intestinal smooth muscle research: from muscle strips and single cells, via ICC networks to whole organ physiology and assessment of human gut motor dysfunction
URI https://www.jstage.jst.go.jp/article/jsmr/55/0/55_0505/_article/-char/en
https://www.ncbi.nlm.nih.gov/pubmed/31956167
https://pubmed.ncbi.nlm.nih.gov/PMC6962316
Volume 55
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Journal of Smooth Muscle Research, 2019, Vol.55, pp.68-80
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB6VglAvCMQrhVYjwQWJBL92bSNVFYqoWlArDkTqzVqv1zRVY7fZBNrf1T_YmbWzEKknLj7YM4dkZjwP73wfwPs4TlKtazNkbK5hIqhnVSEZJM1EVNWUEWvjDsieyMNJ8u1UnG7Air-z_wPtva0d80lN5hej66ubfQr4PcfekwSfzu1sPhJiJLMH8JAyUsoBepz4rwmM0dZh7oWSoj9Oe5jSdd0teBzz8lzoKOf_5qhH51Sm8f69z1Drpyf_SUcHT-FJX0fil87wz2DDNM_hlopAEsf-w77FaYOMB0FhzMJ21pJdcLa0pII9zM_ZZ-QVk9VdpvG4tKiaCnmKQHd4tG8_4u-pwqPxGJvu3LjFRYt_mFwXHTEUuhGJm9E7ZeURP7Gt0TEB4q_lAskz2jlWN5YTKjvFC5gcfP05Phz2rAxDneS8phVT0ZRHQuW1yDQVDGUWmTQtTSjLmpqfyFR5pIysolpSNafI9GWgTR6oIDZhpuKXsNm0jXkNKCsueHSZa2raalEqGRjFZ251Sf6j9QA-rOxQ6B6ynJkzLgpuXch8BZuvEKKQ2QDeednLDqjjXqmsM6eX6QPUywTuQj_RP-H1N3qHDOBVZ3evunKXAaRrHuEFGLp7_UkzPXMQ3jKnsjOU2_-t-Qa2qHTLu2HQW9hczJdmh8qjRblLjcHR910XAXQ9-XF8B9CZGkA
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+advances+in+intestinal+smooth+muscle+research%3A+from+muscle+strips+and+single+cells%2C+via+ICC+networks+to+whole+organ+physiology+and+assessment+of+human+gut+motor+dysfunction&rft.jtitle=Journal+of+smooth+muscle+research&rft.au=Huizinga%2C+Jan+D.&rft.date=2019&rft.issn=0916-8737&rft.eissn=1884-8796&rft.volume=55&rft.spage=68&rft.epage=80&rft_id=info:doi/10.1540%2Fjsmr.55.68&rft.externalDBID=n%2Fa&rft.externalDocID=10_1540_jsmr_55_68
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0916-8737&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0916-8737&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0916-8737&client=summon