Hierarchical Graphene-Carbon Fiber Composite Paper as a Flexible Lateral Heat Spreader

As a low dimensional crystal, graphene attracts great attention as heat dissipation material due to its unique thermal transfer property exceeding the limit of bulk graphite. In this contribution, flexible graphene–carbon fiber composite paper is fabricated by depositing graphene oxide into the carb...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 24; no. 27; pp. 4222 - 4228
Main Authors Kong, Qing-Qiang, Liu, Zhuo, Gao, Jian-Guo, Chen, Cheng-Meng, Zhang, Qiang, Zhou, Guangmin, Tao, Ze-Chao, Zhang, Xing-Hua, Wang, Mao-Zhang, Li, Feng, Cai, Rong
Format Journal Article
LanguageEnglish
Published Blackwell Publishing Ltd 16.07.2014
Subjects
Online AccessGet full text
ISSN1616-301X
1616-3028
DOI10.1002/adfm.201304144

Cover

Loading…
Abstract As a low dimensional crystal, graphene attracts great attention as heat dissipation material due to its unique thermal transfer property exceeding the limit of bulk graphite. In this contribution, flexible graphene–carbon fiber composite paper is fabricated by depositing graphene oxide into the carbon fiber precursor followed by carbonization. In this full‐carbon architecture, scaffold of one‐dimensional carbon fiber is employed as the structural component to reinforce the mechanical strength, while the hierarchically arranged two‐dimensional graphene in the framework provides a convenient pathway for in‐plane acoustic phonon transmission. The as‐obtained hierarchical carbon/carbon composite paper possesses ultra‐high in‐plane thermal conductivity of 977 W m−1 K−1 and favorable tensile strength of 15.3 MPa. The combined mechanical and thermal performances make the material highly desirable as lateral heat spreader for next‐generation commercial portable electronics. Flexible graphene–carbon fiber composite paper with an ultra‐high thermal diffusivity of 5458 mm2 s−1, a very large thermal conductivity of 977 W m−1 K−1, and a tensile strength of 15.3 MPa is fabricated through facile filtration route, in which the close packed graphene nanosheets provide high thermal conductivity, while carbon fiber acts as the structural scaffold to render excellent mechanical properties.
AbstractList As a low dimensional crystal, graphene attracts great attention as heat dissipation material due to its unique thermal transfer property exceeding the limit of bulk graphite. In this contribution, flexible graphene–carbon fiber composite paper is fabricated by depositing graphene oxide into the carbon fiber precursor followed by carbonization. In this full‐carbon architecture, scaffold of one‐dimensional carbon fiber is employed as the structural component to reinforce the mechanical strength, while the hierarchically arranged two‐dimensional graphene in the framework provides a convenient pathway for in‐plane acoustic phonon transmission. The as‐obtained hierarchical carbon/carbon composite paper possesses ultra‐high in‐plane thermal conductivity of 977 W m−1 K−1 and favorable tensile strength of 15.3 MPa. The combined mechanical and thermal performances make the material highly desirable as lateral heat spreader for next‐generation commercial portable electronics. Flexible graphene–carbon fiber composite paper with an ultra‐high thermal diffusivity of 5458 mm2 s−1, a very large thermal conductivity of 977 W m−1 K−1, and a tensile strength of 15.3 MPa is fabricated through facile filtration route, in which the close packed graphene nanosheets provide high thermal conductivity, while carbon fiber acts as the structural scaffold to render excellent mechanical properties.
As a low dimensional crystal, graphene attracts great attention as heat dissipation material due to its unique thermal transfer property exceeding the limit of bulk graphite. In this contribution, flexible graphene-carbon fiber composite paper is fabricated by depositing graphene oxide into the carbon fiber precursor followed by carbonization. In this full-carbon architecture, scaffold of one-dimensional carbon fiber is employed as the structural component to reinforce the mechanical strength, while the hierarchically arranged two-dimensional graphene in the framework provides a convenient pathway for in-plane acoustic phonon transmission. The as-obtained hierarchical carbon/carbon composite paper possesses ultra-high in-plane thermal conductivity of 977 W m super(-1) K super(-1) and favorable tensile strength of 15.3 MPa. The combined mechanical and thermal performances make the material highly desirable as lateral heat spreader for next-generation commercial portable electronics. Flexible graphene-carbon fiber composite paper with an ultra-high thermal diffusivity of 5458 mm super(2) s super(-1), a very large thermal conductivity of 977 W m super(-1) K super(-1), and a tensile strength of 15.3 MPa is fabricated through facile filtration route, in which the close packed graphene nanosheets provide high thermal conductivity, while carbon fiber acts as the structural scaffold to render excellent mechanical properties.
As a low dimensional crystal, graphene attracts great attention as heat dissipation material due to its unique thermal transfer property exceeding the limit of bulk graphite. In this contribution, flexible graphene–carbon fiber composite paper is fabricated by depositing graphene oxide into the carbon fiber precursor followed by carbonization. In this full‐carbon architecture, scaffold of one‐dimensional carbon fiber is employed as the structural component to reinforce the mechanical strength, while the hierarchically arranged two‐dimensional graphene in the framework provides a convenient pathway for in‐plane acoustic phonon transmission. The as‐obtained hierarchical carbon/carbon composite paper possesses ultra‐high in‐plane thermal conductivity of 977 W m −1 K −1 and favorable tensile strength of 15.3 MPa. The combined mechanical and thermal performances make the material highly desirable as lateral heat spreader for next‐generation commercial portable electronics.
Author Zhou, Guangmin
Kong, Qing-Qiang
Wang, Mao-Zhang
Gao, Jian-Guo
Zhang, Xing-Hua
Zhang, Qiang
Tao, Ze-Chao
Li, Feng
Liu, Zhuo
Cai, Rong
Chen, Cheng-Meng
Author_xml – sequence: 1
  givenname: Qing-Qiang
  surname: Kong
  fullname: Kong, Qing-Qiang
  organization: Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, 27 Taoyuan South Road, 030001, Taiyuan, China
– sequence: 2
  givenname: Zhuo
  surname: Liu
  fullname: Liu, Zhuo
  organization: Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, 27 Taoyuan South Road, 030001, Taiyuan, China
– sequence: 3
  givenname: Jian-Guo
  surname: Gao
  fullname: Gao, Jian-Guo
  organization: Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, 27 Taoyuan South Road, 030001, Taiyuan, China
– sequence: 4
  givenname: Cheng-Meng
  surname: Chen
  fullname: Chen, Cheng-Meng
  email: ccm@sxicc.ac.cn
  organization: Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, 27 Taoyuan South Road, 030001, Taiyuan, China
– sequence: 5
  givenname: Qiang
  surname: Zhang
  fullname: Zhang, Qiang
  organization: Beijing Key Laboratory of Green Chemical, Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, 10084, Beijing, China
– sequence: 6
  givenname: Guangmin
  surname: Zhou
  fullname: Zhou, Guangmin
  organization: Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 100016, Shenyang, China
– sequence: 7
  givenname: Ze-Chao
  surname: Tao
  fullname: Tao, Ze-Chao
  organization: Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, 27 Taoyuan South Road, 030001, Taiyuan, China
– sequence: 8
  givenname: Xing-Hua
  surname: Zhang
  fullname: Zhang, Xing-Hua
  organization: Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, 27 Taoyuan South Road, 030001, Taiyuan, China
– sequence: 9
  givenname: Mao-Zhang
  surname: Wang
  fullname: Wang, Mao-Zhang
  organization: Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, 27 Taoyuan South Road, 030001, Taiyuan, China
– sequence: 10
  givenname: Feng
  surname: Li
  fullname: Li, Feng
  organization: Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 100016, Shenyang, China
– sequence: 11
  givenname: Rong
  surname: Cai
  fullname: Cai, Rong
  organization: Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, 27 Taoyuan South Road, 030001, Taiyuan, China
BookMark eNqFkM1LAzEQxYMo2KpXzzl62Zps0uzuUVbbClsVv29hmp1iNN1dky3W_94tlSKCeJoZeL83j9cnu1VdISHHnA04Y_EplPPFIGZcMMml3CE9rriKBIvT3e3On_dJP4RXxniSCNkjjxOLHrx5sQYcHXtoXrDCKAc_qys6sjP0NK8XTR1si_QGmu6GQIGOHK7szCEtoO0cHJ0gtPSu8Qgl-kOyNwcX8Oh7HpCH0cV9PomK6_FlflZERmZKRjItgc_LNDOAXXCeGmBKxCJLMhhiOUtLkyAwZEyYWGZc8tJkKUOplFCGgzggJxvfxtfvSwytXthg0DmosF4GzVXCFUuEUJ10sJEaX4fgca4bbxfgPzVnel2gXheotwV2gPwFGNtCa-uq9WDd31i2wT6sw89_nuiz89H0JxttWBtaXG1Z8G9aJSIZ6qersc6nt4UYTmPNxBc_l5XL
CitedBy_id crossref_primary_10_1007_s40820_022_00868_8
crossref_primary_10_1021_acsnano_9b10020
crossref_primary_10_1002_admi_202200409
crossref_primary_10_1016_j_carbon_2021_06_058
crossref_primary_10_1039_C8TA11329G
crossref_primary_10_1016_j_ceramint_2017_12_238
crossref_primary_10_1039_C5NR00228A
crossref_primary_10_1016_j_coco_2020_100528
crossref_primary_10_3390_coatings8020063
crossref_primary_10_1016_j_carbon_2021_07_013
crossref_primary_10_1021_acsnano_0c00913
crossref_primary_10_1088_1361_6463_aae5ce
crossref_primary_10_3390_ma12060954
crossref_primary_10_1002_smll_201501878
crossref_primary_10_1002_adfm_201805948
crossref_primary_10_1016_j_compositesa_2020_106117
crossref_primary_10_1016_j_ijheatmasstransfer_2020_119731
crossref_primary_10_1063_1_5097000
crossref_primary_10_1109_TCPMT_2024_3357126
crossref_primary_10_1021_acs_iecr_8b05857
crossref_primary_10_1016_j_carbon_2016_08_059
crossref_primary_10_1016_S1872_5805_21_60092_6
crossref_primary_10_1039_C6RA04102G
crossref_primary_10_1142_S1793292019500383
crossref_primary_10_1016_j_carbon_2020_09_039
crossref_primary_10_1016_j_tsf_2015_11_031
crossref_primary_10_1007_s00339_024_08150_x
crossref_primary_10_1016_j_mtphys_2023_101308
crossref_primary_10_1016_j_apsusc_2018_05_127
crossref_primary_10_1016_j_cej_2023_145417
crossref_primary_10_1038_srep14260
crossref_primary_10_1021_acsnano_0c09961
crossref_primary_10_1016_j_nanoms_2020_09_001
crossref_primary_10_1039_C8TC01277F
crossref_primary_10_3390_nano12030367
crossref_primary_10_1016_j_bios_2016_09_108
crossref_primary_10_3390_molecules26226867
crossref_primary_10_1007_s12274_020_2921_7
crossref_primary_10_1016_j_polymdegradstab_2019_109021
crossref_primary_10_1021_acs_chemmater_1c00113
crossref_primary_10_1002_app_53014
crossref_primary_10_1016_j_microc_2023_108855
crossref_primary_10_1016_j_applthermaleng_2019_01_098
crossref_primary_10_1039_C5RA27315C
crossref_primary_10_1016_j_ceramint_2022_11_039
crossref_primary_10_1016_j_coco_2017_07_001
crossref_primary_10_1007_s10854_023_10480_0
crossref_primary_10_1016_j_ceramint_2018_10_183
crossref_primary_10_1021_acs_iecr_4c03929
crossref_primary_10_1016_j_compositesa_2018_06_010
crossref_primary_10_1016_j_compscitech_2019_107945
crossref_primary_10_1016_j_carbon_2016_05_014
crossref_primary_10_1039_C4TA02693D
crossref_primary_10_1039_C8TC04859B
crossref_primary_10_1021_cm5033089
crossref_primary_10_1016_j_compositesb_2019_107495
crossref_primary_10_1007_s10008_023_05607_6
crossref_primary_10_1016_j_cej_2021_130181
crossref_primary_10_1016_j_joule_2018_01_006
crossref_primary_10_1016_j_addma_2024_104173
crossref_primary_10_1016_j_jallcom_2019_03_155
crossref_primary_10_1002_app_46242
crossref_primary_10_1021_acsnano_8b07337
crossref_primary_10_1021_acsami_5b11607
crossref_primary_10_1016_j_compscitech_2024_110859
crossref_primary_10_1016_j_ceramint_2019_03_224
crossref_primary_10_1002_smll_201704332
crossref_primary_10_1021_acsami_8b07556
crossref_primary_10_1016_j_apmt_2022_101617
crossref_primary_10_1016_j_jct_2014_12_002
crossref_primary_10_1002_adfm_201700240
crossref_primary_10_3390_ma13020317
crossref_primary_10_1039_D0NJ04674D
crossref_primary_10_1016_j_carbon_2020_09_017
crossref_primary_10_1016_j_compositesa_2021_106391
crossref_primary_10_1177_1687814017697628
crossref_primary_10_1016_j_carbon_2018_02_034
crossref_primary_10_1016_j_compositesa_2020_106093
crossref_primary_10_1039_D0NJ05072E
crossref_primary_10_1021_acsami_8b05514
crossref_primary_10_1038_ncomms11281
crossref_primary_10_1021_acs_chemmater_5b04187
crossref_primary_10_1039_C5RA08900J
crossref_primary_10_1021_acs_iecr_3c04125
crossref_primary_10_1063_1_5144167
crossref_primary_10_1002_smll_201903315
crossref_primary_10_1021_acsami_9b10538
crossref_primary_10_3390_polym9060230
crossref_primary_10_1016_j_carbon_2020_02_012
crossref_primary_10_1016_j_compositesa_2017_07_021
crossref_primary_10_1016_j_matlet_2023_134634
crossref_primary_10_1016_j_cclet_2017_10_028
crossref_primary_10_1016_j_carbon_2017_04_005
crossref_primary_10_1021_acs_chemrev_5b00102
crossref_primary_10_1021_acsanm_0c01754
crossref_primary_10_1002_mame_202100055
crossref_primary_10_1016_j_compositesa_2018_10_017
crossref_primary_10_1039_C5RA05817A
crossref_primary_10_1016_j_carbon_2020_06_012
crossref_primary_10_1016_j_carbon_2017_03_025
crossref_primary_10_1016_j_carbon_2019_08_008
crossref_primary_10_1016_j_jclepro_2020_123229
crossref_primary_10_1088_1361_6528_aa8158
crossref_primary_10_1016_j_carbon_2021_09_069
crossref_primary_10_1016_j_compositesa_2015_09_009
crossref_primary_10_1007_s12540_020_00803_9
crossref_primary_10_1007_s10854_021_07248_9
crossref_primary_10_1007_s12274_019_2476_7
crossref_primary_10_1039_C7SM01154G
crossref_primary_10_1007_s10118_024_3159_8
crossref_primary_10_1063_5_0128899
crossref_primary_10_1007_s10118_018_2164_1
crossref_primary_10_1016_j_compositesa_2021_106318
crossref_primary_10_1021_acsami_1c02643
crossref_primary_10_1039_C7NR06667H
crossref_primary_10_1016_j_compscitech_2018_08_010
crossref_primary_10_1149_2162_8777_abea5b
crossref_primary_10_1016_j_cej_2023_145583
crossref_primary_10_1016_j_compositesa_2018_02_010
crossref_primary_10_1007_s10853_021_05971_6
crossref_primary_10_1039_C7TA04740A
crossref_primary_10_1016_j_applthermaleng_2022_118545
crossref_primary_10_1016_S1872_2067_19_63314_0
crossref_primary_10_1016_j_carbon_2024_119179
crossref_primary_10_1007_s00231_020_02821_0
crossref_primary_10_1039_C9NR03603B
crossref_primary_10_1016_j_carbon_2021_09_053
crossref_primary_10_1016_j_compscitech_2023_110065
crossref_primary_10_1039_D2TC04552D
crossref_primary_10_1016_j_carbon_2016_04_001
crossref_primary_10_1039_D1TA08410K
crossref_primary_10_1002_advs_202200737
crossref_primary_10_1016_j_matchar_2019_02_018
crossref_primary_10_1007_s42114_024_00912_8
crossref_primary_10_1016_j_cej_2019_123784
crossref_primary_10_1021_acsanm_1c03860
crossref_primary_10_1016_j_carbon_2018_07_020
crossref_primary_10_1016_j_compscitech_2018_07_026
crossref_primary_10_1016_j_apsusc_2021_152293
crossref_primary_10_1016_j_ijthermalsci_2015_11_015
crossref_primary_10_1021_acsanm_4c00411
crossref_primary_10_1021_cm504618r
crossref_primary_10_1021_acs_iecr_4c00980
crossref_primary_10_1002_adfm_202300210
crossref_primary_10_1016_j_carbon_2024_119908
crossref_primary_10_1007_s10853_020_05156_7
crossref_primary_10_1021_acsami_4c06022
crossref_primary_10_1016_j_snb_2015_08_052
crossref_primary_10_1002_pc_28323
crossref_primary_10_1021_am507416y
crossref_primary_10_1002_admt_202200623
crossref_primary_10_1016_j_apmt_2024_102397
crossref_primary_10_1002_smll_201702645
crossref_primary_10_1002_adem_202201846
crossref_primary_10_1039_D3TC03840H
crossref_primary_10_1016_j_coco_2019_01_003
crossref_primary_10_1016_S1672_6529_16_60384_0
crossref_primary_10_1016_j_ceramint_2022_02_082
crossref_primary_10_1002_advs_201903501
crossref_primary_10_1021_acsami_9b03885
crossref_primary_10_1016_j_cej_2021_129609
crossref_primary_10_1016_j_cej_2021_129729
crossref_primary_10_1016_j_carbon_2024_118827
crossref_primary_10_1515_epoly_2022_0060
crossref_primary_10_1016_j_apsusc_2017_03_257
crossref_primary_10_1007_s11771_022_5047_0
crossref_primary_10_1002_adfm_202311458
crossref_primary_10_1016_j_micromeso_2020_110867
crossref_primary_10_7567_1347_4065_ab1bd0
crossref_primary_10_1016_j_jechem_2017_11_016
crossref_primary_10_1039_C5RA16780A
crossref_primary_10_1142_S1793292018500376
crossref_primary_10_1149_2_0651914jes
crossref_primary_10_1016_j_carbon_2019_10_079
crossref_primary_10_1016_j_colsurfa_2023_130959
crossref_primary_10_1016_j_diamond_2024_110865
crossref_primary_10_1016_j_snb_2018_11_079
crossref_primary_10_1016_j_carbon_2017_01_017
crossref_primary_10_1016_j_compscitech_2018_03_028
crossref_primary_10_1021_acs_chemmater_0c04505
crossref_primary_10_1016_j_compscitech_2016_12_001
crossref_primary_10_1002_sstr_202000034
crossref_primary_10_1016_j_ceramint_2020_03_074
crossref_primary_10_1016_S1872_5805_21_60093_8
Cites_doi 10.1016/j.carbon.2010.05.018
10.1016/j.carbon.2011.09.022
10.1021/nn900933u
10.1016/j.ssc.2012.04.034
10.1016/j.polymer.2012.07.008
10.1002/adma.200803726
10.1002/adfm.201103048
10.1103/PhysRevLett.87.215502
10.1016/j.carbon.2012.03.029
10.1002/adma.200801306
10.1016/j.ssc.2012.04.022
10.1038/nmat3064
10.1063/1.3622300
10.1021/nl052145f
10.1007/s10853-010-4216-y
10.1038/ncomms1828
10.1016/j.apenergy.2011.02.037
10.1063/1.2907977
10.1109/TNANO.2012.2197408
10.1016/S0008-6223(98)00085-2
10.1039/b920539j
10.1021/nl203906r
10.1126/science.1158877
10.1007/s10973-005-7344-x
10.1016/j.matlet.2009.04.030
10.1021/la9602022
10.1016/j.carbon.2010.10.003
10.1002/adfm.201102222
10.1016/0008-6223(94)90085-X
10.1016/j.carbon.2007.03.029
10.1016/S0032-3861(97)10296-8
10.1109/LED.2009.2034116
10.1039/c2cp40808b
10.1126/science.1184014
10.1002/adma.201102036
10.1021/nn3031595
10.1002/adma.200802317
10.1016/j.jpowsour.2013.08.135
10.1016/j.carbon.2013.05.035
ContentType Journal Article
Copyright 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID BSCLL
AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.201304144
DatabaseName Istex
CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
Materials Research Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage 4228
ExternalDocumentID 10_1002_adfm_201304144
ADFM201304144
ark_67375_WNG_CMRL35M2_0
Genre article
GrantInformation_xml – fundername: Natural Science Foundation of China
  funderid: 51302281
– fundername: Shanxi Coal Transportation and Sales Group Co. Ltd
  funderid: 2013WT103
– fundername: Natural Science Foundation of Shanxi Province
  funderid: 2013011012–7
– fundername: Innovative Research Fund of ICC‐CAS
  funderid: 2012SCXQT03
– fundername: Innovative Research Fund of Taiyuan Science and Technology Bureau
  funderid: 2012CXJD0510
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OC
23M
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
ADMLS
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
7SP
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-c4964-48da1fd89cae01318ca06323979a5edb8dc7ea0e003c249141dc980e46636c1a3
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Fri Jul 11 15:10:41 EDT 2025
Tue Jul 01 01:30:13 EDT 2025
Thu Apr 24 22:59:48 EDT 2025
Wed Jan 22 16:51:33 EST 2025
Wed Oct 30 09:54:34 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 27
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4964-48da1fd89cae01318ca06323979a5edb8dc7ea0e003c249141dc980e46636c1a3
Notes Innovative Research Fund of ICC-CAS - No. 2012SCXQT03
istex:F1F29902D5CC921DA396E04FD22AD480F5C331F0
ArticleID:ADFM201304144
Shanxi Coal Transportation and Sales Group Co. Ltd - No. 2013WT103
Natural Science Foundation of China - No. 51302281
Innovative Research Fund of Taiyuan Science and Technology Bureau - No. 2012CXJD0510
ark:/67375/WNG-CMRL35M2-0
Natural Science Foundation of Shanxi Province - No. 2013011012-7
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1671607336
PQPubID 23500
PageCount 7
ParticipantIDs proquest_miscellaneous_1671607336
crossref_primary_10_1002_adfm_201304144
crossref_citationtrail_10_1002_adfm_201304144
wiley_primary_10_1002_adfm_201304144_ADFM201304144
istex_primary_ark_67375_WNG_CMRL35M2_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 16, 2014
PublicationDateYYYYMMDD 2014-07-16
PublicationDate_xml – month: 07
  year: 2014
  text: July 16, 2014
  day: 16
PublicationDecade 2010
PublicationTitle Advanced functional materials
PublicationTitleAlternate Adv. Funct. Mater
PublicationYear 2014
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References K. M. F. Shahil, A. A. Balandin, Nano Lett. 2012, 12, 861.
C. M. Chen, Q. H. Yang, Y. G. Yang, W. Lv, Y. F. Wen, P. X. Hou, M. Z. Wang, H. M. Cheng, Adv. Mater. 2009, 21, 3007.
Z. Yan, G. X. Liu, J. M. Khan, A. A. Balandin, Nat. Commun. 2012, 3, 827.
D. Singh, J. Y. Murthy, T. S. Fisher, J. Appl. Phys. 2011, 110, 044317.
H. Fukushima, L. T. Drzal, B. P. Rook, M. J. Rich, J. Therm. Anal. Calorim. 2006, 85, 235.
P. Kim, L. Shi, A. Majumdar, P. L. McEuen, Phys. Rev. Lett. 2001, 87, 215502.
W. L. Song, L. M. Veca, C. Y. Kong, S. Ghose, J. W. Connell, P. Wang, L. Cao, Y. Lin, M. J. Meziani, H. J. Qian, G. E. LeCroy, Y. P. Sun, Polymer 2012, 53, 3910.
X. H. Wei, L. Liu, J. X. Zhang, J. L. Shi, Q. G. Guo, J. Mater. Sci. 2010, 45, 2449.
S. Subrina, IEEE T. Nanotechnol. 2012, 11, 777.
Y. Hishiyama, A. Yoshida, M. Inagaki, Carbon 1998, 36, 1113.
K. Kalaitzidou, H. Fukushima, L. T. Drzal, Carbon 2007, 45, 1446.
A. J. Rodriguez, M. E. Guzman, C. S. Lim, B. Minaie, Carbon 2010, 48, 3256.
A. K. Geim, Science 2009, 324, 1530.
C. M. Chen, J. Q. Huang, Q. Zhang, W. Z. Gong, Q. H. Yang, M. Z. Wang, Y. G. Yang, Carbon 2012, 50, 659.
M. Q. Zhao, Q. Zhang, J. Q. Huang, F. Wei, Adv. Funct. Mater. 2012, 22, 675.
C. M. Chen, Q. Zhang, M. G. Yang, C. H. Huang, Y. G. Yang, M. Z. Wang, Carbon 2012, 50, 3572.
M. M. Sadeghi, M. T. Pettes, L. Shi, Solid State Commun. 2012, 152, 1321.
Y. Kaburagi, T. Kimuraa, A. Yoshidab, Y. Hishiyama, Carbon 2012, 50, 4984.
J. L. Xiang, L. T. Drzal, Carbon 2011, 49, 773.
J. Y. Kim, J. H. Lee, J. C. Grossman, ACS Nano 2012, 6, 9050.
X. B. Fan, W. C. Peng, Y. Li, X. Y. Li, S. L. Wang, G. L. Zhang, F. B. Zhang, Adv. Mater. 2008, 20, 4490.
H. E. Assender, A. H. Windle, Polymer 1998, 39, 4295.
K. M. F. Shahil, A. A. Balandin, Solid State Commun. 2012, 152, 1331.
M. Inagaki, N. Ohta, Y. Hishiyama, Carbon 2013, 61, 1.
Y. Hishiyama, M. Nakamura, Y. Nagata, M. Inagaki, Carbon 1994, 32, 645.
M. Terrones, O. Martín, M. González, J. Pozuelo, B. Serrano, J. C. Cabanelas, S. M. Vega-Díaz, J. Baselga, Adv. Mater. 2011, 23, 5302.
D. W. Wang, G. Zhou, F. Li, K. H. Wu, G. Q. Lu, H. M. Cheng, I. R. Gentle, Phys. Chem. Chem. Phys. 2012, 14, 8703.
T. F. Luo, J. R. Lloyd, Adv. Funct. Mater. 2012, 22, 2495.
X. H. Wei, L. Liu, J. X. Zhang, J. L. Shi, Q. G. Guo, Mater. Lett. 2009, 63, 1618.
A. A. Balandin, Nat. Mater. 2011, 10, 569.
R. Goli, S. Legedza, A. Dhar, R. Salgado, J. Renteria, A. A. Balandin, J. Power Sources 2014, 248, 37.
N. Zamel, E. Litovsky, S. Shakhshir, X. G. Li, J. Kleiman, Appl. Energ. 2011, 88, 3042.
W. Lv, D. M. Tang, Y. B. He, C. H. You, Z. Q. Shi, X. C. Chen, C. M. Chen, P. X. Hou, C. Liu, Q. H. Yang, ACS Nano 2009, 3, 3730.
J. A. Menéndez, J. Phillips, B. Xia, L. R. Radovic, Langmuir 1996, 12, 4404.
S. Ghosh, I. Calizo, D. Teweldebrhan, E. P. Pokatilov, D. L. Nika, A. A. Balandin, W. Bao, F. Miao, C. N. Lau, Appl. Phys. Lett. 2008, 92, 151911.
K. P. Loh, Q. L. Bao, P. K. Ang, J. X. Yang, J. Mater. Chem. 2010, 20, 2277.
J. H. Seol, I. Jo, A. L. Moore, L. Lindsay, Z. H. Aitken, M. T. Pettes, X. S. Li, Z. Yao, R. Huang, D. Broido, N. Mingo, R. S. Ruoff, L. Shi, Science 2010, 328, 213.
E. Pop, D. Mann, Q. Wang, K. Goodson, H. J. Dai, Nano Lett. 2006, 6, 96.
L. M. Veca, M. J. Meziani, W. Wang, X. Wang, F. S. Lu, P. Y. Zhang, Y. Lin, R. Fee, J. W. Connell, Y. P. Sun, Adv. Mater. 2009, 21, 2088.
S. Subrina, D. Kotchetkov, A. A. Balandin, IEEE Electron Device Lett. 2009, 30, 1281.
2009; 63
2009; 21
2010; 328
2013; 61
2011; 10
2006; 6
2012; 14
2008; 92
2012; 12
2012; 11
2012; 53
1996; 12
2011; 110
2001; 87
2010; 45
2012; 50
2012; 152
2014; 248
1998; 39
2010; 20
2006; 85
2009; 30
2012; 3
2010; 48
2011; 88
2011; 23
2008; 20
2012; 6
2009; 3
2011; 49
2012; 22
2007; 45
2009; 324
1994; 32
1998; 36
e_1_2_6_32_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_20_1
Kaburagi Y. (e_1_2_6_21_1) 2012; 50
e_1_2_6_40_1
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_1_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_28_1
e_1_2_6_27_1
e_1_2_6_26_1
References_xml – reference: K. Kalaitzidou, H. Fukushima, L. T. Drzal, Carbon 2007, 45, 1446.
– reference: J. Y. Kim, J. H. Lee, J. C. Grossman, ACS Nano 2012, 6, 9050.
– reference: M. M. Sadeghi, M. T. Pettes, L. Shi, Solid State Commun. 2012, 152, 1321.
– reference: R. Goli, S. Legedza, A. Dhar, R. Salgado, J. Renteria, A. A. Balandin, J. Power Sources 2014, 248, 37.
– reference: H. E. Assender, A. H. Windle, Polymer 1998, 39, 4295.
– reference: A. J. Rodriguez, M. E. Guzman, C. S. Lim, B. Minaie, Carbon 2010, 48, 3256.
– reference: X. H. Wei, L. Liu, J. X. Zhang, J. L. Shi, Q. G. Guo, J. Mater. Sci. 2010, 45, 2449.
– reference: A. A. Balandin, Nat. Mater. 2011, 10, 569.
– reference: L. M. Veca, M. J. Meziani, W. Wang, X. Wang, F. S. Lu, P. Y. Zhang, Y. Lin, R. Fee, J. W. Connell, Y. P. Sun, Adv. Mater. 2009, 21, 2088.
– reference: W. L. Song, L. M. Veca, C. Y. Kong, S. Ghose, J. W. Connell, P. Wang, L. Cao, Y. Lin, M. J. Meziani, H. J. Qian, G. E. LeCroy, Y. P. Sun, Polymer 2012, 53, 3910.
– reference: X. B. Fan, W. C. Peng, Y. Li, X. Y. Li, S. L. Wang, G. L. Zhang, F. B. Zhang, Adv. Mater. 2008, 20, 4490.
– reference: W. Lv, D. M. Tang, Y. B. He, C. H. You, Z. Q. Shi, X. C. Chen, C. M. Chen, P. X. Hou, C. Liu, Q. H. Yang, ACS Nano 2009, 3, 3730.
– reference: M. Inagaki, N. Ohta, Y. Hishiyama, Carbon 2013, 61, 1.
– reference: D. W. Wang, G. Zhou, F. Li, K. H. Wu, G. Q. Lu, H. M. Cheng, I. R. Gentle, Phys. Chem. Chem. Phys. 2012, 14, 8703.
– reference: Z. Yan, G. X. Liu, J. M. Khan, A. A. Balandin, Nat. Commun. 2012, 3, 827.
– reference: J. A. Menéndez, J. Phillips, B. Xia, L. R. Radovic, Langmuir 1996, 12, 4404.
– reference: E. Pop, D. Mann, Q. Wang, K. Goodson, H. J. Dai, Nano Lett. 2006, 6, 96.
– reference: A. K. Geim, Science 2009, 324, 1530.
– reference: K. M. F. Shahil, A. A. Balandin, Nano Lett. 2012, 12, 861.
– reference: D. Singh, J. Y. Murthy, T. S. Fisher, J. Appl. Phys. 2011, 110, 044317.
– reference: S. Ghosh, I. Calizo, D. Teweldebrhan, E. P. Pokatilov, D. L. Nika, A. A. Balandin, W. Bao, F. Miao, C. N. Lau, Appl. Phys. Lett. 2008, 92, 151911.
– reference: J. L. Xiang, L. T. Drzal, Carbon 2011, 49, 773.
– reference: H. Fukushima, L. T. Drzal, B. P. Rook, M. J. Rich, J. Therm. Anal. Calorim. 2006, 85, 235.
– reference: Y. Kaburagi, T. Kimuraa, A. Yoshidab, Y. Hishiyama, Carbon 2012, 50, 4984.
– reference: S. Subrina, D. Kotchetkov, A. A. Balandin, IEEE Electron Device Lett. 2009, 30, 1281.
– reference: C. M. Chen, Q. H. Yang, Y. G. Yang, W. Lv, Y. F. Wen, P. X. Hou, M. Z. Wang, H. M. Cheng, Adv. Mater. 2009, 21, 3007.
– reference: X. H. Wei, L. Liu, J. X. Zhang, J. L. Shi, Q. G. Guo, Mater. Lett. 2009, 63, 1618.
– reference: K. M. F. Shahil, A. A. Balandin, Solid State Commun. 2012, 152, 1331.
– reference: M. Terrones, O. Martín, M. González, J. Pozuelo, B. Serrano, J. C. Cabanelas, S. M. Vega-Díaz, J. Baselga, Adv. Mater. 2011, 23, 5302.
– reference: J. H. Seol, I. Jo, A. L. Moore, L. Lindsay, Z. H. Aitken, M. T. Pettes, X. S. Li, Z. Yao, R. Huang, D. Broido, N. Mingo, R. S. Ruoff, L. Shi, Science 2010, 328, 213.
– reference: C. M. Chen, Q. Zhang, M. G. Yang, C. H. Huang, Y. G. Yang, M. Z. Wang, Carbon 2012, 50, 3572.
– reference: Y. Hishiyama, M. Nakamura, Y. Nagata, M. Inagaki, Carbon 1994, 32, 645.
– reference: M. Q. Zhao, Q. Zhang, J. Q. Huang, F. Wei, Adv. Funct. Mater. 2012, 22, 675.
– reference: T. F. Luo, J. R. Lloyd, Adv. Funct. Mater. 2012, 22, 2495.
– reference: Y. Hishiyama, A. Yoshida, M. Inagaki, Carbon 1998, 36, 1113.
– reference: C. M. Chen, J. Q. Huang, Q. Zhang, W. Z. Gong, Q. H. Yang, M. Z. Wang, Y. G. Yang, Carbon 2012, 50, 659.
– reference: P. Kim, L. Shi, A. Majumdar, P. L. McEuen, Phys. Rev. Lett. 2001, 87, 215502.
– reference: N. Zamel, E. Litovsky, S. Shakhshir, X. G. Li, J. Kleiman, Appl. Energ. 2011, 88, 3042.
– reference: S. Subrina, IEEE T. Nanotechnol. 2012, 11, 777.
– reference: K. P. Loh, Q. L. Bao, P. K. Ang, J. X. Yang, J. Mater. Chem. 2010, 20, 2277.
– volume: 30
  start-page: 1281
  year: 2009
  publication-title: IEEE Electron Device Lett.
– volume: 152
  start-page: 1331
  year: 2012
  publication-title: Solid State Commun.
– volume: 3
  start-page: 3730
  year: 2009
  publication-title: ACS Nano
– volume: 48
  start-page: 3256
  year: 2010
  publication-title: Carbon
– volume: 6
  start-page: 96
  year: 2006
  publication-title: Nano Lett.
– volume: 92
  start-page: 151911
  year: 2008
  publication-title: Appl. Phys. Lett.
– volume: 49
  start-page: 773
  year: 2011
  publication-title: Carbon
– volume: 21
  start-page: 2088
  year: 2009
  publication-title: Adv. Mater.
– volume: 152
  start-page: 1321
  year: 2012
  publication-title: Solid State Commun.
– volume: 50
  start-page: 3572
  year: 2012
  publication-title: Carbon
– volume: 50
  start-page: 659
  year: 2012
  publication-title: Carbon
– volume: 10
  start-page: 569
  year: 2011
  publication-title: Nat. Mater.
– volume: 36
  start-page: 1113
  year: 1998
  publication-title: Carbon
– volume: 11
  start-page: 777
  year: 2012
  publication-title: IEEE T. Nanotechnol.
– volume: 23
  start-page: 5302
  year: 2011
  publication-title: Adv. Mater.
– volume: 248
  start-page: 37
  year: 2014
  publication-title: J. Power Sources
– volume: 20
  start-page: 4490
  year: 2008
  publication-title: Adv. Mater.
– volume: 32
  start-page: 645
  year: 1994
  publication-title: Carbon
– volume: 88
  start-page: 3042
  year: 2011
  publication-title: Appl. Energ.
– volume: 22
  start-page: 2495
  year: 2012
  publication-title: Adv. Funct. Mater.
– volume: 14
  start-page: 8703
  year: 2012
  publication-title: Phys. Chem. Chem. Phys.
– volume: 22
  start-page: 675
  year: 2012
  publication-title: Adv. Funct. Mater.
– volume: 328
  start-page: 213
  year: 2010
  publication-title: Science
– volume: 110
  start-page: 044317
  year: 2011
  publication-title: J. Appl. Phys.
– volume: 3
  start-page: 827
  year: 2012
  publication-title: Nat. Commun.
– volume: 53
  start-page: 3910
  year: 2012
  publication-title: Polymer
– volume: 85
  start-page: 235
  year: 2006
  publication-title: J. Therm. Anal. Calorim.
– volume: 45
  start-page: 2449
  year: 2010
  publication-title: J. Mater. Sci.
– volume: 61
  start-page: 1
  year: 2013
  publication-title: Carbon
– volume: 324
  start-page: 1530
  year: 2009
  publication-title: Science
– volume: 12
  start-page: 861
  year: 2012
  publication-title: Nano Lett.
– volume: 12
  start-page: 4404
  year: 1996
  publication-title: Langmuir
– volume: 6
  start-page: 9050
  year: 2012
  publication-title: ACS Nano
– volume: 50
  start-page: 4984
  year: 2012
  publication-title: Carbon
– volume: 63
  start-page: 1618
  year: 2009
  publication-title: Mater. Lett.
– volume: 39
  start-page: 4295
  year: 1998
  publication-title: Polymer
– volume: 87
  start-page: 215502
  year: 2001
  publication-title: Phys. Rev. Lett.
– volume: 20
  start-page: 2277
  year: 2010
  publication-title: J. Mater. Chem.
– volume: 21
  start-page: 3007
  year: 2009
  publication-title: Adv. Mater.
– volume: 45
  start-page: 1446
  year: 2007
  publication-title: Carbon
– ident: e_1_2_6_28_1
  doi: 10.1016/j.carbon.2010.05.018
– ident: e_1_2_6_30_1
  doi: 10.1016/j.carbon.2011.09.022
– ident: e_1_2_6_31_1
  doi: 10.1021/nn900933u
– ident: e_1_2_6_1_1
  doi: 10.1016/j.ssc.2012.04.034
– volume: 50
  start-page: 4984
  year: 2012
  ident: e_1_2_6_21_1
  publication-title: Carbon
– ident: e_1_2_6_12_1
  doi: 10.1016/j.polymer.2012.07.008
– ident: e_1_2_6_37_1
  doi: 10.1002/adma.200803726
– ident: e_1_2_6_14_1
  doi: 10.1002/adfm.201103048
– ident: e_1_2_6_5_1
  doi: 10.1103/PhysRevLett.87.215502
– ident: e_1_2_6_29_1
  doi: 10.1016/j.carbon.2012.03.029
– ident: e_1_2_6_26_1
  doi: 10.1002/adma.200801306
– ident: e_1_2_6_3_1
  doi: 10.1016/j.ssc.2012.04.022
– ident: e_1_2_6_4_1
  doi: 10.1038/nmat3064
– ident: e_1_2_6_36_1
  doi: 10.1063/1.3622300
– ident: e_1_2_6_6_1
  doi: 10.1021/nl052145f
– ident: e_1_2_6_20_1
  doi: 10.1007/s10853-010-4216-y
– ident: e_1_2_6_19_1
  doi: 10.1038/ncomms1828
– ident: e_1_2_6_35_1
  doi: 10.1016/j.apenergy.2011.02.037
– ident: e_1_2_6_8_1
  doi: 10.1063/1.2907977
– ident: e_1_2_6_18_1
  doi: 10.1109/TNANO.2012.2197408
– ident: e_1_2_6_40_1
  doi: 10.1016/S0008-6223(98)00085-2
– ident: e_1_2_6_33_1
  doi: 10.1039/b920539j
– ident: e_1_2_6_13_1
  doi: 10.1021/nl203906r
– ident: e_1_2_6_11_1
  doi: 10.1126/science.1158877
– ident: e_1_2_6_16_1
  doi: 10.1007/s10973-005-7344-x
– ident: e_1_2_6_38_1
  doi: 10.1016/j.matlet.2009.04.030
– ident: e_1_2_6_32_1
  doi: 10.1021/la9602022
– ident: e_1_2_6_9_1
  doi: 10.1016/j.carbon.2010.10.003
– ident: e_1_2_6_25_1
  doi: 10.1002/adfm.201102222
– ident: e_1_2_6_39_1
  doi: 10.1016/0008-6223(94)90085-X
– ident: e_1_2_6_17_1
  doi: 10.1016/j.carbon.2007.03.029
– ident: e_1_2_6_27_1
  doi: 10.1016/S0032-3861(97)10296-8
– ident: e_1_2_6_22_1
  doi: 10.1109/LED.2009.2034116
– ident: e_1_2_6_24_1
  doi: 10.1039/c2cp40808b
– ident: e_1_2_6_10_1
  doi: 10.1126/science.1184014
– ident: e_1_2_6_15_1
  doi: 10.1002/adma.201102036
– ident: e_1_2_6_23_1
  doi: 10.1021/nn3031595
– ident: e_1_2_6_7_1
  doi: 10.1002/adma.200802317
– ident: e_1_2_6_2_1
  doi: 10.1016/j.jpowsour.2013.08.135
– ident: e_1_2_6_34_1
  doi: 10.1016/j.carbon.2013.05.035
SSID ssj0017734
Score 2.5379589
Snippet As a low dimensional crystal, graphene attracts great attention as heat dissipation material due to its unique thermal transfer property exceeding the limit of...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4222
SubjectTerms Carbon
Carbon fibers
composites
Fiber composites
Graphene
Heat transfer
Spreaders
Thermal conductivity
Title Hierarchical Graphene-Carbon Fiber Composite Paper as a Flexible Lateral Heat Spreader
URI https://api.istex.fr/ark:/67375/WNG-CMRL35M2-0/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201304144
https://www.proquest.com/docview/1671607336
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBYlubSHJmlTus0DFUpzcmLZWtk-hm2dJWRDyYPuTYwehpLFu-wDQk75D_mH-SWZsXed3UAJtDcLJGxLmplP0jefGPuWYZT0SohA4VMgLaBJmVQGSWxVUURpYasM79656l7L0367v5TFX-tDNBtuZBmVvyYDBzM5ehYNBVdQJjn6YImLAnTCRNgiVHTR6EeJJKmPlZUggpfoL1Qbw-hotflKVFqnDr5dgZzLwLWKPPkGg8U314STm8PZ1Bzauxdyjv_zU5vs_RyW8uN6Hm2xN778wN4tiRV-ZP3uH0pWru5OGfATErpGP_l4_9CBsRmWPCfuCSf_Qjwwz3_BCMsw4cBzUt00A8_PgBKeB7yLEYBfjsYVj3qbXec_rzrdYH4vQ2BlpmQgUweicGlmwZNcT2oBgU5EJ4TQ9s6kziYeQo8Ow-LqTkjhbJaGXiK6UVZA_ImtlcPSf2Y8VAUuUTCSGpNJa-OscN4WxgtpRZw412LBYly0nYuW090ZA13LLUeaekw3PdZiB039US3X8dea36thbqrB-IZIbklb_z4_0Z3exVnc7kU6bLGvi3mg0fToPAVKP5xNtFAJyfPFsWqxqBrVV96pj3_kvab05V8a7bC3-Cxpd1moXbY2Hc_8HsKiqdmvpv4TPs4DEA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5BewAO5S1SXouE4OTWa2_W9rFKcQ3EESqtyG21L0uokROliYQ48R_4h_wSZuzYNEgICW5ea1f2Puaxu998A_AyQyvpJeeBxKdAWI0iZVIRJLGVVRWllW0ivMuJLM7Fu-mwQxNSLEzLD9EfuJFkNPqaBJwOpA9_sYZqV1EoOSphgbuC67BLab0picHxac8gxZOkvViWnCBefNrxNobR4Xb7Lbu0S0P8ZcvpvOq6NrYnvw2m--sWcnJxsF6ZA_v1N0LH_-rWHdjbeKbsqF1Kd-Gar-_BrSt8hfdhWnymeOUmfcqMnRDXNarKH9--j_TSzGuWE_yEkYohKJhnH_QCy_qSaZYT8aaZeTbWFPM8YwUaAfZxsWyg1A_gPH9zNiqCTWqGwIpMikCkTvPKpZnVnhh7UqvR14noklAPvTOps4nXoUedYXGDxwV3NktDL9DBkZbr-CHs1PPaPwIWygp3KWhMjcmEtXFWOW8r47mwPE6cG0DQTYyyG95ySp8xUy3jcqRoxFQ_YgN43ddftIwdf6z5qpnnvppeXhDOLRmqT5MTNSpPx_GwjFQ4gBfdQlAofXSloms_X18qLhNi6ItjOYComda_fFMdHedlX9r_l0bP4UZxVo7V-O3k_WO4ie8FHTZz-QR2Vsu1f4pe0so8a-TgJ2-RByo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5BKyE4UJ4ilMIiITi59dqbtX2sUtwASVQVKnJb7VNCjZwoTSTEif_AP-wvYcZOTIKEkODmtWZl72Nmvt2d-RbgVYFe0kvOI4lPkbAaVcrkIspSK0NI8mDrDO_hSPYvxPtxd7yRxd_wQ7QbbqQZtb0mBZ-5cPSLNFS7QJnkaIMFLgpuwq6QqDEEi85bAimeZc25suQU4cXHa9rGODnarr_llnaph79uYc5N5Fq7nnIP9Pqnm4iTy8Plwhzab7_xOf5Pq-7B3RUuZcfNRLoPN3z1AO5ssBU-hHH_C2Ur15enTNgpMV2jobz-_qOn52ZasZKCTxgZGAoE8-xMz7Csr5hmJdFumolnA00ZzxPWRxfAPs7mdSD1I7go337q9aPVxQyRFYUUkcid5sHlhdWe-HpyqxHpJHREqLvemdzZzOvYo8WwuLzjgjtb5LEXCG-k5Tp9DDvVtPJPgMUy4BoFXakxhbA2LYLzNhjPheVp5lwHovW4KLtiLafLMyaq4VtOFPWYanusA29a-VnD1_FHydf1MLdien5JUW5ZV30enare8HyQdoeJijvwcj0PFOoeHajoyk-XV4rLjPj50lR2IKlH9S_fVMcn5bAtPf2XSi_g1tlJqQbvRh_24Ta-FrTTzOUz2FnMl_4AIdLCPK-14CdorQXi
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hierarchical+Graphene%E2%80%93Carbon+Fiber+Composite+Paper+as+a+Flexible+Lateral+Heat+Spreader&rft.jtitle=Advanced+functional+materials&rft.au=Kong%2C+Qing%E2%80%90Qiang&rft.au=Liu%2C+Zhuo&rft.au=Gao%2C+Jian%E2%80%90Guo&rft.au=Chen%2C+Cheng%E2%80%90Meng&rft.date=2014-07-16&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=24&rft.issue=27&rft.spage=4222&rft.epage=4228&rft_id=info:doi/10.1002%2Fadfm.201304144&rft.externalDBID=10.1002%252Fadfm.201304144&rft.externalDocID=ADFM201304144
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon