hexA of Erwinia carotovora ssp. carotovora strain Ecc71 negatively regulates production of RpoS and rsmB RNA, a global regulator of extracellular proteins, plant virulence and the quorum-sensing signal, N-(3-oxohexanoyl)-l-homoserine lactone
The soft‐rotting bacterium, Erwinia carotovora ssp. carotovora (E. c. carotovora ), produces an array of extracellular enzymes (= exoenzymes), including pectate lyase (Pel), polygalacturonase (Peh), cellulase (Cel) and protease (Prt), as well as HarpinEcc, the elicitor of hypersensitive reaction (HR...
Saved in:
Published in | Environmental microbiology Vol. 2; no. 2; pp. 203 - 215 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford BSL
Blackwell Science Ltd
01.04.2000
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The soft‐rotting bacterium, Erwinia carotovora ssp. carotovora (E. c. carotovora ), produces an array of extracellular enzymes (= exoenzymes), including pectate lyase (Pel), polygalacturonase (Peh), cellulase (Cel) and protease (Prt), as well as HarpinEcc, the elicitor of hypersensitive reaction (HR). The production of these exoenzymes and HarpinEcc responds to plant products and the quorum‐sensing signal [N‐(3‐oxohexanoyl)‐
l‐homoserine lactone; OHL] and is subject to both transcriptional and post‐transcriptional regulation. hexA of E. c. carotovora strain Ecc71 (hereafter hexA71), like that of another E. c. carotovora strain, negatively controls the production of exoenzymes, OHL and virulence in E. c. carotovora strain Ecc71. In addition to exoenzymes, HexA71 negatively regulates the expression of hrpNEcc, the structural gene for HarpinEcc. Exoenzyme overproduction is abolished by OHL deficiency in a HexA− and OhlI − double mutant, indicating that HexA and OHL are components of a common regulatory pathway controlling exoenzyme production. HexA71 negatively affects RpoS, as the levels of this alternative sigma factor are higher in the HexA− mutant than in the HexA+ strain. However, a HexA− and RpoS− double mutant produces higher levels of exoenzymes and transcripts of pel‐1, peh‐1 and celV genes than the HexA− and RpoS+ parent. Thus, the elevated levels of RpoS protein in the HexA− mutant do not account for exoenzyme overproduction. The following evidence associates for the first time the phenotypic changes in the HexA− mutant to overproduction of rsmB RNA, a global regulator of exoenzymes, HarpinEcc, OHL and secondary metabolites. Analyses of rsmB transcripts and expression of an rsmB–lacZ operon fusion in E. c. carotovora strain Ecc71 revealed that HexA71 negatively regulates transcription of rsmB. Multiple copies of hexA71+ DNA suppress various phenotypes, including exoenzyme production in E. c. carotovora strain Ecc71, and concomitantly inhibit the production of rsmB, pel‐1, peh‐1, celV and hrpNEcc transcripts. Multiple copies of rsmB+ DNA, on the other hand, stimulate exoenzyme production by relieving the negative effects of a chromosomal copy of hexA+. The occurrence of hexA homologues and the negative effect of the dosage of hexA71 DNA on rsmB transcripts were also detected in other E. c. carotovora strains as well as Erwinia carotovora atroseptica and Erwinia carotovora betavasculorum. Extrapolating from the findings with LrhA, the Escherichia coli homologue of HexA, and the presence of sprE homologues in E. carotovora subspecies, we propose that HexA71 controls several regulatory pathways in E. carotovora including rsmB transcription and the production of SprEEcc which, in turn, affects RpoS levels. A model is presented that integrates the findings presented here and our current knowledge of the major regulatory network that controls exoprotein production in soft‐rotting Erwinia carotovora subspecies. |
---|---|
AbstractList | The soft-rotting bacterium, Erwinia carotovora ssp. carotovora (E. c. carotovora), produces an array of extracellular enzymes (= exoenzymes), including pectate lyase (Pel), polygalacturonase (Peh), cellulase (Cel) and protease (Prt), as well as HarpinEcc, the elicitor of hypersensitive reaction (HR). The production of these exoenzymes and HarpinEcc responds to plant products and the quorum-sensing signal [N-(3-oxohexanoyl)-L-homoserine lactone; OHL] and is subject to both transcriptional and post-transcriptional regulation. hexA of E. c. carotovora strain Ecc71 (hereafter hexA71), like that of another E. c. carotovora strain, negatively controls the production of exoenzymes, OHL and virulence in E. c. carotovora strain Ecc71. In addition to exoenzymes, HexA71 negatively regulates the expression of hrpNEcc, the structural gene for HarpinEcc. Exoenzyme overproduction is abolished by OHL deficiency in a HexA- and Ohll- double mutant, indicating that HexA and OHL are components of a common regulatory pathway controlling exoenzyme production. HexA71 negatively affects RpoS, as the levels of this alternative sigma factor are higher in the HexA- mutant than in the HexA+ strain. However, a HexA- and RpoS double mutant produces higher levels of exoenzymes and transcripts of pel-1, peh-1 and celVgenes than the HexA- and RpoS+ parent. Thus, the elevated levels of RpoS protein in the HexA- mutant do not account for exoenzyme overproduction. The following evidence associates for the first time the phenotypic changes in the HexA mutant to overproduction of rsmB RNA, a global regulator of exoenzymes, HarpinEcc, OHL and secondary metabolites. Analyses of rsmB transcripts and expression of an rsmB-lacZoperon fusion in E. c. carotovora strain Ecc71 revealed that HexA71 negatively regulates transcription of rsmB. Multiple copies of hexA71+ DNA suppress various phenotypes, including exoenzyme production in E. c. carotovora strain Ecc71, and concomitantly inhibit the production of rsmB, pel-1, peh-1, celV and hrpNEcc transcripts. Multiple copies of rsmB+ DNA, on the other hand, stimulate exoenzyme production by relieving the negative effects of a chromosomal copy of hexA+. The occurrence of hexA homologues and the negative effect of the dosage of hexA71 DNA on rsmB transcripts were also detected in other E. c. carotovora strains as well as Erwinia carotovora atroseptica and Erwinia carotovora betavasculorum. Extrapolating from the findings with LrhA, the Escherichia coli homologue of HexA, and the presence of sprE homologues in E. carotovora subspecies, we propose that HexA71 controls several regulatory pathways in E. carotovora including rsmB transcription and the production of SprEEcc which, in turn, affects RpoS levels. A model is presented that integrates the findings presented here and our current knowledge of the major regulatory network that controls exoprotein production in soft-rotting Erwinia carotovora subspecies.The soft-rotting bacterium, Erwinia carotovora ssp. carotovora (E. c. carotovora), produces an array of extracellular enzymes (= exoenzymes), including pectate lyase (Pel), polygalacturonase (Peh), cellulase (Cel) and protease (Prt), as well as HarpinEcc, the elicitor of hypersensitive reaction (HR). The production of these exoenzymes and HarpinEcc responds to plant products and the quorum-sensing signal [N-(3-oxohexanoyl)-L-homoserine lactone; OHL] and is subject to both transcriptional and post-transcriptional regulation. hexA of E. c. carotovora strain Ecc71 (hereafter hexA71), like that of another E. c. carotovora strain, negatively controls the production of exoenzymes, OHL and virulence in E. c. carotovora strain Ecc71. In addition to exoenzymes, HexA71 negatively regulates the expression of hrpNEcc, the structural gene for HarpinEcc. Exoenzyme overproduction is abolished by OHL deficiency in a HexA- and Ohll- double mutant, indicating that HexA and OHL are components of a common regulatory pathway controlling exoenzyme production. HexA71 negatively affects RpoS, as the levels of this alternative sigma factor are higher in the HexA- mutant than in the HexA+ strain. However, a HexA- and RpoS double mutant produces higher levels of exoenzymes and transcripts of pel-1, peh-1 and celVgenes than the HexA- and RpoS+ parent. Thus, the elevated levels of RpoS protein in the HexA- mutant do not account for exoenzyme overproduction. The following evidence associates for the first time the phenotypic changes in the HexA mutant to overproduction of rsmB RNA, a global regulator of exoenzymes, HarpinEcc, OHL and secondary metabolites. Analyses of rsmB transcripts and expression of an rsmB-lacZoperon fusion in E. c. carotovora strain Ecc71 revealed that HexA71 negatively regulates transcription of rsmB. Multiple copies of hexA71+ DNA suppress various phenotypes, including exoenzyme production in E. c. carotovora strain Ecc71, and concomitantly inhibit the production of rsmB, pel-1, peh-1, celV and hrpNEcc transcripts. Multiple copies of rsmB+ DNA, on the other hand, stimulate exoenzyme production by relieving the negative effects of a chromosomal copy of hexA+. The occurrence of hexA homologues and the negative effect of the dosage of hexA71 DNA on rsmB transcripts were also detected in other E. c. carotovora strains as well as Erwinia carotovora atroseptica and Erwinia carotovora betavasculorum. Extrapolating from the findings with LrhA, the Escherichia coli homologue of HexA, and the presence of sprE homologues in E. carotovora subspecies, we propose that HexA71 controls several regulatory pathways in E. carotovora including rsmB transcription and the production of SprEEcc which, in turn, affects RpoS levels. A model is presented that integrates the findings presented here and our current knowledge of the major regulatory network that controls exoprotein production in soft-rotting Erwinia carotovora subspecies. The soft-rotting bacterium, Erwinia carotovora ssp. carotovora (E. c. carotovora), produces an array of extracellular enzymes (= exoenzymes), including pectate lyase (Pel), polygalacturonase (Peh), cellulase (Cel) and protease (Prt), as well as HarpinEcc, the elicitor of hypersensitive reaction (HR). The production of these exoenzymes and HarpinEcc responds to plant products and the quorum-sensing signal [N-(3-oxohexanoyl)-L-homoserine lactone; OHL] and is subject to both transcriptional and post-transcriptional regulation. hexA of E. c. carotovora strain Ecc71 (hereafter hexA71), like that of another E. c. carotovora strain, negatively controls the production of exoenzymes, OHL and virulence in E. c. carotovora strain Ecc71. In addition to exoenzymes, HexA71 negatively regulates the expression of hrpNEcc, the structural gene for HarpinEcc. Exoenzyme overproduction is abolished by OHL deficiency in a HexA- and Ohll- double mutant, indicating that HexA and OHL are components of a common regulatory pathway controlling exoenzyme production. HexA71 negatively affects RpoS, as the levels of this alternative sigma factor are higher in the HexA- mutant than in the HexA+ strain. However, a HexA- and RpoS double mutant produces higher levels of exoenzymes and transcripts of pel-1, peh-1 and celVgenes than the HexA- and RpoS+ parent. Thus, the elevated levels of RpoS protein in the HexA- mutant do not account for exoenzyme overproduction. The following evidence associates for the first time the phenotypic changes in the HexA mutant to overproduction of rsmB RNA, a global regulator of exoenzymes, HarpinEcc, OHL and secondary metabolites. Analyses of rsmB transcripts and expression of an rsmB-lacZoperon fusion in E. c. carotovora strain Ecc71 revealed that HexA71 negatively regulates transcription of rsmB. Multiple copies of hexA71+ DNA suppress various phenotypes, including exoenzyme production in E. c. carotovora strain Ecc71, and concomitantly inhibit the production of rsmB, pel-1, peh-1, celV and hrpNEcc transcripts. Multiple copies of rsmB+ DNA, on the other hand, stimulate exoenzyme production by relieving the negative effects of a chromosomal copy of hexA+. The occurrence of hexA homologues and the negative effect of the dosage of hexA71 DNA on rsmB transcripts were also detected in other E. c. carotovora strains as well as Erwinia carotovora atroseptica and Erwinia carotovora betavasculorum. Extrapolating from the findings with LrhA, the Escherichia coli homologue of HexA, and the presence of sprE homologues in E. carotovora subspecies, we propose that HexA71 controls several regulatory pathways in E. carotovora including rsmB transcription and the production of SprEEcc which, in turn, affects RpoS levels. A model is presented that integrates the findings presented here and our current knowledge of the major regulatory network that controls exoprotein production in soft-rotting Erwinia carotovora subspecies. The soft‐rotting bacterium, Erwinia carotovora ssp. carotovora ( E. c. carotovora ), produces an array of extracellular enzymes (= exoenzymes), including pectate lyase (Pel), polygalacturonase (Peh), cellulase (Cel) and protease (Prt), as well as Harpin Ecc , the elicitor of hypersensitive reaction (HR). The production of these exoenzymes and Harpin Ecc responds to plant products and the quorum‐sensing signal [ N ‐(3‐oxohexanoyl)‐ l ‐homoserine lactone; OHL] and is subject to both transcriptional and post‐transcriptional regulation. hexA of E. c. carotovora strain Ecc71 (hereafter hexA 71 ), like that of another E. c. carotovora strain, negatively controls the production of exoenzymes, OHL and virulence in E. c. carotovora strain Ecc71. In addition to exoenzymes, HexA 71 negatively regulates the expression of hrpN Ecc , the structural gene for Harpin Ecc . Exoenzyme overproduction is abolished by OHL deficiency in a HexA − and OhlI − double mutant, indicating that HexA and OHL are components of a common regulatory pathway controlling exoenzyme production. HexA 71 negatively affects RpoS, as the levels of this alternative sigma factor are higher in the HexA − mutant than in the HexA + strain. However, a HexA − and RpoS − double mutant produces higher levels of exoenzymes and transcripts of pel‐1 , peh‐1 and celV genes than the HexA − and RpoS + parent. Thus, the elevated levels of RpoS protein in the HexA − mutant do not account for exoenzyme overproduction. The following evidence associates for the first time the phenotypic changes in the HexA − mutant to overproduction of rsmB RNA, a global regulator of exoenzymes, Harpin Ecc , OHL and secondary metabolites. Analyses of rsmB transcripts and expression of an rsmB–lacZ operon fusion in E. c. carotovora strain Ecc71 revealed that HexA 71 negatively regulates transcription of rsmB . Multiple copies of hexA 71 + DNA suppress various phenotypes, including exoenzyme production in E. c. carotovora strain Ecc71, and concomitantly inhibit the production of rsmB , pel‐1 , peh‐1 , celV and hrpN Ecc transcripts. Multiple copies of rsmB + DNA, on the other hand, stimulate exoenzyme production by relieving the negative effects of a chromosomal copy of hexA + . The occurrence of hexA homologues and the negative effect of the dosage of hexA 71 DNA on rsmB transcripts were also detected in other E. c. carotovora strains as well as Erwinia carotovora atroseptica and Erwinia carotovora betavasculorum . Extrapolating from the findings with LrhA, the Escherichia coli homologue of HexA, and the presence of sprE homologues in E. carotovora subspecies, we propose that HexA 71 controls several regulatory pathways in E. carotovora including rsmB transcription and the production of SprE Ecc which, in turn, affects RpoS levels. A model is presented that integrates the findings presented here and our current knowledge of the major regulatory network that controls exoprotein production in soft‐rotting Erwinia carotovora subspecies. The soft‐rotting bacterium, Erwinia carotovora ssp. carotovora (E. c. carotovora ), produces an array of extracellular enzymes (= exoenzymes), including pectate lyase (Pel), polygalacturonase (Peh), cellulase (Cel) and protease (Prt), as well as HarpinEcc, the elicitor of hypersensitive reaction (HR). The production of these exoenzymes and HarpinEcc responds to plant products and the quorum‐sensing signal [N‐(3‐oxohexanoyl)‐ l‐homoserine lactone; OHL] and is subject to both transcriptional and post‐transcriptional regulation. hexA of E. c. carotovora strain Ecc71 (hereafter hexA71), like that of another E. c. carotovora strain, negatively controls the production of exoenzymes, OHL and virulence in E. c. carotovora strain Ecc71. In addition to exoenzymes, HexA71 negatively regulates the expression of hrpNEcc, the structural gene for HarpinEcc. Exoenzyme overproduction is abolished by OHL deficiency in a HexA− and OhlI − double mutant, indicating that HexA and OHL are components of a common regulatory pathway controlling exoenzyme production. HexA71 negatively affects RpoS, as the levels of this alternative sigma factor are higher in the HexA− mutant than in the HexA+ strain. However, a HexA− and RpoS− double mutant produces higher levels of exoenzymes and transcripts of pel‐1, peh‐1 and celV genes than the HexA− and RpoS+ parent. Thus, the elevated levels of RpoS protein in the HexA− mutant do not account for exoenzyme overproduction. The following evidence associates for the first time the phenotypic changes in the HexA− mutant to overproduction of rsmB RNA, a global regulator of exoenzymes, HarpinEcc, OHL and secondary metabolites. Analyses of rsmB transcripts and expression of an rsmB–lacZ operon fusion in E. c. carotovora strain Ecc71 revealed that HexA71 negatively regulates transcription of rsmB. Multiple copies of hexA71+ DNA suppress various phenotypes, including exoenzyme production in E. c. carotovora strain Ecc71, and concomitantly inhibit the production of rsmB, pel‐1, peh‐1, celV and hrpNEcc transcripts. Multiple copies of rsmB+ DNA, on the other hand, stimulate exoenzyme production by relieving the negative effects of a chromosomal copy of hexA+. The occurrence of hexA homologues and the negative effect of the dosage of hexA71 DNA on rsmB transcripts were also detected in other E. c. carotovora strains as well as Erwinia carotovora atroseptica and Erwinia carotovora betavasculorum. Extrapolating from the findings with LrhA, the Escherichia coli homologue of HexA, and the presence of sprE homologues in E. carotovora subspecies, we propose that HexA71 controls several regulatory pathways in E. carotovora including rsmB transcription and the production of SprEEcc which, in turn, affects RpoS levels. A model is presented that integrates the findings presented here and our current knowledge of the major regulatory network that controls exoprotein production in soft‐rotting Erwinia carotovora subspecies. |
Author | Mukherjee, Asita Cui, Yaya Liu, Yang Ma, Weilei Chatterjee, Arun K. |
Author_xml | – sequence: 1 givenname: Asita surname: Mukherjee fullname: Mukherjee, Asita organization: Department of Plant Microbiology and Pathology, Plant Sciences Unit, 108 Waters Hall, University of Missouri, Columbia, MO 65211, USA – sequence: 2 givenname: Yaya surname: Cui fullname: Cui, Yaya organization: Department of Plant Microbiology and Pathology, Plant Sciences Unit, 108 Waters Hall, University of Missouri, Columbia, MO 65211, USA – sequence: 3 givenname: Weilei surname: Ma fullname: Ma, Weilei organization: Department of Plant Microbiology and Pathology, Plant Sciences Unit, 108 Waters Hall, University of Missouri, Columbia, MO 65211, USA – sequence: 4 givenname: Yang surname: Liu fullname: Liu, Yang organization: Department of Plant Microbiology and Pathology, Plant Sciences Unit, 108 Waters Hall, University of Missouri, Columbia, MO 65211, USA – sequence: 5 givenname: Arun K. surname: Chatterjee fullname: Chatterjee, Arun K. organization: Department of Plant Microbiology and Pathology, Plant Sciences Unit, 108 Waters Hall, University of Missouri, Columbia, MO 65211, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/11220306$$D View this record in MEDLINE/PubMed |
BookMark | eNqNUl1v0zAUjdAQ-4C_gPyEQGqCYydxLSSkMpUxMYrYxseb5bg3rYtjd3bSpT-bf0CybpXgBR4s-9rnHOvec46jA-ssRBFKcZLirHi9StKsIDHhBCcEY5z0i9OkexQd7R8O9ueUHEbHIawwThll-El0mKaEYIqLo-jXEroJchWa-ltttURKete4jfMShbBO_qgbL7VFU6VYiiwsZKM3YLbIw6I1soGA1t7NW9VoZwfJy7W7QtLOkQ_1O3Q5m4yQRAvjSmkeOM4PQOh6ZQXG9Fd-EGlA2zBCayNtgzbatwasgjutZgnopnW-reMANmi7QEEvrDQjNItf0th1rm9JWrc1r2ITL13tAnhtARmpmn6MT6PHlTQBnt3vJ9HX99Pr0w_xxeez89PJRawyXtBYZuOclgUvJc_SqmSK8aoiWAIBxmmBqyJn43LOmeSsyFPOSVZmVJUlI7hieUVPohc73b6fmxZCI2odhialBdcGwUie85ySHvj8HtiWNczF2uta-q14MKkHvN0BlHcheKiE0o0cpjwYYkSKxZAKsRKD4WIwXwypEHepEF0vMP5LYP_Hv6lvdtRbbWD73zwx_XTOac-Od2wdGuj2bOl_iqKPYi6-z85E9uPLFfmIr8U3-hs23eIN |
CitedBy_id | crossref_primary_10_1038_s41564_020_00797_5 crossref_primary_10_1094_MPMI_12_17_0303_R crossref_primary_10_3389_fmicb_2020_621391 crossref_primary_10_1128_JB_01828_07 crossref_primary_10_1128_JB_183_6_1870_1880_2001 crossref_primary_10_1016_j_mib_2007_03_007 crossref_primary_10_1016_j_tim_2007_06_005 crossref_primary_10_1098_rstb_2007_2042 crossref_primary_10_1111_mpp_12168 crossref_primary_10_1046_j_1365_2958_2003_03389_x crossref_primary_10_1128_JB_188_9_3175_3181_2006 crossref_primary_10_1111_j_1365_2958_2007_06042_x crossref_primary_10_1111_mmi_13656 crossref_primary_10_1111_mmi_12369 crossref_primary_10_1094_MPMI_2003_16_3_226 crossref_primary_10_1128_MMBR_69_1_155_194_2005 crossref_primary_10_1128_AEM_01744_13 crossref_primary_10_1186_s12934_023_02051_z crossref_primary_10_1111_1462_2920_14603 crossref_primary_10_3390_horticulturae6010013 crossref_primary_10_1128_JB_187_14_4792_4803_2005 crossref_primary_10_1111_j_1574_6976_2001_tb00583_x crossref_primary_10_3389_fmicb_2018_00348 crossref_primary_10_1099_mic_0_2007_014167_0 crossref_primary_10_1111_mpp_13025 crossref_primary_10_1094_MPMI_2002_15_9_971 crossref_primary_10_1128_JB_184_15_4089_4095_2002 crossref_primary_10_1111_j_1365_2958_2005_04939_x crossref_primary_10_1371_journal_pone_0023440 crossref_primary_10_1146_annurev_phyto_41_052002_095652 crossref_primary_10_1371_journal_pone_0151017 crossref_primary_10_1094_MPMI_2004_17_12_1366 crossref_primary_10_1146_annurev_phyto_41_052002_095656 crossref_primary_10_1139_cjm_2015_0566 crossref_primary_10_1371_journal_pone_0176535 crossref_primary_10_1016_S0966_842X_03_00118_5 crossref_primary_10_1128_IAI_01132_07 crossref_primary_10_3390_ijms141122117 crossref_primary_10_1111_1462_2920_12996 crossref_primary_10_1111_jph_12694 crossref_primary_10_1094_MPMI_01_10_0017 crossref_primary_10_1094_MPMI_2001_14_4_516 crossref_primary_10_11623_frj_2014_22_2_8 crossref_primary_10_1021_acs_jafc_4c07881 crossref_primary_10_1111_j_1365_2958_2009_06834_x crossref_primary_10_1128_MMBR_00052_14 crossref_primary_10_3390_s120303327 crossref_primary_10_1080_1040841X_2023_2247477 crossref_primary_10_1128_AEM_71_8_4655_4663_2005 crossref_primary_10_1111_mpp_12936 crossref_primary_10_1186_1471_2164_14_822 crossref_primary_10_1128_MMBR_66_3_373_395_2002 crossref_primary_10_1016_j_copbio_2009_01_005 crossref_primary_10_1046_j_1365_2958_2002_03032_x crossref_primary_10_1094_MPMI_03_10_0067 crossref_primary_10_1111_mpp_12180 crossref_primary_10_1111_j_1364_3703_2012_00804_x crossref_primary_10_3390_microorganisms8121956 crossref_primary_10_1111_1462_2920_15048 crossref_primary_10_1111_j_1365_2958_2009_06782_x crossref_primary_10_1128_JB_00920_07 crossref_primary_10_1128_JB_00351_06 crossref_primary_10_1111_j_1348_0421_2006_tb03833_x crossref_primary_10_1016_j_femsle_2004_11_045 crossref_primary_10_1099_mic_0_071092_0 crossref_primary_10_1128_JB_00154_09 crossref_primary_10_1046_j_1365_2958_2002_02782_x crossref_primary_10_4236_aim_2012_24065 crossref_primary_10_1111_j_1574_6976_2003_tb00625_x crossref_primary_10_1111_j_1365_2958_2006_05458_x crossref_primary_10_1093_nar_gkad1165 crossref_primary_10_1261_rna_080010_124 crossref_primary_10_1146_annurev_phyto_081211_173013 crossref_primary_10_1007_s00216_006_0701_1 crossref_primary_10_1099_mic_0_28098_0 crossref_primary_10_1128_JB_187_23_8026_8038_2005 crossref_primary_10_3390_microorganisms11071747 |
ContentType | Journal Article |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1046/j.1462-2920.2000.00093.x |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1462-2920 |
EndPage | 215 |
ExternalDocumentID | 11220306 10_1046_j_1462_2920_2000_00093_x EMI93 ark_67375_WNG_4XQS2K0T_V |
Genre | article Research Support, U.S. Gov't, Non-P.H.S Comparative Study Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1OC 29G 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 C45 CAG COF CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD ESX F00 F01 F04 F5P FEDTE G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OBS OIG OVD P2P P2W P2X P4D Q.N Q11 QB0 R.K ROL RX1 SUPJJ TEORI UB1 V8K W8V W99 WBKPD WIH WIK WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 XIH YUY ZZTAW ~02 ~IA ~KM ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM 7X8 AAMMB AEFGJ AGXDD AIDQK AIDYY |
ID | FETCH-LOGICAL-c4963-a4853b69ba941fb7c79ff20ae2e79360f6578bd97a976519924b43cbb720f75f3 |
IEDL.DBID | DR2 |
ISSN | 1462-2912 |
IngestDate | Fri Jul 11 12:25:04 EDT 2025 Wed Feb 19 01:27:38 EST 2025 Thu Apr 24 23:08:20 EDT 2025 Tue Jul 01 00:42:30 EDT 2025 Wed Jan 22 16:41:29 EST 2025 Wed Oct 30 09:51:51 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4963-a4853b69ba941fb7c79ff20ae2e79360f6578bd97a976519924b43cbb720f75f3 |
Notes | ark:/67375/WNG-4XQS2K0T-V istex:1C5883A2AE0686437A35C97B6B23508A63F0E825 ArticleID:EMI93 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PMID | 11220306 |
PQID | 72559532 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_72559532 pubmed_primary_11220306 crossref_citationtrail_10_1046_j_1462_2920_2000_00093_x crossref_primary_10_1046_j_1462_2920_2000_00093_x wiley_primary_10_1046_j_1462_2920_2000_00093_x_EMI93 istex_primary_ark_67375_WNG_4XQS2K0T_V |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2000 |
PublicationDateYYYYMMDD | 2000-04-01 |
PublicationDate_xml | – month: 04 year: 2000 text: April 2000 |
PublicationDecade | 2000 |
PublicationPlace | Oxford BSL |
PublicationPlace_xml | – name: Oxford BSL – name: England |
PublicationTitle | Environmental microbiology |
PublicationTitleAlternate | Environmental Microbiology |
PublicationYear | 2000 |
Publisher | Blackwell Science Ltd |
Publisher_xml | – name: Blackwell Science Ltd |
SSID | ssj0017370 |
Score | 1.9257153 |
Snippet | The soft‐rotting bacterium, Erwinia carotovora ssp. carotovora (E. c. carotovora ), produces an array of extracellular enzymes (= exoenzymes), including... The soft‐rotting bacterium, Erwinia carotovora ssp. carotovora ( E. c. carotovora ), produces an array of extracellular enzymes (= exoenzymes), including... The soft-rotting bacterium, Erwinia carotovora ssp. carotovora (E. c. carotovora), produces an array of extracellular enzymes (= exoenzymes), including pectate... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 203 |
SubjectTerms | 4-Butyrolactone - analogs & derivatives 4-Butyrolactone - analysis 4-Butyrolactone - genetics Bacterial Outer Membrane Proteins - genetics Bacterial Proteins - analysis Bacterial Proteins - genetics Cellulase - genetics DNA-Binding Proteins Escherichia coli Proteins Gene Expression Regulation Lac Operon Mutation Operon Pectobacterium carotovorum - genetics Pectobacterium carotovorum - pathogenicity Plant Diseases - microbiology Polygalacturonase - analysis Polygalacturonase - genetics Polysaccharide-Lyases - analysis Polysaccharide-Lyases - genetics Repressor Proteins - analysis Repressor Proteins - genetics RNA, Bacterial - analysis RNA, Messenger - analysis Sigma Factor - analysis Sigma Factor - genetics Transcription Factors Virulence |
Title | hexA of Erwinia carotovora ssp. carotovora strain Ecc71 negatively regulates production of RpoS and rsmB RNA, a global regulator of extracellular proteins, plant virulence and the quorum-sensing signal, N-(3-oxohexanoyl)-l-homoserine lactone |
URI | https://api.istex.fr/ark:/67375/WNG-4XQS2K0T-V/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1046%2Fj.1462-2920.2000.00093.x https://www.ncbi.nlm.nih.gov/pubmed/11220306 https://www.proquest.com/docview/72559532 |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nj9MwELXQIiQufMOGzzkgBFJTJU4at8eCuqxAqkR3F3qL7MRpq2aTkrSrlhM_gd_I7-DAjN0UFe1hhbhESpRxmng8fq7fvGHsZSJ7SiqpKWM5dcNMBW5X-13XS0SUeToNeGpYvsPo-Cz8MO6Mt_wnyoWx-hC7P9xoZJh4TQNcKluFxDPqtmaQc5eqLZl8k7ZZnbcJTxJ1i_DRaKck5YvA1I3bmvgNqafZ4Lysob2Z6jp99PVlMHQf1Zpp6eg2mzcvZNko8_ZqqdrJt7-0Hv_PG99ht7boFfrW3e6ya7q4x27Yepab--zXVK_7UGYwIF3hmQQqCrQsL9DNoK4X7b1zU5wCBkkifCj0xAiQ5xuo9IQqiukaFlaMFh2HmhwtyhOQRQpVff4WRsN-CyRYOZPGpqzoRpxtKkn7EUSwBaNDMSvqFixydCK4mFUrk2dl2kL0C19XpEfx8_uPmrj8xQSI0iLzFgzx2usAD-W6nFIaULnJ3-Ap5HiYludlbVInIaeSRYV-wM6OBqfvjt1teQk3CTHsuDJEqKIi9NVe6GdKJKKXZdyTmmsMWpGXRRjNVNoTEiFbh2i6oQqDRCnBvUx0suAhOyiw-UMGaTfQKactZw9vCdBcSpkhtCY8hwtgh4nGleJkq71OXzmPDQcgjOwajMfUt1QZlDRbsW_jtcP8neXC6o9cweaV8dadgazmxN8TnfjL8H0cjj-d8I_eafzZYS8ad44xqlDXyEKXqzoWtNLsBNxhj6yX_3m4zzmtMx0WGl-98q-KMa70gsf_ZvaE3bQaCESZesoOltVKP0M0uFTPzTj_DfrPWBo |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF6hVgguvB_h1TkgBFId7LVjJ8eAUgItkUhTyG21a6-TqK4d7KRKOPET-I38Dg7MrO2goB4qxMWSrZ31Y2dnZ7wz38fY81B2lFRSU8VyZHmxcq22dtqWHQZ-bOvI5ZHJ8h34_RPvw7g1ruiAqBamxIfY_HCjmWHsNU1w-iH9utqWrGc5t4huyRScNE143kSHcpcIvk18NdxgSTmBa5jjKhmnTuuptzgv6mlrrdqlz766yBHd9mvNwnRwkyX1K5X5KKfN5UI1w29_oT3-p3e-xW5UDix0S427za7o9A67WlJaru-yX1O96kIWQ4-ghWcSiBdokZ2jpkFRzJtb54afAnphGDiQ6onBIE_WkOsJkYrpAuYlHi3qDnU5nGfHINMI8uLsDQwH3X2QUCKa1DJZTg1xwcklbUlQji0YKIpZWuzDPEE9gvNZvjSlVqYvdIDh65IgKX5-_1FQOn86Acpqkck-DPDaSxcP2SqbUiVQtk5e4SkkeJhmZ1lhqichIdaiVN9jJwe90du-VTFMWKGHlseSHnorykd17XhOrIIw6MQxt6XmGu2Wb8c-GjQVdQKJXluLMnU95bmhUgG346AVu_fZTordP2QQtV0dcdp1trGJi-JSyhi9a3LpMAZusKDWJRFW8Ov0lRNh0gA8vwzDuKCxJXJQgm3FsRWrBnM2kvMSguQSMi-Mum4EZH5KKXxBS3wZvBPe-NMxP7RH4nOD7dX6LNCw0NDIVGfLQgQUbLZc3mAPSjX_c3OHcwo1G8wzynrppxJoWjruo38T22PX-qOPR-Lo_eDwMbteQiJQBtUTtrPIl_opOocL9cxM-t9M6lw1 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF6hViAuvB_h1TkgBFIc7LXjTY6BJhSKIkhbmpu1ttdJFNc2dlIlnPgJ_EZ-Bwdm1nZQUA8V4mLJlmcde7-dnc1-8w1jzwPZ9aUvFWUsh4YT-bbRUVbHMAPhRqYKbR5qlu_QPThxPozb44r_RLkwpT7E5g83GhnaX9MAz8LodbUrWQ9yblC1JZ1v0tKr8xbGk7uOa3YI4fujjZSUJWxdOK6ysWpWT73DeVFLW1PVLn311UVx6HZYq-elwU02r9-opKPMW8uF3wq-_SX2-H9e-Ra7UYWv0CvxdptdUckddrUsaLm-y35N1aoHaQR9EhaeSaCqQIv0HHEGRZG1ts51dQroB4GwIFETrUAeryFXEyoppgrISjVaRA41OcrSI5BJCHlx9gZGw14TJJR6JrVNmtONON3kkjYkiGELWohilhRNyGJEEZzP8qVOtNJtYfgLX5ckSPHz-4-CyPzJBIjTIuMmDPHaSxsP6SqdUh5Quo5f4SnEeJimZ2mhcychpppFibrHTgb947cHRlVfwggc9DuGdDBW8V0Ea9exIl8EohtF3JSKK_Rarhm56M78sCskxmxt4uk6vmMHvi-4GYl2ZN9nOwk2_5BB2LFVyGnP2cRbbDSXUkYYW1NAhyvgBhM1lLygEl-nrxx7mgTguOUijHvUt1QalERbsW-9VYNZG8usFCC5hM0LjdaNgcznROATbe90-M5zxp-P-KF57H1psL0azh66Feoamah0WXiClpptmzfYgxLlfx5ucU4LzQZzNFYv_as8dCxd-9G_me2xa5_2B97H98PDx-x6qYdA9KknbGeRL9VTjAwX_jM95H8DEpZa7Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=hexA+of+Erwinia+carotovora+ssp.+carotovora+strain+Ecc71+negatively+regulates+production+of+RpoS+and+rsmB+RNA%2C+a+global+regulator+of+extracellular+proteins%2C+plant+virulence+and+the+quorum%E2%80%90sensing+signal%2C+N+%E2%80%90%283%E2%80%90oxohexanoyl%29%E2%80%90+l+%E2%80%90homoserine+lactone&rft.jtitle=Environmental+microbiology&rft.au=Mukherjee%2C+Asita&rft.au=Cui%2C+Yaya&rft.au=Ma%2C+Weilei&rft.au=Liu%2C+Yang&rft.date=2000-04-01&rft.issn=1462-2912&rft.eissn=1462-2920&rft.volume=2&rft.issue=2&rft.spage=203&rft.epage=215&rft_id=info:doi/10.1046%2Fj.1462-2920.2000.00093.x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1046_j_1462_2920_2000_00093_x |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1462-2912&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1462-2912&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1462-2912&client=summon |