hexA of Erwinia carotovora ssp. carotovora strain Ecc71 negatively regulates production of RpoS and rsmB RNA, a global regulator of extracellular proteins, plant virulence and the quorum-sensing signal, N-(3-oxohexanoyl)-l-homoserine lactone

The soft‐rotting bacterium, Erwinia carotovora ssp. carotovora (E. c. carotovora ), produces an array of extracellular enzymes (= exoenzymes), including pectate lyase (Pel), polygalacturonase (Peh), cellulase (Cel) and protease (Prt), as well as HarpinEcc, the elicitor of hypersensitive reaction (HR...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental microbiology Vol. 2; no. 2; pp. 203 - 215
Main Authors Mukherjee, Asita, Cui, Yaya, Ma, Weilei, Liu, Yang, Chatterjee, Arun K.
Format Journal Article
LanguageEnglish
Published Oxford BSL Blackwell Science Ltd 01.04.2000
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The soft‐rotting bacterium, Erwinia carotovora ssp. carotovora (E. c. carotovora ), produces an array of extracellular enzymes (= exoenzymes), including pectate lyase (Pel), polygalacturonase (Peh), cellulase (Cel) and protease (Prt), as well as HarpinEcc, the elicitor of hypersensitive reaction (HR). The production of these exoenzymes and HarpinEcc responds to plant products and the quorum‐sensing signal [N‐(3‐oxohexanoyl)‐ l‐homoserine lactone; OHL] and is subject to both transcriptional and post‐transcriptional regulation. hexA of E. c. carotovora strain Ecc71 (hereafter hexA71), like that of another E. c. carotovora strain, negatively controls the production of exoenzymes, OHL and virulence in E. c. carotovora strain Ecc71. In addition to exoenzymes, HexA71 negatively regulates the expression of hrpNEcc, the structural gene for HarpinEcc. Exoenzyme overproduction is abolished by OHL deficiency in a HexA− and OhlI − double mutant, indicating that HexA and OHL are components of a common regulatory pathway controlling exoenzyme production. HexA71 negatively affects RpoS, as the levels of this alternative sigma factor are higher in the HexA− mutant than in the HexA+ strain. However, a HexA− and RpoS− double mutant produces higher levels of exoenzymes and transcripts of pel‐1, peh‐1 and celV genes than the HexA− and RpoS+ parent. Thus, the elevated levels of RpoS protein in the HexA− mutant do not account for exoenzyme overproduction. The following evidence associates for the first time the phenotypic changes in the HexA− mutant to overproduction of rsmB RNA, a global regulator of exoenzymes, HarpinEcc, OHL and secondary metabolites. Analyses of rsmB transcripts and expression of an rsmB–lacZ operon fusion in E. c. carotovora strain Ecc71 revealed that HexA71 negatively regulates transcription of rsmB. Multiple copies of hexA71+ DNA suppress various phenotypes, including exoenzyme production in E. c. carotovora strain Ecc71, and concomitantly inhibit the production of rsmB, pel‐1, peh‐1, celV and hrpNEcc transcripts. Multiple copies of rsmB+ DNA, on the other hand, stimulate exoenzyme production by relieving the negative effects of a chromosomal copy of hexA+. The occurrence of hexA homologues and the negative effect of the dosage of hexA71 DNA on rsmB transcripts were also detected in other E. c. carotovora strains as well as Erwinia carotovora atroseptica and Erwinia carotovora betavasculorum. Extrapolating from the findings with LrhA, the Escherichia coli homologue of HexA, and the presence of sprE homologues in E. carotovora subspecies, we propose that HexA71 controls several regulatory pathways in E. carotovora including rsmB transcription and the production of SprEEcc which, in turn, affects RpoS levels. A model is presented that integrates the findings presented here and our current knowledge of the major regulatory network that controls exoprotein production in soft‐rotting Erwinia carotovora subspecies.
AbstractList The soft-rotting bacterium, Erwinia carotovora ssp. carotovora (E. c. carotovora), produces an array of extracellular enzymes (= exoenzymes), including pectate lyase (Pel), polygalacturonase (Peh), cellulase (Cel) and protease (Prt), as well as HarpinEcc, the elicitor of hypersensitive reaction (HR). The production of these exoenzymes and HarpinEcc responds to plant products and the quorum-sensing signal [N-(3-oxohexanoyl)-L-homoserine lactone; OHL] and is subject to both transcriptional and post-transcriptional regulation. hexA of E. c. carotovora strain Ecc71 (hereafter hexA71), like that of another E. c. carotovora strain, negatively controls the production of exoenzymes, OHL and virulence in E. c. carotovora strain Ecc71. In addition to exoenzymes, HexA71 negatively regulates the expression of hrpNEcc, the structural gene for HarpinEcc. Exoenzyme overproduction is abolished by OHL deficiency in a HexA- and Ohll- double mutant, indicating that HexA and OHL are components of a common regulatory pathway controlling exoenzyme production. HexA71 negatively affects RpoS, as the levels of this alternative sigma factor are higher in the HexA- mutant than in the HexA+ strain. However, a HexA- and RpoS double mutant produces higher levels of exoenzymes and transcripts of pel-1, peh-1 and celVgenes than the HexA- and RpoS+ parent. Thus, the elevated levels of RpoS protein in the HexA- mutant do not account for exoenzyme overproduction. The following evidence associates for the first time the phenotypic changes in the HexA mutant to overproduction of rsmB RNA, a global regulator of exoenzymes, HarpinEcc, OHL and secondary metabolites. Analyses of rsmB transcripts and expression of an rsmB-lacZoperon fusion in E. c. carotovora strain Ecc71 revealed that HexA71 negatively regulates transcription of rsmB. Multiple copies of hexA71+ DNA suppress various phenotypes, including exoenzyme production in E. c. carotovora strain Ecc71, and concomitantly inhibit the production of rsmB, pel-1, peh-1, celV and hrpNEcc transcripts. Multiple copies of rsmB+ DNA, on the other hand, stimulate exoenzyme production by relieving the negative effects of a chromosomal copy of hexA+. The occurrence of hexA homologues and the negative effect of the dosage of hexA71 DNA on rsmB transcripts were also detected in other E. c. carotovora strains as well as Erwinia carotovora atroseptica and Erwinia carotovora betavasculorum. Extrapolating from the findings with LrhA, the Escherichia coli homologue of HexA, and the presence of sprE homologues in E. carotovora subspecies, we propose that HexA71 controls several regulatory pathways in E. carotovora including rsmB transcription and the production of SprEEcc which, in turn, affects RpoS levels. A model is presented that integrates the findings presented here and our current knowledge of the major regulatory network that controls exoprotein production in soft-rotting Erwinia carotovora subspecies.The soft-rotting bacterium, Erwinia carotovora ssp. carotovora (E. c. carotovora), produces an array of extracellular enzymes (= exoenzymes), including pectate lyase (Pel), polygalacturonase (Peh), cellulase (Cel) and protease (Prt), as well as HarpinEcc, the elicitor of hypersensitive reaction (HR). The production of these exoenzymes and HarpinEcc responds to plant products and the quorum-sensing signal [N-(3-oxohexanoyl)-L-homoserine lactone; OHL] and is subject to both transcriptional and post-transcriptional regulation. hexA of E. c. carotovora strain Ecc71 (hereafter hexA71), like that of another E. c. carotovora strain, negatively controls the production of exoenzymes, OHL and virulence in E. c. carotovora strain Ecc71. In addition to exoenzymes, HexA71 negatively regulates the expression of hrpNEcc, the structural gene for HarpinEcc. Exoenzyme overproduction is abolished by OHL deficiency in a HexA- and Ohll- double mutant, indicating that HexA and OHL are components of a common regulatory pathway controlling exoenzyme production. HexA71 negatively affects RpoS, as the levels of this alternative sigma factor are higher in the HexA- mutant than in the HexA+ strain. However, a HexA- and RpoS double mutant produces higher levels of exoenzymes and transcripts of pel-1, peh-1 and celVgenes than the HexA- and RpoS+ parent. Thus, the elevated levels of RpoS protein in the HexA- mutant do not account for exoenzyme overproduction. The following evidence associates for the first time the phenotypic changes in the HexA mutant to overproduction of rsmB RNA, a global regulator of exoenzymes, HarpinEcc, OHL and secondary metabolites. Analyses of rsmB transcripts and expression of an rsmB-lacZoperon fusion in E. c. carotovora strain Ecc71 revealed that HexA71 negatively regulates transcription of rsmB. Multiple copies of hexA71+ DNA suppress various phenotypes, including exoenzyme production in E. c. carotovora strain Ecc71, and concomitantly inhibit the production of rsmB, pel-1, peh-1, celV and hrpNEcc transcripts. Multiple copies of rsmB+ DNA, on the other hand, stimulate exoenzyme production by relieving the negative effects of a chromosomal copy of hexA+. The occurrence of hexA homologues and the negative effect of the dosage of hexA71 DNA on rsmB transcripts were also detected in other E. c. carotovora strains as well as Erwinia carotovora atroseptica and Erwinia carotovora betavasculorum. Extrapolating from the findings with LrhA, the Escherichia coli homologue of HexA, and the presence of sprE homologues in E. carotovora subspecies, we propose that HexA71 controls several regulatory pathways in E. carotovora including rsmB transcription and the production of SprEEcc which, in turn, affects RpoS levels. A model is presented that integrates the findings presented here and our current knowledge of the major regulatory network that controls exoprotein production in soft-rotting Erwinia carotovora subspecies.
The soft-rotting bacterium, Erwinia carotovora ssp. carotovora (E. c. carotovora), produces an array of extracellular enzymes (= exoenzymes), including pectate lyase (Pel), polygalacturonase (Peh), cellulase (Cel) and protease (Prt), as well as HarpinEcc, the elicitor of hypersensitive reaction (HR). The production of these exoenzymes and HarpinEcc responds to plant products and the quorum-sensing signal [N-(3-oxohexanoyl)-L-homoserine lactone; OHL] and is subject to both transcriptional and post-transcriptional regulation. hexA of E. c. carotovora strain Ecc71 (hereafter hexA71), like that of another E. c. carotovora strain, negatively controls the production of exoenzymes, OHL and virulence in E. c. carotovora strain Ecc71. In addition to exoenzymes, HexA71 negatively regulates the expression of hrpNEcc, the structural gene for HarpinEcc. Exoenzyme overproduction is abolished by OHL deficiency in a HexA- and Ohll- double mutant, indicating that HexA and OHL are components of a common regulatory pathway controlling exoenzyme production. HexA71 negatively affects RpoS, as the levels of this alternative sigma factor are higher in the HexA- mutant than in the HexA+ strain. However, a HexA- and RpoS double mutant produces higher levels of exoenzymes and transcripts of pel-1, peh-1 and celVgenes than the HexA- and RpoS+ parent. Thus, the elevated levels of RpoS protein in the HexA- mutant do not account for exoenzyme overproduction. The following evidence associates for the first time the phenotypic changes in the HexA mutant to overproduction of rsmB RNA, a global regulator of exoenzymes, HarpinEcc, OHL and secondary metabolites. Analyses of rsmB transcripts and expression of an rsmB-lacZoperon fusion in E. c. carotovora strain Ecc71 revealed that HexA71 negatively regulates transcription of rsmB. Multiple copies of hexA71+ DNA suppress various phenotypes, including exoenzyme production in E. c. carotovora strain Ecc71, and concomitantly inhibit the production of rsmB, pel-1, peh-1, celV and hrpNEcc transcripts. Multiple copies of rsmB+ DNA, on the other hand, stimulate exoenzyme production by relieving the negative effects of a chromosomal copy of hexA+. The occurrence of hexA homologues and the negative effect of the dosage of hexA71 DNA on rsmB transcripts were also detected in other E. c. carotovora strains as well as Erwinia carotovora atroseptica and Erwinia carotovora betavasculorum. Extrapolating from the findings with LrhA, the Escherichia coli homologue of HexA, and the presence of sprE homologues in E. carotovora subspecies, we propose that HexA71 controls several regulatory pathways in E. carotovora including rsmB transcription and the production of SprEEcc which, in turn, affects RpoS levels. A model is presented that integrates the findings presented here and our current knowledge of the major regulatory network that controls exoprotein production in soft-rotting Erwinia carotovora subspecies.
The soft‐rotting bacterium, Erwinia carotovora ssp. carotovora ( E. c. carotovora  ), produces an array of extracellular enzymes (= exoenzymes), including pectate lyase (Pel), polygalacturonase (Peh), cellulase (Cel) and protease (Prt), as well as Harpin Ecc , the elicitor of hypersensitive reaction (HR). The production of these exoenzymes and Harpin Ecc responds to plant products and the quorum‐sensing signal [ N ‐(3‐oxohexanoyl)‐ l ‐homoserine lactone; OHL] and is subject to both transcriptional and post‐transcriptional regulation. hexA of E. c. carotovora strain Ecc71 (hereafter hexA 71 ), like that of another E. c. carotovora strain, negatively controls the production of exoenzymes, OHL and virulence in E. c. carotovora strain Ecc71. In addition to exoenzymes, HexA 71 negatively regulates the expression of hrpN Ecc , the structural gene for Harpin Ecc . Exoenzyme overproduction is abolished by OHL deficiency in a HexA − and OhlI  − double mutant, indicating that HexA and OHL are components of a common regulatory pathway controlling exoenzyme production. HexA 71 negatively affects RpoS, as the levels of this alternative sigma factor are higher in the HexA − mutant than in the HexA + strain. However, a HexA − and RpoS − double mutant produces higher levels of exoenzymes and transcripts of pel‐1 , peh‐1 and celV genes than the HexA − and RpoS + parent. Thus, the elevated levels of RpoS protein in the HexA − mutant do not account for exoenzyme overproduction. The following evidence associates for the first time the phenotypic changes in the HexA − mutant to overproduction of rsmB RNA, a global regulator of exoenzymes, Harpin Ecc , OHL and secondary metabolites. Analyses of rsmB transcripts and expression of an rsmB–lacZ operon fusion in E. c. carotovora strain Ecc71 revealed that HexA 71 negatively regulates transcription of rsmB . Multiple copies of hexA 71 + DNA suppress various phenotypes, including exoenzyme production in E. c. carotovora strain Ecc71, and concomitantly inhibit the production of rsmB , pel‐1 , peh‐1 , celV and hrpN Ecc transcripts. Multiple copies of rsmB + DNA, on the other hand, stimulate exoenzyme production by relieving the negative effects of a chromosomal copy of hexA + . The occurrence of hexA homologues and the negative effect of the dosage of hexA 71 DNA on rsmB transcripts were also detected in other E. c. carotovora strains as well as Erwinia carotovora atroseptica and Erwinia carotovora betavasculorum . Extrapolating from the findings with LrhA, the Escherichia coli homologue of HexA, and the presence of sprE homologues in E. carotovora subspecies, we propose that HexA 71 controls several regulatory pathways in E. carotovora including rsmB transcription and the production of SprE Ecc which, in turn, affects RpoS levels. A model is presented that integrates the findings presented here and our current knowledge of the major regulatory network that controls exoprotein production in soft‐rotting Erwinia carotovora subspecies.
The soft‐rotting bacterium, Erwinia carotovora ssp. carotovora (E. c. carotovora ), produces an array of extracellular enzymes (= exoenzymes), including pectate lyase (Pel), polygalacturonase (Peh), cellulase (Cel) and protease (Prt), as well as HarpinEcc, the elicitor of hypersensitive reaction (HR). The production of these exoenzymes and HarpinEcc responds to plant products and the quorum‐sensing signal [N‐(3‐oxohexanoyl)‐ l‐homoserine lactone; OHL] and is subject to both transcriptional and post‐transcriptional regulation. hexA of E. c. carotovora strain Ecc71 (hereafter hexA71), like that of another E. c. carotovora strain, negatively controls the production of exoenzymes, OHL and virulence in E. c. carotovora strain Ecc71. In addition to exoenzymes, HexA71 negatively regulates the expression of hrpNEcc, the structural gene for HarpinEcc. Exoenzyme overproduction is abolished by OHL deficiency in a HexA− and OhlI − double mutant, indicating that HexA and OHL are components of a common regulatory pathway controlling exoenzyme production. HexA71 negatively affects RpoS, as the levels of this alternative sigma factor are higher in the HexA− mutant than in the HexA+ strain. However, a HexA− and RpoS− double mutant produces higher levels of exoenzymes and transcripts of pel‐1, peh‐1 and celV genes than the HexA− and RpoS+ parent. Thus, the elevated levels of RpoS protein in the HexA− mutant do not account for exoenzyme overproduction. The following evidence associates for the first time the phenotypic changes in the HexA− mutant to overproduction of rsmB RNA, a global regulator of exoenzymes, HarpinEcc, OHL and secondary metabolites. Analyses of rsmB transcripts and expression of an rsmB–lacZ operon fusion in E. c. carotovora strain Ecc71 revealed that HexA71 negatively regulates transcription of rsmB. Multiple copies of hexA71+ DNA suppress various phenotypes, including exoenzyme production in E. c. carotovora strain Ecc71, and concomitantly inhibit the production of rsmB, pel‐1, peh‐1, celV and hrpNEcc transcripts. Multiple copies of rsmB+ DNA, on the other hand, stimulate exoenzyme production by relieving the negative effects of a chromosomal copy of hexA+. The occurrence of hexA homologues and the negative effect of the dosage of hexA71 DNA on rsmB transcripts were also detected in other E. c. carotovora strains as well as Erwinia carotovora atroseptica and Erwinia carotovora betavasculorum. Extrapolating from the findings with LrhA, the Escherichia coli homologue of HexA, and the presence of sprE homologues in E. carotovora subspecies, we propose that HexA71 controls several regulatory pathways in E. carotovora including rsmB transcription and the production of SprEEcc which, in turn, affects RpoS levels. A model is presented that integrates the findings presented here and our current knowledge of the major regulatory network that controls exoprotein production in soft‐rotting Erwinia carotovora subspecies.
Author Mukherjee, Asita
Cui, Yaya
Liu, Yang
Ma, Weilei
Chatterjee, Arun K.
Author_xml – sequence: 1
  givenname: Asita
  surname: Mukherjee
  fullname: Mukherjee, Asita
  organization: Department of Plant Microbiology and Pathology, Plant Sciences Unit, 108 Waters Hall, University of Missouri, Columbia, MO 65211, USA
– sequence: 2
  givenname: Yaya
  surname: Cui
  fullname: Cui, Yaya
  organization: Department of Plant Microbiology and Pathology, Plant Sciences Unit, 108 Waters Hall, University of Missouri, Columbia, MO 65211, USA
– sequence: 3
  givenname: Weilei
  surname: Ma
  fullname: Ma, Weilei
  organization: Department of Plant Microbiology and Pathology, Plant Sciences Unit, 108 Waters Hall, University of Missouri, Columbia, MO 65211, USA
– sequence: 4
  givenname: Yang
  surname: Liu
  fullname: Liu, Yang
  organization: Department of Plant Microbiology and Pathology, Plant Sciences Unit, 108 Waters Hall, University of Missouri, Columbia, MO 65211, USA
– sequence: 5
  givenname: Arun K.
  surname: Chatterjee
  fullname: Chatterjee, Arun K.
  organization: Department of Plant Microbiology and Pathology, Plant Sciences Unit, 108 Waters Hall, University of Missouri, Columbia, MO 65211, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/11220306$$D View this record in MEDLINE/PubMed
BookMark eNqNUl1v0zAUjdAQ-4C_gPyEQGqCYydxLSSkMpUxMYrYxseb5bg3rYtjd3bSpT-bf0CybpXgBR4s-9rnHOvec46jA-ssRBFKcZLirHi9StKsIDHhBCcEY5z0i9OkexQd7R8O9ueUHEbHIawwThll-El0mKaEYIqLo-jXEroJchWa-ltttURKete4jfMShbBO_qgbL7VFU6VYiiwsZKM3YLbIw6I1soGA1t7NW9VoZwfJy7W7QtLOkQ_1O3Q5m4yQRAvjSmkeOM4PQOh6ZQXG9Fd-EGlA2zBCayNtgzbatwasgjutZgnopnW-reMANmi7QEEvrDQjNItf0th1rm9JWrc1r2ITL13tAnhtARmpmn6MT6PHlTQBnt3vJ9HX99Pr0w_xxeez89PJRawyXtBYZuOclgUvJc_SqmSK8aoiWAIBxmmBqyJn43LOmeSsyFPOSVZmVJUlI7hieUVPohc73b6fmxZCI2odhialBdcGwUie85ySHvj8HtiWNczF2uta-q14MKkHvN0BlHcheKiE0o0cpjwYYkSKxZAKsRKD4WIwXwypEHepEF0vMP5LYP_Hv6lvdtRbbWD73zwx_XTOac-Od2wdGuj2bOl_iqKPYi6-z85E9uPLFfmIr8U3-hs23eIN
CitedBy_id crossref_primary_10_1038_s41564_020_00797_5
crossref_primary_10_1094_MPMI_12_17_0303_R
crossref_primary_10_3389_fmicb_2020_621391
crossref_primary_10_1128_JB_01828_07
crossref_primary_10_1128_JB_183_6_1870_1880_2001
crossref_primary_10_1016_j_mib_2007_03_007
crossref_primary_10_1016_j_tim_2007_06_005
crossref_primary_10_1098_rstb_2007_2042
crossref_primary_10_1111_mpp_12168
crossref_primary_10_1046_j_1365_2958_2003_03389_x
crossref_primary_10_1128_JB_188_9_3175_3181_2006
crossref_primary_10_1111_j_1365_2958_2007_06042_x
crossref_primary_10_1111_mmi_13656
crossref_primary_10_1111_mmi_12369
crossref_primary_10_1094_MPMI_2003_16_3_226
crossref_primary_10_1128_MMBR_69_1_155_194_2005
crossref_primary_10_1128_AEM_01744_13
crossref_primary_10_1186_s12934_023_02051_z
crossref_primary_10_1111_1462_2920_14603
crossref_primary_10_3390_horticulturae6010013
crossref_primary_10_1128_JB_187_14_4792_4803_2005
crossref_primary_10_1111_j_1574_6976_2001_tb00583_x
crossref_primary_10_3389_fmicb_2018_00348
crossref_primary_10_1099_mic_0_2007_014167_0
crossref_primary_10_1111_mpp_13025
crossref_primary_10_1094_MPMI_2002_15_9_971
crossref_primary_10_1128_JB_184_15_4089_4095_2002
crossref_primary_10_1111_j_1365_2958_2005_04939_x
crossref_primary_10_1371_journal_pone_0023440
crossref_primary_10_1146_annurev_phyto_41_052002_095652
crossref_primary_10_1371_journal_pone_0151017
crossref_primary_10_1094_MPMI_2004_17_12_1366
crossref_primary_10_1146_annurev_phyto_41_052002_095656
crossref_primary_10_1139_cjm_2015_0566
crossref_primary_10_1371_journal_pone_0176535
crossref_primary_10_1016_S0966_842X_03_00118_5
crossref_primary_10_1128_IAI_01132_07
crossref_primary_10_3390_ijms141122117
crossref_primary_10_1111_1462_2920_12996
crossref_primary_10_1111_jph_12694
crossref_primary_10_1094_MPMI_01_10_0017
crossref_primary_10_1094_MPMI_2001_14_4_516
crossref_primary_10_11623_frj_2014_22_2_8
crossref_primary_10_1021_acs_jafc_4c07881
crossref_primary_10_1111_j_1365_2958_2009_06834_x
crossref_primary_10_1128_MMBR_00052_14
crossref_primary_10_3390_s120303327
crossref_primary_10_1080_1040841X_2023_2247477
crossref_primary_10_1128_AEM_71_8_4655_4663_2005
crossref_primary_10_1111_mpp_12936
crossref_primary_10_1186_1471_2164_14_822
crossref_primary_10_1128_MMBR_66_3_373_395_2002
crossref_primary_10_1016_j_copbio_2009_01_005
crossref_primary_10_1046_j_1365_2958_2002_03032_x
crossref_primary_10_1094_MPMI_03_10_0067
crossref_primary_10_1111_mpp_12180
crossref_primary_10_1111_j_1364_3703_2012_00804_x
crossref_primary_10_3390_microorganisms8121956
crossref_primary_10_1111_1462_2920_15048
crossref_primary_10_1111_j_1365_2958_2009_06782_x
crossref_primary_10_1128_JB_00920_07
crossref_primary_10_1128_JB_00351_06
crossref_primary_10_1111_j_1348_0421_2006_tb03833_x
crossref_primary_10_1016_j_femsle_2004_11_045
crossref_primary_10_1099_mic_0_071092_0
crossref_primary_10_1128_JB_00154_09
crossref_primary_10_1046_j_1365_2958_2002_02782_x
crossref_primary_10_4236_aim_2012_24065
crossref_primary_10_1111_j_1574_6976_2003_tb00625_x
crossref_primary_10_1111_j_1365_2958_2006_05458_x
crossref_primary_10_1093_nar_gkad1165
crossref_primary_10_1261_rna_080010_124
crossref_primary_10_1146_annurev_phyto_081211_173013
crossref_primary_10_1007_s00216_006_0701_1
crossref_primary_10_1099_mic_0_28098_0
crossref_primary_10_1128_JB_187_23_8026_8038_2005
crossref_primary_10_3390_microorganisms11071747
ContentType Journal Article
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1046/j.1462-2920.2000.00093.x
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1462-2920
EndPage 215
ExternalDocumentID 11220306
10_1046_j_1462_2920_2000_00093_x
EMI93
ark_67375_WNG_4XQS2K0T_V
Genre article
Research Support, U.S. Gov't, Non-P.H.S
Comparative Study
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1OC
29G
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
C45
CAG
COF
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FEDTE
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OBS
OIG
OVD
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
ROL
RX1
SUPJJ
TEORI
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XIH
YUY
ZZTAW
~02
~IA
~KM
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
ID FETCH-LOGICAL-c4963-a4853b69ba941fb7c79ff20ae2e79360f6578bd97a976519924b43cbb720f75f3
IEDL.DBID DR2
ISSN 1462-2912
IngestDate Fri Jul 11 12:25:04 EDT 2025
Wed Feb 19 01:27:38 EST 2025
Thu Apr 24 23:08:20 EDT 2025
Tue Jul 01 00:42:30 EDT 2025
Wed Jan 22 16:41:29 EST 2025
Wed Oct 30 09:51:51 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4963-a4853b69ba941fb7c79ff20ae2e79360f6578bd97a976519924b43cbb720f75f3
Notes ark:/67375/WNG-4XQS2K0T-V
istex:1C5883A2AE0686437A35C97B6B23508A63F0E825
ArticleID:EMI93
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PMID 11220306
PQID 72559532
PQPubID 23479
PageCount 13
ParticipantIDs proquest_miscellaneous_72559532
pubmed_primary_11220306
crossref_citationtrail_10_1046_j_1462_2920_2000_00093_x
crossref_primary_10_1046_j_1462_2920_2000_00093_x
wiley_primary_10_1046_j_1462_2920_2000_00093_x_EMI93
istex_primary_ark_67375_WNG_4XQS2K0T_V
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2000
PublicationDateYYYYMMDD 2000-04-01
PublicationDate_xml – month: 04
  year: 2000
  text: April 2000
PublicationDecade 2000
PublicationPlace Oxford BSL
PublicationPlace_xml – name: Oxford BSL
– name: England
PublicationTitle Environmental microbiology
PublicationTitleAlternate Environmental Microbiology
PublicationYear 2000
Publisher Blackwell Science Ltd
Publisher_xml – name: Blackwell Science Ltd
SSID ssj0017370
Score 1.9257153
Snippet The soft‐rotting bacterium, Erwinia carotovora ssp. carotovora (E. c. carotovora ), produces an array of extracellular enzymes (= exoenzymes), including...
The soft‐rotting bacterium, Erwinia carotovora ssp. carotovora ( E. c. carotovora  ), produces an array of extracellular enzymes (= exoenzymes), including...
The soft-rotting bacterium, Erwinia carotovora ssp. carotovora (E. c. carotovora), produces an array of extracellular enzymes (= exoenzymes), including pectate...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 203
SubjectTerms 4-Butyrolactone - analogs & derivatives
4-Butyrolactone - analysis
4-Butyrolactone - genetics
Bacterial Outer Membrane Proteins - genetics
Bacterial Proteins - analysis
Bacterial Proteins - genetics
Cellulase - genetics
DNA-Binding Proteins
Escherichia coli Proteins
Gene Expression Regulation
Lac Operon
Mutation
Operon
Pectobacterium carotovorum - genetics
Pectobacterium carotovorum - pathogenicity
Plant Diseases - microbiology
Polygalacturonase - analysis
Polygalacturonase - genetics
Polysaccharide-Lyases - analysis
Polysaccharide-Lyases - genetics
Repressor Proteins - analysis
Repressor Proteins - genetics
RNA, Bacterial - analysis
RNA, Messenger - analysis
Sigma Factor - analysis
Sigma Factor - genetics
Transcription Factors
Virulence
Title hexA of Erwinia carotovora ssp. carotovora strain Ecc71 negatively regulates production of RpoS and rsmB RNA, a global regulator of extracellular proteins, plant virulence and the quorum-sensing signal, N-(3-oxohexanoyl)-l-homoserine lactone
URI https://api.istex.fr/ark:/67375/WNG-4XQS2K0T-V/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1046%2Fj.1462-2920.2000.00093.x
https://www.ncbi.nlm.nih.gov/pubmed/11220306
https://www.proquest.com/docview/72559532
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nj9MwELXQIiQufMOGzzkgBFJTJU4at8eCuqxAqkR3F3qL7MRpq2aTkrSrlhM_gd_I7-DAjN0UFe1hhbhESpRxmng8fq7fvGHsZSJ7SiqpKWM5dcNMBW5X-13XS0SUeToNeGpYvsPo-Cz8MO6Mt_wnyoWx-hC7P9xoZJh4TQNcKluFxDPqtmaQc5eqLZl8k7ZZnbcJTxJ1i_DRaKck5YvA1I3bmvgNqafZ4Lysob2Z6jp99PVlMHQf1Zpp6eg2mzcvZNko8_ZqqdrJt7-0Hv_PG99ht7boFfrW3e6ya7q4x27Yepab--zXVK_7UGYwIF3hmQQqCrQsL9DNoK4X7b1zU5wCBkkifCj0xAiQ5xuo9IQqiukaFlaMFh2HmhwtyhOQRQpVff4WRsN-CyRYOZPGpqzoRpxtKkn7EUSwBaNDMSvqFixydCK4mFUrk2dl2kL0C19XpEfx8_uPmrj8xQSI0iLzFgzx2usAD-W6nFIaULnJ3-Ap5HiYludlbVInIaeSRYV-wM6OBqfvjt1teQk3CTHsuDJEqKIi9NVe6GdKJKKXZdyTmmsMWpGXRRjNVNoTEiFbh2i6oQqDRCnBvUx0suAhOyiw-UMGaTfQKactZw9vCdBcSpkhtCY8hwtgh4nGleJkq71OXzmPDQcgjOwajMfUt1QZlDRbsW_jtcP8neXC6o9cweaV8dadgazmxN8TnfjL8H0cjj-d8I_eafzZYS8ad44xqlDXyEKXqzoWtNLsBNxhj6yX_3m4zzmtMx0WGl-98q-KMa70gsf_ZvaE3bQaCESZesoOltVKP0M0uFTPzTj_DfrPWBo
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF6hVgguvB_h1TkgBFId7LVjJ8eAUgItkUhTyG21a6-TqK4d7KRKOPET-I38Dg7MrO2goB4qxMWSrZ31Y2dnZ7wz38fY81B2lFRSU8VyZHmxcq22dtqWHQZ-bOvI5ZHJ8h34_RPvw7g1ruiAqBamxIfY_HCjmWHsNU1w-iH9utqWrGc5t4huyRScNE143kSHcpcIvk18NdxgSTmBa5jjKhmnTuuptzgv6mlrrdqlz766yBHd9mvNwnRwkyX1K5X5KKfN5UI1w29_oT3-p3e-xW5UDix0S427za7o9A67WlJaru-yX1O96kIWQ4-ghWcSiBdokZ2jpkFRzJtb54afAnphGDiQ6onBIE_WkOsJkYrpAuYlHi3qDnU5nGfHINMI8uLsDQwH3X2QUCKa1DJZTg1xwcklbUlQji0YKIpZWuzDPEE9gvNZvjSlVqYvdIDh65IgKX5-_1FQOn86Acpqkck-DPDaSxcP2SqbUiVQtk5e4SkkeJhmZ1lhqichIdaiVN9jJwe90du-VTFMWKGHlseSHnorykd17XhOrIIw6MQxt6XmGu2Wb8c-GjQVdQKJXluLMnU95bmhUgG346AVu_fZTordP2QQtV0dcdp1trGJi-JSyhi9a3LpMAZusKDWJRFW8Ov0lRNh0gA8vwzDuKCxJXJQgm3FsRWrBnM2kvMSguQSMi-Mum4EZH5KKXxBS3wZvBPe-NMxP7RH4nOD7dX6LNCw0NDIVGfLQgQUbLZc3mAPSjX_c3OHcwo1G8wzynrppxJoWjruo38T22PX-qOPR-Lo_eDwMbteQiJQBtUTtrPIl_opOocL9cxM-t9M6lw1
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF6hViAuvB_h1TkgBFIc7LXjTY6BJhSKIkhbmpu1ttdJFNc2dlIlnPgJ_EZ-Bwdm1nZQUA8V4mLJlmcde7-dnc1-8w1jzwPZ9aUvFWUsh4YT-bbRUVbHMAPhRqYKbR5qlu_QPThxPozb44r_RLkwpT7E5g83GhnaX9MAz8LodbUrWQ9yblC1JZ1v0tKr8xbGk7uOa3YI4fujjZSUJWxdOK6ysWpWT73DeVFLW1PVLn311UVx6HZYq-elwU02r9-opKPMW8uF3wq-_SX2-H9e-Ra7UYWv0CvxdptdUckddrUsaLm-y35N1aoHaQR9EhaeSaCqQIv0HHEGRZG1ts51dQroB4GwIFETrUAeryFXEyoppgrISjVaRA41OcrSI5BJCHlx9gZGw14TJJR6JrVNmtONON3kkjYkiGELWohilhRNyGJEEZzP8qVOtNJtYfgLX5ckSPHz-4-CyPzJBIjTIuMmDPHaSxsP6SqdUh5Quo5f4SnEeJimZ2mhcychpppFibrHTgb947cHRlVfwggc9DuGdDBW8V0Ea9exIl8EohtF3JSKK_Rarhm56M78sCskxmxt4uk6vmMHvi-4GYl2ZN9nOwk2_5BB2LFVyGnP2cRbbDSXUkYYW1NAhyvgBhM1lLygEl-nrxx7mgTguOUijHvUt1QalERbsW-9VYNZG8usFCC5hM0LjdaNgcznROATbe90-M5zxp-P-KF57H1psL0azh66Feoamah0WXiClpptmzfYgxLlfx5ucU4LzQZzNFYv_as8dCxd-9G_me2xa5_2B97H98PDx-x6qYdA9KknbGeRL9VTjAwX_jM95H8DEpZa7Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=hexA+of+Erwinia+carotovora+ssp.+carotovora+strain+Ecc71+negatively+regulates+production+of+RpoS+and+rsmB+RNA%2C+a+global+regulator+of+extracellular+proteins%2C+plant+virulence+and+the+quorum%E2%80%90sensing+signal%2C+N+%E2%80%90%283%E2%80%90oxohexanoyl%29%E2%80%90+l+%E2%80%90homoserine+lactone&rft.jtitle=Environmental+microbiology&rft.au=Mukherjee%2C+Asita&rft.au=Cui%2C+Yaya&rft.au=Ma%2C+Weilei&rft.au=Liu%2C+Yang&rft.date=2000-04-01&rft.issn=1462-2912&rft.eissn=1462-2920&rft.volume=2&rft.issue=2&rft.spage=203&rft.epage=215&rft_id=info:doi/10.1046%2Fj.1462-2920.2000.00093.x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1046_j_1462_2920_2000_00093_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1462-2912&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1462-2912&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1462-2912&client=summon