WISP2 regulates preadipocyte commitment and PPARγ activation by BMP4

Inability to recruit new adipose cells following weight gain leads to inappropriate enlargement of existing cells (hypertrophic obesity) associated with inflammation and a dysfunctional adipose tissue. We found increased expression of WNT1 inducible signaling pathway protein 2 (WISP2) and other mark...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 110; no. 7; pp. 2563 - 2568
Main Authors Hammarstedt, Ann, Hedjazifar, Shahram, Jenndahl, Lachmi, Gogg, Silvia, Grünberg, John, Gustafson, Birgit, Klimcakova, Eva, Stich, Vladimir, Langin, Dominique, Laakso, Markku, Smith, Ulf
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 12.02.2013
National Acad Sciences
Subjects
Online AccessGet full text
ISSN0027-8424
1091-6490
1091-6490
DOI10.1073/pnas.1211255110

Cover

Abstract Inability to recruit new adipose cells following weight gain leads to inappropriate enlargement of existing cells (hypertrophic obesity) associated with inflammation and a dysfunctional adipose tissue. We found increased expression of WNT1 inducible signaling pathway protein 2 (WISP2) and other markers of WNT activation in human abdominal s.c. adipose tissue characterized by hypertrophic obesity combined with increased visceral fat accumulation and insulin resistance. WISP2 activation in the s.c. adipose tissue, but not in visceral fat, identified the metabolic syndrome in equally obese individuals. WISP2 is a novel adipokine, highly expressed and secreted by adipose precursor cells. Knocking down WISP2 induced spontaneous differentiation of 3T3-L1 and human preadipocytes and allowed NIH 3T3 fibroblasts to become committed to the adipose lineage by bone morphogenetic protein 4 (BMP4). WISP2 forms a cytosolic complex with the peroxisome proliferator-activated receptor γ (PPARγ) transcriptional activator zinc finger protein 423 (Zfp423), and this complex is dissociated by BMP4 in a SMAD-dependent manner, thereby allowing Zfp423 to enter the nucleus, activate PPARγ, and commit the cells to the adipose lineage. The importance of intracellular Wisp2 protein for BMP4-induced adipogenic commitment and PPARγ activation was verified by expressing a mutant Wisp2 protein lacking the endoplasmic reticulum signal and secretion sequence. Secreted Wnt/Wisp2 also inhibits differentiation and PPARγ activation, albeit not through Zfp423 nuclear translocation. Thus adipogenic commitment and differentiation is regulated by the cross-talk between BMP4 and canonical WNT signaling and where WISP2 plays a key role. Furthermore, they link WISP2 with hypertrophic obesity and the metabolic syndrome.
AbstractList Inability to recruit new adipose cells following weight gain leads to inappropriate enlargement of existing cells (hypertrophic obesity) associated with inflammation and a dysfunctional adipose tissue. We found increased expression of WNT1 inducible signaling pathway protein 2 (WISP2) and other markers of WNT activation in human abdominal s.c. adipose tissue characterized by hypertrophic obesity combined with increased visceral fat accumulation and insulin resistance. WISP2 activation in the s.c. adipose tissue, but not in visceral fat, identified the metabolic syndrome in equally obese individuals. WISP2 is a novel adipokine, highly expressed and secreted by adipose precursor cells. Knocking down WISP2 induced spontaneous differentiation of 3T3-L1 and human preadipocytes and allowed NIH 3T3 fibroblasts to become committed to the adipose lineage by bone morphogenetic protein 4 (BMP4). WISP2 forms a cytosolic complex with the peroxisome proliferator-activated receptor γ (PPARγ) transcriptional activator zinc finger protein 423 (Zfp423), and this complex is dissociated by BMP4 in a SMAD-dependent manner, thereby allowing Zfp423 to enter the nucleus, activate PPARγ, and commit the cells to the adipose lineage. The importance of intracellular Wisp2 protein for BMP4-induced adipogenic commitment and PPARγ activation was verified by expressing a mutant Wisp2 protein lacking the endoplasmic reticulum signal and secretion sequence. Secreted Wnt/Wisp2 also inhibits differentiation and PPARγ activation, albeit not through Zfp423 nuclear translocation. Thus adipogenic commitment and differentiation is regulated by the cross-talk between BMP4 and canonical WNT signaling and where WISP2 plays a key role. Furthermore, they link WISP2 with hypertrophic obesity and the metabolic syndrome.
Inability to recruit new adipose cells following weight gain leads to inappropriate enlargement of existing cells (hypertrophie obesity) associated with inflammation and a dysfunctional adipose tissue. We found increased expression of WNT1 inducible signaling pathway protein 2 (WISP2) and other markers of WNT activation in human abdominal s.c. adipose tissue characterized by hypertrophie obesity combined with increased visceral fat accumulation and insulin resistance. WISP2 activation in the s.c. adipose tissue, but not in visceral fat, identified the metabolic syndrome in equally obese individuals. WISP2 is a novel adipokine, highly expressed and secreted by adipose precursor cells. Knocking down WISP2 induced spontaneous differentiation of 3T3-L1 and human preadipocytes and allowed NIH 3T3 fibroblasts to become committed to the adipose lineage by bone morphogenetic protein 4 (BMP4). WISP2 forms a cytosolic complex with the peroxisome proliferator-activated receptor γ (PPARγ) transcriptional activator zinc finger protein 423 (Zfp423), and this complex is dissociated by BMP4 in a SMAD-dependent manner, thereby allowing Zfp423 to enter the nucleus, activate PPARγ, and commit the cells to the adipose lineage. The importance of intracellular Wisp2 protein for BMP4-induced adipogenic commitment and PPARγ activation was verified by expressing a mutant Wisp2 protein lacking the endoplasmic reticulum signal and secretion sequence. Secreted Wnt/Wisp2 also inhibits differentiation and PPARγ activation, albeit not through Zfp423 nuclear translocation. Thus adipogenic commitment and differentiation is regulated by the cross-talk between BMP4 and canonical WNT signaling and where WISP2 plays a key role. Furthermore, they link WISP2 with hypertrophie obesity and the metabolic syndrome.
Inability to recruit new adipose cells following weight gain leads to inappropriate enlargement of existing cells (hypertrophic obesity) associated with inflammation and a dysfunctional adipose tissue. We found increased expression of WNT1 inducible signaling pathway protein 2 (WISP2) and other markers of WNT activation in human abdominal s.c. adipose tissue characterized by hypertrophic obesity combined with increased visceral fat accumulation and insulin resistance. WISP2 activation in the s.c. adipose tissue, but not in visceral fat, identified the metabolic syndrome in equally obese individuals. WISP2 is a novel adipokine, highly expressed and secreted by adipose precursor cells. Knocking down WISP2 induced spontaneous differentiation of 3T3-L1 and human preadipocytes and allowed NIH 3T3 fibroblasts to become committed to the adipose lineage by bone morphogenetic protein 4 (BMP4). WISP2 forms a cytosolic complex with the peroxisome proliferator-activated receptor γ (PPARγ) transcriptional activator zinc finger protein 423 (Zfp423), and this complex is dissociated by BMP4 in a SMAD-dependent manner, thereby allowing Zfp423 to enter the nucleus, activate PPARγ, and commit the cells to the adipose lineage. The importance of intracellular Wisp2 protein for BMP4-induced adipogenic commitment and PPARγ activation was verified by expressing a mutant Wisp2 protein lacking the endoplasmic reticulum signal and secretion sequence. Secreted Wnt/Wisp2 also inhibits differentiation and PPARγ activation, albeit not through Zfp423 nuclear translocation. Thus adipogenic commitment and differentiation is regulated by the cross-talk between BMP4 and canonical WNT signaling and where WISP2 plays a key role. Furthermore, they link WISP2 with hypertrophic obesity and the metabolic syndrome.Inability to recruit new adipose cells following weight gain leads to inappropriate enlargement of existing cells (hypertrophic obesity) associated with inflammation and a dysfunctional adipose tissue. We found increased expression of WNT1 inducible signaling pathway protein 2 (WISP2) and other markers of WNT activation in human abdominal s.c. adipose tissue characterized by hypertrophic obesity combined with increased visceral fat accumulation and insulin resistance. WISP2 activation in the s.c. adipose tissue, but not in visceral fat, identified the metabolic syndrome in equally obese individuals. WISP2 is a novel adipokine, highly expressed and secreted by adipose precursor cells. Knocking down WISP2 induced spontaneous differentiation of 3T3-L1 and human preadipocytes and allowed NIH 3T3 fibroblasts to become committed to the adipose lineage by bone morphogenetic protein 4 (BMP4). WISP2 forms a cytosolic complex with the peroxisome proliferator-activated receptor γ (PPARγ) transcriptional activator zinc finger protein 423 (Zfp423), and this complex is dissociated by BMP4 in a SMAD-dependent manner, thereby allowing Zfp423 to enter the nucleus, activate PPARγ, and commit the cells to the adipose lineage. The importance of intracellular Wisp2 protein for BMP4-induced adipogenic commitment and PPARγ activation was verified by expressing a mutant Wisp2 protein lacking the endoplasmic reticulum signal and secretion sequence. Secreted Wnt/Wisp2 also inhibits differentiation and PPARγ activation, albeit not through Zfp423 nuclear translocation. Thus adipogenic commitment and differentiation is regulated by the cross-talk between BMP4 and canonical WNT signaling and where WISP2 plays a key role. Furthermore, they link WISP2 with hypertrophic obesity and the metabolic syndrome.
Author Jenndahl, Lachmi
Gustafson, Birgit
Langin, Dominique
Klimcakova, Eva
Hedjazifar, Shahram
Grünberg, John
Laakso, Markku
Smith, Ulf
Hammarstedt, Ann
Gogg, Silvia
Stich, Vladimir
Author_xml – sequence: 1
  givenname: Ann
  surname: Hammarstedt
  fullname: Hammarstedt, Ann
– sequence: 2
  givenname: Shahram
  surname: Hedjazifar
  fullname: Hedjazifar, Shahram
– sequence: 3
  givenname: Lachmi
  surname: Jenndahl
  fullname: Jenndahl, Lachmi
– sequence: 4
  givenname: Silvia
  surname: Gogg
  fullname: Gogg, Silvia
– sequence: 5
  givenname: John
  surname: Grünberg
  fullname: Grünberg, John
– sequence: 6
  givenname: Birgit
  surname: Gustafson
  fullname: Gustafson, Birgit
– sequence: 7
  givenname: Eva
  surname: Klimcakova
  fullname: Klimcakova, Eva
– sequence: 8
  givenname: Vladimir
  surname: Stich
  fullname: Stich, Vladimir
– sequence: 9
  givenname: Dominique
  surname: Langin
  fullname: Langin, Dominique
– sequence: 10
  givenname: Markku
  surname: Laakso
  fullname: Laakso, Markku
– sequence: 11
  givenname: Ulf
  surname: Smith
  fullname: Smith, Ulf
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23359679$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1u1DAUhS1URKeFNSsgSzZp7_VPbG-QSlWgUhEjSsXSchxncJXEIc5UmufiPXgmEqYz_EiI1V2c7xwd3XNEDrrYeUKeIpwgSHbadzadIEWkQiDCA7JA0JgXXMMBWQBQmStO-SE5SukWALRQ8IgcUsaELqRekIvPl9dLmg1-tW7s6FPWD95WoY9uM_rMxbYNY-u7MbNdlS2XZx-_f8usG8OdHUPssnKTvX6_5I_Jw9o2yT-5v8fk5s3Fp_N3-dWHt5fnZ1e541qMeW2LGpmnpfPWW6m4dNqBop5TZAXnooKKVhqdL8uSKckAalWKkmOp0NXAjsmrbW6_LltfuanYYBvTD6G1w8ZEG8yfShe-mFW8M0xIrpFNAS_vA4b4de3TaNqQnG8a2_m4TgYVMJAKofg_SpVUSgkx13r-e619n92bJ0BsATfElAZfGxfGnx-cWobGIJh5TjPPaX7NOflO__Ltov_t2FWZhT094dJQUcwfeLYFbtMYhz3BUWvKpJz0F1u9ttHY1RCSubmmgAUAcuAc2A8Kpb8O
CitedBy_id crossref_primary_10_3390_biomedicines9070735
crossref_primary_10_1016_j_metabol_2019_153974
crossref_primary_10_1371_journal_pone_0117739
crossref_primary_10_2337_db14_0444
crossref_primary_10_1016_j_exer_2019_01_020
crossref_primary_10_1016_j_tem_2015_01_006
crossref_primary_10_1038_srep35884
crossref_primary_10_1038_s41598_017_01866_2
crossref_primary_10_1152_ajpregu_00257_2017
crossref_primary_10_3390_bioengineering7030077
crossref_primary_10_3389_fendo_2015_00001
crossref_primary_10_1155_2014_318793
crossref_primary_10_1007_s00109_019_01772_2
crossref_primary_10_1128_MCB_00583_14
crossref_primary_10_1007_s11427_022_2176_6
crossref_primary_10_5808_GI_2016_14_4_216
crossref_primary_10_2337_db14_1127
crossref_primary_10_1016_j_jbc_2021_101006
crossref_primary_10_1016_j_gene_2023_148106
crossref_primary_10_1155_2022_2957731
crossref_primary_10_1134_S1062360423070068
crossref_primary_10_1002_jcp_27266
crossref_primary_10_1016_j_isci_2023_106289
crossref_primary_10_1093_eurheartj_ehae911
crossref_primary_10_1371_journal_pone_0247300
crossref_primary_10_1007_s12015_018_9830_0
crossref_primary_10_1016_j_bbrep_2024_101857
crossref_primary_10_29252_aassjournal_733
crossref_primary_10_1371_journal_pone_0123601
crossref_primary_10_1073_pnas_2313326120
crossref_primary_10_1111_joim_12540
crossref_primary_10_1007_s12079_017_0437_z
crossref_primary_10_1038_srep43716
crossref_primary_10_1016_j_biomaterials_2017_08_012
crossref_primary_10_1038_s41467_019_10688_x
crossref_primary_10_1126_science_aai8792
crossref_primary_10_1016_j_atherosclerosis_2015_04_812
crossref_primary_10_3390_biomedicines11123252
crossref_primary_10_18632_aging_202938
crossref_primary_10_1016_j_cell_2019_04_040
crossref_primary_10_1016_j_jare_2022_12_009
crossref_primary_10_1074_jbc_M116_744672
crossref_primary_10_3390_genes15081017
crossref_primary_10_3390_ijms222413418
crossref_primary_10_1093_cvr_cvae091
crossref_primary_10_1093_rb_rbad023
crossref_primary_10_1096_fj_201901915R
crossref_primary_10_1007_s11695_020_04983_6
crossref_primary_10_1007_s12079_023_00769_4
crossref_primary_10_1038_s41569_023_00847_5
crossref_primary_10_2337_db17_0318
crossref_primary_10_1371_journal_pbio_3000739
crossref_primary_10_1210_en_2012_2255
crossref_primary_10_1371_journal_pone_0105262
crossref_primary_10_1017_S1751731114002754
crossref_primary_10_3390_ijms20092358
crossref_primary_10_1007_s12268_013_0348_3
crossref_primary_10_1111_1753_0407_12507
crossref_primary_10_1016_j_yexcr_2016_10_017
crossref_primary_10_2337_db13_0473
crossref_primary_10_1111_cpr_13310
crossref_primary_10_1186_s12915_016_0242_9
crossref_primary_10_1515_hmbci_2015_0001
crossref_primary_10_1172_jci_insight_150399
crossref_primary_10_1186_s13287_020_1552_y
crossref_primary_10_1016_j_bbadis_2018_01_025
crossref_primary_10_1042_BSR20180011
crossref_primary_10_1038_s41374_022_00793_9
crossref_primary_10_1016_j_cmet_2015_10_018
crossref_primary_10_1007_s10911_021_09486_3
crossref_primary_10_1038_srep22883
crossref_primary_10_1016_j_molmet_2019_11_016
crossref_primary_10_1371_journal_pone_0207228
crossref_primary_10_1007_s11010_021_04132_2
crossref_primary_10_1016_j_ebiom_2015_12_020
crossref_primary_10_18632_oncotarget_22006
crossref_primary_10_1007_s00125_015_3810_6
crossref_primary_10_1371_journal_pone_0216900
crossref_primary_10_1096_fj_202100691R
crossref_primary_10_1016_j_cellsig_2016_07_009
crossref_primary_10_1002_jcp_27060
crossref_primary_10_1161_ATVBAHA_115_306578
crossref_primary_10_1038_s42255_019_0152_6
crossref_primary_10_3389_fcell_2021_649552
crossref_primary_10_1002_oby_23013
crossref_primary_10_1038_srep43515
crossref_primary_10_1007_s10126_022_10174_4
crossref_primary_10_1007_s00125_017_4471_4
crossref_primary_10_2169_internalmedicine_55_6088
crossref_primary_10_3390_genes11060601
crossref_primary_10_1152_ajpendo_00093_2017
crossref_primary_10_1016_j_mce_2020_110817
crossref_primary_10_1155_2015_165238
crossref_primary_10_1186_s12864_015_1403_x
crossref_primary_10_3390_cells11040728
crossref_primary_10_1016_j_domaniend_2016_01_003
crossref_primary_10_1242_jcs_197764
crossref_primary_10_1007_s40618_020_01446_8
crossref_primary_10_1016_j_jff_2015_01_036
crossref_primary_10_1038_nrendo_2017_162
crossref_primary_10_1038_s41556_018_0072_9
crossref_primary_10_2337_db20_0884
crossref_primary_10_1172_JCI81507
crossref_primary_10_2337_db19_0701
crossref_primary_10_1186_s12950_015_0047_6
crossref_primary_10_1152_physrev_00034_2017
crossref_primary_10_3389_fendo_2018_00255
crossref_primary_10_2174_1389202920666191118092852
crossref_primary_10_1074_jbc_M113_511964
crossref_primary_10_1186_s12576_023_00879_z
crossref_primary_10_1016_j_biocel_2023_106507
crossref_primary_10_3390_biologics1020008
crossref_primary_10_1016_j_celrep_2016_12_015
crossref_primary_10_1016_j_biopha_2024_117326
crossref_primary_10_1177_1535370214539225
crossref_primary_10_1111_apha_12246
crossref_primary_10_1155_2016_6785948
crossref_primary_10_3390_cells12040662
crossref_primary_10_1096_fj_202402470R
crossref_primary_10_3389_fphar_2020_01235
crossref_primary_10_3389_fgene_2022_1013803
crossref_primary_10_61186_aassjournal_1290
Cites_doi 10.1038/nature06902
10.1126/science.289.5481.950
10.1074/jbc.M512077200
10.1007/s00125-009-1615-1
10.2337/dc07-0419
10.1371/journal.pone.0022112
10.1128/MCB.01316-10
10.1172/JCI200319246
10.1096/fj.02-1132com
10.1016/j.bbalip.2009.12.010
10.2337/db11-1419
10.1038/nature09291
10.1016/j.cmet.2007.03.010
10.2337/db08-1770
10.1126/scisignal.2001249
10.1074/jbc.M110.102855
10.1038/nature08816
10.1172/JCI31021
10.1016/j.bbalip.2009.11.006
10.1038/sj.cdd.4402127
10.1073/pnas.0403100101
10.1016/j.devcel.2009.06.016
10.1001/archinte.168.15.1609
10.1016/j.bbrc.2008.12.185
10.1371/journal.pone.0000812
10.1074/mcp.M111.010504
10.1038/414782a
10.1038/nm.1964
10.1172/JCI7901
10.1038/nature05488
10.1038/ng1732
10.1096/fsb2fj000435fje
10.4161/cc.6.4.3804
10.2337/db09-0942
10.1016/j.tem.2008.09.002
10.1371/journal.pone.0018284
10.1128/MCB.00441-06
ContentType Journal Article
Copyright copyright © 1993-2008 National Academy of Sciences of the United States of America
Copyright_xml – notice: copyright © 1993-2008 National Academy of Sciences of the United States of America
DBID FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
DOI 10.1073/pnas.1211255110
DatabaseName AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef

AGRICOLA
MEDLINE

MEDLINE - Academic


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate WISP2 regulates adipogenesis
EISSN 1091-6490
EndPage 2568
ExternalDocumentID PMC3574913
23359679
10_1073_pnas_1211255110
110_7_2563
41992377
US201600140440
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29P
2AX
2FS
2WC
3O-
4.4
53G
5RE
5VS
692
6TJ
79B
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABPTK
ABTLG
ABZEH
ACGOD
ACIWK
ACKIV
ACNCT
ACPRK
ADULT
ADZLD
AENEX
AEUPB
AEXZC
AFDAS
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DNJUQ
DOOOF
DU5
DWIUU
E3Z
EBS
EJD
F20
F5P
FBQ
FRP
GX1
HGD
HH5
HQ3
HTVGU
HYE
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
KQ8
L7B
LU7
MVM
N9A
NEJ
NHB
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VOH
VQA
W8F
WH7
WHG
WOQ
WOW
X7M
XFK
XSW
Y6R
YBH
YKV
YSK
ZA5
ZCA
ZCG
~02
~KM
ABXSQ
ACHIC
ADQXQ
ADXHL
AQVQM
H13
IPSME
-
02
0R
1AW
55
AAPBV
ABFLS
ADACO
AJYGW
DZ
KM
PQEST
X
XHC
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c495t-fa6f13e2bceaea7847c9c082e42136445d0d2d91cebbb387300f8b5b41b81cf03
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 18:19:54 EDT 2025
Fri Sep 05 06:53:18 EDT 2025
Fri Sep 05 12:11:20 EDT 2025
Mon Jul 21 05:56:01 EDT 2025
Tue Jul 01 03:39:36 EDT 2025
Thu Apr 24 22:53:28 EDT 2025
Wed Nov 11 00:29:48 EST 2020
Thu May 29 08:40:45 EDT 2025
Wed Dec 27 19:19:31 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c495t-fa6f13e2bceaea7847c9c082e42136445d0d2d91cebbb387300f8b5b41b81cf03
Notes http://dx.doi.org/10.1073/pnas.1211255110
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
1A.H. and S.H. contributed equally to this work
Author contributions: A.H., S.H., and U.S. designed research; A.H., S.H., L.J., S.G., J.G., B.G., E.K., V.S., D.L., and M.L. performed research; A.H., S.H., L.J., S.G., J.G., B.G., E.K., V.S., D.L., M.L., and U.S. analyzed data; and U.S. wrote the paper.
Edited by C. Ronald Kahn, Joslin Diabetes Center, Harvard Medical School, Boston, MA, and approved December 28, 2012 (received for review July 9, 2012)
OpenAccessLink https://www.pnas.org/content/pnas/110/7/2563.full.pdf
PMID 23359679
PQID 1287888550
PQPubID 23479
PageCount 6
ParticipantIDs proquest_miscellaneous_1803078106
proquest_miscellaneous_1287888550
pubmed_primary_23359679
crossref_primary_10_1073_pnas_1211255110
pnas_primary_110_7_2563
fao_agris_US201600140440
crossref_citationtrail_10_1073_pnas_1211255110
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3574913
jstor_primary_41992377
ProviderPackageCode RNA
PNE
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-02-12
PublicationDateYYYYMMDD 2013-02-12
PublicationDate_xml – month: 02
  year: 2013
  text: 2013-02-12
  day: 12
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2013
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References e_1_3_3_17_2
e_1_3_3_16_2
e_1_3_3_19_2
e_1_3_3_18_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_32_2
e_1_3_3_33_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_6_2
e_1_3_3_5_2
e_1_3_3_8_2
e_1_3_3_7_2
e_1_3_3_28_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_24_2
e_1_3_3_23_2
e_1_3_3_26_2
e_1_3_3_25_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_1_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_3_2
e_1_3_3_21_2
References_xml – ident: e_1_3_3_10_2
  doi: 10.1038/nature06902
– ident: e_1_3_3_18_2
  doi: 10.1126/science.289.5481.950
– ident: e_1_3_3_19_2
  doi: 10.1074/jbc.M512077200
– ident: e_1_3_3_32_2
  doi: 10.1007/s00125-009-1615-1
– ident: e_1_3_3_3_2
  doi: 10.2337/dc07-0419
– ident: e_1_3_3_16_2
  doi: 10.1371/journal.pone.0022112
– ident: e_1_3_3_37_2
  doi: 10.1128/MCB.01316-10
– ident: e_1_3_3_5_2
  doi: 10.1172/JCI200319246
– ident: e_1_3_3_9_2
  doi: 10.1096/fj.02-1132com
– ident: e_1_3_3_14_2
  doi: 10.1016/j.bbalip.2009.12.010
– ident: e_1_3_3_31_2
  doi: 10.2337/db11-1419
– ident: e_1_3_3_26_2
  doi: 10.1038/nature09291
– ident: e_1_3_3_25_2
  doi: 10.1016/j.cmet.2007.03.010
– ident: e_1_3_3_7_2
  doi: 10.2337/db08-1770
– ident: e_1_3_3_34_2
  doi: 10.1126/scisignal.2001249
– ident: e_1_3_3_21_2
  doi: 10.1074/jbc.M110.102855
– ident: e_1_3_3_24_2
  doi: 10.1038/nature08816
– ident: e_1_3_3_12_2
  doi: 10.1172/JCI31021
– ident: e_1_3_3_4_2
  doi: 10.1016/j.bbalip.2009.11.006
– ident: e_1_3_3_20_2
  doi: 10.1038/sj.cdd.4402127
– ident: e_1_3_3_22_2
  doi: 10.1073/pnas.0403100101
– ident: e_1_3_3_30_2
  doi: 10.1016/j.devcel.2009.06.016
– ident: e_1_3_3_2_2
  doi: 10.1001/archinte.168.15.1609
– ident: e_1_3_3_35_2
  doi: 10.1016/j.bbrc.2008.12.185
– ident: e_1_3_3_15_2
  doi: 10.1371/journal.pone.0000812
– ident: e_1_3_3_36_2
  doi: 10.1074/mcp.M111.010504
– ident: e_1_3_3_1_2
  doi: 10.1038/414782a
– ident: e_1_3_3_6_2
  doi: 10.1038/nm.1964
– ident: e_1_3_3_11_2
  doi: 10.1172/JCI7901
– ident: e_1_3_3_13_2
  doi: 10.1038/nature05488
– ident: e_1_3_3_29_2
  doi: 10.1038/ng1732
– ident: e_1_3_3_27_2
  doi: 10.1096/fsb2fj000435fje
– ident: e_1_3_3_23_2
  doi: 10.4161/cc.6.4.3804
– ident: e_1_3_3_8_2
  doi: 10.2337/db09-0942
– ident: e_1_3_3_17_2
  doi: 10.1016/j.tem.2008.09.002
– ident: e_1_3_3_28_2
  doi: 10.1371/journal.pone.0018284
– ident: e_1_3_3_33_2
  doi: 10.1128/MCB.00441-06
SSID ssj0009580
Score 2.4542215
Snippet Inability to recruit new adipose cells following weight gain leads to inappropriate enlargement of existing cells (hypertrophic obesity) associated with...
Inability to recruit new adipose cells following weight gain leads to inappropriate enlargement of existing cells (hypertrophie obesity) associated with...
SourceID pubmedcentral
proquest
pubmed
crossref
pnas
jstor
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2563
SubjectTerms 3T3 L1 cells
Adipocytes
adipokines
adipose tissue
Adipose Tissue - metabolism
Adipose tissues
Analysis of Variance
Animals
Biological Sciences
Bone Morphogenetic Protein 4 - metabolism
bone morphogenetic proteins
CCN Intercellular Signaling Proteins - genetics
CCN Intercellular Signaling Proteins - metabolism
Cell Differentiation - physiology
Diabetes
DNA-Binding Proteins - metabolism
endoplasmic reticulum
fibroblasts
Gene Knockdown Techniques
Humans
Immunoblotting
Immunoprecipitation
inflammation
insulin resistance
Lipid metabolism
Mesenchymal stem cells
Mesenchymal Stem Cells - physiology
metabolic syndrome
Mice
Microscopy, Fluorescence
mutants
NIH 3T3 Cells
Obesity
PPAR gamma - metabolism
Real-Time Polymerase Chain Reaction
Repressor Proteins - genetics
Repressor Proteins - metabolism
Reverse Transcriptase Polymerase Chain Reaction
secretion
signal transduction
Small interfering RNA
Statistics, Nonparametric
transactivators
Transcription Factors - metabolism
Type 2 diabetes mellitus
visceral fat
weight gain
zinc finger motif
Title WISP2 regulates preadipocyte commitment and PPARγ activation by BMP4
URI https://www.jstor.org/stable/41992377
http://www.pnas.org/content/110/7/2563.abstract
https://www.ncbi.nlm.nih.gov/pubmed/23359679
https://www.proquest.com/docview/1287888550
https://www.proquest.com/docview/1803078106
https://pubmed.ncbi.nlm.nih.gov/PMC3574913
Volume 110
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwELe68cILYsBYYCAjMWmoSkliJ05ekLqpMJBWRWwVfYvsxIFKLJ3W9mH7WnwPPhN3zt9O3QS8RG1qn1vfr-ezc_c7Qt7impJzmdlCM8fmLItsCX6x7ctAKBm60jHl3k7HwcmEf5n6017vQydqabVUg_RmY17J_2gV7oFeMUv2HzTbCIUb8Br0C1fQMFz_SsffPp_FXv-qLCevF5jwL7PZ5Ty9XmIQ-sXFrI0hj-Ph14Pj0cERM_wZ5UksOp9HpzHvuqhxs6Qt6gCCcX1iOGzzTyqjsOjb_XhcVTOuTg-wkgPWMmmDK-7p3zWbHixlvEx2HujSUoKjYQe8rPXZmNIqRLXEjOgaRr-yY7p-G2404GBxsOpwIRfIewHel1_LXGfFnpx5yI1n2IG4s0UeeEKYx_Sfpm6HdDksU5Cqr19TOwn2_tYIa17JVi7ndXgqct5C0037j9thtB2_5PwxeVRtKOiwRMcO6eniCdmpZ5ceVrzi756SkYELbeBCu3ChLVwowIUiXH7_oi1UqLqmCJVnZPJxdH58YldVNOwUNr9LO5dB7jLtqVRLLQV4I2mUguOnuecy8Ib9zMm8LHJTrZRiIdYvyEPlK-6q0E1zh-2S7WJe6D1Cg9DPFHKOObnPhadkymSeOxH0CjJXRxYZ1LOYpBXFPFY6-ZmYUAfBEpzLpJ12ixw2HS5LdpW7m-6BWhL5Hda-ZF37Ftk1umpEcIypZkJY5LmR0ogG2SJBKFrkTa3PBOwpPiSThZ6vcMQQT4Vg435PmxCXxtB1AhzBYKAZw2PMjwIBcyHW0NE0QD739U-K2Q_D6858wSOXvbj7l74kD9s_8T7ZXl6t9CtwipfqtUH-Hzjmrxo
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=WISP2+regulates+preadipocyte+commitment+and+PPAR%CE%B3+activation+by+BMP4&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.date=2013-02-12&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=110&rft.issue=7&rft.spage=2563&rft.epage=2568&rft_id=info:doi/10.1073%2Fpnas.1211255110&rft.externalDocID=US201600140440
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F110%2F7.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F110%2F7.cover.gif