WISP2 regulates preadipocyte commitment and PPARγ activation by BMP4
Inability to recruit new adipose cells following weight gain leads to inappropriate enlargement of existing cells (hypertrophic obesity) associated with inflammation and a dysfunctional adipose tissue. We found increased expression of WNT1 inducible signaling pathway protein 2 (WISP2) and other mark...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 110; no. 7; pp. 2563 - 2568 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
12.02.2013
National Acad Sciences |
Subjects | |
Online Access | Get full text |
ISSN | 0027-8424 1091-6490 1091-6490 |
DOI | 10.1073/pnas.1211255110 |
Cover
Abstract | Inability to recruit new adipose cells following weight gain leads to inappropriate enlargement of existing cells (hypertrophic obesity) associated with inflammation and a dysfunctional adipose tissue. We found increased expression of WNT1 inducible signaling pathway protein 2 (WISP2) and other markers of WNT activation in human abdominal s.c. adipose tissue characterized by hypertrophic obesity combined with increased visceral fat accumulation and insulin resistance. WISP2 activation in the s.c. adipose tissue, but not in visceral fat, identified the metabolic syndrome in equally obese individuals. WISP2 is a novel adipokine, highly expressed and secreted by adipose precursor cells. Knocking down WISP2 induced spontaneous differentiation of 3T3-L1 and human preadipocytes and allowed NIH 3T3 fibroblasts to become committed to the adipose lineage by bone morphogenetic protein 4 (BMP4). WISP2 forms a cytosolic complex with the peroxisome proliferator-activated receptor γ (PPARγ) transcriptional activator zinc finger protein 423 (Zfp423), and this complex is dissociated by BMP4 in a SMAD-dependent manner, thereby allowing Zfp423 to enter the nucleus, activate PPARγ, and commit the cells to the adipose lineage. The importance of intracellular Wisp2 protein for BMP4-induced adipogenic commitment and PPARγ activation was verified by expressing a mutant Wisp2 protein lacking the endoplasmic reticulum signal and secretion sequence. Secreted Wnt/Wisp2 also inhibits differentiation and PPARγ activation, albeit not through Zfp423 nuclear translocation. Thus adipogenic commitment and differentiation is regulated by the cross-talk between BMP4 and canonical WNT signaling and where WISP2 plays a key role. Furthermore, they link WISP2 with hypertrophic obesity and the metabolic syndrome. |
---|---|
AbstractList | Inability to recruit new adipose cells following weight gain leads to inappropriate enlargement of existing cells (hypertrophic obesity) associated with inflammation and a dysfunctional adipose tissue. We found increased expression of WNT1 inducible signaling pathway protein 2 (WISP2) and other markers of WNT activation in human abdominal s.c. adipose tissue characterized by hypertrophic obesity combined with increased visceral fat accumulation and insulin resistance. WISP2 activation in the s.c. adipose tissue, but not in visceral fat, identified the metabolic syndrome in equally obese individuals. WISP2 is a novel adipokine, highly expressed and secreted by adipose precursor cells. Knocking down WISP2 induced spontaneous differentiation of 3T3-L1 and human preadipocytes and allowed NIH 3T3 fibroblasts to become committed to the adipose lineage by bone morphogenetic protein 4 (BMP4). WISP2 forms a cytosolic complex with the peroxisome proliferator-activated receptor γ (PPARγ) transcriptional activator zinc finger protein 423 (Zfp423), and this complex is dissociated by BMP4 in a SMAD-dependent manner, thereby allowing Zfp423 to enter the nucleus, activate PPARγ, and commit the cells to the adipose lineage. The importance of intracellular Wisp2 protein for BMP4-induced adipogenic commitment and PPARγ activation was verified by expressing a mutant Wisp2 protein lacking the endoplasmic reticulum signal and secretion sequence. Secreted Wnt/Wisp2 also inhibits differentiation and PPARγ activation, albeit not through Zfp423 nuclear translocation. Thus adipogenic commitment and differentiation is regulated by the cross-talk between BMP4 and canonical WNT signaling and where WISP2 plays a key role. Furthermore, they link WISP2 with hypertrophic obesity and the metabolic syndrome. Inability to recruit new adipose cells following weight gain leads to inappropriate enlargement of existing cells (hypertrophie obesity) associated with inflammation and a dysfunctional adipose tissue. We found increased expression of WNT1 inducible signaling pathway protein 2 (WISP2) and other markers of WNT activation in human abdominal s.c. adipose tissue characterized by hypertrophie obesity combined with increased visceral fat accumulation and insulin resistance. WISP2 activation in the s.c. adipose tissue, but not in visceral fat, identified the metabolic syndrome in equally obese individuals. WISP2 is a novel adipokine, highly expressed and secreted by adipose precursor cells. Knocking down WISP2 induced spontaneous differentiation of 3T3-L1 and human preadipocytes and allowed NIH 3T3 fibroblasts to become committed to the adipose lineage by bone morphogenetic protein 4 (BMP4). WISP2 forms a cytosolic complex with the peroxisome proliferator-activated receptor γ (PPARγ) transcriptional activator zinc finger protein 423 (Zfp423), and this complex is dissociated by BMP4 in a SMAD-dependent manner, thereby allowing Zfp423 to enter the nucleus, activate PPARγ, and commit the cells to the adipose lineage. The importance of intracellular Wisp2 protein for BMP4-induced adipogenic commitment and PPARγ activation was verified by expressing a mutant Wisp2 protein lacking the endoplasmic reticulum signal and secretion sequence. Secreted Wnt/Wisp2 also inhibits differentiation and PPARγ activation, albeit not through Zfp423 nuclear translocation. Thus adipogenic commitment and differentiation is regulated by the cross-talk between BMP4 and canonical WNT signaling and where WISP2 plays a key role. Furthermore, they link WISP2 with hypertrophie obesity and the metabolic syndrome. Inability to recruit new adipose cells following weight gain leads to inappropriate enlargement of existing cells (hypertrophic obesity) associated with inflammation and a dysfunctional adipose tissue. We found increased expression of WNT1 inducible signaling pathway protein 2 (WISP2) and other markers of WNT activation in human abdominal s.c. adipose tissue characterized by hypertrophic obesity combined with increased visceral fat accumulation and insulin resistance. WISP2 activation in the s.c. adipose tissue, but not in visceral fat, identified the metabolic syndrome in equally obese individuals. WISP2 is a novel adipokine, highly expressed and secreted by adipose precursor cells. Knocking down WISP2 induced spontaneous differentiation of 3T3-L1 and human preadipocytes and allowed NIH 3T3 fibroblasts to become committed to the adipose lineage by bone morphogenetic protein 4 (BMP4). WISP2 forms a cytosolic complex with the peroxisome proliferator-activated receptor γ (PPARγ) transcriptional activator zinc finger protein 423 (Zfp423), and this complex is dissociated by BMP4 in a SMAD-dependent manner, thereby allowing Zfp423 to enter the nucleus, activate PPARγ, and commit the cells to the adipose lineage. The importance of intracellular Wisp2 protein for BMP4-induced adipogenic commitment and PPARγ activation was verified by expressing a mutant Wisp2 protein lacking the endoplasmic reticulum signal and secretion sequence. Secreted Wnt/Wisp2 also inhibits differentiation and PPARγ activation, albeit not through Zfp423 nuclear translocation. Thus adipogenic commitment and differentiation is regulated by the cross-talk between BMP4 and canonical WNT signaling and where WISP2 plays a key role. Furthermore, they link WISP2 with hypertrophic obesity and the metabolic syndrome.Inability to recruit new adipose cells following weight gain leads to inappropriate enlargement of existing cells (hypertrophic obesity) associated with inflammation and a dysfunctional adipose tissue. We found increased expression of WNT1 inducible signaling pathway protein 2 (WISP2) and other markers of WNT activation in human abdominal s.c. adipose tissue characterized by hypertrophic obesity combined with increased visceral fat accumulation and insulin resistance. WISP2 activation in the s.c. adipose tissue, but not in visceral fat, identified the metabolic syndrome in equally obese individuals. WISP2 is a novel adipokine, highly expressed and secreted by adipose precursor cells. Knocking down WISP2 induced spontaneous differentiation of 3T3-L1 and human preadipocytes and allowed NIH 3T3 fibroblasts to become committed to the adipose lineage by bone morphogenetic protein 4 (BMP4). WISP2 forms a cytosolic complex with the peroxisome proliferator-activated receptor γ (PPARγ) transcriptional activator zinc finger protein 423 (Zfp423), and this complex is dissociated by BMP4 in a SMAD-dependent manner, thereby allowing Zfp423 to enter the nucleus, activate PPARγ, and commit the cells to the adipose lineage. The importance of intracellular Wisp2 protein for BMP4-induced adipogenic commitment and PPARγ activation was verified by expressing a mutant Wisp2 protein lacking the endoplasmic reticulum signal and secretion sequence. Secreted Wnt/Wisp2 also inhibits differentiation and PPARγ activation, albeit not through Zfp423 nuclear translocation. Thus adipogenic commitment and differentiation is regulated by the cross-talk between BMP4 and canonical WNT signaling and where WISP2 plays a key role. Furthermore, they link WISP2 with hypertrophic obesity and the metabolic syndrome. |
Author | Jenndahl, Lachmi Gustafson, Birgit Langin, Dominique Klimcakova, Eva Hedjazifar, Shahram Grünberg, John Laakso, Markku Smith, Ulf Hammarstedt, Ann Gogg, Silvia Stich, Vladimir |
Author_xml | – sequence: 1 givenname: Ann surname: Hammarstedt fullname: Hammarstedt, Ann – sequence: 2 givenname: Shahram surname: Hedjazifar fullname: Hedjazifar, Shahram – sequence: 3 givenname: Lachmi surname: Jenndahl fullname: Jenndahl, Lachmi – sequence: 4 givenname: Silvia surname: Gogg fullname: Gogg, Silvia – sequence: 5 givenname: John surname: Grünberg fullname: Grünberg, John – sequence: 6 givenname: Birgit surname: Gustafson fullname: Gustafson, Birgit – sequence: 7 givenname: Eva surname: Klimcakova fullname: Klimcakova, Eva – sequence: 8 givenname: Vladimir surname: Stich fullname: Stich, Vladimir – sequence: 9 givenname: Dominique surname: Langin fullname: Langin, Dominique – sequence: 10 givenname: Markku surname: Laakso fullname: Laakso, Markku – sequence: 11 givenname: Ulf surname: Smith fullname: Smith, Ulf |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23359679$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1u1DAUhS1URKeFNSsgSzZp7_VPbG-QSlWgUhEjSsXSchxncJXEIc5UmufiPXgmEqYz_EiI1V2c7xwd3XNEDrrYeUKeIpwgSHbadzadIEWkQiDCA7JA0JgXXMMBWQBQmStO-SE5SukWALRQ8IgcUsaELqRekIvPl9dLmg1-tW7s6FPWD95WoY9uM_rMxbYNY-u7MbNdlS2XZx-_f8usG8OdHUPssnKTvX6_5I_Jw9o2yT-5v8fk5s3Fp_N3-dWHt5fnZ1e541qMeW2LGpmnpfPWW6m4dNqBop5TZAXnooKKVhqdL8uSKckAalWKkmOp0NXAjsmrbW6_LltfuanYYBvTD6G1w8ZEG8yfShe-mFW8M0xIrpFNAS_vA4b4de3TaNqQnG8a2_m4TgYVMJAKofg_SpVUSgkx13r-e619n92bJ0BsATfElAZfGxfGnx-cWobGIJh5TjPPaX7NOflO__Ltov_t2FWZhT094dJQUcwfeLYFbtMYhz3BUWvKpJz0F1u9ttHY1RCSubmmgAUAcuAc2A8Kpb8O |
CitedBy_id | crossref_primary_10_3390_biomedicines9070735 crossref_primary_10_1016_j_metabol_2019_153974 crossref_primary_10_1371_journal_pone_0117739 crossref_primary_10_2337_db14_0444 crossref_primary_10_1016_j_exer_2019_01_020 crossref_primary_10_1016_j_tem_2015_01_006 crossref_primary_10_1038_srep35884 crossref_primary_10_1038_s41598_017_01866_2 crossref_primary_10_1152_ajpregu_00257_2017 crossref_primary_10_3390_bioengineering7030077 crossref_primary_10_3389_fendo_2015_00001 crossref_primary_10_1155_2014_318793 crossref_primary_10_1007_s00109_019_01772_2 crossref_primary_10_1128_MCB_00583_14 crossref_primary_10_1007_s11427_022_2176_6 crossref_primary_10_5808_GI_2016_14_4_216 crossref_primary_10_2337_db14_1127 crossref_primary_10_1016_j_jbc_2021_101006 crossref_primary_10_1016_j_gene_2023_148106 crossref_primary_10_1155_2022_2957731 crossref_primary_10_1134_S1062360423070068 crossref_primary_10_1002_jcp_27266 crossref_primary_10_1016_j_isci_2023_106289 crossref_primary_10_1093_eurheartj_ehae911 crossref_primary_10_1371_journal_pone_0247300 crossref_primary_10_1007_s12015_018_9830_0 crossref_primary_10_1016_j_bbrep_2024_101857 crossref_primary_10_29252_aassjournal_733 crossref_primary_10_1371_journal_pone_0123601 crossref_primary_10_1073_pnas_2313326120 crossref_primary_10_1111_joim_12540 crossref_primary_10_1007_s12079_017_0437_z crossref_primary_10_1038_srep43716 crossref_primary_10_1016_j_biomaterials_2017_08_012 crossref_primary_10_1038_s41467_019_10688_x crossref_primary_10_1126_science_aai8792 crossref_primary_10_1016_j_atherosclerosis_2015_04_812 crossref_primary_10_3390_biomedicines11123252 crossref_primary_10_18632_aging_202938 crossref_primary_10_1016_j_cell_2019_04_040 crossref_primary_10_1016_j_jare_2022_12_009 crossref_primary_10_1074_jbc_M116_744672 crossref_primary_10_3390_genes15081017 crossref_primary_10_3390_ijms222413418 crossref_primary_10_1093_cvr_cvae091 crossref_primary_10_1093_rb_rbad023 crossref_primary_10_1096_fj_201901915R crossref_primary_10_1007_s11695_020_04983_6 crossref_primary_10_1007_s12079_023_00769_4 crossref_primary_10_1038_s41569_023_00847_5 crossref_primary_10_2337_db17_0318 crossref_primary_10_1371_journal_pbio_3000739 crossref_primary_10_1210_en_2012_2255 crossref_primary_10_1371_journal_pone_0105262 crossref_primary_10_1017_S1751731114002754 crossref_primary_10_3390_ijms20092358 crossref_primary_10_1007_s12268_013_0348_3 crossref_primary_10_1111_1753_0407_12507 crossref_primary_10_1016_j_yexcr_2016_10_017 crossref_primary_10_2337_db13_0473 crossref_primary_10_1111_cpr_13310 crossref_primary_10_1186_s12915_016_0242_9 crossref_primary_10_1515_hmbci_2015_0001 crossref_primary_10_1172_jci_insight_150399 crossref_primary_10_1186_s13287_020_1552_y crossref_primary_10_1016_j_bbadis_2018_01_025 crossref_primary_10_1042_BSR20180011 crossref_primary_10_1038_s41374_022_00793_9 crossref_primary_10_1016_j_cmet_2015_10_018 crossref_primary_10_1007_s10911_021_09486_3 crossref_primary_10_1038_srep22883 crossref_primary_10_1016_j_molmet_2019_11_016 crossref_primary_10_1371_journal_pone_0207228 crossref_primary_10_1007_s11010_021_04132_2 crossref_primary_10_1016_j_ebiom_2015_12_020 crossref_primary_10_18632_oncotarget_22006 crossref_primary_10_1007_s00125_015_3810_6 crossref_primary_10_1371_journal_pone_0216900 crossref_primary_10_1096_fj_202100691R crossref_primary_10_1016_j_cellsig_2016_07_009 crossref_primary_10_1002_jcp_27060 crossref_primary_10_1161_ATVBAHA_115_306578 crossref_primary_10_1038_s42255_019_0152_6 crossref_primary_10_3389_fcell_2021_649552 crossref_primary_10_1002_oby_23013 crossref_primary_10_1038_srep43515 crossref_primary_10_1007_s10126_022_10174_4 crossref_primary_10_1007_s00125_017_4471_4 crossref_primary_10_2169_internalmedicine_55_6088 crossref_primary_10_3390_genes11060601 crossref_primary_10_1152_ajpendo_00093_2017 crossref_primary_10_1016_j_mce_2020_110817 crossref_primary_10_1155_2015_165238 crossref_primary_10_1186_s12864_015_1403_x crossref_primary_10_3390_cells11040728 crossref_primary_10_1016_j_domaniend_2016_01_003 crossref_primary_10_1242_jcs_197764 crossref_primary_10_1007_s40618_020_01446_8 crossref_primary_10_1016_j_jff_2015_01_036 crossref_primary_10_1038_nrendo_2017_162 crossref_primary_10_1038_s41556_018_0072_9 crossref_primary_10_2337_db20_0884 crossref_primary_10_1172_JCI81507 crossref_primary_10_2337_db19_0701 crossref_primary_10_1186_s12950_015_0047_6 crossref_primary_10_1152_physrev_00034_2017 crossref_primary_10_3389_fendo_2018_00255 crossref_primary_10_2174_1389202920666191118092852 crossref_primary_10_1074_jbc_M113_511964 crossref_primary_10_1186_s12576_023_00879_z crossref_primary_10_1016_j_biocel_2023_106507 crossref_primary_10_3390_biologics1020008 crossref_primary_10_1016_j_celrep_2016_12_015 crossref_primary_10_1016_j_biopha_2024_117326 crossref_primary_10_1177_1535370214539225 crossref_primary_10_1111_apha_12246 crossref_primary_10_1155_2016_6785948 crossref_primary_10_3390_cells12040662 crossref_primary_10_1096_fj_202402470R crossref_primary_10_3389_fphar_2020_01235 crossref_primary_10_3389_fgene_2022_1013803 crossref_primary_10_61186_aassjournal_1290 |
Cites_doi | 10.1038/nature06902 10.1126/science.289.5481.950 10.1074/jbc.M512077200 10.1007/s00125-009-1615-1 10.2337/dc07-0419 10.1371/journal.pone.0022112 10.1128/MCB.01316-10 10.1172/JCI200319246 10.1096/fj.02-1132com 10.1016/j.bbalip.2009.12.010 10.2337/db11-1419 10.1038/nature09291 10.1016/j.cmet.2007.03.010 10.2337/db08-1770 10.1126/scisignal.2001249 10.1074/jbc.M110.102855 10.1038/nature08816 10.1172/JCI31021 10.1016/j.bbalip.2009.11.006 10.1038/sj.cdd.4402127 10.1073/pnas.0403100101 10.1016/j.devcel.2009.06.016 10.1001/archinte.168.15.1609 10.1016/j.bbrc.2008.12.185 10.1371/journal.pone.0000812 10.1074/mcp.M111.010504 10.1038/414782a 10.1038/nm.1964 10.1172/JCI7901 10.1038/nature05488 10.1038/ng1732 10.1096/fsb2fj000435fje 10.4161/cc.6.4.3804 10.2337/db09-0942 10.1016/j.tem.2008.09.002 10.1371/journal.pone.0018284 10.1128/MCB.00441-06 |
ContentType | Journal Article |
Copyright | copyright © 1993-2008 National Academy of Sciences of the United States of America |
Copyright_xml | – notice: copyright © 1993-2008 National Academy of Sciences of the United States of America |
DBID | FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM |
DOI | 10.1073/pnas.1211255110 |
DatabaseName | AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef AGRICOLA MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | WISP2 regulates adipogenesis |
EISSN | 1091-6490 |
EndPage | 2568 |
ExternalDocumentID | PMC3574913 23359679 10_1073_pnas_1211255110 110_7_2563 41992377 US201600140440 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 123 29P 2AX 2FS 2WC 3O- 4.4 53G 5RE 5VS 692 6TJ 79B 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABPTK ABTLG ABZEH ACGOD ACIWK ACKIV ACNCT ACPRK ADULT ADZLD AENEX AEUPB AEXZC AFDAS AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS ASUFR AS~ BKOMP CS3 D0L DCCCD DIK DNJUQ DOOOF DU5 DWIUU E3Z EBS EJD F20 F5P FBQ FRP GX1 HGD HH5 HQ3 HTVGU HYE JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JSODD JST KQ8 L7B LU7 MVM N9A NEJ NHB N~3 O9- OK1 P-O PNE PQQKQ R.V RHF RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VOH VQA W8F WH7 WHG WOQ WOW X7M XFK XSW Y6R YBH YKV YSK ZA5 ZCA ZCG ~02 ~KM ABXSQ ACHIC ADQXQ ADXHL AQVQM H13 IPSME - 02 0R 1AW 55 AAPBV ABFLS ADACO AJYGW DZ KM PQEST X XHC AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c495t-fa6f13e2bceaea7847c9c082e42136445d0d2d91cebbb387300f8b5b41b81cf03 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 18:19:54 EDT 2025 Fri Sep 05 06:53:18 EDT 2025 Fri Sep 05 12:11:20 EDT 2025 Mon Jul 21 05:56:01 EDT 2025 Tue Jul 01 03:39:36 EDT 2025 Thu Apr 24 22:53:28 EDT 2025 Wed Nov 11 00:29:48 EST 2020 Thu May 29 08:40:45 EDT 2025 Wed Dec 27 19:19:31 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c495t-fa6f13e2bceaea7847c9c082e42136445d0d2d91cebbb387300f8b5b41b81cf03 |
Notes | http://dx.doi.org/10.1073/pnas.1211255110 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 1A.H. and S.H. contributed equally to this work Author contributions: A.H., S.H., and U.S. designed research; A.H., S.H., L.J., S.G., J.G., B.G., E.K., V.S., D.L., and M.L. performed research; A.H., S.H., L.J., S.G., J.G., B.G., E.K., V.S., D.L., M.L., and U.S. analyzed data; and U.S. wrote the paper. Edited by C. Ronald Kahn, Joslin Diabetes Center, Harvard Medical School, Boston, MA, and approved December 28, 2012 (received for review July 9, 2012) |
OpenAccessLink | https://www.pnas.org/content/pnas/110/7/2563.full.pdf |
PMID | 23359679 |
PQID | 1287888550 |
PQPubID | 23479 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_1803078106 proquest_miscellaneous_1287888550 pubmed_primary_23359679 crossref_primary_10_1073_pnas_1211255110 pnas_primary_110_7_2563 fao_agris_US201600140440 crossref_citationtrail_10_1073_pnas_1211255110 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3574913 jstor_primary_41992377 |
ProviderPackageCode | RNA PNE CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-02-12 |
PublicationDateYYYYMMDD | 2013-02-12 |
PublicationDate_xml | – month: 02 year: 2013 text: 2013-02-12 day: 12 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2013 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | e_1_3_3_17_2 e_1_3_3_16_2 e_1_3_3_19_2 e_1_3_3_18_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_32_2 e_1_3_3_33_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_6_2 e_1_3_3_5_2 e_1_3_3_8_2 e_1_3_3_7_2 e_1_3_3_28_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_24_2 e_1_3_3_23_2 e_1_3_3_26_2 e_1_3_3_25_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_1_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_3_2 e_1_3_3_21_2 |
References_xml | – ident: e_1_3_3_10_2 doi: 10.1038/nature06902 – ident: e_1_3_3_18_2 doi: 10.1126/science.289.5481.950 – ident: e_1_3_3_19_2 doi: 10.1074/jbc.M512077200 – ident: e_1_3_3_32_2 doi: 10.1007/s00125-009-1615-1 – ident: e_1_3_3_3_2 doi: 10.2337/dc07-0419 – ident: e_1_3_3_16_2 doi: 10.1371/journal.pone.0022112 – ident: e_1_3_3_37_2 doi: 10.1128/MCB.01316-10 – ident: e_1_3_3_5_2 doi: 10.1172/JCI200319246 – ident: e_1_3_3_9_2 doi: 10.1096/fj.02-1132com – ident: e_1_3_3_14_2 doi: 10.1016/j.bbalip.2009.12.010 – ident: e_1_3_3_31_2 doi: 10.2337/db11-1419 – ident: e_1_3_3_26_2 doi: 10.1038/nature09291 – ident: e_1_3_3_25_2 doi: 10.1016/j.cmet.2007.03.010 – ident: e_1_3_3_7_2 doi: 10.2337/db08-1770 – ident: e_1_3_3_34_2 doi: 10.1126/scisignal.2001249 – ident: e_1_3_3_21_2 doi: 10.1074/jbc.M110.102855 – ident: e_1_3_3_24_2 doi: 10.1038/nature08816 – ident: e_1_3_3_12_2 doi: 10.1172/JCI31021 – ident: e_1_3_3_4_2 doi: 10.1016/j.bbalip.2009.11.006 – ident: e_1_3_3_20_2 doi: 10.1038/sj.cdd.4402127 – ident: e_1_3_3_22_2 doi: 10.1073/pnas.0403100101 – ident: e_1_3_3_30_2 doi: 10.1016/j.devcel.2009.06.016 – ident: e_1_3_3_2_2 doi: 10.1001/archinte.168.15.1609 – ident: e_1_3_3_35_2 doi: 10.1016/j.bbrc.2008.12.185 – ident: e_1_3_3_15_2 doi: 10.1371/journal.pone.0000812 – ident: e_1_3_3_36_2 doi: 10.1074/mcp.M111.010504 – ident: e_1_3_3_1_2 doi: 10.1038/414782a – ident: e_1_3_3_6_2 doi: 10.1038/nm.1964 – ident: e_1_3_3_11_2 doi: 10.1172/JCI7901 – ident: e_1_3_3_13_2 doi: 10.1038/nature05488 – ident: e_1_3_3_29_2 doi: 10.1038/ng1732 – ident: e_1_3_3_27_2 doi: 10.1096/fsb2fj000435fje – ident: e_1_3_3_23_2 doi: 10.4161/cc.6.4.3804 – ident: e_1_3_3_8_2 doi: 10.2337/db09-0942 – ident: e_1_3_3_17_2 doi: 10.1016/j.tem.2008.09.002 – ident: e_1_3_3_28_2 doi: 10.1371/journal.pone.0018284 – ident: e_1_3_3_33_2 doi: 10.1128/MCB.00441-06 |
SSID | ssj0009580 |
Score | 2.4542215 |
Snippet | Inability to recruit new adipose cells following weight gain leads to inappropriate enlargement of existing cells (hypertrophic obesity) associated with... Inability to recruit new adipose cells following weight gain leads to inappropriate enlargement of existing cells (hypertrophie obesity) associated with... |
SourceID | pubmedcentral proquest pubmed crossref pnas jstor fao |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2563 |
SubjectTerms | 3T3 L1 cells Adipocytes adipokines adipose tissue Adipose Tissue - metabolism Adipose tissues Analysis of Variance Animals Biological Sciences Bone Morphogenetic Protein 4 - metabolism bone morphogenetic proteins CCN Intercellular Signaling Proteins - genetics CCN Intercellular Signaling Proteins - metabolism Cell Differentiation - physiology Diabetes DNA-Binding Proteins - metabolism endoplasmic reticulum fibroblasts Gene Knockdown Techniques Humans Immunoblotting Immunoprecipitation inflammation insulin resistance Lipid metabolism Mesenchymal stem cells Mesenchymal Stem Cells - physiology metabolic syndrome Mice Microscopy, Fluorescence mutants NIH 3T3 Cells Obesity PPAR gamma - metabolism Real-Time Polymerase Chain Reaction Repressor Proteins - genetics Repressor Proteins - metabolism Reverse Transcriptase Polymerase Chain Reaction secretion signal transduction Small interfering RNA Statistics, Nonparametric transactivators Transcription Factors - metabolism Type 2 diabetes mellitus visceral fat weight gain zinc finger motif |
Title | WISP2 regulates preadipocyte commitment and PPARγ activation by BMP4 |
URI | https://www.jstor.org/stable/41992377 http://www.pnas.org/content/110/7/2563.abstract https://www.ncbi.nlm.nih.gov/pubmed/23359679 https://www.proquest.com/docview/1287888550 https://www.proquest.com/docview/1803078106 https://pubmed.ncbi.nlm.nih.gov/PMC3574913 |
Volume | 110 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwELe68cILYsBYYCAjMWmoSkliJ05ekLqpMJBWRWwVfYvsxIFKLJ3W9mH7WnwPPhN3zt9O3QS8RG1qn1vfr-ezc_c7Qt7impJzmdlCM8fmLItsCX6x7ctAKBm60jHl3k7HwcmEf5n6017vQydqabVUg_RmY17J_2gV7oFeMUv2HzTbCIUb8Br0C1fQMFz_SsffPp_FXv-qLCevF5jwL7PZ5Ty9XmIQ-sXFrI0hj-Ph14Pj0cERM_wZ5UksOp9HpzHvuqhxs6Qt6gCCcX1iOGzzTyqjsOjb_XhcVTOuTg-wkgPWMmmDK-7p3zWbHixlvEx2HujSUoKjYQe8rPXZmNIqRLXEjOgaRr-yY7p-G2404GBxsOpwIRfIewHel1_LXGfFnpx5yI1n2IG4s0UeeEKYx_Sfpm6HdDksU5Cqr19TOwn2_tYIa17JVi7ndXgqct5C0037j9thtB2_5PwxeVRtKOiwRMcO6eniCdmpZ5ceVrzi756SkYELbeBCu3ChLVwowIUiXH7_oi1UqLqmCJVnZPJxdH58YldVNOwUNr9LO5dB7jLtqVRLLQV4I2mUguOnuecy8Ib9zMm8LHJTrZRiIdYvyEPlK-6q0E1zh-2S7WJe6D1Cg9DPFHKOObnPhadkymSeOxH0CjJXRxYZ1LOYpBXFPFY6-ZmYUAfBEpzLpJ12ixw2HS5LdpW7m-6BWhL5Hda-ZF37Ftk1umpEcIypZkJY5LmR0ogG2SJBKFrkTa3PBOwpPiSThZ6vcMQQT4Vg435PmxCXxtB1AhzBYKAZw2PMjwIBcyHW0NE0QD739U-K2Q_D6858wSOXvbj7l74kD9s_8T7ZXl6t9CtwipfqtUH-Hzjmrxo |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=WISP2+regulates+preadipocyte+commitment+and+PPAR%CE%B3+activation+by+BMP4&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.date=2013-02-12&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=110&rft.issue=7&rft.spage=2563&rft.epage=2568&rft_id=info:doi/10.1073%2Fpnas.1211255110&rft.externalDocID=US201600140440 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F110%2F7.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F110%2F7.cover.gif |