Fertilizers and nitrate pollution of surface and ground water: an increasingly pervasive global problem

Nitrate pollution of ground and surface water bodies all over the world is generally linked with continually increasing global fertilizer nitrogen (N) use. But after 1990, with more fertilizer N consumption in developing countries especially in East and South Asia than in the industrialized nations...

Full description

Saved in:
Bibliographic Details
Published inSN applied sciences Vol. 3; no. 4; pp. 518 - 24
Main Authors Bijay-Singh, Craswell, Eric
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.04.2021
Springer Nature B.V
Springer
Subjects
Online AccessGet full text
ISSN2523-3963
2523-3971
DOI10.1007/s42452-021-04521-8

Cover

Loading…
Abstract Nitrate pollution of ground and surface water bodies all over the world is generally linked with continually increasing global fertilizer nitrogen (N) use. But after 1990, with more fertilizer N consumption in developing countries especially in East and South Asia than in the industrialized nations in North America and Europe, nitrate pollution of freshwaters is now increasingly becoming a pervasive global problem. In this review it has been attempted to review the research information generated during the last two decades from all over the world on different aspects of nitrate pollution of natural water bodies. It is now evident that not more than 50% of the fertilizer N is directly used by the crops to which it is applied. While a small portion may directly leach down and may reach ground and surface water bodies, a large proportion ends up in the soil organic N pool from where N is mineralized and is taken up by plants and/or lost via leaching during several decades. Present trends of nitrate pollution of freshwaters, therefore, reflect legacies of current and past applications of fertilizers and manures. Tools such as simulation models and the natural variation in the stable isotopes of N and oxygen are now being extensively used to study the contribution of fertilizers and other sources to nitrate enrichment of freshwaters. Impacts of agricultural stewardship measures are being assessed and nitrate enrichment of water bodies is being managed using modern digital models and frameworks. Improved water and fertilizer management in agroecosystems can reduce the contribution of fertilizers to nitrate pollution of water bodies but a host of factors determine the magnitude. Future research needs are also considered.
AbstractList Nitrate pollution of ground and surface water bodies all over the world is generally linked with continually increasing global fertilizer nitrogen (N) use. But after 1990, with more fertilizer N consumption in developing countries especially in East and South Asia than in the industrialized nations in North America and Europe, nitrate pollution of freshwaters is now increasingly becoming a pervasive global problem. In this review it has been attempted to review the research information generated during the last two decades from all over the world on different aspects of nitrate pollution of natural water bodies. It is now evident that not more than 50% of the fertilizer N is directly used by the crops to which it is applied. While a small portion may directly leach down and may reach ground and surface water bodies, a large proportion ends up in the soil organic N pool from where N is mineralized and is taken up by plants and/or lost via leaching during several decades. Present trends of nitrate pollution of freshwaters, therefore, reflect legacies of current and past applications of fertilizers and manures. Tools such as simulation models and the natural variation in the stable isotopes of N and oxygen are now being extensively used to study the contribution of fertilizers and other sources to nitrate enrichment of freshwaters. Impacts of agricultural stewardship measures are being assessed and nitrate enrichment of water bodies is being managed using modern digital models and frameworks. Improved water and fertilizer management in agroecosystems can reduce the contribution of fertilizers to nitrate pollution of water bodies but a host of factors determine the magnitude. Future research needs are also considered.
Abstract Nitrate pollution of ground and surface water bodies all over the world is generally linked with continually increasing global fertilizer nitrogen (N) use. But after 1990, with more fertilizer N consumption in developing countries especially in East and South Asia than in the industrialized nations in North America and Europe, nitrate pollution of freshwaters is now increasingly becoming a pervasive global problem. In this review it has been attempted to review the research information generated during the last two decades from all over the world on different aspects of nitrate pollution of natural water bodies. It is now evident that not more than 50% of the fertilizer N is directly used by the crops to which it is applied. While a small portion may directly leach down and may reach ground and surface water bodies, a large proportion ends up in the soil organic N pool from where N is mineralized and is taken up by plants and/or lost via leaching during several decades. Present trends of nitrate pollution of freshwaters, therefore, reflect legacies of current and past applications of fertilizers and manures. Tools such as simulation models and the natural variation in the stable isotopes of N and oxygen are now being extensively used to study the contribution of fertilizers and other sources to nitrate enrichment of freshwaters. Impacts of agricultural stewardship measures are being assessed and nitrate enrichment of water bodies is being managed using modern digital models and frameworks. Improved water and fertilizer management in agroecosystems can reduce the contribution of fertilizers to nitrate pollution of water bodies but a host of factors determine the magnitude. Future research needs are also considered.
ArticleNumber 518
Author Craswell, Eric
Bijay-Singh
Author_xml – sequence: 1
  orcidid: 0000-0002-5972-0163
  surname: Bijay-Singh
  fullname: Bijay-Singh
  email: bijaysingh20@hotmail.com
  organization: Department of Soil Science, Punjab Agricultural University
– sequence: 2
  givenname: Eric
  surname: Craswell
  fullname: Craswell, Eric
  organization: Fenner School on Environment and Society, Australian National University
BookMark eNp9UUtrFjEUDVLBWvsHXA24Hs374U6K1ULBja5DJnMz5CNNPpOZSv31pt_4ABdd3cPlnMO957xEZ7lkQOg1wW8Jxupd45QLOmJKRtwBGfUzdE4FZSMzipz9xZK9QJetHTDGVBnGNTtHyzXUNab4E2obXJ6HHNfqVhiOJaVtjSUPJQxtq8F5OBGWWrY-fnRSfd83Q8y-gmsxL-lhOEK97_gehiWVyaXhWMuU4O4Veh5canD5e16gb9cfv159Hm-_fLq5-nA7em7EOgaJA1ARQpA8KGkCn2fqmGYzF96AV3KiTgSFjQIsFXeESC8M1RhLasjMLtDN7jsXd7DHGu9cfbDFRXtalLpY1x_2CayeJ4OVwz08z900Oy-ogDBNnvCAA-5eb3av_sP3DdpqD2WruZ9vqdKaUyUV6yy9s3wtrVUI1sfVPSbXg4zJEmwfW7J7S7a3ZE8tWd2l9D_pn4OfFLFd1Do5L1D_XfWE6hfBQ6ej
CitedBy_id crossref_primary_10_1016_j_heliyon_2024_e38364
crossref_primary_10_1016_j_envres_2024_118757
crossref_primary_10_1016_j_scienta_2023_112047
crossref_primary_10_1016_j_jhazmat_2025_137093
crossref_primary_10_1016_j_scitotenv_2024_177306
crossref_primary_10_1093_jxb_erad261
crossref_primary_10_1007_s42853_022_00145_x
crossref_primary_10_1016_j_eja_2024_127224
crossref_primary_10_3390_agriculture13051080
crossref_primary_10_3389_fenvs_2024_1502824
crossref_primary_10_1002_etc_5631
crossref_primary_10_3390_agriculture13081613
crossref_primary_10_1002_anie_202305719
crossref_primary_10_1016_j_cej_2024_153972
crossref_primary_10_1021_acs_langmuir_4c04903
crossref_primary_10_1021_acscatal_4c01398
crossref_primary_10_3390_land12020401
crossref_primary_10_3390_su16125146
crossref_primary_10_12657_folmal_031_002
crossref_primary_10_3390_su141811514
crossref_primary_10_3390_gels9080666
crossref_primary_10_1039_D4EW00584H
crossref_primary_10_1016_j_gfs_2025_100844
crossref_primary_10_1002_gch2_202100120
crossref_primary_10_5004_dwt_2023_30196
crossref_primary_10_1016_j_watres_2024_122576
crossref_primary_10_2166_wpt_2023_083
crossref_primary_10_1016_j_saa_2024_124423
crossref_primary_10_5194_soil_10_335_2024
crossref_primary_10_1038_s41598_024_53378_5
crossref_primary_10_3390_environments10040067
crossref_primary_10_3390_nitrogen5040054
crossref_primary_10_3390_w16101371
crossref_primary_10_1016_j_pce_2023_103424
crossref_primary_10_3389_fsufs_2024_1369817
crossref_primary_10_1002_wer_70011
crossref_primary_10_1029_2022GB007340
crossref_primary_10_1021_acsestengg_2c00438
crossref_primary_10_1016_j_sciaf_2024_e02495
crossref_primary_10_3390_fermentation8050225
crossref_primary_10_1007_s10668_024_05666_3
crossref_primary_10_1007_s11101_024_10000_w
crossref_primary_10_1016_j_plaphy_2024_109464
crossref_primary_10_3389_fenvs_2023_1148872
crossref_primary_10_3390_membranes12020101
crossref_primary_10_1016_j_envres_2024_119622
crossref_primary_10_1016_j_saa_2024_124755
crossref_primary_10_1080_10643389_2025_2457796
crossref_primary_10_3390_environments11100216
crossref_primary_10_1007_s10705_024_10375_4
crossref_primary_10_1016_j_agee_2022_108324
crossref_primary_10_1016_j_eja_2025_127525
crossref_primary_10_1007_s42729_024_02138_5
crossref_primary_10_1016_j_eti_2024_104011
crossref_primary_10_2166_wpt_2024_243
crossref_primary_10_1007_s12403_023_00545_0
crossref_primary_10_1016_j_jhydrol_2024_132563
crossref_primary_10_1021_acssusresmgt_4c00273
crossref_primary_10_1021_jacs_4c16585
crossref_primary_10_1016_j_jclepro_2023_139149
crossref_primary_10_3390_su17031090
crossref_primary_10_1007_s13364_022_00639_1
crossref_primary_10_1016_j_scitotenv_2024_177418
crossref_primary_10_3390_nitrogen5030047
crossref_primary_10_3390_w15132364
crossref_primary_10_1093_femsec_fiad025
crossref_primary_10_1038_s41526_024_00391_7
crossref_primary_10_1002_clen_202300271
crossref_primary_10_1016_j_scitotenv_2022_158141
crossref_primary_10_1016_j_ecolind_2025_113350
crossref_primary_10_1016_j_jenvman_2025_124962
crossref_primary_10_1080_14747731_2024_2350130
crossref_primary_10_1515_opag_2022_0356
crossref_primary_10_1016_j_inoche_2025_114327
crossref_primary_10_3390_w17020155
crossref_primary_10_1016_j_watres_2024_122474
crossref_primary_10_1021_acs_est_3c02190
crossref_primary_10_3390_nitrogen5030045
crossref_primary_10_5194_essd_17_369_2025
crossref_primary_10_1007_s00344_024_11503_8
crossref_primary_10_1007_s11356_023_27352_z
crossref_primary_10_1093_plcell_koae038
crossref_primary_10_1016_j_heliyon_2024_e39016
crossref_primary_10_1021_acs_jafc_4c09325
crossref_primary_10_1111_cjag_12384
crossref_primary_10_3389_fenvs_2024_1340565
crossref_primary_10_3390_plants14050704
crossref_primary_10_3390_en16020709
crossref_primary_10_1016_j_ecolind_2023_110670
crossref_primary_10_25120_jre_2_1_2022_3908
crossref_primary_10_1371_journal_pone_0285112
crossref_primary_10_1016_j_scitotenv_2024_176256
crossref_primary_10_1007_s10705_023_10331_8
crossref_primary_10_3389_fsufs_2024_1324798
crossref_primary_10_1079_cabireviews_2024_0056
crossref_primary_10_3390_horticulturae9111185
crossref_primary_10_1007_s40003_022_00626_7
crossref_primary_10_3389_fpls_2025_1543714
crossref_primary_10_1007_s10705_023_10264_2
crossref_primary_10_1088_2752_664X_adb1ec
crossref_primary_10_3390_app13074154
crossref_primary_10_1016_j_jenvman_2024_120770
crossref_primary_10_1016_j_scitotenv_2022_153805
crossref_primary_10_3390_su14159454
crossref_primary_10_1186_s13750_024_00326_5
crossref_primary_10_3390_microorganisms12091816
crossref_primary_10_1590_1983_40632023v5376778
crossref_primary_10_1007_s41207_025_00740_2
crossref_primary_10_1016_j_jwpe_2024_106261
crossref_primary_10_3390_jof11030235
crossref_primary_10_1002_tqem_22324
crossref_primary_10_1016_j_jhydrol_2024_131622
crossref_primary_10_1088_1755_1315_1359_1_012116
crossref_primary_10_1016_j_jenvman_2025_125033
crossref_primary_10_3389_fmicb_2023_1130298
crossref_primary_10_1016_j_scitotenv_2024_170718
crossref_primary_10_1016_j_eja_2025_127561
crossref_primary_10_3390_soilsystems8010016
crossref_primary_10_1080_1343943X_2024_2367578
crossref_primary_10_1007_s11270_024_06939_3
crossref_primary_10_36253_jaeid_14672
crossref_primary_10_1016_j_seppur_2024_126714
crossref_primary_10_1016_j_chemosphere_2022_136045
crossref_primary_10_1016_j_trac_2024_117981
crossref_primary_10_7717_peerj_16107
crossref_primary_10_1016_j_scitotenv_2021_150200
crossref_primary_10_1007_s41207_022_00312_8
crossref_primary_10_1007_s11540_024_09715_2
crossref_primary_10_15407_frg2024_06_482
crossref_primary_10_1016_j_agee_2024_109376
crossref_primary_10_3389_fpls_2024_1488583
crossref_primary_10_3390_microorganisms12102107
crossref_primary_10_3389_fpls_2023_1159823
crossref_primary_10_1016_j_envres_2025_121065
crossref_primary_10_1016_j_envadv_2024_100565
crossref_primary_10_1016_j_agwat_2024_109270
crossref_primary_10_3389_fenvs_2022_970017
crossref_primary_10_3390_met14091062
crossref_primary_10_20961_stjssa_v21i1_86312
crossref_primary_10_1590_0103_8478cr20220532
crossref_primary_10_1371_journal_pone_0278824
crossref_primary_10_1007_s10661_024_13017_y
crossref_primary_10_1007_s42729_024_02068_2
crossref_primary_10_3389_fsufs_2023_1228221
crossref_primary_10_1016_j_rser_2024_114537
crossref_primary_10_3390_su17052117
crossref_primary_10_1016_j_agee_2024_109243
crossref_primary_10_5304_jafscd_2024_133_006
crossref_primary_10_1016_j_biocontrol_2024_105603
crossref_primary_10_1144_SP517_2020_143
crossref_primary_10_1016_j_optmat_2023_114084
crossref_primary_10_1016_j_wasman_2025_02_019
crossref_primary_10_1016_j_scitotenv_2025_178398
crossref_primary_10_1007_s10661_024_13043_w
crossref_primary_10_1088_2515_7620_ad79be
crossref_primary_10_1128_aem_01849_24
crossref_primary_10_1016_j_scitotenv_2023_165299
crossref_primary_10_33245_2310_9289_2023_178_1_145_158
crossref_primary_10_3390_ijms24119714
crossref_primary_10_3390_su16020481
crossref_primary_10_3390_su162310713
crossref_primary_10_1016_j_pecs_2024_101184
crossref_primary_10_14233_ajchem_2023_26884
crossref_primary_10_5004_dwt_2023_30247
crossref_primary_10_1016_j_scitotenv_2024_175523
crossref_primary_10_1016_j_biteb_2023_101346
crossref_primary_10_1016_j_agwat_2024_108808
crossref_primary_10_1515_pac_2023_1137
crossref_primary_10_1016_j_jwpe_2024_105524
crossref_primary_10_1016_j_cej_2025_160937
crossref_primary_10_1039_D4SD00308J
crossref_primary_10_1016_j_marpolbul_2025_117682
crossref_primary_10_3390_agronomy14050906
crossref_primary_10_5433_1679_0367_2024v45n2p157
crossref_primary_10_1016_j_geodrs_2024_e00851
crossref_primary_10_2166_wpt_2024_067
crossref_primary_10_1007_s10661_023_12194_6
crossref_primary_10_1016_j_snb_2025_137463
crossref_primary_10_13005_bbra_3288
crossref_primary_10_1007_s11356_022_18967_9
crossref_primary_10_3390_antiox13020179
crossref_primary_10_1007_s42729_024_01914_7
crossref_primary_10_3390_c9010001
crossref_primary_10_3390_ijms241713311
crossref_primary_10_1016_j_agwat_2024_108917
crossref_primary_10_1016_j_plana_2024_100094
crossref_primary_10_1002_adsu_202400236
crossref_primary_10_3390_w16030465
crossref_primary_10_1016_j_jip_2025_108270
crossref_primary_10_3390_catal15010063
crossref_primary_10_1080_15320383_2024_2394658
crossref_primary_10_3390_w16111570
crossref_primary_10_1039_D4NJ03823A
crossref_primary_10_1002_hyp_15128
crossref_primary_10_1016_j_chemosphere_2024_142636
crossref_primary_10_1016_j_watres_2025_123441
crossref_primary_10_1007_s41207_024_00706_w
crossref_primary_10_1088_1755_1315_1297_1_012024
crossref_primary_10_3390_su151511688
crossref_primary_10_3390_agronomy11091710
crossref_primary_10_1007_s10653_024_01943_2
crossref_primary_10_1007_s40003_023_00673_8
crossref_primary_10_48084_etasr_7842
crossref_primary_10_54167_tch_v18i1_1415
crossref_primary_10_3390_w15122277
crossref_primary_10_1155_2023_6974966
crossref_primary_10_1007_s41204_024_00392_7
crossref_primary_10_1016_j_jclepro_2024_144065
crossref_primary_10_1039_D4RA08516G
crossref_primary_10_1111_ajae_12510
crossref_primary_10_1007_s10653_024_02257_z
crossref_primary_10_1007_s12517_022_10804_0
crossref_primary_10_1080_10807039_2022_2164246
crossref_primary_10_1093_ismejo_wrae171
crossref_primary_10_1016_j_heliyon_2024_e24011
crossref_primary_10_1007_s43832_025_00192_3
crossref_primary_10_3390_agriculture14020285
crossref_primary_10_1007_s11783_024_1840_3
crossref_primary_10_3390_min13091145
crossref_primary_10_3390_horticulturae10080789
crossref_primary_10_1016_j_nbsj_2024_100172
crossref_primary_10_1016_j_cej_2024_154528
crossref_primary_10_54393_fbt_v3i03_51
crossref_primary_10_4028_p_XoW4jc
crossref_primary_10_3390_w16020204
crossref_primary_10_3390_plants12223824
crossref_primary_10_2166_aqua_2022_029
crossref_primary_10_3390_w16152107
crossref_primary_10_3390_w16213146
crossref_primary_10_1007_s10661_024_13566_2
crossref_primary_10_1016_j_heliyon_2024_e40714
crossref_primary_10_1007_s12649_024_02602_4
crossref_primary_10_1007_s42250_023_00815_z
crossref_primary_10_3389_fsoil_2025_1556283
crossref_primary_10_3389_fsufs_2024_1356579
crossref_primary_10_1111_ppl_14315
crossref_primary_10_1007_s42106_024_00319_x
crossref_primary_10_1016_j_cej_2024_155721
crossref_primary_10_1080_00103624_2024_2404661
crossref_primary_10_1007_s11240_022_02422_1
crossref_primary_10_1016_j_envexpbot_2023_105431
crossref_primary_10_3389_fsens_2025_1513701
crossref_primary_10_3390_phycology2040023
crossref_primary_10_3390_plants13152026
crossref_primary_10_1039_D3DT00682D
crossref_primary_10_1016_j_scitotenv_2024_171702
crossref_primary_10_19053_uptc_01217488_v15_n2_2024_16996
crossref_primary_10_1016_j_watres_2023_121059
crossref_primary_10_1021_acsestwater_4c00619
crossref_primary_10_1016_j_agee_2024_109318
crossref_primary_10_1021_acscatal_4c02317
crossref_primary_10_3389_fenvs_2023_1200481
crossref_primary_10_3390_genes15030327
crossref_primary_10_1016_j_ijbiomac_2024_135316
crossref_primary_10_3390_su16198720
crossref_primary_10_2166_wst_2024_206
crossref_primary_10_1021_acs_est_4c04794
crossref_primary_10_1016_j_marpolbul_2024_117366
crossref_primary_10_1093_ismejo_wrae151
crossref_primary_10_15406_ijh_2024_08_00390
crossref_primary_10_1007_s00374_023_01787_5
crossref_primary_10_1007_s13201_024_02320_1
crossref_primary_10_1016_j_chemosphere_2023_138336
crossref_primary_10_3390_agronomy14020285
crossref_primary_10_1007_s43832_023_00039_9
crossref_primary_10_1007_s41207_024_00718_6
crossref_primary_10_2139_ssrn_4129845
crossref_primary_10_1016_j_jece_2024_114300
crossref_primary_10_47836_pjst_32_6_18
crossref_primary_10_3390_land13071103
crossref_primary_10_1007_s12403_022_00525_w
crossref_primary_10_1080_00032719_2023_2233034
crossref_primary_10_1080_01932691_2023_2219319
crossref_primary_10_3389_fpls_2023_1189060
crossref_primary_10_3390_nitrogen5020022
crossref_primary_10_1016_j_jhazmat_2024_136993
crossref_primary_10_1007_s11356_024_34692_x
crossref_primary_10_1007_s10725_025_01296_5
crossref_primary_10_3390_plants14060917
crossref_primary_10_1039_D3TA08086B
crossref_primary_10_1007_s11356_023_26887_5
crossref_primary_10_1155_ioa_9767875
crossref_primary_10_1080_10406026_2024_2399583
crossref_primary_10_1111_pce_15216
crossref_primary_10_1002_ange_202305719
crossref_primary_10_1007_s11270_023_06745_3
crossref_primary_10_1002_hyp_14476
crossref_primary_10_1021_acs_jafc_4c03997
crossref_primary_10_1007_s44378_024_00016_1
crossref_primary_10_1016_j_chemosphere_2023_138448
crossref_primary_10_1016_j_jece_2024_112915
crossref_primary_10_3390_biology12050668
crossref_primary_10_3390_agronomy13020527
crossref_primary_10_1007_s12517_023_11518_7
crossref_primary_10_1002_jsfa_12146
crossref_primary_10_1007_s10230_024_00987_1
crossref_primary_10_1051_e3sconf_202340501011
crossref_primary_10_1007_s40710_024_00710_w
crossref_primary_10_1016_j_envres_2023_117167
crossref_primary_10_1007_s11356_023_30488_7
crossref_primary_10_3390_s23125432
crossref_primary_10_1016_j_jplph_2024_154305
crossref_primary_10_1016_j_scitotenv_2024_178134
crossref_primary_10_3389_fpls_2025_1546011
crossref_primary_10_1016_j_chemosphere_2025_144278
crossref_primary_10_3390_plants12142725
crossref_primary_10_1007_s11356_023_29202_4
crossref_primary_10_3390_w17060848
crossref_primary_10_3390_agronomy13030784
crossref_primary_10_11648_j_ijema_20241204_11
crossref_primary_10_1039_D3NR01089A
crossref_primary_10_3390_microorganisms11051224
crossref_primary_10_1016_j_jiec_2024_09_003
crossref_primary_10_1039_D4EM00566J
crossref_primary_10_1016_j_scitotenv_2022_160014
crossref_primary_10_33275_1727_7485_1_2023_708
crossref_primary_10_1016_j_scitotenv_2025_178424
crossref_primary_10_1080_00103624_2025_2457341
crossref_primary_10_1017_wat_2024_15
crossref_primary_10_1016_j_jcis_2025_137318
crossref_primary_10_3390_w16131872
crossref_primary_10_3390_app12031198
crossref_primary_10_1007_s13762_023_05383_w
crossref_primary_10_1021_acscatal_4c03635
crossref_primary_10_1016_j_jenvman_2024_123764
crossref_primary_10_1007_s11270_023_06114_0
crossref_primary_10_1002_sae2_70013
crossref_primary_10_3390_plants14050698
crossref_primary_10_3389_fpls_2022_1058774
crossref_primary_10_1038_s41598_024_53122_z
crossref_primary_10_4236_gep_2024_1212018
crossref_primary_10_1016_j_cej_2024_149819
crossref_primary_10_1088_1748_9326_ace206
crossref_primary_10_1002_elan_202400100
crossref_primary_10_1016_j_ejrh_2024_102098
crossref_primary_10_4236_mrc_2024_131001
crossref_primary_10_1002_aqc_70097
crossref_primary_10_1016_j_envpol_2023_121589
crossref_primary_10_1016_j_jhydrol_2023_129868
crossref_primary_10_3389_fchem_2022_806772
crossref_primary_10_1080_10610278_2024_2426547
Cites_doi 10.2136/sssaj2009.0192
10.1016/S0273-1223(99)00033-5
10.1021/es101395s
10.1016/S0022-1694(00)00174-8
10.1016/j.landusepol.2009.09.005
10.1038/s41598-017-12383-7
10.1111/j.1475-2743.2000.tb00218.x
10.1016/j.jhydrol.2016.12.015
10.1016/0169-7722(95)00067-4
10.1023/A:1006073015871
10.1016/j.agwat.2012.06.011
10.1016/j.envint.2005.03.004
10.1111/gcb.13918
10.1061/(ASCE)0733-9437(1999)125:6(330)
10.1098/rstb.2007.2177
10.1016/j.agee.2009.04.018
10.1002/hyp.8164
10.1177/004908571204200205
10.1016/j.scitotenv.2014.03.018
10.1016/S0273-1223(99)00031-1
10.1038/srep25088
10.1016/j.scitotenv.2018.01.255
10.1016/j.agee.2011.09.004
10.1016/S0169-5347(00)02098-X
10.13031/2013.23637
10.1016/j.jhydrol.2014.07.026
10.1016/j.agwat.2004.11.011
10.1073/pnas.1305372110
10.1038/s41598-019-42271-1
10.2166/ws.2016.162
10.1021/es0716103
10.1038/s41561-017-0056-6
10.1016/S0022-1694(99)00081-5
10.1021/acs.est.0c01333
10.1016/j.agwat.2012.05.007
10.1890/08-1122.1
10.1111/j.1475-2743.1999.tb00089.x
10.1038/nature25785
10.1016/j.envpol.2005.11.005
10.1016/j.jag.2010.02.007
10.1016/j.agwat.2013.10.017
10.1029/2001GB001396
10.1038/543322a
10.1007/s10661-016-5167-9
10.1016/j.agwat.2008.05.001
10.1016/j.watres.2005.08.034
10.1007/s11104-013-1876-9
10.1016/j.scitotenv.2013.08.061
10.1371/journal.pone.0113888
10.1016/j.agwat.2006.06.013
10.1126/science.1057544
10.1016/j.scitotenv.2018.07.346
10.2136/vzj2004.1353
10.1641/0006-3568(2003)053[0341:TNC]2.0.CO;2
10.1890/1051-0761(2006)016[2064:DALAWA]2.0.CO;2
10.1016/j.apgeochem.2018.03.014
10.1016/j.scitotenv.2015.06.080
10.1016/j.scitotenv.2006.12.002
10.1016/j.agwat.2004.12.013
10.1016/S2095-3119(17)61743-X
10.1073/pnas.1321350111
10.1016/j.scitotenv.2011.04.016
10.1016/j.chemosphere.2018.05.164
10.1029/2002GB002029
10.1038/nature11420
10.1021/es403357m
10.3389/fsufs.2019.00054
10.1111/gcb.13455
10.1016/j.njas.2011.09.004
10.1016/j.eiar.2006.11.002
10.1016/j.jconhyd.2018.02.005
10.1016/j.watres.2011.02.011
10.3354/cr00953
10.1021/es400181m
10.1007/s11356-018-1859-8
10.1016/j.ecolmodel.2005.07.013
10.13031/2013.8850
10.1007/s10653-013-9550-y
10.1016/j.scitotenv.2014.10.090
10.1038/nature15743
10.1016/j.agwat.2014.04.013
10.1038/s41598-018-31175-1
10.1016/j.agwat.2013.11.017
10.1016/S0065-2113(05)87003-8
10.2134/jeq2004.1140
10.1023/A:1021471531188
10.1021/acs.est.6b04455
10.1016/j.scitotenv.2017.09.079
10.1111/j.1475-2743.2000.tb00203.x
10.1016/j.agee.2015.06.014
10.1007/978-3-319-58538-3_20-1
10.1007/s10533-010-9431-8
10.2134/jeq2007.0224
10.2134/jeq2007.0512
10.1016/j.agee.2013.04.018
10.1016/0304-1131(79)90022-5
10.1100/tsw.2001.326
10.2489/jswc.74.6.113A
10.1038/s41586-019-1001-1
10.1016/j.cosust.2018.10.013
10.1016/j.jhydrol.2015.12.024
10.1073/pnas.1718153115
10.1007/s10705-014-9612-2
10.1016/j.hal.2008.08.015
10.1081/CSS-200059104
10.1016/j.watres.2014.10.034
10.1016/j.scitotenv.2014.05.004
10.1080/10256010701550732
10.1016/j.jhydrol.2007.06.016
10.1016/j.jhydrol.2011.05.026
10.1007/BF02910268
10.1007/s12665-009-0277-0
10.2134/agronj2002.1530
10.3390/agriculture7050041
10.1007/s10533-007-9130-2
10.1073/pnas.0913658107
10.1016/j.jhydrol.2010.08.006
10.1016/S1001-0742(12)60139-9
10.1016/j.jenvman.2017.02.060
10.1017/S0021859600085555
10.1016/j.earscirev.2008.10.001
10.17226/13029
10.1002/2013WR015041
10.1007/s10533-004-0370-0
10.1016/S0022-1694(99)00130-4
10.1111/j.1475-2743.1998.tb00619.x
10.3390/app9010018
10.1016/j.scitotenv.2018.06.048
10.1371/journal.pone.0237234
10.1007/BF02911335
10.1890/100008
10.1016/j.landusepol.2013.01.008
10.1016/B978-0-444-81546-0.50023-9
10.1029/00EO00358
10.1007/s10333-013-0399-6
10.1111/aab.12014
10.1002/2016GB005515
10.1021/acs.est.6b02575
10.1021/es0113854
10.1007/s11269-014-0664-5
10.1023/A:1015595202542
10.13031/2013.34913
10.1016/j.scitotenv.2015.02.022
10.1097/00010694-199804000-00001
10.1007/s11104-018-3619-4
10.2134/jeq2000.00472425002900050026x
10.1016/j.scitotenv.2018.12.029
10.1097/SS.0b013e31824e5593
10.1038/srep42247
10.1016/j.agee.2004.11.010
10.1016/S0065-2113(09)01008-6
10.1088/1748-9326/11/3/035014
10.1016/j.scitotenv.2016.05.134
10.2136/sssaj1987.03615995005100020020x
10.1007/s10533-005-3070-5
10.1016/j.scitotenv.2018.10.060
10.1146/annurev-resource-100516-053654
10.2134/jeq2011.0393
10.1016/j.ecolind.2014.05.025
10.1111/j.1752-1688.2004.tb01017.x
10.1007/978-94-009-1776-7_3
10.1016/S0169-7722(01)00152-8
10.1016/S1161-0301(02)00109-0
10.2136/sssaj2016.09.0281
10.1016/j.scitotenv.2011.08.030
10.1016/j.cosust.2018.10.004
10.1079/9780851996714.0047
10.1080/10934529.2020.1724503
10.1016/S1161-0301(02)00108-9
10.1061/(ASCE)HE.1943-5584.0001304
10.1016/j.agsy.2008.10.006
10.1080/03650340.2012.693600
10.2134/agronj2005.0157
10.1029/2007GB002963
10.2136/vzj2016.07.0061
ContentType Journal Article
Copyright The Author(s) 2021
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
3V.
7XB
88I
8FE
8FG
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
D1I
DWQXO
GNUQQ
HCIFZ
KB.
L6V
M2P
M7S
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
Q9U
DOA
DOI 10.1007/s42452-021-04521-8
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
Materials Science Database
ProQuest Engineering Collection
Science Database
Engineering Database
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database (subscription)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Materials Science Database
ProQuest Central (New)
Engineering Collection
ProQuest Materials Science Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Environmental Science Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Environmental Science Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList CrossRef
Publicly Available Content Database


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Agriculture
EISSN 2523-3971
EndPage 24
ExternalDocumentID oai_doaj_org_article_8db907a0245c4abdac525efbbc14f0f0
10_1007_s42452_021_04521_8
GeographicLocations East Asia
North America
Europe
China
South Asia
GeographicLocations_xml – name: South Asia
– name: China
– name: East Asia
– name: North America
– name: Europe
GroupedDBID -EM
0R~
88I
AAHNG
AAKKN
ABDZT
ABECU
ABEEZ
ABFTV
ABHQN
ABJCF
ABKCH
ABMQK
ABTEG
ABTMW
ABUWG
ABXPI
ACACY
ACMLO
ACOKC
ACULB
ADKNI
ADMLS
ADURQ
ADYFF
AEJRE
AEUYN
AFGXO
AFKRA
AFQWF
AGDGC
AGJBK
AILAN
AITGF
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
AMKLP
ATCPS
AXYYD
AZQEC
BAPOH
BENPR
BGLVJ
BGNMA
BHPHI
BKSAR
C24
C6C
CCPQU
DWQXO
EBLON
EBS
EJD
FINBP
FNLPD
FSGXE
GNUQQ
GNWQR
GROUPED_DOAJ
H13
HCIFZ
J-C
KB.
KOV
M2P
M4Y
M7S
NQJWS
NU0
OK1
PATMY
PCBAR
PDBOC
PIMPY
PTHSS
PYCSY
RSV
SOJ
STPWE
TSG
UOJIU
UTJUX
VEKWB
VFIZW
ZMTXR
AAYXX
ACSTC
CITATION
PHGZM
PHGZT
3V.
7XB
8FE
8FG
8FK
D1I
L6V
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
PUEGO
ID FETCH-LOGICAL-c495t-f60fe25fff64f769f4dd2a383d45c9ec76b2a5f7097e0674a116c5928006291d3
IEDL.DBID DOA
ISSN 2523-3963
IngestDate Wed Aug 27 01:29:53 EDT 2025
Wed Aug 13 06:30:34 EDT 2025
Thu Apr 24 22:51:24 EDT 2025
Tue Jul 01 04:23:29 EDT 2025
Fri Feb 21 02:49:09 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Nitrate
Fertilizer management
Surface water
Fertilizer nitrogen
Water pollution
Ground water
Soil nitrogen
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c495t-f60fe25fff64f769f4dd2a383d45c9ec76b2a5f7097e0674a116c5928006291d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5972-0163
OpenAccessLink https://doaj.org/article/8db907a0245c4abdac525efbbc14f0f0
PQID 2788427673
PQPubID 5758472
PageCount 24
ParticipantIDs doaj_primary_oai_doaj_org_article_8db907a0245c4abdac525efbbc14f0f0
proquest_journals_2788427673
crossref_citationtrail_10_1007_s42452_021_04521_8
crossref_primary_10_1007_s42452_021_04521_8
springer_journals_10_1007_s42452_021_04521_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-04-01
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: 2021-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: London
PublicationTitle SN applied sciences
PublicationTitleAbbrev SN Appl. Sci
PublicationYear 2021
Publisher Springer International Publishing
Springer Nature B.V
Springer
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
– name: Springer
References AsmalaESaikkuLVienonenSImport–export balance of nitrogen and phosphorus in food, fodder and fertilizers in the Baltic Sea drainage areaSci Total Environ20114094917492210.1016/j.scitotenv.2011.08.030
TakedaIFukushimaALong-term changes in pollutant load outflows and purification function in a paddy field watershed using a circular irrigation systemWater Res20064056957810.1016/j.watres.2005.08.034
KatyalJCBijay-SinghVPLGBureshRJEfficient nitrogen use as affected by urea application and irrigation sequenceSoil Sci Soc Am J19875136637010.2136/sssaj1987.03615995005100020020x
RobinsonDδ15N as an integrator of the nitrogen cycleTrends Ecol Evol20011615316210.1016/S0169-5347(00)02098-X
MinJShiWNitrogen discharge pathways in vegetable production as non-point sources of pollution and measures to control itSci Total Environ201861361412313010.1016/j.scitotenv.2017.09.079
GallowayJNAberJDErismanJWSeitzingerSPHowarthRWCowlingEBCosbyBJThe nitrogen cascadeBioScience20035334135610.1641/0006-3568(2003)053[0341:TNC]2.0.CO;2
SinhaEMichalakAMPrecipitation dominates interannual variability of riverine nitrogen loading across the continental United StatesEnviron Sci Tech201650128741288410.1021/acs.est.6b04455
BatemanASKellySDFertilizer nitrogen isotope signaturesIsotopes Environ Health Stud20074323724710.1080/10256010701550732
ZhangYLiFZhangQLiJLiuQTracing nitrate pollution sources and transformation in surface-and ground-waters using environmental isotopesSci Total Environ201449021322210.1016/j.scitotenv.2014.05.004
Howarth RW, Billen G, Swaney D, Townsend A, Jaworski N, Lajtha K, Downing JA, Elmgren R, Caraco N, Jordan T, Berendse F, Freney J, Kudeyarov V, Murdoch P, Zhao-Liang Z (1996) Regional nitrogen budgets and riverine N & P fluxes for the drainages to the North Atlantic Ocean: Natural and human influences. In: Howarth RW (ed), Nitrogen cycling in the North Atlantic Ocean and its watersheds, Springer, Dordrecht, pp 75–139. https://doi.org/10.1007/978-94-009-1776-7_3
DingJXiBGaoRHeLLiuHDaiXYuYIdentifying diffused nitrate sources in a stream in an agricultural field using a dual isotopic approachSci Total Environ2014484101810.1016/j.scitotenv.2014.03.018
WangZLiJLiYSimulation of nitrate leaching under varying drip system uniformities and precipitation patterns during the growing season of maize in the North China plainAgric Water Manag2014142192810.1016/j.agwat.2014.04.013
ThodsenHFarkasCChormanskiJTrolleDBlicher-MathiesenGGrantREngebretsenAKardelIAndersenHEModelling nutrient load changes from fertilizer application scenarios in six catchments around the Baltic SeaAgriculture2017754110.3390/agriculture7050041
AlmasriMNKaluarachchiJJModeling nitrate contamination of groundwater in agricultural watershedsJ Hydrol200734321122910.1016/j.jhydrol.2007.06.016
Van MeterKJBasuNBVeenstraJJBurrasCLThe nitrogen legacy: emerging evidence of nitrogen accumulation in anthropogenic landscapesEnviron Res Lett201611303501410.1088/1748-9326/11/3/035014
GärdenäsAIHopmansJWHansonBRŠimůnekJTwo-dimensional modeling of nitrate leaching for various fertigation scenarios under micro-irrigationAgric Water Manag20057421924210.1016/j.agwat.2004.11.011
GaiXWangHLiuJZhaiLLiuSRenTLiuHEffects of feedstock and pyrolysis temperature on biochar adsorption of ammonium and nitratePLoS ONE2014912e11388810.1371/journal.pone.0113888
CAST (Council for Agricultural Science and Technology) (2019) Reducing the impacts of agricultural nutrients on water quality across a changing landscape. Issue Paper 64, CAST, Ames, Iowa, USA, p 20. https://www.cast-science.org/wp-content/uploads/2019/05/CAST_IP64_Nutrient-Loss.pdf
DonosoGCancinoJMagriAEffects of agricultural activities on water pollution with nitrates and pesticides in the Central Valley of ChileWater Sci Technol199939496010.1016/S0273-1223(99)00031-1
KopacekJHejzlarJPoschMFactors controlling the export of nitrogen from agricultural land in a large central European catchment during 1900–2010Environ Sci Tech2013476400640710.1021/es400181m
ZillénLConleyDJAndrénTAndrénEBjörckSPast occurrences of hypoxia in the Baltic Sea and the role of climate variability, environmental change and human impactEarth-Sci Rev200891779210.1016/j.earscirev.2008.10.001
HuangTJuXTYangHNitrate leaching in a winter wheat–summer maize rotation on a calcareous soil as affected by nitrogen and straw managementSci Rep201774224710.1038/srep42247
DelgadoJAVandenbergBNeerDD’AdamoREmerging nutrient management databases and networks of networks will have broad applicability in future machine learning and artificial intelligence applications in soil and water conservationJ Soil Water Conserv201974113A118A10.2489/jswc.74.6.113A
ShenZYZhongYCHuangQChenLIdentifying non-point source priority management areas in watersheds with multiple functional zonesWater Res20156856357110.1016/j.watres.2014.10.034
NorseDNon-point pollution from crop production: global, regional and national issuesPedosphere200515499508
LiuTWangFMichalskiGXiaXLiuSUsing 15N, 17O, and 18O to determine nitrate sources in the Yellow River, ChinaEnviron Sci Tech201347134121342110.1021/es403357m
ZhangYTWangHYLiuSLeiQLLiuJHeJQZhaiLMRenTZLiuHBIdentifying critical nitrogen application rate for maize yield and nitrate leaching in a Haplic Luvisol soil using the DNDC modelSci Total Environ201551438839810.1016/j.scitotenv.2015.02.022
LadhaJKPathakHKrupnikTJSixJvan KesselCEfficiency of fertilizer nitrogen in cereal production: retrospects and prospectsAdv Agron2005878515610.1016/S0065-2113(05)87003-8
TangTStrokalMvan VlietMTSeuntjensPBurekPKroezeCLanganSWadaYBridging global, basin and local-scale water quality modeling towards enhancing water quality management worldwideCurr Opin Environ Sustain201936394810.1016/j.cosust.2018.10.004
GouldingKWTPoultonPRWebsterCPHoweMTNitrate leaching from the Broadbalk Wheat Experiment, Rothamsted, UK, as influenced by fertilizer and manure inputs and the weatherSoil Use Manag20001624425010.1111/j.1475-2743.2000.tb00203.x
HuKLiBChenDZhangYEdisRSimulation of nitrate leaching under irrigated maize on sandy soil in desert oasis in Inner Mongolia, ChinaAgric Water Manag2008951180118810.1016/j.agwat.2008.05.001
StöckleCODonatelliMNelsonRCropSyst, a cropping systems simulation modelEur J Agron20031828930710.1016/S1161-0301(02)00109-0
WangLStuartMEBloomfieldJPButcherASGooddyDCMcKenzieAALewisMAWilliamsATPrediction of the arrival of peak nitrate concentrations at the water table at the regional scale in Great BritainHydrol Process20122622623910.1002/hyp.8164
van VlietMTFlörkeMHarrisonJAHofstraNKellerVLudwigFSpanierJEStrokalMWadaYWenYWilliamsRJModel inter-comparison design for large-scale water quality modelsCurr Opin Environ Sustain201936596710.1016/j.cosust.2018.10.013
PowlsonDSPoultonPRAddiscottTMMcCannDSHansenJAAHenriksenKLeaching of nitrate from soils receiving organic or inorganic fertilizers continuously for 135 yearsNitrogen in organic wastes applied to soils1989LondonAcademic Press334345
DaryantoSWangLJacinthePAImpacts of no-tillage management on nitrate loss from corn, soybean and wheat cultivation: a meta-analysisSci Rep201771211710.1038/s41598-017-12383-7
JuXTZhangCNitrogen cycling and environmental impacts in upland agricultural soils in North China: a reviewJ Integr Agric2017162848286210.1016/S2095-3119(17)61743-X
WangLButcherASStuartMEGooddyDCBloomfieldJPThe nitrate time bomb: a numerical way to investigate nitrate storage and lag time in the unsaturated zoneEnviron Geochem Health20133566768110.1007/s10653-013-9550-y
HillBHBolgrienDWNitrogen removal by streams and rivers of the Upper Mississippi River basinBiogeochem201110218319410.1007/s10533-010-9431-8
ChowdaryVMRaoNHSarmaPBSDecision support framework for assessment of non-point-source pollution of groundwater in large irrigation projectsAgric Water Manag20057519422510.1016/j.agwat.2004.12.013
CuiZZhangHChenXZhangCMaWHuangCZhangWMiGMiaoYLiXGaoQPursuing sustainable productivity with millions of smallholder farmersNature201855536336610.1038/nature25785
YueFJLiuCQLiSLZhaoZQLiuXLDingHLiuBJZhongJAnalysis of δ15N and δ18O to identify nitrate sources and transformations in Songhua River, Northeast ChinaJ Hydrol201451932933910.1016/j.jhydrol.2014.07.026
LeeMSLeeKKHyunYClementTPHamiltonDNitrogen transformation and transport modeling in groundwater aquifersEcol Model200619214315910.1016/j.ecolmodel.2005.07.013
HowarthRWCoastal nitrogen pollution: a review of sources and trends globally and regionallyHarmful Algae20088142010.1016/j.hal.2008.08.015
GouldingKNitrate leaching from arable and horticultural landSoil Use Manag20001614515110.1111/j.1475-2743.2000.tb00218.x
SchoumansOFChardonWJBechmannMEGascuel-OdouxCHofmanGKronvangBRubaekGHUlenBDoriozJMMitigation options to reduce phosphorus losses from the agricultural sector and improve surface water quality: a reviewSci Total Environ20144684691255126610.1016/j.scitotenv.2013.08.061
WollheimWMVörösmartyCJBouwmanAFGreenPHarrisonJLinderEPetersonBJSeitzingerSPSyvitskiJPMGlobal N removal by freshwater aquatic systems using a spatially distributed, within-basin approachGlob Biogeochem Cycl200822GB202610.1029/2007GB002963
HartPBSPowlsonDSPultonPRJohnsonAEJenkinsonDSThe availability of the nitrogen in the crop residues of winter wheat to subsequent cropsJ Agric Sci199312135536210.1017/S0021859600085555
BirkinshawSJEwenJNitrogen transformation component for SHETRAN catchment nitrate transport modellingJ Hydrol200023011710.1016/S0022-1694(00)00174-8
KeatingBACarberryPSHammerGLProbertMERobertsonMJHolzworthDHuthNIHargreavesJNMeinkeHHochmanZMcLeanGAn overview of APSIM, a model designed for farming systems simulationEur J Agron20031826728810.1016/S1161-0301(02)00108-9
HassanGReneauRBHagedornCJantraniaARModeling effluent distribution and nitrate transport through an on-site wastewater systemJ Environ Qual2008371937194810.2134/jeq2007.0512
MaLScottHDShafferMJAhujaLRRZWQM simulations of water and nitrate movement in a manured tall fescue fieldSoil Sci199816325927010.1097/00010694-199804000-00001
JankowskiKNeillCDavidsonEAMacedoMNCostaCGalfordGLSan
ZY Shen (4521_CR93) 2015; 68
Y Wang (4521_CR23) 2019; 657
SGS Bijay-Singh (4521_CR27) 1979; 4
CO Stöckle (4521_CR70) 2003; 18
MB Haas (4521_CR149) 2017; 196
I Marinov (4521_CR96) 2014; 28
V-S Bijay-Singh (4521_CR122) 2012; 58
Y Zhang (4521_CR49) 2018; 208
Q Liu (4521_CR156) 2018; 426
SL Li (4521_CR46) 2010; 60
W Li (4521_CR87) 2018; 642
DS Powlson (4521_CR25) 1989
M van der Laan (4521_CR71) 2014; 133
Z Cui (4521_CR180) 2018; 555
D Tilman (4521_CR101) 2001; 292
X Gai (4521_CR154) 2014; 9
4521_CR133
4521_CR32
T Liu (4521_CR50) 2013; 47
E Asmala (4521_CR134) 2011; 409
A Bhardwaj (4521_CR125) 2012; 54
H Thodsen (4521_CR135) 2017; 7
KTB MacQuarrie (4521_CR63) 2001; 52
LS Vervloet (4521_CR142) 2018; 627
DN Lerner (4521_CR100) 2009; 26
X Zhang (4521_CR165) 2017; 543
MN Almasri (4521_CR85) 2007; 343
DL Dinnes (4521_CR137) 2002; 94
GD Agrawal (4521_CR126) 1999; 39
MS Lee (4521_CR64) 2006; 192
X Zhang (4521_CR8) 2013; 25
JG Arnold (4521_CR90) 2010; 53
L Wang (4521_CR98) 2012; 26
S Peña-Haro (4521_CR153) 2010; 392
SK Deb (4521_CR62) 2015; 21
JA Delgado (4521_CR186) 2019; 74
RM Liu (4521_CR91) 2016; 533
D Norse (4521_CR136) 2005; 15
RB Alexander (4521_CR116) 2008; 42
V Nangia (4521_CR150) 2008; 37
JM Novak (4521_CR155) 2012; 177
J Min (4521_CR162) 2018; 613
JC Refsgaard (4521_CR79) 1999; 221
FJ Yue (4521_CR51) 2014; 519
K Nakamura (4521_CR58) 2004; 3
JY Zhou (4521_CR16) 2016; 6
AI Gärdenäs (4521_CR59) 2005; 74
PP Preetha (4521_CR26) 2020; 55
K Hu (4521_CR75) 2008; 95
M Sebilo (4521_CR38) 2013; 110
PBS Hart (4521_CR31) 1993; 121
Y-S Bijay-Singh (4521_CR124) 1995; 20
S Akbariyeh (4521_CR73) 2018; 211
XT Ju (4521_CR17) 2006; 143
JN Galloway (4521_CR12) 2004; 70
EI Lord (4521_CR141) 1999; 15
J Liu (4521_CR7) 2010; 107
RW Howarth (4521_CR2) 2008; 8
HJ Di (4521_CR24) 2002; 64
P Kay (4521_CR145) 2009; 99
K Kumar (4521_CR33) 2002; 62
WJ Choi (4521_CR42) 2003; 7
PM Glibert (4521_CR3) 2006; 77
J Kopacek (4521_CR105) 2013; 47
A Chhabra (4521_CR127) 2010; 12
F Lasserre (4521_CR80) 1999; 224
WJ Choi (4521_CR43) 2002; 6
TP Burt (4521_CR97) 2011; 45
ND Mueller (4521_CR164) 2017; 31
B Eghball (4521_CR112) 2002; 45
S Seitzinger (4521_CR107) 2006; 16
JC Katyal (4521_CR123) 1987; 51
ND Mueller (4521_CR169) 2012; 490
TB Ramos (4521_CR76) 2012; 111
J Dumanski (4521_CR170) 2006; P1
KJ Van Meter (4521_CR40) 2016; 11
G van Drecht (4521_CR115) 2001; 1
RF Zhao (4521_CR18) 2006; 98
T Huang (4521_CR19) 2017; 7
X Chen (4521_CR120) 2020; 54
H Pathak (4521_CR185) 2019; 15
N Borchard (4521_CR157) 2019; 651
4521_CR168
M Krupa (4521_CR160) 2011; 144
AE Lawniczak (4521_CR172) 2016; 188
SJ Birkinshaw (4521_CR82) 2000; 230
BH Hill (4521_CR110) 2011; 102
B Urresti-Estala (4521_CR53) 2015; 506
MT van Vliet (4521_CR187) 2019; 36
AS Baksh (4521_CR152) 2004; 33
Y Zhang (4521_CR44) 2019; 9
L Wang (4521_CR99) 2013; 35
JA Delgado (4521_CR182) 2019; 3
DM Davis (4521_CR151) 2000; 29
R Liu (4521_CR158) 2014; 98
J Mas-Pla (4521_CR176) 2019; 26
B He (4521_CR94) 2011; 45
K Goulding (4521_CR37) 2000; 16
SD Donner (4521_CR128) 2002; 16
MN Almasri (4521_CR86) 2007; 27
S Dutta (4521_CR121) 2012; 42
R Showstack (4521_CR129) 2000; 81
Y Xia (4521_CR88) 2016; 566
AJ Eagle (4521_CR138) 2017; 81
Y Zhang (4521_CR57) 2014; 490
K Goulding (4521_CR144) 2008; 363
JN Galloway (4521_CR13) 2003; 53
MG Eltarabily (4521_CR95) 2017; 17
VM Chowdary (4521_CR184) 2005; 75
D Robinson (4521_CR41) 2001; 16
GD Liu (4521_CR11) 2005; 107
S Ferrant (4521_CR89) 2011; 406
T Li (4521_CR177) 2018; 24
Y Zhou (4521_CR114) 2017; 545
C Yu (4521_CR179) 2019; 567
S Shukla (4521_CR5) 2018
H Lee (4521_CR161) 2014; 12
M Zhou (4521_CR21) 2014; 374
OF Schoumans (4521_CR103) 2014; 468
XT Ju (4521_CR15) 2017; 16
BA Keating (4521_CR69) 2003; 18
PW Gassman (4521_CR72) 2007; 50
KC Cameron (4521_CR146) 2013; 162
AT Hansen (4521_CR108) 2018; 11
BQ Zhao (4521_CR28) 2011; 58
R Howarth (4521_CR104) 2011; 9
NRC (National Research Council) (4521_CR130) 2012
ME Stuart (4521_CR173) 2011; 409
C Kendall (4521_CR45) 1998
H Kim (4521_CR56) 2015; 533
J Ding (4521_CR48) 2014; 484
BR Hanson (4521_CR60) 2006; 86
I Takeda (4521_CR159) 2006; 40
L Xia (4521_CR147) 2017; 23
G Hassan (4521_CR74) 2008; 37
ATMA Choudhury (4521_CR143) 2005; 36
L Ma (4521_CR68) 1998; 163
YT Zhang (4521_CR113) 2015; 514
M Quemada (4521_CR139) 2013; 174
E Ledoux (4521_CR65) 2007; 375
WJ Yan (4521_CR119) 2003; 17
MN Almasri (4521_CR84) 2004; 40
JK Ladha (4521_CR30) 2005; 87
DX Soto (4521_CR52) 2019; 647
K Jankowski (4521_CR20) 2018; 8
BT Nolan (4521_CR83) 2002; 36
Y Ji (4521_CR6) 2020; 15
L Ma (4521_CR167) 2014; 37
T Tang (4521_CR188) 2019; 36
Z Wang (4521_CR77) 2014; 142
JR Poch-Massegú (4521_CR66) 2014; 134
D Plaza-bonilla (4521_CR67) 2015; 212
G Billen (4521_CR106) 2009; 133
SW Duan (4521_CR118) 2007; 85
JB Gardner (4521_CR35) 2009; 19
E Sinha (4521_CR102) 2016; 50
S Daryanto (4521_CR171) 2017; 7
KE Trenberth (4521_CR175) 2011; 47
AS Bateman (4521_CR47) 2007; 43
MH Dore (4521_CR174) 2005; 31
WM Wollheim (4521_CR111) 2008; 22
P Stålnacke (4521_CR132) 1999; 58
JJ Meisinger (4521_CR14) 2006; 2
4521_CR54
J Sun (4521_CR163) 2018; 115
AJ Gusman (4521_CR81) 1999; 125
B Basso (4521_CR183) 2019; 9
G Donoso (4521_CR10) 1999; 39
SH Chien (4521_CR29) 2009; 102
4521_CR117
Z Jin (4521_CR55) 2018; 93
HW Paerl (4521_CR166) 2016; 50
KWT Goulding (4521_CR22) 2000; 16
EI Lord (4521_CR140) 1998; 14
MJ Castellano (4521_CR39) 2014; 111
S Baram (4521_CR78) 2017; 15
X Zhang (4521_CR178) 2015; 528
D Dourado-Neto (4521_CR34) 2010; 74
A Tafteh (4521_CR61) 2012; 113
I Cerro (4521_CR148) 2014; 43
4521_CR9
W Ouyang (4521_CR109) 2014; 45
L Zillén (4521_CR131) 2008; 91
L Chen (4521_CR92) 2014; 50
4521_CR1
BT Christensen (4521_CR36) 2004
A Weersink (4521_CR181) 2018; 10
4521_CR4
References_xml – reference: LiuRMXuFZhangPPYuWWMenCIdentifying non-point source critical source areas based on multi-factors at a basin scale with SWATJ Hydrol201653337938810.1016/j.jhydrol.2015.12.024
– reference: GouldingKWTPoultonPRWebsterCPHoweMTNitrate leaching from the Broadbalk Wheat Experiment, Rothamsted, UK, as influenced by fertilizer and manure inputs and the weatherSoil Use Manag20001624425010.1111/j.1475-2743.2000.tb00203.x
– reference: NovakJMBusscherWJWattsDWBiochars impact on soil-moisture storage in an Ultisol and two AridisolsSoil Sci201217731032010.1097/SS.0b013e31824e5593
– reference: ChowdaryVMRaoNHSarmaPBSDecision support framework for assessment of non-point-source pollution of groundwater in large irrigation projectsAgric Water Manag20057519422510.1016/j.agwat.2004.12.013
– reference: ChenXStrokalMKroezeCSupitIWangMMaLChenXShiXModelling the contribution of crops to nitrogen pollution in the Yangtze RiverEnviron Sci Tech202054119291193910.1021/acs.est.0c01333
– reference: BaramSCouvreurVHarterTReadMBrownPHKandelousMSmartDRHopmansJWEstimating nitrate leaching to groundwater from Orchards: comparing crop nitrogen excess, deep vadose zone data-driven estimates, and HYDRUS modelingVadose Zone J2017151111310.2136/vzj2016.07.0061
– reference: ChoiWJHanGHRoHMYooSHLeeSMEvaluation of nitrate contamination sources of unconfined groundwater in the North Han River basin of Korea using nitrogen isotope ratiosGeosci J20026475510.1007/BF02911335
– reference: DuttaSGreen Revolution revisited: the contemporary agrarian situation in Punjab, IndiaSoc Chang20124222924710.1177/004908571204200205
– reference: QuemadaMBaranskiMNobel-de LangeMNJVallejoACooperJMMeta-analysis of strategies to control nitrate leaching in irrigated agricultural systems and their effects on crop yieldAgric Ecosyst Environ201317411010.1016/j.agee.2013.04.018
– reference: SunJMooneyHWuWTangHTongYXuZHuangBChengYYangXWeiDZhangFImporting food damages domestic environment: evidence from global soybean tradeProc Natl Acad Sci USA20181155415541910.1073/pnas.1718153115
– reference: van der LaanMAnnandaleJGBristowKLStirzakerRJDu PreezCCThorburnPJModelling nitrogen leaching: are we getting the right answer for the right reason?Agric Water Manag2014133748010.1016/j.agwat.2013.10.017
– reference: LasserreFRazackMBantonOA GIS-linked model for the assessment of nitrate contamination in groundwaterJ Hydrol1999224819010.1016/S0022-1694(99)00130-4
– reference: PowlsonDSPoultonPRAddiscottTMMcCannDSHansenJAAHenriksenKLeaching of nitrate from soils receiving organic or inorganic fertilizers continuously for 135 yearsNitrogen in organic wastes applied to soils1989LondonAcademic Press334345
– reference: ZhouJYGuBJSchlesingerWHJuXTSignificant accumulation of nitrate in Chinese semi-humid croplandsSci Rep201662508810.1038/srep25088
– reference: GassmanPWReyesMRGreenCHArnoldJGThe soil and water assessment tool: Historical development, applications, and future research directionsTrans Am Soc Agri Biol Eng2007501211125010.13031/2013.23637
– reference: YanWJZhangSSunPSeitzingerSPHow do nitrogen inputs to the Changjiang basin impact the Changjiang River nitrate: a temporal analysis for 1968–1997Glob Biogeochem Cycl2003174109110.1029/2002GB002029
– reference: PreethaPPAl-HamdanAZDeveloping nitrate-nitrogen transport models using remotely-sensed geospatial data of soil moisture profiles and wet depositionsJ Environ Sci Health Part A20205561562810.1080/10934529.2020.1724503
– reference: LordEIMitchellRDJEffect of nitrogen inputs to cereals on nitrate leaching from sandy soilsSoil Use Manag199814788310.1111/j.1475-2743.1998.tb00619.x
– reference: ChoudhuryATMAKennedyIRNitrogen fertilizer losses from rice soils and control of environmental pollution problemsCommun Soil Sci Plant Anal2005361625163910.1081/CSS-200059104
– reference: LiWZhaiLLeiQWollheimWMLiuJLiuHHuWRenTWangHLiuSInfluences of agricultural land use composition and distribution on nitrogen export from a subtropical watershed in ChinaSci Total Environ2018642213210.1016/j.scitotenv.2018.06.048
– reference: XiaYTiCSheDYanXLinking river nutrient concentrations to land use and rainfall in a paddy agriculture–urban area gradient watershed in southeast ChinaSci Total Environ20165665671094110510.1016/j.scitotenv.2016.05.134
– reference: TilmanDFargioneJWolffBD’AntonioCDobsonAHowarthRSchindlerDSchlesingerWHSimberloffDSwackhamerDForecasting agriculturally driven global environmental changeScience200129228128410.1126/science.1057544
– reference: ChoiWJLeeSMRoHMEvaluation of contamination sources of groundwater NO3− using nitrogen isotope data: a reviewGeosci J20037818710.1007/BF02910268
– reference: TaftehASepaskhahARApplication of HYDRUS-1D model for simulating water and nitrate leaching from continuous and alternate furrow irrigated rapeseed and maize fieldsAgric Water Manag2012113192910.1016/j.agwat.2012.06.011
– reference: NakamuraKHarterTHironoYHorinoHMitsunoTAssessment of root zone nitrogen leaching as affected by irrigation and nutrient management practicesVadose Zone J200431353136610.2136/vzj2004.1353
– reference: GlibertPMHarrisonJHeilCSeitzingerSEscalating worldwide use of urea—a global change contributing to coastal eutrophicationBiogeochem20067744146310.1007/s10533-005-3070-5
– reference: ZhaoBQLiXYLiuHWangBRZhuPHuangSMBaoDJLiYTSoHBResults from long-term fertilizer experiments in China: the risk of groundwater pollution by nitrateNJAS-Wagening J Life Sci20115817718310.1016/j.njas.2011.09.004
– reference: MuellerNDLassalettaLRunckBBillenGGarnierJGerberJSDeclining spatial efficiency of global cropland nitrogen allocationGlob Biogeochem Cycle20173124525710.1002/2016GB005515
– reference: LiuRKangYZhangCPeiLWanSJiangSLiuSRenZYangYChemical fertilizer pollution control using drip fertigation for conservation of water quality in Danjiangkou ReservoirNutr Cycl Agroecosyst20149829530710.1007/s10705-014-9612-2
– reference: SinhaEMichalakAMPrecipitation dominates interannual variability of riverine nitrogen loading across the continental United StatesEnviron Sci Tech201650128741288410.1021/acs.est.6b04455
– reference: KumarKGohKMRecovery of 15N labeled fertilizer applied to winter wheat and perennial ryegrass crops and residual 15N recovery by succeeding wheat crops under different crop residue management practicesNutr Cycl Agroecosyst20026212313010.1023/A:1015595202542
– reference: Bijay-SinghY-SSekhonGSFertilizer use efficiency and nitrate pollution of groundwater in developing countriesJ Contam Hydrol19952016718410.1016/0169-7722(95)00067-4
– reference: GardnerJBDrinkwaterLEThe fate of nitrogen in grain cropping systems: a meta-analysis of 15N field experimentsEcol App2009192167218410.1890/08-1122.1
– reference: DinnesDLKarlenDLJaynesDBKasparTCHatfieldJLColvinTSCambardellaCANitrogen management strategies to reduce nitrate leaching in tile-drained Midwestern soilsAgron J20029415317110.2134/agronj2002.1530
– reference: HeBKanaeSOkiTHirabayashiYYamashikiYTakaraKAssessment of global nitrogen pollution in rivers using an integrated biogeochemical modeling frameworkWater Res2011452573258610.1016/j.watres.2011.02.011
– reference: JuXTZhangCNitrogen cycling and environmental impacts in upland agricultural soils in North China: a reviewJ Integr Agric2017162848286210.1016/S2095-3119(17)61743-X
– reference: BirkinshawSJEwenJNitrogen transformation component for SHETRAN catchment nitrate transport modellingJ Hydrol200023011710.1016/S0022-1694(00)00174-8
– reference: LiTZhangWYinJChadwickDNorseDLuYLiuXChenXZhangFPowlsonDDouZEnhanced-efficiency fertilizers are not a panacea for resolving the nitrogen problemGlob Change Biol2018242e511e52110.1111/gcb.13918
– reference: EghballBGilleyJEBaltenspergerDDBlumenthalJMLong-term manure and fertilizer application effects on phosphorus and nitrogen in runoffTrans Am Soc Agric Biol Eng20024568769410.13031/2013.8850
– reference: DingJXiBGaoRHeLLiuHDaiXYuYIdentifying diffused nitrate sources in a stream in an agricultural field using a dual isotopic approachSci Total Environ2014484101810.1016/j.scitotenv.2014.03.018
– reference: KayPEdwardsACFoulgerMA review of the efficacy of contemporary agricultural stewardship measures for ameliorating water pollution problems of key concern to the UK water industryAgric Syst200999677510.1016/j.agsy.2008.10.006
– reference: BatemanASKellySDFertilizer nitrogen isotope signaturesIsotopes Environ Health Stud20074323724710.1080/10256010701550732
– reference: DumanskiJPeirettiRBenitesJMcGarryDPieriCThe paradigm of conservation agricultureProc World Assoc Soil Water Conserv2006P15864
– reference: ZhangYLiFZhangQLiJLiuQTracing nitrate pollution sources and transformation in surface-and ground-waters using environmental isotopesSci Total Environ201449021322210.1016/j.scitotenv.2014.05.004
– reference: HuKLiBChenDZhangYEdisRSimulation of nitrate leaching under irrigated maize on sandy soil in desert oasis in Inner Mongolia, ChinaAgric Water Manag2008951180118810.1016/j.agwat.2008.05.001
– reference: HowarthRWCoastal nitrogen pollution: a review of sources and trends globally and regionallyHarmful Algae20088142010.1016/j.hal.2008.08.015
– reference: DoreMHClimate change and changes in global precipitation patterns: what do we know?Environ Int2005311167118110.1016/j.envint.2005.03.004
– reference: StuartMEGoodDCBloomfieldJPWilliamsATA review of the potential impact of climate change on future nitrate concentrations in groundwater of the UKSci Total Environ20114092859287310.1016/j.scitotenv.2011.04.016
– reference: SchoumansOFChardonWJBechmannMEGascuel-OdouxCHofmanGKronvangBRubaekGHUlenBDoriozJMMitigation options to reduce phosphorus losses from the agricultural sector and improve surface water quality: a reviewSci Total Environ20144684691255126610.1016/j.scitotenv.2013.08.061
– reference: PaerlHWScottJTMcCarthyMJNewellSEGardnerWSHavensKEHoffmanDKWilhelmSWWurtsbaughWAIt takes two to tango: when and where dual nutrient (N & P) reductions are needed to protect lakes and downstream ecosystemsEnviron Sci Tech201650108051081310.1021/acs.est.6b02575
– reference: BhardwajAGargSSondhiSKTanejaDSNitrate contamination of shallow aquifer groundwater in the central districts of Punjab, IndiaJ Environ Sci Eng2012549097
– reference: JiYLiuHShiYWill China's fertilizer use continue to decline? Evidence from LMDI analysis based on crops, regions and fertilizer typesPLoS ONE2020158e023723410.1371/journal.pone.0237234
– reference: ChristensenBTSchjønningPElmholtSChristensenBTTightening the nitrogen cycleManaging soil quality: challenges in modern agriculture2004OxonCABI Publishing476710.1079/9780851996714.0047
– reference: KopacekJHejzlarJPoschMFactors controlling the export of nitrogen from agricultural land in a large central European catchment during 1900–2010Environ Sci Tech2013476400640710.1021/es400181m
– reference: Peña-HaroSLlopis-AlbertCPulido-VelazquezMPulido-VelazquezDFertilizer standards for controlling groundwater nitrate pollution from agriculture: El Salobral-Los Llanos case studySpain J Hydrol201039217418710.1016/j.jhydrol.2010.08.006
– reference: LernerDNHarrisBThe relationship between land use and groundwater resources and qualityLand Use Policy200926S265S27310.1016/j.landusepol.2009.09.005
– reference: LordEIJohnsonPAArcherJRNitrate sensitive areas: a study of large scale control of nitrate loss in EnglandSoil Use Manag19991520120710.1111/j.1475-2743.1999.tb00089.x
– reference: AkbariyehSBartelt-HuntSSnowDLiXTangZLiYThree-dimensional modeling of nitrate-N transport in vadose zone: roles of soil heterogeneity and groundwater fluxJ Contam Hydrol2018211152510.1016/j.jconhyd.2018.02.005
– reference: TakedaIFukushimaALong-term changes in pollutant load outflows and purification function in a paddy field watershed using a circular irrigation systemWater Res20064056957810.1016/j.watres.2005.08.034
– reference: JinZZhengQZhuCWangYCenJLiFContribution of nitrate sources in surface water in multiple land use areas by combining isotopes and a Bayesian isotope mixing modelApp Geochem201893101910.1016/j.apgeochem.2018.03.014
– reference: DaryantoSWangLJacinthePAImpacts of no-tillage management on nitrate loss from corn, soybean and wheat cultivation: a meta-analysisSci Rep201771211710.1038/s41598-017-12383-7
– reference: LiSLLiuCQLangYCZhaoZQZhouZHTracing the sources of nitrate in karstic groundwater in Zunyi, Southwest China: a combined nitrogen isotope and water chemistry approachEnviron Earth Sci2010601415142310.1007/s12665-009-0277-0
– reference: ShowstackRNutrient over-enrichment implicated in multiple problems in U.S. waterwaysEos Trans Am Geophys Union20008149749910.1029/00EO00358
– reference: StöckleCODonatelliMNelsonRCropSyst, a cropping systems simulation modelEur J Agron20031828930710.1016/S1161-0301(02)00109-0
– reference: GouldingKJarvisSWhitmoreAOptimizing nutrient management for farm systemsPhilos Trans Royal Soc London Ser B Biol Sci200836366768010.1098/rstb.2007.2177
– reference: HowarthRChanFConleyDJGarnierJDoneySCMarinoRBillenGCoupled biogeochemical cycles: eutrophication and hypoxia in temperate estuaries and coastal marine ecosystemsFront Ecol Environ20119182610.1890/100008
– reference: WangLButcherASStuartMEGooddyDCBloomfieldJPThe nitrate time bomb: a numerical way to investigate nitrate storage and lag time in the unsaturated zoneEnviron Geochem Health20133566768110.1007/s10653-013-9550-y
– reference: KeatingBACarberryPSHammerGLProbertMERobertsonMJHolzworthDHuthNIHargreavesJNMeinkeHHochmanZMcLeanGAn overview of APSIM, a model designed for farming systems simulationEur J Agron20031826728810.1016/S1161-0301(02)00108-9
– reference: HansenATDolphCLFoufoula-GeorgiouEFinlayJCContribution of wetlands to nitrate removal at the watershed scaleNat Geosci20181112713210.1038/s41561-017-0056-6
– reference: KrupaMTateKWvan KesselCSarwarNLinquistBAWater quality in rice growing watersheds in a Mediterranean climateAgric Ecosyst Environ201114429030110.1016/j.agee.2011.09.004
– reference: LeeHMasudaTYasudaHHosoiYThe pollutant loads from a paddy field watershed due to agricultural activityPaddy Water Environ20141243944810.1007/s10333-013-0399-6
– reference: BillenGThieuVGarnierJSilvestreMModelling the N cascade in regional watersheds: the case study of the Seine, Somme and Scheldt riversAgric Ecosyst Environ200913323424610.1016/j.agee.2009.04.018
– reference: WangYYingHYinYZhengHCuiZEstimating soil nitrate leaching of nitrogen fertilizer from global meta-analysisSci Total Environ20196579610210.1016/j.scitotenv.2018.12.029
– reference: FerrantSOehlerFDurandPRuizLSalmon-MonvioaJJustesEDugastPProbstAProbstJLSánchez-PérezJMUnderstanding nitrogen transfer dynamics in a small agricultural catchment: comparison of a distributed (TNT2) and a semi distributed (SWAT) modelling approachesJ Hydrol201140611510.1016/j.jhydrol.2011.05.026
– reference: LedouxEGomezEMongetJMViavatteneCViennotPDucharneABenoîtMMignoletCSchottCMaryBAgriculture and groundwater nitrate contamination in the Seine basin. The STICS–MODCOU modelling chainSci Total Environ2007375334710.1016/j.scitotenv.2006.12.002
– reference: Bijay-SinghV-SProductivity and fertility of soils in the Indo-Gangetic Plains of South AsiaArch Agron Soil Sci201258S33S4010.1080/03650340.2012.693600
– reference: HansonBRŠimůnekJHopmansJWEvaluation of urea-ammoniumnitrate fertigation with drip irrigation using numerical modelingAgri Water Manag20068610211310.1016/j.agwat.2006.06.013
– reference: MacQuarrieKTBSudickyEARobertsonWDNumerical simulation of a fine-grained denitrification layer for removing septic system nitrate from shallow groundwaterJ Contam Hydrol200152295510.1016/S0169-7722(01)00152-8
– reference: Plaza-bonillaDNolotJRaffaillacDJustesECover crops mitigate nitrate leaching in cropping systems including grain legumes: field evidence and model simulationsAgric Ecosyst Environ201521211210.1016/j.agee.2015.06.014
– reference: AlmasriMNKaluarachchiJJImplications of on-ground nitrogen loading and soil transformations on groundwater quality managementJ Am Water Res Assoc20044016518610.1111/j.1752-1688.2004.tb01017.x
– reference: WangLStuartMEBloomfieldJPButcherASGooddyDCMcKenzieAALewisMAWilliamsATPrediction of the arrival of peak nitrate concentrations at the water table at the regional scale in Great BritainHydrol Process20122622623910.1002/hyp.8164
– reference: SeitzingerSHarrisonJABohlkeJKBouwmanAFLowranceRPetersonBTobiasCvan DrechtGDenitrification across landscapes and waterscapes: a synthesisEcol App2006162064209010.1890/1051-0761(2006)016[2064:DALAWA]2.0.CO;2
– reference: CuiZZhangHChenXZhangCMaWHuangCZhangWMiGMiaoYLiXGaoQPursuing sustainable productivity with millions of smallholder farmersNature201855536336610.1038/nature25785
– reference: WeersinkAFraserEPannellDDuncanERotzSOpportunities and challenges for big data in agricultural and environmental analysisAnn Rev Resour Econ201810193710.1146/annurev-resource-100516-053654
– reference: EagleAJOlanderLPLocklierKLHeffernanJBBernhardtESFertilizer management and environmental factors drive N2O and NO3 losses in corn: a meta-analysisSoil Sci Soc Am J2017811191120210.2136/sssaj2016.09.0281
– reference: ZhangYShiPSongJLiQApplication of nitrogen and oxygen isotopes for source and fate identification of nitrate pollution in surface water: a reviewApp Sci2019911810.3390/app9010018
– reference: MinJShiWNitrogen discharge pathways in vegetable production as non-point sources of pollution and measures to control itSci Total Environ201861361412313010.1016/j.scitotenv.2017.09.079
– reference: ZhangXXuZSunXDongWBallantineDNitrate in shallow groundwater in typical agricultural and forest ecosystems in China, 2004–2010J Environ Sci2013251007101410.1016/S1001-0742(12)60139-9
– reference: KimHKaownDMayerBLeeJYHyunYLeeKKIdentifying the sources of nitrate contamination of groundwater in an agricultural area (Haean basin, Korea) using isotope and microbial community analysesSci Total Environ201553356657510.1016/j.scitotenv.2015.06.080
– reference: GallowayJNDentenerFJCaponeDGBoyerEWHowarthRWSeitzingerSPAsnerGPClevelandCCGreenPAHollandEAKarlDMNitrogen cycles: past, present, and futureBiogeochem20047015322610.1007/s10533-004-0370-0
– reference: IAEA (International Atomic, Energy Agency) (2003) Management of crop residues for sustainable crop production. IAEA TECHDOC‐1354. International Atomic, Energy Agency, Vienna, Austria
– reference: Poch-MassegúJRJiménez-MartínezJWallisKJRamírez de CartagenaFCandelaLIrrigation return flow and nitrate leaching under different crops and irrigation methods in Western Mediterranean weather conditionsAgric Water Manag201413411310.1016/j.agwat.2013.11.017
– reference: EltarabilyMGNegmAMYoshimuraCSaavedraOCModeling the impact of nitrate fertilizers on groundwater quality in the southern part of the Nile DeltaEgypt Water Supp20171756157010.2166/ws.2016.162
– reference: DebSKSharmaPShuklaMKAshighJŠimůnekJNumerical evaluation of nitrate distributions in the onion root zone under conventional furrow fertigationJ Hydrol Eng20152120501502610.1061/(ASCE)HE.1943-5584.0001304
– reference: MuellerNDGerberJSJohnstonMRayDKRamankuttyNFoleyJAClosing yield gaps through nutrient and water managementNature201249025425710.1038/nature11420
– reference: Wong CM, Williams CE, Pittock J, Collier U, Schelle P (2007) World's top 10 rivers at risk. WWF International, Gland, Switzerland. http://www.panda.org/about_wwf/what_we_do/freshwater/publications/index.cfm?uNewsID=97680
– reference: Howarth RW, Billen G, Swaney D, Townsend A, Jaworski N, Lajtha K, Downing JA, Elmgren R, Caraco N, Jordan T, Berendse F, Freney J, Kudeyarov V, Murdoch P, Zhao-Liang Z (1996) Regional nitrogen budgets and riverine N & P fluxes for the drainages to the North Atlantic Ocean: Natural and human influences. In: Howarth RW (ed), Nitrogen cycling in the North Atlantic Ocean and its watersheds, Springer, Dordrecht, pp 75–139. https://doi.org/10.1007/978-94-009-1776-7_3
– reference: Mas-PlaJMencióAGroundwater nitrate pollution and climate change: learnings from a water balance-based analysis of several aquifers in a western Mediterranean region (Catalonia)Environ Sci Pollut Res2019262184220210.1007/s11356-018-1859-8
– reference: RefsgaardJCThorsenMJensenJBKleeschulteSHansenSLarge scale modeling of groundwater contamination from nitrate leachingJ Hydrol199922111714010.1016/S0022-1694(99)00081-5
– reference: XiaLLamSKChenDWangJTangQYanXCan knowledge-based N management produce more staple grain with lower greenhouse gas emission and reactive nitrogen pollution? A meta-analysisGlob Chang Biol2017231917192510.1111/gcb.13455
– reference: ChenLZhongYCWeiGYCaiYPShenZYDevelopment of an integrated modeling approach for identifying multilevel non-point-source priority management areas at the watershed scaleWater Resour Res2014504095410910.1002/2013WR015041
– reference: TrenberthKEChanges in precipitation with climate changeClim Res20114712313810.3354/cr00953
– reference: OuyangWSongKYWangXLHaoFHNon-point source pollution dynamics under long-term agricultural development and relationship with landscape dynamicsEcol Indic20144557958910.1016/j.ecolind.2014.05.025
– reference: DuanSWXuFWangLJLong-term changes in nutrient concentrations of the Changjiang River and principal tributariesBiogeochemistry20078521523410.1007/s10533-007-9130-2
– reference: BassoBShuaiGZhangJRobertsonGPYield stability analysis reveals sources of large-scale nitrogen loss from the US MidwestSci Rep20199577410.1038/s41598-019-42271-1
– reference: JankowskiKNeillCDavidsonEAMacedoMNCostaCGalfordGLSantosLMLefebvrePNunesDCerriCEMcHorneyRDeep soils modify environmental consequences of increased nitrogen fertilizer use in intensifying Amazon agricultureSci Rep201881347810.1038/s41598-018-31175-1
– reference: WollheimWMVörösmartyCJBouwmanAFGreenPHarrisonJLinderEPetersonBJSeitzingerSPSyvitskiJPMGlobal N removal by freshwater aquatic systems using a spatially distributed, within-basin approachGlob Biogeochem Cycl200822GB202610.1029/2007GB002963
– reference: LawniczakAEZbierskaJNowakBAchtenbergKGrześkowiakKKanasKImpact of agriculture and land use on nitrate contamination in groundwater and running waters in central-west PolandEnviron Monit Assess201618817210.1007/s10661-016-5167-9
– reference: HartPBSPowlsonDSPultonPRJohnsonAEJenkinsonDSThe availability of the nitrogen in the crop residues of winter wheat to subsequent cropsJ Agric Sci199312135536210.1017/S0021859600085555
– reference: Bartley R, Henderson A, Prosser IP, Hughes AO, McKergow LA, Lu H, Brodie J, Bainbridge Z, Roth CH (2003) Patterns of erosion and sediment and nutrient transport in the Herbert River catchment, Queensland. Consultancy Report. August 2003, CSIRO Land and Water, p 59
– reference: LeeMSLeeKKHyunYClementTPHamiltonDNitrogen transformation and transport modeling in groundwater aquifersEcol Model200619214315910.1016/j.ecolmodel.2005.07.013
– reference: Dourado-NetoDPowlsonDAbu BakarRBacchiOOSBasantaMVThi CongPKeerthisingheGIsmailiMRahmanSMReichardtKSafwatMSASangakkaraRTimmLCWangJYZagalEvan KesselCMultiseason recoveries of organic and inorganic nitrogen-15 in tropical cropping systemsSoil Sci Soc Am J20107413915210.2136/sssaj2009.0192
– reference: GusmanAJMariñoMAAnalytical modeling of nitrogen dynamics in soils and groundwaterJ Irrig Drain Eng199912533033710.1061/(ASCE)0733-9437(1999)125:6(330)
– reference: RobinsonDδ15N as an integrator of the nitrogen cycleTrends Ecol Evol20011615316210.1016/S0169-5347(00)02098-X
– reference: NolanBTHittKRuddyBProbability of nitrate contamination of recently recharged ground waters in the conterminous United StatesEnviron Sci Tech2002362138214510.1021/es0113854
– reference: GaiXWangHLiuJZhaiLLiuSRenTLiuHEffects of feedstock and pyrolysis temperature on biochar adsorption of ammonium and nitratePLoS ONE2014912e11388810.1371/journal.pone.0113888
– reference: ThodsenHFarkasCChormanskiJTrolleDBlicher-MathiesenGGrantREngebretsenAKardelIAndersenHEModelling nutrient load changes from fertilizer application scenarios in six catchments around the Baltic SeaAgriculture2017754110.3390/agriculture7050041
– reference: PathakHChattarjeeDSahaSFertilizer and environmental pollution: from problem to solutionIndian J Fert201915262280
– reference: Bijay-SinghSGSNitrate pollution of groundwater from farm use of nitrogen fertilizers—a reviewAgric Environ1979420722510.1016/0304-1131(79)90022-5
– reference: van VlietMTFlörkeMHarrisonJAHofstraNKellerVLudwigFSpanierJEStrokalMWadaYWenYWilliamsRJModel inter-comparison design for large-scale water quality modelsCurr Opin Environ Sustain201936596710.1016/j.cosust.2018.10.013
– reference: DelgadoJAVandenbergBNeerDD’AdamoREmerging nutrient management databases and networks of networks will have broad applicability in future machine learning and artificial intelligence applications in soil and water conservationJ Soil Water Conserv201974113A118A10.2489/jswc.74.6.113A
– reference: LiuGDWuWLZhangJRegional differentiation of non-point source pollution of agriculture-derived nitrate nitrogen in groundwater in northern ChinaAgri Ecosyst Environ200510721122010.1016/j.agee.2004.11.010
– reference: MaLScottHDShafferMJAhujaLRRZWQM simulations of water and nitrate movement in a manured tall fescue fieldSoil Sci199816325927010.1097/00010694-199804000-00001
– reference: HaasMBGuseBFohrerNAssessing the impacts of Best Management Practices on nitrate pollution in an agricultural dominated lowland catchment considering environmental protection versus economic developmentJ Environ Manag201719634736410.1016/j.jenvman.2017.02.060
– reference: BorchardNSchirrmannMCayuelaMLKammannCWrage-MönnigNEstavilloJMFuertes-MendizábalTSiguaGSpokasKIppolitoJANovakJBiochar, soil and land-use interactions that reduce nitrate leaching and N2O emissions: a meta-analysisSci Total Environ20196512354236410.1016/j.scitotenv.2018.10.060
– reference: NRC (National Research Council)Improving water quality in the Mississippi River Basin and Northern Gulf of Mexico: strategies and priorities2012WashingtonThe National Academies Press10.17226/13029
– reference: BakshASHatfieldJLKanwarRSMaLAhujaLRSimulating nitrate drainage losses from a Walnut Creek watershed fieldJ Environ Qual20043311412310.2134/jeq2004.1140
– reference: MeisingerJJDelgadoJAAlvaAKNitrogen leaching managementEncyclop Soils Environ2006211221124
– reference: GouldingKNitrate leaching from arable and horticultural landSoil Use Manag20001614515110.1111/j.1475-2743.2000.tb00218.x
– reference: ZhouYXuJFYinWAiLFangNFTanWFYanFLShiZHHydrological and environmental controls of the stream nitrate concentration and flux in a small agricultural watershedJ Hydrol201754535536610.1016/j.jhydrol.2016.12.015
– reference: ShuklaSSaxenaAHussainCMGlobal status of nitrate contamination in groundwater: its occurrence, health impacts, and mitigation measuresHandbook of environmental materials management2018Springer86988810.1007/978-3-319-58538-3_20-1
– reference: KatyalJCBijay-SinghVPLGBureshRJEfficient nitrogen use as affected by urea application and irrigation sequenceSoil Sci Soc Am J19875136637010.2136/sssaj1987.03615995005100020020x
– reference: WangZLiJLiYSimulation of nitrate leaching under varying drip system uniformities and precipitation patterns during the growing season of maize in the North China plainAgric Water Manag2014142192810.1016/j.agwat.2014.04.013
– reference: MarinovIMarinovAMA coupled mathematical model to predict the influence of nitrogen fertilization on crop, soil and groundwater qualityWater Resour Manag2014285231524610.1007/s11269-014-0664-5
– reference: CameronKCDiHJMoirJLNitrogen losses from the soil/plant system: a reviewAnn Appl Biol201316214517310.1111/aab.12014
– reference: GallowayJNAberJDErismanJWSeitzingerSPHowarthRWCowlingEBCosbyBJThe nitrogen cascadeBioScience20035334135610.1641/0006-3568(2003)053[0341:TNC]2.0.CO;2
– reference: van DrechtGBouwmanAFKnoopJMMeinardiCBeusenAGlobal pollution of surface waters from point and nonpoint sources of nitrogenSci World20011S263264110.1100/tsw.2001.326
– reference: NangiaVGowdaPHMullaDJSandsGRWater quality modeling of fertilizer management impacts on nitrate losses in tile drains at the field scaleJ Environ Qual20083729630710.2134/jeq2007.0224
– reference: TangTStrokalMvan VlietMTSeuntjensPBurekPKroezeCLanganSWadaYBridging global, basin and local-scale water quality modeling towards enhancing water quality management worldwideCurr Opin Environ Sustain201936394810.1016/j.cosust.2018.10.004
– reference: Wexler SK, Hiscock KM, Dennis PF (2009) Tracing the sources and fate of diffuse nitrate contamination in a lowland agricultural catchment using a dual-isotope method. European Geosciences Union General Assembly, p 691
– reference: CerroIAntigüedadISrinavasanRSauvageSVolkMSanchez-PerezJMSimulating land management options to reduce nitrate pollution in an agricultural watershed dominated by an alluvial aquiferJ Environ Qual201443677410.2134/jeq2011.0393
– reference: ChienSHProchnowLICantarellaHDonaldLSRecent developments of fertilizer production and use to improve nutrient efficiency and minimize environmental impactsAdv Agron200910226732210.1016/S0065-2113(09)01008-6
– reference: MaLFengSReidsmaPQuFHeerinkNIdentifying entry points to improve fertilizer use efficiency in Taihu Basin, ChinaLand Use Policy201437525910.1016/j.landusepol.2013.01.008
– reference: YuCHuangXChenHGodfrayHCJWrightJSHallJWGongPNiSQiaoSHuangGXiaoYManaging nitrogen to restore water quality in ChinaNature201956751652010.1038/s41586-019-1001-1
– reference: SebiloMMayerBNicolardotBPinayGMariottiALong-term fate of nitrate fertilizer in agricultural soilsProc Natl Acad Sci USA2013110181851818910.1073/pnas.1305372110
– reference: KendallCKendallCMcDonnellJJTracing nitrogen sources and cycling in catchmentsIsotope tracers in catchment hydrology1998AmsterdamElsevier51957610.1016/B978-0-444-81546-0.50023-9
– reference: Helsinki Commission (2004) The fourth Baltic Sea pollution load compilation (PLC-4). In: Baltic Sea environment proceedings. Helsinki Commission, Helsinki, Finland, vol 93, p 189
– reference: BurtTPHowdenNJWorrallFWhelanMJBierozaMNitrate in United Kingdom rivers: policy and its outcomes since 1970Environ Sci Technol20114517518110.1021/es101395s
– reference: Urresti-EstalaBVadillo-PerezIJimenez-GavilanPSolerASanchez-GarciaDCarrasco-CantosFApplication of stable isotopes (δ34S–SO4, δ18O–SO4, δ15N–NO3, δ18O–NO3) to determine natural background and contamination sources in the Guadalhorce River Basin (southern Spain)Sci Total Environ2015506465710.1016/j.scitotenv.2014.10.090
– reference: ZillénLConleyDJAndrénTAndrénEBjörckSPast occurrences of hypoxia in the Baltic Sea and the role of climate variability, environmental change and human impactEarth-Sci Rev200891779210.1016/j.earscirev.2008.10.001
– reference: YueFJLiuCQLiSLZhaoZQLiuXLDingHLiuBJZhongJAnalysis of δ15N and δ18O to identify nitrate sources and transformations in Songhua River, Northeast ChinaJ Hydrol201451932933910.1016/j.jhydrol.2014.07.026
– reference: LiuJYouLAminiMObersteinerMHerreroMZehnderAJBYangHA high-resolution assessment on global nitrogen flows in croplandProc Natl Acad Sci USA20101078035804010.1073/pnas.0913658107
– reference: HuangTJuXTYangHNitrate leaching in a winter wheat–summer maize rotation on a calcareous soil as affected by nitrogen and straw managementSci Rep201774224710.1038/srep42247
– reference: AlmasriMNNitrate contamination of groundwater: a conceptual management frameworkEnviron Impact Assess Rev20072722024210.1016/j.eiar.2006.11.002
– reference: Zadeh SM (2018) Nutrients. In: Mateo-Sagasta J, Zadeh SM, Turral H (eds), More people, more food, worse water?: A global review of water pollution from agriculture. Food and Agriculture Organization of UNO, Rome, Italy; International Water Management Institute (IWMI), CGIAR Research Program on Water, Land and Ecosystems (WLE), Colombo, Sri Lanka. pp 53–75. http://www.fao.org/3/ca0146en/CA0146EN.pdf
– reference: LiuTWangFMichalskiGXiaXLiuSUsing 15N, 17O, and 18O to determine nitrate sources in the Yellow River, ChinaEnviron Sci Tech201347134121342110.1021/es403357m
– reference: SotoDXKoehlerGWassenaarLIHobsonKASpatio-temporal variation of nitrate sources to Lake Winnipeg using N and O isotope (δ15N, δ18O) analysesSci Total Environ201964748649310.1016/j.scitotenv.2018.07.346
– reference: RamosTBŠimůnekJGonçalvesMCMartinsJCPrazeresAPereiraLSTwo-dimensional modeling of water and nitrogen fate from sweet sorghum irrigated with fresh and blended saline watersAgric Water Manag20121118710410.1016/j.agwat.2012.05.007
– reference: AsmalaESaikkuLVienonenSImport–export balance of nitrogen and phosphorus in food, fodder and fertilizers in the Baltic Sea drainage areaSci Total Environ20114094917492210.1016/j.scitotenv.2011.08.030
– reference: StålnackePGrimvallASundbladKTonderskiAEstimation of riverine loads of nitrogen and phosphorus to the Baltic Sea, 1970–1993Environ Monitor Assess19995817320010.1023/A:1006073015871
– reference: ZhangYShiPLiFWeiASongJMaJQuantification of nitrate sources and fates in rivers in an irrigated agricultural area using environmental isotopes and a Bayesian isotope mixing modelChemosphere201820849350110.1016/j.chemosphere.2018.05.164
– reference: AlexanderRBSmithRASchwarzGEBoyerEWNolanJVBrakebillJWDifferences in phosphorus and nitrogen delivery to the Gulf of Mexico from the Mississippi River BasinEnviron Sci Tech20084282283010.1021/es0716103
– reference: DiHJCameronKCNitrate leaching in temperate agroecosystems: sources, factors and mitigating strategiesNutr Cycl Agroecosyst20026423725610.1023/A:1021471531188
– reference: HassanGReneauRBHagedornCJantraniaARModeling effluent distribution and nitrate transport through an on-site wastewater systemJ Environ Qual2008371937194810.2134/jeq2007.0512
– reference: ZhangXDavidsonEAMauzerallDLSearchingerTDDumasPShenYManaging nitrogen for sustainable developmentNature2015528515910.1038/nature15743
– reference: ZhouMButterbach-BahlKAssessment of nitrate leaching loss on a yield-scaled basis from maize and wheat cropping systemsPlant Soil201437497799110.1007/s11104-013-1876-9
– reference: ChhabraAManjunathKRPanigrahySNon-point source pollution in Indian agriculture: estimation of nitrogen losses from rice crop using remote sensing and GISInt J Appl Earth Obs Geoinform20101219020010.1016/j.jag.2010.02.007
– reference: LadhaJKPathakHKrupnikTJSixJvan KesselCEfficiency of fertilizer nitrogen in cereal production: retrospects and prospectsAdv Agron2005878515610.1016/S0065-2113(05)87003-8
– reference: GärdenäsAIHopmansJWHansonBRŠimůnekJTwo-dimensional modeling of nitrate leaching for various fertigation scenarios under micro-irrigationAgric Water Manag20057421924210.1016/j.agwat.2004.11.011
– reference: ZhaoRFChenXPZhangFSZhangHLSchroderJRomheldVFertilization and nitrogen balance in a wheat–maize rotation system in North ChinaAgron J20069893894510.2134/agronj2005.0157
– reference: AgrawalGDLunkadSKMalkhedTDiffuse agricultural nitrate pollution of groundwaters in IndiaWater Sci Tech199939677510.1016/S0273-1223(99)00033-5
– reference: VervloetLSBinningPJBørgesenCDHøjbergALDelay in catchment nitrogen load to streams following restrictions on fertilizer applicationSci Total Environ20186271154116610.1016/j.scitotenv.2018.01.255
– reference: CAST (Council for Agricultural Science and Technology) (2019) Reducing the impacts of agricultural nutrients on water quality across a changing landscape. Issue Paper 64, CAST, Ames, Iowa, USA, p 20. https://www.cast-science.org/wp-content/uploads/2019/05/CAST_IP64_Nutrient-Loss.pdf
– reference: HillBHBolgrienDWNitrogen removal by streams and rivers of the Upper Mississippi River basinBiogeochem201110218319410.1007/s10533-010-9431-8
– reference: CastellanoMJDavidMBLong-term fate of nitrate fertilizer in agricultural soils is not necessarily related to nitrate leaching from agricultural soilsProc Natl Acad Sci2014111E766E76610.1073/pnas.1321350111
– reference: AlmasriMNKaluarachchiJJModeling nitrate contamination of groundwater in agricultural watershedsJ Hydrol200734321122910.1016/j.jhydrol.2007.06.016
– reference: DonnerSDCoeMTLentersJDTwineTEFoleyJAModeling the impact of hydrological changes on nitrate transport in the Mississippi River Basin from 1955 to 1994Glob Biogeochem Cycle200216311910.1029/2001GB001396
– reference: DonosoGCancinoJMagriAEffects of agricultural activities on water pollution with nitrates and pesticides in the Central Valley of ChileWater Sci Technol199939496010.1016/S0273-1223(99)00031-1
– reference: JuXTKouCLZhangFSChristiePNitrogen balance and groundwater nitrate contamination: comparison among three intensive cropping systems on the North China PlainEnviron Pollut200614311712510.1016/j.envpol.2005.11.005
– reference: ZhangXA plan for efficient use of nitrogen fertilizersNature201754332232310.1038/543322a
– reference: LiuQZhangYLiuBAmonetteJELinZLiuGAmbusPXieZHow does biochar influence soil N cycle? A meta-analysisPlant Soil201842621122510.1007/s11104-018-3619-4
– reference: DelgadoJAShortNMJrRobertsDPVandenbergBBig data analysis for sustainable agriculture on a geospatial cloud frameworkFront Sustain Food Syst201935410.3389/fsufs.2019.00054
– reference: NorseDNon-point pollution from crop production: global, regional and national issuesPedosphere200515499508
– reference: ArnoldJGAllenPMVolkMWilliamsJRBoschDDAssessment of different representations of spatial variability on SWAT model performanceTrans Am Soc Agri Biol Eng2010531433144310.13031/2013.34913
– reference: Van MeterKJBasuNBVeenstraJJBurrasCLThe nitrogen legacy: emerging evidence of nitrogen accumulation in anthropogenic landscapesEnviron Res Lett201611303501410.1088/1748-9326/11/3/035014
– reference: ShenZYZhongYCHuangQChenLIdentifying non-point source priority management areas in watersheds with multiple functional zonesWater Res20156856357110.1016/j.watres.2014.10.034
– reference: DavisDMGowdaPHMullaDJRandallGWModeling nitrate nitrogen leaching in response to nitrogen fertilizer rate and tile drain depth or spacing for southern Minnesota, USAJ Environ Qual2000291568158110.2134/jeq2000.00472425002900050026x
– reference: ZhangYTWangHYLiuSLeiQLLiuJHeJQZhaiLMRenTZLiuHBIdentifying critical nitrogen application rate for maize yield and nitrate leaching in a Haplic Luvisol soil using the DNDC modelSci Total Environ201551438839810.1016/j.scitotenv.2015.02.022
– volume: 74
  start-page: 139
  year: 2010
  ident: 4521_CR34
  publication-title: Soil Sci Soc Am J
  doi: 10.2136/sssaj2009.0192
– volume: 39
  start-page: 67
  year: 1999
  ident: 4521_CR126
  publication-title: Water Sci Tech
  doi: 10.1016/S0273-1223(99)00033-5
– volume: 45
  start-page: 175
  year: 2011
  ident: 4521_CR97
  publication-title: Environ Sci Technol
  doi: 10.1021/es101395s
– volume: 230
  start-page: 1
  year: 2000
  ident: 4521_CR82
  publication-title: J Hydrol
  doi: 10.1016/S0022-1694(00)00174-8
– volume: 26
  start-page: S265
  year: 2009
  ident: 4521_CR100
  publication-title: Land Use Policy
  doi: 10.1016/j.landusepol.2009.09.005
– volume: 7
  start-page: 12117
  year: 2017
  ident: 4521_CR171
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-12383-7
– volume: 16
  start-page: 145
  year: 2000
  ident: 4521_CR37
  publication-title: Soil Use Manag
  doi: 10.1111/j.1475-2743.2000.tb00218.x
– volume: 545
  start-page: 355
  year: 2017
  ident: 4521_CR114
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2016.12.015
– volume: 20
  start-page: 167
  year: 1995
  ident: 4521_CR124
  publication-title: J Contam Hydrol
  doi: 10.1016/0169-7722(95)00067-4
– volume: 58
  start-page: 173
  year: 1999
  ident: 4521_CR132
  publication-title: Environ Monitor Assess
  doi: 10.1023/A:1006073015871
– volume: 113
  start-page: 19
  year: 2012
  ident: 4521_CR61
  publication-title: Agric Water Manag
  doi: 10.1016/j.agwat.2012.06.011
– volume: 31
  start-page: 1167
  year: 2005
  ident: 4521_CR174
  publication-title: Environ Int
  doi: 10.1016/j.envint.2005.03.004
– volume: 24
  start-page: e511
  issue: 2
  year: 2018
  ident: 4521_CR177
  publication-title: Glob Change Biol
  doi: 10.1111/gcb.13918
– volume: 125
  start-page: 330
  year: 1999
  ident: 4521_CR81
  publication-title: J Irrig Drain Eng
  doi: 10.1061/(ASCE)0733-9437(1999)125:6(330)
– volume: 363
  start-page: 667
  year: 2008
  ident: 4521_CR144
  publication-title: Philos Trans Royal Soc London Ser B Biol Sci
  doi: 10.1098/rstb.2007.2177
– volume: 133
  start-page: 234
  year: 2009
  ident: 4521_CR106
  publication-title: Agric Ecosyst Environ
  doi: 10.1016/j.agee.2009.04.018
– volume: 26
  start-page: 226
  year: 2012
  ident: 4521_CR98
  publication-title: Hydrol Process
  doi: 10.1002/hyp.8164
– volume: 42
  start-page: 229
  year: 2012
  ident: 4521_CR121
  publication-title: Soc Chang
  doi: 10.1177/004908571204200205
– volume: 484
  start-page: 10
  year: 2014
  ident: 4521_CR48
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2014.03.018
– volume: 39
  start-page: 49
  year: 1999
  ident: 4521_CR10
  publication-title: Water Sci Technol
  doi: 10.1016/S0273-1223(99)00031-1
– volume: 6
  start-page: 25088
  year: 2016
  ident: 4521_CR16
  publication-title: Sci Rep
  doi: 10.1038/srep25088
– volume: 627
  start-page: 1154
  year: 2018
  ident: 4521_CR142
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2018.01.255
– volume: 144
  start-page: 290
  year: 2011
  ident: 4521_CR160
  publication-title: Agric Ecosyst Environ
  doi: 10.1016/j.agee.2011.09.004
– volume: 16
  start-page: 153
  year: 2001
  ident: 4521_CR41
  publication-title: Trends Ecol Evol
  doi: 10.1016/S0169-5347(00)02098-X
– volume: 50
  start-page: 1211
  year: 2007
  ident: 4521_CR72
  publication-title: Trans Am Soc Agri Biol Eng
  doi: 10.13031/2013.23637
– volume: 519
  start-page: 329
  year: 2014
  ident: 4521_CR51
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2014.07.026
– volume: 74
  start-page: 219
  year: 2005
  ident: 4521_CR59
  publication-title: Agric Water Manag
  doi: 10.1016/j.agwat.2004.11.011
– volume: 110
  start-page: 18185
  year: 2013
  ident: 4521_CR38
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1305372110
– volume: 9
  start-page: 5774
  year: 2019
  ident: 4521_CR183
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-42271-1
– volume: 17
  start-page: 561
  year: 2017
  ident: 4521_CR95
  publication-title: Egypt Water Supp
  doi: 10.2166/ws.2016.162
– volume: 42
  start-page: 822
  year: 2008
  ident: 4521_CR116
  publication-title: Environ Sci Tech
  doi: 10.1021/es0716103
– volume: 11
  start-page: 127
  year: 2018
  ident: 4521_CR108
  publication-title: Nat Geosci
  doi: 10.1038/s41561-017-0056-6
– volume: 221
  start-page: 117
  year: 1999
  ident: 4521_CR79
  publication-title: J Hydrol
  doi: 10.1016/S0022-1694(99)00081-5
– volume: 54
  start-page: 11929
  year: 2020
  ident: 4521_CR120
  publication-title: Environ Sci Tech
  doi: 10.1021/acs.est.0c01333
– volume: 111
  start-page: 87
  year: 2012
  ident: 4521_CR76
  publication-title: Agric Water Manag
  doi: 10.1016/j.agwat.2012.05.007
– volume: 19
  start-page: 2167
  year: 2009
  ident: 4521_CR35
  publication-title: Ecol App
  doi: 10.1890/08-1122.1
– volume: 15
  start-page: 201
  year: 1999
  ident: 4521_CR141
  publication-title: Soil Use Manag
  doi: 10.1111/j.1475-2743.1999.tb00089.x
– volume: 555
  start-page: 363
  year: 2018
  ident: 4521_CR180
  publication-title: Nature
  doi: 10.1038/nature25785
– volume: 143
  start-page: 117
  year: 2006
  ident: 4521_CR17
  publication-title: Environ Pollut
  doi: 10.1016/j.envpol.2005.11.005
– volume: 12
  start-page: 190
  year: 2010
  ident: 4521_CR127
  publication-title: Int J Appl Earth Obs Geoinform
  doi: 10.1016/j.jag.2010.02.007
– volume: 133
  start-page: 74
  year: 2014
  ident: 4521_CR71
  publication-title: Agric Water Manag
  doi: 10.1016/j.agwat.2013.10.017
– volume: 16
  start-page: 1
  issue: 3
  year: 2002
  ident: 4521_CR128
  publication-title: Glob Biogeochem Cycle
  doi: 10.1029/2001GB001396
– volume: 543
  start-page: 322
  year: 2017
  ident: 4521_CR165
  publication-title: Nature
  doi: 10.1038/543322a
– volume: 188
  start-page: 172
  year: 2016
  ident: 4521_CR172
  publication-title: Environ Monit Assess
  doi: 10.1007/s10661-016-5167-9
– volume: 95
  start-page: 1180
  year: 2008
  ident: 4521_CR75
  publication-title: Agric Water Manag
  doi: 10.1016/j.agwat.2008.05.001
– volume: 40
  start-page: 569
  year: 2006
  ident: 4521_CR159
  publication-title: Water Res
  doi: 10.1016/j.watres.2005.08.034
– volume: 374
  start-page: 977
  year: 2014
  ident: 4521_CR21
  publication-title: Plant Soil
  doi: 10.1007/s11104-013-1876-9
– volume: 468
  start-page: 1255
  issue: 469
  year: 2014
  ident: 4521_CR103
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2013.08.061
– volume: 9
  start-page: e113888
  issue: 12
  year: 2014
  ident: 4521_CR154
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0113888
– volume: 86
  start-page: 102
  year: 2006
  ident: 4521_CR60
  publication-title: Agri Water Manag
  doi: 10.1016/j.agwat.2006.06.013
– volume: 292
  start-page: 281
  year: 2001
  ident: 4521_CR101
  publication-title: Science
  doi: 10.1126/science.1057544
– volume: 647
  start-page: 486
  year: 2019
  ident: 4521_CR52
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2018.07.346
– volume: 3
  start-page: 1353
  year: 2004
  ident: 4521_CR58
  publication-title: Vadose Zone J
  doi: 10.2136/vzj2004.1353
– volume: 53
  start-page: 341
  year: 2003
  ident: 4521_CR13
  publication-title: BioScience
  doi: 10.1641/0006-3568(2003)053[0341:TNC]2.0.CO;2
– volume: 16
  start-page: 2064
  year: 2006
  ident: 4521_CR107
  publication-title: Ecol App
  doi: 10.1890/1051-0761(2006)016[2064:DALAWA]2.0.CO;2
– volume: 93
  start-page: 10
  year: 2018
  ident: 4521_CR55
  publication-title: App Geochem
  doi: 10.1016/j.apgeochem.2018.03.014
– volume: 533
  start-page: 566
  year: 2015
  ident: 4521_CR56
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2015.06.080
– volume: 375
  start-page: 33
  year: 2007
  ident: 4521_CR65
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2006.12.002
– volume: 75
  start-page: 194
  year: 2005
  ident: 4521_CR184
  publication-title: Agric Water Manag
  doi: 10.1016/j.agwat.2004.12.013
– volume: 16
  start-page: 2848
  year: 2017
  ident: 4521_CR15
  publication-title: J Integr Agric
  doi: 10.1016/S2095-3119(17)61743-X
– volume: 111
  start-page: E766
  year: 2014
  ident: 4521_CR39
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.1321350111
– volume: 409
  start-page: 2859
  year: 2011
  ident: 4521_CR173
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2011.04.016
– volume: 208
  start-page: 493
  year: 2018
  ident: 4521_CR49
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2018.05.164
– volume: 17
  start-page: 1091
  issue: 4
  year: 2003
  ident: 4521_CR119
  publication-title: Glob Biogeochem Cycl
  doi: 10.1029/2002GB002029
– ident: 4521_CR4
– volume: 490
  start-page: 254
  year: 2012
  ident: 4521_CR169
  publication-title: Nature
  doi: 10.1038/nature11420
– volume: 47
  start-page: 13412
  year: 2013
  ident: 4521_CR50
  publication-title: Environ Sci Tech
  doi: 10.1021/es403357m
– volume: 3
  start-page: 54
  year: 2019
  ident: 4521_CR182
  publication-title: Front Sustain Food Syst
  doi: 10.3389/fsufs.2019.00054
– volume: 23
  start-page: 1917
  year: 2017
  ident: 4521_CR147
  publication-title: Glob Chang Biol
  doi: 10.1111/gcb.13455
– volume: 58
  start-page: 177
  year: 2011
  ident: 4521_CR28
  publication-title: NJAS-Wagening J Life Sci
  doi: 10.1016/j.njas.2011.09.004
– volume: 27
  start-page: 220
  year: 2007
  ident: 4521_CR86
  publication-title: Environ Impact Assess Rev
  doi: 10.1016/j.eiar.2006.11.002
– ident: 4521_CR168
– volume: 211
  start-page: 15
  year: 2018
  ident: 4521_CR73
  publication-title: J Contam Hydrol
  doi: 10.1016/j.jconhyd.2018.02.005
– volume: 54
  start-page: 90
  year: 2012
  ident: 4521_CR125
  publication-title: J Environ Sci Eng
– volume: 45
  start-page: 2573
  year: 2011
  ident: 4521_CR94
  publication-title: Water Res
  doi: 10.1016/j.watres.2011.02.011
– volume: 47
  start-page: 123
  year: 2011
  ident: 4521_CR175
  publication-title: Clim Res
  doi: 10.3354/cr00953
– volume: 47
  start-page: 6400
  year: 2013
  ident: 4521_CR105
  publication-title: Environ Sci Tech
  doi: 10.1021/es400181m
– volume: 26
  start-page: 2184
  year: 2019
  ident: 4521_CR176
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-018-1859-8
– start-page: 334
  volume-title: Nitrogen in organic wastes applied to soils
  year: 1989
  ident: 4521_CR25
– volume: 192
  start-page: 143
  year: 2006
  ident: 4521_CR64
  publication-title: Ecol Model
  doi: 10.1016/j.ecolmodel.2005.07.013
– volume: 45
  start-page: 687
  year: 2002
  ident: 4521_CR112
  publication-title: Trans Am Soc Agric Biol Eng
  doi: 10.13031/2013.8850
– volume: 35
  start-page: 667
  year: 2013
  ident: 4521_CR99
  publication-title: Environ Geochem Health
  doi: 10.1007/s10653-013-9550-y
– volume: 506
  start-page: 46
  year: 2015
  ident: 4521_CR53
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2014.10.090
– volume: 528
  start-page: 51
  year: 2015
  ident: 4521_CR178
  publication-title: Nature
  doi: 10.1038/nature15743
– volume: 142
  start-page: 19
  year: 2014
  ident: 4521_CR77
  publication-title: Agric Water Manag
  doi: 10.1016/j.agwat.2014.04.013
– volume: 8
  start-page: 13478
  year: 2018
  ident: 4521_CR20
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-31175-1
– volume: 134
  start-page: 1
  year: 2014
  ident: 4521_CR66
  publication-title: Agric Water Manag
  doi: 10.1016/j.agwat.2013.11.017
– volume: 87
  start-page: 85
  year: 2005
  ident: 4521_CR30
  publication-title: Adv Agron
  doi: 10.1016/S0065-2113(05)87003-8
– volume: 33
  start-page: 114
  year: 2004
  ident: 4521_CR152
  publication-title: J Environ Qual
  doi: 10.2134/jeq2004.1140
– volume: 64
  start-page: 237
  year: 2002
  ident: 4521_CR24
  publication-title: Nutr Cycl Agroecosyst
  doi: 10.1023/A:1021471531188
– ident: 4521_CR117
– volume: 50
  start-page: 12874
  year: 2016
  ident: 4521_CR102
  publication-title: Environ Sci Tech
  doi: 10.1021/acs.est.6b04455
– volume: 613
  start-page: 123
  issue: 614
  year: 2018
  ident: 4521_CR162
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2017.09.079
– volume: 2
  start-page: 1122
  year: 2006
  ident: 4521_CR14
  publication-title: Encyclop Soils Environ
– volume: 16
  start-page: 244
  year: 2000
  ident: 4521_CR22
  publication-title: Soil Use Manag
  doi: 10.1111/j.1475-2743.2000.tb00203.x
– volume: 212
  start-page: 1
  year: 2015
  ident: 4521_CR67
  publication-title: Agric Ecosyst Environ
  doi: 10.1016/j.agee.2015.06.014
– start-page: 869
  volume-title: Handbook of environmental materials management
  year: 2018
  ident: 4521_CR5
  doi: 10.1007/978-3-319-58538-3_20-1
– volume: 102
  start-page: 183
  year: 2011
  ident: 4521_CR110
  publication-title: Biogeochem
  doi: 10.1007/s10533-010-9431-8
– volume: 37
  start-page: 296
  year: 2008
  ident: 4521_CR150
  publication-title: J Environ Qual
  doi: 10.2134/jeq2007.0224
– volume: 37
  start-page: 1937
  year: 2008
  ident: 4521_CR74
  publication-title: J Environ Qual
  doi: 10.2134/jeq2007.0512
– volume: 174
  start-page: 1
  year: 2013
  ident: 4521_CR139
  publication-title: Agric Ecosyst Environ
  doi: 10.1016/j.agee.2013.04.018
– volume: 4
  start-page: 207
  year: 1979
  ident: 4521_CR27
  publication-title: Agric Environ
  doi: 10.1016/0304-1131(79)90022-5
– volume: 1
  start-page: 632
  issue: S2
  year: 2001
  ident: 4521_CR115
  publication-title: Sci World
  doi: 10.1100/tsw.2001.326
– volume: 74
  start-page: 113A
  year: 2019
  ident: 4521_CR186
  publication-title: J Soil Water Conserv
  doi: 10.2489/jswc.74.6.113A
– ident: 4521_CR54
– volume: 567
  start-page: 516
  year: 2019
  ident: 4521_CR179
  publication-title: Nature
  doi: 10.1038/s41586-019-1001-1
– volume: 36
  start-page: 59
  year: 2019
  ident: 4521_CR187
  publication-title: Curr Opin Environ Sustain
  doi: 10.1016/j.cosust.2018.10.013
– volume: 533
  start-page: 379
  year: 2016
  ident: 4521_CR91
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2015.12.024
– volume: 115
  start-page: 5415
  year: 2018
  ident: 4521_CR163
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1718153115
– volume: 98
  start-page: 295
  year: 2014
  ident: 4521_CR158
  publication-title: Nutr Cycl Agroecosyst
  doi: 10.1007/s10705-014-9612-2
– volume: 8
  start-page: 14
  year: 2008
  ident: 4521_CR2
  publication-title: Harmful Algae
  doi: 10.1016/j.hal.2008.08.015
– ident: 4521_CR133
– volume: 36
  start-page: 1625
  year: 2005
  ident: 4521_CR143
  publication-title: Commun Soil Sci Plant Anal
  doi: 10.1081/CSS-200059104
– volume: 68
  start-page: 563
  year: 2015
  ident: 4521_CR93
  publication-title: Water Res
  doi: 10.1016/j.watres.2014.10.034
– volume: 490
  start-page: 213
  year: 2014
  ident: 4521_CR57
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2014.05.004
– volume: 43
  start-page: 237
  year: 2007
  ident: 4521_CR47
  publication-title: Isotopes Environ Health Stud
  doi: 10.1080/10256010701550732
– volume: 343
  start-page: 211
  year: 2007
  ident: 4521_CR85
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2007.06.016
– volume: 406
  start-page: 1
  year: 2011
  ident: 4521_CR89
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2011.05.026
– volume: 7
  start-page: 81
  year: 2003
  ident: 4521_CR42
  publication-title: Geosci J
  doi: 10.1007/BF02910268
– ident: 4521_CR1
– volume: 60
  start-page: 1415
  year: 2010
  ident: 4521_CR46
  publication-title: Environ Earth Sci
  doi: 10.1007/s12665-009-0277-0
– volume: 94
  start-page: 153
  year: 2002
  ident: 4521_CR137
  publication-title: Agron J
  doi: 10.2134/agronj2002.1530
– volume: 7
  start-page: 41
  issue: 5
  year: 2017
  ident: 4521_CR135
  publication-title: Agriculture
  doi: 10.3390/agriculture7050041
– volume: 85
  start-page: 215
  year: 2007
  ident: 4521_CR118
  publication-title: Biogeochemistry
  doi: 10.1007/s10533-007-9130-2
– volume: 107
  start-page: 8035
  year: 2010
  ident: 4521_CR7
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0913658107
– volume: 392
  start-page: 174
  year: 2010
  ident: 4521_CR153
  publication-title: Spain J Hydrol
  doi: 10.1016/j.jhydrol.2010.08.006
– volume: 25
  start-page: 1007
  year: 2013
  ident: 4521_CR8
  publication-title: J Environ Sci
  doi: 10.1016/S1001-0742(12)60139-9
– volume: 196
  start-page: 347
  year: 2017
  ident: 4521_CR149
  publication-title: J Environ Manag
  doi: 10.1016/j.jenvman.2017.02.060
– volume: 121
  start-page: 355
  year: 1993
  ident: 4521_CR31
  publication-title: J Agric Sci
  doi: 10.1017/S0021859600085555
– volume: 91
  start-page: 77
  year: 2008
  ident: 4521_CR131
  publication-title: Earth-Sci Rev
  doi: 10.1016/j.earscirev.2008.10.001
– volume-title: Improving water quality in the Mississippi River Basin and Northern Gulf of Mexico: strategies and priorities
  year: 2012
  ident: 4521_CR130
  doi: 10.17226/13029
– volume: 50
  start-page: 4095
  year: 2014
  ident: 4521_CR92
  publication-title: Water Resour Res
  doi: 10.1002/2013WR015041
– volume: 70
  start-page: 153
  year: 2004
  ident: 4521_CR12
  publication-title: Biogeochem
  doi: 10.1007/s10533-004-0370-0
– volume: 224
  start-page: 81
  year: 1999
  ident: 4521_CR80
  publication-title: J Hydrol
  doi: 10.1016/S0022-1694(99)00130-4
– volume: 14
  start-page: 78
  year: 1998
  ident: 4521_CR140
  publication-title: Soil Use Manag
  doi: 10.1111/j.1475-2743.1998.tb00619.x
– volume: 9
  start-page: 18
  issue: 1
  year: 2019
  ident: 4521_CR44
  publication-title: App Sci
  doi: 10.3390/app9010018
– volume: 642
  start-page: 21
  year: 2018
  ident: 4521_CR87
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2018.06.048
– volume: 15
  start-page: e0237234
  issue: 8
  year: 2020
  ident: 4521_CR6
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0237234
– volume: 6
  start-page: 47
  year: 2002
  ident: 4521_CR43
  publication-title: Geosci J
  doi: 10.1007/BF02911335
– volume: 9
  start-page: 18
  year: 2011
  ident: 4521_CR104
  publication-title: Front Ecol Environ
  doi: 10.1890/100008
– volume: 37
  start-page: 52
  year: 2014
  ident: 4521_CR167
  publication-title: Land Use Policy
  doi: 10.1016/j.landusepol.2013.01.008
– start-page: 519
  volume-title: Isotope tracers in catchment hydrology
  year: 1998
  ident: 4521_CR45
  doi: 10.1016/B978-0-444-81546-0.50023-9
– volume: 81
  start-page: 497
  year: 2000
  ident: 4521_CR129
  publication-title: Eos Trans Am Geophys Union
  doi: 10.1029/00EO00358
– volume: 12
  start-page: 439
  year: 2014
  ident: 4521_CR161
  publication-title: Paddy Water Environ
  doi: 10.1007/s10333-013-0399-6
– volume: 162
  start-page: 145
  year: 2013
  ident: 4521_CR146
  publication-title: Ann Appl Biol
  doi: 10.1111/aab.12014
– volume: 31
  start-page: 245
  year: 2017
  ident: 4521_CR164
  publication-title: Glob Biogeochem Cycle
  doi: 10.1002/2016GB005515
– volume: 50
  start-page: 10805
  year: 2016
  ident: 4521_CR166
  publication-title: Environ Sci Tech
  doi: 10.1021/acs.est.6b02575
– volume: 36
  start-page: 2138
  year: 2002
  ident: 4521_CR83
  publication-title: Environ Sci Tech
  doi: 10.1021/es0113854
– volume: 28
  start-page: 5231
  year: 2014
  ident: 4521_CR96
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-014-0664-5
– volume: 62
  start-page: 123
  year: 2002
  ident: 4521_CR33
  publication-title: Nutr Cycl Agroecosyst
  doi: 10.1023/A:1015595202542
– volume: 53
  start-page: 1433
  year: 2010
  ident: 4521_CR90
  publication-title: Trans Am Soc Agri Biol Eng
  doi: 10.13031/2013.34913
– volume: 514
  start-page: 388
  year: 2015
  ident: 4521_CR113
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2015.02.022
– volume: 163
  start-page: 259
  year: 1998
  ident: 4521_CR68
  publication-title: Soil Sci
  doi: 10.1097/00010694-199804000-00001
– volume: 426
  start-page: 211
  year: 2018
  ident: 4521_CR156
  publication-title: Plant Soil
  doi: 10.1007/s11104-018-3619-4
– volume: 29
  start-page: 1568
  year: 2000
  ident: 4521_CR151
  publication-title: J Environ Qual
  doi: 10.2134/jeq2000.00472425002900050026x
– volume: 657
  start-page: 96
  year: 2019
  ident: 4521_CR23
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2018.12.029
– volume: 177
  start-page: 310
  year: 2012
  ident: 4521_CR155
  publication-title: Soil Sci
  doi: 10.1097/SS.0b013e31824e5593
– volume: 7
  start-page: 42247
  year: 2017
  ident: 4521_CR19
  publication-title: Sci Rep
  doi: 10.1038/srep42247
– volume: 107
  start-page: 211
  year: 2005
  ident: 4521_CR11
  publication-title: Agri Ecosyst Environ
  doi: 10.1016/j.agee.2004.11.010
– volume: 102
  start-page: 267
  year: 2009
  ident: 4521_CR29
  publication-title: Adv Agron
  doi: 10.1016/S0065-2113(09)01008-6
– volume: 11
  start-page: 035014
  issue: 3
  year: 2016
  ident: 4521_CR40
  publication-title: Environ Res Lett
  doi: 10.1088/1748-9326/11/3/035014
– volume: 566
  start-page: 1094
  issue: 567
  year: 2016
  ident: 4521_CR88
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2016.05.134
– volume: 51
  start-page: 366
  year: 1987
  ident: 4521_CR123
  publication-title: Soil Sci Soc Am J
  doi: 10.2136/sssaj1987.03615995005100020020x
– volume: 15
  start-page: 499
  year: 2005
  ident: 4521_CR136
  publication-title: Pedosphere
– ident: 4521_CR32
– volume: 77
  start-page: 441
  year: 2006
  ident: 4521_CR3
  publication-title: Biogeochem
  doi: 10.1007/s10533-005-3070-5
– volume: 651
  start-page: 2354
  year: 2019
  ident: 4521_CR157
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2018.10.060
– volume: 10
  start-page: 19
  year: 2018
  ident: 4521_CR181
  publication-title: Ann Rev Resour Econ
  doi: 10.1146/annurev-resource-100516-053654
– volume: 43
  start-page: 67
  year: 2014
  ident: 4521_CR148
  publication-title: J Environ Qual
  doi: 10.2134/jeq2011.0393
– volume: 45
  start-page: 579
  year: 2014
  ident: 4521_CR109
  publication-title: Ecol Indic
  doi: 10.1016/j.ecolind.2014.05.025
– volume: 40
  start-page: 165
  year: 2004
  ident: 4521_CR84
  publication-title: J Am Water Res Assoc
  doi: 10.1111/j.1752-1688.2004.tb01017.x
– ident: 4521_CR9
  doi: 10.1007/978-94-009-1776-7_3
– volume: 52
  start-page: 29
  year: 2001
  ident: 4521_CR63
  publication-title: J Contam Hydrol
  doi: 10.1016/S0169-7722(01)00152-8
– volume: 18
  start-page: 289
  year: 2003
  ident: 4521_CR70
  publication-title: Eur J Agron
  doi: 10.1016/S1161-0301(02)00109-0
– volume: 81
  start-page: 1191
  year: 2017
  ident: 4521_CR138
  publication-title: Soil Sci Soc Am J
  doi: 10.2136/sssaj2016.09.0281
– volume: 409
  start-page: 4917
  year: 2011
  ident: 4521_CR134
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2011.08.030
– volume: 36
  start-page: 39
  year: 2019
  ident: 4521_CR188
  publication-title: Curr Opin Environ Sustain
  doi: 10.1016/j.cosust.2018.10.004
– start-page: 47
  volume-title: Managing soil quality: challenges in modern agriculture
  year: 2004
  ident: 4521_CR36
  doi: 10.1079/9780851996714.0047
– volume: 55
  start-page: 615
  year: 2020
  ident: 4521_CR26
  publication-title: J Environ Sci Health Part A
  doi: 10.1080/10934529.2020.1724503
– volume: 18
  start-page: 267
  year: 2003
  ident: 4521_CR69
  publication-title: Eur J Agron
  doi: 10.1016/S1161-0301(02)00108-9
– volume: 21
  start-page: 05015026
  issue: 2
  year: 2015
  ident: 4521_CR62
  publication-title: J Hydrol Eng
  doi: 10.1061/(ASCE)HE.1943-5584.0001304
– volume: 99
  start-page: 67
  year: 2009
  ident: 4521_CR145
  publication-title: Agric Syst
  doi: 10.1016/j.agsy.2008.10.006
– volume: 58
  start-page: S33
  year: 2012
  ident: 4521_CR122
  publication-title: Arch Agron Soil Sci
  doi: 10.1080/03650340.2012.693600
– volume: 98
  start-page: 938
  year: 2006
  ident: 4521_CR18
  publication-title: Agron J
  doi: 10.2134/agronj2005.0157
– volume: 22
  start-page: GB2026
  year: 2008
  ident: 4521_CR111
  publication-title: Glob Biogeochem Cycl
  doi: 10.1029/2007GB002963
– volume: 15
  start-page: 1
  issue: 11
  year: 2017
  ident: 4521_CR78
  publication-title: Vadose Zone J
  doi: 10.2136/vzj2016.07.0061
– volume: P1
  start-page: 58
  year: 2006
  ident: 4521_CR170
  publication-title: Proc World Assoc Soil Water Conserv
– volume: 15
  start-page: 262
  year: 2019
  ident: 4521_CR185
  publication-title: Indian J Fert
SSID ssj0002793483
ssib051670015
Score 2.6371777
SecondaryResourceType review_article
Snippet Nitrate pollution of ground and surface water bodies all over the world is generally linked with continually increasing global fertilizer nitrogen (N) use. But...
Abstract Nitrate pollution of ground and surface water bodies all over the world is generally linked with continually increasing global fertilizer nitrogen (N)...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 518
SubjectTerms 2. Earth and Environmental Sciences (general)
Agricultural ecosystems
Agricultural production
Agriculture
Applied and Technical Physics
Aquifers
Chemistry/Food Science
Corn
Developing countries
Earth Sciences
Ecosystems
Engineering
Environment
Eutrophication
Farms
Fertilizer management
Fertilizer nitrogen
Fertilizers
Fresh water
Ground water
Groundwater
Irrigation
Isotopes
LDCs
Leaching
Materials Science
Nitrate
Nitrates
Nitrogen
Pollution
Review Paper
Simulation models
Stable isotopes
Surface water
Water pollution
Water quality
Wheat
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3daxQxEA_avuiD1C88rZIH3zSYZLPJbl9KKz2KYBGx0Lcln0fl2LvuXRH96zuTy16tYJ-WzSbLsjOT-cr8hpD3HISZW6-YcdEwFZ1hrjGJiRAtFyG1QWK989czfXquvlzUFyXgtirHKsc9MW_UYeExRv5Jgq-mpNGmOlxeMewahdnV0kLjIdmFLbgB52v3-OTs2_eRo2qBVShF4f3Maba2UhmbU4IHxipgv1JJk-vpMA0oGZ5aQKRxwZo72iqD-t-xRP9JnmadNN0jT4oxSY821H9KHsT-GXl8NBsKoEaEu78AB5-T2RSPUc8v_4DRR20fKAg0YkXQJXY8RhrRRaKr6yFZH_MErPqAyy-YNBzACL3s0c7ECMP8N11iSBcPwNMNsAgt_WlekPPpyY_Pp6y0WmAePKQ1S5qnKOuUklbJ6DapEKQF7zWo2rfRG-2krZPhrYmg35QVQvu6lQ3WYLYiVC_JTr_o4ytCq2iNtR4WpEpZZS0YYGAmVVxVSsdaT4gYf2nnCw45tsOYd1sE5UyGDsjQZTJ0zYR82K5ZblA47p19jJTazkQE7TywGGZdEciuCa7lxmLm2SvrgvW1rGNyzguVeOITsj_SuStivepumXBCPo60v338_096ff_b3pBHcsN1jIt9srMeruNbMHbW7l3h6BthPfm8
  priority: 102
  providerName: ProQuest
– databaseName: SpringerOpen
  dbid: C24
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LixQxEA66XvQgPnHWVXLwpoEknUe3N10cFkFPLuwt5LmsDD3DzCyL_vqtyqRnXVHBU0N3pWnq0VWVqvpCyBsOxsx9VMyGbJnKwbLQ28JEyp6LVIYkcd75y1dzcqo-n-mzNhS2mbrdp5Jk_VPvh92wRicZthQgDLhg_V1yT0Pujnp9fIM5rgVOnjQn972W1oZOVTxOCVkX60Dl2vTMn197y0NVIP9b0edvBdPqh-aPyMMWQNIPO4k_Jnfy-IQ8-AVW8Ck5n2Oz9OLiJ4R21I-JgtkiIgRd4bnGKAm6LHRzuS4-5kqAsx1wuQKi9Xu4Qy9GjCZxH2Hxg65w4xbb3OkOPoS2U2iekdP5p2_HJ6wdqMAi5EFbVgwvWepSilHFmqGolKSHHDUpHYccrQnS62L5YDN4MeWFMFEPssdJy0Gk7jk5GJdjfkFol731PsKC0imvvIcwC4KhjqtOmazNjIiJiS42tHE89GLh9jjJlfEOGO8q410_I2_3a1Y7rI1_Un9E2ewpESe73liuz10zO9enANm_x_pyVD4kH7XUuYQQhSq88Bk5miTrmvFunLR9r6Q1tpuRd5O0bx7__ZMO_4_8Jbkvd3rHuDgiB9v1ZX4FIc42vK4afQ1_l_A7
  priority: 102
  providerName: Springer Nature
Title Fertilizers and nitrate pollution of surface and ground water: an increasingly pervasive global problem
URI https://link.springer.com/article/10.1007/s42452-021-04521-8
https://www.proquest.com/docview/2788427673
https://doaj.org/article/8db907a0245c4abdac525efbbc14f0f0
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3daxQxEB-0vuiD-Imn9ciDbxrcZLPJrm_26FkEi4iFvoV8SuXYHtcrYv_6zmT3zqugvviyy2YnECYzzEwm8xuAVxUqc-WC4sYnw1XyhvvWZC5icpWIuYuS6p0_HeujE_XxtDndafVFd8IGeOCBcW_b6DF-c5QhDMr56EIjm5S9D0LlKpdoHW3eTjCFktQIqj4ZDd33kl7ralUwOSVGXrxGsRsraEodHaX_JKfbCoQwLnh7w0oVMP8bHuhvSdNii-YP4P7oRLL3w-Ifwq3UP4J7O9CCj-HbnC5ML86u0L1jro8MVZdQIdiSehvTbrDzzC4uV9mFVAiovgNfP5Bo9Q5H2FlPHiWdJSx-siUd3tJVdzZAiLCxE80TOJkffp0d8bGpAg8YC6151lVOssk5a5WN7rKKUTqMUyMyuEvBaC9dk03VmYSWTDkhdGg62VK1ZSdi_RT2-vM-PQNWJ2ecCzgh18op59DVQoeorlStdGr0BMSGiTaMiOPU-GJht1jJhfEWGW8L4207gdfbOcsBb-Ov1Ae0N1tKwsouAyhBdpQg-y8JmsD-ZmftqMAXVpq2VdJoU0_gzWa3f_3-85Ke_48lvYC7cpBGXol92FuvLtNLdH7Wfgq32_mHKdw5ODz-_AW_ZlLRU8-mRQOuAahWAbo
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQCHiqe6tIAPcAKL-JE4QUKoPJYtfZxaqTfj-LEqWu0u2a2q8qP4jcw4yZYi0VtPUZKxFWXG4xnPzDeEvMxgMWfWKabroJkKtWZ1qSPjPtiM-1h5gfXOB4fF6Fh9O8lP1sjvvhYG0yp7nZgUtZ85PCN_K8BXU0IXWn6Y_2TYNQqjq30LjVYs9sLFObhsi_e7n4G_r4QYfjn6NGJdVwHmwBlYslhkMYg8xlioqIsqKu-FBUfNq9xVwemiFjaPOqt0AFWuLOeFyytRYrlhxb2EeW-R20rKCldUOfzay2_Oseal215_pKBeJVVCAhXg7zEYILu6nVS9h0FHwTBHAnHNOSuv7I2phcAVu_efUG3aAYf3yUZnutKdVtYekLUwfUju7YybDr4jwN1f8IaPyHiISduT019gYlI79RTUByJT0Dn2V0aJoLNIF2dNtC4kAqwxgcs5EDXv4Ak9naJVi-cZkws6xwNkTLenLYwJ7brhPCbHN8KCJ2R9OpuGTUJlsNpaBwOiVFZZC-YeGGUyU1IVIS8GhPe_1LgO9Rybb0zMCq85scEAG0xigykH5PVqzLzF_LiW-iNyakWJeN3pwawZm275m9LXVaYtxrmdsrW3Lhd5iHXtuIpZzAZku-ez6ZTIwlyK_IC86Xl_-fr_n_T0-tlekDujo4N9s797uLdF7opWAlnGt8n6sjkLz8DMWtbPk2xT8v2mF9MfRD40jw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9QwDI_GTULwgPjUDgbkAZ4gWpqmTYuE0MZ22hicJsSkvZU0H6ehU-_o3TSNP42_DjtNbwyJve2pautEVe04dmz_TMgrDouZayOZqp1i0tWK1YXyLLFO88T60gqsd_4yzveP5aeT7GSN_O5rYTCtsteJQVHbmcEz8i0BvpoUKlfplo9pEUe7ow_znww7SGGktW-n0YnIobs4B_dt8f5gF3j9WojR3reP-yx2GGAGHIMl8zn3TmTe-1x6lZdeWis0OG1WZqZ0RuW10JlXvFQO1LrUSZKbrBQFlh6WiU1h3ltkXYFXxAdkfWdvfPS1l-YswQqYuNn-CCG-MpUBF1SA98dSEP1YxRNq-TAEKRhmTCDKecKKKztlaChwxQr-J3Ab9sPRfXIvGrJ0u5O8B2TNNQ_J3e1JG8E8HNz9BXb4iExGmMI9Pf0FBifVjaWgTBCngs6x2zLKB515ujhrvTYuEGDFCVzOgah9B0_oaYM2Lp5uTC_oHI-TMfmedqAmNPbGeUyOb4QJT8igmTVug9DUaaW1gQE-lVpqDcYfmGgpl6nMXZYPSdL_0spEDHRsxTGtVujNgQ0VsKEKbKiKIXmzGjPvEECupd5BTq0oEb07PJi1kyoqg6qwdcmVxqi3kbq22mQic76uTSI993xINns-V1GlLKrLBTAkb3veX77-_yc9vX62l-Q2LKTq88H48Bm5IzoBZDzZJINle-aeg821rF9E4abk-02vpz8e3Doh
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fertilizers+and+nitrate+pollution+of+surface+and+ground+water%3A+an+increasingly+pervasive+global+problem&rft.jtitle=SN+applied+sciences&rft.au=Bijay-Singh&rft.au=Eric+Craswell&rft.date=2021-04-01&rft.pub=Springer&rft.issn=2523-3963&rft.eissn=2523-3971&rft.volume=3&rft.issue=4&rft.spage=1&rft.epage=24&rft_id=info:doi/10.1007%2Fs42452-021-04521-8&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_8db907a0245c4abdac525efbbc14f0f0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2523-3963&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2523-3963&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2523-3963&client=summon