Fertilizers and nitrate pollution of surface and ground water: an increasingly pervasive global problem
Nitrate pollution of ground and surface water bodies all over the world is generally linked with continually increasing global fertilizer nitrogen (N) use. But after 1990, with more fertilizer N consumption in developing countries especially in East and South Asia than in the industrialized nations...
Saved in:
Published in | SN applied sciences Vol. 3; no. 4; pp. 518 - 24 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.04.2021
Springer Nature B.V Springer |
Subjects | |
Online Access | Get full text |
ISSN | 2523-3963 2523-3971 |
DOI | 10.1007/s42452-021-04521-8 |
Cover
Loading…
Abstract | Nitrate pollution of ground and surface water bodies all over the world is generally linked with continually increasing global fertilizer nitrogen (N) use. But after 1990, with more fertilizer N consumption in developing countries especially in East and South Asia than in the industrialized nations in North America and Europe, nitrate pollution of freshwaters is now increasingly becoming a pervasive global problem. In this review it has been attempted to review the research information generated during the last two decades from all over the world on different aspects of nitrate pollution of natural water bodies. It is now evident that not more than 50% of the fertilizer N is directly used by the crops to which it is applied. While a small portion may directly leach down and may reach ground and surface water bodies, a large proportion ends up in the soil organic N pool from where N is mineralized and is taken up by plants and/or lost via leaching during several decades. Present trends of nitrate pollution of freshwaters, therefore, reflect legacies of current and past applications of fertilizers and manures. Tools such as simulation models and the natural variation in the stable isotopes of N and oxygen are now being extensively used to study the contribution of fertilizers and other sources to nitrate enrichment of freshwaters. Impacts of agricultural stewardship measures are being assessed and nitrate enrichment of water bodies is being managed using modern digital models and frameworks. Improved water and fertilizer management in agroecosystems can reduce the contribution of fertilizers to nitrate pollution of water bodies but a host of factors determine the magnitude. Future research needs are also considered. |
---|---|
AbstractList | Nitrate pollution of ground and surface water bodies all over the world is generally linked with continually increasing global fertilizer nitrogen (N) use. But after 1990, with more fertilizer N consumption in developing countries especially in East and South Asia than in the industrialized nations in North America and Europe, nitrate pollution of freshwaters is now increasingly becoming a pervasive global problem. In this review it has been attempted to review the research information generated during the last two decades from all over the world on different aspects of nitrate pollution of natural water bodies. It is now evident that not more than 50% of the fertilizer N is directly used by the crops to which it is applied. While a small portion may directly leach down and may reach ground and surface water bodies, a large proportion ends up in the soil organic N pool from where N is mineralized and is taken up by plants and/or lost via leaching during several decades. Present trends of nitrate pollution of freshwaters, therefore, reflect legacies of current and past applications of fertilizers and manures. Tools such as simulation models and the natural variation in the stable isotopes of N and oxygen are now being extensively used to study the contribution of fertilizers and other sources to nitrate enrichment of freshwaters. Impacts of agricultural stewardship measures are being assessed and nitrate enrichment of water bodies is being managed using modern digital models and frameworks. Improved water and fertilizer management in agroecosystems can reduce the contribution of fertilizers to nitrate pollution of water bodies but a host of factors determine the magnitude. Future research needs are also considered. Abstract Nitrate pollution of ground and surface water bodies all over the world is generally linked with continually increasing global fertilizer nitrogen (N) use. But after 1990, with more fertilizer N consumption in developing countries especially in East and South Asia than in the industrialized nations in North America and Europe, nitrate pollution of freshwaters is now increasingly becoming a pervasive global problem. In this review it has been attempted to review the research information generated during the last two decades from all over the world on different aspects of nitrate pollution of natural water bodies. It is now evident that not more than 50% of the fertilizer N is directly used by the crops to which it is applied. While a small portion may directly leach down and may reach ground and surface water bodies, a large proportion ends up in the soil organic N pool from where N is mineralized and is taken up by plants and/or lost via leaching during several decades. Present trends of nitrate pollution of freshwaters, therefore, reflect legacies of current and past applications of fertilizers and manures. Tools such as simulation models and the natural variation in the stable isotopes of N and oxygen are now being extensively used to study the contribution of fertilizers and other sources to nitrate enrichment of freshwaters. Impacts of agricultural stewardship measures are being assessed and nitrate enrichment of water bodies is being managed using modern digital models and frameworks. Improved water and fertilizer management in agroecosystems can reduce the contribution of fertilizers to nitrate pollution of water bodies but a host of factors determine the magnitude. Future research needs are also considered. |
ArticleNumber | 518 |
Author | Craswell, Eric Bijay-Singh |
Author_xml | – sequence: 1 orcidid: 0000-0002-5972-0163 surname: Bijay-Singh fullname: Bijay-Singh email: bijaysingh20@hotmail.com organization: Department of Soil Science, Punjab Agricultural University – sequence: 2 givenname: Eric surname: Craswell fullname: Craswell, Eric organization: Fenner School on Environment and Society, Australian National University |
BookMark | eNp9UUtrFjEUDVLBWvsHXA24Hs374U6K1ULBja5DJnMz5CNNPpOZSv31pt_4ABdd3cPlnMO957xEZ7lkQOg1wW8Jxupd45QLOmJKRtwBGfUzdE4FZSMzipz9xZK9QJetHTDGVBnGNTtHyzXUNab4E2obXJ6HHNfqVhiOJaVtjSUPJQxtq8F5OBGWWrY-fnRSfd83Q8y-gmsxL-lhOEK97_gehiWVyaXhWMuU4O4Veh5canD5e16gb9cfv159Hm-_fLq5-nA7em7EOgaJA1ARQpA8KGkCn2fqmGYzF96AV3KiTgSFjQIsFXeESC8M1RhLasjMLtDN7jsXd7DHGu9cfbDFRXtalLpY1x_2CayeJ4OVwz08z900Oy-ogDBNnvCAA-5eb3av_sP3DdpqD2WruZ9vqdKaUyUV6yy9s3wtrVUI1sfVPSbXg4zJEmwfW7J7S7a3ZE8tWd2l9D_pn4OfFLFd1Do5L1D_XfWE6hfBQ6ej |
CitedBy_id | crossref_primary_10_1016_j_heliyon_2024_e38364 crossref_primary_10_1016_j_envres_2024_118757 crossref_primary_10_1016_j_scienta_2023_112047 crossref_primary_10_1016_j_jhazmat_2025_137093 crossref_primary_10_1016_j_scitotenv_2024_177306 crossref_primary_10_1093_jxb_erad261 crossref_primary_10_1007_s42853_022_00145_x crossref_primary_10_1016_j_eja_2024_127224 crossref_primary_10_3390_agriculture13051080 crossref_primary_10_3389_fenvs_2024_1502824 crossref_primary_10_1002_etc_5631 crossref_primary_10_3390_agriculture13081613 crossref_primary_10_1002_anie_202305719 crossref_primary_10_1016_j_cej_2024_153972 crossref_primary_10_1021_acs_langmuir_4c04903 crossref_primary_10_1021_acscatal_4c01398 crossref_primary_10_3390_land12020401 crossref_primary_10_3390_su16125146 crossref_primary_10_12657_folmal_031_002 crossref_primary_10_3390_su141811514 crossref_primary_10_3390_gels9080666 crossref_primary_10_1039_D4EW00584H crossref_primary_10_1016_j_gfs_2025_100844 crossref_primary_10_1002_gch2_202100120 crossref_primary_10_5004_dwt_2023_30196 crossref_primary_10_1016_j_watres_2024_122576 crossref_primary_10_2166_wpt_2023_083 crossref_primary_10_1016_j_saa_2024_124423 crossref_primary_10_5194_soil_10_335_2024 crossref_primary_10_1038_s41598_024_53378_5 crossref_primary_10_3390_environments10040067 crossref_primary_10_3390_nitrogen5040054 crossref_primary_10_3390_w16101371 crossref_primary_10_1016_j_pce_2023_103424 crossref_primary_10_3389_fsufs_2024_1369817 crossref_primary_10_1002_wer_70011 crossref_primary_10_1029_2022GB007340 crossref_primary_10_1021_acsestengg_2c00438 crossref_primary_10_1016_j_sciaf_2024_e02495 crossref_primary_10_3390_fermentation8050225 crossref_primary_10_1007_s10668_024_05666_3 crossref_primary_10_1007_s11101_024_10000_w crossref_primary_10_1016_j_plaphy_2024_109464 crossref_primary_10_3389_fenvs_2023_1148872 crossref_primary_10_3390_membranes12020101 crossref_primary_10_1016_j_envres_2024_119622 crossref_primary_10_1016_j_saa_2024_124755 crossref_primary_10_1080_10643389_2025_2457796 crossref_primary_10_3390_environments11100216 crossref_primary_10_1007_s10705_024_10375_4 crossref_primary_10_1016_j_agee_2022_108324 crossref_primary_10_1016_j_eja_2025_127525 crossref_primary_10_1007_s42729_024_02138_5 crossref_primary_10_1016_j_eti_2024_104011 crossref_primary_10_2166_wpt_2024_243 crossref_primary_10_1007_s12403_023_00545_0 crossref_primary_10_1016_j_jhydrol_2024_132563 crossref_primary_10_1021_acssusresmgt_4c00273 crossref_primary_10_1021_jacs_4c16585 crossref_primary_10_1016_j_jclepro_2023_139149 crossref_primary_10_3390_su17031090 crossref_primary_10_1007_s13364_022_00639_1 crossref_primary_10_1016_j_scitotenv_2024_177418 crossref_primary_10_3390_nitrogen5030047 crossref_primary_10_3390_w15132364 crossref_primary_10_1093_femsec_fiad025 crossref_primary_10_1038_s41526_024_00391_7 crossref_primary_10_1002_clen_202300271 crossref_primary_10_1016_j_scitotenv_2022_158141 crossref_primary_10_1016_j_ecolind_2025_113350 crossref_primary_10_1016_j_jenvman_2025_124962 crossref_primary_10_1080_14747731_2024_2350130 crossref_primary_10_1515_opag_2022_0356 crossref_primary_10_1016_j_inoche_2025_114327 crossref_primary_10_3390_w17020155 crossref_primary_10_1016_j_watres_2024_122474 crossref_primary_10_1021_acs_est_3c02190 crossref_primary_10_3390_nitrogen5030045 crossref_primary_10_5194_essd_17_369_2025 crossref_primary_10_1007_s00344_024_11503_8 crossref_primary_10_1007_s11356_023_27352_z crossref_primary_10_1093_plcell_koae038 crossref_primary_10_1016_j_heliyon_2024_e39016 crossref_primary_10_1021_acs_jafc_4c09325 crossref_primary_10_1111_cjag_12384 crossref_primary_10_3389_fenvs_2024_1340565 crossref_primary_10_3390_plants14050704 crossref_primary_10_3390_en16020709 crossref_primary_10_1016_j_ecolind_2023_110670 crossref_primary_10_25120_jre_2_1_2022_3908 crossref_primary_10_1371_journal_pone_0285112 crossref_primary_10_1016_j_scitotenv_2024_176256 crossref_primary_10_1007_s10705_023_10331_8 crossref_primary_10_3389_fsufs_2024_1324798 crossref_primary_10_1079_cabireviews_2024_0056 crossref_primary_10_3390_horticulturae9111185 crossref_primary_10_1007_s40003_022_00626_7 crossref_primary_10_3389_fpls_2025_1543714 crossref_primary_10_1007_s10705_023_10264_2 crossref_primary_10_1088_2752_664X_adb1ec crossref_primary_10_3390_app13074154 crossref_primary_10_1016_j_jenvman_2024_120770 crossref_primary_10_1016_j_scitotenv_2022_153805 crossref_primary_10_3390_su14159454 crossref_primary_10_1186_s13750_024_00326_5 crossref_primary_10_3390_microorganisms12091816 crossref_primary_10_1590_1983_40632023v5376778 crossref_primary_10_1007_s41207_025_00740_2 crossref_primary_10_1016_j_jwpe_2024_106261 crossref_primary_10_3390_jof11030235 crossref_primary_10_1002_tqem_22324 crossref_primary_10_1016_j_jhydrol_2024_131622 crossref_primary_10_1088_1755_1315_1359_1_012116 crossref_primary_10_1016_j_jenvman_2025_125033 crossref_primary_10_3389_fmicb_2023_1130298 crossref_primary_10_1016_j_scitotenv_2024_170718 crossref_primary_10_1016_j_eja_2025_127561 crossref_primary_10_3390_soilsystems8010016 crossref_primary_10_1080_1343943X_2024_2367578 crossref_primary_10_1007_s11270_024_06939_3 crossref_primary_10_36253_jaeid_14672 crossref_primary_10_1016_j_seppur_2024_126714 crossref_primary_10_1016_j_chemosphere_2022_136045 crossref_primary_10_1016_j_trac_2024_117981 crossref_primary_10_7717_peerj_16107 crossref_primary_10_1016_j_scitotenv_2021_150200 crossref_primary_10_1007_s41207_022_00312_8 crossref_primary_10_1007_s11540_024_09715_2 crossref_primary_10_15407_frg2024_06_482 crossref_primary_10_1016_j_agee_2024_109376 crossref_primary_10_3389_fpls_2024_1488583 crossref_primary_10_3390_microorganisms12102107 crossref_primary_10_3389_fpls_2023_1159823 crossref_primary_10_1016_j_envres_2025_121065 crossref_primary_10_1016_j_envadv_2024_100565 crossref_primary_10_1016_j_agwat_2024_109270 crossref_primary_10_3389_fenvs_2022_970017 crossref_primary_10_3390_met14091062 crossref_primary_10_20961_stjssa_v21i1_86312 crossref_primary_10_1590_0103_8478cr20220532 crossref_primary_10_1371_journal_pone_0278824 crossref_primary_10_1007_s10661_024_13017_y crossref_primary_10_1007_s42729_024_02068_2 crossref_primary_10_3389_fsufs_2023_1228221 crossref_primary_10_1016_j_rser_2024_114537 crossref_primary_10_3390_su17052117 crossref_primary_10_1016_j_agee_2024_109243 crossref_primary_10_5304_jafscd_2024_133_006 crossref_primary_10_1016_j_biocontrol_2024_105603 crossref_primary_10_1144_SP517_2020_143 crossref_primary_10_1016_j_optmat_2023_114084 crossref_primary_10_1016_j_wasman_2025_02_019 crossref_primary_10_1016_j_scitotenv_2025_178398 crossref_primary_10_1007_s10661_024_13043_w crossref_primary_10_1088_2515_7620_ad79be crossref_primary_10_1128_aem_01849_24 crossref_primary_10_1016_j_scitotenv_2023_165299 crossref_primary_10_33245_2310_9289_2023_178_1_145_158 crossref_primary_10_3390_ijms24119714 crossref_primary_10_3390_su16020481 crossref_primary_10_3390_su162310713 crossref_primary_10_1016_j_pecs_2024_101184 crossref_primary_10_14233_ajchem_2023_26884 crossref_primary_10_5004_dwt_2023_30247 crossref_primary_10_1016_j_scitotenv_2024_175523 crossref_primary_10_1016_j_biteb_2023_101346 crossref_primary_10_1016_j_agwat_2024_108808 crossref_primary_10_1515_pac_2023_1137 crossref_primary_10_1016_j_jwpe_2024_105524 crossref_primary_10_1016_j_cej_2025_160937 crossref_primary_10_1039_D4SD00308J crossref_primary_10_1016_j_marpolbul_2025_117682 crossref_primary_10_3390_agronomy14050906 crossref_primary_10_5433_1679_0367_2024v45n2p157 crossref_primary_10_1016_j_geodrs_2024_e00851 crossref_primary_10_2166_wpt_2024_067 crossref_primary_10_1007_s10661_023_12194_6 crossref_primary_10_1016_j_snb_2025_137463 crossref_primary_10_13005_bbra_3288 crossref_primary_10_1007_s11356_022_18967_9 crossref_primary_10_3390_antiox13020179 crossref_primary_10_1007_s42729_024_01914_7 crossref_primary_10_3390_c9010001 crossref_primary_10_3390_ijms241713311 crossref_primary_10_1016_j_agwat_2024_108917 crossref_primary_10_1016_j_plana_2024_100094 crossref_primary_10_1002_adsu_202400236 crossref_primary_10_3390_w16030465 crossref_primary_10_1016_j_jip_2025_108270 crossref_primary_10_3390_catal15010063 crossref_primary_10_1080_15320383_2024_2394658 crossref_primary_10_3390_w16111570 crossref_primary_10_1039_D4NJ03823A crossref_primary_10_1002_hyp_15128 crossref_primary_10_1016_j_chemosphere_2024_142636 crossref_primary_10_1016_j_watres_2025_123441 crossref_primary_10_1007_s41207_024_00706_w crossref_primary_10_1088_1755_1315_1297_1_012024 crossref_primary_10_3390_su151511688 crossref_primary_10_3390_agronomy11091710 crossref_primary_10_1007_s10653_024_01943_2 crossref_primary_10_1007_s40003_023_00673_8 crossref_primary_10_48084_etasr_7842 crossref_primary_10_54167_tch_v18i1_1415 crossref_primary_10_3390_w15122277 crossref_primary_10_1155_2023_6974966 crossref_primary_10_1007_s41204_024_00392_7 crossref_primary_10_1016_j_jclepro_2024_144065 crossref_primary_10_1039_D4RA08516G crossref_primary_10_1111_ajae_12510 crossref_primary_10_1007_s10653_024_02257_z crossref_primary_10_1007_s12517_022_10804_0 crossref_primary_10_1080_10807039_2022_2164246 crossref_primary_10_1093_ismejo_wrae171 crossref_primary_10_1016_j_heliyon_2024_e24011 crossref_primary_10_1007_s43832_025_00192_3 crossref_primary_10_3390_agriculture14020285 crossref_primary_10_1007_s11783_024_1840_3 crossref_primary_10_3390_min13091145 crossref_primary_10_3390_horticulturae10080789 crossref_primary_10_1016_j_nbsj_2024_100172 crossref_primary_10_1016_j_cej_2024_154528 crossref_primary_10_54393_fbt_v3i03_51 crossref_primary_10_4028_p_XoW4jc crossref_primary_10_3390_w16020204 crossref_primary_10_3390_plants12223824 crossref_primary_10_2166_aqua_2022_029 crossref_primary_10_3390_w16152107 crossref_primary_10_3390_w16213146 crossref_primary_10_1007_s10661_024_13566_2 crossref_primary_10_1016_j_heliyon_2024_e40714 crossref_primary_10_1007_s12649_024_02602_4 crossref_primary_10_1007_s42250_023_00815_z crossref_primary_10_3389_fsoil_2025_1556283 crossref_primary_10_3389_fsufs_2024_1356579 crossref_primary_10_1111_ppl_14315 crossref_primary_10_1007_s42106_024_00319_x crossref_primary_10_1016_j_cej_2024_155721 crossref_primary_10_1080_00103624_2024_2404661 crossref_primary_10_1007_s11240_022_02422_1 crossref_primary_10_1016_j_envexpbot_2023_105431 crossref_primary_10_3389_fsens_2025_1513701 crossref_primary_10_3390_phycology2040023 crossref_primary_10_3390_plants13152026 crossref_primary_10_1039_D3DT00682D crossref_primary_10_1016_j_scitotenv_2024_171702 crossref_primary_10_19053_uptc_01217488_v15_n2_2024_16996 crossref_primary_10_1016_j_watres_2023_121059 crossref_primary_10_1021_acsestwater_4c00619 crossref_primary_10_1016_j_agee_2024_109318 crossref_primary_10_1021_acscatal_4c02317 crossref_primary_10_3389_fenvs_2023_1200481 crossref_primary_10_3390_genes15030327 crossref_primary_10_1016_j_ijbiomac_2024_135316 crossref_primary_10_3390_su16198720 crossref_primary_10_2166_wst_2024_206 crossref_primary_10_1021_acs_est_4c04794 crossref_primary_10_1016_j_marpolbul_2024_117366 crossref_primary_10_1093_ismejo_wrae151 crossref_primary_10_15406_ijh_2024_08_00390 crossref_primary_10_1007_s00374_023_01787_5 crossref_primary_10_1007_s13201_024_02320_1 crossref_primary_10_1016_j_chemosphere_2023_138336 crossref_primary_10_3390_agronomy14020285 crossref_primary_10_1007_s43832_023_00039_9 crossref_primary_10_1007_s41207_024_00718_6 crossref_primary_10_2139_ssrn_4129845 crossref_primary_10_1016_j_jece_2024_114300 crossref_primary_10_47836_pjst_32_6_18 crossref_primary_10_3390_land13071103 crossref_primary_10_1007_s12403_022_00525_w crossref_primary_10_1080_00032719_2023_2233034 crossref_primary_10_1080_01932691_2023_2219319 crossref_primary_10_3389_fpls_2023_1189060 crossref_primary_10_3390_nitrogen5020022 crossref_primary_10_1016_j_jhazmat_2024_136993 crossref_primary_10_1007_s11356_024_34692_x crossref_primary_10_1007_s10725_025_01296_5 crossref_primary_10_3390_plants14060917 crossref_primary_10_1039_D3TA08086B crossref_primary_10_1007_s11356_023_26887_5 crossref_primary_10_1155_ioa_9767875 crossref_primary_10_1080_10406026_2024_2399583 crossref_primary_10_1111_pce_15216 crossref_primary_10_1002_ange_202305719 crossref_primary_10_1007_s11270_023_06745_3 crossref_primary_10_1002_hyp_14476 crossref_primary_10_1021_acs_jafc_4c03997 crossref_primary_10_1007_s44378_024_00016_1 crossref_primary_10_1016_j_chemosphere_2023_138448 crossref_primary_10_1016_j_jece_2024_112915 crossref_primary_10_3390_biology12050668 crossref_primary_10_3390_agronomy13020527 crossref_primary_10_1007_s12517_023_11518_7 crossref_primary_10_1002_jsfa_12146 crossref_primary_10_1007_s10230_024_00987_1 crossref_primary_10_1051_e3sconf_202340501011 crossref_primary_10_1007_s40710_024_00710_w crossref_primary_10_1016_j_envres_2023_117167 crossref_primary_10_1007_s11356_023_30488_7 crossref_primary_10_3390_s23125432 crossref_primary_10_1016_j_jplph_2024_154305 crossref_primary_10_1016_j_scitotenv_2024_178134 crossref_primary_10_3389_fpls_2025_1546011 crossref_primary_10_1016_j_chemosphere_2025_144278 crossref_primary_10_3390_plants12142725 crossref_primary_10_1007_s11356_023_29202_4 crossref_primary_10_3390_w17060848 crossref_primary_10_3390_agronomy13030784 crossref_primary_10_11648_j_ijema_20241204_11 crossref_primary_10_1039_D3NR01089A crossref_primary_10_3390_microorganisms11051224 crossref_primary_10_1016_j_jiec_2024_09_003 crossref_primary_10_1039_D4EM00566J crossref_primary_10_1016_j_scitotenv_2022_160014 crossref_primary_10_33275_1727_7485_1_2023_708 crossref_primary_10_1016_j_scitotenv_2025_178424 crossref_primary_10_1080_00103624_2025_2457341 crossref_primary_10_1017_wat_2024_15 crossref_primary_10_1016_j_jcis_2025_137318 crossref_primary_10_3390_w16131872 crossref_primary_10_3390_app12031198 crossref_primary_10_1007_s13762_023_05383_w crossref_primary_10_1021_acscatal_4c03635 crossref_primary_10_1016_j_jenvman_2024_123764 crossref_primary_10_1007_s11270_023_06114_0 crossref_primary_10_1002_sae2_70013 crossref_primary_10_3390_plants14050698 crossref_primary_10_3389_fpls_2022_1058774 crossref_primary_10_1038_s41598_024_53122_z crossref_primary_10_4236_gep_2024_1212018 crossref_primary_10_1016_j_cej_2024_149819 crossref_primary_10_1088_1748_9326_ace206 crossref_primary_10_1002_elan_202400100 crossref_primary_10_1016_j_ejrh_2024_102098 crossref_primary_10_4236_mrc_2024_131001 crossref_primary_10_1002_aqc_70097 crossref_primary_10_1016_j_envpol_2023_121589 crossref_primary_10_1016_j_jhydrol_2023_129868 crossref_primary_10_3389_fchem_2022_806772 crossref_primary_10_1080_10610278_2024_2426547 |
Cites_doi | 10.2136/sssaj2009.0192 10.1016/S0273-1223(99)00033-5 10.1021/es101395s 10.1016/S0022-1694(00)00174-8 10.1016/j.landusepol.2009.09.005 10.1038/s41598-017-12383-7 10.1111/j.1475-2743.2000.tb00218.x 10.1016/j.jhydrol.2016.12.015 10.1016/0169-7722(95)00067-4 10.1023/A:1006073015871 10.1016/j.agwat.2012.06.011 10.1016/j.envint.2005.03.004 10.1111/gcb.13918 10.1061/(ASCE)0733-9437(1999)125:6(330) 10.1098/rstb.2007.2177 10.1016/j.agee.2009.04.018 10.1002/hyp.8164 10.1177/004908571204200205 10.1016/j.scitotenv.2014.03.018 10.1016/S0273-1223(99)00031-1 10.1038/srep25088 10.1016/j.scitotenv.2018.01.255 10.1016/j.agee.2011.09.004 10.1016/S0169-5347(00)02098-X 10.13031/2013.23637 10.1016/j.jhydrol.2014.07.026 10.1016/j.agwat.2004.11.011 10.1073/pnas.1305372110 10.1038/s41598-019-42271-1 10.2166/ws.2016.162 10.1021/es0716103 10.1038/s41561-017-0056-6 10.1016/S0022-1694(99)00081-5 10.1021/acs.est.0c01333 10.1016/j.agwat.2012.05.007 10.1890/08-1122.1 10.1111/j.1475-2743.1999.tb00089.x 10.1038/nature25785 10.1016/j.envpol.2005.11.005 10.1016/j.jag.2010.02.007 10.1016/j.agwat.2013.10.017 10.1029/2001GB001396 10.1038/543322a 10.1007/s10661-016-5167-9 10.1016/j.agwat.2008.05.001 10.1016/j.watres.2005.08.034 10.1007/s11104-013-1876-9 10.1016/j.scitotenv.2013.08.061 10.1371/journal.pone.0113888 10.1016/j.agwat.2006.06.013 10.1126/science.1057544 10.1016/j.scitotenv.2018.07.346 10.2136/vzj2004.1353 10.1641/0006-3568(2003)053[0341:TNC]2.0.CO;2 10.1890/1051-0761(2006)016[2064:DALAWA]2.0.CO;2 10.1016/j.apgeochem.2018.03.014 10.1016/j.scitotenv.2015.06.080 10.1016/j.scitotenv.2006.12.002 10.1016/j.agwat.2004.12.013 10.1016/S2095-3119(17)61743-X 10.1073/pnas.1321350111 10.1016/j.scitotenv.2011.04.016 10.1016/j.chemosphere.2018.05.164 10.1029/2002GB002029 10.1038/nature11420 10.1021/es403357m 10.3389/fsufs.2019.00054 10.1111/gcb.13455 10.1016/j.njas.2011.09.004 10.1016/j.eiar.2006.11.002 10.1016/j.jconhyd.2018.02.005 10.1016/j.watres.2011.02.011 10.3354/cr00953 10.1021/es400181m 10.1007/s11356-018-1859-8 10.1016/j.ecolmodel.2005.07.013 10.13031/2013.8850 10.1007/s10653-013-9550-y 10.1016/j.scitotenv.2014.10.090 10.1038/nature15743 10.1016/j.agwat.2014.04.013 10.1038/s41598-018-31175-1 10.1016/j.agwat.2013.11.017 10.1016/S0065-2113(05)87003-8 10.2134/jeq2004.1140 10.1023/A:1021471531188 10.1021/acs.est.6b04455 10.1016/j.scitotenv.2017.09.079 10.1111/j.1475-2743.2000.tb00203.x 10.1016/j.agee.2015.06.014 10.1007/978-3-319-58538-3_20-1 10.1007/s10533-010-9431-8 10.2134/jeq2007.0224 10.2134/jeq2007.0512 10.1016/j.agee.2013.04.018 10.1016/0304-1131(79)90022-5 10.1100/tsw.2001.326 10.2489/jswc.74.6.113A 10.1038/s41586-019-1001-1 10.1016/j.cosust.2018.10.013 10.1016/j.jhydrol.2015.12.024 10.1073/pnas.1718153115 10.1007/s10705-014-9612-2 10.1016/j.hal.2008.08.015 10.1081/CSS-200059104 10.1016/j.watres.2014.10.034 10.1016/j.scitotenv.2014.05.004 10.1080/10256010701550732 10.1016/j.jhydrol.2007.06.016 10.1016/j.jhydrol.2011.05.026 10.1007/BF02910268 10.1007/s12665-009-0277-0 10.2134/agronj2002.1530 10.3390/agriculture7050041 10.1007/s10533-007-9130-2 10.1073/pnas.0913658107 10.1016/j.jhydrol.2010.08.006 10.1016/S1001-0742(12)60139-9 10.1016/j.jenvman.2017.02.060 10.1017/S0021859600085555 10.1016/j.earscirev.2008.10.001 10.17226/13029 10.1002/2013WR015041 10.1007/s10533-004-0370-0 10.1016/S0022-1694(99)00130-4 10.1111/j.1475-2743.1998.tb00619.x 10.3390/app9010018 10.1016/j.scitotenv.2018.06.048 10.1371/journal.pone.0237234 10.1007/BF02911335 10.1890/100008 10.1016/j.landusepol.2013.01.008 10.1016/B978-0-444-81546-0.50023-9 10.1029/00EO00358 10.1007/s10333-013-0399-6 10.1111/aab.12014 10.1002/2016GB005515 10.1021/acs.est.6b02575 10.1021/es0113854 10.1007/s11269-014-0664-5 10.1023/A:1015595202542 10.13031/2013.34913 10.1016/j.scitotenv.2015.02.022 10.1097/00010694-199804000-00001 10.1007/s11104-018-3619-4 10.2134/jeq2000.00472425002900050026x 10.1016/j.scitotenv.2018.12.029 10.1097/SS.0b013e31824e5593 10.1038/srep42247 10.1016/j.agee.2004.11.010 10.1016/S0065-2113(09)01008-6 10.1088/1748-9326/11/3/035014 10.1016/j.scitotenv.2016.05.134 10.2136/sssaj1987.03615995005100020020x 10.1007/s10533-005-3070-5 10.1016/j.scitotenv.2018.10.060 10.1146/annurev-resource-100516-053654 10.2134/jeq2011.0393 10.1016/j.ecolind.2014.05.025 10.1111/j.1752-1688.2004.tb01017.x 10.1007/978-94-009-1776-7_3 10.1016/S0169-7722(01)00152-8 10.1016/S1161-0301(02)00109-0 10.2136/sssaj2016.09.0281 10.1016/j.scitotenv.2011.08.030 10.1016/j.cosust.2018.10.004 10.1079/9780851996714.0047 10.1080/10934529.2020.1724503 10.1016/S1161-0301(02)00108-9 10.1061/(ASCE)HE.1943-5584.0001304 10.1016/j.agsy.2008.10.006 10.1080/03650340.2012.693600 10.2134/agronj2005.0157 10.1029/2007GB002963 10.2136/vzj2016.07.0061 |
ContentType | Journal Article |
Copyright | The Author(s) 2021 The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2021 – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 3V. 7XB 88I 8FE 8FG 8FK ABJCF ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BGLVJ BHPHI BKSAR CCPQU D1I DWQXO GNUQQ HCIFZ KB. L6V M2P M7S PATMY PCBAR PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY Q9U DOA |
DOI | 10.1007/s42452-021-04521-8 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea ProQuest Central Student SciTech Premium Collection Materials Science Database ProQuest Engineering Collection Science Database Engineering Database Environmental Science Database Earth, Atmospheric & Aquatic Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database (subscription) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection ProQuest Central Basic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Materials Science Database ProQuest Central (New) Engineering Collection ProQuest Materials Science Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Environmental Science Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection Environmental Science Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Agriculture |
EISSN | 2523-3971 |
EndPage | 24 |
ExternalDocumentID | oai_doaj_org_article_8db907a0245c4abdac525efbbc14f0f0 10_1007_s42452_021_04521_8 |
GeographicLocations | East Asia North America Europe China South Asia |
GeographicLocations_xml | – name: South Asia – name: China – name: East Asia – name: North America – name: Europe |
GroupedDBID | -EM 0R~ 88I AAHNG AAKKN ABDZT ABECU ABEEZ ABFTV ABHQN ABJCF ABKCH ABMQK ABTEG ABTMW ABUWG ABXPI ACACY ACMLO ACOKC ACULB ADKNI ADMLS ADURQ ADYFF AEJRE AEUYN AFGXO AFKRA AFQWF AGDGC AGJBK AILAN AITGF AJZVZ ALMA_UNASSIGNED_HOLDINGS AMKLP ATCPS AXYYD AZQEC BAPOH BENPR BGLVJ BGNMA BHPHI BKSAR C24 C6C CCPQU DWQXO EBLON EBS EJD FINBP FNLPD FSGXE GNUQQ GNWQR GROUPED_DOAJ H13 HCIFZ J-C KB. KOV M2P M4Y M7S NQJWS NU0 OK1 PATMY PCBAR PDBOC PIMPY PTHSS PYCSY RSV SOJ STPWE TSG UOJIU UTJUX VEKWB VFIZW ZMTXR AAYXX ACSTC CITATION PHGZM PHGZT 3V. 7XB 8FE 8FG 8FK D1I L6V PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U PUEGO |
ID | FETCH-LOGICAL-c495t-f60fe25fff64f769f4dd2a383d45c9ec76b2a5f7097e0674a116c5928006291d3 |
IEDL.DBID | DOA |
ISSN | 2523-3963 |
IngestDate | Wed Aug 27 01:29:53 EDT 2025 Wed Aug 13 06:30:34 EDT 2025 Thu Apr 24 22:51:24 EDT 2025 Tue Jul 01 04:23:29 EDT 2025 Fri Feb 21 02:49:09 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Nitrate Fertilizer management Surface water Fertilizer nitrogen Water pollution Ground water Soil nitrogen |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c495t-f60fe25fff64f769f4dd2a383d45c9ec76b2a5f7097e0674a116c5928006291d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-5972-0163 |
OpenAccessLink | https://doaj.org/article/8db907a0245c4abdac525efbbc14f0f0 |
PQID | 2788427673 |
PQPubID | 5758472 |
PageCount | 24 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_8db907a0245c4abdac525efbbc14f0f0 proquest_journals_2788427673 crossref_citationtrail_10_1007_s42452_021_04521_8 crossref_primary_10_1007_s42452_021_04521_8 springer_journals_10_1007_s42452_021_04521_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-04-01 |
PublicationDateYYYYMMDD | 2021-04-01 |
PublicationDate_xml | – month: 04 year: 2021 text: 2021-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: London |
PublicationTitle | SN applied sciences |
PublicationTitleAbbrev | SN Appl. Sci |
PublicationYear | 2021 |
Publisher | Springer International Publishing Springer Nature B.V Springer |
Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V – name: Springer |
References | AsmalaESaikkuLVienonenSImport–export balance of nitrogen and phosphorus in food, fodder and fertilizers in the Baltic Sea drainage areaSci Total Environ20114094917492210.1016/j.scitotenv.2011.08.030 TakedaIFukushimaALong-term changes in pollutant load outflows and purification function in a paddy field watershed using a circular irrigation systemWater Res20064056957810.1016/j.watres.2005.08.034 KatyalJCBijay-SinghVPLGBureshRJEfficient nitrogen use as affected by urea application and irrigation sequenceSoil Sci Soc Am J19875136637010.2136/sssaj1987.03615995005100020020x RobinsonDδ15N as an integrator of the nitrogen cycleTrends Ecol Evol20011615316210.1016/S0169-5347(00)02098-X MinJShiWNitrogen discharge pathways in vegetable production as non-point sources of pollution and measures to control itSci Total Environ201861361412313010.1016/j.scitotenv.2017.09.079 GallowayJNAberJDErismanJWSeitzingerSPHowarthRWCowlingEBCosbyBJThe nitrogen cascadeBioScience20035334135610.1641/0006-3568(2003)053[0341:TNC]2.0.CO;2 SinhaEMichalakAMPrecipitation dominates interannual variability of riverine nitrogen loading across the continental United StatesEnviron Sci Tech201650128741288410.1021/acs.est.6b04455 BatemanASKellySDFertilizer nitrogen isotope signaturesIsotopes Environ Health Stud20074323724710.1080/10256010701550732 ZhangYLiFZhangQLiJLiuQTracing nitrate pollution sources and transformation in surface-and ground-waters using environmental isotopesSci Total Environ201449021322210.1016/j.scitotenv.2014.05.004 Howarth RW, Billen G, Swaney D, Townsend A, Jaworski N, Lajtha K, Downing JA, Elmgren R, Caraco N, Jordan T, Berendse F, Freney J, Kudeyarov V, Murdoch P, Zhao-Liang Z (1996) Regional nitrogen budgets and riverine N & P fluxes for the drainages to the North Atlantic Ocean: Natural and human influences. In: Howarth RW (ed), Nitrogen cycling in the North Atlantic Ocean and its watersheds, Springer, Dordrecht, pp 75–139. https://doi.org/10.1007/978-94-009-1776-7_3 DingJXiBGaoRHeLLiuHDaiXYuYIdentifying diffused nitrate sources in a stream in an agricultural field using a dual isotopic approachSci Total Environ2014484101810.1016/j.scitotenv.2014.03.018 WangZLiJLiYSimulation of nitrate leaching under varying drip system uniformities and precipitation patterns during the growing season of maize in the North China plainAgric Water Manag2014142192810.1016/j.agwat.2014.04.013 ThodsenHFarkasCChormanskiJTrolleDBlicher-MathiesenGGrantREngebretsenAKardelIAndersenHEModelling nutrient load changes from fertilizer application scenarios in six catchments around the Baltic SeaAgriculture2017754110.3390/agriculture7050041 AlmasriMNKaluarachchiJJModeling nitrate contamination of groundwater in agricultural watershedsJ Hydrol200734321122910.1016/j.jhydrol.2007.06.016 Van MeterKJBasuNBVeenstraJJBurrasCLThe nitrogen legacy: emerging evidence of nitrogen accumulation in anthropogenic landscapesEnviron Res Lett201611303501410.1088/1748-9326/11/3/035014 GärdenäsAIHopmansJWHansonBRŠimůnekJTwo-dimensional modeling of nitrate leaching for various fertigation scenarios under micro-irrigationAgric Water Manag20057421924210.1016/j.agwat.2004.11.011 GaiXWangHLiuJZhaiLLiuSRenTLiuHEffects of feedstock and pyrolysis temperature on biochar adsorption of ammonium and nitratePLoS ONE2014912e11388810.1371/journal.pone.0113888 CAST (Council for Agricultural Science and Technology) (2019) Reducing the impacts of agricultural nutrients on water quality across a changing landscape. Issue Paper 64, CAST, Ames, Iowa, USA, p 20. https://www.cast-science.org/wp-content/uploads/2019/05/CAST_IP64_Nutrient-Loss.pdf DonosoGCancinoJMagriAEffects of agricultural activities on water pollution with nitrates and pesticides in the Central Valley of ChileWater Sci Technol199939496010.1016/S0273-1223(99)00031-1 KopacekJHejzlarJPoschMFactors controlling the export of nitrogen from agricultural land in a large central European catchment during 1900–2010Environ Sci Tech2013476400640710.1021/es400181m ZillénLConleyDJAndrénTAndrénEBjörckSPast occurrences of hypoxia in the Baltic Sea and the role of climate variability, environmental change and human impactEarth-Sci Rev200891779210.1016/j.earscirev.2008.10.001 HuangTJuXTYangHNitrate leaching in a winter wheat–summer maize rotation on a calcareous soil as affected by nitrogen and straw managementSci Rep201774224710.1038/srep42247 DelgadoJAVandenbergBNeerDD’AdamoREmerging nutrient management databases and networks of networks will have broad applicability in future machine learning and artificial intelligence applications in soil and water conservationJ Soil Water Conserv201974113A118A10.2489/jswc.74.6.113A ShenZYZhongYCHuangQChenLIdentifying non-point source priority management areas in watersheds with multiple functional zonesWater Res20156856357110.1016/j.watres.2014.10.034 NorseDNon-point pollution from crop production: global, regional and national issuesPedosphere200515499508 LiuTWangFMichalskiGXiaXLiuSUsing 15N, 17O, and 18O to determine nitrate sources in the Yellow River, ChinaEnviron Sci Tech201347134121342110.1021/es403357m ZhangYTWangHYLiuSLeiQLLiuJHeJQZhaiLMRenTZLiuHBIdentifying critical nitrogen application rate for maize yield and nitrate leaching in a Haplic Luvisol soil using the DNDC modelSci Total Environ201551438839810.1016/j.scitotenv.2015.02.022 LadhaJKPathakHKrupnikTJSixJvan KesselCEfficiency of fertilizer nitrogen in cereal production: retrospects and prospectsAdv Agron2005878515610.1016/S0065-2113(05)87003-8 TangTStrokalMvan VlietMTSeuntjensPBurekPKroezeCLanganSWadaYBridging global, basin and local-scale water quality modeling towards enhancing water quality management worldwideCurr Opin Environ Sustain201936394810.1016/j.cosust.2018.10.004 GouldingKWTPoultonPRWebsterCPHoweMTNitrate leaching from the Broadbalk Wheat Experiment, Rothamsted, UK, as influenced by fertilizer and manure inputs and the weatherSoil Use Manag20001624425010.1111/j.1475-2743.2000.tb00203.x HuKLiBChenDZhangYEdisRSimulation of nitrate leaching under irrigated maize on sandy soil in desert oasis in Inner Mongolia, ChinaAgric Water Manag2008951180118810.1016/j.agwat.2008.05.001 StöckleCODonatelliMNelsonRCropSyst, a cropping systems simulation modelEur J Agron20031828930710.1016/S1161-0301(02)00109-0 WangLStuartMEBloomfieldJPButcherASGooddyDCMcKenzieAALewisMAWilliamsATPrediction of the arrival of peak nitrate concentrations at the water table at the regional scale in Great BritainHydrol Process20122622623910.1002/hyp.8164 van VlietMTFlörkeMHarrisonJAHofstraNKellerVLudwigFSpanierJEStrokalMWadaYWenYWilliamsRJModel inter-comparison design for large-scale water quality modelsCurr Opin Environ Sustain201936596710.1016/j.cosust.2018.10.013 PowlsonDSPoultonPRAddiscottTMMcCannDSHansenJAAHenriksenKLeaching of nitrate from soils receiving organic or inorganic fertilizers continuously for 135 yearsNitrogen in organic wastes applied to soils1989LondonAcademic Press334345 DaryantoSWangLJacinthePAImpacts of no-tillage management on nitrate loss from corn, soybean and wheat cultivation: a meta-analysisSci Rep201771211710.1038/s41598-017-12383-7 JuXTZhangCNitrogen cycling and environmental impacts in upland agricultural soils in North China: a reviewJ Integr Agric2017162848286210.1016/S2095-3119(17)61743-X WangLButcherASStuartMEGooddyDCBloomfieldJPThe nitrate time bomb: a numerical way to investigate nitrate storage and lag time in the unsaturated zoneEnviron Geochem Health20133566768110.1007/s10653-013-9550-y HillBHBolgrienDWNitrogen removal by streams and rivers of the Upper Mississippi River basinBiogeochem201110218319410.1007/s10533-010-9431-8 ChowdaryVMRaoNHSarmaPBSDecision support framework for assessment of non-point-source pollution of groundwater in large irrigation projectsAgric Water Manag20057519422510.1016/j.agwat.2004.12.013 CuiZZhangHChenXZhangCMaWHuangCZhangWMiGMiaoYLiXGaoQPursuing sustainable productivity with millions of smallholder farmersNature201855536336610.1038/nature25785 YueFJLiuCQLiSLZhaoZQLiuXLDingHLiuBJZhongJAnalysis of δ15N and δ18O to identify nitrate sources and transformations in Songhua River, Northeast ChinaJ Hydrol201451932933910.1016/j.jhydrol.2014.07.026 LeeMSLeeKKHyunYClementTPHamiltonDNitrogen transformation and transport modeling in groundwater aquifersEcol Model200619214315910.1016/j.ecolmodel.2005.07.013 HowarthRWCoastal nitrogen pollution: a review of sources and trends globally and regionallyHarmful Algae20088142010.1016/j.hal.2008.08.015 GouldingKNitrate leaching from arable and horticultural landSoil Use Manag20001614515110.1111/j.1475-2743.2000.tb00218.x SchoumansOFChardonWJBechmannMEGascuel-OdouxCHofmanGKronvangBRubaekGHUlenBDoriozJMMitigation options to reduce phosphorus losses from the agricultural sector and improve surface water quality: a reviewSci Total Environ20144684691255126610.1016/j.scitotenv.2013.08.061 WollheimWMVörösmartyCJBouwmanAFGreenPHarrisonJLinderEPetersonBJSeitzingerSPSyvitskiJPMGlobal N removal by freshwater aquatic systems using a spatially distributed, within-basin approachGlob Biogeochem Cycl200822GB202610.1029/2007GB002963 HartPBSPowlsonDSPultonPRJohnsonAEJenkinsonDSThe availability of the nitrogen in the crop residues of winter wheat to subsequent cropsJ Agric Sci199312135536210.1017/S0021859600085555 BirkinshawSJEwenJNitrogen transformation component for SHETRAN catchment nitrate transport modellingJ Hydrol200023011710.1016/S0022-1694(00)00174-8 KeatingBACarberryPSHammerGLProbertMERobertsonMJHolzworthDHuthNIHargreavesJNMeinkeHHochmanZMcLeanGAn overview of APSIM, a model designed for farming systems simulationEur J Agron20031826728810.1016/S1161-0301(02)00108-9 HassanGReneauRBHagedornCJantraniaARModeling effluent distribution and nitrate transport through an on-site wastewater systemJ Environ Qual2008371937194810.2134/jeq2007.0512 MaLScottHDShafferMJAhujaLRRZWQM simulations of water and nitrate movement in a manured tall fescue fieldSoil Sci199816325927010.1097/00010694-199804000-00001 JankowskiKNeillCDavidsonEAMacedoMNCostaCGalfordGLSan ZY Shen (4521_CR93) 2015; 68 Y Wang (4521_CR23) 2019; 657 SGS Bijay-Singh (4521_CR27) 1979; 4 CO Stöckle (4521_CR70) 2003; 18 MB Haas (4521_CR149) 2017; 196 I Marinov (4521_CR96) 2014; 28 V-S Bijay-Singh (4521_CR122) 2012; 58 Y Zhang (4521_CR49) 2018; 208 Q Liu (4521_CR156) 2018; 426 SL Li (4521_CR46) 2010; 60 W Li (4521_CR87) 2018; 642 DS Powlson (4521_CR25) 1989 M van der Laan (4521_CR71) 2014; 133 Z Cui (4521_CR180) 2018; 555 D Tilman (4521_CR101) 2001; 292 X Gai (4521_CR154) 2014; 9 4521_CR133 4521_CR32 T Liu (4521_CR50) 2013; 47 E Asmala (4521_CR134) 2011; 409 A Bhardwaj (4521_CR125) 2012; 54 H Thodsen (4521_CR135) 2017; 7 KTB MacQuarrie (4521_CR63) 2001; 52 LS Vervloet (4521_CR142) 2018; 627 DN Lerner (4521_CR100) 2009; 26 X Zhang (4521_CR165) 2017; 543 MN Almasri (4521_CR85) 2007; 343 DL Dinnes (4521_CR137) 2002; 94 GD Agrawal (4521_CR126) 1999; 39 MS Lee (4521_CR64) 2006; 192 X Zhang (4521_CR8) 2013; 25 JG Arnold (4521_CR90) 2010; 53 L Wang (4521_CR98) 2012; 26 S Peña-Haro (4521_CR153) 2010; 392 SK Deb (4521_CR62) 2015; 21 JA Delgado (4521_CR186) 2019; 74 RM Liu (4521_CR91) 2016; 533 D Norse (4521_CR136) 2005; 15 RB Alexander (4521_CR116) 2008; 42 V Nangia (4521_CR150) 2008; 37 JM Novak (4521_CR155) 2012; 177 J Min (4521_CR162) 2018; 613 JC Refsgaard (4521_CR79) 1999; 221 FJ Yue (4521_CR51) 2014; 519 K Nakamura (4521_CR58) 2004; 3 JY Zhou (4521_CR16) 2016; 6 AI Gärdenäs (4521_CR59) 2005; 74 PP Preetha (4521_CR26) 2020; 55 K Hu (4521_CR75) 2008; 95 M Sebilo (4521_CR38) 2013; 110 PBS Hart (4521_CR31) 1993; 121 Y-S Bijay-Singh (4521_CR124) 1995; 20 S Akbariyeh (4521_CR73) 2018; 211 XT Ju (4521_CR17) 2006; 143 JN Galloway (4521_CR12) 2004; 70 EI Lord (4521_CR141) 1999; 15 J Liu (4521_CR7) 2010; 107 RW Howarth (4521_CR2) 2008; 8 HJ Di (4521_CR24) 2002; 64 P Kay (4521_CR145) 2009; 99 K Kumar (4521_CR33) 2002; 62 WJ Choi (4521_CR42) 2003; 7 PM Glibert (4521_CR3) 2006; 77 J Kopacek (4521_CR105) 2013; 47 A Chhabra (4521_CR127) 2010; 12 F Lasserre (4521_CR80) 1999; 224 WJ Choi (4521_CR43) 2002; 6 TP Burt (4521_CR97) 2011; 45 ND Mueller (4521_CR164) 2017; 31 B Eghball (4521_CR112) 2002; 45 S Seitzinger (4521_CR107) 2006; 16 JC Katyal (4521_CR123) 1987; 51 ND Mueller (4521_CR169) 2012; 490 TB Ramos (4521_CR76) 2012; 111 J Dumanski (4521_CR170) 2006; P1 KJ Van Meter (4521_CR40) 2016; 11 G van Drecht (4521_CR115) 2001; 1 RF Zhao (4521_CR18) 2006; 98 T Huang (4521_CR19) 2017; 7 X Chen (4521_CR120) 2020; 54 H Pathak (4521_CR185) 2019; 15 N Borchard (4521_CR157) 2019; 651 4521_CR168 M Krupa (4521_CR160) 2011; 144 AE Lawniczak (4521_CR172) 2016; 188 SJ Birkinshaw (4521_CR82) 2000; 230 BH Hill (4521_CR110) 2011; 102 B Urresti-Estala (4521_CR53) 2015; 506 MT van Vliet (4521_CR187) 2019; 36 AS Baksh (4521_CR152) 2004; 33 Y Zhang (4521_CR44) 2019; 9 L Wang (4521_CR99) 2013; 35 JA Delgado (4521_CR182) 2019; 3 DM Davis (4521_CR151) 2000; 29 R Liu (4521_CR158) 2014; 98 J Mas-Pla (4521_CR176) 2019; 26 B He (4521_CR94) 2011; 45 K Goulding (4521_CR37) 2000; 16 SD Donner (4521_CR128) 2002; 16 MN Almasri (4521_CR86) 2007; 27 S Dutta (4521_CR121) 2012; 42 R Showstack (4521_CR129) 2000; 81 Y Xia (4521_CR88) 2016; 566 AJ Eagle (4521_CR138) 2017; 81 Y Zhang (4521_CR57) 2014; 490 K Goulding (4521_CR144) 2008; 363 JN Galloway (4521_CR13) 2003; 53 MG Eltarabily (4521_CR95) 2017; 17 VM Chowdary (4521_CR184) 2005; 75 D Robinson (4521_CR41) 2001; 16 GD Liu (4521_CR11) 2005; 107 S Ferrant (4521_CR89) 2011; 406 T Li (4521_CR177) 2018; 24 Y Zhou (4521_CR114) 2017; 545 C Yu (4521_CR179) 2019; 567 S Shukla (4521_CR5) 2018 H Lee (4521_CR161) 2014; 12 M Zhou (4521_CR21) 2014; 374 OF Schoumans (4521_CR103) 2014; 468 XT Ju (4521_CR15) 2017; 16 BA Keating (4521_CR69) 2003; 18 PW Gassman (4521_CR72) 2007; 50 KC Cameron (4521_CR146) 2013; 162 AT Hansen (4521_CR108) 2018; 11 BQ Zhao (4521_CR28) 2011; 58 R Howarth (4521_CR104) 2011; 9 NRC (National Research Council) (4521_CR130) 2012 ME Stuart (4521_CR173) 2011; 409 C Kendall (4521_CR45) 1998 H Kim (4521_CR56) 2015; 533 J Ding (4521_CR48) 2014; 484 BR Hanson (4521_CR60) 2006; 86 I Takeda (4521_CR159) 2006; 40 L Xia (4521_CR147) 2017; 23 G Hassan (4521_CR74) 2008; 37 ATMA Choudhury (4521_CR143) 2005; 36 L Ma (4521_CR68) 1998; 163 YT Zhang (4521_CR113) 2015; 514 M Quemada (4521_CR139) 2013; 174 E Ledoux (4521_CR65) 2007; 375 WJ Yan (4521_CR119) 2003; 17 MN Almasri (4521_CR84) 2004; 40 JK Ladha (4521_CR30) 2005; 87 DX Soto (4521_CR52) 2019; 647 K Jankowski (4521_CR20) 2018; 8 BT Nolan (4521_CR83) 2002; 36 Y Ji (4521_CR6) 2020; 15 L Ma (4521_CR167) 2014; 37 T Tang (4521_CR188) 2019; 36 Z Wang (4521_CR77) 2014; 142 JR Poch-Massegú (4521_CR66) 2014; 134 D Plaza-bonilla (4521_CR67) 2015; 212 G Billen (4521_CR106) 2009; 133 SW Duan (4521_CR118) 2007; 85 JB Gardner (4521_CR35) 2009; 19 E Sinha (4521_CR102) 2016; 50 S Daryanto (4521_CR171) 2017; 7 KE Trenberth (4521_CR175) 2011; 47 AS Bateman (4521_CR47) 2007; 43 MH Dore (4521_CR174) 2005; 31 WM Wollheim (4521_CR111) 2008; 22 P Stålnacke (4521_CR132) 1999; 58 JJ Meisinger (4521_CR14) 2006; 2 4521_CR54 J Sun (4521_CR163) 2018; 115 AJ Gusman (4521_CR81) 1999; 125 B Basso (4521_CR183) 2019; 9 G Donoso (4521_CR10) 1999; 39 SH Chien (4521_CR29) 2009; 102 4521_CR117 Z Jin (4521_CR55) 2018; 93 HW Paerl (4521_CR166) 2016; 50 KWT Goulding (4521_CR22) 2000; 16 EI Lord (4521_CR140) 1998; 14 MJ Castellano (4521_CR39) 2014; 111 S Baram (4521_CR78) 2017; 15 X Zhang (4521_CR178) 2015; 528 D Dourado-Neto (4521_CR34) 2010; 74 A Tafteh (4521_CR61) 2012; 113 I Cerro (4521_CR148) 2014; 43 4521_CR9 W Ouyang (4521_CR109) 2014; 45 L Zillén (4521_CR131) 2008; 91 L Chen (4521_CR92) 2014; 50 4521_CR1 BT Christensen (4521_CR36) 2004 A Weersink (4521_CR181) 2018; 10 4521_CR4 |
References_xml | – reference: LiuRMXuFZhangPPYuWWMenCIdentifying non-point source critical source areas based on multi-factors at a basin scale with SWATJ Hydrol201653337938810.1016/j.jhydrol.2015.12.024 – reference: GouldingKWTPoultonPRWebsterCPHoweMTNitrate leaching from the Broadbalk Wheat Experiment, Rothamsted, UK, as influenced by fertilizer and manure inputs and the weatherSoil Use Manag20001624425010.1111/j.1475-2743.2000.tb00203.x – reference: NovakJMBusscherWJWattsDWBiochars impact on soil-moisture storage in an Ultisol and two AridisolsSoil Sci201217731032010.1097/SS.0b013e31824e5593 – reference: ChowdaryVMRaoNHSarmaPBSDecision support framework for assessment of non-point-source pollution of groundwater in large irrigation projectsAgric Water Manag20057519422510.1016/j.agwat.2004.12.013 – reference: ChenXStrokalMKroezeCSupitIWangMMaLChenXShiXModelling the contribution of crops to nitrogen pollution in the Yangtze RiverEnviron Sci Tech202054119291193910.1021/acs.est.0c01333 – reference: BaramSCouvreurVHarterTReadMBrownPHKandelousMSmartDRHopmansJWEstimating nitrate leaching to groundwater from Orchards: comparing crop nitrogen excess, deep vadose zone data-driven estimates, and HYDRUS modelingVadose Zone J2017151111310.2136/vzj2016.07.0061 – reference: ChoiWJHanGHRoHMYooSHLeeSMEvaluation of nitrate contamination sources of unconfined groundwater in the North Han River basin of Korea using nitrogen isotope ratiosGeosci J20026475510.1007/BF02911335 – reference: DuttaSGreen Revolution revisited: the contemporary agrarian situation in Punjab, IndiaSoc Chang20124222924710.1177/004908571204200205 – reference: QuemadaMBaranskiMNobel-de LangeMNJVallejoACooperJMMeta-analysis of strategies to control nitrate leaching in irrigated agricultural systems and their effects on crop yieldAgric Ecosyst Environ201317411010.1016/j.agee.2013.04.018 – reference: SunJMooneyHWuWTangHTongYXuZHuangBChengYYangXWeiDZhangFImporting food damages domestic environment: evidence from global soybean tradeProc Natl Acad Sci USA20181155415541910.1073/pnas.1718153115 – reference: van der LaanMAnnandaleJGBristowKLStirzakerRJDu PreezCCThorburnPJModelling nitrogen leaching: are we getting the right answer for the right reason?Agric Water Manag2014133748010.1016/j.agwat.2013.10.017 – reference: LasserreFRazackMBantonOA GIS-linked model for the assessment of nitrate contamination in groundwaterJ Hydrol1999224819010.1016/S0022-1694(99)00130-4 – reference: PowlsonDSPoultonPRAddiscottTMMcCannDSHansenJAAHenriksenKLeaching of nitrate from soils receiving organic or inorganic fertilizers continuously for 135 yearsNitrogen in organic wastes applied to soils1989LondonAcademic Press334345 – reference: ZhouJYGuBJSchlesingerWHJuXTSignificant accumulation of nitrate in Chinese semi-humid croplandsSci Rep201662508810.1038/srep25088 – reference: GassmanPWReyesMRGreenCHArnoldJGThe soil and water assessment tool: Historical development, applications, and future research directionsTrans Am Soc Agri Biol Eng2007501211125010.13031/2013.23637 – reference: YanWJZhangSSunPSeitzingerSPHow do nitrogen inputs to the Changjiang basin impact the Changjiang River nitrate: a temporal analysis for 1968–1997Glob Biogeochem Cycl2003174109110.1029/2002GB002029 – reference: PreethaPPAl-HamdanAZDeveloping nitrate-nitrogen transport models using remotely-sensed geospatial data of soil moisture profiles and wet depositionsJ Environ Sci Health Part A20205561562810.1080/10934529.2020.1724503 – reference: LordEIMitchellRDJEffect of nitrogen inputs to cereals on nitrate leaching from sandy soilsSoil Use Manag199814788310.1111/j.1475-2743.1998.tb00619.x – reference: ChoudhuryATMAKennedyIRNitrogen fertilizer losses from rice soils and control of environmental pollution problemsCommun Soil Sci Plant Anal2005361625163910.1081/CSS-200059104 – reference: LiWZhaiLLeiQWollheimWMLiuJLiuHHuWRenTWangHLiuSInfluences of agricultural land use composition and distribution on nitrogen export from a subtropical watershed in ChinaSci Total Environ2018642213210.1016/j.scitotenv.2018.06.048 – reference: XiaYTiCSheDYanXLinking river nutrient concentrations to land use and rainfall in a paddy agriculture–urban area gradient watershed in southeast ChinaSci Total Environ20165665671094110510.1016/j.scitotenv.2016.05.134 – reference: TilmanDFargioneJWolffBD’AntonioCDobsonAHowarthRSchindlerDSchlesingerWHSimberloffDSwackhamerDForecasting agriculturally driven global environmental changeScience200129228128410.1126/science.1057544 – reference: ChoiWJLeeSMRoHMEvaluation of contamination sources of groundwater NO3− using nitrogen isotope data: a reviewGeosci J20037818710.1007/BF02910268 – reference: TaftehASepaskhahARApplication of HYDRUS-1D model for simulating water and nitrate leaching from continuous and alternate furrow irrigated rapeseed and maize fieldsAgric Water Manag2012113192910.1016/j.agwat.2012.06.011 – reference: NakamuraKHarterTHironoYHorinoHMitsunoTAssessment of root zone nitrogen leaching as affected by irrigation and nutrient management practicesVadose Zone J200431353136610.2136/vzj2004.1353 – reference: GlibertPMHarrisonJHeilCSeitzingerSEscalating worldwide use of urea—a global change contributing to coastal eutrophicationBiogeochem20067744146310.1007/s10533-005-3070-5 – reference: ZhaoBQLiXYLiuHWangBRZhuPHuangSMBaoDJLiYTSoHBResults from long-term fertilizer experiments in China: the risk of groundwater pollution by nitrateNJAS-Wagening J Life Sci20115817718310.1016/j.njas.2011.09.004 – reference: MuellerNDLassalettaLRunckBBillenGGarnierJGerberJSDeclining spatial efficiency of global cropland nitrogen allocationGlob Biogeochem Cycle20173124525710.1002/2016GB005515 – reference: LiuRKangYZhangCPeiLWanSJiangSLiuSRenZYangYChemical fertilizer pollution control using drip fertigation for conservation of water quality in Danjiangkou ReservoirNutr Cycl Agroecosyst20149829530710.1007/s10705-014-9612-2 – reference: SinhaEMichalakAMPrecipitation dominates interannual variability of riverine nitrogen loading across the continental United StatesEnviron Sci Tech201650128741288410.1021/acs.est.6b04455 – reference: KumarKGohKMRecovery of 15N labeled fertilizer applied to winter wheat and perennial ryegrass crops and residual 15N recovery by succeeding wheat crops under different crop residue management practicesNutr Cycl Agroecosyst20026212313010.1023/A:1015595202542 – reference: Bijay-SinghY-SSekhonGSFertilizer use efficiency and nitrate pollution of groundwater in developing countriesJ Contam Hydrol19952016718410.1016/0169-7722(95)00067-4 – reference: GardnerJBDrinkwaterLEThe fate of nitrogen in grain cropping systems: a meta-analysis of 15N field experimentsEcol App2009192167218410.1890/08-1122.1 – reference: DinnesDLKarlenDLJaynesDBKasparTCHatfieldJLColvinTSCambardellaCANitrogen management strategies to reduce nitrate leaching in tile-drained Midwestern soilsAgron J20029415317110.2134/agronj2002.1530 – reference: HeBKanaeSOkiTHirabayashiYYamashikiYTakaraKAssessment of global nitrogen pollution in rivers using an integrated biogeochemical modeling frameworkWater Res2011452573258610.1016/j.watres.2011.02.011 – reference: JuXTZhangCNitrogen cycling and environmental impacts in upland agricultural soils in North China: a reviewJ Integr Agric2017162848286210.1016/S2095-3119(17)61743-X – reference: BirkinshawSJEwenJNitrogen transformation component for SHETRAN catchment nitrate transport modellingJ Hydrol200023011710.1016/S0022-1694(00)00174-8 – reference: LiTZhangWYinJChadwickDNorseDLuYLiuXChenXZhangFPowlsonDDouZEnhanced-efficiency fertilizers are not a panacea for resolving the nitrogen problemGlob Change Biol2018242e511e52110.1111/gcb.13918 – reference: EghballBGilleyJEBaltenspergerDDBlumenthalJMLong-term manure and fertilizer application effects on phosphorus and nitrogen in runoffTrans Am Soc Agric Biol Eng20024568769410.13031/2013.8850 – reference: DingJXiBGaoRHeLLiuHDaiXYuYIdentifying diffused nitrate sources in a stream in an agricultural field using a dual isotopic approachSci Total Environ2014484101810.1016/j.scitotenv.2014.03.018 – reference: KayPEdwardsACFoulgerMA review of the efficacy of contemporary agricultural stewardship measures for ameliorating water pollution problems of key concern to the UK water industryAgric Syst200999677510.1016/j.agsy.2008.10.006 – reference: BatemanASKellySDFertilizer nitrogen isotope signaturesIsotopes Environ Health Stud20074323724710.1080/10256010701550732 – reference: DumanskiJPeirettiRBenitesJMcGarryDPieriCThe paradigm of conservation agricultureProc World Assoc Soil Water Conserv2006P15864 – reference: ZhangYLiFZhangQLiJLiuQTracing nitrate pollution sources and transformation in surface-and ground-waters using environmental isotopesSci Total Environ201449021322210.1016/j.scitotenv.2014.05.004 – reference: HuKLiBChenDZhangYEdisRSimulation of nitrate leaching under irrigated maize on sandy soil in desert oasis in Inner Mongolia, ChinaAgric Water Manag2008951180118810.1016/j.agwat.2008.05.001 – reference: HowarthRWCoastal nitrogen pollution: a review of sources and trends globally and regionallyHarmful Algae20088142010.1016/j.hal.2008.08.015 – reference: DoreMHClimate change and changes in global precipitation patterns: what do we know?Environ Int2005311167118110.1016/j.envint.2005.03.004 – reference: StuartMEGoodDCBloomfieldJPWilliamsATA review of the potential impact of climate change on future nitrate concentrations in groundwater of the UKSci Total Environ20114092859287310.1016/j.scitotenv.2011.04.016 – reference: SchoumansOFChardonWJBechmannMEGascuel-OdouxCHofmanGKronvangBRubaekGHUlenBDoriozJMMitigation options to reduce phosphorus losses from the agricultural sector and improve surface water quality: a reviewSci Total Environ20144684691255126610.1016/j.scitotenv.2013.08.061 – reference: PaerlHWScottJTMcCarthyMJNewellSEGardnerWSHavensKEHoffmanDKWilhelmSWWurtsbaughWAIt takes two to tango: when and where dual nutrient (N & P) reductions are needed to protect lakes and downstream ecosystemsEnviron Sci Tech201650108051081310.1021/acs.est.6b02575 – reference: BhardwajAGargSSondhiSKTanejaDSNitrate contamination of shallow aquifer groundwater in the central districts of Punjab, IndiaJ Environ Sci Eng2012549097 – reference: JiYLiuHShiYWill China's fertilizer use continue to decline? Evidence from LMDI analysis based on crops, regions and fertilizer typesPLoS ONE2020158e023723410.1371/journal.pone.0237234 – reference: ChristensenBTSchjønningPElmholtSChristensenBTTightening the nitrogen cycleManaging soil quality: challenges in modern agriculture2004OxonCABI Publishing476710.1079/9780851996714.0047 – reference: KopacekJHejzlarJPoschMFactors controlling the export of nitrogen from agricultural land in a large central European catchment during 1900–2010Environ Sci Tech2013476400640710.1021/es400181m – reference: Peña-HaroSLlopis-AlbertCPulido-VelazquezMPulido-VelazquezDFertilizer standards for controlling groundwater nitrate pollution from agriculture: El Salobral-Los Llanos case studySpain J Hydrol201039217418710.1016/j.jhydrol.2010.08.006 – reference: LernerDNHarrisBThe relationship between land use and groundwater resources and qualityLand Use Policy200926S265S27310.1016/j.landusepol.2009.09.005 – reference: LordEIJohnsonPAArcherJRNitrate sensitive areas: a study of large scale control of nitrate loss in EnglandSoil Use Manag19991520120710.1111/j.1475-2743.1999.tb00089.x – reference: AkbariyehSBartelt-HuntSSnowDLiXTangZLiYThree-dimensional modeling of nitrate-N transport in vadose zone: roles of soil heterogeneity and groundwater fluxJ Contam Hydrol2018211152510.1016/j.jconhyd.2018.02.005 – reference: TakedaIFukushimaALong-term changes in pollutant load outflows and purification function in a paddy field watershed using a circular irrigation systemWater Res20064056957810.1016/j.watres.2005.08.034 – reference: JinZZhengQZhuCWangYCenJLiFContribution of nitrate sources in surface water in multiple land use areas by combining isotopes and a Bayesian isotope mixing modelApp Geochem201893101910.1016/j.apgeochem.2018.03.014 – reference: DaryantoSWangLJacinthePAImpacts of no-tillage management on nitrate loss from corn, soybean and wheat cultivation: a meta-analysisSci Rep201771211710.1038/s41598-017-12383-7 – reference: LiSLLiuCQLangYCZhaoZQZhouZHTracing the sources of nitrate in karstic groundwater in Zunyi, Southwest China: a combined nitrogen isotope and water chemistry approachEnviron Earth Sci2010601415142310.1007/s12665-009-0277-0 – reference: ShowstackRNutrient over-enrichment implicated in multiple problems in U.S. waterwaysEos Trans Am Geophys Union20008149749910.1029/00EO00358 – reference: StöckleCODonatelliMNelsonRCropSyst, a cropping systems simulation modelEur J Agron20031828930710.1016/S1161-0301(02)00109-0 – reference: GouldingKJarvisSWhitmoreAOptimizing nutrient management for farm systemsPhilos Trans Royal Soc London Ser B Biol Sci200836366768010.1098/rstb.2007.2177 – reference: HowarthRChanFConleyDJGarnierJDoneySCMarinoRBillenGCoupled biogeochemical cycles: eutrophication and hypoxia in temperate estuaries and coastal marine ecosystemsFront Ecol Environ20119182610.1890/100008 – reference: WangLButcherASStuartMEGooddyDCBloomfieldJPThe nitrate time bomb: a numerical way to investigate nitrate storage and lag time in the unsaturated zoneEnviron Geochem Health20133566768110.1007/s10653-013-9550-y – reference: KeatingBACarberryPSHammerGLProbertMERobertsonMJHolzworthDHuthNIHargreavesJNMeinkeHHochmanZMcLeanGAn overview of APSIM, a model designed for farming systems simulationEur J Agron20031826728810.1016/S1161-0301(02)00108-9 – reference: HansenATDolphCLFoufoula-GeorgiouEFinlayJCContribution of wetlands to nitrate removal at the watershed scaleNat Geosci20181112713210.1038/s41561-017-0056-6 – reference: KrupaMTateKWvan KesselCSarwarNLinquistBAWater quality in rice growing watersheds in a Mediterranean climateAgric Ecosyst Environ201114429030110.1016/j.agee.2011.09.004 – reference: LeeHMasudaTYasudaHHosoiYThe pollutant loads from a paddy field watershed due to agricultural activityPaddy Water Environ20141243944810.1007/s10333-013-0399-6 – reference: BillenGThieuVGarnierJSilvestreMModelling the N cascade in regional watersheds: the case study of the Seine, Somme and Scheldt riversAgric Ecosyst Environ200913323424610.1016/j.agee.2009.04.018 – reference: WangYYingHYinYZhengHCuiZEstimating soil nitrate leaching of nitrogen fertilizer from global meta-analysisSci Total Environ20196579610210.1016/j.scitotenv.2018.12.029 – reference: FerrantSOehlerFDurandPRuizLSalmon-MonvioaJJustesEDugastPProbstAProbstJLSánchez-PérezJMUnderstanding nitrogen transfer dynamics in a small agricultural catchment: comparison of a distributed (TNT2) and a semi distributed (SWAT) modelling approachesJ Hydrol201140611510.1016/j.jhydrol.2011.05.026 – reference: LedouxEGomezEMongetJMViavatteneCViennotPDucharneABenoîtMMignoletCSchottCMaryBAgriculture and groundwater nitrate contamination in the Seine basin. The STICS–MODCOU modelling chainSci Total Environ2007375334710.1016/j.scitotenv.2006.12.002 – reference: Bijay-SinghV-SProductivity and fertility of soils in the Indo-Gangetic Plains of South AsiaArch Agron Soil Sci201258S33S4010.1080/03650340.2012.693600 – reference: HansonBRŠimůnekJHopmansJWEvaluation of urea-ammoniumnitrate fertigation with drip irrigation using numerical modelingAgri Water Manag20068610211310.1016/j.agwat.2006.06.013 – reference: MacQuarrieKTBSudickyEARobertsonWDNumerical simulation of a fine-grained denitrification layer for removing septic system nitrate from shallow groundwaterJ Contam Hydrol200152295510.1016/S0169-7722(01)00152-8 – reference: Plaza-bonillaDNolotJRaffaillacDJustesECover crops mitigate nitrate leaching in cropping systems including grain legumes: field evidence and model simulationsAgric Ecosyst Environ201521211210.1016/j.agee.2015.06.014 – reference: AlmasriMNKaluarachchiJJImplications of on-ground nitrogen loading and soil transformations on groundwater quality managementJ Am Water Res Assoc20044016518610.1111/j.1752-1688.2004.tb01017.x – reference: WangLStuartMEBloomfieldJPButcherASGooddyDCMcKenzieAALewisMAWilliamsATPrediction of the arrival of peak nitrate concentrations at the water table at the regional scale in Great BritainHydrol Process20122622623910.1002/hyp.8164 – reference: SeitzingerSHarrisonJABohlkeJKBouwmanAFLowranceRPetersonBTobiasCvan DrechtGDenitrification across landscapes and waterscapes: a synthesisEcol App2006162064209010.1890/1051-0761(2006)016[2064:DALAWA]2.0.CO;2 – reference: CuiZZhangHChenXZhangCMaWHuangCZhangWMiGMiaoYLiXGaoQPursuing sustainable productivity with millions of smallholder farmersNature201855536336610.1038/nature25785 – reference: WeersinkAFraserEPannellDDuncanERotzSOpportunities and challenges for big data in agricultural and environmental analysisAnn Rev Resour Econ201810193710.1146/annurev-resource-100516-053654 – reference: EagleAJOlanderLPLocklierKLHeffernanJBBernhardtESFertilizer management and environmental factors drive N2O and NO3 losses in corn: a meta-analysisSoil Sci Soc Am J2017811191120210.2136/sssaj2016.09.0281 – reference: ZhangYShiPSongJLiQApplication of nitrogen and oxygen isotopes for source and fate identification of nitrate pollution in surface water: a reviewApp Sci2019911810.3390/app9010018 – reference: MinJShiWNitrogen discharge pathways in vegetable production as non-point sources of pollution and measures to control itSci Total Environ201861361412313010.1016/j.scitotenv.2017.09.079 – reference: ZhangXXuZSunXDongWBallantineDNitrate in shallow groundwater in typical agricultural and forest ecosystems in China, 2004–2010J Environ Sci2013251007101410.1016/S1001-0742(12)60139-9 – reference: KimHKaownDMayerBLeeJYHyunYLeeKKIdentifying the sources of nitrate contamination of groundwater in an agricultural area (Haean basin, Korea) using isotope and microbial community analysesSci Total Environ201553356657510.1016/j.scitotenv.2015.06.080 – reference: GallowayJNDentenerFJCaponeDGBoyerEWHowarthRWSeitzingerSPAsnerGPClevelandCCGreenPAHollandEAKarlDMNitrogen cycles: past, present, and futureBiogeochem20047015322610.1007/s10533-004-0370-0 – reference: IAEA (International Atomic, Energy Agency) (2003) Management of crop residues for sustainable crop production. IAEA TECHDOC‐1354. International Atomic, Energy Agency, Vienna, Austria – reference: Poch-MassegúJRJiménez-MartínezJWallisKJRamírez de CartagenaFCandelaLIrrigation return flow and nitrate leaching under different crops and irrigation methods in Western Mediterranean weather conditionsAgric Water Manag201413411310.1016/j.agwat.2013.11.017 – reference: EltarabilyMGNegmAMYoshimuraCSaavedraOCModeling the impact of nitrate fertilizers on groundwater quality in the southern part of the Nile DeltaEgypt Water Supp20171756157010.2166/ws.2016.162 – reference: DebSKSharmaPShuklaMKAshighJŠimůnekJNumerical evaluation of nitrate distributions in the onion root zone under conventional furrow fertigationJ Hydrol Eng20152120501502610.1061/(ASCE)HE.1943-5584.0001304 – reference: MuellerNDGerberJSJohnstonMRayDKRamankuttyNFoleyJAClosing yield gaps through nutrient and water managementNature201249025425710.1038/nature11420 – reference: Wong CM, Williams CE, Pittock J, Collier U, Schelle P (2007) World's top 10 rivers at risk. WWF International, Gland, Switzerland. http://www.panda.org/about_wwf/what_we_do/freshwater/publications/index.cfm?uNewsID=97680 – reference: Howarth RW, Billen G, Swaney D, Townsend A, Jaworski N, Lajtha K, Downing JA, Elmgren R, Caraco N, Jordan T, Berendse F, Freney J, Kudeyarov V, Murdoch P, Zhao-Liang Z (1996) Regional nitrogen budgets and riverine N & P fluxes for the drainages to the North Atlantic Ocean: Natural and human influences. In: Howarth RW (ed), Nitrogen cycling in the North Atlantic Ocean and its watersheds, Springer, Dordrecht, pp 75–139. https://doi.org/10.1007/978-94-009-1776-7_3 – reference: Mas-PlaJMencióAGroundwater nitrate pollution and climate change: learnings from a water balance-based analysis of several aquifers in a western Mediterranean region (Catalonia)Environ Sci Pollut Res2019262184220210.1007/s11356-018-1859-8 – reference: RefsgaardJCThorsenMJensenJBKleeschulteSHansenSLarge scale modeling of groundwater contamination from nitrate leachingJ Hydrol199922111714010.1016/S0022-1694(99)00081-5 – reference: XiaLLamSKChenDWangJTangQYanXCan knowledge-based N management produce more staple grain with lower greenhouse gas emission and reactive nitrogen pollution? A meta-analysisGlob Chang Biol2017231917192510.1111/gcb.13455 – reference: ChenLZhongYCWeiGYCaiYPShenZYDevelopment of an integrated modeling approach for identifying multilevel non-point-source priority management areas at the watershed scaleWater Resour Res2014504095410910.1002/2013WR015041 – reference: TrenberthKEChanges in precipitation with climate changeClim Res20114712313810.3354/cr00953 – reference: OuyangWSongKYWangXLHaoFHNon-point source pollution dynamics under long-term agricultural development and relationship with landscape dynamicsEcol Indic20144557958910.1016/j.ecolind.2014.05.025 – reference: DuanSWXuFWangLJLong-term changes in nutrient concentrations of the Changjiang River and principal tributariesBiogeochemistry20078521523410.1007/s10533-007-9130-2 – reference: BassoBShuaiGZhangJRobertsonGPYield stability analysis reveals sources of large-scale nitrogen loss from the US MidwestSci Rep20199577410.1038/s41598-019-42271-1 – reference: JankowskiKNeillCDavidsonEAMacedoMNCostaCGalfordGLSantosLMLefebvrePNunesDCerriCEMcHorneyRDeep soils modify environmental consequences of increased nitrogen fertilizer use in intensifying Amazon agricultureSci Rep201881347810.1038/s41598-018-31175-1 – reference: WollheimWMVörösmartyCJBouwmanAFGreenPHarrisonJLinderEPetersonBJSeitzingerSPSyvitskiJPMGlobal N removal by freshwater aquatic systems using a spatially distributed, within-basin approachGlob Biogeochem Cycl200822GB202610.1029/2007GB002963 – reference: LawniczakAEZbierskaJNowakBAchtenbergKGrześkowiakKKanasKImpact of agriculture and land use on nitrate contamination in groundwater and running waters in central-west PolandEnviron Monit Assess201618817210.1007/s10661-016-5167-9 – reference: HartPBSPowlsonDSPultonPRJohnsonAEJenkinsonDSThe availability of the nitrogen in the crop residues of winter wheat to subsequent cropsJ Agric Sci199312135536210.1017/S0021859600085555 – reference: Bartley R, Henderson A, Prosser IP, Hughes AO, McKergow LA, Lu H, Brodie J, Bainbridge Z, Roth CH (2003) Patterns of erosion and sediment and nutrient transport in the Herbert River catchment, Queensland. Consultancy Report. August 2003, CSIRO Land and Water, p 59 – reference: LeeMSLeeKKHyunYClementTPHamiltonDNitrogen transformation and transport modeling in groundwater aquifersEcol Model200619214315910.1016/j.ecolmodel.2005.07.013 – reference: Dourado-NetoDPowlsonDAbu BakarRBacchiOOSBasantaMVThi CongPKeerthisingheGIsmailiMRahmanSMReichardtKSafwatMSASangakkaraRTimmLCWangJYZagalEvan KesselCMultiseason recoveries of organic and inorganic nitrogen-15 in tropical cropping systemsSoil Sci Soc Am J20107413915210.2136/sssaj2009.0192 – reference: GusmanAJMariñoMAAnalytical modeling of nitrogen dynamics in soils and groundwaterJ Irrig Drain Eng199912533033710.1061/(ASCE)0733-9437(1999)125:6(330) – reference: RobinsonDδ15N as an integrator of the nitrogen cycleTrends Ecol Evol20011615316210.1016/S0169-5347(00)02098-X – reference: NolanBTHittKRuddyBProbability of nitrate contamination of recently recharged ground waters in the conterminous United StatesEnviron Sci Tech2002362138214510.1021/es0113854 – reference: GaiXWangHLiuJZhaiLLiuSRenTLiuHEffects of feedstock and pyrolysis temperature on biochar adsorption of ammonium and nitratePLoS ONE2014912e11388810.1371/journal.pone.0113888 – reference: ThodsenHFarkasCChormanskiJTrolleDBlicher-MathiesenGGrantREngebretsenAKardelIAndersenHEModelling nutrient load changes from fertilizer application scenarios in six catchments around the Baltic SeaAgriculture2017754110.3390/agriculture7050041 – reference: PathakHChattarjeeDSahaSFertilizer and environmental pollution: from problem to solutionIndian J Fert201915262280 – reference: Bijay-SinghSGSNitrate pollution of groundwater from farm use of nitrogen fertilizers—a reviewAgric Environ1979420722510.1016/0304-1131(79)90022-5 – reference: van VlietMTFlörkeMHarrisonJAHofstraNKellerVLudwigFSpanierJEStrokalMWadaYWenYWilliamsRJModel inter-comparison design for large-scale water quality modelsCurr Opin Environ Sustain201936596710.1016/j.cosust.2018.10.013 – reference: DelgadoJAVandenbergBNeerDD’AdamoREmerging nutrient management databases and networks of networks will have broad applicability in future machine learning and artificial intelligence applications in soil and water conservationJ Soil Water Conserv201974113A118A10.2489/jswc.74.6.113A – reference: LiuGDWuWLZhangJRegional differentiation of non-point source pollution of agriculture-derived nitrate nitrogen in groundwater in northern ChinaAgri Ecosyst Environ200510721122010.1016/j.agee.2004.11.010 – reference: MaLScottHDShafferMJAhujaLRRZWQM simulations of water and nitrate movement in a manured tall fescue fieldSoil Sci199816325927010.1097/00010694-199804000-00001 – reference: HaasMBGuseBFohrerNAssessing the impacts of Best Management Practices on nitrate pollution in an agricultural dominated lowland catchment considering environmental protection versus economic developmentJ Environ Manag201719634736410.1016/j.jenvman.2017.02.060 – reference: BorchardNSchirrmannMCayuelaMLKammannCWrage-MönnigNEstavilloJMFuertes-MendizábalTSiguaGSpokasKIppolitoJANovakJBiochar, soil and land-use interactions that reduce nitrate leaching and N2O emissions: a meta-analysisSci Total Environ20196512354236410.1016/j.scitotenv.2018.10.060 – reference: NRC (National Research Council)Improving water quality in the Mississippi River Basin and Northern Gulf of Mexico: strategies and priorities2012WashingtonThe National Academies Press10.17226/13029 – reference: BakshASHatfieldJLKanwarRSMaLAhujaLRSimulating nitrate drainage losses from a Walnut Creek watershed fieldJ Environ Qual20043311412310.2134/jeq2004.1140 – reference: MeisingerJJDelgadoJAAlvaAKNitrogen leaching managementEncyclop Soils Environ2006211221124 – reference: GouldingKNitrate leaching from arable and horticultural landSoil Use Manag20001614515110.1111/j.1475-2743.2000.tb00218.x – reference: ZhouYXuJFYinWAiLFangNFTanWFYanFLShiZHHydrological and environmental controls of the stream nitrate concentration and flux in a small agricultural watershedJ Hydrol201754535536610.1016/j.jhydrol.2016.12.015 – reference: ShuklaSSaxenaAHussainCMGlobal status of nitrate contamination in groundwater: its occurrence, health impacts, and mitigation measuresHandbook of environmental materials management2018Springer86988810.1007/978-3-319-58538-3_20-1 – reference: KatyalJCBijay-SinghVPLGBureshRJEfficient nitrogen use as affected by urea application and irrigation sequenceSoil Sci Soc Am J19875136637010.2136/sssaj1987.03615995005100020020x – reference: WangZLiJLiYSimulation of nitrate leaching under varying drip system uniformities and precipitation patterns during the growing season of maize in the North China plainAgric Water Manag2014142192810.1016/j.agwat.2014.04.013 – reference: MarinovIMarinovAMA coupled mathematical model to predict the influence of nitrogen fertilization on crop, soil and groundwater qualityWater Resour Manag2014285231524610.1007/s11269-014-0664-5 – reference: CameronKCDiHJMoirJLNitrogen losses from the soil/plant system: a reviewAnn Appl Biol201316214517310.1111/aab.12014 – reference: GallowayJNAberJDErismanJWSeitzingerSPHowarthRWCowlingEBCosbyBJThe nitrogen cascadeBioScience20035334135610.1641/0006-3568(2003)053[0341:TNC]2.0.CO;2 – reference: van DrechtGBouwmanAFKnoopJMMeinardiCBeusenAGlobal pollution of surface waters from point and nonpoint sources of nitrogenSci World20011S263264110.1100/tsw.2001.326 – reference: NangiaVGowdaPHMullaDJSandsGRWater quality modeling of fertilizer management impacts on nitrate losses in tile drains at the field scaleJ Environ Qual20083729630710.2134/jeq2007.0224 – reference: TangTStrokalMvan VlietMTSeuntjensPBurekPKroezeCLanganSWadaYBridging global, basin and local-scale water quality modeling towards enhancing water quality management worldwideCurr Opin Environ Sustain201936394810.1016/j.cosust.2018.10.004 – reference: Wexler SK, Hiscock KM, Dennis PF (2009) Tracing the sources and fate of diffuse nitrate contamination in a lowland agricultural catchment using a dual-isotope method. European Geosciences Union General Assembly, p 691 – reference: CerroIAntigüedadISrinavasanRSauvageSVolkMSanchez-PerezJMSimulating land management options to reduce nitrate pollution in an agricultural watershed dominated by an alluvial aquiferJ Environ Qual201443677410.2134/jeq2011.0393 – reference: ChienSHProchnowLICantarellaHDonaldLSRecent developments of fertilizer production and use to improve nutrient efficiency and minimize environmental impactsAdv Agron200910226732210.1016/S0065-2113(09)01008-6 – reference: MaLFengSReidsmaPQuFHeerinkNIdentifying entry points to improve fertilizer use efficiency in Taihu Basin, ChinaLand Use Policy201437525910.1016/j.landusepol.2013.01.008 – reference: YuCHuangXChenHGodfrayHCJWrightJSHallJWGongPNiSQiaoSHuangGXiaoYManaging nitrogen to restore water quality in ChinaNature201956751652010.1038/s41586-019-1001-1 – reference: SebiloMMayerBNicolardotBPinayGMariottiALong-term fate of nitrate fertilizer in agricultural soilsProc Natl Acad Sci USA2013110181851818910.1073/pnas.1305372110 – reference: KendallCKendallCMcDonnellJJTracing nitrogen sources and cycling in catchmentsIsotope tracers in catchment hydrology1998AmsterdamElsevier51957610.1016/B978-0-444-81546-0.50023-9 – reference: Helsinki Commission (2004) The fourth Baltic Sea pollution load compilation (PLC-4). In: Baltic Sea environment proceedings. Helsinki Commission, Helsinki, Finland, vol 93, p 189 – reference: BurtTPHowdenNJWorrallFWhelanMJBierozaMNitrate in United Kingdom rivers: policy and its outcomes since 1970Environ Sci Technol20114517518110.1021/es101395s – reference: Urresti-EstalaBVadillo-PerezIJimenez-GavilanPSolerASanchez-GarciaDCarrasco-CantosFApplication of stable isotopes (δ34S–SO4, δ18O–SO4, δ15N–NO3, δ18O–NO3) to determine natural background and contamination sources in the Guadalhorce River Basin (southern Spain)Sci Total Environ2015506465710.1016/j.scitotenv.2014.10.090 – reference: ZillénLConleyDJAndrénTAndrénEBjörckSPast occurrences of hypoxia in the Baltic Sea and the role of climate variability, environmental change and human impactEarth-Sci Rev200891779210.1016/j.earscirev.2008.10.001 – reference: YueFJLiuCQLiSLZhaoZQLiuXLDingHLiuBJZhongJAnalysis of δ15N and δ18O to identify nitrate sources and transformations in Songhua River, Northeast ChinaJ Hydrol201451932933910.1016/j.jhydrol.2014.07.026 – reference: LiuJYouLAminiMObersteinerMHerreroMZehnderAJBYangHA high-resolution assessment on global nitrogen flows in croplandProc Natl Acad Sci USA20101078035804010.1073/pnas.0913658107 – reference: HuangTJuXTYangHNitrate leaching in a winter wheat–summer maize rotation on a calcareous soil as affected by nitrogen and straw managementSci Rep201774224710.1038/srep42247 – reference: AlmasriMNNitrate contamination of groundwater: a conceptual management frameworkEnviron Impact Assess Rev20072722024210.1016/j.eiar.2006.11.002 – reference: Zadeh SM (2018) Nutrients. In: Mateo-Sagasta J, Zadeh SM, Turral H (eds), More people, more food, worse water?: A global review of water pollution from agriculture. Food and Agriculture Organization of UNO, Rome, Italy; International Water Management Institute (IWMI), CGIAR Research Program on Water, Land and Ecosystems (WLE), Colombo, Sri Lanka. pp 53–75. http://www.fao.org/3/ca0146en/CA0146EN.pdf – reference: LiuTWangFMichalskiGXiaXLiuSUsing 15N, 17O, and 18O to determine nitrate sources in the Yellow River, ChinaEnviron Sci Tech201347134121342110.1021/es403357m – reference: SotoDXKoehlerGWassenaarLIHobsonKASpatio-temporal variation of nitrate sources to Lake Winnipeg using N and O isotope (δ15N, δ18O) analysesSci Total Environ201964748649310.1016/j.scitotenv.2018.07.346 – reference: RamosTBŠimůnekJGonçalvesMCMartinsJCPrazeresAPereiraLSTwo-dimensional modeling of water and nitrogen fate from sweet sorghum irrigated with fresh and blended saline watersAgric Water Manag20121118710410.1016/j.agwat.2012.05.007 – reference: AsmalaESaikkuLVienonenSImport–export balance of nitrogen and phosphorus in food, fodder and fertilizers in the Baltic Sea drainage areaSci Total Environ20114094917492210.1016/j.scitotenv.2011.08.030 – reference: StålnackePGrimvallASundbladKTonderskiAEstimation of riverine loads of nitrogen and phosphorus to the Baltic Sea, 1970–1993Environ Monitor Assess19995817320010.1023/A:1006073015871 – reference: ZhangYShiPLiFWeiASongJMaJQuantification of nitrate sources and fates in rivers in an irrigated agricultural area using environmental isotopes and a Bayesian isotope mixing modelChemosphere201820849350110.1016/j.chemosphere.2018.05.164 – reference: AlexanderRBSmithRASchwarzGEBoyerEWNolanJVBrakebillJWDifferences in phosphorus and nitrogen delivery to the Gulf of Mexico from the Mississippi River BasinEnviron Sci Tech20084282283010.1021/es0716103 – reference: DiHJCameronKCNitrate leaching in temperate agroecosystems: sources, factors and mitigating strategiesNutr Cycl Agroecosyst20026423725610.1023/A:1021471531188 – reference: HassanGReneauRBHagedornCJantraniaARModeling effluent distribution and nitrate transport through an on-site wastewater systemJ Environ Qual2008371937194810.2134/jeq2007.0512 – reference: ZhangXDavidsonEAMauzerallDLSearchingerTDDumasPShenYManaging nitrogen for sustainable developmentNature2015528515910.1038/nature15743 – reference: ZhouMButterbach-BahlKAssessment of nitrate leaching loss on a yield-scaled basis from maize and wheat cropping systemsPlant Soil201437497799110.1007/s11104-013-1876-9 – reference: ChhabraAManjunathKRPanigrahySNon-point source pollution in Indian agriculture: estimation of nitrogen losses from rice crop using remote sensing and GISInt J Appl Earth Obs Geoinform20101219020010.1016/j.jag.2010.02.007 – reference: LadhaJKPathakHKrupnikTJSixJvan KesselCEfficiency of fertilizer nitrogen in cereal production: retrospects and prospectsAdv Agron2005878515610.1016/S0065-2113(05)87003-8 – reference: GärdenäsAIHopmansJWHansonBRŠimůnekJTwo-dimensional modeling of nitrate leaching for various fertigation scenarios under micro-irrigationAgric Water Manag20057421924210.1016/j.agwat.2004.11.011 – reference: ZhaoRFChenXPZhangFSZhangHLSchroderJRomheldVFertilization and nitrogen balance in a wheat–maize rotation system in North ChinaAgron J20069893894510.2134/agronj2005.0157 – reference: AgrawalGDLunkadSKMalkhedTDiffuse agricultural nitrate pollution of groundwaters in IndiaWater Sci Tech199939677510.1016/S0273-1223(99)00033-5 – reference: VervloetLSBinningPJBørgesenCDHøjbergALDelay in catchment nitrogen load to streams following restrictions on fertilizer applicationSci Total Environ20186271154116610.1016/j.scitotenv.2018.01.255 – reference: CAST (Council for Agricultural Science and Technology) (2019) Reducing the impacts of agricultural nutrients on water quality across a changing landscape. Issue Paper 64, CAST, Ames, Iowa, USA, p 20. https://www.cast-science.org/wp-content/uploads/2019/05/CAST_IP64_Nutrient-Loss.pdf – reference: HillBHBolgrienDWNitrogen removal by streams and rivers of the Upper Mississippi River basinBiogeochem201110218319410.1007/s10533-010-9431-8 – reference: CastellanoMJDavidMBLong-term fate of nitrate fertilizer in agricultural soils is not necessarily related to nitrate leaching from agricultural soilsProc Natl Acad Sci2014111E766E76610.1073/pnas.1321350111 – reference: AlmasriMNKaluarachchiJJModeling nitrate contamination of groundwater in agricultural watershedsJ Hydrol200734321122910.1016/j.jhydrol.2007.06.016 – reference: DonnerSDCoeMTLentersJDTwineTEFoleyJAModeling the impact of hydrological changes on nitrate transport in the Mississippi River Basin from 1955 to 1994Glob Biogeochem Cycle200216311910.1029/2001GB001396 – reference: DonosoGCancinoJMagriAEffects of agricultural activities on water pollution with nitrates and pesticides in the Central Valley of ChileWater Sci Technol199939496010.1016/S0273-1223(99)00031-1 – reference: JuXTKouCLZhangFSChristiePNitrogen balance and groundwater nitrate contamination: comparison among three intensive cropping systems on the North China PlainEnviron Pollut200614311712510.1016/j.envpol.2005.11.005 – reference: ZhangXA plan for efficient use of nitrogen fertilizersNature201754332232310.1038/543322a – reference: LiuQZhangYLiuBAmonetteJELinZLiuGAmbusPXieZHow does biochar influence soil N cycle? A meta-analysisPlant Soil201842621122510.1007/s11104-018-3619-4 – reference: DelgadoJAShortNMJrRobertsDPVandenbergBBig data analysis for sustainable agriculture on a geospatial cloud frameworkFront Sustain Food Syst201935410.3389/fsufs.2019.00054 – reference: NorseDNon-point pollution from crop production: global, regional and national issuesPedosphere200515499508 – reference: ArnoldJGAllenPMVolkMWilliamsJRBoschDDAssessment of different representations of spatial variability on SWAT model performanceTrans Am Soc Agri Biol Eng2010531433144310.13031/2013.34913 – reference: Van MeterKJBasuNBVeenstraJJBurrasCLThe nitrogen legacy: emerging evidence of nitrogen accumulation in anthropogenic landscapesEnviron Res Lett201611303501410.1088/1748-9326/11/3/035014 – reference: ShenZYZhongYCHuangQChenLIdentifying non-point source priority management areas in watersheds with multiple functional zonesWater Res20156856357110.1016/j.watres.2014.10.034 – reference: DavisDMGowdaPHMullaDJRandallGWModeling nitrate nitrogen leaching in response to nitrogen fertilizer rate and tile drain depth or spacing for southern Minnesota, USAJ Environ Qual2000291568158110.2134/jeq2000.00472425002900050026x – reference: ZhangYTWangHYLiuSLeiQLLiuJHeJQZhaiLMRenTZLiuHBIdentifying critical nitrogen application rate for maize yield and nitrate leaching in a Haplic Luvisol soil using the DNDC modelSci Total Environ201551438839810.1016/j.scitotenv.2015.02.022 – volume: 74 start-page: 139 year: 2010 ident: 4521_CR34 publication-title: Soil Sci Soc Am J doi: 10.2136/sssaj2009.0192 – volume: 39 start-page: 67 year: 1999 ident: 4521_CR126 publication-title: Water Sci Tech doi: 10.1016/S0273-1223(99)00033-5 – volume: 45 start-page: 175 year: 2011 ident: 4521_CR97 publication-title: Environ Sci Technol doi: 10.1021/es101395s – volume: 230 start-page: 1 year: 2000 ident: 4521_CR82 publication-title: J Hydrol doi: 10.1016/S0022-1694(00)00174-8 – volume: 26 start-page: S265 year: 2009 ident: 4521_CR100 publication-title: Land Use Policy doi: 10.1016/j.landusepol.2009.09.005 – volume: 7 start-page: 12117 year: 2017 ident: 4521_CR171 publication-title: Sci Rep doi: 10.1038/s41598-017-12383-7 – volume: 16 start-page: 145 year: 2000 ident: 4521_CR37 publication-title: Soil Use Manag doi: 10.1111/j.1475-2743.2000.tb00218.x – volume: 545 start-page: 355 year: 2017 ident: 4521_CR114 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2016.12.015 – volume: 20 start-page: 167 year: 1995 ident: 4521_CR124 publication-title: J Contam Hydrol doi: 10.1016/0169-7722(95)00067-4 – volume: 58 start-page: 173 year: 1999 ident: 4521_CR132 publication-title: Environ Monitor Assess doi: 10.1023/A:1006073015871 – volume: 113 start-page: 19 year: 2012 ident: 4521_CR61 publication-title: Agric Water Manag doi: 10.1016/j.agwat.2012.06.011 – volume: 31 start-page: 1167 year: 2005 ident: 4521_CR174 publication-title: Environ Int doi: 10.1016/j.envint.2005.03.004 – volume: 24 start-page: e511 issue: 2 year: 2018 ident: 4521_CR177 publication-title: Glob Change Biol doi: 10.1111/gcb.13918 – volume: 125 start-page: 330 year: 1999 ident: 4521_CR81 publication-title: J Irrig Drain Eng doi: 10.1061/(ASCE)0733-9437(1999)125:6(330) – volume: 363 start-page: 667 year: 2008 ident: 4521_CR144 publication-title: Philos Trans Royal Soc London Ser B Biol Sci doi: 10.1098/rstb.2007.2177 – volume: 133 start-page: 234 year: 2009 ident: 4521_CR106 publication-title: Agric Ecosyst Environ doi: 10.1016/j.agee.2009.04.018 – volume: 26 start-page: 226 year: 2012 ident: 4521_CR98 publication-title: Hydrol Process doi: 10.1002/hyp.8164 – volume: 42 start-page: 229 year: 2012 ident: 4521_CR121 publication-title: Soc Chang doi: 10.1177/004908571204200205 – volume: 484 start-page: 10 year: 2014 ident: 4521_CR48 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2014.03.018 – volume: 39 start-page: 49 year: 1999 ident: 4521_CR10 publication-title: Water Sci Technol doi: 10.1016/S0273-1223(99)00031-1 – volume: 6 start-page: 25088 year: 2016 ident: 4521_CR16 publication-title: Sci Rep doi: 10.1038/srep25088 – volume: 627 start-page: 1154 year: 2018 ident: 4521_CR142 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2018.01.255 – volume: 144 start-page: 290 year: 2011 ident: 4521_CR160 publication-title: Agric Ecosyst Environ doi: 10.1016/j.agee.2011.09.004 – volume: 16 start-page: 153 year: 2001 ident: 4521_CR41 publication-title: Trends Ecol Evol doi: 10.1016/S0169-5347(00)02098-X – volume: 50 start-page: 1211 year: 2007 ident: 4521_CR72 publication-title: Trans Am Soc Agri Biol Eng doi: 10.13031/2013.23637 – volume: 519 start-page: 329 year: 2014 ident: 4521_CR51 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2014.07.026 – volume: 74 start-page: 219 year: 2005 ident: 4521_CR59 publication-title: Agric Water Manag doi: 10.1016/j.agwat.2004.11.011 – volume: 110 start-page: 18185 year: 2013 ident: 4521_CR38 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1305372110 – volume: 9 start-page: 5774 year: 2019 ident: 4521_CR183 publication-title: Sci Rep doi: 10.1038/s41598-019-42271-1 – volume: 17 start-page: 561 year: 2017 ident: 4521_CR95 publication-title: Egypt Water Supp doi: 10.2166/ws.2016.162 – volume: 42 start-page: 822 year: 2008 ident: 4521_CR116 publication-title: Environ Sci Tech doi: 10.1021/es0716103 – volume: 11 start-page: 127 year: 2018 ident: 4521_CR108 publication-title: Nat Geosci doi: 10.1038/s41561-017-0056-6 – volume: 221 start-page: 117 year: 1999 ident: 4521_CR79 publication-title: J Hydrol doi: 10.1016/S0022-1694(99)00081-5 – volume: 54 start-page: 11929 year: 2020 ident: 4521_CR120 publication-title: Environ Sci Tech doi: 10.1021/acs.est.0c01333 – volume: 111 start-page: 87 year: 2012 ident: 4521_CR76 publication-title: Agric Water Manag doi: 10.1016/j.agwat.2012.05.007 – volume: 19 start-page: 2167 year: 2009 ident: 4521_CR35 publication-title: Ecol App doi: 10.1890/08-1122.1 – volume: 15 start-page: 201 year: 1999 ident: 4521_CR141 publication-title: Soil Use Manag doi: 10.1111/j.1475-2743.1999.tb00089.x – volume: 555 start-page: 363 year: 2018 ident: 4521_CR180 publication-title: Nature doi: 10.1038/nature25785 – volume: 143 start-page: 117 year: 2006 ident: 4521_CR17 publication-title: Environ Pollut doi: 10.1016/j.envpol.2005.11.005 – volume: 12 start-page: 190 year: 2010 ident: 4521_CR127 publication-title: Int J Appl Earth Obs Geoinform doi: 10.1016/j.jag.2010.02.007 – volume: 133 start-page: 74 year: 2014 ident: 4521_CR71 publication-title: Agric Water Manag doi: 10.1016/j.agwat.2013.10.017 – volume: 16 start-page: 1 issue: 3 year: 2002 ident: 4521_CR128 publication-title: Glob Biogeochem Cycle doi: 10.1029/2001GB001396 – volume: 543 start-page: 322 year: 2017 ident: 4521_CR165 publication-title: Nature doi: 10.1038/543322a – volume: 188 start-page: 172 year: 2016 ident: 4521_CR172 publication-title: Environ Monit Assess doi: 10.1007/s10661-016-5167-9 – volume: 95 start-page: 1180 year: 2008 ident: 4521_CR75 publication-title: Agric Water Manag doi: 10.1016/j.agwat.2008.05.001 – volume: 40 start-page: 569 year: 2006 ident: 4521_CR159 publication-title: Water Res doi: 10.1016/j.watres.2005.08.034 – volume: 374 start-page: 977 year: 2014 ident: 4521_CR21 publication-title: Plant Soil doi: 10.1007/s11104-013-1876-9 – volume: 468 start-page: 1255 issue: 469 year: 2014 ident: 4521_CR103 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2013.08.061 – volume: 9 start-page: e113888 issue: 12 year: 2014 ident: 4521_CR154 publication-title: PLoS ONE doi: 10.1371/journal.pone.0113888 – volume: 86 start-page: 102 year: 2006 ident: 4521_CR60 publication-title: Agri Water Manag doi: 10.1016/j.agwat.2006.06.013 – volume: 292 start-page: 281 year: 2001 ident: 4521_CR101 publication-title: Science doi: 10.1126/science.1057544 – volume: 647 start-page: 486 year: 2019 ident: 4521_CR52 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2018.07.346 – volume: 3 start-page: 1353 year: 2004 ident: 4521_CR58 publication-title: Vadose Zone J doi: 10.2136/vzj2004.1353 – volume: 53 start-page: 341 year: 2003 ident: 4521_CR13 publication-title: BioScience doi: 10.1641/0006-3568(2003)053[0341:TNC]2.0.CO;2 – volume: 16 start-page: 2064 year: 2006 ident: 4521_CR107 publication-title: Ecol App doi: 10.1890/1051-0761(2006)016[2064:DALAWA]2.0.CO;2 – volume: 93 start-page: 10 year: 2018 ident: 4521_CR55 publication-title: App Geochem doi: 10.1016/j.apgeochem.2018.03.014 – volume: 533 start-page: 566 year: 2015 ident: 4521_CR56 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2015.06.080 – volume: 375 start-page: 33 year: 2007 ident: 4521_CR65 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2006.12.002 – volume: 75 start-page: 194 year: 2005 ident: 4521_CR184 publication-title: Agric Water Manag doi: 10.1016/j.agwat.2004.12.013 – volume: 16 start-page: 2848 year: 2017 ident: 4521_CR15 publication-title: J Integr Agric doi: 10.1016/S2095-3119(17)61743-X – volume: 111 start-page: E766 year: 2014 ident: 4521_CR39 publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.1321350111 – volume: 409 start-page: 2859 year: 2011 ident: 4521_CR173 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2011.04.016 – volume: 208 start-page: 493 year: 2018 ident: 4521_CR49 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2018.05.164 – volume: 17 start-page: 1091 issue: 4 year: 2003 ident: 4521_CR119 publication-title: Glob Biogeochem Cycl doi: 10.1029/2002GB002029 – ident: 4521_CR4 – volume: 490 start-page: 254 year: 2012 ident: 4521_CR169 publication-title: Nature doi: 10.1038/nature11420 – volume: 47 start-page: 13412 year: 2013 ident: 4521_CR50 publication-title: Environ Sci Tech doi: 10.1021/es403357m – volume: 3 start-page: 54 year: 2019 ident: 4521_CR182 publication-title: Front Sustain Food Syst doi: 10.3389/fsufs.2019.00054 – volume: 23 start-page: 1917 year: 2017 ident: 4521_CR147 publication-title: Glob Chang Biol doi: 10.1111/gcb.13455 – volume: 58 start-page: 177 year: 2011 ident: 4521_CR28 publication-title: NJAS-Wagening J Life Sci doi: 10.1016/j.njas.2011.09.004 – volume: 27 start-page: 220 year: 2007 ident: 4521_CR86 publication-title: Environ Impact Assess Rev doi: 10.1016/j.eiar.2006.11.002 – ident: 4521_CR168 – volume: 211 start-page: 15 year: 2018 ident: 4521_CR73 publication-title: J Contam Hydrol doi: 10.1016/j.jconhyd.2018.02.005 – volume: 54 start-page: 90 year: 2012 ident: 4521_CR125 publication-title: J Environ Sci Eng – volume: 45 start-page: 2573 year: 2011 ident: 4521_CR94 publication-title: Water Res doi: 10.1016/j.watres.2011.02.011 – volume: 47 start-page: 123 year: 2011 ident: 4521_CR175 publication-title: Clim Res doi: 10.3354/cr00953 – volume: 47 start-page: 6400 year: 2013 ident: 4521_CR105 publication-title: Environ Sci Tech doi: 10.1021/es400181m – volume: 26 start-page: 2184 year: 2019 ident: 4521_CR176 publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-018-1859-8 – start-page: 334 volume-title: Nitrogen in organic wastes applied to soils year: 1989 ident: 4521_CR25 – volume: 192 start-page: 143 year: 2006 ident: 4521_CR64 publication-title: Ecol Model doi: 10.1016/j.ecolmodel.2005.07.013 – volume: 45 start-page: 687 year: 2002 ident: 4521_CR112 publication-title: Trans Am Soc Agric Biol Eng doi: 10.13031/2013.8850 – volume: 35 start-page: 667 year: 2013 ident: 4521_CR99 publication-title: Environ Geochem Health doi: 10.1007/s10653-013-9550-y – volume: 506 start-page: 46 year: 2015 ident: 4521_CR53 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2014.10.090 – volume: 528 start-page: 51 year: 2015 ident: 4521_CR178 publication-title: Nature doi: 10.1038/nature15743 – volume: 142 start-page: 19 year: 2014 ident: 4521_CR77 publication-title: Agric Water Manag doi: 10.1016/j.agwat.2014.04.013 – volume: 8 start-page: 13478 year: 2018 ident: 4521_CR20 publication-title: Sci Rep doi: 10.1038/s41598-018-31175-1 – volume: 134 start-page: 1 year: 2014 ident: 4521_CR66 publication-title: Agric Water Manag doi: 10.1016/j.agwat.2013.11.017 – volume: 87 start-page: 85 year: 2005 ident: 4521_CR30 publication-title: Adv Agron doi: 10.1016/S0065-2113(05)87003-8 – volume: 33 start-page: 114 year: 2004 ident: 4521_CR152 publication-title: J Environ Qual doi: 10.2134/jeq2004.1140 – volume: 64 start-page: 237 year: 2002 ident: 4521_CR24 publication-title: Nutr Cycl Agroecosyst doi: 10.1023/A:1021471531188 – ident: 4521_CR117 – volume: 50 start-page: 12874 year: 2016 ident: 4521_CR102 publication-title: Environ Sci Tech doi: 10.1021/acs.est.6b04455 – volume: 613 start-page: 123 issue: 614 year: 2018 ident: 4521_CR162 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2017.09.079 – volume: 2 start-page: 1122 year: 2006 ident: 4521_CR14 publication-title: Encyclop Soils Environ – volume: 16 start-page: 244 year: 2000 ident: 4521_CR22 publication-title: Soil Use Manag doi: 10.1111/j.1475-2743.2000.tb00203.x – volume: 212 start-page: 1 year: 2015 ident: 4521_CR67 publication-title: Agric Ecosyst Environ doi: 10.1016/j.agee.2015.06.014 – start-page: 869 volume-title: Handbook of environmental materials management year: 2018 ident: 4521_CR5 doi: 10.1007/978-3-319-58538-3_20-1 – volume: 102 start-page: 183 year: 2011 ident: 4521_CR110 publication-title: Biogeochem doi: 10.1007/s10533-010-9431-8 – volume: 37 start-page: 296 year: 2008 ident: 4521_CR150 publication-title: J Environ Qual doi: 10.2134/jeq2007.0224 – volume: 37 start-page: 1937 year: 2008 ident: 4521_CR74 publication-title: J Environ Qual doi: 10.2134/jeq2007.0512 – volume: 174 start-page: 1 year: 2013 ident: 4521_CR139 publication-title: Agric Ecosyst Environ doi: 10.1016/j.agee.2013.04.018 – volume: 4 start-page: 207 year: 1979 ident: 4521_CR27 publication-title: Agric Environ doi: 10.1016/0304-1131(79)90022-5 – volume: 1 start-page: 632 issue: S2 year: 2001 ident: 4521_CR115 publication-title: Sci World doi: 10.1100/tsw.2001.326 – volume: 74 start-page: 113A year: 2019 ident: 4521_CR186 publication-title: J Soil Water Conserv doi: 10.2489/jswc.74.6.113A – ident: 4521_CR54 – volume: 567 start-page: 516 year: 2019 ident: 4521_CR179 publication-title: Nature doi: 10.1038/s41586-019-1001-1 – volume: 36 start-page: 59 year: 2019 ident: 4521_CR187 publication-title: Curr Opin Environ Sustain doi: 10.1016/j.cosust.2018.10.013 – volume: 533 start-page: 379 year: 2016 ident: 4521_CR91 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2015.12.024 – volume: 115 start-page: 5415 year: 2018 ident: 4521_CR163 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1718153115 – volume: 98 start-page: 295 year: 2014 ident: 4521_CR158 publication-title: Nutr Cycl Agroecosyst doi: 10.1007/s10705-014-9612-2 – volume: 8 start-page: 14 year: 2008 ident: 4521_CR2 publication-title: Harmful Algae doi: 10.1016/j.hal.2008.08.015 – ident: 4521_CR133 – volume: 36 start-page: 1625 year: 2005 ident: 4521_CR143 publication-title: Commun Soil Sci Plant Anal doi: 10.1081/CSS-200059104 – volume: 68 start-page: 563 year: 2015 ident: 4521_CR93 publication-title: Water Res doi: 10.1016/j.watres.2014.10.034 – volume: 490 start-page: 213 year: 2014 ident: 4521_CR57 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2014.05.004 – volume: 43 start-page: 237 year: 2007 ident: 4521_CR47 publication-title: Isotopes Environ Health Stud doi: 10.1080/10256010701550732 – volume: 343 start-page: 211 year: 2007 ident: 4521_CR85 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2007.06.016 – volume: 406 start-page: 1 year: 2011 ident: 4521_CR89 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2011.05.026 – volume: 7 start-page: 81 year: 2003 ident: 4521_CR42 publication-title: Geosci J doi: 10.1007/BF02910268 – ident: 4521_CR1 – volume: 60 start-page: 1415 year: 2010 ident: 4521_CR46 publication-title: Environ Earth Sci doi: 10.1007/s12665-009-0277-0 – volume: 94 start-page: 153 year: 2002 ident: 4521_CR137 publication-title: Agron J doi: 10.2134/agronj2002.1530 – volume: 7 start-page: 41 issue: 5 year: 2017 ident: 4521_CR135 publication-title: Agriculture doi: 10.3390/agriculture7050041 – volume: 85 start-page: 215 year: 2007 ident: 4521_CR118 publication-title: Biogeochemistry doi: 10.1007/s10533-007-9130-2 – volume: 107 start-page: 8035 year: 2010 ident: 4521_CR7 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0913658107 – volume: 392 start-page: 174 year: 2010 ident: 4521_CR153 publication-title: Spain J Hydrol doi: 10.1016/j.jhydrol.2010.08.006 – volume: 25 start-page: 1007 year: 2013 ident: 4521_CR8 publication-title: J Environ Sci doi: 10.1016/S1001-0742(12)60139-9 – volume: 196 start-page: 347 year: 2017 ident: 4521_CR149 publication-title: J Environ Manag doi: 10.1016/j.jenvman.2017.02.060 – volume: 121 start-page: 355 year: 1993 ident: 4521_CR31 publication-title: J Agric Sci doi: 10.1017/S0021859600085555 – volume: 91 start-page: 77 year: 2008 ident: 4521_CR131 publication-title: Earth-Sci Rev doi: 10.1016/j.earscirev.2008.10.001 – volume-title: Improving water quality in the Mississippi River Basin and Northern Gulf of Mexico: strategies and priorities year: 2012 ident: 4521_CR130 doi: 10.17226/13029 – volume: 50 start-page: 4095 year: 2014 ident: 4521_CR92 publication-title: Water Resour Res doi: 10.1002/2013WR015041 – volume: 70 start-page: 153 year: 2004 ident: 4521_CR12 publication-title: Biogeochem doi: 10.1007/s10533-004-0370-0 – volume: 224 start-page: 81 year: 1999 ident: 4521_CR80 publication-title: J Hydrol doi: 10.1016/S0022-1694(99)00130-4 – volume: 14 start-page: 78 year: 1998 ident: 4521_CR140 publication-title: Soil Use Manag doi: 10.1111/j.1475-2743.1998.tb00619.x – volume: 9 start-page: 18 issue: 1 year: 2019 ident: 4521_CR44 publication-title: App Sci doi: 10.3390/app9010018 – volume: 642 start-page: 21 year: 2018 ident: 4521_CR87 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2018.06.048 – volume: 15 start-page: e0237234 issue: 8 year: 2020 ident: 4521_CR6 publication-title: PLoS ONE doi: 10.1371/journal.pone.0237234 – volume: 6 start-page: 47 year: 2002 ident: 4521_CR43 publication-title: Geosci J doi: 10.1007/BF02911335 – volume: 9 start-page: 18 year: 2011 ident: 4521_CR104 publication-title: Front Ecol Environ doi: 10.1890/100008 – volume: 37 start-page: 52 year: 2014 ident: 4521_CR167 publication-title: Land Use Policy doi: 10.1016/j.landusepol.2013.01.008 – start-page: 519 volume-title: Isotope tracers in catchment hydrology year: 1998 ident: 4521_CR45 doi: 10.1016/B978-0-444-81546-0.50023-9 – volume: 81 start-page: 497 year: 2000 ident: 4521_CR129 publication-title: Eos Trans Am Geophys Union doi: 10.1029/00EO00358 – volume: 12 start-page: 439 year: 2014 ident: 4521_CR161 publication-title: Paddy Water Environ doi: 10.1007/s10333-013-0399-6 – volume: 162 start-page: 145 year: 2013 ident: 4521_CR146 publication-title: Ann Appl Biol doi: 10.1111/aab.12014 – volume: 31 start-page: 245 year: 2017 ident: 4521_CR164 publication-title: Glob Biogeochem Cycle doi: 10.1002/2016GB005515 – volume: 50 start-page: 10805 year: 2016 ident: 4521_CR166 publication-title: Environ Sci Tech doi: 10.1021/acs.est.6b02575 – volume: 36 start-page: 2138 year: 2002 ident: 4521_CR83 publication-title: Environ Sci Tech doi: 10.1021/es0113854 – volume: 28 start-page: 5231 year: 2014 ident: 4521_CR96 publication-title: Water Resour Manag doi: 10.1007/s11269-014-0664-5 – volume: 62 start-page: 123 year: 2002 ident: 4521_CR33 publication-title: Nutr Cycl Agroecosyst doi: 10.1023/A:1015595202542 – volume: 53 start-page: 1433 year: 2010 ident: 4521_CR90 publication-title: Trans Am Soc Agri Biol Eng doi: 10.13031/2013.34913 – volume: 514 start-page: 388 year: 2015 ident: 4521_CR113 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2015.02.022 – volume: 163 start-page: 259 year: 1998 ident: 4521_CR68 publication-title: Soil Sci doi: 10.1097/00010694-199804000-00001 – volume: 426 start-page: 211 year: 2018 ident: 4521_CR156 publication-title: Plant Soil doi: 10.1007/s11104-018-3619-4 – volume: 29 start-page: 1568 year: 2000 ident: 4521_CR151 publication-title: J Environ Qual doi: 10.2134/jeq2000.00472425002900050026x – volume: 657 start-page: 96 year: 2019 ident: 4521_CR23 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2018.12.029 – volume: 177 start-page: 310 year: 2012 ident: 4521_CR155 publication-title: Soil Sci doi: 10.1097/SS.0b013e31824e5593 – volume: 7 start-page: 42247 year: 2017 ident: 4521_CR19 publication-title: Sci Rep doi: 10.1038/srep42247 – volume: 107 start-page: 211 year: 2005 ident: 4521_CR11 publication-title: Agri Ecosyst Environ doi: 10.1016/j.agee.2004.11.010 – volume: 102 start-page: 267 year: 2009 ident: 4521_CR29 publication-title: Adv Agron doi: 10.1016/S0065-2113(09)01008-6 – volume: 11 start-page: 035014 issue: 3 year: 2016 ident: 4521_CR40 publication-title: Environ Res Lett doi: 10.1088/1748-9326/11/3/035014 – volume: 566 start-page: 1094 issue: 567 year: 2016 ident: 4521_CR88 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2016.05.134 – volume: 51 start-page: 366 year: 1987 ident: 4521_CR123 publication-title: Soil Sci Soc Am J doi: 10.2136/sssaj1987.03615995005100020020x – volume: 15 start-page: 499 year: 2005 ident: 4521_CR136 publication-title: Pedosphere – ident: 4521_CR32 – volume: 77 start-page: 441 year: 2006 ident: 4521_CR3 publication-title: Biogeochem doi: 10.1007/s10533-005-3070-5 – volume: 651 start-page: 2354 year: 2019 ident: 4521_CR157 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2018.10.060 – volume: 10 start-page: 19 year: 2018 ident: 4521_CR181 publication-title: Ann Rev Resour Econ doi: 10.1146/annurev-resource-100516-053654 – volume: 43 start-page: 67 year: 2014 ident: 4521_CR148 publication-title: J Environ Qual doi: 10.2134/jeq2011.0393 – volume: 45 start-page: 579 year: 2014 ident: 4521_CR109 publication-title: Ecol Indic doi: 10.1016/j.ecolind.2014.05.025 – volume: 40 start-page: 165 year: 2004 ident: 4521_CR84 publication-title: J Am Water Res Assoc doi: 10.1111/j.1752-1688.2004.tb01017.x – ident: 4521_CR9 doi: 10.1007/978-94-009-1776-7_3 – volume: 52 start-page: 29 year: 2001 ident: 4521_CR63 publication-title: J Contam Hydrol doi: 10.1016/S0169-7722(01)00152-8 – volume: 18 start-page: 289 year: 2003 ident: 4521_CR70 publication-title: Eur J Agron doi: 10.1016/S1161-0301(02)00109-0 – volume: 81 start-page: 1191 year: 2017 ident: 4521_CR138 publication-title: Soil Sci Soc Am J doi: 10.2136/sssaj2016.09.0281 – volume: 409 start-page: 4917 year: 2011 ident: 4521_CR134 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2011.08.030 – volume: 36 start-page: 39 year: 2019 ident: 4521_CR188 publication-title: Curr Opin Environ Sustain doi: 10.1016/j.cosust.2018.10.004 – start-page: 47 volume-title: Managing soil quality: challenges in modern agriculture year: 2004 ident: 4521_CR36 doi: 10.1079/9780851996714.0047 – volume: 55 start-page: 615 year: 2020 ident: 4521_CR26 publication-title: J Environ Sci Health Part A doi: 10.1080/10934529.2020.1724503 – volume: 18 start-page: 267 year: 2003 ident: 4521_CR69 publication-title: Eur J Agron doi: 10.1016/S1161-0301(02)00108-9 – volume: 21 start-page: 05015026 issue: 2 year: 2015 ident: 4521_CR62 publication-title: J Hydrol Eng doi: 10.1061/(ASCE)HE.1943-5584.0001304 – volume: 99 start-page: 67 year: 2009 ident: 4521_CR145 publication-title: Agric Syst doi: 10.1016/j.agsy.2008.10.006 – volume: 58 start-page: S33 year: 2012 ident: 4521_CR122 publication-title: Arch Agron Soil Sci doi: 10.1080/03650340.2012.693600 – volume: 98 start-page: 938 year: 2006 ident: 4521_CR18 publication-title: Agron J doi: 10.2134/agronj2005.0157 – volume: 22 start-page: GB2026 year: 2008 ident: 4521_CR111 publication-title: Glob Biogeochem Cycl doi: 10.1029/2007GB002963 – volume: 15 start-page: 1 issue: 11 year: 2017 ident: 4521_CR78 publication-title: Vadose Zone J doi: 10.2136/vzj2016.07.0061 – volume: P1 start-page: 58 year: 2006 ident: 4521_CR170 publication-title: Proc World Assoc Soil Water Conserv – volume: 15 start-page: 262 year: 2019 ident: 4521_CR185 publication-title: Indian J Fert |
SSID | ssj0002793483 ssib051670015 |
Score | 2.6371777 |
SecondaryResourceType | review_article |
Snippet | Nitrate pollution of ground and surface water bodies all over the world is generally linked with continually increasing global fertilizer nitrogen (N) use. But... Abstract Nitrate pollution of ground and surface water bodies all over the world is generally linked with continually increasing global fertilizer nitrogen (N)... |
SourceID | doaj proquest crossref springer |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 518 |
SubjectTerms | 2. Earth and Environmental Sciences (general) Agricultural ecosystems Agricultural production Agriculture Applied and Technical Physics Aquifers Chemistry/Food Science Corn Developing countries Earth Sciences Ecosystems Engineering Environment Eutrophication Farms Fertilizer management Fertilizer nitrogen Fertilizers Fresh water Ground water Groundwater Irrigation Isotopes LDCs Leaching Materials Science Nitrate Nitrates Nitrogen Pollution Review Paper Simulation models Stable isotopes Surface water Water pollution Water quality Wheat |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3daxQxEA_avuiD1C88rZIH3zSYZLPJbl9KKz2KYBGx0Lcln0fl2LvuXRH96zuTy16tYJ-WzSbLsjOT-cr8hpD3HISZW6-YcdEwFZ1hrjGJiRAtFyG1QWK989czfXquvlzUFyXgtirHKsc9MW_UYeExRv5Jgq-mpNGmOlxeMewahdnV0kLjIdmFLbgB52v3-OTs2_eRo2qBVShF4f3Maba2UhmbU4IHxipgv1JJk-vpMA0oGZ5aQKRxwZo72iqD-t-xRP9JnmadNN0jT4oxSY821H9KHsT-GXl8NBsKoEaEu78AB5-T2RSPUc8v_4DRR20fKAg0YkXQJXY8RhrRRaKr6yFZH_MErPqAyy-YNBzACL3s0c7ECMP8N11iSBcPwNMNsAgt_WlekPPpyY_Pp6y0WmAePKQ1S5qnKOuUklbJ6DapEKQF7zWo2rfRG-2krZPhrYmg35QVQvu6lQ3WYLYiVC_JTr_o4ytCq2iNtR4WpEpZZS0YYGAmVVxVSsdaT4gYf2nnCw45tsOYd1sE5UyGDsjQZTJ0zYR82K5ZblA47p19jJTazkQE7TywGGZdEciuCa7lxmLm2SvrgvW1rGNyzguVeOITsj_SuStivepumXBCPo60v338_096ff_b3pBHcsN1jIt9srMeruNbMHbW7l3h6BthPfm8 priority: 102 providerName: ProQuest – databaseName: SpringerOpen dbid: C24 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LixQxEA66XvQgPnHWVXLwpoEknUe3N10cFkFPLuwt5LmsDD3DzCyL_vqtyqRnXVHBU0N3pWnq0VWVqvpCyBsOxsx9VMyGbJnKwbLQ28JEyp6LVIYkcd75y1dzcqo-n-mzNhS2mbrdp5Jk_VPvh92wRicZthQgDLhg_V1yT0Pujnp9fIM5rgVOnjQn972W1oZOVTxOCVkX60Dl2vTMn197y0NVIP9b0edvBdPqh-aPyMMWQNIPO4k_Jnfy-IQ8-AVW8Ck5n2Oz9OLiJ4R21I-JgtkiIgRd4bnGKAm6LHRzuS4-5kqAsx1wuQKi9Xu4Qy9GjCZxH2Hxg65w4xbb3OkOPoS2U2iekdP5p2_HJ6wdqMAi5EFbVgwvWepSilHFmqGolKSHHDUpHYccrQnS62L5YDN4MeWFMFEPssdJy0Gk7jk5GJdjfkFol731PsKC0imvvIcwC4KhjqtOmazNjIiJiS42tHE89GLh9jjJlfEOGO8q410_I2_3a1Y7rI1_Un9E2ewpESe73liuz10zO9enANm_x_pyVD4kH7XUuYQQhSq88Bk5miTrmvFunLR9r6Q1tpuRd5O0bx7__ZMO_4_8Jbkvd3rHuDgiB9v1ZX4FIc42vK4afQ1_l_A7 priority: 102 providerName: Springer Nature |
Title | Fertilizers and nitrate pollution of surface and ground water: an increasingly pervasive global problem |
URI | https://link.springer.com/article/10.1007/s42452-021-04521-8 https://www.proquest.com/docview/2788427673 https://doaj.org/article/8db907a0245c4abdac525efbbc14f0f0 |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3daxQxEB-0vuiD-Imn9ciDbxrcZLPJrm_26FkEi4iFvoV8SuXYHtcrYv_6zmT3zqugvviyy2YnECYzzEwm8xuAVxUqc-WC4sYnw1XyhvvWZC5icpWIuYuS6p0_HeujE_XxtDndafVFd8IGeOCBcW_b6DF-c5QhDMr56EIjm5S9D0LlKpdoHW3eTjCFktQIqj4ZDd33kl7ralUwOSVGXrxGsRsraEodHaX_JKfbCoQwLnh7w0oVMP8bHuhvSdNii-YP4P7oRLL3w-Ifwq3UP4J7O9CCj-HbnC5ML86u0L1jro8MVZdQIdiSehvTbrDzzC4uV9mFVAiovgNfP5Bo9Q5H2FlPHiWdJSx-siUd3tJVdzZAiLCxE80TOJkffp0d8bGpAg8YC6151lVOssk5a5WN7rKKUTqMUyMyuEvBaC9dk03VmYSWTDkhdGg62VK1ZSdi_RT2-vM-PQNWJ2ecCzgh18op59DVQoeorlStdGr0BMSGiTaMiOPU-GJht1jJhfEWGW8L4207gdfbOcsBb-Ov1Ae0N1tKwsouAyhBdpQg-y8JmsD-ZmftqMAXVpq2VdJoU0_gzWa3f_3-85Ke_48lvYC7cpBGXol92FuvLtNLdH7Wfgq32_mHKdw5ODz-_AW_ZlLRU8-mRQOuAahWAbo |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQCHiqe6tIAPcAKL-JE4QUKoPJYtfZxaqTfj-LEqWu0u2a2q8qP4jcw4yZYi0VtPUZKxFWXG4xnPzDeEvMxgMWfWKabroJkKtWZ1qSPjPtiM-1h5gfXOB4fF6Fh9O8lP1sjvvhYG0yp7nZgUtZ85PCN_K8BXU0IXWn6Y_2TYNQqjq30LjVYs9sLFObhsi_e7n4G_r4QYfjn6NGJdVwHmwBlYslhkMYg8xlioqIsqKu-FBUfNq9xVwemiFjaPOqt0AFWuLOeFyytRYrlhxb2EeW-R20rKCldUOfzay2_Oseal215_pKBeJVVCAhXg7zEYILu6nVS9h0FHwTBHAnHNOSuv7I2phcAVu_efUG3aAYf3yUZnutKdVtYekLUwfUju7YybDr4jwN1f8IaPyHiISduT019gYlI79RTUByJT0Dn2V0aJoLNIF2dNtC4kAqwxgcs5EDXv4Ak9naJVi-cZkws6xwNkTLenLYwJ7brhPCbHN8KCJ2R9OpuGTUJlsNpaBwOiVFZZC-YeGGUyU1IVIS8GhPe_1LgO9Rybb0zMCq85scEAG0xigykH5PVqzLzF_LiW-iNyakWJeN3pwawZm275m9LXVaYtxrmdsrW3Lhd5iHXtuIpZzAZku-ez6ZTIwlyK_IC86Xl_-fr_n_T0-tlekDujo4N9s797uLdF7opWAlnGt8n6sjkLz8DMWtbPk2xT8v2mF9MfRD40jw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9QwDI_GTULwgPjUDgbkAZ4gWpqmTYuE0MZ22hicJsSkvZU0H6ehU-_o3TSNP42_DjtNbwyJve2pautEVe04dmz_TMgrDouZayOZqp1i0tWK1YXyLLFO88T60gqsd_4yzveP5aeT7GSN_O5rYTCtsteJQVHbmcEz8i0BvpoUKlfplo9pEUe7ow_znww7SGGktW-n0YnIobs4B_dt8f5gF3j9WojR3reP-yx2GGAGHIMl8zn3TmTe-1x6lZdeWis0OG1WZqZ0RuW10JlXvFQO1LrUSZKbrBQFlh6WiU1h3ltkXYFXxAdkfWdvfPS1l-YswQqYuNn-CCG-MpUBF1SA98dSEP1YxRNq-TAEKRhmTCDKecKKKztlaChwxQr-J3Ab9sPRfXIvGrJ0u5O8B2TNNQ_J3e1JG8E8HNz9BXb4iExGmMI9Pf0FBifVjaWgTBCngs6x2zLKB515ujhrvTYuEGDFCVzOgah9B0_oaYM2Lp5uTC_oHI-TMfmedqAmNPbGeUyOb4QJT8igmTVug9DUaaW1gQE-lVpqDcYfmGgpl6nMXZYPSdL_0spEDHRsxTGtVujNgQ0VsKEKbKiKIXmzGjPvEECupd5BTq0oEb07PJi1kyoqg6qwdcmVxqi3kbq22mQic76uTSI993xINns-V1GlLKrLBTAkb3veX77-_yc9vX62l-Q2LKTq88H48Bm5IzoBZDzZJINle-aeg821rF9E4abk-02vpz8e3Doh |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fertilizers+and+nitrate+pollution+of+surface+and+ground+water%3A+an+increasingly+pervasive+global+problem&rft.jtitle=SN+applied+sciences&rft.au=Bijay-Singh&rft.au=Eric+Craswell&rft.date=2021-04-01&rft.pub=Springer&rft.issn=2523-3963&rft.eissn=2523-3971&rft.volume=3&rft.issue=4&rft.spage=1&rft.epage=24&rft_id=info:doi/10.1007%2Fs42452-021-04521-8&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_8db907a0245c4abdac525efbbc14f0f0 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2523-3963&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2523-3963&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2523-3963&client=summon |