A Hybrid Method for Traffic Flow Forecasting Using Multimodal Deep Learning

Traffic flow forecasting has been regarded as a key problem of intelligent transport systems. In this work, we propose a hybrid multimodal deep learning method for short-term traffic flow forecasting, which can jointly and adaptively learn the spatial–temporal correlation features and long temporal...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of computational intelligence systems Vol. 13; no. 1; pp. 85 - 97
Main Authors Du, Shengdong, Li, Tianrui, Gong, Xun, Horng, Shi-Jinn
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.01.2020
Springer Nature B.V
Springer
Subjects
Online AccessGet full text
ISSN1875-6891
1875-6883
1875-6883
DOI10.2991/ijcis.d.200120.001

Cover

Loading…
Abstract Traffic flow forecasting has been regarded as a key problem of intelligent transport systems. In this work, we propose a hybrid multimodal deep learning method for short-term traffic flow forecasting, which can jointly and adaptively learn the spatial–temporal correlation features and long temporal interdependence of multi-modality traffic data by an attention auxiliary multimodal deep learning architecture. According to the highly nonlinear characteristics of multi-modality traffic data, the base module of our method consists of one-dimensional convolutional neural networks (1D CNN) and gated recurrent units (GRU) with the attention mechanism. The former is to capture the local trend features and the latter is to capture the long temporal dependencies. Then, we design a hybrid multimodal deep learning framework for fusing share representation features of different modality traffic data by multiple CNN-GRU-Attention modules. The experimental results indicate that the proposed multimodal deep learning model is capable of dealing with complex nonlinear urban traffic flow forecasting with satisfying accuracy and effectiveness.
AbstractList Traffic flow forecasting has been regarded as a key problem of intelligent transport systems. In this work, we propose a hybrid multimodal deep learning method for short-term traffic flow forecasting, which can jointly and adaptively learn the spatial–temporal correlation features and long temporal interdependence of multi-modality traffic data by an attention auxiliary multimodal deep learning architecture. According to the highly nonlinear characteristics of multi-modality traffic data, the base module of our method consists of one-dimensional convolutional neural networks (1D CNN) and gated recurrent units (GRU) with the attention mechanism. The former is to capture the local trend features and the latter is to capture the long temporal dependencies. Then, we design a hybrid multimodal deep learning framework for fusing share representation features of different modality traffic data by multiple CNN-GRU-Attention modules. The experimental results indicate that the proposed multimodal deep learning model is capable of dealing with complex nonlinear urban traffic flow forecasting with satisfying accuracy and effectiveness.
Author Du, Shengdong
Li, Tianrui
Horng, Shi-Jinn
Gong, Xun
Author_xml – sequence: 1
  givenname: Shengdong
  surname: Du
  fullname: Du, Shengdong
  organization: School of Information Science and Technology, National Engineering Laboratory of Integrated Transportation Big Data Application Technology, Southwest Jiaotong University
– sequence: 2
  givenname: Tianrui
  surname: Li
  fullname: Li, Tianrui
  email: trli@swjtu.edu.cn
  organization: School of Information Science and Technology, National Engineering Laboratory of Integrated Transportation Big Data Application Technology, Southwest Jiaotong University
– sequence: 3
  givenname: Xun
  surname: Gong
  fullname: Gong, Xun
  organization: School of Information Science and Technology, National Engineering Laboratory of Integrated Transportation Big Data Application Technology, Southwest Jiaotong University
– sequence: 4
  givenname: Shi-Jinn
  surname: Horng
  fullname: Horng, Shi-Jinn
  organization: Department of Computer Science and Information Engineering, National Taiwan University of Science and Technology
BookMark eNp9UctKQzEUDKLg8wdcBVy35t3cpVRriy1u6jrk5lFTrjc1SRH_3tteH-CimzmHc2aGgTkHx21sHQDXGA1JVeHbsDYhD-2QIIQJGnZ4BM6wHPGBkJIe_-4VPgVXOa8RQgQzhBg7A093cPpZp2DhwpXXaKGPCS6T9j4YOGniB5zE5IzOJbQr-JJ3uNg2JbxFqxt479wGzp1Obfe4BCdeN9ldfc8L8DJ5WI6ng_nz42x8Nx8YVvEy8JwSZHjNsfdaeuodd0waXzHkLNdWIo0ZFYQLxrvdCi80ZZJwyyprDKYXYNb72qjXapPCm06fKuqg9oeYVkqnEkzjFCO1xLbyNROO4VrUI8pqK4yrEa0033nd9F6bFN-3Lhe1jtvUdvEVYWLEORNk1LFkzzIp5pycVyYUXUJsS9KhURipXRNq34Syqm9CddhJyT_pT-CDItqLckduVy79pTqg-gLZwJ9v
CitedBy_id crossref_primary_10_1007_s11227_022_04386_7
crossref_primary_10_1109_ACCESS_2023_3311818
crossref_primary_10_3390_app13084678
crossref_primary_10_1016_j_jksuci_2021_06_005
crossref_primary_10_1016_j_trc_2024_104945
crossref_primary_10_4018_IJITSA_323455
crossref_primary_10_1177_03611981221130026
crossref_primary_10_1002_dac_4609
crossref_primary_10_3233_JIFS_212998
crossref_primary_10_3390_e26030215
crossref_primary_10_1109_TITS_2020_3043250
crossref_primary_10_1016_j_neucom_2022_05_072
crossref_primary_10_1007_s40815_022_01408_7
crossref_primary_10_1007_s11042_023_15877_x
crossref_primary_10_1007_s11227_023_05383_0
crossref_primary_10_1016_j_trc_2022_103820
crossref_primary_10_1007_s41062_021_00718_3
crossref_primary_10_1016_j_triboint_2025_110597
crossref_primary_10_1016_j_knosys_2022_109054
crossref_primary_10_1016_j_commtr_2024_100150
crossref_primary_10_1109_TITS_2021_3083957
crossref_primary_10_1111_tgis_12724
crossref_primary_10_1016_j_eswa_2023_121325
crossref_primary_10_1007_s41019_024_00246_x
crossref_primary_10_1016_j_engappai_2022_105472
crossref_primary_10_1007_s10489_022_03568_3
crossref_primary_10_1109_ACCESS_2021_3093987
crossref_primary_10_1016_j_inffus_2025_103102
crossref_primary_10_3390_su152014957
crossref_primary_10_1155_2023_6933344
crossref_primary_10_1016_j_eswa_2021_116140
crossref_primary_10_1016_j_cities_2025_105733
crossref_primary_10_1109_ACCESS_2021_3049556
crossref_primary_10_1016_j_scitotenv_2020_143513
crossref_primary_10_1049_itr2_12165
crossref_primary_10_1177_00368504241265196
crossref_primary_10_1109_ACCESS_2020_3043582
crossref_primary_10_3390_s21196402
crossref_primary_10_1155_2021_8867776
crossref_primary_10_5604_01_3001_0015_8148
crossref_primary_10_46300_9106_2021_15_97
crossref_primary_10_1016_j_ins_2023_119063
crossref_primary_10_1155_2021_9928073
crossref_primary_10_1177_03611981241230304
crossref_primary_10_1007_s13177_024_00413_4
crossref_primary_10_3390_su14106351
crossref_primary_10_1080_15481603_2022_2037888
crossref_primary_10_1016_j_procs_2022_09_110
crossref_primary_10_1109_TFUZZ_2024_3449325
crossref_primary_10_2478_amns_2023_2_00367
crossref_primary_10_3390_biomimetics9060368
crossref_primary_10_1145_3450528
crossref_primary_10_1007_s10489_023_04483_x
crossref_primary_10_1016_j_ins_2022_07_118
crossref_primary_10_14801_jkiit_2022_20_3_19
crossref_primary_10_2478_amns_2024_2777
crossref_primary_10_1016_j_uclim_2022_101291
ContentType Journal Article
Copyright The Authors 2020
2020. This work is licensed under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Authors 2020
– notice: 2020. This work is licensed under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOA
DOI 10.2991/ijcis.d.200120.001
DatabaseName Springer Nature OA Free Journals
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: Open Access: DOAJ - Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1875-6883
EndPage 97
ExternalDocumentID oai_doaj_org_article_42b81d9fb46e41b6b734bd6ceb039a51
10_2991_ijcis_d_200120_001
GroupedDBID 0R~
4.4
5GY
AAFWJ
AAJSJ
AAKKN
AAYZJ
ABEEZ
ABFIM
ACACY
ACGFS
ACULB
ADBBV
ADCVX
ADMSI
AENEX
AFGXO
AFKRA
AFPKN
AHDSZ
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARCSS
AVBZW
BCNDV
BENPR
BGLVJ
C24
C6C
CS3
DU5
EBLON
EBS
EJD
GROUPED_DOAJ
GTTXZ
H13
HCIFZ
HZ~
IL9
IPNFZ
J~4
K7-
M4Z
O9-
OK1
PIMPY
RIG
RSV
SOJ
TDBHL
TFL
TFW
TR2
AASML
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c495t-f5320c5b51ffa8f3fe5e48cf940ed5ad80a14362564580ad6f6a34825d49dcc13
IEDL.DBID DOA
ISSN 1875-6891
1875-6883
IngestDate Wed Aug 27 01:12:01 EDT 2025
Thu Jul 24 01:45:20 EDT 2025
Thu Apr 24 22:49:59 EDT 2025
Tue Jul 01 01:20:18 EDT 2025
Fri Feb 21 02:40:36 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Multimodal deep learning
Attention mechanism
Traffic flow forecasting
Convolutional neural networks
Gated recurrent units
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c495t-f5320c5b51ffa8f3fe5e48cf940ed5ad80a14362564580ad6f6a34825d49dcc13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doaj.org/article/42b81d9fb46e41b6b734bd6ceb039a51
PQID 2467554627
PQPubID 4869256
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_42b81d9fb46e41b6b734bd6ceb039a51
proquest_journals_2467554627
crossref_citationtrail_10_2991_ijcis_d_200120_001
crossref_primary_10_2991_ijcis_d_200120_001
springer_journals_10_2991_ijcis_d_200120_001
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200100
2020-00-00
20200101
2020-01-01
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 1
  year: 2020
  text: 20200100
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
– name: Abingdon
PublicationTitle International journal of computational intelligence systems
PublicationTitleAbbrev Int J Comput Intell Syst
PublicationYear 2020
Publisher Springer Netherlands
Springer Nature B.V
Springer
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
– name: Springer
References Yang (CR35) 2011; 4
Williams, Hoel (CR4) 2003; 129
Lv, Duan, Kang (CR16) 2015; 16
CR15
CR14
CR13
CR12
CR34
Lippi, Bertini, Frasconi (CR2) 2013; 14
CR33
Huang, Song, Hong (CR17) 2014; 15
CR30
Schmidhuber (CR10) 2015; 61
Li, Xie, Yan, Li, Kuang (CR19) 2018; 12
Hinton, Osindero, Teh (CR11) 2006; 18
Shaohua, Jiwei, Xuegui (CR26) 2017; 10
Hochreiter, Schmidhuber (CR20) 1997; 9
Jeong, Byon, Castro-Neto (CR27) 2013; 14
Zhang, Wang, Wang (CR8) 2011; 12
CR29
Guo (CR32) 2011; 4
CR28
Karlaftis, Vlahogianni (CR9) 2011; 19
CR25
CR24
CR23
CR22
CR21
Li, He, Zhang (CR36) 2016; 50
Abadi, Rajabioun, Ioannou (CR3) 2015; 16
Yu (CR31) 2017; 17
Castro-Neto, Jeong, Jeong (CR6) 2009; 36
Chan, Dillon, Singh (CR7) 2012; 13
Yang, Dillon, Chen (CR18) 2017; 28
Vlahogianni, Karlaftis, Golias (CR1) 2014; 43
Sun, Zhang, Yu (CR5) 2006; 7
References_xml – ident: CR22
– volume: 12
  start-page: 6
  year: 2018
  end-page: 189
  ident: CR19
  article-title: Living face verification via multi-CNNs
  publication-title: Int. J. Comput. Intell. Syst.
– volume: 28
  start-page: 6
  year: 2017
  end-page: 2381
  ident: CR18
  article-title: Optimized structure of the traffic flow forecasting model with a deep learning approach
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 16
  start-page: 6
  year: 2015
  end-page: 873
  ident: CR16
  article-title: Traffic flow prediction with big data: a deep learning approach
  publication-title: IEEE Trans. Intell. Trans. Syst.
– ident: CR14
– volume: 129
  start-page: 6
  year: 2003
  end-page: 672
  ident: CR4
  article-title: Modeling and forecasting vehicular traffic flow as a seasonal ARIMA process: theoretical basis and empirical results
  publication-title: J. Trans. Eng.
– volume: 4
  start-page: 6
  year: 2011
  end-page: 1406
  ident: CR32
  article-title: Influence of stretching-segment storage length on urban traffic flow in signalized intersection
  publication-title: Int. J. Comput. Intell. Syst.
– ident: CR12
– ident: CR30
– volume: 9
  start-page: 6
  year: 1997
  end-page: 1780
  ident: CR20
  article-title: Long short-term memory
  publication-title: Neural Comput.
– volume: 4
  start-page: 6
  year: 2011
  end-page: 1261
  ident: CR35
  article-title: Applicable prevention method of Braess Paradox in urban traffic flow guidance system
  publication-title: Int. J. Comput. Intell. Syst.
– volume: 14
  start-page: 6
  year: 2013
  end-page: 1707
  ident: CR27
  article-title: Supervised weighting-online learning algorithm for short-term traffic flow prediction
  publication-title: IEEE Trans. Intell. Trans. Syst.
– ident: CR33
– volume: 43
  start-page: 6
  year: 2014
  end-page: 19
  ident: CR1
  article-title: Short-term traffic forecasting: where we are and where we’re going
  publication-title: Trans. Res. Part C Emerg. Technol.
– ident: CR29
– volume: 61
  start-page: 6
  year: 2015
  end-page: 117
  ident: CR10
  article-title: Deep learning in neural networks: an overview
  publication-title: Neural Netw.
– ident: CR25
– volume: 7
  start-page: 6
  year: 2006
  end-page: 132
  ident: CR5
  article-title: A Bayesian network approach to traffic flow forecasting
  publication-title: IEEE Trans. Intell. Trans. Syst.
– ident: CR23
– volume: 14
  start-page: 6
  year: 2013
  end-page: 882
  ident: CR2
  article-title: Short-term traffic flow forecasting: an experimental comparison of time-series analysis and supervised learning
  publication-title: IEEE Trans. Intell. Trans. Syst.
– volume: 12
  start-page: 6
  year: 2011
  end-page: 1639
  ident: CR8
  article-title: Data-driven intelligent transportation systems: a survey
  publication-title: IEEE Trans. Intell. Trans. Syst.
– volume: 18
  start-page: 6
  year: 2006
  end-page: 1554
  ident: CR11
  article-title: A fast learning algorithm for deep belief nets
  publication-title: Neural Comput.
– ident: CR21
– ident: CR15
– volume: 13
  start-page: 6
  year: 2012
  end-page: 654
  ident: CR7
  article-title: Neural-network-based models for short-term traffic flow forecasting using a hybrid exponential smoothing and Levenberg–Marquardt algorithm
  publication-title: IEEE Trans. Intell. Trans. Syst.
– ident: CR13
– volume: 10
  start-page: 6
  year: 2017
  end-page: 1131
  ident: CR26
  article-title: A sparse auto encoder deep process neural network model and its application
  publication-title: Int. J. Comput. Intell. Syst.
– ident: CR34
– volume: 19
  start-page: 6
  year: 2011
  end-page: 399
  ident: CR9
  article-title: Statistical methods neural networks in transportation research: differences
  publication-title: similarities and some insights, Trans. Res. Part C Emerg. Technol.
– volume: 50
  start-page: 6
  year: 2016
  end-page: 2040
  ident: CR36
  article-title: Short-term highway traffic flow prediction based on a hybrid strategy considering temporal–spatial information
  publication-title: J. Adv. Trans.
– volume: 36
  start-page: 6
  year: 2009
  end-page: 6173
  ident: CR6
  article-title: Online-SVR for short-term traffic flow prediction under typical and atypical traffic conditions
  publication-title: Expert Syst. Appl.
– ident: CR28
– volume: 16
  start-page: 6
  year: 2015
  end-page: 662
  ident: CR3
  article-title: Traffic flow prediction for road transportation networks with limited traffic data
  publication-title: IEEE Trans. Intell. Trans. Syst.
– ident: CR24
– volume: 15
  start-page: 6
  year: 2014
  end-page: 2201
  ident: CR17
  article-title: Deep architecture for traffic flow prediction: deep belief networks with multitask learning
  publication-title: IEEE Trans. Intell. Trans. Syst.
– volume: 17
  start-page: 6
  year: 2017
  end-page: 1516
  ident: CR31
  article-title: Spatiotemporal recurrent convolutional networks for traffic prediction in transportation networks
  publication-title: Sensors.
SSID ssj0002140044
ssib050732782
Score 2.4467218
Snippet Traffic flow forecasting has been regarded as a key problem of intelligent transport systems. In this work, we propose a hybrid multimodal deep learning method...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 85
SubjectTerms Artificial neural networks
Attention mechanism
Convolutional neural networks
Deep learning
Forecasting
Gated recurrent units
Intelligent transportation systems
Modules
Multimodal deep learning
Research Article
Traffic flow
Traffic flow forecasting
Traffic information
SummonAdditionalLinks – databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI7QuHDhjRgv5cANCk2bpO1xDKYJNE5M4hbliYZgQ2wI8e-xs24wJJC4VW0aRbYT27H9mZBjIwtfeJYnlhudcB7yRHtTJpqlwVhwcqXF2uHerez2-fW9uK9hcrAW5lv8Hg5Kdj54tIPxWYT0ZBlmYYGnsyxYLlGC27I9v0_JGEpjDCKDCZ7IsmLTGplfplnQQxGuf8HG_BEWjdqms05WazORtqZ83SBLfrhJ1mYtGGi9I7fITYt2P7DoivZiK2gKNigF_YPAELTzNHqn2HvT6jFmN9OYH0Bjze3zyMH8l96_0Bpi9WGb9DtXd-1uUvdHAMJWYpIEbOpghREsBF2GPHjheWlDxVPvhHZlqsEaAgdHcgHPTgapEctGOF45a1m-QxrD0dDvEpq6NAUfu-Slz7hzcPIU2MMohwUGZkzZJGxGLWVr8HDsYfGkwIlACqtIYeXUlMKYKtckJ_N_XqbQGX-OvkAmzEci7HV8AdKg6l2keGbAvq6C4dJzZqQpcm6ctN6keaUFTHIwY6Gq9-JYZaALMBcvK5rkdMbWr8-_L2nvf8P3yUqGzni8nzkgjcnrmz8Ei2VijqKofgItYOQs
  priority: 102
  providerName: Springer Nature
Title A Hybrid Method for Traffic Flow Forecasting Using Multimodal Deep Learning
URI https://link.springer.com/article/10.2991/ijcis.d.200120.001
https://www.proquest.com/docview/2467554627
https://doaj.org/article/42b81d9fb46e41b6b734bd6ceb039a51
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9tAEB4VeuFCH4AIhGgPvVGD116v7WMaGkWp6IUicVvtswKFBJFUiH_PzNoJD4ly4WbZa2s0O7szs575PoBvRpa-9DxPrDA6ESLkifamSjRPg7GY5EpLvcOnv-XoXIwviosnVF9UE9bAAzeKOxaZwZCqDkZIL7iRpsyFcdJ6k-a1js3TGfq8J8kU7cEZJ9sUTZcM7rj8-PLKXs6PIjYoz6iciz_zRBGw_1mU-eLHaPQ3w8-w2QaKrN8I-AU--OlX-LQkYWDtmtyCX302uqe2K3YayaAZRqEMPRBBQ7DhZHbHiH3T6jnVN7NYIcBi1-31zOH3T7y_YS3I6t9tOB_-_DMYJS1DAqq2LhZJIFoHW5iCh6CrkAdfeFHZUIvUu0K7KtUYD2GKI0WB104GqQnNpnCidtbyfAfWp7Op3wWWujTFLLsSlc-Ec7j3lMRilKOAgRtTdYAvtaVsCx9OLBYThWkEaVhFDSunGg1TsVwHDlfv3DTgGf8d_YMmYTWSgK_jDTQH1ZqDesscOtBdTqFqV-NcZegNqBovKzvwfTmtj49fF2nvPUTah42MkvR4btOF9cXtP3-AkczC9OBjvz8-G_dgbSAHvWjCD9k48tI
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI4QHODCGzGeOXCDQtMmaXuEwTQe4wQStyhPNAQbYkOIf4-ddeMhgcStatMospPYX2J_JmTPyMIXnuWJ5UYnnIc80d6UiWZpMBZArrSYO9y5lu1bfnEn7mqaHMyF-XJ_DxslO-o-2O7gMFJ6sgyjsADpzHBAyhi-15TNyXlKxnA2xktkcMETWVZslCPzSzff7FCk6__mY_64Fo3WprVI5ms3kR6P9LpEpnxvmSyMSzDQekWukMtj2n7HpCvaiaWgKfigFOwPEkPQ1mP_jWLtTasHGN1MY3wAjTm3T30H_Z96_0xritX7VXLbOrtptpO6PgIIthLDJGBRByuMYCHoMuTBC89LGyqeeie0K1MN3hAAHMkFPDsZpEYuG-F45axl-RqZ7vV7fp3Q1KUpYOySlz7jzsHOU2ANoxwGGJgxZYOwsbSUrcnDsYbFowIQgRJWUcLKqZGEMVSuQfYn_zyPqDP-bH2CSpi0RNrr-AJmg6pXkeKZAf-6CoZLz5mRpsi5cdJ6k-aVFtDJ1liFql6LA5WBLcBYvKxokIOxWj8__z6kjf813yWz7ZvOlbo6v77cJHMZAvN4VrNFpocvr34bvJeh2YnT9gMLI-cZ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwELYQSIjL8taW5eEDNwjEie0kRyhU5SkOIHGz_ESs2LaiXa323zPjJOUhgcQtShwrmrEz33hmviFk18jCF57lieVGJ5yHPNHelIlmaTAWnFxpsXb46lr27_j5vbh_U8Ufs93bkGRd04AsTYPJ4ciFmLgMgObw8bd9HB9Eok-WYW4W-D9z4KnEQG1XdqenLBnDNRpDywDME1lWrK6c-WSad9Ypkvi_Q54fgqXRBvWWyI8GPNKjWtvLZMYPVshi25iBNvt0lVwc0f5_LMWiV7FBNAVkSsEqIV0E7T0N_1HsyGn1GHOeacwaoLES98_Qwfwn3o9oQ7z6sEbueqe33X7SdE0AcVdikgRs9WCFESwEXYY8eOF5aUPFU--EdmWqASOB2yO5gGsng9TIcCMcr5y1LF8ns4PhwP8kNHVpCp53yUufcefgf1RgZ6McPjAwY8oOYa20lG0oxbGzxZMC1wIlrKKElVO1hDGBrkP2pu-MakKNL0cfoxKmI5EMO94YPj-oZm8pnhlA3VUwXHrOjDRFzo2T1ps0r7SASTZbFapmh45VBhYCM_SyokP2W7W-Pv78kza-N3yHzN-c9NTl2fXFL7KQobceD3A2yezk-a_fAkgzMdtx1b4A8yjvYA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Hybrid+Method+for+Traffic+Flow+Forecasting+Using+Multimodal+Deep+Learning&rft.jtitle=International+journal+of+computational+intelligence+systems&rft.au=Du%2C+Shengdong&rft.au=Li%2C+Tianrui&rft.au=Gong%2C+Xun&rft.au=Horng%2C+Shi-Jinn&rft.date=2020&rft.issn=1875-6883&rft.eissn=1875-6883&rft.volume=13&rft.issue=1&rft.spage=85&rft_id=info:doi/10.2991%2Fijcis.d.200120.001&rft.externalDBID=n%2Fa&rft.externalDocID=10_2991_ijcis_d_200120_001
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1875-6891&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1875-6891&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1875-6891&client=summon