A Hybrid Method for Traffic Flow Forecasting Using Multimodal Deep Learning
Traffic flow forecasting has been regarded as a key problem of intelligent transport systems. In this work, we propose a hybrid multimodal deep learning method for short-term traffic flow forecasting, which can jointly and adaptively learn the spatial–temporal correlation features and long temporal...
Saved in:
Published in | International journal of computational intelligence systems Vol. 13; no. 1; pp. 85 - 97 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer Netherlands
01.01.2020
Springer Nature B.V Springer |
Subjects | |
Online Access | Get full text |
ISSN | 1875-6891 1875-6883 1875-6883 |
DOI | 10.2991/ijcis.d.200120.001 |
Cover
Loading…
Abstract | Traffic flow forecasting has been regarded as a key problem of intelligent transport systems. In this work, we propose a hybrid multimodal deep learning method for short-term traffic flow forecasting, which can jointly and adaptively learn the spatial–temporal correlation features and long temporal interdependence of multi-modality traffic data by an attention auxiliary multimodal deep learning architecture. According to the highly nonlinear characteristics of multi-modality traffic data, the base module of our method consists of one-dimensional convolutional neural networks (1D CNN) and gated recurrent units (GRU) with the attention mechanism. The former is to capture the local trend features and the latter is to capture the long temporal dependencies. Then, we design a hybrid multimodal deep learning framework for fusing share representation features of different modality traffic data by multiple CNN-GRU-Attention modules. The experimental results indicate that the proposed multimodal deep learning model is capable of dealing with complex nonlinear urban traffic flow forecasting with satisfying accuracy and effectiveness. |
---|---|
AbstractList | Traffic flow forecasting has been regarded as a key problem of intelligent transport systems. In this work, we propose a hybrid multimodal deep learning method for short-term traffic flow forecasting, which can jointly and adaptively learn the spatial–temporal correlation features and long temporal interdependence of multi-modality traffic data by an attention auxiliary multimodal deep learning architecture. According to the highly nonlinear characteristics of multi-modality traffic data, the base module of our method consists of one-dimensional convolutional neural networks (1D CNN) and gated recurrent units (GRU) with the attention mechanism. The former is to capture the local trend features and the latter is to capture the long temporal dependencies. Then, we design a hybrid multimodal deep learning framework for fusing share representation features of different modality traffic data by multiple CNN-GRU-Attention modules. The experimental results indicate that the proposed multimodal deep learning model is capable of dealing with complex nonlinear urban traffic flow forecasting with satisfying accuracy and effectiveness. |
Author | Du, Shengdong Li, Tianrui Horng, Shi-Jinn Gong, Xun |
Author_xml | – sequence: 1 givenname: Shengdong surname: Du fullname: Du, Shengdong organization: School of Information Science and Technology, National Engineering Laboratory of Integrated Transportation Big Data Application Technology, Southwest Jiaotong University – sequence: 2 givenname: Tianrui surname: Li fullname: Li, Tianrui email: trli@swjtu.edu.cn organization: School of Information Science and Technology, National Engineering Laboratory of Integrated Transportation Big Data Application Technology, Southwest Jiaotong University – sequence: 3 givenname: Xun surname: Gong fullname: Gong, Xun organization: School of Information Science and Technology, National Engineering Laboratory of Integrated Transportation Big Data Application Technology, Southwest Jiaotong University – sequence: 4 givenname: Shi-Jinn surname: Horng fullname: Horng, Shi-Jinn organization: Department of Computer Science and Information Engineering, National Taiwan University of Science and Technology |
BookMark | eNp9UctKQzEUDKLg8wdcBVy35t3cpVRriy1u6jrk5lFTrjc1SRH_3tteH-CimzmHc2aGgTkHx21sHQDXGA1JVeHbsDYhD-2QIIQJGnZ4BM6wHPGBkJIe_-4VPgVXOa8RQgQzhBg7A093cPpZp2DhwpXXaKGPCS6T9j4YOGniB5zE5IzOJbQr-JJ3uNg2JbxFqxt479wGzp1Obfe4BCdeN9ldfc8L8DJ5WI6ng_nz42x8Nx8YVvEy8JwSZHjNsfdaeuodd0waXzHkLNdWIo0ZFYQLxrvdCi80ZZJwyyprDKYXYNb72qjXapPCm06fKuqg9oeYVkqnEkzjFCO1xLbyNROO4VrUI8pqK4yrEa0033nd9F6bFN-3Lhe1jtvUdvEVYWLEORNk1LFkzzIp5pycVyYUXUJsS9KhURipXRNq34Syqm9CddhJyT_pT-CDItqLckduVy79pTqg-gLZwJ9v |
CitedBy_id | crossref_primary_10_1007_s11227_022_04386_7 crossref_primary_10_1109_ACCESS_2023_3311818 crossref_primary_10_3390_app13084678 crossref_primary_10_1016_j_jksuci_2021_06_005 crossref_primary_10_1016_j_trc_2024_104945 crossref_primary_10_4018_IJITSA_323455 crossref_primary_10_1177_03611981221130026 crossref_primary_10_1002_dac_4609 crossref_primary_10_3233_JIFS_212998 crossref_primary_10_3390_e26030215 crossref_primary_10_1109_TITS_2020_3043250 crossref_primary_10_1016_j_neucom_2022_05_072 crossref_primary_10_1007_s40815_022_01408_7 crossref_primary_10_1007_s11042_023_15877_x crossref_primary_10_1007_s11227_023_05383_0 crossref_primary_10_1016_j_trc_2022_103820 crossref_primary_10_1007_s41062_021_00718_3 crossref_primary_10_1016_j_triboint_2025_110597 crossref_primary_10_1016_j_knosys_2022_109054 crossref_primary_10_1016_j_commtr_2024_100150 crossref_primary_10_1109_TITS_2021_3083957 crossref_primary_10_1111_tgis_12724 crossref_primary_10_1016_j_eswa_2023_121325 crossref_primary_10_1007_s41019_024_00246_x crossref_primary_10_1016_j_engappai_2022_105472 crossref_primary_10_1007_s10489_022_03568_3 crossref_primary_10_1109_ACCESS_2021_3093987 crossref_primary_10_1016_j_inffus_2025_103102 crossref_primary_10_3390_su152014957 crossref_primary_10_1155_2023_6933344 crossref_primary_10_1016_j_eswa_2021_116140 crossref_primary_10_1016_j_cities_2025_105733 crossref_primary_10_1109_ACCESS_2021_3049556 crossref_primary_10_1016_j_scitotenv_2020_143513 crossref_primary_10_1049_itr2_12165 crossref_primary_10_1177_00368504241265196 crossref_primary_10_1109_ACCESS_2020_3043582 crossref_primary_10_3390_s21196402 crossref_primary_10_1155_2021_8867776 crossref_primary_10_5604_01_3001_0015_8148 crossref_primary_10_46300_9106_2021_15_97 crossref_primary_10_1016_j_ins_2023_119063 crossref_primary_10_1155_2021_9928073 crossref_primary_10_1177_03611981241230304 crossref_primary_10_1007_s13177_024_00413_4 crossref_primary_10_3390_su14106351 crossref_primary_10_1080_15481603_2022_2037888 crossref_primary_10_1016_j_procs_2022_09_110 crossref_primary_10_1109_TFUZZ_2024_3449325 crossref_primary_10_2478_amns_2023_2_00367 crossref_primary_10_3390_biomimetics9060368 crossref_primary_10_1145_3450528 crossref_primary_10_1007_s10489_023_04483_x crossref_primary_10_1016_j_ins_2022_07_118 crossref_primary_10_14801_jkiit_2022_20_3_19 crossref_primary_10_2478_amns_2024_2777 crossref_primary_10_1016_j_uclim_2022_101291 |
ContentType | Journal Article |
Copyright | The Authors 2020 2020. This work is licensed under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Authors 2020 – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D DOA |
DOI | 10.2991/ijcis.d.200120.001 |
DatabaseName | Springer Nature OA Free Journals CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: Open Access: DOAJ - Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1875-6883 |
EndPage | 97 |
ExternalDocumentID | oai_doaj_org_article_42b81d9fb46e41b6b734bd6ceb039a51 10_2991_ijcis_d_200120_001 |
GroupedDBID | 0R~ 4.4 5GY AAFWJ AAJSJ AAKKN AAYZJ ABEEZ ABFIM ACACY ACGFS ACULB ADBBV ADCVX ADMSI AENEX AFGXO AFKRA AFPKN AHDSZ ALMA_UNASSIGNED_HOLDINGS ARAPS ARCSS AVBZW BCNDV BENPR BGLVJ C24 C6C CS3 DU5 EBLON EBS EJD GROUPED_DOAJ GTTXZ H13 HCIFZ HZ~ IL9 IPNFZ J~4 K7- M4Z O9- OK1 PIMPY RIG RSV SOJ TDBHL TFL TFW TR2 AASML AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c495t-f5320c5b51ffa8f3fe5e48cf940ed5ad80a14362564580ad6f6a34825d49dcc13 |
IEDL.DBID | DOA |
ISSN | 1875-6891 1875-6883 |
IngestDate | Wed Aug 27 01:12:01 EDT 2025 Thu Jul 24 01:45:20 EDT 2025 Thu Apr 24 22:49:59 EDT 2025 Tue Jul 01 01:20:18 EDT 2025 Fri Feb 21 02:40:36 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Multimodal deep learning Attention mechanism Traffic flow forecasting Convolutional neural networks Gated recurrent units |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c495t-f5320c5b51ffa8f3fe5e48cf940ed5ad80a14362564580ad6f6a34825d49dcc13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://doaj.org/article/42b81d9fb46e41b6b734bd6ceb039a51 |
PQID | 2467554627 |
PQPubID | 4869256 |
PageCount | 13 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_42b81d9fb46e41b6b734bd6ceb039a51 proquest_journals_2467554627 crossref_citationtrail_10_2991_ijcis_d_200120_001 crossref_primary_10_2991_ijcis_d_200120_001 springer_journals_10_2991_ijcis_d_200120_001 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200100 2020-00-00 20200101 2020-01-01 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – month: 1 year: 2020 text: 20200100 |
PublicationDecade | 2020 |
PublicationPlace | Dordrecht |
PublicationPlace_xml | – name: Dordrecht – name: Abingdon |
PublicationTitle | International journal of computational intelligence systems |
PublicationTitleAbbrev | Int J Comput Intell Syst |
PublicationYear | 2020 |
Publisher | Springer Netherlands Springer Nature B.V Springer |
Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V – name: Springer |
References | Yang (CR35) 2011; 4 Williams, Hoel (CR4) 2003; 129 Lv, Duan, Kang (CR16) 2015; 16 CR15 CR14 CR13 CR12 CR34 Lippi, Bertini, Frasconi (CR2) 2013; 14 CR33 Huang, Song, Hong (CR17) 2014; 15 CR30 Schmidhuber (CR10) 2015; 61 Li, Xie, Yan, Li, Kuang (CR19) 2018; 12 Hinton, Osindero, Teh (CR11) 2006; 18 Shaohua, Jiwei, Xuegui (CR26) 2017; 10 Hochreiter, Schmidhuber (CR20) 1997; 9 Jeong, Byon, Castro-Neto (CR27) 2013; 14 Zhang, Wang, Wang (CR8) 2011; 12 CR29 Guo (CR32) 2011; 4 CR28 Karlaftis, Vlahogianni (CR9) 2011; 19 CR25 CR24 CR23 CR22 CR21 Li, He, Zhang (CR36) 2016; 50 Abadi, Rajabioun, Ioannou (CR3) 2015; 16 Yu (CR31) 2017; 17 Castro-Neto, Jeong, Jeong (CR6) 2009; 36 Chan, Dillon, Singh (CR7) 2012; 13 Yang, Dillon, Chen (CR18) 2017; 28 Vlahogianni, Karlaftis, Golias (CR1) 2014; 43 Sun, Zhang, Yu (CR5) 2006; 7 |
References_xml | – ident: CR22 – volume: 12 start-page: 6 year: 2018 end-page: 189 ident: CR19 article-title: Living face verification via multi-CNNs publication-title: Int. J. Comput. Intell. Syst. – volume: 28 start-page: 6 year: 2017 end-page: 2381 ident: CR18 article-title: Optimized structure of the traffic flow forecasting model with a deep learning approach publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 16 start-page: 6 year: 2015 end-page: 873 ident: CR16 article-title: Traffic flow prediction with big data: a deep learning approach publication-title: IEEE Trans. Intell. Trans. Syst. – ident: CR14 – volume: 129 start-page: 6 year: 2003 end-page: 672 ident: CR4 article-title: Modeling and forecasting vehicular traffic flow as a seasonal ARIMA process: theoretical basis and empirical results publication-title: J. Trans. Eng. – volume: 4 start-page: 6 year: 2011 end-page: 1406 ident: CR32 article-title: Influence of stretching-segment storage length on urban traffic flow in signalized intersection publication-title: Int. J. Comput. Intell. Syst. – ident: CR12 – ident: CR30 – volume: 9 start-page: 6 year: 1997 end-page: 1780 ident: CR20 article-title: Long short-term memory publication-title: Neural Comput. – volume: 4 start-page: 6 year: 2011 end-page: 1261 ident: CR35 article-title: Applicable prevention method of Braess Paradox in urban traffic flow guidance system publication-title: Int. J. Comput. Intell. Syst. – volume: 14 start-page: 6 year: 2013 end-page: 1707 ident: CR27 article-title: Supervised weighting-online learning algorithm for short-term traffic flow prediction publication-title: IEEE Trans. Intell. Trans. Syst. – ident: CR33 – volume: 43 start-page: 6 year: 2014 end-page: 19 ident: CR1 article-title: Short-term traffic forecasting: where we are and where we’re going publication-title: Trans. Res. Part C Emerg. Technol. – ident: CR29 – volume: 61 start-page: 6 year: 2015 end-page: 117 ident: CR10 article-title: Deep learning in neural networks: an overview publication-title: Neural Netw. – ident: CR25 – volume: 7 start-page: 6 year: 2006 end-page: 132 ident: CR5 article-title: A Bayesian network approach to traffic flow forecasting publication-title: IEEE Trans. Intell. Trans. Syst. – ident: CR23 – volume: 14 start-page: 6 year: 2013 end-page: 882 ident: CR2 article-title: Short-term traffic flow forecasting: an experimental comparison of time-series analysis and supervised learning publication-title: IEEE Trans. Intell. Trans. Syst. – volume: 12 start-page: 6 year: 2011 end-page: 1639 ident: CR8 article-title: Data-driven intelligent transportation systems: a survey publication-title: IEEE Trans. Intell. Trans. Syst. – volume: 18 start-page: 6 year: 2006 end-page: 1554 ident: CR11 article-title: A fast learning algorithm for deep belief nets publication-title: Neural Comput. – ident: CR21 – ident: CR15 – volume: 13 start-page: 6 year: 2012 end-page: 654 ident: CR7 article-title: Neural-network-based models for short-term traffic flow forecasting using a hybrid exponential smoothing and Levenberg–Marquardt algorithm publication-title: IEEE Trans. Intell. Trans. Syst. – ident: CR13 – volume: 10 start-page: 6 year: 2017 end-page: 1131 ident: CR26 article-title: A sparse auto encoder deep process neural network model and its application publication-title: Int. J. Comput. Intell. Syst. – ident: CR34 – volume: 19 start-page: 6 year: 2011 end-page: 399 ident: CR9 article-title: Statistical methods neural networks in transportation research: differences publication-title: similarities and some insights, Trans. Res. Part C Emerg. Technol. – volume: 50 start-page: 6 year: 2016 end-page: 2040 ident: CR36 article-title: Short-term highway traffic flow prediction based on a hybrid strategy considering temporal–spatial information publication-title: J. Adv. Trans. – volume: 36 start-page: 6 year: 2009 end-page: 6173 ident: CR6 article-title: Online-SVR for short-term traffic flow prediction under typical and atypical traffic conditions publication-title: Expert Syst. Appl. – ident: CR28 – volume: 16 start-page: 6 year: 2015 end-page: 662 ident: CR3 article-title: Traffic flow prediction for road transportation networks with limited traffic data publication-title: IEEE Trans. Intell. Trans. Syst. – ident: CR24 – volume: 15 start-page: 6 year: 2014 end-page: 2201 ident: CR17 article-title: Deep architecture for traffic flow prediction: deep belief networks with multitask learning publication-title: IEEE Trans. Intell. Trans. Syst. – volume: 17 start-page: 6 year: 2017 end-page: 1516 ident: CR31 article-title: Spatiotemporal recurrent convolutional networks for traffic prediction in transportation networks publication-title: Sensors. |
SSID | ssj0002140044 ssib050732782 |
Score | 2.4467218 |
Snippet | Traffic flow forecasting has been regarded as a key problem of intelligent transport systems. In this work, we propose a hybrid multimodal deep learning method... |
SourceID | doaj proquest crossref springer |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 85 |
SubjectTerms | Artificial neural networks Attention mechanism Convolutional neural networks Deep learning Forecasting Gated recurrent units Intelligent transportation systems Modules Multimodal deep learning Research Article Traffic flow Traffic flow forecasting Traffic information |
SummonAdditionalLinks | – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI7QuHDhjRgv5cANCk2bpO1xDKYJNE5M4hbliYZgQ2wI8e-xs24wJJC4VW0aRbYT27H9mZBjIwtfeJYnlhudcB7yRHtTJpqlwVhwcqXF2uHerez2-fW9uK9hcrAW5lv8Hg5Kdj54tIPxWYT0ZBlmYYGnsyxYLlGC27I9v0_JGEpjDCKDCZ7IsmLTGplfplnQQxGuf8HG_BEWjdqms05WazORtqZ83SBLfrhJ1mYtGGi9I7fITYt2P7DoivZiK2gKNigF_YPAELTzNHqn2HvT6jFmN9OYH0Bjze3zyMH8l96_0Bpi9WGb9DtXd-1uUvdHAMJWYpIEbOpghREsBF2GPHjheWlDxVPvhHZlqsEaAgdHcgHPTgapEctGOF45a1m-QxrD0dDvEpq6NAUfu-Slz7hzcPIU2MMohwUGZkzZJGxGLWVr8HDsYfGkwIlACqtIYeXUlMKYKtckJ_N_XqbQGX-OvkAmzEci7HV8AdKg6l2keGbAvq6C4dJzZqQpcm6ctN6keaUFTHIwY6Gq9-JYZaALMBcvK5rkdMbWr8-_L2nvf8P3yUqGzni8nzkgjcnrmz8Ei2VijqKofgItYOQs priority: 102 providerName: Springer Nature |
Title | A Hybrid Method for Traffic Flow Forecasting Using Multimodal Deep Learning |
URI | https://link.springer.com/article/10.2991/ijcis.d.200120.001 https://www.proquest.com/docview/2467554627 https://doaj.org/article/42b81d9fb46e41b6b734bd6ceb039a51 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9tAEB4VeuFCH4AIhGgPvVGD116v7WMaGkWp6IUicVvtswKFBJFUiH_PzNoJD4ly4WbZa2s0O7szs575PoBvRpa-9DxPrDA6ESLkifamSjRPg7GY5EpLvcOnv-XoXIwviosnVF9UE9bAAzeKOxaZwZCqDkZIL7iRpsyFcdJ6k-a1js3TGfq8J8kU7cEZJ9sUTZcM7rj8-PLKXs6PIjYoz6iciz_zRBGw_1mU-eLHaPQ3w8-w2QaKrN8I-AU--OlX-LQkYWDtmtyCX302uqe2K3YayaAZRqEMPRBBQ7DhZHbHiH3T6jnVN7NYIcBi1-31zOH3T7y_YS3I6t9tOB_-_DMYJS1DAqq2LhZJIFoHW5iCh6CrkAdfeFHZUIvUu0K7KtUYD2GKI0WB104GqQnNpnCidtbyfAfWp7Op3wWWujTFLLsSlc-Ec7j3lMRilKOAgRtTdYAvtaVsCx9OLBYThWkEaVhFDSunGg1TsVwHDlfv3DTgGf8d_YMmYTWSgK_jDTQH1ZqDesscOtBdTqFqV-NcZegNqBovKzvwfTmtj49fF2nvPUTah42MkvR4btOF9cXtP3-AkczC9OBjvz8-G_dgbSAHvWjCD9k48tI |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI4QHODCGzGeOXCDQtMmaXuEwTQe4wQStyhPNAQbYkOIf4-ddeMhgcStatMospPYX2J_JmTPyMIXnuWJ5UYnnIc80d6UiWZpMBZArrSYO9y5lu1bfnEn7mqaHMyF-XJ_DxslO-o-2O7gMFJ6sgyjsADpzHBAyhi-15TNyXlKxnA2xktkcMETWVZslCPzSzff7FCk6__mY_64Fo3WprVI5ms3kR6P9LpEpnxvmSyMSzDQekWukMtj2n7HpCvaiaWgKfigFOwPEkPQ1mP_jWLtTasHGN1MY3wAjTm3T30H_Z96_0xritX7VXLbOrtptpO6PgIIthLDJGBRByuMYCHoMuTBC89LGyqeeie0K1MN3hAAHMkFPDsZpEYuG-F45axl-RqZ7vV7fp3Q1KUpYOySlz7jzsHOU2ANoxwGGJgxZYOwsbSUrcnDsYbFowIQgRJWUcLKqZGEMVSuQfYn_zyPqDP-bH2CSpi0RNrr-AJmg6pXkeKZAf-6CoZLz5mRpsi5cdJ6k-aVFtDJ1liFql6LA5WBLcBYvKxokIOxWj8__z6kjf813yWz7ZvOlbo6v77cJHMZAvN4VrNFpocvr34bvJeh2YnT9gMLI-cZ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwELYQSIjL8taW5eEDNwjEie0kRyhU5SkOIHGz_ESs2LaiXa323zPjJOUhgcQtShwrmrEz33hmviFk18jCF57lieVGJ5yHPNHelIlmaTAWnFxpsXb46lr27_j5vbh_U8Ufs93bkGRd04AsTYPJ4ciFmLgMgObw8bd9HB9Eok-WYW4W-D9z4KnEQG1XdqenLBnDNRpDywDME1lWrK6c-WSad9Ypkvi_Q54fgqXRBvWWyI8GPNKjWtvLZMYPVshi25iBNvt0lVwc0f5_LMWiV7FBNAVkSsEqIV0E7T0N_1HsyGn1GHOeacwaoLES98_Qwfwn3o9oQ7z6sEbueqe33X7SdE0AcVdikgRs9WCFESwEXYY8eOF5aUPFU--EdmWqASOB2yO5gGsng9TIcCMcr5y1LF8ns4PhwP8kNHVpCp53yUufcefgf1RgZ6McPjAwY8oOYa20lG0oxbGzxZMC1wIlrKKElVO1hDGBrkP2pu-MakKNL0cfoxKmI5EMO94YPj-oZm8pnhlA3VUwXHrOjDRFzo2T1ps0r7SASTZbFapmh45VBhYCM_SyokP2W7W-Pv78kza-N3yHzN-c9NTl2fXFL7KQobceD3A2yezk-a_fAkgzMdtx1b4A8yjvYA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Hybrid+Method+for+Traffic+Flow+Forecasting+Using+Multimodal+Deep+Learning&rft.jtitle=International+journal+of+computational+intelligence+systems&rft.au=Du%2C+Shengdong&rft.au=Li%2C+Tianrui&rft.au=Gong%2C+Xun&rft.au=Horng%2C+Shi-Jinn&rft.date=2020&rft.issn=1875-6883&rft.eissn=1875-6883&rft.volume=13&rft.issue=1&rft.spage=85&rft_id=info:doi/10.2991%2Fijcis.d.200120.001&rft.externalDBID=n%2Fa&rft.externalDocID=10_2991_ijcis_d_200120_001 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1875-6891&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1875-6891&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1875-6891&client=summon |