Small data machine learning in materials science

This review discussed the dilemma of small data faced by materials machine learning. First, we analyzed the limitations brought by small data. Then, the workflow of materials machine learning has been introduced. Next, the methods of dealing with small data were introduced, including data extraction...

Full description

Saved in:
Bibliographic Details
Published innpj computational materials Vol. 9; no. 1; pp. 42 - 15
Main Authors Xu, Pengcheng, Ji, Xiaobo, Li, Minjie, Lu, Wencong
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 25.03.2023
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This review discussed the dilemma of small data faced by materials machine learning. First, we analyzed the limitations brought by small data. Then, the workflow of materials machine learning has been introduced. Next, the methods of dealing with small data were introduced, including data extraction from publications, materials database construction, high-throughput computations and experiments from the data source level; modeling algorithms for small data and imbalanced learning from the algorithm level; active learning and transfer learning from the machine learning strategy level. Finally, the future directions for small data machine learning in materials science were proposed.
AbstractList This review discussed the dilemma of small data faced by materials machine learning. First, we analyzed the limitations brought by small data. Then, the workflow of materials machine learning has been introduced. Next, the methods of dealing with small data were introduced, including data extraction from publications, materials database construction, high-throughput computations and experiments from the data source level; modeling algorithms for small data and imbalanced learning from the algorithm level; active learning and transfer learning from the machine learning strategy level. Finally, the future directions for small data machine learning in materials science were proposed.
Abstract This review discussed the dilemma of small data faced by materials machine learning. First, we analyzed the limitations brought by small data. Then, the workflow of materials machine learning has been introduced. Next, the methods of dealing with small data were introduced, including data extraction from publications, materials database construction, high-throughput computations and experiments from the data source level; modeling algorithms for small data and imbalanced learning from the algorithm level; active learning and transfer learning from the machine learning strategy level. Finally, the future directions for small data machine learning in materials science were proposed.
ArticleNumber 42
Author Ji, Xiaobo
Lu, Wencong
Xu, Pengcheng
Li, Minjie
Author_xml – sequence: 1
  givenname: Pengcheng
  surname: Xu
  fullname: Xu, Pengcheng
  organization: Materials Genome Institute, Shanghai University
– sequence: 2
  givenname: Xiaobo
  surname: Ji
  fullname: Ji, Xiaobo
  organization: Department of Chemistry, College of Sciences, Shanghai University
– sequence: 3
  givenname: Minjie
  orcidid: 0000-0001-5048-6211
  surname: Li
  fullname: Li, Minjie
  email: minjieli@shu.edu.cn
  organization: Department of Chemistry, College of Sciences, Shanghai University
– sequence: 4
  givenname: Wencong
  orcidid: 0000-0001-5361-6122
  surname: Lu
  fullname: Lu, Wencong
  email: wclu@shu.edu.cn
  organization: Materials Genome Institute, Shanghai University, Department of Chemistry, College of Sciences, Shanghai University, Zhejiang Laboratory
BookMark eNp9kMtOHDEQRS1EJMiEH2DVUtYdys-xlxEKAQkpi7C3auzqiUc97sFuFuHrcaYjgrJgVQ_dc6t0P7LTPGVi7JLDFw7SXlXFtVA9CNkDB4D--YSdC9DrXjoDp2_6M3ZR665JuBNWKDhn8HOP49hFnLHbY_iVMnUjYckpb7uU226mknCsXQ2JcqBP7MPQRrr4W1fs4ebbw_Vtf__j-9311_s-KKfnnoi0lDBoTmuCgBttozFBSTdYUBhRimg2BtfacAkRtIuoVEA7DDY6LlfsbrGNE-78oaQ9lt9-wuSPi6lsPZY5hZG8WBuubAwyklMChFPIN9JaqWEwwajm9XnxOpTp8Ynq7HfTU8nt-8Y6ME5paZtKLKpQploLDa9XOfg_OfslZ99y9sec_XOD7H9QSDPOacpzwTS-j8oFre1O3lL599U71At8L5IY
CitedBy_id crossref_primary_10_1016_j_jnoncrysol_2025_123451
crossref_primary_10_1039_D4TA06452F
crossref_primary_10_1016_j_mtcomm_2024_111114
crossref_primary_10_1016_j_actbio_2024_08_017
crossref_primary_10_1016_j_ensm_2024_103612
crossref_primary_10_1002_anie_202423799
crossref_primary_10_1016_j_ijpharm_2024_124905
crossref_primary_10_1016_j_coelec_2025_101649
crossref_primary_10_1021_acs_jcim_4c01676
crossref_primary_10_1039_D5TC00155B
crossref_primary_10_1007_s00521_024_10805_y
crossref_primary_10_1038_s41524_024_01367_7
crossref_primary_10_1016_j_mtcomm_2023_107249
crossref_primary_10_1039_D3YA00161J
crossref_primary_10_1063_5_0169961
crossref_primary_10_1080_10667857_2024_2419228
crossref_primary_10_1080_27660400_2024_2356506
crossref_primary_10_1039_D4SC02781G
crossref_primary_10_1002_aenm_202403876
crossref_primary_10_1016_j_enconman_2024_118942
crossref_primary_10_1002_adem_202402024
crossref_primary_10_1021_acs_jcim_3c00916
crossref_primary_10_1002_adma_202413695
crossref_primary_10_1103_PhysRevB_110_075204
crossref_primary_10_3390_su15086393
crossref_primary_10_1016_j_jeurceramsoc_2024_116780
crossref_primary_10_1016_j_commatsci_2024_113344
crossref_primary_10_1016_j_apsusc_2024_160519
crossref_primary_10_1016_j_cej_2025_160080
crossref_primary_10_1016_j_nxmate_2024_100420
crossref_primary_10_20517_jmi_2023_18
crossref_primary_10_3390_higheredu3030032
crossref_primary_10_1016_j_mtcomm_2023_106612
crossref_primary_10_1021_acscatal_3c06293
crossref_primary_10_1016_j_jallcom_2024_177823
crossref_primary_10_1063_5_0207863
crossref_primary_10_1021_acs_jpclett_3c02273
crossref_primary_10_1039_D3DD00009E
crossref_primary_10_1002_advs_202305277
crossref_primary_10_1038_s41467_024_53431_x
crossref_primary_10_1088_2632_2153_ad9fcf
crossref_primary_10_1007_s40710_025_00747_5
crossref_primary_10_1088_2632_2153_acffa2
crossref_primary_10_1002_app_55693
crossref_primary_10_1016_j_matdes_2025_113629
crossref_primary_10_1016_j_mtcomm_2025_112076
crossref_primary_10_1002_advs_202406216
crossref_primary_10_3904_kjim_2024_098
crossref_primary_10_1038_s41524_023_01194_2
crossref_primary_10_1039_D4RA05875E
crossref_primary_10_1016_j_newton_2025_100016
crossref_primary_10_1007_s11837_024_06922_7
crossref_primary_10_3390_pr13030877
crossref_primary_10_1039_D3RE00504F
crossref_primary_10_3390_ma17123026
crossref_primary_10_1016_j_cjsc_2024_100469
crossref_primary_10_3390_met14040438
crossref_primary_10_1246_bcsj_20230218
crossref_primary_10_3390_polym16040451
crossref_primary_10_1002_aenm_202304480
crossref_primary_10_1063_5_0156988
crossref_primary_10_1039_D4TA04495A
crossref_primary_10_1002_adma_202312887
crossref_primary_10_1039_D4EE02970D
crossref_primary_10_1002_adma_202413430
crossref_primary_10_3390_app14198738
crossref_primary_10_1016_j_matchemphys_2024_129076
crossref_primary_10_1002_asia_202301088
crossref_primary_10_1016_j_jclepro_2023_138842
crossref_primary_10_1038_s41524_024_01331_5
crossref_primary_10_1021_acs_chemrev_4c00957
crossref_primary_10_1039_D4NJ05135A
crossref_primary_10_1016_j_commatsci_2024_113602
crossref_primary_10_1007_s00170_024_14087_5
crossref_primary_10_1021_acsaem_3c02642
crossref_primary_10_1039_D4TA00725E
crossref_primary_10_1080_19420862_2024_2442750
crossref_primary_10_1016_j_mtphys_2024_101457
crossref_primary_10_1016_j_chemphys_2024_112229
crossref_primary_10_1016_j_jmrt_2025_01_001
crossref_primary_10_1016_j_mtadv_2024_100520
crossref_primary_10_1007_s11104_024_06503_2
crossref_primary_10_1177_1088467X241305509
crossref_primary_10_3390_ai5040097
crossref_primary_10_1088_2053_1591_ad66b3
crossref_primary_10_1016_j_isci_2024_109452
crossref_primary_10_1039_D4FD00112E
crossref_primary_10_1021_acs_jcim_4c01644
crossref_primary_10_1063_5_0223890
crossref_primary_10_1016_j_jconrel_2024_08_010
crossref_primary_10_7498_aps_73_20240957
crossref_primary_10_1109_ACCESS_2024_3424934
crossref_primary_10_1039_D4CY00755G
crossref_primary_10_1016_j_chemosphere_2024_141868
crossref_primary_10_3390_biomedinformatics4030101
crossref_primary_10_3390_su17051935
crossref_primary_10_1007_s41635_025_00160_2
crossref_primary_10_1016_j_nxener_2024_100159
crossref_primary_10_1002_cctc_202400754
crossref_primary_10_1021_acsaem_4c02759
crossref_primary_10_1002_cnl2_70002
crossref_primary_10_1039_D4DD00353E
crossref_primary_10_1002_mgea_68
crossref_primary_10_1016_j_ces_2024_121128
crossref_primary_10_1002_anie_202408937
crossref_primary_10_1021_acsenergylett_4c03592
crossref_primary_10_1016_j_jmatprotec_2024_118581
crossref_primary_10_1016_j_ccst_2025_100374
crossref_primary_10_1038_s44277_024_00020_x
crossref_primary_10_1016_j_mtsust_2024_100694
crossref_primary_10_1088_1674_1056_ad51f3
crossref_primary_10_1016_j_compscitech_2025_111133
crossref_primary_10_1002_adem_202401353
crossref_primary_10_1021_acs_jpcc_5c00059
crossref_primary_10_1002_mgea_81
crossref_primary_10_1016_j_compchemeng_2024_108720
crossref_primary_10_3390_atmos16030272
crossref_primary_10_1002_ange_202408937
crossref_primary_10_1016_j_pedsph_2024_07_004
crossref_primary_10_1088_2632_2153_adae53
crossref_primary_10_1111_jace_20347
crossref_primary_10_3390_info14060317
crossref_primary_10_1016_j_mtelec_2025_100143
crossref_primary_10_1016_j_mtchem_2025_102583
crossref_primary_10_1016_j_fmre_2023_10_012
crossref_primary_10_1021_acsanm_3c04421
crossref_primary_10_1186_s40658_024_00651_1
crossref_primary_10_1016_j_jwpe_2023_104709
crossref_primary_10_1021_acs_jpcb_4c06687
crossref_primary_10_1016_j_solmat_2024_112881
crossref_primary_10_1002_mgea_50
crossref_primary_10_1016_j_gsd_2024_101309
crossref_primary_10_1038_s41598_025_92669_3
crossref_primary_10_1088_2516_1083_ad7220
crossref_primary_10_1016_j_ceramint_2024_06_314
crossref_primary_10_1039_D4CP00386A
crossref_primary_10_1016_j_procs_2023_12_010
crossref_primary_10_1039_D4CC05117C
crossref_primary_10_1038_s41467_024_49686_z
crossref_primary_10_1016_j_msea_2025_147792
crossref_primary_10_1016_j_jmrt_2025_01_154
crossref_primary_10_1016_j_engappai_2024_108783
crossref_primary_10_1016_j_compositesa_2024_108490
crossref_primary_10_1021_acspolymersau_3c00025
crossref_primary_10_1016_j_ijfatigue_2024_108631
crossref_primary_10_1021_acs_jpcc_5c00035
crossref_primary_10_1016_j_fuproc_2024_108164
crossref_primary_10_1038_s41529_024_00427_z
crossref_primary_10_46519_ij3dptdi_1564924
crossref_primary_10_1146_annurev_chembioeng_100722_111917
crossref_primary_10_1016_j_apcatb_2025_125267
crossref_primary_10_1038_s41598_024_79036_4
crossref_primary_10_20517_jmi_2024_108
crossref_primary_10_1002_smtd_202401815
crossref_primary_10_1007_s10278_024_00983_5
crossref_primary_10_1038_s41524_024_01479_0
crossref_primary_10_1080_17452007_2024_2436941
crossref_primary_10_1208_s12249_024_02973_w
crossref_primary_10_56294_dm2024188
crossref_primary_10_1088_2632_2153_ad9378
crossref_primary_10_1016_j_jcat_2025_115971
crossref_primary_10_1039_D4BM00169A
crossref_primary_10_1016_j_gsd_2023_101049
crossref_primary_10_1111_jace_19674
crossref_primary_10_3390_pr12061262
crossref_primary_10_1016_j_scitotenv_2024_171931
crossref_primary_10_1109_ACCESS_2024_3450511
crossref_primary_10_1177_15579883241309752
crossref_primary_10_1021_acs_chemmater_4c00303
crossref_primary_10_1016_j_cep_2023_109435
crossref_primary_10_1016_j_chempr_2024_10_027
crossref_primary_10_1016_j_clwat_2024_100041
crossref_primary_10_1007_s10853_025_10729_5
crossref_primary_10_1080_10667857_2023_2295089
crossref_primary_10_1002_ange_202423799
crossref_primary_10_1016_j_commatsci_2024_113512
crossref_primary_10_1021_acsnano_3c13001
crossref_primary_10_3390_met13101641
crossref_primary_10_1021_acs_jpcc_4c03379
crossref_primary_10_1016_j_engappai_2025_110377
crossref_primary_10_3390_nano14211688
crossref_primary_10_1016_j_dche_2024_100160
crossref_primary_10_1016_j_compchemeng_2024_108648
crossref_primary_10_1016_j_jksus_2024_103456
crossref_primary_10_1016_j_cma_2023_116698
crossref_primary_10_1007_s40843_024_2851_9
crossref_primary_10_1016_j_jmrt_2024_08_075
crossref_primary_10_1088_0256_307X_42_2_027403
crossref_primary_10_1021_acssuschemeng_4c01563
crossref_primary_10_1021_acs_jpca_3c07462
crossref_primary_10_1021_acs_est_5c01025
crossref_primary_10_1021_acs_jpca_3c04076
crossref_primary_10_1038_s41529_024_00538_7
crossref_primary_10_1016_j_jmrt_2023_11_257
crossref_primary_10_1016_j_buildenv_2024_112173
crossref_primary_10_1016_j_egyai_2023_100303
crossref_primary_10_1038_s41524_024_01486_1
crossref_primary_10_1080_00268976_2024_2341959
crossref_primary_10_1016_j_jmgm_2023_108530
crossref_primary_10_1021_acs_analchem_4c00456
crossref_primary_10_1016_j_triboint_2024_110291
crossref_primary_10_1063_5_0195386
crossref_primary_10_1016_j_rinp_2024_107978
crossref_primary_10_1016_j_cej_2024_155948
crossref_primary_10_1038_s41598_024_59958_9
crossref_primary_10_1016_j_cma_2024_117404
crossref_primary_10_1016_j_jssc_2024_124606
crossref_primary_10_3390_en17184575
crossref_primary_10_1016_j_mtcomm_2024_111177
crossref_primary_10_1115_1_4067806
crossref_primary_10_1002_ajoc_202400749
crossref_primary_10_1016_j_apsadv_2023_100523
crossref_primary_10_1016_j_istruc_2024_106309
crossref_primary_10_1007_s11595_024_2912_8
crossref_primary_10_1038_s41524_025_01539_z
crossref_primary_10_1016_j_jclepro_2024_142761
crossref_primary_10_1016_j_ijfatigue_2024_108626
crossref_primary_10_1021_acs_est_5c00510
crossref_primary_10_1021_acs_jpcb_4c06500
crossref_primary_10_1016_j_cej_2024_152300
crossref_primary_10_1039_D3CP03968D
crossref_primary_10_1063_5_0235572
crossref_primary_10_1088_1402_4896_ad79a4
crossref_primary_10_1038_s41524_024_01462_9
crossref_primary_10_2514_1_I011409
crossref_primary_10_1002_adma_202306733
crossref_primary_10_1007_s10644_024_09849_w
crossref_primary_10_1016_j_engappai_2024_108514
crossref_primary_10_1021_acs_jcim_4c01343
crossref_primary_10_3390_polym17030282
crossref_primary_10_1016_j_mtcomm_2024_109419
crossref_primary_10_1038_s41598_024_70432_4
crossref_primary_10_1038_s41598_024_59276_0
crossref_primary_10_1007_s10143_024_03051_2
Cites_doi 10.1038/s41597-022-01317-2
10.1016/j.chemolab.2018.04.004
10.1016/j.isci.2021.102155
10.1016/j.commatsci.2021.110528
10.1088/1361-648X/abe39e
10.3390/molecules25173772
10.1023/B:STCO.0000035301.49549.88
10.1155/2022/4653923
10.1016/j.eswa.2011.03.041
10.1109/ACCESS.2020.3012542
10.1208/s12249-020-01911-w
10.1038/s41524-019-0203-2
10.3390/electronics10121491
10.1021/acsomega.2c01380
10.1155/2015/674296
10.1073/pnas.1302293110
10.1038/s41524-017-0055-6
10.1038/s41427-020-0211-1
10.3389/fmicb.2022.925454
10.1016/j.patrec.2017.10.010
10.1088/1674-1056/27/11/118101
10.1021/acs.jpclett.2c00603
10.1016/j.drudis.2021.09.007
10.1021/acscentsci.9b00804
10.1007/s11837-021-04902-9
10.1038/s41467-020-17263-9
10.1016/j.jechem.2021.01.035
10.1007/s40747-021-00637-x
10.5936/csbj.201207003
10.1007/s12525-021-00475-2
10.1016/j.ribaf.2022.101646
10.1126/science.abj6511
10.1016/j.geothermics.2022.102401
10.20964/2021.11.22
10.1002/adem.202100612
10.1186/s13321-019-0391-2
10.21786/bbrc/13.14/57
10.1021/acs.jcim.0c00726
10.1063/1.5019779
10.1021/acs.jpcc.1c02438
10.1016/j.commatsci.2021.110712
10.1021/acs.chemrev.1c00022
10.1109/TKDE.2008.239
10.1007/s10115-017-1059-8
10.1021/acsami.2c00564
10.1038/s41524-022-00906-4
10.1016/j.jmst.2021.01.071
10.1038/s41467-021-22472-x
10.1016/j.ijfatigue.2021.106716
10.1007/s11082-018-1316-4
10.1007/s10936-014-9329-z
10.1016/j.surfrep.2020.100492
10.3390/jrfm14070302
10.1088/1361-648X/ac577b
10.1016/j.actamat.2021.117431
10.1145/234173.234210
10.1021/acsmacrolett.7b00228
10.3390/jcm11123485
10.15255/KUI.2020.004
10.1039/D0NA00388C
10.1007/s00366-020-01003-0
10.1016/j.spl.2018.02.031
10.1002/adts.202100565
10.1007/s10994-019-05787-1
10.1038/s41524-021-00495-8
10.1021/acs.jpcc.1c05482
10.1038/s42256-022-00548-7
10.1088/1674-1056/27/11/118901
10.1002/ams2.740
10.1021/acs.est.1c05398
10.1021/acs.jctc.2c00281
10.1007/s00521-015-1970-4
10.1021/acs.jcim.6b00207
10.1080/14686996.2019.1603885
10.1088/2515-7639/ab077b
10.1016/j.scico.2016.01.001
10.1007/s11431-018-9369-9
10.1039/C7ME00094D
10.3390/su12020492
10.1186/1758-2946-7-S1-S3
10.1021/acs.jpclett.2c00576
10.1038/s41524-019-0153-8
10.1021/acs.jcim.1c00566
10.1103/PhysRevMaterials.2.083802
10.1080/10705511.2018.1500140
10.1109/JPROC.2020.3004555
10.1021/acs.jcim.1c00446
10.1016/j.neucom.2011.06.026
10.1016/j.commatsci.2021.110314
10.1007/s10948-021-05857-3
10.1007/s00371-020-01817-5
10.1038/s41467-020-19597-w
10.1038/s41467-022-30687-9
10.1016/j.jallcom.2022.165984
10.1038/ncomms11241
10.1080/02664763.2020.1780569
10.1021/acs.jcim.8b00436
10.1016/j.cosrev.2018.06.001
10.1093/plphys/kiac017
10.1038/nmat3568
10.1016/j.eng.2020.04.004
10.1109/ElConRus51938.2021.9396231
10.1186/1758-2946-6-1
10.1002/wcms.1489
ContentType Journal Article
Copyright The Author(s) 2023
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
3V.
7X7
7XB
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
KB.
LK8
M0S
M7P
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOA
DOI 10.1038/s41524-023-01000-z
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Biological Sciences
ProQuest Health & Medical Collection
Biological Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Directory of Open Access Journals - May need to register for free articles
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
Materials Science Database
ProQuest Central (New)
ProQuest Materials Science Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList
CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2057-3960
EndPage 15
ExternalDocumentID oai_doaj_org_article_276148dc3de9420294a1b388350f6c64
10_1038_s41524_023_01000_z
GrantInformation_xml – fundername: the National Natural Science Foundation of China (No. 52102140)
– fundername: the Key Program of Science and Technology of Yunnan Province (No. 202002AB080001/2);the Key Research Project of Zhejiang Laboratory (No. 2021PE0AC02)
– fundername: Shanghai Pujiang Program (No.21PJD024)
GroupedDBID 0R~
3V.
5VS
7X7
8FE
8FG
8FH
8FI
8FJ
AAJSJ
ABJCF
ABUWG
ACGFS
ACSMW
ADBBV
ADMLS
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ARCSS
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
D1I
EBLON
EBS
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
KB.
KQ8
LK8
M7P
M~E
NAO
NO~
OK1
PDBOC
PIMPY
PQQKQ
PROAC
RNT
SNYQT
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
7XB
8FK
AARCD
AZQEC
DWQXO
GNUQQ
K9.
PKEHL
PQEST
PQGLB
PQUKI
PUEGO
ID FETCH-LOGICAL-c495t-eee5330f51e7e0cab58d66c439f804ada32d6b6a756130d059da44ca8ff8d913
IEDL.DBID DOA
ISSN 2057-3960
IngestDate Wed Aug 27 01:32:19 EDT 2025
Wed Aug 13 05:12:47 EDT 2025
Tue Jul 01 01:41:29 EDT 2025
Thu Apr 24 22:50:29 EDT 2025
Fri Feb 21 02:40:22 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c495t-eee5330f51e7e0cab58d66c439f804ada32d6b6a756130d059da44ca8ff8d913
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5048-6211
0000-0001-5361-6122
OpenAccessLink https://doaj.org/article/276148dc3de9420294a1b388350f6c64
PQID 2790694538
PQPubID 2041924
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_276148dc3de9420294a1b388350f6c64
proquest_journals_2790694538
crossref_primary_10_1038_s41524_023_01000_z
crossref_citationtrail_10_1038_s41524_023_01000_z
springer_journals_10_1038_s41524_023_01000_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-03-25
PublicationDateYYYYMMDD 2023-03-25
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-25
  day: 25
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle npj computational materials
PublicationTitleAbbrev npj Comput Mater
PublicationYear 2023
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Yang, Li, Tao, Lu, Li (CR22) 2021; 196
Lian, Li, Lu (CR32) 2022; 157
Janiesch, Zschech, Heinrich (CR1) 2021; 31
Shawe-Taylor, Sun (CR82) 2011; 74
Zhuang (CR104) 2021; 109
Okoroafor (CR7) 2022; 102
Weng (CR89) 2020; 11
Bi, Goodman, Kaminsky, Lessler (CR2) 2019; 188
Xin (CR99) 2021; 125
Zhao (CR78) 2021; 12
Scholkopf (CR81) 2004; 14
He, Fan (CR42) 2018; 26
Curtarolo (CR73) 2013; 12
Lee, Asahi (CR109) 2021; 190
Liu (CR16) 2022; 921
Yin (CR66) 2018; 27
Audus, de Pablo (CR68) 2017; 6
Li (CR21) 2021; 199
Sabry, Eltaras, Labda, Alzoubi, Malluhi (CR6) 2022; 2022
Tao (CR23) 2021; 125
Yang (CR14) 2022; 222
Mavracic, Court, Isazawa, Elliott, Cole (CR63) 2021; 61
Yamada (CR110) 2019; 5
Wu (CR106) 2019; 5
Lu, Li, Li, Wang, Lu (CR97) 2022; 13
Afzal, Torkar (CR87) 2011; 38
Hong, Ward, Chard, Blaiszik, Foster (CR53) 2021; 73
Memon, Sami, Khan, Uddin (CR54) 2020; 8
Lookman, Balachandran, Xue, Yuan (CR98) 2019; 5
Beckner, Mao, Pfaendtner (CR31) 2018; 3
Goyal, Gupta, Kumar (CR60) 2018; 29
Swain, Cole (CR62) 2016; 56
Jiang, Luo, Huang, Liu, Li (CR10) 2022; 13
CR57
Kirkpatrick (CR79) 2021; 374
Liu (CR26) 2021; 88
Ahmed, Alshater, Ammari, Hammami (CR4) 2022; 61
Chan, Sun, Huang (CR12) 2022; 4
Talekar (CR84) 2020; 13
Zixin (CR69) 2020; 2020
Duan, Asteris, Nguyen, Bui, Moayedi (CR86) 2020; 37
Erickson, Ngongang, Rasulev (CR45) 2020; 25
Lu, Chang, Ji, Li, Lu (CR91) 2021; 16
Schwarz, Sundararaman (CR25) 2020; 75
Xu (CR67) 2018; 27
Chandrasekaran, Jordan (CR19) 2013; 110
Perovšek, Kranjc, Erjavec, Cestnik, Lavrač (CR51) 2016; 121
Katsura (CR64) 2019; 20
Huang, Shang, Liu, Wang (CR70) 2022; 188
Mueller, Kinoshita, Peebles, Graber, Lee (CR5) 2022; 9
Kononova (CR52) 2021; 24
Takamoto (CR80) 2022; 13
Warin, Stojkov (CR3) 2021; 14
Chen, Shang, Lu, Li, Tan (CR92) 2021; 23
Tula (CR38) 2021; 33
Lu (CR44) 2021; 34
Safaa Eltyeb (CR61) 2014; 6
Li, Li, Liu (CR33) 2017; 53
He, Zhang, Cao, Xing, Yang (CR71) 2022; 11
Zeng, Shi, Wu, Hong (CR50) 2015; 2015
Cioffi, Travaglioni, Piscitelli, Petrillo, De Felice (CR8) 2020; 12
Glavatskikh, Leguy, Hunault, Cauchy, Da Mota (CR107) 2019; 11
Zhao (CR101) 2021; 57
Khaire, Dhanalakshmi (CR34) 2022; 34
Ma, Luo (CR108) 2020; 60
Leaman, Wei, Lu (CR56) 2015; 7
Tao, Xu, Li, Lu (CR15) 2021; 7
Lu, Li, Li, Wang, Lu (CR93) 2022; 7
CR111
Biau, Cadre, Rouvière (CR85) 2019; 108
Shulin, Tianshu, Xinjiang, Muhammad, Lijun (CR74) 2021; 11
Jia, Sun, Lian, Hou (CR36) 2022; 8
Guo, Hu, Han, Ouyang (CR88) 2022; 18
Shibayama, Funatsu (CR46) 2021; 22
Crampon, Giorkallos, Deldossi, Baud, Steffenel (CR9) 2022; 27
Kim, Huang, Jegelka, Olivetti (CR47) 2017; 3
Zhang, Zhang (CR30) 2022; 56
Faraway, Augustin (CR18) 2018; 136
Zhang, Chang, Zhai, Lu (CR20) 2018; 177
Zhu, Zhou, Sun (CR13) 2022; 13
Xu (CR24) 2022; 62
Dalva, Guz, Gurkan (CR55) 2018; 105
Ouyang, Curtarolo, Ahmetcik, Scheffler, Ghiringhelli (CR40) 2018; 2
Moussaoui, Laidi, Hanini, Hentabli (CR29) 2020; 69
Xiaoli (CR72) 2015; 34
Wang (CR65) 2022; 9
Xu, Chen, Li, Lu (CR17) 2022; 5
Hu, Zhang, Pan (CR76) 2022; 14
Ranaweera, Mahmoud (CR103) 2021; 10
Fjodorova, Novic (CR28) 2012; 1
Haibo, Garcia (CR94) 2009; 21
Gardner-Lubbe (CR39) 2021; 48
CR95
Xie, Sun (CR37) 2018; 50
Shi, Chang, Ji, Lu (CR90) 2018; 58
Weixin (CR112) 2022; 4
Lewis, Jones (CR59) 1996; 39
Hayashi, Shiomi, Morikawa, Yoshida (CR77) 2022; 8
Liu (CR75) 2019; 62
Kajita, Ohba, Suzumura, Tajima, Asahi (CR48) 2020; 12
Tao (CR49) 2021; 60
Xue (CR102) 2016; 7
Kusne (CR100) 2020; 11
Dardzinski, Yu, Moayedpour, Marom (CR27) 2022; 34
Phillips (CR58) 2015; 44
Schutt, Sauceda, Kindermans, Tkatchenko, Muller (CR105) 2018; 148
Cai, Chu, Xu, Li, Wei (CR11) 2020; 2
France, Akkucuk (CR35) 2020; 37
Zhang, Wang (CR43) 2015; 27
Ouyang, Ahmetcik, Carbogno, Scheffler, Ghiringhelli (CR41) 2019; 2
Deringer (CR83) 2021; 121
Wang, Han, Li, Zhang, Cheng (CR96) 2021; 57
S Gardner-Lubbe (1000_CR39) 2021; 48
B Mueller (1000_CR5) 2022; 9
Z Hong (1000_CR53) 2021; 73
Y Liu (1000_CR75) 2019; 62
B Weng (1000_CR89) 2020; 11
VL Deringer (1000_CR83) 2021; 121
1000_CR95
MC Swain (1000_CR62) 2016; 56
Y Zhao (1000_CR78) 2021; 12
O Kononova (1000_CR52) 2021; 24
T Warin (1000_CR3) 2021; 14
CH Chan (1000_CR12) 2022; 4
J Zhang (1000_CR43) 2015; 27
DJ Audus (1000_CR68) 2017; 6
R Xin (1000_CR99) 2021; 125
A Goyal (1000_CR60) 2018; 29
JJ Faraway (1000_CR18) 2018; 136
F Sabry (1000_CR6) 2022; 2022
M Glavatskikh (1000_CR107) 2019; 11
K Lu (1000_CR44) 2021; 34
Y Xie (1000_CR37) 2018; 50
AJSB Scholkopf (1000_CR81) 2004; 14
X Yang (1000_CR22) 2021; 196
D Dardzinski (1000_CR27) 2022; 34
SLC Phillips (1000_CR58) 2015; 44
Y Li (1000_CR33) 2017; 53
D Xue (1000_CR102) 2016; 7
K Zhang (1000_CR30) 2022; 56
Y Xu (1000_CR67) 2018; 27
V Chandrasekaran (1000_CR19) 2013; 110
G Biau (1000_CR85) 2019; 108
L Shi (1000_CR90) 2018; 58
W Zhao (1000_CR101) 2021; 57
M Moussaoui (1000_CR29) 2020; 69
J Mavracic (1000_CR63) 2021; 61
H-Q Yin (1000_CR66) 2018; 27
UM Khaire (1000_CR34) 2022; 34
J He (1000_CR42) 2018; 26
R Ma (1000_CR108) 2020; 60
Z Lian (1000_CR32) 2022; 157
1000_CR111
C Janiesch (1000_CR1) 2021; 31
W Afzal (1000_CR87) 2011; 38
H Chen (1000_CR92) 2021; 23
S Wu (1000_CR106) 2019; 5
H Haibo (1000_CR94) 2009; 21
X Liu (1000_CR16) 2022; 921
W Jia (1000_CR36) 2022; 8
Q Bi (1000_CR2) 2019; 188
L Wang (1000_CR96) 2021; 57
J Cai (1000_CR11) 2020; 2
SL France (1000_CR35) 2020; 37
Y Huang (1000_CR70) 2022; 188
S Kajita (1000_CR48) 2020; 12
F Xiaoli (1000_CR72) 2015; 34
J Duan (1000_CR86) 2020; 37
X He (1000_CR71) 2022; 11
1000_CR57
H Yamada (1000_CR110) 2019; 5
ER Okoroafor (1000_CR7) 2022; 102
J Lee (1000_CR109) 2021; 190
N Fjodorova (1000_CR28) 2012; 1
C Yang (1000_CR14) 2022; 222
Z Guo (1000_CR88) 2022; 18
T Lu (1000_CR93) 2022; 7
Z Zeng (1000_CR50) 2015; 2015
K Lu (1000_CR91) 2021; 16
R Ouyang (1000_CR40) 2018; 2
Z Wang (1000_CR65) 2022; 9
NS Safaa Eltyeb (1000_CR61) 2014; 6
R Leaman (1000_CR56) 2015; 7
S Curtarolo (1000_CR73) 2013; 12
P Xu (1000_CR17) 2022; 5
J Kirkpatrick (1000_CR79) 2021; 374
L Zixin (1000_CR69) 2020; 2020
Q Zhang (1000_CR20) 2018; 177
ME Erickson (1000_CR45) 2020; 25
Q Tao (1000_CR23) 2021; 125
D Dalva (1000_CR55) 2018; 105
J Shawe-Taylor (1000_CR82) 2011; 74
Q Tao (1000_CR49) 2021; 60
KT Schutt (1000_CR105) 2018; 148
K Crampon (1000_CR9) 2022; 27
K Schwarz (1000_CR25) 2020; 75
W Beckner (1000_CR31) 2018; 3
L Weixin (1000_CR112) 2022; 4
B Liu (1000_CR26) 2021; 88
Q Tao (1000_CR15) 2021; 7
F Zhuang (1000_CR104) 2021; 109
R Cioffi (1000_CR8) 2020; 12
L Li (1000_CR21) 2021; 199
P Xu (1000_CR24) 2022; 62
S Ahmed (1000_CR4) 2022; 61
L Shulin (1000_CR74) 2021; 11
Y Katsura (1000_CR64) 2019; 20
T Lookman (1000_CR98) 2019; 5
Y Jiang (1000_CR10) 2022; 13
S Takamoto (1000_CR80) 2022; 13
B Talekar (1000_CR84) 2020; 13
E Kim (1000_CR47) 2017; 3
L Zhu (1000_CR13) 2022; 13
Y Hayashi (1000_CR77) 2022; 8
R Ouyang (1000_CR41) 2019; 2
S Shibayama (1000_CR46) 2021; 22
AG Kusne (1000_CR100) 2020; 11
W Hu (1000_CR76) 2022; 14
T Tula (1000_CR38) 2021; 33
M Perovšek (1000_CR51) 2016; 121
T Lu (1000_CR97) 2022; 13
J Memon (1000_CR54) 2020; 8
DD Lewis (1000_CR59) 1996; 39
M Ranaweera (1000_CR103) 2021; 10
References_xml – volume: 9
  year: 2022
  ident: CR65
  article-title: Dataset of solution-based inorganic materials synthesis procedures extracted from the scientific literature
  publication-title: Sci. Data
  doi: 10.1038/s41597-022-01317-2
– volume: 177
  start-page: 26
  year: 2018
  end-page: 34
  ident: CR20
  article-title: OCPMDM: Online computation platform for materials data mining
  publication-title: Chemom. Intell. Lab.
  doi: 10.1016/j.chemolab.2018.04.004
– volume: 57
  start-page: 797
  year: 2021
  end-page: 809
  ident: CR101
  article-title: Composition refinement of 6061 aluminum alloy using active machine learning model based on bayesian optimization sampling
  publication-title: Acta Metall. Sin.
– volume: 24
  start-page: 102155
  year: 2021
  ident: CR52
  article-title: Opportunities and challenges of text mining in aterials research
  publication-title: iScience
  doi: 10.1016/j.isci.2021.102155
– volume: 196
  start-page: 110528
  year: 2021
  ident: CR22
  article-title: Rapid discovery of narrow bandgap oxide double perovskites using machine learning
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2021.110528
– volume: 33
  start-page: 194002
  year: 2021
  ident: CR38
  article-title: Machine learning approach to muon spectroscopy analysis
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/1361-648X/abe39e
– volume: 25
  start-page: 3772
  year: 2020
  ident: CR45
  article-title: A refractive index study of a diverse set of polymeric materials by QSPR with quantum-chemical and additive descriptors
  publication-title: Molecules
  doi: 10.3390/molecules25173772
– volume: 14
  start-page: 199
  year: 2004
  end-page: 222
  ident: CR81
  article-title: A tutorial on support vector regression
  publication-title: Stat. Comput.
  doi: 10.1023/B:STCO.0000035301.49549.88
– volume: 2022
  start-page: 4653923
  year: 2022
  ident: CR6
  article-title: Machine learning for healthcare wearable devices: the big picture
  publication-title: J. Healthc. Eng.
  doi: 10.1155/2022/4653923
– volume: 38
  start-page: 11984
  year: 2011
  end-page: 11997
  ident: CR87
  article-title: On the application of genetic programming for software engineering predictive modeling: A systematic review
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.03.041
– volume: 4
  start-page: e12194
  year: 2022
  ident: CR12
  article-title: Application of machine learning for advanced material prediction and design
  publication-title: Eco. Mat.
– volume: 8
  start-page: 142642
  year: 2020
  end-page: 142668
  ident: CR54
  article-title: Handwritten optical character recognition (OCR): a comprehensive systematic literature review (SLR)
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3012542
– volume: 22
  start-page: 41
  year: 2021
  ident: CR46
  article-title: Investigation of preprocessing and validation methodologies for PAT: case study of the granulation and coating steps for the manufacturing of ethenzamide tablets
  publication-title: AAPS Pharm. Sci. Tech.
  doi: 10.1208/s12249-020-01911-w
– volume: 5
  start-page: 5
  year: 2019
  ident: CR106
  article-title: Machine-learning-assisted discovery of polymers with high thermal conductivity using a molecular design algorithm
  publication-title: npj Comput. Mater.
  doi: 10.1038/s41524-019-0203-2
– volume: 10
  start-page: 1491
  year: 2021
  ident: CR103
  article-title: Virtual to real-world transfer learning: a systematic review
  publication-title: Electronics
  doi: 10.3390/electronics10121491
– volume: 7
  start-page: 21583
  year: 2022
  end-page: 21594
  ident: CR93
  article-title: Inverse design of hybrid organic-inorganic perovskites with suitable bandgaps via proactive searching progress
  publication-title: ACS Omega
  doi: 10.1021/acsomega.2c01380
– volume: 34
  start-page: 689
  year: 2015
  end-page: 695
  ident: CR72
  article-title: Materials genome initiative and first-principles high-throughput computation
  publication-title: Mater. China
– volume: 2015
  start-page: 674296
  year: 2015
  ident: CR50
  article-title: Survey of natural language processing techniques in bioinformatics
  publication-title: Comput. Math. Methods Med.
  doi: 10.1155/2015/674296
– volume: 110
  start-page: E1181
  year: 2013
  end-page: E1190
  ident: CR19
  article-title: Computational and statistical tradeoffs via convex relaxation
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1302293110
– volume: 3
  start-page: 2096
  year: 2017
  end-page: 5001
  ident: CR47
  article-title: Virtual screening of inorganic materials synthesis parameters with deep learning
  publication-title: npj Comput. Mater.
  doi: 10.1038/s41524-017-0055-6
– volume: 12
  year: 2020
  ident: CR48
  article-title: Discovery of superionic conductors by ensemble-scope descriptor
  publication-title: NPG Asia Mater.
  doi: 10.1038/s41427-020-0211-1
– volume: 13
  start-page: 925454
  year: 2022
  ident: CR10
  article-title: Machine learning advances in microbiology: a review of methods and applications
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2022.925454
– volume: 105
  start-page: 76
  year: 2018
  end-page: 86
  ident: CR55
  article-title: Effective semi-supervised learning strategies for automatic sentence segmentation
  publication-title: Pattern Recogn. Lett.
  doi: 10.1016/j.patrec.2017.10.010
– volume: 27
  start-page: 118101
  year: 2018
  ident: CR66
  article-title: The materials data ecosystem: materials data science and its role in data-driven materials discovery
  publication-title: Chin. Phys. B
  doi: 10.1088/1674-1056/27/11/118101
– ident: CR57
– volume: 13
  start-page: 3032
  year: 2022
  end-page: 3038
  ident: CR97
  article-title: Predicting experimental formability of hybrid organic-inorganic perovskites via imbalanced learning
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.2c00603
– volume: 27
  start-page: 151
  year: 2022
  end-page: 164
  ident: CR9
  article-title: Machine-learning methods for ligand-protein molecular docking
  publication-title: Drug Discov. Today
  doi: 10.1016/j.drudis.2021.09.007
– volume: 34
  start-page: 1060
  year: 2022
  end-page: 1073
  ident: CR34
  article-title: Stability of feature selection algorithm: a review
  publication-title: J. King Saud. Univ. Com.
– volume: 5
  start-page: 1717
  year: 2019
  end-page: 1730
  ident: CR110
  article-title: Predicting materials properties with little data using shotgun transfer learning
  publication-title: ACS Cent. Sci.
  doi: 10.1021/acscentsci.9b00804
– volume: 73
  start-page: 3383
  year: 2021
  end-page: 3400
  ident: CR53
  article-title: Challenges and advances in information extraction from scientific literature: a review
  publication-title: JOM
  doi: 10.1007/s11837-021-04902-9
– volume: 11
  year: 2020
  ident: CR89
  article-title: Simple descriptor derived from symbolic regression accelerating the discovery of new perovskite catalysts
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-17263-9
– volume: 60
  start-page: 351
  year: 2021
  end-page: 359
  ident: CR49
  article-title: Machine learning aided design of perovskite oxide materials for photocatalytic water splitting
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2021.01.035
– volume: 8
  start-page: 2663
  year: 2022
  end-page: 2693
  ident: CR36
  article-title: Feature dimensionality reduction: a review
  publication-title: Complex Intell. Syst.
  doi: 10.1007/s40747-021-00637-x
– volume: 1
  start-page: e201207003
  year: 2012
  ident: CR28
  article-title: Integration of QSAR and SAR methods for the mechanistic interpretation of predictive models for carcinogenicity
  publication-title: Comput. Struct. Biotechnol. J.
  doi: 10.5936/csbj.201207003
– volume: 31
  start-page: 685
  year: 2021
  end-page: 695
  ident: CR1
  article-title: Machine learning and deep learning
  publication-title: Electron. Mark.
  doi: 10.1007/s12525-021-00475-2
– volume: 61
  start-page: 101646
  year: 2022
  ident: CR4
  article-title: Artificial intelligence and machine learning in finance: A bibliometric review
  publication-title: Res. Int. Bus. Financ.
  doi: 10.1016/j.ribaf.2022.101646
– volume: 374
  start-page: 1385
  year: 2021
  end-page: 1389
  ident: CR79
  article-title: Pushing the frontiers of density functionals by solving the fractional electron problem
  publication-title: Science
  doi: 10.1126/science.abj6511
– volume: 102
  start-page: 102401
  year: 2022
  ident: CR7
  article-title: Machine learning in subsurface geothermal energy: two decades in review
  publication-title: Geothermics
  doi: 10.1016/j.geothermics.2022.102401
– volume: 16
  start-page: 211146
  year: 2021
  ident: CR91
  article-title: Machine learning aided discovery of the layered double hydroxides with the largest basal spacing for super-capacitors
  publication-title: Int. J. Electrochem. Sc.
  doi: 10.20964/2021.11.22
– volume: 23
  start-page: 2100612
  year: 2021
  ident: CR92
  article-title: A property‐driven stepwise design strategy for multiple low‐melting alloys via machine learning
  publication-title: Adv. Eng. Mater.
  doi: 10.1002/adem.202100612
– volume: 11
  start-page: 69
  year: 2019
  ident: CR107
  article-title: Dataset’s chemical diversity limits the generalizability of machine learning predictions
  publication-title: J. Cheminforma.
  doi: 10.1186/s13321-019-0391-2
– volume: 13
  start-page: 245
  year: 2020
  end-page: 248
  ident: CR84
  article-title: A detailed review on decision tree and random forest
  publication-title: Biosci. Biotech. Res. C.
  doi: 10.21786/bbrc/13.14/57
– volume: 60
  start-page: 4684
  year: 2020
  end-page: 4690
  ident: CR108
  article-title: PI1M: a benchmark database for polymer informatics
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/acs.jcim.0c00726
– volume: 148
  start-page: 241722
  year: 2018
  ident: CR105
  article-title: SchNet—A deep learning architecture for molecules and materials
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.5019779
– volume: 125
  start-page: 16118
  year: 2021
  end-page: 16128
  ident: CR99
  article-title: Active-learning-based generative design for the discovery of wide-band-gap materials
  publication-title: J. Phys. Chem. C.
  doi: 10.1021/acs.jpcc.1c02438
– volume: 199
  start-page: 110712
  year: 2021
  ident: CR21
  article-title: Studies on the regularity of perovskite formation via machine learning
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2021.110712
– volume: 121
  start-page: 10073
  year: 2021
  end-page: 10141
  ident: CR83
  article-title: Gaussian process regression for materials and molecules
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.1c00022
– volume: 21
  start-page: 1263
  year: 2009
  end-page: 1284
  ident: CR94
  article-title: Learning from imbalanced data
  publication-title: IEEE T. Knowl. Data En.
  doi: 10.1109/TKDE.2008.239
– volume: 53
  start-page: 551
  year: 2017
  end-page: 577
  ident: CR33
  article-title: Recent advances in feature selection and its applications
  publication-title: Knowl. Inf. Syst.
  doi: 10.1007/s10115-017-1059-8
– volume: 2020
  start-page: 78
  year: 2020
  end-page: 90
  ident: CR69
  article-title: Materials science database in material research and development: recent applications and prospects
  publication-title: Front. Data Comput.
– volume: 14
  start-page: 21596
  year: 2022
  end-page: 21604
  ident: CR76
  article-title: Designing two-dimensional halide perovskites based on high-throughput calculations and machine learning
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.2c00564
– volume: 8
  start-page: 222
  year: 2022
  ident: CR77
  article-title: RadonPy: automated physical property calculation using all-atom classical molecular dynamics simulations for polymer informatics
  publication-title: npj Comput. Mater.
  doi: 10.1038/s41524-022-00906-4
– volume: 88
  start-page: 143
  year: 2021
  end-page: 157
  ident: CR26
  article-title: Application of high-throughput first-principles calculations in ceramic innovation
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2021.01.071
– volume: 12
  year: 2021
  ident: CR78
  article-title: Discovery of temperature-induced stability reversal in perovskites using high-throughput robotic learning
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-22472-x
– volume: 157
  start-page: 106716
  year: 2022
  ident: CR32
  article-title: Fatigue life prediction of aluminum alloy via knowledge-based machine learning
  publication-title: Int. J. Fatigue
  doi: 10.1016/j.ijfatigue.2021.106716
– volume: 50
  start-page: 46
  year: 2018
  ident: CR37
  article-title: Terahertz data combined with principal component analysis applied for visual classification of materials
  publication-title: Opt. Quant. Electron.
  doi: 10.1007/s11082-018-1316-4
– volume: 44
  start-page: 27
  year: 2015
  end-page: 46
  ident: CR58
  article-title: Aligning grammatical theories and language processing models
  publication-title: J. Psycholinguist. Res.
  doi: 10.1007/s10936-014-9329-z
– volume: 75
  start-page: 100492
  year: 2020
  ident: CR25
  article-title: The electrochemical interface in first-principles calculations
  publication-title: Surf. Sci. Rep.
  doi: 10.1016/j.surfrep.2020.100492
– volume: 11
  start-page: e1489
  year: 2021
  ident: CR74
  article-title: High-throughput computational materials screening and discovery of optoelectronic semiconductors
  publication-title: WIREs Comput. Mol. Sci.
– ident: CR111
– volume: 14
  start-page: 302
  year: 2021
  ident: CR3
  article-title: Machine learning in finance: a metadata-based systematic review of the literature
  publication-title: J. Risk Financ. Manag.
  doi: 10.3390/jrfm14070302
– volume: 34
  start-page: 233002
  year: 2022
  ident: CR27
  article-title: Best practices for first-principles simulations of epitaxial inorganic interfaces
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/1361-648X/ac577b
– volume: 222
  start-page: 117431
  year: 2022
  ident: CR14
  article-title: A machine learning-based alloy design system to facilitate the rational design of high entropy alloys with enhanced hardness
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2021.117431
– volume: 39
  start-page: 92
  year: 1996
  end-page: 101
  ident: CR59
  article-title: Natural language processing for information retrieval
  publication-title: Commun. ACM
  doi: 10.1145/234173.234210
– volume: 6
  start-page: 1078
  year: 2017
  end-page: 1082
  ident: CR68
  article-title: Polymer informatics: opportunities and challenges
  publication-title: ACS Macro. Lett.
  doi: 10.1021/acsmacrolett.7b00228
– volume: 11
  start-page: 3485
  year: 2022
  ident: CR71
  article-title: Application progress of high-throughput sequencing in ocular diseases
  publication-title: J. Clin. Med.
  doi: 10.3390/jcm11123485
– volume: 69
  start-page: 611
  year: 2020
  end-page: 630
  ident: CR29
  article-title: Artificial neural network and support vector regression applied in quantitative structure-property relationship modelling of solubility of solid solutes in supercritical CO2
  publication-title: Kem. u. industriji.
  doi: 10.15255/KUI.2020.004
– volume: 2
  start-page: 3115
  year: 2020
  end-page: 3130
  ident: CR11
  article-title: Machine learning-driven new material discovery
  publication-title: Nanoscale Adv.
  doi: 10.1039/D0NA00388C
– volume: 37
  start-page: 3329
  year: 2020
  end-page: 3346
  ident: CR86
  article-title: A novel artificial intelligence technique to predict compressive strength of recycled aggregate concrete using ICA-XGBoost model
  publication-title: Eng. Comput.
  doi: 10.1007/s00366-020-01003-0
– volume: 136
  start-page: 142
  year: 2018
  end-page: 145
  ident: CR18
  article-title: When small data beats big data
  publication-title: Stat. Probabil. Lett.
  doi: 10.1016/j.spl.2018.02.031
– volume: 5
  start-page: 2100565
  year: 2022
  ident: CR17
  article-title: New opportunity: machine learning for polymer materials design and discovery
  publication-title: Adv. Theor. Simul.
  doi: 10.1002/adts.202100565
– volume: 108
  start-page: 971
  year: 2019
  end-page: 992
  ident: CR85
  article-title: Accelerated gradient boosting
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-019-05787-1
– volume: 7
  start-page: 23
  year: 2021
  ident: CR15
  article-title: Machine learning for perovskite materials design and discovery
  publication-title: npj Comput. Mater.
  doi: 10.1038/s41524-021-00495-8
– volume: 6
  start-page: 1
  year: 2014
  end-page: 12
  ident: CR61
  article-title: Chemical named entities recognition: a review on approaches and applications
  publication-title: J. Cheminformatics
– volume: 125
  start-page: 21141
  year: 2021
  end-page: 21150
  ident: CR23
  article-title: Multiobjective stepwise design strategy-assisted design of high-performance perovskite oxide photocatalysts
  publication-title: J. Phys. Chem. C.
  doi: 10.1021/acs.jpcc.1c05482
– volume: 4
  start-page: 904
  year: 2022
  ident: CR112
  article-title: Advances, challenges and opportunities in creating data for trustworthy AI
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-022-00548-7
– volume: 27
  start-page: 118901
  year: 2018
  ident: CR67
  article-title: Accomplishment and challenge of materials database toward big data
  publication-title: Chin. Phys. B
  doi: 10.1088/1674-1056/27/11/118901
– volume: 9
  start-page: e740
  year: 2022
  ident: CR5
  article-title: Artificial intelligence and machine learning in emergency medicine: a narrative review
  publication-title: Acute. Med. Surg.
  doi: 10.1002/ams2.740
– volume: 56
  start-page: 2054
  year: 2022
  end-page: 2064
  ident: CR30
  article-title: Predicting solute descriptors for organic chemicals by a deep neural network (dnn) using basic chemical structures and a surrogate metric
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.1c05398
– volume: 18
  start-page: 4945
  year: 2022
  end-page: 4951
  ident: CR88
  article-title: Improving symbolic regression for predicting materials properties with iterative variable selection
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.2c00281
– ident: CR95
– volume: 27
  start-page: 1717
  year: 2015
  end-page: 1730
  ident: CR43
  article-title: A fast leave-one-out cross-validation for SVM-like family
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-015-1970-4
– volume: 57
  start-page: 42
  year: 2021
  end-page: 52
  ident: CR96
  article-title: Review of classification methods for unbalanced data sets
  publication-title: Comput. Eng. Appl.
– volume: 56
  start-page: 1894
  year: 2016
  end-page: 1904
  ident: CR62
  article-title: ChemDataExtractor: a toolkit for automated extraction of chemical information from the scientific literature
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/acs.jcim.6b00207
– volume: 20
  start-page: 511
  year: 2019
  end-page: 520
  ident: CR64
  article-title: Data-driven analysis of electron relaxation times in PbTe-type thermoelectric materials
  publication-title: Sci. Technol. Adv. Mat.
  doi: 10.1080/14686996.2019.1603885
– volume: 2
  start-page: 024002
  year: 2019
  ident: CR41
  article-title: Simultaneous learning of several materials properties from incomplete databases with multi-task SISSO
  publication-title: J. Phys. Mater.
  doi: 10.1088/2515-7639/ab077b
– volume: 188
  start-page: 2222
  year: 2019
  end-page: 2239
  ident: CR2
  article-title: What is machine learning? A primer for the epidemiologist
  publication-title: Am. J. Epidemiol.
– volume: 121
  start-page: 128
  year: 2016
  end-page: 152
  ident: CR51
  article-title: TextFlows: a visual programming platform for text mining and natural language processing
  publication-title: Sci. Comput. Program.
  doi: 10.1016/j.scico.2016.01.001
– volume: 62
  start-page: 521
  year: 2019
  end-page: 545
  ident: CR75
  article-title: High-throughput experiments facilitate materials innovation: a review
  publication-title: Sci. China Technol. Sc.
  doi: 10.1007/s11431-018-9369-9
– volume: 3
  start-page: 253
  year: 2018
  end-page: 263
  ident: CR31
  article-title: Statistical models are able to predict ionic liquid viscosity across a wide range of chemical functionalities and experimental conditions
  publication-title: Mol. Syst. Des. Eng.
  doi: 10.1039/C7ME00094D
– volume: 12
  start-page: 492
  year: 2020
  ident: CR8
  article-title: Artificial Intelligence and machine learning applications in smart production: progress, trends, and directions
  publication-title: Sustainability
  doi: 10.3390/su12020492
– volume: 7
  year: 2015
  ident: CR56
  article-title: tmChem: a high performance approach for chemical named entity recognition and normalization
  publication-title: J. Cheminforma.
  doi: 10.1186/1758-2946-7-S1-S3
– volume: 13
  start-page: 3965
  year: 2022
  end-page: 3977
  ident: CR13
  article-title: Materials data toward machine learning: advances and challenges
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.2c00576
– volume: 5
  start-page: 21
  year: 2019
  ident: CR98
  article-title: Active learning in materials science with emphasis on adaptive sampling using uncertainties for targeted design
  publication-title: npj Comput. Mater.
  doi: 10.1038/s41524-019-0153-8
– volume: 62
  start-page: 5038
  year: 2022
  end-page: 5049
  ident: CR24
  article-title: Search for ABO type ferroelectric perovskites with targeted multi-properties by machine learning strategies
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/acs.jcim.1c00566
– volume: 2
  start-page: 083802
  year: 2018
  ident: CR40
  article-title: SISSO: A compressed-sensing method for identifying the best low-dimensional descriptor in an immensity of offered candidates
  publication-title: Phys. Rev. Mater.
  doi: 10.1103/PhysRevMaterials.2.083802
– volume: 26
  start-page: 66
  year: 2018
  end-page: 79
  ident: CR42
  article-title: Evaluating the performance of the k-fold cross-validation approach for model selection in growth mixture modeling
  publication-title: Struct. Equ. Model.
  doi: 10.1080/10705511.2018.1500140
– volume: 109
  start-page: 43
  year: 2021
  end-page: 76
  ident: CR104
  article-title: A comprehensive survey on transfer learning
  publication-title: P. IEEE
  doi: 10.1109/JPROC.2020.3004555
– volume: 61
  start-page: 4280
  year: 2021
  end-page: 4289
  ident: CR63
  article-title: ChemDataExtractor 2.0: autopopulated ontologies for materials science
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/acs.jcim.1c00446
– volume: 74
  start-page: 3609
  year: 2011
  end-page: 3618
  ident: CR82
  article-title: A review of optimization methodologies in support vector machines
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2011.06.026
– volume: 190
  start-page: 110314
  year: 2021
  ident: CR109
  article-title: Transfer learning for materials informatics using crystal graph convolutional neural network
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2021.110314
– volume: 34
  start-page: 1961
  year: 2021
  end-page: 1969
  ident: CR44
  article-title: Machine learning model for high-throughput screening of perovskite manganites with the highest néel temperature
  publication-title: J. Supercond. Nov. Magn.
  doi: 10.1007/s10948-021-05857-3
– volume: 37
  start-page: 457
  year: 2020
  end-page: 475
  ident: CR35
  article-title: A review, framework, and R toolkit for exploring, evaluating, and comparing visualization methods
  publication-title: Vis. Comput
  doi: 10.1007/s00371-020-01817-5
– volume: 11
  year: 2020
  ident: CR100
  article-title: On-the-fly closed-loop materials discovery via Bayesian active learning
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-19597-w
– volume: 13
  year: 2022
  ident: CR80
  article-title: Towards universal neural network potential for material discovery applicable to arbitrary combination of 45 elements
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-30687-9
– volume: 921
  start-page: 165984
  year: 2022
  ident: CR16
  article-title: Material machine learning for alloys: applications, challenges and perspectives
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2022.165984
– volume: 7
  year: 2016
  ident: CR102
  article-title: Accelerated search for materials with targeted properties by adaptive design
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms11241
– volume: 48
  start-page: 1917
  year: 2021
  end-page: 1933
  ident: CR39
  article-title: Linear discriminant analysis for multiple functional data analysis
  publication-title: J. Appl. Stat.
  doi: 10.1080/02664763.2020.1780569
– volume: 58
  start-page: 2420
  year: 2018
  end-page: 2427
  ident: CR90
  article-title: Using data mining to search for perovskite materials with higher specific surface area
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/acs.jcim.8b00436
– volume: 29
  start-page: 21
  year: 2018
  end-page: 43
  ident: CR60
  article-title: Recent named entity recognition and classification techniques: a systematic review
  publication-title: Comput. Sci. Rev.
  doi: 10.1016/j.cosrev.2018.06.001
– volume: 188
  start-page: 1731
  year: 2022
  end-page: 1745
  ident: CR70
  article-title: High-throughput methods for genome editing: the more the better
  publication-title: Plant Physiol.
  doi: 10.1093/plphys/kiac017
– volume: 12
  start-page: 191
  year: 2013
  end-page: 201
  ident: CR73
  article-title: The high-throughput highway to computational materials design
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3568
– volume: 34
  start-page: 689
  year: 2015
  ident: 1000_CR72
  publication-title: Mater. China
– volume: 44
  start-page: 27
  year: 2015
  ident: 1000_CR58
  publication-title: J. Psycholinguist. Res.
  doi: 10.1007/s10936-014-9329-z
– volume: 5
  start-page: 2100565
  year: 2022
  ident: 1000_CR17
  publication-title: Adv. Theor. Simul.
  doi: 10.1002/adts.202100565
– volume: 88
  start-page: 143
  year: 2021
  ident: 1000_CR26
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2021.01.071
– ident: 1000_CR111
  doi: 10.1016/j.eng.2020.04.004
– volume: 14
  start-page: 21596
  year: 2022
  ident: 1000_CR76
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.2c00564
– volume: 62
  start-page: 5038
  year: 2022
  ident: 1000_CR24
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/acs.jcim.1c00566
– volume: 27
  start-page: 1717
  year: 2015
  ident: 1000_CR43
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-015-1970-4
– volume: 31
  start-page: 685
  year: 2021
  ident: 1000_CR1
  publication-title: Electron. Mark.
  doi: 10.1007/s12525-021-00475-2
– volume: 10
  start-page: 1491
  year: 2021
  ident: 1000_CR103
  publication-title: Electronics
  doi: 10.3390/electronics10121491
– ident: 1000_CR95
– volume: 13
  start-page: 925454
  year: 2022
  ident: 1000_CR10
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2022.925454
– volume: 1
  start-page: e201207003
  year: 2012
  ident: 1000_CR28
  publication-title: Comput. Struct. Biotechnol. J.
  doi: 10.5936/csbj.201207003
– volume: 2
  start-page: 083802
  year: 2018
  ident: 1000_CR40
  publication-title: Phys. Rev. Mater.
  doi: 10.1103/PhysRevMaterials.2.083802
– volume: 136
  start-page: 142
  year: 2018
  ident: 1000_CR18
  publication-title: Stat. Probabil. Lett.
  doi: 10.1016/j.spl.2018.02.031
– volume: 196
  start-page: 110528
  year: 2021
  ident: 1000_CR22
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2021.110528
– volume: 7
  year: 2015
  ident: 1000_CR56
  publication-title: J. Cheminforma.
  doi: 10.1186/1758-2946-7-S1-S3
– volume: 12
  year: 2020
  ident: 1000_CR48
  publication-title: NPG Asia Mater.
  doi: 10.1038/s41427-020-0211-1
– volume: 374
  start-page: 1385
  year: 2021
  ident: 1000_CR79
  publication-title: Science
  doi: 10.1126/science.abj6511
– volume: 199
  start-page: 110712
  year: 2021
  ident: 1000_CR21
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2021.110712
– volume: 5
  start-page: 1717
  year: 2019
  ident: 1000_CR110
  publication-title: ACS Cent. Sci.
  doi: 10.1021/acscentsci.9b00804
– volume: 2020
  start-page: 78
  year: 2020
  ident: 1000_CR69
  publication-title: Front. Data Comput.
– volume: 34
  start-page: 1961
  year: 2021
  ident: 1000_CR44
  publication-title: J. Supercond. Nov. Magn.
  doi: 10.1007/s10948-021-05857-3
– volume: 125
  start-page: 21141
  year: 2021
  ident: 1000_CR23
  publication-title: J. Phys. Chem. C.
  doi: 10.1021/acs.jpcc.1c05482
– volume: 33
  start-page: 194002
  year: 2021
  ident: 1000_CR38
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/1361-648X/abe39e
– ident: 1000_CR57
  doi: 10.1109/ElConRus51938.2021.9396231
– volume: 60
  start-page: 351
  year: 2021
  ident: 1000_CR49
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2021.01.035
– volume: 13
  start-page: 3032
  year: 2022
  ident: 1000_CR97
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.2c00603
– volume: 105
  start-page: 76
  year: 2018
  ident: 1000_CR55
  publication-title: Pattern Recogn. Lett.
  doi: 10.1016/j.patrec.2017.10.010
– volume: 21
  start-page: 1263
  year: 2009
  ident: 1000_CR94
  publication-title: IEEE T. Knowl. Data En.
  doi: 10.1109/TKDE.2008.239
– volume: 177
  start-page: 26
  year: 2018
  ident: 1000_CR20
  publication-title: Chemom. Intell. Lab.
  doi: 10.1016/j.chemolab.2018.04.004
– volume: 102
  start-page: 102401
  year: 2022
  ident: 1000_CR7
  publication-title: Geothermics
  doi: 10.1016/j.geothermics.2022.102401
– volume: 39
  start-page: 92
  year: 1996
  ident: 1000_CR59
  publication-title: Commun. ACM
  doi: 10.1145/234173.234210
– volume: 11
  start-page: 3485
  year: 2022
  ident: 1000_CR71
  publication-title: J. Clin. Med.
  doi: 10.3390/jcm11123485
– volume: 2
  start-page: 3115
  year: 2020
  ident: 1000_CR11
  publication-title: Nanoscale Adv.
  doi: 10.1039/D0NA00388C
– volume: 61
  start-page: 4280
  year: 2021
  ident: 1000_CR63
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/acs.jcim.1c00446
– volume: 74
  start-page: 3609
  year: 2011
  ident: 1000_CR82
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2011.06.026
– volume: 11
  year: 2020
  ident: 1000_CR89
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-17263-9
– volume: 5
  start-page: 21
  year: 2019
  ident: 1000_CR98
  publication-title: npj Comput. Mater.
  doi: 10.1038/s41524-019-0153-8
– volume: 2
  start-page: 024002
  year: 2019
  ident: 1000_CR41
  publication-title: J. Phys. Mater.
  doi: 10.1088/2515-7639/ab077b
– volume: 56
  start-page: 1894
  year: 2016
  ident: 1000_CR62
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/acs.jcim.6b00207
– volume: 24
  start-page: 102155
  year: 2021
  ident: 1000_CR52
  publication-title: iScience
  doi: 10.1016/j.isci.2021.102155
– volume: 23
  start-page: 2100612
  year: 2021
  ident: 1000_CR92
  publication-title: Adv. Eng. Mater.
  doi: 10.1002/adem.202100612
– volume: 121
  start-page: 128
  year: 2016
  ident: 1000_CR51
  publication-title: Sci. Comput. Program.
  doi: 10.1016/j.scico.2016.01.001
– volume: 14
  start-page: 199
  year: 2004
  ident: 1000_CR81
  publication-title: Stat. Comput.
  doi: 10.1023/B:STCO.0000035301.49549.88
– volume: 37
  start-page: 3329
  year: 2020
  ident: 1000_CR86
  publication-title: Eng. Comput.
  doi: 10.1007/s00366-020-01003-0
– volume: 25
  start-page: 3772
  year: 2020
  ident: 1000_CR45
  publication-title: Molecules
  doi: 10.3390/molecules25173772
– volume: 7
  start-page: 21583
  year: 2022
  ident: 1000_CR93
  publication-title: ACS Omega
  doi: 10.1021/acsomega.2c01380
– volume: 62
  start-page: 521
  year: 2019
  ident: 1000_CR75
  publication-title: Sci. China Technol. Sc.
  doi: 10.1007/s11431-018-9369-9
– volume: 110
  start-page: E1181
  year: 2013
  ident: 1000_CR19
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1302293110
– volume: 108
  start-page: 971
  year: 2019
  ident: 1000_CR85
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-019-05787-1
– volume: 12
  start-page: 191
  year: 2013
  ident: 1000_CR73
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3568
– volume: 13
  start-page: 245
  year: 2020
  ident: 1000_CR84
  publication-title: Biosci. Biotech. Res. C.
  doi: 10.21786/bbrc/13.14/57
– volume: 50
  start-page: 46
  year: 2018
  ident: 1000_CR37
  publication-title: Opt. Quant. Electron.
  doi: 10.1007/s11082-018-1316-4
– volume: 148
  start-page: 241722
  year: 2018
  ident: 1000_CR105
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.5019779
– volume: 48
  start-page: 1917
  year: 2021
  ident: 1000_CR39
  publication-title: J. Appl. Stat.
  doi: 10.1080/02664763.2020.1780569
– volume: 6
  start-page: 1
  year: 2014
  ident: 1000_CR61
  publication-title: J. Cheminformatics
  doi: 10.1186/1758-2946-6-1
– volume: 11
  year: 2020
  ident: 1000_CR100
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-19597-w
– volume: 27
  start-page: 151
  year: 2022
  ident: 1000_CR9
  publication-title: Drug Discov. Today
  doi: 10.1016/j.drudis.2021.09.007
– volume: 34
  start-page: 1060
  year: 2022
  ident: 1000_CR34
  publication-title: J. King Saud. Univ. Com.
– volume: 16
  start-page: 211146
  year: 2021
  ident: 1000_CR91
  publication-title: Int. J. Electrochem. Sc.
  doi: 10.20964/2021.11.22
– volume: 109
  start-page: 43
  year: 2021
  ident: 1000_CR104
  publication-title: P. IEEE
  doi: 10.1109/JPROC.2020.3004555
– volume: 57
  start-page: 42
  year: 2021
  ident: 1000_CR96
  publication-title: Comput. Eng. Appl.
– volume: 2015
  start-page: 674296
  year: 2015
  ident: 1000_CR50
  publication-title: Comput. Math. Methods Med.
  doi: 10.1155/2015/674296
– volume: 12
  start-page: 492
  year: 2020
  ident: 1000_CR8
  publication-title: Sustainability
  doi: 10.3390/su12020492
– volume: 157
  start-page: 106716
  year: 2022
  ident: 1000_CR32
  publication-title: Int. J. Fatigue
  doi: 10.1016/j.ijfatigue.2021.106716
– volume: 188
  start-page: 1731
  year: 2022
  ident: 1000_CR70
  publication-title: Plant Physiol.
  doi: 10.1093/plphys/kiac017
– volume: 11
  start-page: 69
  year: 2019
  ident: 1000_CR107
  publication-title: J. Cheminforma.
  doi: 10.1186/s13321-019-0391-2
– volume: 69
  start-page: 611
  year: 2020
  ident: 1000_CR29
  publication-title: Kem. u. industriji.
  doi: 10.15255/KUI.2020.004
– volume: 921
  start-page: 165984
  year: 2022
  ident: 1000_CR16
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2022.165984
– volume: 6
  start-page: 1078
  year: 2017
  ident: 1000_CR68
  publication-title: ACS Macro. Lett.
  doi: 10.1021/acsmacrolett.7b00228
– volume: 27
  start-page: 118901
  year: 2018
  ident: 1000_CR67
  publication-title: Chin. Phys. B
  doi: 10.1088/1674-1056/27/11/118901
– volume: 8
  start-page: 2663
  year: 2022
  ident: 1000_CR36
  publication-title: Complex Intell. Syst.
  doi: 10.1007/s40747-021-00637-x
– volume: 27
  start-page: 118101
  year: 2018
  ident: 1000_CR66
  publication-title: Chin. Phys. B
  doi: 10.1088/1674-1056/27/11/118101
– volume: 18
  start-page: 4945
  year: 2022
  ident: 1000_CR88
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.2c00281
– volume: 13
  year: 2022
  ident: 1000_CR80
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-30687-9
– volume: 34
  start-page: 233002
  year: 2022
  ident: 1000_CR27
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/1361-648X/ac577b
– volume: 125
  start-page: 16118
  year: 2021
  ident: 1000_CR99
  publication-title: J. Phys. Chem. C.
  doi: 10.1021/acs.jpcc.1c02438
– volume: 4
  start-page: e12194
  year: 2022
  ident: 1000_CR12
  publication-title: Eco. Mat.
– volume: 188
  start-page: 2222
  year: 2019
  ident: 1000_CR2
  publication-title: Am. J. Epidemiol.
– volume: 8
  start-page: 142642
  year: 2020
  ident: 1000_CR54
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3012542
– volume: 58
  start-page: 2420
  year: 2018
  ident: 1000_CR90
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/acs.jcim.8b00436
– volume: 121
  start-page: 10073
  year: 2021
  ident: 1000_CR83
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.1c00022
– volume: 56
  start-page: 2054
  year: 2022
  ident: 1000_CR30
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.1c05398
– volume: 60
  start-page: 4684
  year: 2020
  ident: 1000_CR108
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/acs.jcim.0c00726
– volume: 20
  start-page: 511
  year: 2019
  ident: 1000_CR64
  publication-title: Sci. Technol. Adv. Mat.
  doi: 10.1080/14686996.2019.1603885
– volume: 38
  start-page: 11984
  year: 2011
  ident: 1000_CR87
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.03.041
– volume: 3
  start-page: 2096
  year: 2017
  ident: 1000_CR47
  publication-title: npj Comput. Mater.
  doi: 10.1038/s41524-017-0055-6
– volume: 5
  start-page: 5
  year: 2019
  ident: 1000_CR106
  publication-title: npj Comput. Mater.
  doi: 10.1038/s41524-019-0203-2
– volume: 9
  start-page: e740
  year: 2022
  ident: 1000_CR5
  publication-title: Acute. Med. Surg.
  doi: 10.1002/ams2.740
– volume: 22
  start-page: 41
  year: 2021
  ident: 1000_CR46
  publication-title: AAPS Pharm. Sci. Tech.
  doi: 10.1208/s12249-020-01911-w
– volume: 2022
  start-page: 4653923
  year: 2022
  ident: 1000_CR6
  publication-title: J. Healthc. Eng.
  doi: 10.1155/2022/4653923
– volume: 4
  start-page: 904
  year: 2022
  ident: 1000_CR112
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-022-00548-7
– volume: 37
  start-page: 457
  year: 2020
  ident: 1000_CR35
  publication-title: Vis. Comput
  doi: 10.1007/s00371-020-01817-5
– volume: 14
  start-page: 302
  year: 2021
  ident: 1000_CR3
  publication-title: J. Risk Financ. Manag.
  doi: 10.3390/jrfm14070302
– volume: 7
  start-page: 23
  year: 2021
  ident: 1000_CR15
  publication-title: npj Comput. Mater.
  doi: 10.1038/s41524-021-00495-8
– volume: 53
  start-page: 551
  year: 2017
  ident: 1000_CR33
  publication-title: Knowl. Inf. Syst.
  doi: 10.1007/s10115-017-1059-8
– volume: 190
  start-page: 110314
  year: 2021
  ident: 1000_CR109
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2021.110314
– volume: 13
  start-page: 3965
  year: 2022
  ident: 1000_CR13
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.2c00576
– volume: 3
  start-page: 253
  year: 2018
  ident: 1000_CR31
  publication-title: Mol. Syst. Des. Eng.
  doi: 10.1039/C7ME00094D
– volume: 9
  year: 2022
  ident: 1000_CR65
  publication-title: Sci. Data
  doi: 10.1038/s41597-022-01317-2
– volume: 12
  year: 2021
  ident: 1000_CR78
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-22472-x
– volume: 57
  start-page: 797
  year: 2021
  ident: 1000_CR101
  publication-title: Acta Metall. Sin.
– volume: 29
  start-page: 21
  year: 2018
  ident: 1000_CR60
  publication-title: Comput. Sci. Rev.
  doi: 10.1016/j.cosrev.2018.06.001
– volume: 26
  start-page: 66
  year: 2018
  ident: 1000_CR42
  publication-title: Struct. Equ. Model.
  doi: 10.1080/10705511.2018.1500140
– volume: 8
  start-page: 222
  year: 2022
  ident: 1000_CR77
  publication-title: npj Comput. Mater.
  doi: 10.1038/s41524-022-00906-4
– volume: 73
  start-page: 3383
  year: 2021
  ident: 1000_CR53
  publication-title: JOM
  doi: 10.1007/s11837-021-04902-9
– volume: 7
  year: 2016
  ident: 1000_CR102
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms11241
– volume: 61
  start-page: 101646
  year: 2022
  ident: 1000_CR4
  publication-title: Res. Int. Bus. Financ.
  doi: 10.1016/j.ribaf.2022.101646
– volume: 222
  start-page: 117431
  year: 2022
  ident: 1000_CR14
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2021.117431
– volume: 75
  start-page: 100492
  year: 2020
  ident: 1000_CR25
  publication-title: Surf. Sci. Rep.
  doi: 10.1016/j.surfrep.2020.100492
– volume: 11
  start-page: e1489
  year: 2021
  ident: 1000_CR74
  publication-title: WIREs Comput. Mol. Sci.
  doi: 10.1002/wcms.1489
SSID ssj0001928240
Score 2.6525059
SecondaryResourceType review_article
Snippet This review discussed the dilemma of small data faced by materials machine learning. First, we analyzed the limitations brought by small data. Then, the...
Abstract This review discussed the dilemma of small data faced by materials machine learning. First, we analyzed the limitations brought by small data. Then,...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 42
SubjectTerms 639/301/1034
639/301/1034/1037
Active learning
Algorithms
Artificial intelligence
Big Data
Characterization and Evaluation of Materials
Chemistry and Materials Science
Computational Intelligence
Data collection
Experiments
Genomes
Interdisciplinary subjects
Learning algorithms
Machine learning
Materials Science
Mathematical and Computational Engineering
Mathematical and Computational Physics
Mathematical Modeling and Industrial Mathematics
Review Article
Theoretical
Transfer learning
Workflow
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NTwMhECVaL3owfsZqNXvwpqQssMCejBqNMdGLmvRGWGCNSW2rXS_-egfKtmqiV5bdbGYG3pthmEHoOM8BxAx3uOIeHBROGFZWMswFqQUAtqxiwO3uXtw88dtBMUgBt2lKq2z3xLhRu7ENMfI-lWW4ownr82zyhkPXqHC6mlpoLKOVULosWLUcyEWMpQSHgpN0V4Yw1Z8GvOIYgAp86HCp-vMHHsWy_T-45q_j0Yg61xtoPdHF7Hym30205EdbaO1bEcFtRB5ezXCYhVTP7DWmRvos9YJ4zl5GMNbMrCxLaLeDHq-vHi9vcOqDgC24Lw323occ0LrIvfTEmqpQTggLVKJWhBtnGHWiEkZGZ8ABYXKGc2tUXStX5mwXdUbjkd9DGbDD3IILJ42gobVcWZuaGGpLVQYiZLsob4WhbaoRHlpVDHU8q2ZKzwSoQYA6ClB_dtHJ_J3JrELGv7MvgoznM0N16zgwfn_WabFoKkN5UmeZ8yWnhJbc5BVTQBbBgKzgXdRrNaTTkpvqhYF00WmrtcXjv39p__-vHaBVGu2FYVr0UKd5__CHQESa6iha2xd2ydY-
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB7UXvQgPrFaZQ_edDGbpNnssYqlFPSiQm8hm2SL0IfU9eKvd5JmfaGC12wGwmQ2800y8w3AaZahE9PcpiV3GKBwwlJpcpZyQSqBDjsvw4Xbza0YPPDhqDtaAdrUwoSk_UBpGY7pJjvs4tk7Gp6ih8Hg11dDv65Cy1O1o223er3h3fDjZqXAMIKTWCFDmPxB-IsXCmT9XxDmt0fR4Gv6W7AZQWLSWy5rG1bcbAc2PlEH7gK5m-rJJPEJnsk0JES6JHaAGCePMxyrl7aVRB-3B_f96_urQRq7H6QGg5Y6dc75zM-qm7ncEaPLrrRCGAQQlSRcW82oFaXQeQgBLMIkqzk3WlaVtEXG9mFtNp-5A0gQE2YGA7dcC-obyhWVroimppCFhz-mDVmjDGUiM7hvUDFR4YWaSbVUoEIFqqBA9dqGs3eZpyUvxp-zL72O32d6TuswMF-MVdxjRXNPSmoNs67glNCC66xkEiEimo0RvA2dZodU_NGeUajwpbt4bLfhvNm1j8-_L-nwf9OPYJ0G-2Ep7XZgrV68uGOEI3V5Eu3vDTIJ1aM
  priority: 102
  providerName: Springer Nature
Title Small data machine learning in materials science
URI https://link.springer.com/article/10.1038/s41524-023-01000-z
https://www.proquest.com/docview/2790694538
https://doaj.org/article/276148dc3de9420294a1b388350f6c64
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PT8IwFH5RvOjB-DOiSHbwpgvbWrruCAQkJBIjmHBrurYzGkAjeOGv97UbCCbqxcuWdN3SvNft-976-j2AqzBEEJNU-yk1GKDQgPhcxcSnLMgYAnacuh9ud33WfaS9UX20VurL5oTl8sC54WpRbKUqtSLaJBQj9YTKMCUciQM-TDGnBIqYtxZMveS8hSNWFbtkAsJrM4tU1EeIwujZbqdebCCRE-zfYJnfFkYd3nQOYL8gil4jH-AhbJnpEeytyQceQzCYyPHYs0me3sQlRRqvqALx5D1PsW2ezy-vwLkTGHbaw1bXLyog-AoDl7lvjLHZn1k9NLEJlEzrXDOmkERkPKBSSxJpljIZuzBAI1XSklIleZZxnYTkFErT16k5Aw95YagweIsli2xRuSSTWSAjlfDEUiBVhnBpDKEKdXBbpGIs3Co14SI3oEADCmdAsSjD9eqet1wb49feTWvjVU-ra-0a0Nui8Lb4y9tlqCw9JIqXbYY3JXb7Ln66y3Cz9NrX5Z-HdP4fQ7qA3cjNKuJH9QqU5u8f5hKJyjytwnY8ivHIO7dV2Gk0eoMenpvt_v0DtrZYq-pm7SfV6OMS
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5ROFAOVXmJpRRyKCewcGyv4xyqqjy2y_PCInGzHNtBSMsusFtV5T_1P3bsJCwgwY1r4ljR-LO_b2zPDMC3NEUSM8KRQnh0UATlRNmMEyFpKZGwsyJuuJ2eye6FOLpsX07BvyYWJlyrbNbEuFC7oQ175Dssy0OMJs7PH7d3JFSNCqerTQmNChbH_u8fdNlG3w_3cXw3Gesc9Pa6pK4qQCw6A2PivQ83Kst26jNPrSnayklpkZhLRYVxhjMnC2myKK0dyg9nhLBGlaVyecqx2w8wIzgSeQhM7_yabOnk6L8IWofmUK52RoEeBUFeRJc9xHA_PKO_WCXgmbR9cRobSa7zGT7V6jT5WcFpHqb8YAHmnuQsXAR6fmP6_STcLE1u4k1Mn9SlJ66S6wE-G1egTmpyXYLeexhoGaYHw4FfgQTFaGrRY8yMZKGSXV6akhpmc5UH3WVbkDbG0LZOSR4qY_R1PBrnSlcG1GhAHQ2oH1qw9fjNbZWQ483Wu8HGjy1DMu34YHh_peu5qVkWsqE6y53PBaMsFyYtuEJtini1UrRgrRkhXc_wkZ7gsQXbzahNXr_-S6tv97YBs93e6Yk-OTw7_gIfWcQOJ6y9BtPj-9_-K2qgcbEekZeAfmek_weo-hNV
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LSyQxEC7cEZb1ILq74vjsw3rSYDqdSXcfRHwNuuogroK3kE7SIowz6oyI_jP_nZV02lFhvXlNp0OofMlXldQD4E8cI4kpbkjBLRoonCYk02lCuKClQMJOC3_hdtwR--f870XrYgye61gY51ZZn4n-oDZ97e7I11mauxhN3J_rZXCLONltb97cEldByr201uU0Kogc2scHNN8GGwe7uNYrjLX3znb2SagwQDQaBkNirXXelWUrtqmlWhWtzAihkaTLjHJlVMKMKIRKvZptUBUxinOtsrLMTB4nOOw3GE-dUdSA8e29zsnp6IInR2uG0xCoQ3HeA0eWnCBLogHvIrqf3pGhrxnwTtH98DbrKa89BZNBV422KnBNw5jt_YSJNxkMfwH9d6263cj5mUbX3i_TRqEQxWV01cO2YQXxKFDtbzj7ChHNQKPX79lZiFA1jTWKKlWCubp2ealKqpjOs9xpYboJcS0MqUOCclcnoyv9Q3mSyUqAEgUovQDlUxNWX_-5qdJzfNp728n4tadLre0b-neXMuxUyVKXG9XoxNicM8pyruIiyVBTRfRqwZuwUK-QDPt9IEfobMJavWqjz_-f0tznoy3Dd0S5PDroHM7DD-ahkxDGF6AxvLu3i6gQDYulAL0I5BeD_QU7SRjm
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Small+data+machine+learning+in+materials+science&rft.jtitle=npj+computational+materials&rft.au=Pengcheng+Xu&rft.au=Xiaobo+Ji&rft.au=Minjie+Li&rft.au=Wencong+Lu&rft.date=2023-03-25&rft.pub=Nature+Portfolio&rft.eissn=2057-3960&rft.volume=9&rft.issue=1&rft.spage=1&rft.epage=15&rft_id=info:doi/10.1038%2Fs41524-023-01000-z&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_276148dc3de9420294a1b388350f6c64
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2057-3960&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2057-3960&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2057-3960&client=summon