Small data machine learning in materials science
This review discussed the dilemma of small data faced by materials machine learning. First, we analyzed the limitations brought by small data. Then, the workflow of materials machine learning has been introduced. Next, the methods of dealing with small data were introduced, including data extraction...
Saved in:
Published in | npj computational materials Vol. 9; no. 1; pp. 42 - 15 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
25.03.2023
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This review discussed the dilemma of small data faced by materials machine learning. First, we analyzed the limitations brought by small data. Then, the workflow of materials machine learning has been introduced. Next, the methods of dealing with small data were introduced, including data extraction from publications, materials database construction, high-throughput computations and experiments from the data source level; modeling algorithms for small data and imbalanced learning from the algorithm level; active learning and transfer learning from the machine learning strategy level. Finally, the future directions for small data machine learning in materials science were proposed. |
---|---|
AbstractList | This review discussed the dilemma of small data faced by materials machine learning. First, we analyzed the limitations brought by small data. Then, the workflow of materials machine learning has been introduced. Next, the methods of dealing with small data were introduced, including data extraction from publications, materials database construction, high-throughput computations and experiments from the data source level; modeling algorithms for small data and imbalanced learning from the algorithm level; active learning and transfer learning from the machine learning strategy level. Finally, the future directions for small data machine learning in materials science were proposed. Abstract This review discussed the dilemma of small data faced by materials machine learning. First, we analyzed the limitations brought by small data. Then, the workflow of materials machine learning has been introduced. Next, the methods of dealing with small data were introduced, including data extraction from publications, materials database construction, high-throughput computations and experiments from the data source level; modeling algorithms for small data and imbalanced learning from the algorithm level; active learning and transfer learning from the machine learning strategy level. Finally, the future directions for small data machine learning in materials science were proposed. |
ArticleNumber | 42 |
Author | Ji, Xiaobo Lu, Wencong Xu, Pengcheng Li, Minjie |
Author_xml | – sequence: 1 givenname: Pengcheng surname: Xu fullname: Xu, Pengcheng organization: Materials Genome Institute, Shanghai University – sequence: 2 givenname: Xiaobo surname: Ji fullname: Ji, Xiaobo organization: Department of Chemistry, College of Sciences, Shanghai University – sequence: 3 givenname: Minjie orcidid: 0000-0001-5048-6211 surname: Li fullname: Li, Minjie email: minjieli@shu.edu.cn organization: Department of Chemistry, College of Sciences, Shanghai University – sequence: 4 givenname: Wencong orcidid: 0000-0001-5361-6122 surname: Lu fullname: Lu, Wencong email: wclu@shu.edu.cn organization: Materials Genome Institute, Shanghai University, Department of Chemistry, College of Sciences, Shanghai University, Zhejiang Laboratory |
BookMark | eNp9kMtOHDEQRS1EJMiEH2DVUtYdys-xlxEKAQkpi7C3auzqiUc97sFuFuHrcaYjgrJgVQ_dc6t0P7LTPGVi7JLDFw7SXlXFtVA9CNkDB4D--YSdC9DrXjoDp2_6M3ZR665JuBNWKDhn8HOP49hFnLHbY_iVMnUjYckpb7uU226mknCsXQ2JcqBP7MPQRrr4W1fs4ebbw_Vtf__j-9311_s-KKfnnoi0lDBoTmuCgBttozFBSTdYUBhRimg2BtfacAkRtIuoVEA7DDY6LlfsbrGNE-78oaQ9lt9-wuSPi6lsPZY5hZG8WBuubAwyklMChFPIN9JaqWEwwajm9XnxOpTp8Ynq7HfTU8nt-8Y6ME5paZtKLKpQploLDa9XOfg_OfslZ99y9sec_XOD7H9QSDPOacpzwTS-j8oFre1O3lL599U71At8L5IY |
CitedBy_id | crossref_primary_10_1016_j_jnoncrysol_2025_123451 crossref_primary_10_1039_D4TA06452F crossref_primary_10_1016_j_mtcomm_2024_111114 crossref_primary_10_1016_j_actbio_2024_08_017 crossref_primary_10_1016_j_ensm_2024_103612 crossref_primary_10_1002_anie_202423799 crossref_primary_10_1016_j_ijpharm_2024_124905 crossref_primary_10_1016_j_coelec_2025_101649 crossref_primary_10_1021_acs_jcim_4c01676 crossref_primary_10_1039_D5TC00155B crossref_primary_10_1007_s00521_024_10805_y crossref_primary_10_1038_s41524_024_01367_7 crossref_primary_10_1016_j_mtcomm_2023_107249 crossref_primary_10_1039_D3YA00161J crossref_primary_10_1063_5_0169961 crossref_primary_10_1080_10667857_2024_2419228 crossref_primary_10_1080_27660400_2024_2356506 crossref_primary_10_1039_D4SC02781G crossref_primary_10_1002_aenm_202403876 crossref_primary_10_1016_j_enconman_2024_118942 crossref_primary_10_1002_adem_202402024 crossref_primary_10_1021_acs_jcim_3c00916 crossref_primary_10_1002_adma_202413695 crossref_primary_10_1103_PhysRevB_110_075204 crossref_primary_10_3390_su15086393 crossref_primary_10_1016_j_jeurceramsoc_2024_116780 crossref_primary_10_1016_j_commatsci_2024_113344 crossref_primary_10_1016_j_apsusc_2024_160519 crossref_primary_10_1016_j_cej_2025_160080 crossref_primary_10_1016_j_nxmate_2024_100420 crossref_primary_10_20517_jmi_2023_18 crossref_primary_10_3390_higheredu3030032 crossref_primary_10_1016_j_mtcomm_2023_106612 crossref_primary_10_1021_acscatal_3c06293 crossref_primary_10_1016_j_jallcom_2024_177823 crossref_primary_10_1063_5_0207863 crossref_primary_10_1021_acs_jpclett_3c02273 crossref_primary_10_1039_D3DD00009E crossref_primary_10_1002_advs_202305277 crossref_primary_10_1038_s41467_024_53431_x crossref_primary_10_1088_2632_2153_ad9fcf crossref_primary_10_1007_s40710_025_00747_5 crossref_primary_10_1088_2632_2153_acffa2 crossref_primary_10_1002_app_55693 crossref_primary_10_1016_j_matdes_2025_113629 crossref_primary_10_1016_j_mtcomm_2025_112076 crossref_primary_10_1002_advs_202406216 crossref_primary_10_3904_kjim_2024_098 crossref_primary_10_1038_s41524_023_01194_2 crossref_primary_10_1039_D4RA05875E crossref_primary_10_1016_j_newton_2025_100016 crossref_primary_10_1007_s11837_024_06922_7 crossref_primary_10_3390_pr13030877 crossref_primary_10_1039_D3RE00504F crossref_primary_10_3390_ma17123026 crossref_primary_10_1016_j_cjsc_2024_100469 crossref_primary_10_3390_met14040438 crossref_primary_10_1246_bcsj_20230218 crossref_primary_10_3390_polym16040451 crossref_primary_10_1002_aenm_202304480 crossref_primary_10_1063_5_0156988 crossref_primary_10_1039_D4TA04495A crossref_primary_10_1002_adma_202312887 crossref_primary_10_1039_D4EE02970D crossref_primary_10_1002_adma_202413430 crossref_primary_10_3390_app14198738 crossref_primary_10_1016_j_matchemphys_2024_129076 crossref_primary_10_1002_asia_202301088 crossref_primary_10_1016_j_jclepro_2023_138842 crossref_primary_10_1038_s41524_024_01331_5 crossref_primary_10_1021_acs_chemrev_4c00957 crossref_primary_10_1039_D4NJ05135A crossref_primary_10_1016_j_commatsci_2024_113602 crossref_primary_10_1007_s00170_024_14087_5 crossref_primary_10_1021_acsaem_3c02642 crossref_primary_10_1039_D4TA00725E crossref_primary_10_1080_19420862_2024_2442750 crossref_primary_10_1016_j_mtphys_2024_101457 crossref_primary_10_1016_j_chemphys_2024_112229 crossref_primary_10_1016_j_jmrt_2025_01_001 crossref_primary_10_1016_j_mtadv_2024_100520 crossref_primary_10_1007_s11104_024_06503_2 crossref_primary_10_1177_1088467X241305509 crossref_primary_10_3390_ai5040097 crossref_primary_10_1088_2053_1591_ad66b3 crossref_primary_10_1016_j_isci_2024_109452 crossref_primary_10_1039_D4FD00112E crossref_primary_10_1021_acs_jcim_4c01644 crossref_primary_10_1063_5_0223890 crossref_primary_10_1016_j_jconrel_2024_08_010 crossref_primary_10_7498_aps_73_20240957 crossref_primary_10_1109_ACCESS_2024_3424934 crossref_primary_10_1039_D4CY00755G crossref_primary_10_1016_j_chemosphere_2024_141868 crossref_primary_10_3390_biomedinformatics4030101 crossref_primary_10_3390_su17051935 crossref_primary_10_1007_s41635_025_00160_2 crossref_primary_10_1016_j_nxener_2024_100159 crossref_primary_10_1002_cctc_202400754 crossref_primary_10_1021_acsaem_4c02759 crossref_primary_10_1002_cnl2_70002 crossref_primary_10_1039_D4DD00353E crossref_primary_10_1002_mgea_68 crossref_primary_10_1016_j_ces_2024_121128 crossref_primary_10_1002_anie_202408937 crossref_primary_10_1021_acsenergylett_4c03592 crossref_primary_10_1016_j_jmatprotec_2024_118581 crossref_primary_10_1016_j_ccst_2025_100374 crossref_primary_10_1038_s44277_024_00020_x crossref_primary_10_1016_j_mtsust_2024_100694 crossref_primary_10_1088_1674_1056_ad51f3 crossref_primary_10_1016_j_compscitech_2025_111133 crossref_primary_10_1002_adem_202401353 crossref_primary_10_1021_acs_jpcc_5c00059 crossref_primary_10_1002_mgea_81 crossref_primary_10_1016_j_compchemeng_2024_108720 crossref_primary_10_3390_atmos16030272 crossref_primary_10_1002_ange_202408937 crossref_primary_10_1016_j_pedsph_2024_07_004 crossref_primary_10_1088_2632_2153_adae53 crossref_primary_10_1111_jace_20347 crossref_primary_10_3390_info14060317 crossref_primary_10_1016_j_mtelec_2025_100143 crossref_primary_10_1016_j_mtchem_2025_102583 crossref_primary_10_1016_j_fmre_2023_10_012 crossref_primary_10_1021_acsanm_3c04421 crossref_primary_10_1186_s40658_024_00651_1 crossref_primary_10_1016_j_jwpe_2023_104709 crossref_primary_10_1021_acs_jpcb_4c06687 crossref_primary_10_1016_j_solmat_2024_112881 crossref_primary_10_1002_mgea_50 crossref_primary_10_1016_j_gsd_2024_101309 crossref_primary_10_1038_s41598_025_92669_3 crossref_primary_10_1088_2516_1083_ad7220 crossref_primary_10_1016_j_ceramint_2024_06_314 crossref_primary_10_1039_D4CP00386A crossref_primary_10_1016_j_procs_2023_12_010 crossref_primary_10_1039_D4CC05117C crossref_primary_10_1038_s41467_024_49686_z crossref_primary_10_1016_j_msea_2025_147792 crossref_primary_10_1016_j_jmrt_2025_01_154 crossref_primary_10_1016_j_engappai_2024_108783 crossref_primary_10_1016_j_compositesa_2024_108490 crossref_primary_10_1021_acspolymersau_3c00025 crossref_primary_10_1016_j_ijfatigue_2024_108631 crossref_primary_10_1021_acs_jpcc_5c00035 crossref_primary_10_1016_j_fuproc_2024_108164 crossref_primary_10_1038_s41529_024_00427_z crossref_primary_10_46519_ij3dptdi_1564924 crossref_primary_10_1146_annurev_chembioeng_100722_111917 crossref_primary_10_1016_j_apcatb_2025_125267 crossref_primary_10_1038_s41598_024_79036_4 crossref_primary_10_20517_jmi_2024_108 crossref_primary_10_1002_smtd_202401815 crossref_primary_10_1007_s10278_024_00983_5 crossref_primary_10_1038_s41524_024_01479_0 crossref_primary_10_1080_17452007_2024_2436941 crossref_primary_10_1208_s12249_024_02973_w crossref_primary_10_56294_dm2024188 crossref_primary_10_1088_2632_2153_ad9378 crossref_primary_10_1016_j_jcat_2025_115971 crossref_primary_10_1039_D4BM00169A crossref_primary_10_1016_j_gsd_2023_101049 crossref_primary_10_1111_jace_19674 crossref_primary_10_3390_pr12061262 crossref_primary_10_1016_j_scitotenv_2024_171931 crossref_primary_10_1109_ACCESS_2024_3450511 crossref_primary_10_1177_15579883241309752 crossref_primary_10_1021_acs_chemmater_4c00303 crossref_primary_10_1016_j_cep_2023_109435 crossref_primary_10_1016_j_chempr_2024_10_027 crossref_primary_10_1016_j_clwat_2024_100041 crossref_primary_10_1007_s10853_025_10729_5 crossref_primary_10_1080_10667857_2023_2295089 crossref_primary_10_1002_ange_202423799 crossref_primary_10_1016_j_commatsci_2024_113512 crossref_primary_10_1021_acsnano_3c13001 crossref_primary_10_3390_met13101641 crossref_primary_10_1021_acs_jpcc_4c03379 crossref_primary_10_1016_j_engappai_2025_110377 crossref_primary_10_3390_nano14211688 crossref_primary_10_1016_j_dche_2024_100160 crossref_primary_10_1016_j_compchemeng_2024_108648 crossref_primary_10_1016_j_jksus_2024_103456 crossref_primary_10_1016_j_cma_2023_116698 crossref_primary_10_1007_s40843_024_2851_9 crossref_primary_10_1016_j_jmrt_2024_08_075 crossref_primary_10_1088_0256_307X_42_2_027403 crossref_primary_10_1021_acssuschemeng_4c01563 crossref_primary_10_1021_acs_jpca_3c07462 crossref_primary_10_1021_acs_est_5c01025 crossref_primary_10_1021_acs_jpca_3c04076 crossref_primary_10_1038_s41529_024_00538_7 crossref_primary_10_1016_j_jmrt_2023_11_257 crossref_primary_10_1016_j_buildenv_2024_112173 crossref_primary_10_1016_j_egyai_2023_100303 crossref_primary_10_1038_s41524_024_01486_1 crossref_primary_10_1080_00268976_2024_2341959 crossref_primary_10_1016_j_jmgm_2023_108530 crossref_primary_10_1021_acs_analchem_4c00456 crossref_primary_10_1016_j_triboint_2024_110291 crossref_primary_10_1063_5_0195386 crossref_primary_10_1016_j_rinp_2024_107978 crossref_primary_10_1016_j_cej_2024_155948 crossref_primary_10_1038_s41598_024_59958_9 crossref_primary_10_1016_j_cma_2024_117404 crossref_primary_10_1016_j_jssc_2024_124606 crossref_primary_10_3390_en17184575 crossref_primary_10_1016_j_mtcomm_2024_111177 crossref_primary_10_1115_1_4067806 crossref_primary_10_1002_ajoc_202400749 crossref_primary_10_1016_j_apsadv_2023_100523 crossref_primary_10_1016_j_istruc_2024_106309 crossref_primary_10_1007_s11595_024_2912_8 crossref_primary_10_1038_s41524_025_01539_z crossref_primary_10_1016_j_jclepro_2024_142761 crossref_primary_10_1016_j_ijfatigue_2024_108626 crossref_primary_10_1021_acs_est_5c00510 crossref_primary_10_1021_acs_jpcb_4c06500 crossref_primary_10_1016_j_cej_2024_152300 crossref_primary_10_1039_D3CP03968D crossref_primary_10_1063_5_0235572 crossref_primary_10_1088_1402_4896_ad79a4 crossref_primary_10_1038_s41524_024_01462_9 crossref_primary_10_2514_1_I011409 crossref_primary_10_1002_adma_202306733 crossref_primary_10_1007_s10644_024_09849_w crossref_primary_10_1016_j_engappai_2024_108514 crossref_primary_10_1021_acs_jcim_4c01343 crossref_primary_10_3390_polym17030282 crossref_primary_10_1016_j_mtcomm_2024_109419 crossref_primary_10_1038_s41598_024_70432_4 crossref_primary_10_1038_s41598_024_59276_0 crossref_primary_10_1007_s10143_024_03051_2 |
Cites_doi | 10.1038/s41597-022-01317-2 10.1016/j.chemolab.2018.04.004 10.1016/j.isci.2021.102155 10.1016/j.commatsci.2021.110528 10.1088/1361-648X/abe39e 10.3390/molecules25173772 10.1023/B:STCO.0000035301.49549.88 10.1155/2022/4653923 10.1016/j.eswa.2011.03.041 10.1109/ACCESS.2020.3012542 10.1208/s12249-020-01911-w 10.1038/s41524-019-0203-2 10.3390/electronics10121491 10.1021/acsomega.2c01380 10.1155/2015/674296 10.1073/pnas.1302293110 10.1038/s41524-017-0055-6 10.1038/s41427-020-0211-1 10.3389/fmicb.2022.925454 10.1016/j.patrec.2017.10.010 10.1088/1674-1056/27/11/118101 10.1021/acs.jpclett.2c00603 10.1016/j.drudis.2021.09.007 10.1021/acscentsci.9b00804 10.1007/s11837-021-04902-9 10.1038/s41467-020-17263-9 10.1016/j.jechem.2021.01.035 10.1007/s40747-021-00637-x 10.5936/csbj.201207003 10.1007/s12525-021-00475-2 10.1016/j.ribaf.2022.101646 10.1126/science.abj6511 10.1016/j.geothermics.2022.102401 10.20964/2021.11.22 10.1002/adem.202100612 10.1186/s13321-019-0391-2 10.21786/bbrc/13.14/57 10.1021/acs.jcim.0c00726 10.1063/1.5019779 10.1021/acs.jpcc.1c02438 10.1016/j.commatsci.2021.110712 10.1021/acs.chemrev.1c00022 10.1109/TKDE.2008.239 10.1007/s10115-017-1059-8 10.1021/acsami.2c00564 10.1038/s41524-022-00906-4 10.1016/j.jmst.2021.01.071 10.1038/s41467-021-22472-x 10.1016/j.ijfatigue.2021.106716 10.1007/s11082-018-1316-4 10.1007/s10936-014-9329-z 10.1016/j.surfrep.2020.100492 10.3390/jrfm14070302 10.1088/1361-648X/ac577b 10.1016/j.actamat.2021.117431 10.1145/234173.234210 10.1021/acsmacrolett.7b00228 10.3390/jcm11123485 10.15255/KUI.2020.004 10.1039/D0NA00388C 10.1007/s00366-020-01003-0 10.1016/j.spl.2018.02.031 10.1002/adts.202100565 10.1007/s10994-019-05787-1 10.1038/s41524-021-00495-8 10.1021/acs.jpcc.1c05482 10.1038/s42256-022-00548-7 10.1088/1674-1056/27/11/118901 10.1002/ams2.740 10.1021/acs.est.1c05398 10.1021/acs.jctc.2c00281 10.1007/s00521-015-1970-4 10.1021/acs.jcim.6b00207 10.1080/14686996.2019.1603885 10.1088/2515-7639/ab077b 10.1016/j.scico.2016.01.001 10.1007/s11431-018-9369-9 10.1039/C7ME00094D 10.3390/su12020492 10.1186/1758-2946-7-S1-S3 10.1021/acs.jpclett.2c00576 10.1038/s41524-019-0153-8 10.1021/acs.jcim.1c00566 10.1103/PhysRevMaterials.2.083802 10.1080/10705511.2018.1500140 10.1109/JPROC.2020.3004555 10.1021/acs.jcim.1c00446 10.1016/j.neucom.2011.06.026 10.1016/j.commatsci.2021.110314 10.1007/s10948-021-05857-3 10.1007/s00371-020-01817-5 10.1038/s41467-020-19597-w 10.1038/s41467-022-30687-9 10.1016/j.jallcom.2022.165984 10.1038/ncomms11241 10.1080/02664763.2020.1780569 10.1021/acs.jcim.8b00436 10.1016/j.cosrev.2018.06.001 10.1093/plphys/kiac017 10.1038/nmat3568 10.1016/j.eng.2020.04.004 10.1109/ElConRus51938.2021.9396231 10.1186/1758-2946-6-1 10.1002/wcms.1489 |
ContentType | Journal Article |
Copyright | The Author(s) 2023 The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2023 – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 3V. 7X7 7XB 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU D1I DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. KB. LK8 M0S M7P PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI DOA |
DOI | 10.1038/s41524-023-01000-z |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Biological Sciences ProQuest Health & Medical Collection Biological Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Directory of Open Access Journals - May need to register for free articles |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central ProQuest One Applied & Life Sciences Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection Materials Science Database ProQuest Central (New) ProQuest Materials Science Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2057-3960 |
EndPage | 15 |
ExternalDocumentID | oai_doaj_org_article_276148dc3de9420294a1b388350f6c64 10_1038_s41524_023_01000_z |
GrantInformation_xml | – fundername: the National Natural Science Foundation of China (No. 52102140) – fundername: the Key Program of Science and Technology of Yunnan Province (No. 202002AB080001/2);the Key Research Project of Zhejiang Laboratory (No. 2021PE0AC02) – fundername: Shanghai Pujiang Program (No.21PJD024) |
GroupedDBID | 0R~ 3V. 5VS 7X7 8FE 8FG 8FH 8FI 8FJ AAJSJ ABJCF ABUWG ACGFS ACSMW ADBBV ADMLS AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS ARCSS BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU D1I EBLON EBS FYUFA GROUPED_DOAJ HCIFZ HMCUK KB. KQ8 LK8 M7P M~E NAO NO~ OK1 PDBOC PIMPY PQQKQ PROAC RNT SNYQT UKHRP AASML AAYXX CITATION PHGZM PHGZT 7XB 8FK AARCD AZQEC DWQXO GNUQQ K9. PKEHL PQEST PQGLB PQUKI PUEGO |
ID | FETCH-LOGICAL-c495t-eee5330f51e7e0cab58d66c439f804ada32d6b6a756130d059da44ca8ff8d913 |
IEDL.DBID | DOA |
ISSN | 2057-3960 |
IngestDate | Wed Aug 27 01:32:19 EDT 2025 Wed Aug 13 05:12:47 EDT 2025 Tue Jul 01 01:41:29 EDT 2025 Thu Apr 24 22:50:29 EDT 2025 Fri Feb 21 02:40:22 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c495t-eee5330f51e7e0cab58d66c439f804ada32d6b6a756130d059da44ca8ff8d913 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-5048-6211 0000-0001-5361-6122 |
OpenAccessLink | https://doaj.org/article/276148dc3de9420294a1b388350f6c64 |
PQID | 2790694538 |
PQPubID | 2041924 |
PageCount | 15 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_276148dc3de9420294a1b388350f6c64 proquest_journals_2790694538 crossref_primary_10_1038_s41524_023_01000_z crossref_citationtrail_10_1038_s41524_023_01000_z springer_journals_10_1038_s41524_023_01000_z |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-03-25 |
PublicationDateYYYYMMDD | 2023-03-25 |
PublicationDate_xml | – month: 03 year: 2023 text: 2023-03-25 day: 25 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | npj computational materials |
PublicationTitleAbbrev | npj Comput Mater |
PublicationYear | 2023 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Yang, Li, Tao, Lu, Li (CR22) 2021; 196 Lian, Li, Lu (CR32) 2022; 157 Janiesch, Zschech, Heinrich (CR1) 2021; 31 Shawe-Taylor, Sun (CR82) 2011; 74 Zhuang (CR104) 2021; 109 Okoroafor (CR7) 2022; 102 Weng (CR89) 2020; 11 Bi, Goodman, Kaminsky, Lessler (CR2) 2019; 188 Xin (CR99) 2021; 125 Zhao (CR78) 2021; 12 Scholkopf (CR81) 2004; 14 He, Fan (CR42) 2018; 26 Curtarolo (CR73) 2013; 12 Lee, Asahi (CR109) 2021; 190 Liu (CR16) 2022; 921 Yin (CR66) 2018; 27 Audus, de Pablo (CR68) 2017; 6 Li (CR21) 2021; 199 Sabry, Eltaras, Labda, Alzoubi, Malluhi (CR6) 2022; 2022 Tao (CR23) 2021; 125 Yang (CR14) 2022; 222 Mavracic, Court, Isazawa, Elliott, Cole (CR63) 2021; 61 Yamada (CR110) 2019; 5 Wu (CR106) 2019; 5 Lu, Li, Li, Wang, Lu (CR97) 2022; 13 Afzal, Torkar (CR87) 2011; 38 Hong, Ward, Chard, Blaiszik, Foster (CR53) 2021; 73 Memon, Sami, Khan, Uddin (CR54) 2020; 8 Lookman, Balachandran, Xue, Yuan (CR98) 2019; 5 Beckner, Mao, Pfaendtner (CR31) 2018; 3 Goyal, Gupta, Kumar (CR60) 2018; 29 Swain, Cole (CR62) 2016; 56 Jiang, Luo, Huang, Liu, Li (CR10) 2022; 13 CR57 Kirkpatrick (CR79) 2021; 374 Liu (CR26) 2021; 88 Ahmed, Alshater, Ammari, Hammami (CR4) 2022; 61 Chan, Sun, Huang (CR12) 2022; 4 Talekar (CR84) 2020; 13 Zixin (CR69) 2020; 2020 Duan, Asteris, Nguyen, Bui, Moayedi (CR86) 2020; 37 Erickson, Ngongang, Rasulev (CR45) 2020; 25 Lu, Chang, Ji, Li, Lu (CR91) 2021; 16 Schwarz, Sundararaman (CR25) 2020; 75 Xu (CR67) 2018; 27 Chandrasekaran, Jordan (CR19) 2013; 110 Perovšek, Kranjc, Erjavec, Cestnik, Lavrač (CR51) 2016; 121 Katsura (CR64) 2019; 20 Huang, Shang, Liu, Wang (CR70) 2022; 188 Mueller, Kinoshita, Peebles, Graber, Lee (CR5) 2022; 9 Kononova (CR52) 2021; 24 Takamoto (CR80) 2022; 13 Warin, Stojkov (CR3) 2021; 14 Chen, Shang, Lu, Li, Tan (CR92) 2021; 23 Tula (CR38) 2021; 33 Lu (CR44) 2021; 34 Safaa Eltyeb (CR61) 2014; 6 Li, Li, Liu (CR33) 2017; 53 He, Zhang, Cao, Xing, Yang (CR71) 2022; 11 Zeng, Shi, Wu, Hong (CR50) 2015; 2015 Cioffi, Travaglioni, Piscitelli, Petrillo, De Felice (CR8) 2020; 12 Glavatskikh, Leguy, Hunault, Cauchy, Da Mota (CR107) 2019; 11 Zhao (CR101) 2021; 57 Khaire, Dhanalakshmi (CR34) 2022; 34 Ma, Luo (CR108) 2020; 60 Leaman, Wei, Lu (CR56) 2015; 7 Tao, Xu, Li, Lu (CR15) 2021; 7 Lu, Li, Li, Wang, Lu (CR93) 2022; 7 CR111 Biau, Cadre, Rouvière (CR85) 2019; 108 Shulin, Tianshu, Xinjiang, Muhammad, Lijun (CR74) 2021; 11 Jia, Sun, Lian, Hou (CR36) 2022; 8 Guo, Hu, Han, Ouyang (CR88) 2022; 18 Shibayama, Funatsu (CR46) 2021; 22 Crampon, Giorkallos, Deldossi, Baud, Steffenel (CR9) 2022; 27 Kim, Huang, Jegelka, Olivetti (CR47) 2017; 3 Zhang, Zhang (CR30) 2022; 56 Faraway, Augustin (CR18) 2018; 136 Zhang, Chang, Zhai, Lu (CR20) 2018; 177 Zhu, Zhou, Sun (CR13) 2022; 13 Xu (CR24) 2022; 62 Dalva, Guz, Gurkan (CR55) 2018; 105 Ouyang, Curtarolo, Ahmetcik, Scheffler, Ghiringhelli (CR40) 2018; 2 Moussaoui, Laidi, Hanini, Hentabli (CR29) 2020; 69 Xiaoli (CR72) 2015; 34 Wang (CR65) 2022; 9 Xu, Chen, Li, Lu (CR17) 2022; 5 Hu, Zhang, Pan (CR76) 2022; 14 Ranaweera, Mahmoud (CR103) 2021; 10 Fjodorova, Novic (CR28) 2012; 1 Haibo, Garcia (CR94) 2009; 21 Gardner-Lubbe (CR39) 2021; 48 CR95 Xie, Sun (CR37) 2018; 50 Shi, Chang, Ji, Lu (CR90) 2018; 58 Weixin (CR112) 2022; 4 Lewis, Jones (CR59) 1996; 39 Hayashi, Shiomi, Morikawa, Yoshida (CR77) 2022; 8 Liu (CR75) 2019; 62 Kajita, Ohba, Suzumura, Tajima, Asahi (CR48) 2020; 12 Tao (CR49) 2021; 60 Xue (CR102) 2016; 7 Kusne (CR100) 2020; 11 Dardzinski, Yu, Moayedpour, Marom (CR27) 2022; 34 Phillips (CR58) 2015; 44 Schutt, Sauceda, Kindermans, Tkatchenko, Muller (CR105) 2018; 148 Cai, Chu, Xu, Li, Wei (CR11) 2020; 2 France, Akkucuk (CR35) 2020; 37 Zhang, Wang (CR43) 2015; 27 Ouyang, Ahmetcik, Carbogno, Scheffler, Ghiringhelli (CR41) 2019; 2 Deringer (CR83) 2021; 121 Wang, Han, Li, Zhang, Cheng (CR96) 2021; 57 S Gardner-Lubbe (1000_CR39) 2021; 48 B Mueller (1000_CR5) 2022; 9 Z Hong (1000_CR53) 2021; 73 Y Liu (1000_CR75) 2019; 62 B Weng (1000_CR89) 2020; 11 VL Deringer (1000_CR83) 2021; 121 1000_CR95 MC Swain (1000_CR62) 2016; 56 Y Zhao (1000_CR78) 2021; 12 O Kononova (1000_CR52) 2021; 24 T Warin (1000_CR3) 2021; 14 CH Chan (1000_CR12) 2022; 4 J Zhang (1000_CR43) 2015; 27 DJ Audus (1000_CR68) 2017; 6 R Xin (1000_CR99) 2021; 125 A Goyal (1000_CR60) 2018; 29 JJ Faraway (1000_CR18) 2018; 136 F Sabry (1000_CR6) 2022; 2022 M Glavatskikh (1000_CR107) 2019; 11 K Lu (1000_CR44) 2021; 34 Y Xie (1000_CR37) 2018; 50 AJSB Scholkopf (1000_CR81) 2004; 14 X Yang (1000_CR22) 2021; 196 D Dardzinski (1000_CR27) 2022; 34 SLC Phillips (1000_CR58) 2015; 44 Y Li (1000_CR33) 2017; 53 D Xue (1000_CR102) 2016; 7 K Zhang (1000_CR30) 2022; 56 Y Xu (1000_CR67) 2018; 27 V Chandrasekaran (1000_CR19) 2013; 110 G Biau (1000_CR85) 2019; 108 L Shi (1000_CR90) 2018; 58 W Zhao (1000_CR101) 2021; 57 M Moussaoui (1000_CR29) 2020; 69 J Mavracic (1000_CR63) 2021; 61 H-Q Yin (1000_CR66) 2018; 27 UM Khaire (1000_CR34) 2022; 34 J He (1000_CR42) 2018; 26 R Ma (1000_CR108) 2020; 60 Z Lian (1000_CR32) 2022; 157 1000_CR111 C Janiesch (1000_CR1) 2021; 31 W Afzal (1000_CR87) 2011; 38 H Chen (1000_CR92) 2021; 23 S Wu (1000_CR106) 2019; 5 H Haibo (1000_CR94) 2009; 21 X Liu (1000_CR16) 2022; 921 W Jia (1000_CR36) 2022; 8 Q Bi (1000_CR2) 2019; 188 L Wang (1000_CR96) 2021; 57 J Cai (1000_CR11) 2020; 2 SL France (1000_CR35) 2020; 37 Y Huang (1000_CR70) 2022; 188 S Kajita (1000_CR48) 2020; 12 F Xiaoli (1000_CR72) 2015; 34 J Duan (1000_CR86) 2020; 37 X He (1000_CR71) 2022; 11 1000_CR57 H Yamada (1000_CR110) 2019; 5 ER Okoroafor (1000_CR7) 2022; 102 J Lee (1000_CR109) 2021; 190 N Fjodorova (1000_CR28) 2012; 1 C Yang (1000_CR14) 2022; 222 Z Guo (1000_CR88) 2022; 18 T Lu (1000_CR93) 2022; 7 Z Zeng (1000_CR50) 2015; 2015 K Lu (1000_CR91) 2021; 16 R Ouyang (1000_CR40) 2018; 2 Z Wang (1000_CR65) 2022; 9 NS Safaa Eltyeb (1000_CR61) 2014; 6 R Leaman (1000_CR56) 2015; 7 S Curtarolo (1000_CR73) 2013; 12 P Xu (1000_CR17) 2022; 5 J Kirkpatrick (1000_CR79) 2021; 374 L Zixin (1000_CR69) 2020; 2020 Q Zhang (1000_CR20) 2018; 177 ME Erickson (1000_CR45) 2020; 25 Q Tao (1000_CR23) 2021; 125 D Dalva (1000_CR55) 2018; 105 J Shawe-Taylor (1000_CR82) 2011; 74 Q Tao (1000_CR49) 2021; 60 KT Schutt (1000_CR105) 2018; 148 K Crampon (1000_CR9) 2022; 27 K Schwarz (1000_CR25) 2020; 75 W Beckner (1000_CR31) 2018; 3 L Weixin (1000_CR112) 2022; 4 B Liu (1000_CR26) 2021; 88 Q Tao (1000_CR15) 2021; 7 F Zhuang (1000_CR104) 2021; 109 R Cioffi (1000_CR8) 2020; 12 L Li (1000_CR21) 2021; 199 P Xu (1000_CR24) 2022; 62 S Ahmed (1000_CR4) 2022; 61 L Shulin (1000_CR74) 2021; 11 Y Katsura (1000_CR64) 2019; 20 T Lookman (1000_CR98) 2019; 5 Y Jiang (1000_CR10) 2022; 13 S Takamoto (1000_CR80) 2022; 13 B Talekar (1000_CR84) 2020; 13 E Kim (1000_CR47) 2017; 3 L Zhu (1000_CR13) 2022; 13 Y Hayashi (1000_CR77) 2022; 8 R Ouyang (1000_CR41) 2019; 2 S Shibayama (1000_CR46) 2021; 22 AG Kusne (1000_CR100) 2020; 11 W Hu (1000_CR76) 2022; 14 T Tula (1000_CR38) 2021; 33 M Perovšek (1000_CR51) 2016; 121 T Lu (1000_CR97) 2022; 13 J Memon (1000_CR54) 2020; 8 DD Lewis (1000_CR59) 1996; 39 M Ranaweera (1000_CR103) 2021; 10 |
References_xml | – volume: 9 year: 2022 ident: CR65 article-title: Dataset of solution-based inorganic materials synthesis procedures extracted from the scientific literature publication-title: Sci. Data doi: 10.1038/s41597-022-01317-2 – volume: 177 start-page: 26 year: 2018 end-page: 34 ident: CR20 article-title: OCPMDM: Online computation platform for materials data mining publication-title: Chemom. Intell. Lab. doi: 10.1016/j.chemolab.2018.04.004 – volume: 57 start-page: 797 year: 2021 end-page: 809 ident: CR101 article-title: Composition refinement of 6061 aluminum alloy using active machine learning model based on bayesian optimization sampling publication-title: Acta Metall. Sin. – volume: 24 start-page: 102155 year: 2021 ident: CR52 article-title: Opportunities and challenges of text mining in aterials research publication-title: iScience doi: 10.1016/j.isci.2021.102155 – volume: 196 start-page: 110528 year: 2021 ident: CR22 article-title: Rapid discovery of narrow bandgap oxide double perovskites using machine learning publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2021.110528 – volume: 33 start-page: 194002 year: 2021 ident: CR38 article-title: Machine learning approach to muon spectroscopy analysis publication-title: J. Phys. Condens. Matter doi: 10.1088/1361-648X/abe39e – volume: 25 start-page: 3772 year: 2020 ident: CR45 article-title: A refractive index study of a diverse set of polymeric materials by QSPR with quantum-chemical and additive descriptors publication-title: Molecules doi: 10.3390/molecules25173772 – volume: 14 start-page: 199 year: 2004 end-page: 222 ident: CR81 article-title: A tutorial on support vector regression publication-title: Stat. Comput. doi: 10.1023/B:STCO.0000035301.49549.88 – volume: 2022 start-page: 4653923 year: 2022 ident: CR6 article-title: Machine learning for healthcare wearable devices: the big picture publication-title: J. Healthc. Eng. doi: 10.1155/2022/4653923 – volume: 38 start-page: 11984 year: 2011 end-page: 11997 ident: CR87 article-title: On the application of genetic programming for software engineering predictive modeling: A systematic review publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2011.03.041 – volume: 4 start-page: e12194 year: 2022 ident: CR12 article-title: Application of machine learning for advanced material prediction and design publication-title: Eco. Mat. – volume: 8 start-page: 142642 year: 2020 end-page: 142668 ident: CR54 article-title: Handwritten optical character recognition (OCR): a comprehensive systematic literature review (SLR) publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3012542 – volume: 22 start-page: 41 year: 2021 ident: CR46 article-title: Investigation of preprocessing and validation methodologies for PAT: case study of the granulation and coating steps for the manufacturing of ethenzamide tablets publication-title: AAPS Pharm. Sci. Tech. doi: 10.1208/s12249-020-01911-w – volume: 5 start-page: 5 year: 2019 ident: CR106 article-title: Machine-learning-assisted discovery of polymers with high thermal conductivity using a molecular design algorithm publication-title: npj Comput. Mater. doi: 10.1038/s41524-019-0203-2 – volume: 10 start-page: 1491 year: 2021 ident: CR103 article-title: Virtual to real-world transfer learning: a systematic review publication-title: Electronics doi: 10.3390/electronics10121491 – volume: 7 start-page: 21583 year: 2022 end-page: 21594 ident: CR93 article-title: Inverse design of hybrid organic-inorganic perovskites with suitable bandgaps via proactive searching progress publication-title: ACS Omega doi: 10.1021/acsomega.2c01380 – volume: 34 start-page: 689 year: 2015 end-page: 695 ident: CR72 article-title: Materials genome initiative and first-principles high-throughput computation publication-title: Mater. China – volume: 2015 start-page: 674296 year: 2015 ident: CR50 article-title: Survey of natural language processing techniques in bioinformatics publication-title: Comput. Math. Methods Med. doi: 10.1155/2015/674296 – volume: 110 start-page: E1181 year: 2013 end-page: E1190 ident: CR19 article-title: Computational and statistical tradeoffs via convex relaxation publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1302293110 – volume: 3 start-page: 2096 year: 2017 end-page: 5001 ident: CR47 article-title: Virtual screening of inorganic materials synthesis parameters with deep learning publication-title: npj Comput. Mater. doi: 10.1038/s41524-017-0055-6 – volume: 12 year: 2020 ident: CR48 article-title: Discovery of superionic conductors by ensemble-scope descriptor publication-title: NPG Asia Mater. doi: 10.1038/s41427-020-0211-1 – volume: 13 start-page: 925454 year: 2022 ident: CR10 article-title: Machine learning advances in microbiology: a review of methods and applications publication-title: Front. Microbiol. doi: 10.3389/fmicb.2022.925454 – volume: 105 start-page: 76 year: 2018 end-page: 86 ident: CR55 article-title: Effective semi-supervised learning strategies for automatic sentence segmentation publication-title: Pattern Recogn. Lett. doi: 10.1016/j.patrec.2017.10.010 – volume: 27 start-page: 118101 year: 2018 ident: CR66 article-title: The materials data ecosystem: materials data science and its role in data-driven materials discovery publication-title: Chin. Phys. B doi: 10.1088/1674-1056/27/11/118101 – ident: CR57 – volume: 13 start-page: 3032 year: 2022 end-page: 3038 ident: CR97 article-title: Predicting experimental formability of hybrid organic-inorganic perovskites via imbalanced learning publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.2c00603 – volume: 27 start-page: 151 year: 2022 end-page: 164 ident: CR9 article-title: Machine-learning methods for ligand-protein molecular docking publication-title: Drug Discov. Today doi: 10.1016/j.drudis.2021.09.007 – volume: 34 start-page: 1060 year: 2022 end-page: 1073 ident: CR34 article-title: Stability of feature selection algorithm: a review publication-title: J. King Saud. Univ. Com. – volume: 5 start-page: 1717 year: 2019 end-page: 1730 ident: CR110 article-title: Predicting materials properties with little data using shotgun transfer learning publication-title: ACS Cent. Sci. doi: 10.1021/acscentsci.9b00804 – volume: 73 start-page: 3383 year: 2021 end-page: 3400 ident: CR53 article-title: Challenges and advances in information extraction from scientific literature: a review publication-title: JOM doi: 10.1007/s11837-021-04902-9 – volume: 11 year: 2020 ident: CR89 article-title: Simple descriptor derived from symbolic regression accelerating the discovery of new perovskite catalysts publication-title: Nat. Commun. doi: 10.1038/s41467-020-17263-9 – volume: 60 start-page: 351 year: 2021 end-page: 359 ident: CR49 article-title: Machine learning aided design of perovskite oxide materials for photocatalytic water splitting publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2021.01.035 – volume: 8 start-page: 2663 year: 2022 end-page: 2693 ident: CR36 article-title: Feature dimensionality reduction: a review publication-title: Complex Intell. Syst. doi: 10.1007/s40747-021-00637-x – volume: 1 start-page: e201207003 year: 2012 ident: CR28 article-title: Integration of QSAR and SAR methods for the mechanistic interpretation of predictive models for carcinogenicity publication-title: Comput. Struct. Biotechnol. J. doi: 10.5936/csbj.201207003 – volume: 31 start-page: 685 year: 2021 end-page: 695 ident: CR1 article-title: Machine learning and deep learning publication-title: Electron. Mark. doi: 10.1007/s12525-021-00475-2 – volume: 61 start-page: 101646 year: 2022 ident: CR4 article-title: Artificial intelligence and machine learning in finance: A bibliometric review publication-title: Res. Int. Bus. Financ. doi: 10.1016/j.ribaf.2022.101646 – volume: 374 start-page: 1385 year: 2021 end-page: 1389 ident: CR79 article-title: Pushing the frontiers of density functionals by solving the fractional electron problem publication-title: Science doi: 10.1126/science.abj6511 – volume: 102 start-page: 102401 year: 2022 ident: CR7 article-title: Machine learning in subsurface geothermal energy: two decades in review publication-title: Geothermics doi: 10.1016/j.geothermics.2022.102401 – volume: 16 start-page: 211146 year: 2021 ident: CR91 article-title: Machine learning aided discovery of the layered double hydroxides with the largest basal spacing for super-capacitors publication-title: Int. J. Electrochem. Sc. doi: 10.20964/2021.11.22 – volume: 23 start-page: 2100612 year: 2021 ident: CR92 article-title: A property‐driven stepwise design strategy for multiple low‐melting alloys via machine learning publication-title: Adv. Eng. Mater. doi: 10.1002/adem.202100612 – volume: 11 start-page: 69 year: 2019 ident: CR107 article-title: Dataset’s chemical diversity limits the generalizability of machine learning predictions publication-title: J. Cheminforma. doi: 10.1186/s13321-019-0391-2 – volume: 13 start-page: 245 year: 2020 end-page: 248 ident: CR84 article-title: A detailed review on decision tree and random forest publication-title: Biosci. Biotech. Res. C. doi: 10.21786/bbrc/13.14/57 – volume: 60 start-page: 4684 year: 2020 end-page: 4690 ident: CR108 article-title: PI1M: a benchmark database for polymer informatics publication-title: J. Chem. Inf. Model. doi: 10.1021/acs.jcim.0c00726 – volume: 148 start-page: 241722 year: 2018 ident: CR105 article-title: SchNet—A deep learning architecture for molecules and materials publication-title: J. Chem. Phys. doi: 10.1063/1.5019779 – volume: 125 start-page: 16118 year: 2021 end-page: 16128 ident: CR99 article-title: Active-learning-based generative design for the discovery of wide-band-gap materials publication-title: J. Phys. Chem. C. doi: 10.1021/acs.jpcc.1c02438 – volume: 199 start-page: 110712 year: 2021 ident: CR21 article-title: Studies on the regularity of perovskite formation via machine learning publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2021.110712 – volume: 121 start-page: 10073 year: 2021 end-page: 10141 ident: CR83 article-title: Gaussian process regression for materials and molecules publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.1c00022 – volume: 21 start-page: 1263 year: 2009 end-page: 1284 ident: CR94 article-title: Learning from imbalanced data publication-title: IEEE T. Knowl. Data En. doi: 10.1109/TKDE.2008.239 – volume: 53 start-page: 551 year: 2017 end-page: 577 ident: CR33 article-title: Recent advances in feature selection and its applications publication-title: Knowl. Inf. Syst. doi: 10.1007/s10115-017-1059-8 – volume: 2020 start-page: 78 year: 2020 end-page: 90 ident: CR69 article-title: Materials science database in material research and development: recent applications and prospects publication-title: Front. Data Comput. – volume: 14 start-page: 21596 year: 2022 end-page: 21604 ident: CR76 article-title: Designing two-dimensional halide perovskites based on high-throughput calculations and machine learning publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.2c00564 – volume: 8 start-page: 222 year: 2022 ident: CR77 article-title: RadonPy: automated physical property calculation using all-atom classical molecular dynamics simulations for polymer informatics publication-title: npj Comput. Mater. doi: 10.1038/s41524-022-00906-4 – volume: 88 start-page: 143 year: 2021 end-page: 157 ident: CR26 article-title: Application of high-throughput first-principles calculations in ceramic innovation publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2021.01.071 – volume: 12 year: 2021 ident: CR78 article-title: Discovery of temperature-induced stability reversal in perovskites using high-throughput robotic learning publication-title: Nat. Commun. doi: 10.1038/s41467-021-22472-x – volume: 157 start-page: 106716 year: 2022 ident: CR32 article-title: Fatigue life prediction of aluminum alloy via knowledge-based machine learning publication-title: Int. J. Fatigue doi: 10.1016/j.ijfatigue.2021.106716 – volume: 50 start-page: 46 year: 2018 ident: CR37 article-title: Terahertz data combined with principal component analysis applied for visual classification of materials publication-title: Opt. Quant. Electron. doi: 10.1007/s11082-018-1316-4 – volume: 44 start-page: 27 year: 2015 end-page: 46 ident: CR58 article-title: Aligning grammatical theories and language processing models publication-title: J. Psycholinguist. Res. doi: 10.1007/s10936-014-9329-z – volume: 75 start-page: 100492 year: 2020 ident: CR25 article-title: The electrochemical interface in first-principles calculations publication-title: Surf. Sci. Rep. doi: 10.1016/j.surfrep.2020.100492 – volume: 11 start-page: e1489 year: 2021 ident: CR74 article-title: High-throughput computational materials screening and discovery of optoelectronic semiconductors publication-title: WIREs Comput. Mol. Sci. – ident: CR111 – volume: 14 start-page: 302 year: 2021 ident: CR3 article-title: Machine learning in finance: a metadata-based systematic review of the literature publication-title: J. Risk Financ. Manag. doi: 10.3390/jrfm14070302 – volume: 34 start-page: 233002 year: 2022 ident: CR27 article-title: Best practices for first-principles simulations of epitaxial inorganic interfaces publication-title: J. Phys. Condens. Matter doi: 10.1088/1361-648X/ac577b – volume: 222 start-page: 117431 year: 2022 ident: CR14 article-title: A machine learning-based alloy design system to facilitate the rational design of high entropy alloys with enhanced hardness publication-title: Acta Mater. doi: 10.1016/j.actamat.2021.117431 – volume: 39 start-page: 92 year: 1996 end-page: 101 ident: CR59 article-title: Natural language processing for information retrieval publication-title: Commun. ACM doi: 10.1145/234173.234210 – volume: 6 start-page: 1078 year: 2017 end-page: 1082 ident: CR68 article-title: Polymer informatics: opportunities and challenges publication-title: ACS Macro. Lett. doi: 10.1021/acsmacrolett.7b00228 – volume: 11 start-page: 3485 year: 2022 ident: CR71 article-title: Application progress of high-throughput sequencing in ocular diseases publication-title: J. Clin. Med. doi: 10.3390/jcm11123485 – volume: 69 start-page: 611 year: 2020 end-page: 630 ident: CR29 article-title: Artificial neural network and support vector regression applied in quantitative structure-property relationship modelling of solubility of solid solutes in supercritical CO2 publication-title: Kem. u. industriji. doi: 10.15255/KUI.2020.004 – volume: 2 start-page: 3115 year: 2020 end-page: 3130 ident: CR11 article-title: Machine learning-driven new material discovery publication-title: Nanoscale Adv. doi: 10.1039/D0NA00388C – volume: 37 start-page: 3329 year: 2020 end-page: 3346 ident: CR86 article-title: A novel artificial intelligence technique to predict compressive strength of recycled aggregate concrete using ICA-XGBoost model publication-title: Eng. Comput. doi: 10.1007/s00366-020-01003-0 – volume: 136 start-page: 142 year: 2018 end-page: 145 ident: CR18 article-title: When small data beats big data publication-title: Stat. Probabil. Lett. doi: 10.1016/j.spl.2018.02.031 – volume: 5 start-page: 2100565 year: 2022 ident: CR17 article-title: New opportunity: machine learning for polymer materials design and discovery publication-title: Adv. Theor. Simul. doi: 10.1002/adts.202100565 – volume: 108 start-page: 971 year: 2019 end-page: 992 ident: CR85 article-title: Accelerated gradient boosting publication-title: Mach. Learn. doi: 10.1007/s10994-019-05787-1 – volume: 7 start-page: 23 year: 2021 ident: CR15 article-title: Machine learning for perovskite materials design and discovery publication-title: npj Comput. Mater. doi: 10.1038/s41524-021-00495-8 – volume: 6 start-page: 1 year: 2014 end-page: 12 ident: CR61 article-title: Chemical named entities recognition: a review on approaches and applications publication-title: J. Cheminformatics – volume: 125 start-page: 21141 year: 2021 end-page: 21150 ident: CR23 article-title: Multiobjective stepwise design strategy-assisted design of high-performance perovskite oxide photocatalysts publication-title: J. Phys. Chem. C. doi: 10.1021/acs.jpcc.1c05482 – volume: 4 start-page: 904 year: 2022 ident: CR112 article-title: Advances, challenges and opportunities in creating data for trustworthy AI publication-title: Nat. Mach. Intell. doi: 10.1038/s42256-022-00548-7 – volume: 27 start-page: 118901 year: 2018 ident: CR67 article-title: Accomplishment and challenge of materials database toward big data publication-title: Chin. Phys. B doi: 10.1088/1674-1056/27/11/118901 – volume: 9 start-page: e740 year: 2022 ident: CR5 article-title: Artificial intelligence and machine learning in emergency medicine: a narrative review publication-title: Acute. Med. Surg. doi: 10.1002/ams2.740 – volume: 56 start-page: 2054 year: 2022 end-page: 2064 ident: CR30 article-title: Predicting solute descriptors for organic chemicals by a deep neural network (dnn) using basic chemical structures and a surrogate metric publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.1c05398 – volume: 18 start-page: 4945 year: 2022 end-page: 4951 ident: CR88 article-title: Improving symbolic regression for predicting materials properties with iterative variable selection publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.2c00281 – ident: CR95 – volume: 27 start-page: 1717 year: 2015 end-page: 1730 ident: CR43 article-title: A fast leave-one-out cross-validation for SVM-like family publication-title: Neural Comput. Appl. doi: 10.1007/s00521-015-1970-4 – volume: 57 start-page: 42 year: 2021 end-page: 52 ident: CR96 article-title: Review of classification methods for unbalanced data sets publication-title: Comput. Eng. Appl. – volume: 56 start-page: 1894 year: 2016 end-page: 1904 ident: CR62 article-title: ChemDataExtractor: a toolkit for automated extraction of chemical information from the scientific literature publication-title: J. Chem. Inf. Model. doi: 10.1021/acs.jcim.6b00207 – volume: 20 start-page: 511 year: 2019 end-page: 520 ident: CR64 article-title: Data-driven analysis of electron relaxation times in PbTe-type thermoelectric materials publication-title: Sci. Technol. Adv. Mat. doi: 10.1080/14686996.2019.1603885 – volume: 2 start-page: 024002 year: 2019 ident: CR41 article-title: Simultaneous learning of several materials properties from incomplete databases with multi-task SISSO publication-title: J. Phys. Mater. doi: 10.1088/2515-7639/ab077b – volume: 188 start-page: 2222 year: 2019 end-page: 2239 ident: CR2 article-title: What is machine learning? A primer for the epidemiologist publication-title: Am. J. Epidemiol. – volume: 121 start-page: 128 year: 2016 end-page: 152 ident: CR51 article-title: TextFlows: a visual programming platform for text mining and natural language processing publication-title: Sci. Comput. Program. doi: 10.1016/j.scico.2016.01.001 – volume: 62 start-page: 521 year: 2019 end-page: 545 ident: CR75 article-title: High-throughput experiments facilitate materials innovation: a review publication-title: Sci. China Technol. Sc. doi: 10.1007/s11431-018-9369-9 – volume: 3 start-page: 253 year: 2018 end-page: 263 ident: CR31 article-title: Statistical models are able to predict ionic liquid viscosity across a wide range of chemical functionalities and experimental conditions publication-title: Mol. Syst. Des. Eng. doi: 10.1039/C7ME00094D – volume: 12 start-page: 492 year: 2020 ident: CR8 article-title: Artificial Intelligence and machine learning applications in smart production: progress, trends, and directions publication-title: Sustainability doi: 10.3390/su12020492 – volume: 7 year: 2015 ident: CR56 article-title: tmChem: a high performance approach for chemical named entity recognition and normalization publication-title: J. Cheminforma. doi: 10.1186/1758-2946-7-S1-S3 – volume: 13 start-page: 3965 year: 2022 end-page: 3977 ident: CR13 article-title: Materials data toward machine learning: advances and challenges publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.2c00576 – volume: 5 start-page: 21 year: 2019 ident: CR98 article-title: Active learning in materials science with emphasis on adaptive sampling using uncertainties for targeted design publication-title: npj Comput. Mater. doi: 10.1038/s41524-019-0153-8 – volume: 62 start-page: 5038 year: 2022 end-page: 5049 ident: CR24 article-title: Search for ABO type ferroelectric perovskites with targeted multi-properties by machine learning strategies publication-title: J. Chem. Inf. Model. doi: 10.1021/acs.jcim.1c00566 – volume: 2 start-page: 083802 year: 2018 ident: CR40 article-title: SISSO: A compressed-sensing method for identifying the best low-dimensional descriptor in an immensity of offered candidates publication-title: Phys. Rev. Mater. doi: 10.1103/PhysRevMaterials.2.083802 – volume: 26 start-page: 66 year: 2018 end-page: 79 ident: CR42 article-title: Evaluating the performance of the k-fold cross-validation approach for model selection in growth mixture modeling publication-title: Struct. Equ. Model. doi: 10.1080/10705511.2018.1500140 – volume: 109 start-page: 43 year: 2021 end-page: 76 ident: CR104 article-title: A comprehensive survey on transfer learning publication-title: P. IEEE doi: 10.1109/JPROC.2020.3004555 – volume: 61 start-page: 4280 year: 2021 end-page: 4289 ident: CR63 article-title: ChemDataExtractor 2.0: autopopulated ontologies for materials science publication-title: J. Chem. Inf. Model. doi: 10.1021/acs.jcim.1c00446 – volume: 74 start-page: 3609 year: 2011 end-page: 3618 ident: CR82 article-title: A review of optimization methodologies in support vector machines publication-title: Neurocomputing doi: 10.1016/j.neucom.2011.06.026 – volume: 190 start-page: 110314 year: 2021 ident: CR109 article-title: Transfer learning for materials informatics using crystal graph convolutional neural network publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2021.110314 – volume: 34 start-page: 1961 year: 2021 end-page: 1969 ident: CR44 article-title: Machine learning model for high-throughput screening of perovskite manganites with the highest néel temperature publication-title: J. Supercond. Nov. Magn. doi: 10.1007/s10948-021-05857-3 – volume: 37 start-page: 457 year: 2020 end-page: 475 ident: CR35 article-title: A review, framework, and R toolkit for exploring, evaluating, and comparing visualization methods publication-title: Vis. Comput doi: 10.1007/s00371-020-01817-5 – volume: 11 year: 2020 ident: CR100 article-title: On-the-fly closed-loop materials discovery via Bayesian active learning publication-title: Nat. Commun. doi: 10.1038/s41467-020-19597-w – volume: 13 year: 2022 ident: CR80 article-title: Towards universal neural network potential for material discovery applicable to arbitrary combination of 45 elements publication-title: Nat. Commun. doi: 10.1038/s41467-022-30687-9 – volume: 921 start-page: 165984 year: 2022 ident: CR16 article-title: Material machine learning for alloys: applications, challenges and perspectives publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2022.165984 – volume: 7 year: 2016 ident: CR102 article-title: Accelerated search for materials with targeted properties by adaptive design publication-title: Nat. Commun. doi: 10.1038/ncomms11241 – volume: 48 start-page: 1917 year: 2021 end-page: 1933 ident: CR39 article-title: Linear discriminant analysis for multiple functional data analysis publication-title: J. Appl. Stat. doi: 10.1080/02664763.2020.1780569 – volume: 58 start-page: 2420 year: 2018 end-page: 2427 ident: CR90 article-title: Using data mining to search for perovskite materials with higher specific surface area publication-title: J. Chem. Inf. Model. doi: 10.1021/acs.jcim.8b00436 – volume: 29 start-page: 21 year: 2018 end-page: 43 ident: CR60 article-title: Recent named entity recognition and classification techniques: a systematic review publication-title: Comput. Sci. Rev. doi: 10.1016/j.cosrev.2018.06.001 – volume: 188 start-page: 1731 year: 2022 end-page: 1745 ident: CR70 article-title: High-throughput methods for genome editing: the more the better publication-title: Plant Physiol. doi: 10.1093/plphys/kiac017 – volume: 12 start-page: 191 year: 2013 end-page: 201 ident: CR73 article-title: The high-throughput highway to computational materials design publication-title: Nat. Mater. doi: 10.1038/nmat3568 – volume: 34 start-page: 689 year: 2015 ident: 1000_CR72 publication-title: Mater. China – volume: 44 start-page: 27 year: 2015 ident: 1000_CR58 publication-title: J. Psycholinguist. Res. doi: 10.1007/s10936-014-9329-z – volume: 5 start-page: 2100565 year: 2022 ident: 1000_CR17 publication-title: Adv. Theor. Simul. doi: 10.1002/adts.202100565 – volume: 88 start-page: 143 year: 2021 ident: 1000_CR26 publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2021.01.071 – ident: 1000_CR111 doi: 10.1016/j.eng.2020.04.004 – volume: 14 start-page: 21596 year: 2022 ident: 1000_CR76 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.2c00564 – volume: 62 start-page: 5038 year: 2022 ident: 1000_CR24 publication-title: J. Chem. Inf. Model. doi: 10.1021/acs.jcim.1c00566 – volume: 27 start-page: 1717 year: 2015 ident: 1000_CR43 publication-title: Neural Comput. Appl. doi: 10.1007/s00521-015-1970-4 – volume: 31 start-page: 685 year: 2021 ident: 1000_CR1 publication-title: Electron. Mark. doi: 10.1007/s12525-021-00475-2 – volume: 10 start-page: 1491 year: 2021 ident: 1000_CR103 publication-title: Electronics doi: 10.3390/electronics10121491 – ident: 1000_CR95 – volume: 13 start-page: 925454 year: 2022 ident: 1000_CR10 publication-title: Front. Microbiol. doi: 10.3389/fmicb.2022.925454 – volume: 1 start-page: e201207003 year: 2012 ident: 1000_CR28 publication-title: Comput. Struct. Biotechnol. J. doi: 10.5936/csbj.201207003 – volume: 2 start-page: 083802 year: 2018 ident: 1000_CR40 publication-title: Phys. Rev. Mater. doi: 10.1103/PhysRevMaterials.2.083802 – volume: 136 start-page: 142 year: 2018 ident: 1000_CR18 publication-title: Stat. Probabil. Lett. doi: 10.1016/j.spl.2018.02.031 – volume: 196 start-page: 110528 year: 2021 ident: 1000_CR22 publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2021.110528 – volume: 7 year: 2015 ident: 1000_CR56 publication-title: J. Cheminforma. doi: 10.1186/1758-2946-7-S1-S3 – volume: 12 year: 2020 ident: 1000_CR48 publication-title: NPG Asia Mater. doi: 10.1038/s41427-020-0211-1 – volume: 374 start-page: 1385 year: 2021 ident: 1000_CR79 publication-title: Science doi: 10.1126/science.abj6511 – volume: 199 start-page: 110712 year: 2021 ident: 1000_CR21 publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2021.110712 – volume: 5 start-page: 1717 year: 2019 ident: 1000_CR110 publication-title: ACS Cent. Sci. doi: 10.1021/acscentsci.9b00804 – volume: 2020 start-page: 78 year: 2020 ident: 1000_CR69 publication-title: Front. Data Comput. – volume: 34 start-page: 1961 year: 2021 ident: 1000_CR44 publication-title: J. Supercond. Nov. Magn. doi: 10.1007/s10948-021-05857-3 – volume: 125 start-page: 21141 year: 2021 ident: 1000_CR23 publication-title: J. Phys. Chem. C. doi: 10.1021/acs.jpcc.1c05482 – volume: 33 start-page: 194002 year: 2021 ident: 1000_CR38 publication-title: J. Phys. Condens. Matter doi: 10.1088/1361-648X/abe39e – ident: 1000_CR57 doi: 10.1109/ElConRus51938.2021.9396231 – volume: 60 start-page: 351 year: 2021 ident: 1000_CR49 publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2021.01.035 – volume: 13 start-page: 3032 year: 2022 ident: 1000_CR97 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.2c00603 – volume: 105 start-page: 76 year: 2018 ident: 1000_CR55 publication-title: Pattern Recogn. Lett. doi: 10.1016/j.patrec.2017.10.010 – volume: 21 start-page: 1263 year: 2009 ident: 1000_CR94 publication-title: IEEE T. Knowl. Data En. doi: 10.1109/TKDE.2008.239 – volume: 177 start-page: 26 year: 2018 ident: 1000_CR20 publication-title: Chemom. Intell. Lab. doi: 10.1016/j.chemolab.2018.04.004 – volume: 102 start-page: 102401 year: 2022 ident: 1000_CR7 publication-title: Geothermics doi: 10.1016/j.geothermics.2022.102401 – volume: 39 start-page: 92 year: 1996 ident: 1000_CR59 publication-title: Commun. ACM doi: 10.1145/234173.234210 – volume: 11 start-page: 3485 year: 2022 ident: 1000_CR71 publication-title: J. Clin. Med. doi: 10.3390/jcm11123485 – volume: 2 start-page: 3115 year: 2020 ident: 1000_CR11 publication-title: Nanoscale Adv. doi: 10.1039/D0NA00388C – volume: 61 start-page: 4280 year: 2021 ident: 1000_CR63 publication-title: J. Chem. Inf. Model. doi: 10.1021/acs.jcim.1c00446 – volume: 74 start-page: 3609 year: 2011 ident: 1000_CR82 publication-title: Neurocomputing doi: 10.1016/j.neucom.2011.06.026 – volume: 11 year: 2020 ident: 1000_CR89 publication-title: Nat. Commun. doi: 10.1038/s41467-020-17263-9 – volume: 5 start-page: 21 year: 2019 ident: 1000_CR98 publication-title: npj Comput. Mater. doi: 10.1038/s41524-019-0153-8 – volume: 2 start-page: 024002 year: 2019 ident: 1000_CR41 publication-title: J. Phys. Mater. doi: 10.1088/2515-7639/ab077b – volume: 56 start-page: 1894 year: 2016 ident: 1000_CR62 publication-title: J. Chem. Inf. Model. doi: 10.1021/acs.jcim.6b00207 – volume: 24 start-page: 102155 year: 2021 ident: 1000_CR52 publication-title: iScience doi: 10.1016/j.isci.2021.102155 – volume: 23 start-page: 2100612 year: 2021 ident: 1000_CR92 publication-title: Adv. Eng. Mater. doi: 10.1002/adem.202100612 – volume: 121 start-page: 128 year: 2016 ident: 1000_CR51 publication-title: Sci. Comput. Program. doi: 10.1016/j.scico.2016.01.001 – volume: 14 start-page: 199 year: 2004 ident: 1000_CR81 publication-title: Stat. Comput. doi: 10.1023/B:STCO.0000035301.49549.88 – volume: 37 start-page: 3329 year: 2020 ident: 1000_CR86 publication-title: Eng. Comput. doi: 10.1007/s00366-020-01003-0 – volume: 25 start-page: 3772 year: 2020 ident: 1000_CR45 publication-title: Molecules doi: 10.3390/molecules25173772 – volume: 7 start-page: 21583 year: 2022 ident: 1000_CR93 publication-title: ACS Omega doi: 10.1021/acsomega.2c01380 – volume: 62 start-page: 521 year: 2019 ident: 1000_CR75 publication-title: Sci. China Technol. Sc. doi: 10.1007/s11431-018-9369-9 – volume: 110 start-page: E1181 year: 2013 ident: 1000_CR19 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1302293110 – volume: 108 start-page: 971 year: 2019 ident: 1000_CR85 publication-title: Mach. Learn. doi: 10.1007/s10994-019-05787-1 – volume: 12 start-page: 191 year: 2013 ident: 1000_CR73 publication-title: Nat. Mater. doi: 10.1038/nmat3568 – volume: 13 start-page: 245 year: 2020 ident: 1000_CR84 publication-title: Biosci. Biotech. Res. C. doi: 10.21786/bbrc/13.14/57 – volume: 50 start-page: 46 year: 2018 ident: 1000_CR37 publication-title: Opt. Quant. Electron. doi: 10.1007/s11082-018-1316-4 – volume: 148 start-page: 241722 year: 2018 ident: 1000_CR105 publication-title: J. Chem. Phys. doi: 10.1063/1.5019779 – volume: 48 start-page: 1917 year: 2021 ident: 1000_CR39 publication-title: J. Appl. Stat. doi: 10.1080/02664763.2020.1780569 – volume: 6 start-page: 1 year: 2014 ident: 1000_CR61 publication-title: J. Cheminformatics doi: 10.1186/1758-2946-6-1 – volume: 11 year: 2020 ident: 1000_CR100 publication-title: Nat. Commun. doi: 10.1038/s41467-020-19597-w – volume: 27 start-page: 151 year: 2022 ident: 1000_CR9 publication-title: Drug Discov. Today doi: 10.1016/j.drudis.2021.09.007 – volume: 34 start-page: 1060 year: 2022 ident: 1000_CR34 publication-title: J. King Saud. Univ. Com. – volume: 16 start-page: 211146 year: 2021 ident: 1000_CR91 publication-title: Int. J. Electrochem. Sc. doi: 10.20964/2021.11.22 – volume: 109 start-page: 43 year: 2021 ident: 1000_CR104 publication-title: P. IEEE doi: 10.1109/JPROC.2020.3004555 – volume: 57 start-page: 42 year: 2021 ident: 1000_CR96 publication-title: Comput. Eng. Appl. – volume: 2015 start-page: 674296 year: 2015 ident: 1000_CR50 publication-title: Comput. Math. Methods Med. doi: 10.1155/2015/674296 – volume: 12 start-page: 492 year: 2020 ident: 1000_CR8 publication-title: Sustainability doi: 10.3390/su12020492 – volume: 157 start-page: 106716 year: 2022 ident: 1000_CR32 publication-title: Int. J. Fatigue doi: 10.1016/j.ijfatigue.2021.106716 – volume: 188 start-page: 1731 year: 2022 ident: 1000_CR70 publication-title: Plant Physiol. doi: 10.1093/plphys/kiac017 – volume: 11 start-page: 69 year: 2019 ident: 1000_CR107 publication-title: J. Cheminforma. doi: 10.1186/s13321-019-0391-2 – volume: 69 start-page: 611 year: 2020 ident: 1000_CR29 publication-title: Kem. u. industriji. doi: 10.15255/KUI.2020.004 – volume: 921 start-page: 165984 year: 2022 ident: 1000_CR16 publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2022.165984 – volume: 6 start-page: 1078 year: 2017 ident: 1000_CR68 publication-title: ACS Macro. Lett. doi: 10.1021/acsmacrolett.7b00228 – volume: 27 start-page: 118901 year: 2018 ident: 1000_CR67 publication-title: Chin. Phys. B doi: 10.1088/1674-1056/27/11/118901 – volume: 8 start-page: 2663 year: 2022 ident: 1000_CR36 publication-title: Complex Intell. Syst. doi: 10.1007/s40747-021-00637-x – volume: 27 start-page: 118101 year: 2018 ident: 1000_CR66 publication-title: Chin. Phys. B doi: 10.1088/1674-1056/27/11/118101 – volume: 18 start-page: 4945 year: 2022 ident: 1000_CR88 publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.2c00281 – volume: 13 year: 2022 ident: 1000_CR80 publication-title: Nat. Commun. doi: 10.1038/s41467-022-30687-9 – volume: 34 start-page: 233002 year: 2022 ident: 1000_CR27 publication-title: J. Phys. Condens. Matter doi: 10.1088/1361-648X/ac577b – volume: 125 start-page: 16118 year: 2021 ident: 1000_CR99 publication-title: J. Phys. Chem. C. doi: 10.1021/acs.jpcc.1c02438 – volume: 4 start-page: e12194 year: 2022 ident: 1000_CR12 publication-title: Eco. Mat. – volume: 188 start-page: 2222 year: 2019 ident: 1000_CR2 publication-title: Am. J. Epidemiol. – volume: 8 start-page: 142642 year: 2020 ident: 1000_CR54 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3012542 – volume: 58 start-page: 2420 year: 2018 ident: 1000_CR90 publication-title: J. Chem. Inf. Model. doi: 10.1021/acs.jcim.8b00436 – volume: 121 start-page: 10073 year: 2021 ident: 1000_CR83 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.1c00022 – volume: 56 start-page: 2054 year: 2022 ident: 1000_CR30 publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.1c05398 – volume: 60 start-page: 4684 year: 2020 ident: 1000_CR108 publication-title: J. Chem. Inf. Model. doi: 10.1021/acs.jcim.0c00726 – volume: 20 start-page: 511 year: 2019 ident: 1000_CR64 publication-title: Sci. Technol. Adv. Mat. doi: 10.1080/14686996.2019.1603885 – volume: 38 start-page: 11984 year: 2011 ident: 1000_CR87 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2011.03.041 – volume: 3 start-page: 2096 year: 2017 ident: 1000_CR47 publication-title: npj Comput. Mater. doi: 10.1038/s41524-017-0055-6 – volume: 5 start-page: 5 year: 2019 ident: 1000_CR106 publication-title: npj Comput. Mater. doi: 10.1038/s41524-019-0203-2 – volume: 9 start-page: e740 year: 2022 ident: 1000_CR5 publication-title: Acute. Med. Surg. doi: 10.1002/ams2.740 – volume: 22 start-page: 41 year: 2021 ident: 1000_CR46 publication-title: AAPS Pharm. Sci. Tech. doi: 10.1208/s12249-020-01911-w – volume: 2022 start-page: 4653923 year: 2022 ident: 1000_CR6 publication-title: J. Healthc. Eng. doi: 10.1155/2022/4653923 – volume: 4 start-page: 904 year: 2022 ident: 1000_CR112 publication-title: Nat. Mach. Intell. doi: 10.1038/s42256-022-00548-7 – volume: 37 start-page: 457 year: 2020 ident: 1000_CR35 publication-title: Vis. Comput doi: 10.1007/s00371-020-01817-5 – volume: 14 start-page: 302 year: 2021 ident: 1000_CR3 publication-title: J. Risk Financ. Manag. doi: 10.3390/jrfm14070302 – volume: 7 start-page: 23 year: 2021 ident: 1000_CR15 publication-title: npj Comput. Mater. doi: 10.1038/s41524-021-00495-8 – volume: 53 start-page: 551 year: 2017 ident: 1000_CR33 publication-title: Knowl. Inf. Syst. doi: 10.1007/s10115-017-1059-8 – volume: 190 start-page: 110314 year: 2021 ident: 1000_CR109 publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2021.110314 – volume: 13 start-page: 3965 year: 2022 ident: 1000_CR13 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.2c00576 – volume: 3 start-page: 253 year: 2018 ident: 1000_CR31 publication-title: Mol. Syst. Des. Eng. doi: 10.1039/C7ME00094D – volume: 9 year: 2022 ident: 1000_CR65 publication-title: Sci. Data doi: 10.1038/s41597-022-01317-2 – volume: 12 year: 2021 ident: 1000_CR78 publication-title: Nat. Commun. doi: 10.1038/s41467-021-22472-x – volume: 57 start-page: 797 year: 2021 ident: 1000_CR101 publication-title: Acta Metall. Sin. – volume: 29 start-page: 21 year: 2018 ident: 1000_CR60 publication-title: Comput. Sci. Rev. doi: 10.1016/j.cosrev.2018.06.001 – volume: 26 start-page: 66 year: 2018 ident: 1000_CR42 publication-title: Struct. Equ. Model. doi: 10.1080/10705511.2018.1500140 – volume: 8 start-page: 222 year: 2022 ident: 1000_CR77 publication-title: npj Comput. Mater. doi: 10.1038/s41524-022-00906-4 – volume: 73 start-page: 3383 year: 2021 ident: 1000_CR53 publication-title: JOM doi: 10.1007/s11837-021-04902-9 – volume: 7 year: 2016 ident: 1000_CR102 publication-title: Nat. Commun. doi: 10.1038/ncomms11241 – volume: 61 start-page: 101646 year: 2022 ident: 1000_CR4 publication-title: Res. Int. Bus. Financ. doi: 10.1016/j.ribaf.2022.101646 – volume: 222 start-page: 117431 year: 2022 ident: 1000_CR14 publication-title: Acta Mater. doi: 10.1016/j.actamat.2021.117431 – volume: 75 start-page: 100492 year: 2020 ident: 1000_CR25 publication-title: Surf. Sci. Rep. doi: 10.1016/j.surfrep.2020.100492 – volume: 11 start-page: e1489 year: 2021 ident: 1000_CR74 publication-title: WIREs Comput. Mol. Sci. doi: 10.1002/wcms.1489 |
SSID | ssj0001928240 |
Score | 2.6525059 |
SecondaryResourceType | review_article |
Snippet | This review discussed the dilemma of small data faced by materials machine learning. First, we analyzed the limitations brought by small data. Then, the... Abstract This review discussed the dilemma of small data faced by materials machine learning. First, we analyzed the limitations brought by small data. Then,... |
SourceID | doaj proquest crossref springer |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 42 |
SubjectTerms | 639/301/1034 639/301/1034/1037 Active learning Algorithms Artificial intelligence Big Data Characterization and Evaluation of Materials Chemistry and Materials Science Computational Intelligence Data collection Experiments Genomes Interdisciplinary subjects Learning algorithms Machine learning Materials Science Mathematical and Computational Engineering Mathematical and Computational Physics Mathematical Modeling and Industrial Mathematics Review Article Theoretical Transfer learning Workflow |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NTwMhECVaL3owfsZqNXvwpqQssMCejBqNMdGLmvRGWGCNSW2rXS_-egfKtmqiV5bdbGYG3pthmEHoOM8BxAx3uOIeHBROGFZWMswFqQUAtqxiwO3uXtw88dtBMUgBt2lKq2z3xLhRu7ENMfI-lWW4ownr82zyhkPXqHC6mlpoLKOVULosWLUcyEWMpQSHgpN0V4Yw1Z8GvOIYgAp86HCp-vMHHsWy_T-45q_j0Yg61xtoPdHF7Hym30205EdbaO1bEcFtRB5ezXCYhVTP7DWmRvos9YJ4zl5GMNbMrCxLaLeDHq-vHi9vcOqDgC24Lw323occ0LrIvfTEmqpQTggLVKJWhBtnGHWiEkZGZ8ABYXKGc2tUXStX5mwXdUbjkd9DGbDD3IILJ42gobVcWZuaGGpLVQYiZLsob4WhbaoRHlpVDHU8q2ZKzwSoQYA6ClB_dtHJ_J3JrELGv7MvgoznM0N16zgwfn_WabFoKkN5UmeZ8yWnhJbc5BVTQBbBgKzgXdRrNaTTkpvqhYF00WmrtcXjv39p__-vHaBVGu2FYVr0UKd5__CHQESa6iha2xd2ydY- priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB7UXvQgPrFaZQ_edDGbpNnssYqlFPSiQm8hm2SL0IfU9eKvd5JmfaGC12wGwmQ2800y8w3AaZahE9PcpiV3GKBwwlJpcpZyQSqBDjsvw4Xbza0YPPDhqDtaAdrUwoSk_UBpGY7pJjvs4tk7Gp6ih8Hg11dDv65Cy1O1o223er3h3fDjZqXAMIKTWCFDmPxB-IsXCmT9XxDmt0fR4Gv6W7AZQWLSWy5rG1bcbAc2PlEH7gK5m-rJJPEJnsk0JES6JHaAGCePMxyrl7aVRB-3B_f96_urQRq7H6QGg5Y6dc75zM-qm7ncEaPLrrRCGAQQlSRcW82oFaXQeQgBLMIkqzk3WlaVtEXG9mFtNp-5A0gQE2YGA7dcC-obyhWVroimppCFhz-mDVmjDGUiM7hvUDFR4YWaSbVUoEIFqqBA9dqGs3eZpyUvxp-zL72O32d6TuswMF-MVdxjRXNPSmoNs67glNCC66xkEiEimo0RvA2dZodU_NGeUajwpbt4bLfhvNm1j8-_L-nwf9OPYJ0G-2Ep7XZgrV68uGOEI3V5Eu3vDTIJ1aM priority: 102 providerName: Springer Nature |
Title | Small data machine learning in materials science |
URI | https://link.springer.com/article/10.1038/s41524-023-01000-z https://www.proquest.com/docview/2790694538 https://doaj.org/article/276148dc3de9420294a1b388350f6c64 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PT8IwFH5RvOjB-DOiSHbwpgvbWrruCAQkJBIjmHBrurYzGkAjeOGv97UbCCbqxcuWdN3SvNft-976-j2AqzBEEJNU-yk1GKDQgPhcxcSnLMgYAnacuh9ud33WfaS9UX20VurL5oTl8sC54WpRbKUqtSLaJBQj9YTKMCUciQM-TDGnBIqYtxZMveS8hSNWFbtkAsJrM4tU1EeIwujZbqdebCCRE-zfYJnfFkYd3nQOYL8gil4jH-AhbJnpEeytyQceQzCYyPHYs0me3sQlRRqvqALx5D1PsW2ezy-vwLkTGHbaw1bXLyog-AoDl7lvjLHZn1k9NLEJlEzrXDOmkERkPKBSSxJpljIZuzBAI1XSklIleZZxnYTkFErT16k5Aw95YagweIsli2xRuSSTWSAjlfDEUiBVhnBpDKEKdXBbpGIs3Co14SI3oEADCmdAsSjD9eqet1wb49feTWvjVU-ra-0a0Nui8Lb4y9tlqCw9JIqXbYY3JXb7Ln66y3Cz9NrX5Z-HdP4fQ7qA3cjNKuJH9QqU5u8f5hKJyjytwnY8ivHIO7dV2Gk0eoMenpvt_v0DtrZYq-pm7SfV6OMS |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5ROFAOVXmJpRRyKCewcGyv4xyqqjy2y_PCInGzHNtBSMsusFtV5T_1P3bsJCwgwY1r4ljR-LO_b2zPDMC3NEUSM8KRQnh0UATlRNmMEyFpKZGwsyJuuJ2eye6FOLpsX07BvyYWJlyrbNbEuFC7oQ175Dssy0OMJs7PH7d3JFSNCqerTQmNChbH_u8fdNlG3w_3cXw3Gesc9Pa6pK4qQCw6A2PivQ83Kst26jNPrSnayklpkZhLRYVxhjMnC2myKK0dyg9nhLBGlaVyecqx2w8wIzgSeQhM7_yabOnk6L8IWofmUK52RoEeBUFeRJc9xHA_PKO_WCXgmbR9cRobSa7zGT7V6jT5WcFpHqb8YAHmnuQsXAR6fmP6_STcLE1u4k1Mn9SlJ66S6wE-G1egTmpyXYLeexhoGaYHw4FfgQTFaGrRY8yMZKGSXV6akhpmc5UH3WVbkDbG0LZOSR4qY_R1PBrnSlcG1GhAHQ2oH1qw9fjNbZWQ483Wu8HGjy1DMu34YHh_peu5qVkWsqE6y53PBaMsFyYtuEJtini1UrRgrRkhXc_wkZ7gsQXbzahNXr_-S6tv97YBs93e6Yk-OTw7_gIfWcQOJ6y9BtPj-9_-K2qgcbEekZeAfmek_weo-hNV |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LSyQxEC7cEZb1ILq74vjsw3rSYDqdSXcfRHwNuuogroK3kE7SIowz6oyI_jP_nZV02lFhvXlNp0OofMlXldQD4E8cI4kpbkjBLRoonCYk02lCuKClQMJOC3_hdtwR--f870XrYgye61gY51ZZn4n-oDZ97e7I11mauxhN3J_rZXCLONltb97cEldByr201uU0Kogc2scHNN8GGwe7uNYrjLX3znb2SagwQDQaBkNirXXelWUrtqmlWhWtzAihkaTLjHJlVMKMKIRKvZptUBUxinOtsrLMTB4nOOw3GE-dUdSA8e29zsnp6IInR2uG0xCoQ3HeA0eWnCBLogHvIrqf3pGhrxnwTtH98DbrKa89BZNBV422KnBNw5jt_YSJNxkMfwH9d6263cj5mUbX3i_TRqEQxWV01cO2YQXxKFDtbzj7ChHNQKPX79lZiFA1jTWKKlWCubp2ealKqpjOs9xpYboJcS0MqUOCclcnoyv9Q3mSyUqAEgUovQDlUxNWX_-5qdJzfNp728n4tadLre0b-neXMuxUyVKXG9XoxNicM8pyruIiyVBTRfRqwZuwUK-QDPt9IEfobMJavWqjz_-f0tznoy3Dd0S5PDroHM7DD-ahkxDGF6AxvLu3i6gQDYulAL0I5BeD_QU7SRjm |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Small+data+machine+learning+in+materials+science&rft.jtitle=npj+computational+materials&rft.au=Pengcheng+Xu&rft.au=Xiaobo+Ji&rft.au=Minjie+Li&rft.au=Wencong+Lu&rft.date=2023-03-25&rft.pub=Nature+Portfolio&rft.eissn=2057-3960&rft.volume=9&rft.issue=1&rft.spage=1&rft.epage=15&rft_id=info:doi/10.1038%2Fs41524-023-01000-z&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_276148dc3de9420294a1b388350f6c64 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2057-3960&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2057-3960&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2057-3960&client=summon |