A Decomposition of Feedback Contributions to Polar Warming Amplification
Polar surface temperatures are expected to warm 2–3 times faster than the global-mean surface temperature: a phenomenon referred to as polar warming amplification. Therefore, understanding the individual process contributions to the polar warming is critical to understanding global climate sensitivi...
Saved in:
Published in | Journal of climate Vol. 26; no. 18; pp. 7023 - 7043 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Boston, MA
American Meteorological Society
15.09.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Polar surface temperatures are expected to warm 2–3 times faster than the global-mean surface temperature: a phenomenon referred to as polar warming amplification. Therefore, understanding the individual process contributions to the polar warming is critical to understanding global climate sensitivity. The Coupled Feedback Response Analysis Method (CFRAM) is applied to decompose the annual- and zonal-mean vertical temperature response within a transient 1% yr−1CO₂ increase simulation of the NCAR Community Climate System Model, version 4 (CCSM4), into individual radiative and nonradiative climate feedback process contributions. The total transient annual-mean polar warming amplification (amplification factor) at the time of CO₂ doubling is +2.12 (2.3) and +0.94 K (1.6) in the Northern and Southern Hemisphere, respectively. Surface albedo feedback is the largest contributor to the annual-mean polar warming amplification accounting for +1.82 and +1.04 K in the Northern and Southern Hemisphere, respectively. Net cloud feedback is found to be the second largest contributor to polar warming amplification (about +0.38 K in both hemispheres) and is driven by the enhanced downward longwave radiation to the surface resulting from increases in low polar water cloud. The external forcing and atmospheric dynamic transport also contribute positively to polar warming amplification: +0.29 and +0.32 K, respectively. Water vapor feedback contributes negatively to polar warming amplification because its induced surface warming is stronger in low latitudes. Ocean heat transport storage and surface turbulent flux feedbacks also contribute negatively to polar warming amplification. Ocean heat transport and storage terms play an important role in reducing the warming over the Southern Ocean and Northern Atlantic Ocean. |
---|---|
AbstractList | Polar surface temperatures are expected to warm 2–3 times faster than the global-mean surface temperature: a phenomenon referred to as polar warming amplification. Therefore, understanding the individual process contributions to the polar warming is critical to understanding global climate sensitivity. The Coupled Feedback Response Analysis Method (CFRAM) is applied to decompose the annual- and zonal-mean vertical temperature response within a transient 1% yr−1CO₂ increase simulation of the NCAR Community Climate System Model, version 4 (CCSM4), into individual radiative and nonradiative climate feedback process contributions. The total transient annual-mean polar warming amplification (amplification factor) at the time of CO₂ doubling is +2.12 (2.3) and +0.94 K (1.6) in the Northern and Southern Hemisphere, respectively. Surface albedo feedback is the largest contributor to the annual-mean polar warming amplification accounting for +1.82 and +1.04 K in the Northern and Southern Hemisphere, respectively. Net cloud feedback is found to be the second largest contributor to polar warming amplification (about +0.38 K in both hemispheres) and is driven by the enhanced downward longwave radiation to the surface resulting from increases in low polar water cloud. The external forcing and atmospheric dynamic transport also contribute positively to polar warming amplification: +0.29 and +0.32 K, respectively. Water vapor feedback contributes negatively to polar warming amplification because its induced surface warming is stronger in low latitudes. Ocean heat transport storage and surface turbulent flux feedbacks also contribute negatively to polar warming amplification. Ocean heat transport and storage terms play an important role in reducing the warming over the Southern Ocean and Northern Atlantic Ocean. Polar surface temperatures are expected to warm 2-3 times faster than the global-mean surface temperature: a phenomenon referred to as polar warming amplification. Therefore, understanding the individual process contributions to the polar warming is critical to understanding global climate sensitivity. The Coupled Feedback Response Analysis Method (CFRAM) is applied to decompose the annual- and zonal-mean vertical temperature response within a transient 1% yr^sup -1^ CO^sub 2^ increase simulation of the NCAR Community Climate System Model, version 4 (CCSM4), into individual radiative and nonradiative climate feedback process contributions. The total transient annual-mean polar warming amplification (amplification factor) at the time of CO^sub 2^ doubling is +2.12 (2.3) and +0.94 K (1.6) in the Northern and Southern Hemisphere, respectively. Surface albedo feedback is the largest contributor to the annual-mean polar warming amplification accounting for +1.82 and +1.04 K in the Northern and Southern Hemisphere, respectively. Net cloud feedback is found to be the second largest contributor to polar warming amplification (about +0.38 K in both hemispheres) and is driven by the enhanced downward longwave radiation to the surface resulting from increases in low polar water cloud. The external forcing and atmospheric dynamic transport also contribute positively to polar warming amplification:+ 0.29 and +0.32 K, respectively. Water vapor feedback contributes negatively to polar warming amplification because its induced surface warming is stronger in low latitudes. Ocean heat transport storage and surface turbulent flux feedbacks also contribute negatively to polar warming amplification. Ocean heat transport and storage terms play an important role in reducing the warming over the Southern Ocean and Northern Atlantic Ocean. [PUBLICATION ABSTRACT] Polar surface temperatures are expected to warm 2–3 times faster than the global-mean surface temperature: a phenomenon referred to as polar warming amplification. Therefore, understanding the individual process contributions to the polar warming is critical to understanding global climate sensitivity. The Coupled Feedback Response Analysis Method (CFRAM) is applied to decompose the annual- and zonal-mean vertical temperature response within a transient 1% yr−1 CO2 increase simulation of the NCAR Community Climate System Model, version 4 (CCSM4), into individual radiative and nonradiative climate feedback process contributions. The total transient annual-mean polar warming amplification (amplification factor) at the time of CO2 doubling is +2.12 (2.3) and +0.94 K (1.6) in the Northern and Southern Hemisphere, respectively. Surface albedo feedback is the largest contributor to the annual-mean polar warming amplification accounting for +1.82 and +1.04 K in the Northern and Southern Hemisphere, respectively. Net cloud feedback is found to be the second largest contributor to polar warming amplification (about +0.38 K in both hemispheres) and is driven by the enhanced downward longwave radiation to the surface resulting from increases in low polar water cloud. The external forcing and atmospheric dynamic transport also contribute positively to polar warming amplification: +0.29 and +0.32 K, respectively. Water vapor feedback contributes negatively to polar warming amplification because its induced surface warming is stronger in low latitudes. Ocean heat transport storage and surface turbulent flux feedbacks also contribute negatively to polar warming amplification. Ocean heat transport and storage terms play an important role in reducing the warming over the Southern Ocean and Northern Atlantic Ocean. Polar surface temperatures are expected to warm 2-3 times faster than the global-mean surface temperature: a phenomenon referred to as polar warming amplification. Therefore, understanding the individual process contributions to the polar warming is critical to understanding global climate sensitivity. The Coupled Feedback Response Analysis Method (CFRAM) is applied to decompose the annual- and zonal-mean vertical temperature response within a transient 1% yr super(-1) CO sub(2) increase simulation of the NCAR Community Climate System Model, version 4 (CCSM4), into individual radiative and nonradiative climate feedback process contributions. The total transient annual-mean polar warming amplification (amplification factor) at the time of CO sub(2) doubling is +2.12 (2.3) and +0.94 K (1.6) in the Northern and Southern Hemisphere, respectively. Surface albedo feedback is the largest contributor to the annual-mean polar warming amplification accounting for +1.82 and +1.04 K in the Northern and Southern Hemisphere, respectively. Net cloud feedback is found to be the second largest contributor to polar warming amplification (about +0.38 K in both hemispheres) and is driven by the enhanced downward longwave radiation to the surface resulting from increases in low polar water cloud. The external forcing and atmospheric dynamic transport also contribute positively to polar warming amplification: +0.29 and +0.32 K, respectively. Water vapor feedback contributes negatively to polar warming amplification because its induced surface warming is stronger in low latitudes. Ocean heat transport storage and surface turbulent flux feedbacks also contribute negatively to polar warming amplification. Ocean heat transport and storage terms play an important role in reducing the warming over the Southern Ocean and Northern Atlantic Ocean. |
Author | Taylor, Patrick C. Washington, Warren Zhang, Guang J. Cai, Ming Hu, Aixue Meehl, Jerry |
Author_xml | – sequence: 1 givenname: Patrick C. surname: Taylor fullname: Taylor, Patrick C. organization: NASA Langley Research Center, Hampton, Virginia – sequence: 2 givenname: Ming surname: Cai fullname: Cai, Ming organization: Department of Earth, Ocean and Atmospheric Science, The Florida State University, Tallahassee, Florida – sequence: 3 givenname: Aixue surname: Hu fullname: Hu, Aixue organization: Climate Change Research, Climate and Global Dynamics, National Center for Atmospheric Research, Boulder, Colorado – sequence: 4 givenname: Jerry surname: Meehl fullname: Meehl, Jerry organization: Climate Change Research, Climate and Global Dynamics, National Center for Atmospheric Research, Boulder, Colorado – sequence: 5 givenname: Warren surname: Washington fullname: Washington, Warren organization: Climate Change Research, Climate and Global Dynamics, National Center for Atmospheric Research, Boulder, Colorado – sequence: 6 givenname: Guang J. surname: Zhang fullname: Zhang, Guang J. organization: Scripps Institution of Oceanography, University of California, San Diego, San Diego, California |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27739138$$DView record in Pascal Francis |
BookMark | eNp9kU1LAzEQhoNUsFV_gAdhQQQvq5l8bJJjaa0fFPSgeAzZbFZSdzc12R78926tInjwNDDzvO-8zEzQqAudQ-gE8CWA4Fcr2_i8yoHkGBequIQ9NAZOcI4ZIyM0xlKxXArOD9AkpRXGQAqMx-h2ms2dDe06JN_70GWhzhbOVaWxb9ksdH305WY7SFkfssfQmJi9mNj67jWbtuvG196a7fwI7demSe74ux6i58X10-w2Xz7c3M2my9wyxfvclVA6y6SR0lAniKF1QWtlRQEVED50JRMlLikvmDW0oqbkkjnGpaMVU44eooud7zqG941LvW59sq5pTOfCJmlgVBFCgKoBPfuDrsImdkM6TeQACE4L9h8FjDEpFKYwUOfflEnWNHU0nfVJr6NvTfzQRAiqgMqBEzvOxpBSdLW2vv86UB-NbzRgvf2Xvp8t7_RcA9Ff_9LbDfBH-WP-n-Z0p1mlPsTfNAUoIocLfAKS7KJY |
CitedBy_id | crossref_primary_10_1080_16000870_2019_1696139 crossref_primary_10_1088_1748_9326_ad9abb crossref_primary_10_1016_j_aosl_2021_100043 crossref_primary_10_1360_SSTe_2024_0190 crossref_primary_10_5194_acp_23_9963_2023 crossref_primary_10_1175_JCLI_D_13_00511_1 crossref_primary_10_1002_2014GL061700 crossref_primary_10_1038_s41612_022_00228_8 crossref_primary_10_1175_JCLI_D_15_0467_1 crossref_primary_10_1029_2020GL090301 crossref_primary_10_1038_s41558_018_0339_y crossref_primary_10_1016_j_earscirev_2020_103500 crossref_primary_10_1088_2752_5295_acf4b7 crossref_primary_10_1016_j_wace_2024_100712 crossref_primary_10_1175_JAS_D_13_0334_1 crossref_primary_10_1007_s00382_013_1875_9 crossref_primary_10_1038_s41597_022_01900_7 crossref_primary_10_1073_pnas_1615880114 crossref_primary_10_1016_j_dsr2_2020_104742 crossref_primary_10_1038_s43247_025_02022_9 crossref_primary_10_1177_0309133318776490 crossref_primary_10_1525_elementa_2021_000120 crossref_primary_10_5194_acp_14_9403_2014 crossref_primary_10_1364_OE_491306 crossref_primary_10_1073_pnas_2402322121 crossref_primary_10_1029_2018GL077852 crossref_primary_10_1016_j_atmosres_2021_105879 crossref_primary_10_1038_s43247_022_00354_4 crossref_primary_10_1007_s11430_024_1438_5 crossref_primary_10_1007_s11629_021_6912_2 crossref_primary_10_1038_s41597_023_02586_1 crossref_primary_10_1029_2018JD029093 crossref_primary_10_5194_cp_15_291_2019 crossref_primary_10_5194_bg_16_1543_2019 crossref_primary_10_1029_2022GL102541 crossref_primary_10_1088_1748_9326_ac1c29 crossref_primary_10_1088_1748_9326_adaed4 crossref_primary_10_1038_s43247_022_00498_3 crossref_primary_10_3389_feart_2021_725816 crossref_primary_10_1007_s00382_024_07465_y crossref_primary_10_1007_s10980_023_01733_8 crossref_primary_10_1029_2018JD028886 crossref_primary_10_1007_s10584_023_03572_7 crossref_primary_10_1073_pnas_1915258116 crossref_primary_10_5194_acp_20_12409_2020 crossref_primary_10_1029_2022GL099263 crossref_primary_10_5194_acp_14_13571_2014 crossref_primary_10_1007_s00382_023_06687_w crossref_primary_10_5194_acp_20_5157_2020 crossref_primary_10_1002_qj_2802 crossref_primary_10_1016_j_epsl_2020_116319 crossref_primary_10_3389_feart_2021_709896 crossref_primary_10_3354_meps13694 crossref_primary_10_1016_j_atmosenv_2021_118333 crossref_primary_10_1038_s41467_018_07954_9 crossref_primary_10_1038_s41598_019_44155_w crossref_primary_10_1175_JCLI_D_13_00658_1 crossref_primary_10_1088_1748_9326_ac9ecd crossref_primary_10_1088_1748_9326_ac9dad crossref_primary_10_1016_j_physd_2023_133880 crossref_primary_10_1088_1748_9326_9_11_114024 crossref_primary_10_1175_JCLI_D_15_0742_1 crossref_primary_10_1007_s13143_022_00268_3 crossref_primary_10_1007_s00382_022_06136_0 crossref_primary_10_1007_s40641_020_00169_5 crossref_primary_10_1175_JCLI_D_20_0491_1 crossref_primary_10_1029_2020GL091109 crossref_primary_10_1038_s41467_022_35011_z crossref_primary_10_1175_JCLI_D_17_0287_1 crossref_primary_10_1002_joc_5815 crossref_primary_10_5194_acp_19_14339_2019 crossref_primary_10_1007_s00382_013_1805_x crossref_primary_10_1007_s00382_014_2189_2 crossref_primary_10_5194_acp_23_2579_2023 crossref_primary_10_1088_1748_9326_ad2cad crossref_primary_10_5194_os_12_807_2016 crossref_primary_10_1007_s00382_018_4232_1 crossref_primary_10_1029_2020EF001898 crossref_primary_10_1086_698691 crossref_primary_10_1088_2515_7620_ab6369 crossref_primary_10_1002_ldr_5204 crossref_primary_10_1007_s10584_021_03298_4 crossref_primary_10_1088_1748_9326_9_12_124005 crossref_primary_10_1038_s43247_024_01428_1 crossref_primary_10_5194_esd_15_155_2024 crossref_primary_10_7868_S2073667320030016 crossref_primary_10_1175_JCLI_D_17_0317_1 crossref_primary_10_1175_JCLI_D_21_0317_1 crossref_primary_10_1002_2015MS000459 crossref_primary_10_1016_j_pocean_2021_102687 crossref_primary_10_1038_s43247_024_01549_7 crossref_primary_10_1002_2014GL061987 crossref_primary_10_1038_nclimate3011 crossref_primary_10_1175_JCLI_D_21_0814_1 crossref_primary_10_3390_atmos14020218 crossref_primary_10_1007_s00382_016_3277_2 crossref_primary_10_1016_j_jhydrol_2022_128162 crossref_primary_10_5194_acp_23_7033_2023 crossref_primary_10_1016_j_ocemod_2013_12_003 crossref_primary_10_1007_s00382_019_05094_4 crossref_primary_10_1007_s00382_016_3262_9 crossref_primary_10_1007_s00382_013_2029_9 crossref_primary_10_1093_nsr_nwae442 crossref_primary_10_1007_s11430_017_9226_6 crossref_primary_10_1002_2015JC011558 crossref_primary_10_1038_s41467_020_18227_9 crossref_primary_10_1088_2752_5295_aced63 crossref_primary_10_1088_1748_9326_abf18f crossref_primary_10_5194_ar_1_39_2023 crossref_primary_10_1016_j_scitotenv_2024_173937 crossref_primary_10_1088_1748_9326_ad7d1e crossref_primary_10_3389_feart_2021_758361 crossref_primary_10_3390_atmos10080431 crossref_primary_10_1175_JCLI_D_14_00389_1 crossref_primary_10_1175_JCLI_D_20_0178_1 crossref_primary_10_1029_2018GL081871 crossref_primary_10_3390_atmos9020041 crossref_primary_10_1029_2022GL100034 crossref_primary_10_1175_JCLI_D_16_0329_1 crossref_primary_10_1007_s00376_021_0343_4 crossref_primary_10_1016_j_aosl_2020_100010 crossref_primary_10_1038_s41598_017_08545_2 crossref_primary_10_3390_atmos14060979 crossref_primary_10_1175_JAS_D_15_0287_1 crossref_primary_10_1038_nclimate3121 crossref_primary_10_1175_JCLI_D_13_00567_1 crossref_primary_10_1007_s00382_014_2371_6 crossref_primary_10_1002_2013GL059079 crossref_primary_10_5194_essd_16_543_2024 crossref_primary_10_1007_s00376_014_4061_z crossref_primary_10_1029_2020GL088030 crossref_primary_10_1073_pnas_1510937112 crossref_primary_10_1007_s12275_022_2275_9 crossref_primary_10_3390_atmos13101602 crossref_primary_10_1038_ngeo2071 crossref_primary_10_1002_2015JD024679 crossref_primary_10_1029_2021JD036216 crossref_primary_10_12677_CCRL_2022_113024 crossref_primary_10_1038_s41467_024_48469_w crossref_primary_10_1088_1748_9326_abc379 crossref_primary_10_5194_gmd_12_1139_2019 crossref_primary_10_1175_AMSMONOGRAPHS_D_18_0003_1 crossref_primary_10_3390_cli7020030 crossref_primary_10_5194_cp_20_1303_2024 crossref_primary_10_1007_s10236_019_01259_1 crossref_primary_10_1029_2021GL094599 crossref_primary_10_1175_JCLI_D_13_00721_1 crossref_primary_10_1175_JAMC_D_14_0080_1 crossref_primary_10_1088_2752_5295_ad8df6 crossref_primary_10_1029_2018GL079447 crossref_primary_10_1175_JCLI_D_14_00086_1 crossref_primary_10_1088_2752_5295_ace20f crossref_primary_10_1175_JCLI_D_15_0366_1 crossref_primary_10_1007_s00382_015_2926_1 crossref_primary_10_1038_s41467_018_04173_0 crossref_primary_10_1002_2016JD025099 crossref_primary_10_1175_JCLI_D_15_0362_1 crossref_primary_10_1002_2017JD027539 crossref_primary_10_1029_2019GL082320 crossref_primary_10_1088_1748_9326_ad40c2 crossref_primary_10_1103_RevModPhys_93_045002 crossref_primary_10_1175_JCLI_D_20_0558_1 crossref_primary_10_1016_j_polar_2022_100861 crossref_primary_10_3389_feart_2021_710036 crossref_primary_10_5194_acp_18_13345_2018 crossref_primary_10_1029_2019JD031962 crossref_primary_10_3402_tellusa_v67_25482 crossref_primary_10_5194_acp_21_289_2021 crossref_primary_10_1002_2015JD023520 crossref_primary_10_1007_s10584_021_03296_6 crossref_primary_10_1016_j_scib_2023_12_008 crossref_primary_10_1016_j_gloplacha_2021_103447 crossref_primary_10_1175_JAS_D_15_0013_1 crossref_primary_10_1126_science_aas8806 crossref_primary_10_1029_2022JD037467 crossref_primary_10_5194_amt_16_1865_2023 crossref_primary_10_1002_2015JD024738 |
Cites_doi | 10.1256/qj.03.99 10.1029/2012JD017589 10.1175/JCLI-D-11-00469.1 10.1029/JC085iC10p05529 10.1175/JCLI-D-11-00246.1 10.1175/2010JCLI3788.1 10.1007/s00382-007-0238-9 10.1175/JCLI-D-11-00096.1 10.1175/1520-0469(1993)050<2008:POTRPO>2.0.CO;2 10.1007/s00382-005-0104-6 10.1029/96JD03436 10.1175/1520-0442(1995)008<0449:TROSII>2.0.CO;2 10.1007/s00382-009-0673-x 10.1007/s00382-008-0475-6 10.1175/2011JCLI4083.1 10.1029/2002JD003322 10.1007/s00382-008-0425-3 10.1175/1520-0469(1975)032<0003:TEODTC>2.0.CO;2 10.1175/2008JCLI2637.1 10.5194/tc-3-11-2009 10.1007/s00382-003-0332-6 10.1175/2007JCLI2110.1 10.1175/JCLI3819.1 10.1175/JCLI-D-11-00290.1 10.1175/JCLI-D-11-00503.1 10.1175/JCLI-D-11-00240.1 10.1175/2011JCLI3862.1 10.1175/JCLI-D-11-00197.1 10.1175/1520-0442(2004)017<0603:TIOCFO>2.0.CO;2 10.1007/s00382-008-0424-4 10.1175/1520-0469(1988)045<1397:CFPIAG>2.0.CO;2 10.1175/1520-0442(2004)017<1550:TROSAF>2.0.CO;2 10.1029/2009GL040133 10.1175/1520-0469(1992)049<2139:OTCDMF>2.0.CO;2 10.1029/2009GL038777 10.1007/s00382-009-0535-6 10.1029/2009JD011773 10.1175/1520-0469(1987)044<3235:TDCCIO>2.0.CO;2 10.1029/2005GL025244 10.1029/2005GL024481 10.1175/JAS-D-11-0117.1 10.1016/j.gloplacha.2011.03.004 10.1007/s00382-012-1601-z 10.1175/JCLI3799.1 10.1029/2011GL048546 10.1175/JCLI-D-10-05005.1 |
ContentType | Journal Article |
Copyright | 2013 American Meteorological Society 2015 INIST-CNRS Copyright American Meteorological Society Sep 15, 2013 Copyright American Meteorological Society 2013 |
Copyright_xml | – notice: 2013 American Meteorological Society – notice: 2015 INIST-CNRS – notice: Copyright American Meteorological Society Sep 15, 2013 – notice: Copyright American Meteorological Society 2013 |
DBID | AAYXX CITATION IQODW 3V. 7QH 7TG 7UA 7X2 7XB 88F 88I 8AF 8FE 8FG 8FH 8FK 8G5 ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W GNUQQ GUQSH H96 HCIFZ KL. L.G M0K M1Q M2O M2P MBDVC P5Z P62 PATMY PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PYCSY Q9U S0X 8FD H8D L7M |
DOI | 10.1175/jcli-d-12-00696.1 |
DatabaseName | CrossRef Pascal-Francis ProQuest Central (Corporate) Aqualine Meteorological & Geoastrophysical Abstracts Water Resources Abstracts Agricultural Science Collection ProQuest Central (purchase pre-March 2016) Military Database (Alumni Edition) Science Database (Alumni Edition) STEM Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials eLibrary Curriculum ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Central Student ProQuest Research Library Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Collection (ProQuest) Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Agriculture Science Database Military Database Research Library Science Database Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Environmental Science Collection ProQuest Central Basic SIRS Editorial Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Agricultural Science Database Research Library Prep ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials elibrary ProQuest AP Science SciTech Premium Collection ProQuest Military Collection Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Meteorological & Geoastrophysical Abstracts Natural Science Collection ProQuest Central (New) Advanced Technologies & Aerospace Collection ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Agricultural Science Collection ProQuest Technology Collection Aqualine Environmental Science Collection ProQuest One Academic UKI Edition Environmental Science Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection ProQuest One Academic Middle East (New) SIRS Editorial ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Research Library ProQuest Central Basic ProQuest Science Journals ProQuest Military Collection (Alumni Edition) ProQuest SciTech Collection Advanced Technologies & Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Central (Alumni) Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Agricultural Science Database Agricultural Science Database Technology Research Database CrossRef |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology |
EISSN | 1520-0442 |
EndPage | 7043 |
ExternalDocumentID | 3108426221 27739138 10_1175_JCLI_D_12_00696_1 26192839 |
Genre | Feature |
GeographicLocations | Netherlands Arctic region |
GeographicLocations_xml | – name: Netherlands – name: Arctic region |
GroupedDBID | -~X 29K 2WC 4.4 5GY 7X2 7XC 85S 88I 8AF 8FE 8FG 8FH 8G5 8R4 8R5 AAEFR AAFWJ ABBHK ABDBF ABDNZ ABUWG ABXSQ ACGFO ACGOD ACIHN ACUHS ADULT AEAQA AEKFB AENEX AEUPB AEUYN AFKRA AFRAH AGFAN AIFVT ALMA_UNASSIGNED_HOLDINGS ALQLQ APEBS ARAPS ATCPS AZQEC BCU BEC BENPR BES BGLVJ BHPHI BKSAR BLC BPHCQ CCPQU CS3 D-I D1K DU5 DWQXO E3Z EAD EAP EAS EAU EBS EDH EJD EMK EPL EST ESX F5P F8P FRP GNUQQ GUQSH H13 HCIFZ H~9 I-F IZHOT JAAYA JENOY JKQEH JLEZI JLXEF JPL JST K6- LK5 M0K M1Q M2O M2P M2Q M7R MV1 OK1 P2P P62 PATMY PCBAR PEA PHGZM PHGZT PQQKQ PROAC PYCSY Q2X QF4 QM9 QN7 QO4 RWA RWE RWL RXW S0X SA0 SJFOW SWMRO TAE TN5 TR2 TUS U5U UNMZH XJT ~02 AAYXX CITATION 3V. 53G 6TJ ABPTK ABQIS ABTAH ACYGS ADBSO AI. AIRJO BCR C1A CAG COF EQZMY IQODW JSODD OHT PQEST PQUKI VH1 VOH XXG ZY4 ~KM 7QH 7TG 7UA 7XB 8FK C1K F1W H96 KL. L.G MBDVC PKEHL PQGLB Q9U PUEGO 8FD H8D L7M |
ID | FETCH-LOGICAL-c495t-eb1bec48a88a3e72a3f63f9c761d12588a847b0b3564ca3d3ab584e458e3d49e3 |
IEDL.DBID | BENPR |
ISSN | 0894-8755 |
IngestDate | Fri Jul 11 00:14:21 EDT 2025 Sat Aug 23 14:06:48 EDT 2025 Fri Aug 15 23:00:53 EDT 2025 Tue Sep 20 21:46:57 EDT 2022 Thu Apr 24 23:11:54 EDT 2025 Tue Jul 01 01:12:18 EDT 2025 Fri Jun 20 02:31:02 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 18 |
Keywords | Coupled model General circulation models climate warming Climate models digital simulation greenhouse gas feedback Polar amplification Atmospheric temperature global change Polar region Forcing climate change |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c495t-eb1bec48a88a3e72a3f63f9c761d12588a847b0b3564ca3d3ab584e458e3d49e3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://journals.ametsoc.org/downloadpdf/journals/clim/26/18/jcli-d-12-00696.1.pdf |
PQID | 1444879031 |
PQPubID | 32902 |
PageCount | 21 |
ParticipantIDs | proquest_miscellaneous_1439222139 proquest_journals_2813975364 proquest_journals_1444879031 pascalfrancis_primary_27739138 crossref_citationtrail_10_1175_JCLI_D_12_00696_1 crossref_primary_10_1175_JCLI_D_12_00696_1 jstor_primary_26192839 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20130915 |
PublicationDateYYYYMMDD | 2013-09-15 |
PublicationDate_xml | – month: 09 year: 2013 text: 20130915 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | Boston, MA |
PublicationPlace_xml | – name: Boston, MA – name: Boston |
PublicationTitle | Journal of climate |
PublicationYear | 2013 |
Publisher | American Meteorological Society |
Publisher_xml | – name: American Meteorological Society |
References | Rind (2020061315595432300_bib33) 1987; 44 Pincus (2020061315595432300_bib32) 2003; 108 Cai (2020061315595432300_bib7) 2006; 26 Langen (2020061315595432300_bib22) 2012; 25 Taylor (2020061315595432300_bib42) 2011; 24 Cai (2020061315595432300_bib10) 2012; 69 Winton (2020061315595432300_bib45) 2006; 33 Gent (2020061315595432300_bib48) 2011; 24 Chylek (2020061315595432300_bib11) 2009; 36 Zelinka (2020061315595432300_bib51) 2012; 25 Rind (2020061315595432300_bib34) 1995; 8 Bitz (2020061315595432300_bib4) 2012; 25 Kay (2020061315595432300_bib21) 2012; 25 Serreze (2020061315595432300_bib35) 2011; 77 Graversen (2020061315595432300_bib13) 2009; 33 Fu (2020061315595432300_bib46) 1992; 49 Bony (2020061315595432300_bib5) 2006; 19 Kay (2020061315595432300_bib20) 2009; 114 Lu (2020061315595432300_bib25) 2009; 36 Meehl (2020061315595432300_bib30) 2007 Vavrus (2020061315595432300_bib44) 2009; 33 Cai (2020061315595432300_bib6) 2005; 32 Lu (2020061315595432300_bib26) 2010; 34 Manabe (2020061315595432300_bib27) 1975; 32 Barton (2020061315595432300_bib3) 2012; 117 Kato (2020061315595432300_bib19) 2011; 24 Holland (2020061315595432300_bib17) 2003; 21 ACIA (2020061315595432300_bib1) 2005 Wetherald (2020061315595432300_bib50) 1988; 45 Gettelman (2020061315595432300_bib12) 2012; 25 Solomon (2020061315595432300_bib39) 2007 Cai (2020061315595432300_bib8) 2007; 29 Lu (2020061315595432300_bib24) 2009; 32 Soden (2020061315595432300_bib37) 2006; 19 Fu (2020061315595432300_bib47) 1993; 50 Vavrus (2020061315595432300_bib43) 2004; 17 Alexeev (2020061315595432300_bib2) 2013; 41 Räisänen (2020061315595432300_bib49) 2004; 130B Taylor (2020061315595432300_bib41) 2011; 24 Song (2020061315595432300_bib40) 2013 Loeb (2020061315595432300_bib23) 2009; 22 Hall (2020061315595432300_bib14) 2004; 17 Manabe (2020061315595432300_bib28) 1980; 85 Cai (2020061315595432300_bib9) 2009; 32 Meehl (2020061315595432300_bib31) 2012; 25 Hansen (2020061315595432300_bib15) 1984 Serreze (2020061315595432300_bib36) 2009; 3 Medeiros (2020061315595432300_bib29) 2012; 25 Hwang (2020061315595432300_bib18) 2011; 38 Soden (2020061315595432300_bib38) 2008; 21 Hansen (2020061315595432300_bib16) 1997; 102 |
References_xml | – year: 1984 ident: 2020061315595432300_bib15 – volume: 130B start-page: 2047 year: 2004 ident: 2020061315595432300_bib49 article-title: Stochastic generation of subgrid-scale cloudy columns for large-scale models publication-title: Quart. J. Roy. Meteor. Soc. doi: 10.1256/qj.03.99 – volume: 117 start-page: D15205 year: 2012 ident: 2020061315595432300_bib3 article-title: Arctic synoptic regions: Comparing domain-wide Arctic cloud observations with CAM4 and CAM5 during similar dynamics publication-title: J. Geophys. Res. doi: 10.1029/2012JD017589 – volume: 25 start-page: 5190 year: 2012 ident: 2020061315595432300_bib21 article-title: Exposing global cloud biases in the Community Atmosphere Model (CAM) using satellite observations and their corresponding instrument simulators publication-title: J. Climate doi: 10.1175/JCLI-D-11-00469.1 – volume: 85 start-page: 5529 issue: C10 year: 1980 ident: 2020061315595432300_bib28 article-title: Sensitivity of a global climate model to an increase in CO2 concentration in the atmosphere publication-title: J. Geophys. Res. doi: 10.1029/JC085iC10p05529 – volume: 25 start-page: 3010 year: 2012 ident: 2020061315595432300_bib22 article-title: Separation of contributions from radiative feedbacks to polar amplification on an aquaplanet publication-title: J. Climate doi: 10.1175/JCLI-D-11-00246.1 – volume: 24 start-page: 2737 year: 2011 ident: 2020061315595432300_bib41 article-title: Geographical distribution of climate feedbacks in the NCAR CCSM3.0 publication-title: J. Climate doi: 10.1175/2010JCLI3788.1 – volume: 29 start-page: 375 year: 2007 ident: 2020061315595432300_bib8 article-title: Dynamical greenhouse-plus feedback and polar warming amplification. Part II: Meridional and vertical asymmetries of the global warming publication-title: Climate Dyn. doi: 10.1007/s00382-007-0238-9 – volume: 25 start-page: 608 year: 2012 ident: 2020061315595432300_bib51 article-title: Climate feedbacks and their implications for poleward energy flux changes in a warming climate publication-title: J. Climate doi: 10.1175/JCLI-D-11-00096.1 – volume: 50 start-page: 2008 year: 1993 ident: 2020061315595432300_bib47 article-title: Parameterization of the radiative properties of cirrus clouds publication-title: J. Atmos. Sci. doi: 10.1175/1520-0469(1993)050<2008:POTRPO>2.0.CO;2 – volume: 26 start-page: 661 year: 2006 ident: 2020061315595432300_bib7 article-title: Dynamical greenhouse-plus feedback and polar warming amplification. Part I: A dry radiative-transportive climate model publication-title: Climate Dyn. doi: 10.1007/s00382-005-0104-6 – volume: 102 start-page: 6831 issue: D6 year: 1997 ident: 2020061315595432300_bib16 article-title: Radiative forcing and climate response publication-title: J. Geophys. Res. doi: 10.1029/96JD03436 – volume: 8 start-page: 449 year: 1995 ident: 2020061315595432300_bib34 article-title: The role of sea ice in 2 × CO2 climate model sensitivity. Part I: The total influence of sea ice thickness and extent publication-title: J. Climate doi: 10.1175/1520-0442(1995)008<0449:TROSII>2.0.CO;2 – volume: 34 start-page: 669 year: 2010 ident: 2020061315595432300_bib26 article-title: Quantifying contributions to polar warming amplification in an idealized coupled general circulation model publication-title: Climate Dyn. doi: 10.1007/s00382-009-0673-x – volume: 33 start-page: 1099 year: 2009 ident: 2020061315595432300_bib44 article-title: Simulations of 20th and 21st century Arctic cloud amount in the global climate models assessed in the IPCC AR4 publication-title: Climate Dyn. doi: 10.1007/s00382-008-0475-6 – volume: 24 start-page: 4973 year: 2011 ident: 2020061315595432300_bib48 article-title: The Community Climate System Model version 4 publication-title: J. Climate doi: 10.1175/2011JCLI4083.1 – volume: 108 start-page: 4376 year: 2003 ident: 2020061315595432300_bib32 article-title: A fast, flexible, approximate technique for computing radiative transfer in inhomogeneous cloud fields publication-title: J. Geophys. Res. doi: 10.1029/2002JD003322 – volume: 32 start-page: 873 year: 2009 ident: 2020061315595432300_bib24 article-title: A new framework for isolating individual feedback processes in coupled general circulation climate models. Part I: Formulation publication-title: Climate Dyn. doi: 10.1007/s00382-008-0425-3 – volume: 32 start-page: 3 year: 1975 ident: 2020061315595432300_bib27 article-title: The effects of doubling the CO2 concentration on the climate of a general circulation model publication-title: J. Atmos. Sci. doi: 10.1175/1520-0469(1975)032<0003:TEODTC>2.0.CO;2 – volume: 22 start-page: 748 year: 2009 ident: 2020061315595432300_bib23 article-title: Toward optimal closure of the earth's top-of-atmosphere radiation budget publication-title: J. Climate doi: 10.1175/2008JCLI2637.1 – year: 2007 ident: 2020061315595432300_bib30 – volume: 3 start-page: 11 year: 2009 ident: 2020061315595432300_bib36 article-title: The emergence of surface-based Arctic amplification publication-title: Cryosphere doi: 10.5194/tc-3-11-2009 – volume: 21 start-page: 221 year: 2003 ident: 2020061315595432300_bib17 article-title: Polar amplifications of climate change in coupled models publication-title: Climate Dyn. doi: 10.1007/s00382-003-0332-6 – volume: 21 start-page: 3504 year: 2008 ident: 2020061315595432300_bib38 article-title: Quantifying climate feedbacks using radiative kernels publication-title: J. Climate doi: 10.1175/2007JCLI2110.1 – volume: 19 start-page: 3445 year: 2006 ident: 2020061315595432300_bib5 article-title: How well do we understand and evaluate climate feedback processes publication-title: J. Climate doi: 10.1175/JCLI3819.1 – volume: 25 start-page: 3053 year: 2012 ident: 2020061315595432300_bib4 article-title: Climate sensitivity of the Community Climate System Model, version 4 publication-title: J. Climate doi: 10.1175/JCLI-D-11-00290.1 – volume: 25 start-page: 6175 year: 2012 ident: 2020061315595432300_bib29 article-title: Southeast Pacific stratocumulus in the Community Atmosphere Model publication-title: J. Climate doi: 10.1175/JCLI-D-11-00503.1 – volume: 25 start-page: 3661 year: 2012 ident: 2020061315595432300_bib31 article-title: Climate system response to external forcings and climate change projections in CCSM4 publication-title: J. Climate doi: 10.1175/JCLI-D-11-00240.1 – volume: 24 start-page: 3433 year: 2011 ident: 2020061315595432300_bib42 article-title: Seasonal contributions to climate feedbacks in the NCAR CCSM3.0 publication-title: J. Climate doi: 10.1175/2011JCLI3862.1 – volume: 25 start-page: 1453 year: 2012 ident: 2020061315595432300_bib12 article-title: The evolution of climate sensitivity and climate feedbacks in the Community Atmosphere Model publication-title: J. Climate doi: 10.1175/JCLI-D-11-00197.1 – volume: 17 start-page: 603 year: 2004 ident: 2020061315595432300_bib43 article-title: The impact of cloud feedbacks on Arctic climate under greenhouse forcing publication-title: J. Climate doi: 10.1175/1520-0442(2004)017<0603:TIOCFO>2.0.CO;2 – volume: 32 start-page: 887 year: 2009 ident: 2020061315595432300_bib9 article-title: A new framework for isolating individual feedback processes in coupled general circulation climate models. Part II: Method demonstrations and comparisons publication-title: Climate Dyn. doi: 10.1007/s00382-008-0424-4 – volume: 45 start-page: 1397 year: 1988 ident: 2020061315595432300_bib50 article-title: Cloud feedback processes in a general circulation model publication-title: J. Atmos. Sci. doi: 10.1175/1520-0469(1988)045<1397:CFPIAG>2.0.CO;2 – volume: 17 start-page: 1500 year: 2004 ident: 2020061315595432300_bib14 article-title: The role of surface albedo feedback in climate publication-title: J. Climate doi: 10.1175/1520-0442(2004)017<1550:TROSAF>2.0.CO;2 – volume: 36 start-page: L16704 year: 2009 ident: 2020061315595432300_bib25 article-title: Seasonality of polar surface warming amplification in climate simulations publication-title: Geophys. Res. Lett. doi: 10.1029/2009GL040133 – volume: 49 start-page: 2139 year: 1992 ident: 2020061315595432300_bib46 article-title: On the correlated k-distribution method for radiative transfer in nonhomogeneous atmosphere publication-title: J. Atmos. Sci. doi: 10.1175/1520-0469(1992)049<2139:OTCDMF>2.0.CO;2 – volume: 36 year: 2009 ident: 2020061315595432300_bib11 article-title: Arctic air temperature change amplification and the Atlantic multidecadal oscillation publication-title: Geophys. Res. Lett. doi: 10.1029/2009GL038777 – volume: 33 year: 2009 ident: 2020061315595432300_bib13 article-title: Polar amplification in a coupled climate model with locked albedo publication-title: Climate Dyn. doi: 10.1007/s00382-009-0535-6 – year: 2013 ident: 2020061315595432300_bib40 article-title: Quantifying contributions of climate feedbacks to tropospheric warming in the NCAR CCSM3.0 publication-title: Climate Dyn. – year: 2007 ident: 2020061315595432300_bib39 – volume: 114 start-page: D18204 year: 2009 ident: 2020061315595432300_bib20 article-title: Cloud influence on and response to seasonal Arctic sea ice loss publication-title: J. Geophys. Res. doi: 10.1029/2009JD011773 – volume: 44 start-page: 3235 year: 1987 ident: 2020061315595432300_bib33 article-title: The doubled CO2 climate: Impact of the sea surface temperature gradient publication-title: J. Atmos. Sci. doi: 10.1175/1520-0469(1987)044<3235:TDCCIO>2.0.CO;2 – volume: 33 start-page: L03701 year: 2006 ident: 2020061315595432300_bib45 article-title: Amplified Arctic climate change: What does surface albedo feedback have to do with it? publication-title: Geophys. Res. Lett. doi: 10.1029/2005GL025244 – volume: 32 start-page: L22710 year: 2005 ident: 2020061315595432300_bib6 article-title: Dynamical amplification of polar warming publication-title: Geophys. Res. Lett. doi: 10.1029/2005GL024481 – volume: 69 start-page: 2256 year: 2012 ident: 2020061315595432300_bib10 article-title: Robustness of dynamical feedbacks from radiative forcing: 2% solar versus 2 × CO2 experiments in an idealized GCM publication-title: J. Atmos. Sci. doi: 10.1175/JAS-D-11-0117.1 – volume: 77 start-page: 85 year: 2011 ident: 2020061315595432300_bib35 article-title: Processes and impacts of Arctic amplification: A research synthesis publication-title: Global Planet. Change doi: 10.1016/j.gloplacha.2011.03.004 – year: 2005 ident: 2020061315595432300_bib1 – volume: 41 start-page: 533 year: 2013 ident: 2020061315595432300_bib2 article-title: Polar amplification: Is atmospheric heat transport important? publication-title: Climate Dyn. doi: 10.1007/s00382-012-1601-z – volume: 19 start-page: 3354 year: 2006 ident: 2020061315595432300_bib37 article-title: An assessment of climate feedbacks in coupled ocean–atmosphere models publication-title: J. Climate doi: 10.1175/JCLI3799.1 – volume: 38 start-page: L17704 year: 2011 ident: 2020061315595432300_bib18 article-title: Coupling between Arctic feedbacks and changes in poleward energy transport publication-title: Geophys. Res. Lett. doi: 10.1029/2011GL048546 – volume: 24 start-page: 6392 year: 2011 ident: 2020061315595432300_bib19 article-title: Detection of atmospheric changes in spatially and temporally averaged infrared spectra observed from space publication-title: J. Climate doi: 10.1175/JCLI-D-10-05005.1 |
SSID | ssj0012600 |
Score | 2.5293612 |
Snippet | Polar surface temperatures are expected to warm 2–3 times faster than the global-mean surface temperature: a phenomenon referred to as polar warming... Polar surface temperatures are expected to warm 2-3 times faster than the global-mean surface temperature: a phenomenon referred to as polar warming... |
SourceID | proquest pascalfrancis crossref jstor |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 7023 |
SubjectTerms | Albedo Amplification Atmosphere Atmospherics Carbon dioxide Climate Climate change Climate feedback Climate models Climate sensitivity Climate system Climatology. Bioclimatology. Climate change Clouds Decomposition Earth, ocean, space Energy Exact sciences and technology External geophysics Feedback General circulation models Global climate Global climate models Global warming Heat Heat transport Long wave radiation Marine Meteorology Ocean warming Oceans Polar regions Polar waters Radiation Response analysis Simulation Southern Hemisphere Storage Surface temperature Transport Troposphere Turbulent fluxes Water vapor Water vapour |
Title | A Decomposition of Feedback Contributions to Polar Warming Amplification |
URI | https://www.jstor.org/stable/26192839 https://www.proquest.com/docview/1444879031 https://www.proquest.com/docview/2813975364 https://www.proquest.com/docview/1439222139 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB7xuPRStaWoaenKSKiHSi6JX7FP1XaXZUEFIQQqt8hx7Koq2lB2-f8de72LUCuOSSY-eOyZb2Y-zQAcoE_k3ilDUb-MCqUrakJZ09Z7btHHBpsmz52dq-m1OL2RNznhNs-0ypVNTIa6613MkR8yHbGK5Ep8vftD49SoWF3NIzQ2YRtNsMbga_vb0fnF5bqOENuvJxxpBN57KXNdE33m4eno-wkdJ2ZCqYz6Uj3xTEtyYmRK2jluVlhOufjHYCcvNHkFLzN8JMOlvl_Dhp-9geIMkW9_nxLk5BMZ3f5CGJqedmA6JGMfeeOZnEX6QCbosVrrfpPYmmo18GpOFj25iIEu-WEjQeYnGUa2echJvbdwPTm6Gk1pnp5AHQY9C4pGGPUjtNXacl8zy4PiwbhaVR2iGnyLjqktWy6VcJZ33LYIRryQ2vNOGM93YWvWz_w7IAhitA3eaNca0UplS8c6VmqLWCB03hdQrnaucbm1eJxwcdukEKOWTdzsZtxUrEmb3VQFfF7_crfsq_Gc8G5Sx1oyhX0I7QoYPNHPo0Bdc1NxXcDeSmFNvpxzjHYwJq0NmrP_fn48aQXsrz_jrYulFDvz_UNcAnElYyj4_vklPsALlgZoGFrJPdha3D_4jwhjFu0ANvXkeJBP7F9_Ve-z |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcoALKo-KQClGAg5IpokfiX1AaLXLstvuVhxa0ZtxHAchqk3b3Qrxp_iNjJ1kqwrUW49JHCuaGc_3jT2ZAXiNmMi9yzVF_TIqcpVRXacFLb3nFjG2trHz3PwwnxyL_RN5sgF_-n9hQlpl7xOjo64aF_bI95gKXEXyXHw8O6eha1Q4Xe1baLRmceB__8KQbflhOkL9vmFs_OloOKFdVwHqMBhYUXRO-N1CWaUs9wWzvM55rR3G8xWiPd5Fh12mJZe5cJZX3JYI0l5I5XkltOc47x24KzjXYUWp8ef1qUUo9h5ZqxboZaTsTlERoff2h7MpHcU8iDTX-fvsGg62qZAhL9MuUTV121PjH3iImDfeggcdWSWD1roewoZfPIJkjjy7uYjb8eQtGZ7-QNIbrx7DZEBGPmSpd6lgpKnJGPGxtO4nCYWw-vZaS7JqyJcQVpOvNqTjfCeDkNted1uIT-D4VqS6DZuLZuGfAkHKpGzttXKlFqXMbepYxVJlkXnUlfcJpL3kjOsKmYd-GqcmBjSFNEHYZmQyZqKwTZbAu_UrZ20Vj5sGb0d1rEfGIBOJZAK71_RzNaAouM64SmCnV5jpXMESYyuMgAuNzvO_j6_sOoFX68e4xsPBjV345jJMgSyWMRz47OYpXsK9ydF8ZmbTw4PncJ_F1h2aZnIHNlcXl_4FEqhVuRutlsC3214mfwFk4Cqk |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1da9swFL10KYy9jO6jzGvXabDtYaDFlmRbeigjixuSfoQwVtY3V7alMVritkkZ-2v7db2S7ZSy0bc-JlYE0ZXuOUc61gV4j5jITZkoivFlVCQyosqGKS2M4Rox1mpfee5omoyPxf5JfLIGf7t3YZytssuJPlFXden2yPtMOq4S80T0bWuLmGWjLxeX1FWQcietXTmNZoocmD-_Ub4tdicZxvoDY6O978MxbSsM0BKFwZJiosL_IKSWUnOTMs1twq0qUdtXiPz4LSbvIix4nIhS84rrAgHbiFgaXgllOPb7CNZTVEVhD9a_7k1n31ZnGO7qd89hlcCcE8ftmSridX9_eDihmXdFhIlKPkd3ULExRjqXpl5goGxTYeMfsPAIONqApy11JYNmrj2DNTN_DsERsu76ym_Ok49keP4LKbD_9ALGA5IZ51lvjWGktmSEaFno8oy4a7G6YlsLsqzJzIls8kM7c85PMnBOd9tuKL6E4wcZ103ozeu5eQUECZTU1ihZFkoUcaLDklUslBp5iK2MCSDsRi4v22vNXXWN89zLmzTO3WDnWR6x3A92HgXwafWTi-ZOj_sab_pwrFp6yYm0MoCdO_G5bZCmXEVcBrDdBSxvE8MClRbq4VRhKv3v49tZHsC71WNc8e4YR89Nfe26QE7LGDZ8fX8Xb-ExLpH8cDI92IInzNfxUDSKt6G3vLo2b5BNLYuddtoSOH3olXIDV9UwNg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Decomposition+of+Feedback+Contributions+to+Polar+Warming+Amplification&rft.jtitle=Journal+of+climate&rft.au=Taylor%2C+Patrick+C.&rft.au=Cai%2C+Ming&rft.au=Hu%2C+Aixue&rft.au=Meehl%2C+Jerry&rft.date=2013-09-15&rft.issn=0894-8755&rft.eissn=1520-0442&rft.volume=26&rft.issue=18&rft.spage=7023&rft.epage=7043&rft_id=info:doi/10.1175%2FJCLI-D-12-00696.1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1175_JCLI_D_12_00696_1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0894-8755&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0894-8755&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0894-8755&client=summon |