A Decomposition of Feedback Contributions to Polar Warming Amplification

Polar surface temperatures are expected to warm 2–3 times faster than the global-mean surface temperature: a phenomenon referred to as polar warming amplification. Therefore, understanding the individual process contributions to the polar warming is critical to understanding global climate sensitivi...

Full description

Saved in:
Bibliographic Details
Published inJournal of climate Vol. 26; no. 18; pp. 7023 - 7043
Main Authors Taylor, Patrick C., Cai, Ming, Hu, Aixue, Meehl, Jerry, Washington, Warren, Zhang, Guang J.
Format Journal Article
LanguageEnglish
Published Boston, MA American Meteorological Society 15.09.2013
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Polar surface temperatures are expected to warm 2–3 times faster than the global-mean surface temperature: a phenomenon referred to as polar warming amplification. Therefore, understanding the individual process contributions to the polar warming is critical to understanding global climate sensitivity. The Coupled Feedback Response Analysis Method (CFRAM) is applied to decompose the annual- and zonal-mean vertical temperature response within a transient 1% yr−1CO₂ increase simulation of the NCAR Community Climate System Model, version 4 (CCSM4), into individual radiative and nonradiative climate feedback process contributions. The total transient annual-mean polar warming amplification (amplification factor) at the time of CO₂ doubling is +2.12 (2.3) and +0.94 K (1.6) in the Northern and Southern Hemisphere, respectively. Surface albedo feedback is the largest contributor to the annual-mean polar warming amplification accounting for +1.82 and +1.04 K in the Northern and Southern Hemisphere, respectively. Net cloud feedback is found to be the second largest contributor to polar warming amplification (about +0.38 K in both hemispheres) and is driven by the enhanced downward longwave radiation to the surface resulting from increases in low polar water cloud. The external forcing and atmospheric dynamic transport also contribute positively to polar warming amplification: +0.29 and +0.32 K, respectively. Water vapor feedback contributes negatively to polar warming amplification because its induced surface warming is stronger in low latitudes. Ocean heat transport storage and surface turbulent flux feedbacks also contribute negatively to polar warming amplification. Ocean heat transport and storage terms play an important role in reducing the warming over the Southern Ocean and Northern Atlantic Ocean.
AbstractList Polar surface temperatures are expected to warm 2–3 times faster than the global-mean surface temperature: a phenomenon referred to as polar warming amplification. Therefore, understanding the individual process contributions to the polar warming is critical to understanding global climate sensitivity. The Coupled Feedback Response Analysis Method (CFRAM) is applied to decompose the annual- and zonal-mean vertical temperature response within a transient 1% yr−1CO₂ increase simulation of the NCAR Community Climate System Model, version 4 (CCSM4), into individual radiative and nonradiative climate feedback process contributions. The total transient annual-mean polar warming amplification (amplification factor) at the time of CO₂ doubling is +2.12 (2.3) and +0.94 K (1.6) in the Northern and Southern Hemisphere, respectively. Surface albedo feedback is the largest contributor to the annual-mean polar warming amplification accounting for +1.82 and +1.04 K in the Northern and Southern Hemisphere, respectively. Net cloud feedback is found to be the second largest contributor to polar warming amplification (about +0.38 K in both hemispheres) and is driven by the enhanced downward longwave radiation to the surface resulting from increases in low polar water cloud. The external forcing and atmospheric dynamic transport also contribute positively to polar warming amplification: +0.29 and +0.32 K, respectively. Water vapor feedback contributes negatively to polar warming amplification because its induced surface warming is stronger in low latitudes. Ocean heat transport storage and surface turbulent flux feedbacks also contribute negatively to polar warming amplification. Ocean heat transport and storage terms play an important role in reducing the warming over the Southern Ocean and Northern Atlantic Ocean.
Polar surface temperatures are expected to warm 2-3 times faster than the global-mean surface temperature: a phenomenon referred to as polar warming amplification. Therefore, understanding the individual process contributions to the polar warming is critical to understanding global climate sensitivity. The Coupled Feedback Response Analysis Method (CFRAM) is applied to decompose the annual- and zonal-mean vertical temperature response within a transient 1% yr^sup -1^ CO^sub 2^ increase simulation of the NCAR Community Climate System Model, version 4 (CCSM4), into individual radiative and nonradiative climate feedback process contributions. The total transient annual-mean polar warming amplification (amplification factor) at the time of CO^sub 2^ doubling is +2.12 (2.3) and +0.94 K (1.6) in the Northern and Southern Hemisphere, respectively. Surface albedo feedback is the largest contributor to the annual-mean polar warming amplification accounting for +1.82 and +1.04 K in the Northern and Southern Hemisphere, respectively. Net cloud feedback is found to be the second largest contributor to polar warming amplification (about +0.38 K in both hemispheres) and is driven by the enhanced downward longwave radiation to the surface resulting from increases in low polar water cloud. The external forcing and atmospheric dynamic transport also contribute positively to polar warming amplification:+ 0.29 and +0.32 K, respectively. Water vapor feedback contributes negatively to polar warming amplification because its induced surface warming is stronger in low latitudes. Ocean heat transport storage and surface turbulent flux feedbacks also contribute negatively to polar warming amplification. Ocean heat transport and storage terms play an important role in reducing the warming over the Southern Ocean and Northern Atlantic Ocean. [PUBLICATION ABSTRACT]
Polar surface temperatures are expected to warm 2–3 times faster than the global-mean surface temperature: a phenomenon referred to as polar warming amplification. Therefore, understanding the individual process contributions to the polar warming is critical to understanding global climate sensitivity. The Coupled Feedback Response Analysis Method (CFRAM) is applied to decompose the annual- and zonal-mean vertical temperature response within a transient 1% yr−1 CO2 increase simulation of the NCAR Community Climate System Model, version 4 (CCSM4), into individual radiative and nonradiative climate feedback process contributions. The total transient annual-mean polar warming amplification (amplification factor) at the time of CO2 doubling is +2.12 (2.3) and +0.94 K (1.6) in the Northern and Southern Hemisphere, respectively. Surface albedo feedback is the largest contributor to the annual-mean polar warming amplification accounting for +1.82 and +1.04 K in the Northern and Southern Hemisphere, respectively. Net cloud feedback is found to be the second largest contributor to polar warming amplification (about +0.38 K in both hemispheres) and is driven by the enhanced downward longwave radiation to the surface resulting from increases in low polar water cloud. The external forcing and atmospheric dynamic transport also contribute positively to polar warming amplification: +0.29 and +0.32 K, respectively. Water vapor feedback contributes negatively to polar warming amplification because its induced surface warming is stronger in low latitudes. Ocean heat transport storage and surface turbulent flux feedbacks also contribute negatively to polar warming amplification. Ocean heat transport and storage terms play an important role in reducing the warming over the Southern Ocean and Northern Atlantic Ocean.
Polar surface temperatures are expected to warm 2-3 times faster than the global-mean surface temperature: a phenomenon referred to as polar warming amplification. Therefore, understanding the individual process contributions to the polar warming is critical to understanding global climate sensitivity. The Coupled Feedback Response Analysis Method (CFRAM) is applied to decompose the annual- and zonal-mean vertical temperature response within a transient 1% yr super(-1) CO sub(2) increase simulation of the NCAR Community Climate System Model, version 4 (CCSM4), into individual radiative and nonradiative climate feedback process contributions. The total transient annual-mean polar warming amplification (amplification factor) at the time of CO sub(2) doubling is +2.12 (2.3) and +0.94 K (1.6) in the Northern and Southern Hemisphere, respectively. Surface albedo feedback is the largest contributor to the annual-mean polar warming amplification accounting for +1.82 and +1.04 K in the Northern and Southern Hemisphere, respectively. Net cloud feedback is found to be the second largest contributor to polar warming amplification (about +0.38 K in both hemispheres) and is driven by the enhanced downward longwave radiation to the surface resulting from increases in low polar water cloud. The external forcing and atmospheric dynamic transport also contribute positively to polar warming amplification: +0.29 and +0.32 K, respectively. Water vapor feedback contributes negatively to polar warming amplification because its induced surface warming is stronger in low latitudes. Ocean heat transport storage and surface turbulent flux feedbacks also contribute negatively to polar warming amplification. Ocean heat transport and storage terms play an important role in reducing the warming over the Southern Ocean and Northern Atlantic Ocean.
Author Taylor, Patrick C.
Washington, Warren
Zhang, Guang J.
Cai, Ming
Hu, Aixue
Meehl, Jerry
Author_xml – sequence: 1
  givenname: Patrick C.
  surname: Taylor
  fullname: Taylor, Patrick C.
  organization: NASA Langley Research Center, Hampton, Virginia
– sequence: 2
  givenname: Ming
  surname: Cai
  fullname: Cai, Ming
  organization: Department of Earth, Ocean and Atmospheric Science, The Florida State University, Tallahassee, Florida
– sequence: 3
  givenname: Aixue
  surname: Hu
  fullname: Hu, Aixue
  organization: Climate Change Research, Climate and Global Dynamics, National Center for Atmospheric Research, Boulder, Colorado
– sequence: 4
  givenname: Jerry
  surname: Meehl
  fullname: Meehl, Jerry
  organization: Climate Change Research, Climate and Global Dynamics, National Center for Atmospheric Research, Boulder, Colorado
– sequence: 5
  givenname: Warren
  surname: Washington
  fullname: Washington, Warren
  organization: Climate Change Research, Climate and Global Dynamics, National Center for Atmospheric Research, Boulder, Colorado
– sequence: 6
  givenname: Guang J.
  surname: Zhang
  fullname: Zhang, Guang J.
  organization: Scripps Institution of Oceanography, University of California, San Diego, San Diego, California
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27739138$$DView record in Pascal Francis
BookMark eNp9kU1LAzEQhoNUsFV_gAdhQQQvq5l8bJJjaa0fFPSgeAzZbFZSdzc12R78926tInjwNDDzvO-8zEzQqAudQ-gE8CWA4Fcr2_i8yoHkGBequIQ9NAZOcI4ZIyM0xlKxXArOD9AkpRXGQAqMx-h2ms2dDe06JN_70GWhzhbOVaWxb9ksdH305WY7SFkfssfQmJi9mNj67jWbtuvG196a7fwI7demSe74ux6i58X10-w2Xz7c3M2my9wyxfvclVA6y6SR0lAniKF1QWtlRQEVED50JRMlLikvmDW0oqbkkjnGpaMVU44eooud7zqG941LvW59sq5pTOfCJmlgVBFCgKoBPfuDrsImdkM6TeQACE4L9h8FjDEpFKYwUOfflEnWNHU0nfVJr6NvTfzQRAiqgMqBEzvOxpBSdLW2vv86UB-NbzRgvf2Xvp8t7_RcA9Ff_9LbDfBH-WP-n-Z0p1mlPsTfNAUoIocLfAKS7KJY
CitedBy_id crossref_primary_10_1080_16000870_2019_1696139
crossref_primary_10_1088_1748_9326_ad9abb
crossref_primary_10_1016_j_aosl_2021_100043
crossref_primary_10_1360_SSTe_2024_0190
crossref_primary_10_5194_acp_23_9963_2023
crossref_primary_10_1175_JCLI_D_13_00511_1
crossref_primary_10_1002_2014GL061700
crossref_primary_10_1038_s41612_022_00228_8
crossref_primary_10_1175_JCLI_D_15_0467_1
crossref_primary_10_1029_2020GL090301
crossref_primary_10_1038_s41558_018_0339_y
crossref_primary_10_1016_j_earscirev_2020_103500
crossref_primary_10_1088_2752_5295_acf4b7
crossref_primary_10_1016_j_wace_2024_100712
crossref_primary_10_1175_JAS_D_13_0334_1
crossref_primary_10_1007_s00382_013_1875_9
crossref_primary_10_1038_s41597_022_01900_7
crossref_primary_10_1073_pnas_1615880114
crossref_primary_10_1016_j_dsr2_2020_104742
crossref_primary_10_1038_s43247_025_02022_9
crossref_primary_10_1177_0309133318776490
crossref_primary_10_1525_elementa_2021_000120
crossref_primary_10_5194_acp_14_9403_2014
crossref_primary_10_1364_OE_491306
crossref_primary_10_1073_pnas_2402322121
crossref_primary_10_1029_2018GL077852
crossref_primary_10_1016_j_atmosres_2021_105879
crossref_primary_10_1038_s43247_022_00354_4
crossref_primary_10_1007_s11430_024_1438_5
crossref_primary_10_1007_s11629_021_6912_2
crossref_primary_10_1038_s41597_023_02586_1
crossref_primary_10_1029_2018JD029093
crossref_primary_10_5194_cp_15_291_2019
crossref_primary_10_5194_bg_16_1543_2019
crossref_primary_10_1029_2022GL102541
crossref_primary_10_1088_1748_9326_ac1c29
crossref_primary_10_1088_1748_9326_adaed4
crossref_primary_10_1038_s43247_022_00498_3
crossref_primary_10_3389_feart_2021_725816
crossref_primary_10_1007_s00382_024_07465_y
crossref_primary_10_1007_s10980_023_01733_8
crossref_primary_10_1029_2018JD028886
crossref_primary_10_1007_s10584_023_03572_7
crossref_primary_10_1073_pnas_1915258116
crossref_primary_10_5194_acp_20_12409_2020
crossref_primary_10_1029_2022GL099263
crossref_primary_10_5194_acp_14_13571_2014
crossref_primary_10_1007_s00382_023_06687_w
crossref_primary_10_5194_acp_20_5157_2020
crossref_primary_10_1002_qj_2802
crossref_primary_10_1016_j_epsl_2020_116319
crossref_primary_10_3389_feart_2021_709896
crossref_primary_10_3354_meps13694
crossref_primary_10_1016_j_atmosenv_2021_118333
crossref_primary_10_1038_s41467_018_07954_9
crossref_primary_10_1038_s41598_019_44155_w
crossref_primary_10_1175_JCLI_D_13_00658_1
crossref_primary_10_1088_1748_9326_ac9ecd
crossref_primary_10_1088_1748_9326_ac9dad
crossref_primary_10_1016_j_physd_2023_133880
crossref_primary_10_1088_1748_9326_9_11_114024
crossref_primary_10_1175_JCLI_D_15_0742_1
crossref_primary_10_1007_s13143_022_00268_3
crossref_primary_10_1007_s00382_022_06136_0
crossref_primary_10_1007_s40641_020_00169_5
crossref_primary_10_1175_JCLI_D_20_0491_1
crossref_primary_10_1029_2020GL091109
crossref_primary_10_1038_s41467_022_35011_z
crossref_primary_10_1175_JCLI_D_17_0287_1
crossref_primary_10_1002_joc_5815
crossref_primary_10_5194_acp_19_14339_2019
crossref_primary_10_1007_s00382_013_1805_x
crossref_primary_10_1007_s00382_014_2189_2
crossref_primary_10_5194_acp_23_2579_2023
crossref_primary_10_1088_1748_9326_ad2cad
crossref_primary_10_5194_os_12_807_2016
crossref_primary_10_1007_s00382_018_4232_1
crossref_primary_10_1029_2020EF001898
crossref_primary_10_1086_698691
crossref_primary_10_1088_2515_7620_ab6369
crossref_primary_10_1002_ldr_5204
crossref_primary_10_1007_s10584_021_03298_4
crossref_primary_10_1088_1748_9326_9_12_124005
crossref_primary_10_1038_s43247_024_01428_1
crossref_primary_10_5194_esd_15_155_2024
crossref_primary_10_7868_S2073667320030016
crossref_primary_10_1175_JCLI_D_17_0317_1
crossref_primary_10_1175_JCLI_D_21_0317_1
crossref_primary_10_1002_2015MS000459
crossref_primary_10_1016_j_pocean_2021_102687
crossref_primary_10_1038_s43247_024_01549_7
crossref_primary_10_1002_2014GL061987
crossref_primary_10_1038_nclimate3011
crossref_primary_10_1175_JCLI_D_21_0814_1
crossref_primary_10_3390_atmos14020218
crossref_primary_10_1007_s00382_016_3277_2
crossref_primary_10_1016_j_jhydrol_2022_128162
crossref_primary_10_5194_acp_23_7033_2023
crossref_primary_10_1016_j_ocemod_2013_12_003
crossref_primary_10_1007_s00382_019_05094_4
crossref_primary_10_1007_s00382_016_3262_9
crossref_primary_10_1007_s00382_013_2029_9
crossref_primary_10_1093_nsr_nwae442
crossref_primary_10_1007_s11430_017_9226_6
crossref_primary_10_1002_2015JC011558
crossref_primary_10_1038_s41467_020_18227_9
crossref_primary_10_1088_2752_5295_aced63
crossref_primary_10_1088_1748_9326_abf18f
crossref_primary_10_5194_ar_1_39_2023
crossref_primary_10_1016_j_scitotenv_2024_173937
crossref_primary_10_1088_1748_9326_ad7d1e
crossref_primary_10_3389_feart_2021_758361
crossref_primary_10_3390_atmos10080431
crossref_primary_10_1175_JCLI_D_14_00389_1
crossref_primary_10_1175_JCLI_D_20_0178_1
crossref_primary_10_1029_2018GL081871
crossref_primary_10_3390_atmos9020041
crossref_primary_10_1029_2022GL100034
crossref_primary_10_1175_JCLI_D_16_0329_1
crossref_primary_10_1007_s00376_021_0343_4
crossref_primary_10_1016_j_aosl_2020_100010
crossref_primary_10_1038_s41598_017_08545_2
crossref_primary_10_3390_atmos14060979
crossref_primary_10_1175_JAS_D_15_0287_1
crossref_primary_10_1038_nclimate3121
crossref_primary_10_1175_JCLI_D_13_00567_1
crossref_primary_10_1007_s00382_014_2371_6
crossref_primary_10_1002_2013GL059079
crossref_primary_10_5194_essd_16_543_2024
crossref_primary_10_1007_s00376_014_4061_z
crossref_primary_10_1029_2020GL088030
crossref_primary_10_1073_pnas_1510937112
crossref_primary_10_1007_s12275_022_2275_9
crossref_primary_10_3390_atmos13101602
crossref_primary_10_1038_ngeo2071
crossref_primary_10_1002_2015JD024679
crossref_primary_10_1029_2021JD036216
crossref_primary_10_12677_CCRL_2022_113024
crossref_primary_10_1038_s41467_024_48469_w
crossref_primary_10_1088_1748_9326_abc379
crossref_primary_10_5194_gmd_12_1139_2019
crossref_primary_10_1175_AMSMONOGRAPHS_D_18_0003_1
crossref_primary_10_3390_cli7020030
crossref_primary_10_5194_cp_20_1303_2024
crossref_primary_10_1007_s10236_019_01259_1
crossref_primary_10_1029_2021GL094599
crossref_primary_10_1175_JCLI_D_13_00721_1
crossref_primary_10_1175_JAMC_D_14_0080_1
crossref_primary_10_1088_2752_5295_ad8df6
crossref_primary_10_1029_2018GL079447
crossref_primary_10_1175_JCLI_D_14_00086_1
crossref_primary_10_1088_2752_5295_ace20f
crossref_primary_10_1175_JCLI_D_15_0366_1
crossref_primary_10_1007_s00382_015_2926_1
crossref_primary_10_1038_s41467_018_04173_0
crossref_primary_10_1002_2016JD025099
crossref_primary_10_1175_JCLI_D_15_0362_1
crossref_primary_10_1002_2017JD027539
crossref_primary_10_1029_2019GL082320
crossref_primary_10_1088_1748_9326_ad40c2
crossref_primary_10_1103_RevModPhys_93_045002
crossref_primary_10_1175_JCLI_D_20_0558_1
crossref_primary_10_1016_j_polar_2022_100861
crossref_primary_10_3389_feart_2021_710036
crossref_primary_10_5194_acp_18_13345_2018
crossref_primary_10_1029_2019JD031962
crossref_primary_10_3402_tellusa_v67_25482
crossref_primary_10_5194_acp_21_289_2021
crossref_primary_10_1002_2015JD023520
crossref_primary_10_1007_s10584_021_03296_6
crossref_primary_10_1016_j_scib_2023_12_008
crossref_primary_10_1016_j_gloplacha_2021_103447
crossref_primary_10_1175_JAS_D_15_0013_1
crossref_primary_10_1126_science_aas8806
crossref_primary_10_1029_2022JD037467
crossref_primary_10_5194_amt_16_1865_2023
crossref_primary_10_1002_2015JD024738
Cites_doi 10.1256/qj.03.99
10.1029/2012JD017589
10.1175/JCLI-D-11-00469.1
10.1029/JC085iC10p05529
10.1175/JCLI-D-11-00246.1
10.1175/2010JCLI3788.1
10.1007/s00382-007-0238-9
10.1175/JCLI-D-11-00096.1
10.1175/1520-0469(1993)050<2008:POTRPO>2.0.CO;2
10.1007/s00382-005-0104-6
10.1029/96JD03436
10.1175/1520-0442(1995)008<0449:TROSII>2.0.CO;2
10.1007/s00382-009-0673-x
10.1007/s00382-008-0475-6
10.1175/2011JCLI4083.1
10.1029/2002JD003322
10.1007/s00382-008-0425-3
10.1175/1520-0469(1975)032<0003:TEODTC>2.0.CO;2
10.1175/2008JCLI2637.1
10.5194/tc-3-11-2009
10.1007/s00382-003-0332-6
10.1175/2007JCLI2110.1
10.1175/JCLI3819.1
10.1175/JCLI-D-11-00290.1
10.1175/JCLI-D-11-00503.1
10.1175/JCLI-D-11-00240.1
10.1175/2011JCLI3862.1
10.1175/JCLI-D-11-00197.1
10.1175/1520-0442(2004)017<0603:TIOCFO>2.0.CO;2
10.1007/s00382-008-0424-4
10.1175/1520-0469(1988)045<1397:CFPIAG>2.0.CO;2
10.1175/1520-0442(2004)017<1550:TROSAF>2.0.CO;2
10.1029/2009GL040133
10.1175/1520-0469(1992)049<2139:OTCDMF>2.0.CO;2
10.1029/2009GL038777
10.1007/s00382-009-0535-6
10.1029/2009JD011773
10.1175/1520-0469(1987)044<3235:TDCCIO>2.0.CO;2
10.1029/2005GL025244
10.1029/2005GL024481
10.1175/JAS-D-11-0117.1
10.1016/j.gloplacha.2011.03.004
10.1007/s00382-012-1601-z
10.1175/JCLI3799.1
10.1029/2011GL048546
10.1175/JCLI-D-10-05005.1
ContentType Journal Article
Copyright 2013 American Meteorological Society
2015 INIST-CNRS
Copyright American Meteorological Society Sep 15, 2013
Copyright American Meteorological Society 2013
Copyright_xml – notice: 2013 American Meteorological Society
– notice: 2015 INIST-CNRS
– notice: Copyright American Meteorological Society Sep 15, 2013
– notice: Copyright American Meteorological Society 2013
DBID AAYXX
CITATION
IQODW
3V.
7QH
7TG
7UA
7X2
7XB
88F
88I
8AF
8FE
8FG
8FH
8FK
8G5
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
GNUQQ
GUQSH
H96
HCIFZ
KL.
L.G
M0K
M1Q
M2O
M2P
MBDVC
P5Z
P62
PATMY
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PYCSY
Q9U
S0X
8FD
H8D
L7M
DOI 10.1175/jcli-d-12-00696.1
DatabaseName CrossRef
Pascal-Francis
ProQuest Central (Corporate)
Aqualine
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
Agricultural Science Collection
ProQuest Central (purchase pre-March 2016)
Military Database (Alumni Edition)
Science Database (Alumni Edition)
STEM Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
eLibrary Curriculum
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central Student
ProQuest Research Library
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Collection (ProQuest)
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Agriculture Science Database
Military Database
Research Library
Science Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Environmental Science Collection
ProQuest Central Basic
SIRS Editorial
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Agricultural Science Database
Research Library Prep
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
elibrary
ProQuest AP Science
SciTech Premium Collection
ProQuest Military Collection
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Agricultural Science Collection
ProQuest Technology Collection
Aqualine
Environmental Science Collection
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
ProQuest One Academic Middle East (New)
SIRS Editorial
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Research Library
ProQuest Central Basic
ProQuest Science Journals
ProQuest Military Collection (Alumni Edition)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central (Alumni)
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList
Agricultural Science Database
Agricultural Science Database
Technology Research Database
CrossRef
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
EISSN 1520-0442
EndPage 7043
ExternalDocumentID 3108426221
27739138
10_1175_JCLI_D_12_00696_1
26192839
Genre Feature
GeographicLocations Netherlands
Arctic region
GeographicLocations_xml – name: Netherlands
– name: Arctic region
GroupedDBID -~X
29K
2WC
4.4
5GY
7X2
7XC
85S
88I
8AF
8FE
8FG
8FH
8G5
8R4
8R5
AAEFR
AAFWJ
ABBHK
ABDBF
ABDNZ
ABUWG
ABXSQ
ACGFO
ACGOD
ACIHN
ACUHS
ADULT
AEAQA
AEKFB
AENEX
AEUPB
AEUYN
AFKRA
AFRAH
AGFAN
AIFVT
ALMA_UNASSIGNED_HOLDINGS
ALQLQ
APEBS
ARAPS
ATCPS
AZQEC
BCU
BEC
BENPR
BES
BGLVJ
BHPHI
BKSAR
BLC
BPHCQ
CCPQU
CS3
D-I
D1K
DU5
DWQXO
E3Z
EAD
EAP
EAS
EAU
EBS
EDH
EJD
EMK
EPL
EST
ESX
F5P
F8P
FRP
GNUQQ
GUQSH
H13
HCIFZ
H~9
I-F
IZHOT
JAAYA
JENOY
JKQEH
JLEZI
JLXEF
JPL
JST
K6-
LK5
M0K
M1Q
M2O
M2P
M2Q
M7R
MV1
OK1
P2P
P62
PATMY
PCBAR
PEA
PHGZM
PHGZT
PQQKQ
PROAC
PYCSY
Q2X
QF4
QM9
QN7
QO4
RWA
RWE
RWL
RXW
S0X
SA0
SJFOW
SWMRO
TAE
TN5
TR2
TUS
U5U
UNMZH
XJT
~02
AAYXX
CITATION
3V.
53G
6TJ
ABPTK
ABQIS
ABTAH
ACYGS
ADBSO
AI.
AIRJO
BCR
C1A
CAG
COF
EQZMY
IQODW
JSODD
OHT
PQEST
PQUKI
VH1
VOH
XXG
ZY4
~KM
7QH
7TG
7UA
7XB
8FK
C1K
F1W
H96
KL.
L.G
MBDVC
PKEHL
PQGLB
Q9U
PUEGO
8FD
H8D
L7M
ID FETCH-LOGICAL-c495t-eb1bec48a88a3e72a3f63f9c761d12588a847b0b3564ca3d3ab584e458e3d49e3
IEDL.DBID BENPR
ISSN 0894-8755
IngestDate Fri Jul 11 00:14:21 EDT 2025
Sat Aug 23 14:06:48 EDT 2025
Fri Aug 15 23:00:53 EDT 2025
Tue Sep 20 21:46:57 EDT 2022
Thu Apr 24 23:11:54 EDT 2025
Tue Jul 01 01:12:18 EDT 2025
Fri Jun 20 02:31:02 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 18
Keywords Coupled model
General circulation models
climate warming
Climate models
digital simulation
greenhouse gas
feedback
Polar amplification
Atmospheric temperature
global change
Polar region
Forcing
climate change
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c495t-eb1bec48a88a3e72a3f63f9c761d12588a847b0b3564ca3d3ab584e458e3d49e3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://journals.ametsoc.org/downloadpdf/journals/clim/26/18/jcli-d-12-00696.1.pdf
PQID 1444879031
PQPubID 32902
PageCount 21
ParticipantIDs proquest_miscellaneous_1439222139
proquest_journals_2813975364
proquest_journals_1444879031
pascalfrancis_primary_27739138
crossref_citationtrail_10_1175_JCLI_D_12_00696_1
crossref_primary_10_1175_JCLI_D_12_00696_1
jstor_primary_26192839
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20130915
PublicationDateYYYYMMDD 2013-09-15
PublicationDate_xml – month: 09
  year: 2013
  text: 20130915
  day: 15
PublicationDecade 2010
PublicationPlace Boston, MA
PublicationPlace_xml – name: Boston, MA
– name: Boston
PublicationTitle Journal of climate
PublicationYear 2013
Publisher American Meteorological Society
Publisher_xml – name: American Meteorological Society
References Rind (2020061315595432300_bib33) 1987; 44
Pincus (2020061315595432300_bib32) 2003; 108
Cai (2020061315595432300_bib7) 2006; 26
Langen (2020061315595432300_bib22) 2012; 25
Taylor (2020061315595432300_bib42) 2011; 24
Cai (2020061315595432300_bib10) 2012; 69
Winton (2020061315595432300_bib45) 2006; 33
Gent (2020061315595432300_bib48) 2011; 24
Chylek (2020061315595432300_bib11) 2009; 36
Zelinka (2020061315595432300_bib51) 2012; 25
Rind (2020061315595432300_bib34) 1995; 8
Bitz (2020061315595432300_bib4) 2012; 25
Kay (2020061315595432300_bib21) 2012; 25
Serreze (2020061315595432300_bib35) 2011; 77
Graversen (2020061315595432300_bib13) 2009; 33
Fu (2020061315595432300_bib46) 1992; 49
Bony (2020061315595432300_bib5) 2006; 19
Kay (2020061315595432300_bib20) 2009; 114
Lu (2020061315595432300_bib25) 2009; 36
Meehl (2020061315595432300_bib30) 2007
Vavrus (2020061315595432300_bib44) 2009; 33
Cai (2020061315595432300_bib6) 2005; 32
Lu (2020061315595432300_bib26) 2010; 34
Manabe (2020061315595432300_bib27) 1975; 32
Barton (2020061315595432300_bib3) 2012; 117
Kato (2020061315595432300_bib19) 2011; 24
Holland (2020061315595432300_bib17) 2003; 21
ACIA (2020061315595432300_bib1) 2005
Wetherald (2020061315595432300_bib50) 1988; 45
Gettelman (2020061315595432300_bib12) 2012; 25
Solomon (2020061315595432300_bib39) 2007
Cai (2020061315595432300_bib8) 2007; 29
Lu (2020061315595432300_bib24) 2009; 32
Soden (2020061315595432300_bib37) 2006; 19
Fu (2020061315595432300_bib47) 1993; 50
Vavrus (2020061315595432300_bib43) 2004; 17
Alexeev (2020061315595432300_bib2) 2013; 41
Räisänen (2020061315595432300_bib49) 2004; 130B
Taylor (2020061315595432300_bib41) 2011; 24
Song (2020061315595432300_bib40) 2013
Loeb (2020061315595432300_bib23) 2009; 22
Hall (2020061315595432300_bib14) 2004; 17
Manabe (2020061315595432300_bib28) 1980; 85
Cai (2020061315595432300_bib9) 2009; 32
Meehl (2020061315595432300_bib31) 2012; 25
Hansen (2020061315595432300_bib15) 1984
Serreze (2020061315595432300_bib36) 2009; 3
Medeiros (2020061315595432300_bib29) 2012; 25
Hwang (2020061315595432300_bib18) 2011; 38
Soden (2020061315595432300_bib38) 2008; 21
Hansen (2020061315595432300_bib16) 1997; 102
References_xml – year: 1984
  ident: 2020061315595432300_bib15
– volume: 130B
  start-page: 2047
  year: 2004
  ident: 2020061315595432300_bib49
  article-title: Stochastic generation of subgrid-scale cloudy columns for large-scale models
  publication-title: Quart. J. Roy. Meteor. Soc.
  doi: 10.1256/qj.03.99
– volume: 117
  start-page: D15205
  year: 2012
  ident: 2020061315595432300_bib3
  article-title: Arctic synoptic regions: Comparing domain-wide Arctic cloud observations with CAM4 and CAM5 during similar dynamics
  publication-title: J. Geophys. Res.
  doi: 10.1029/2012JD017589
– volume: 25
  start-page: 5190
  year: 2012
  ident: 2020061315595432300_bib21
  article-title: Exposing global cloud biases in the Community Atmosphere Model (CAM) using satellite observations and their corresponding instrument simulators
  publication-title: J. Climate
  doi: 10.1175/JCLI-D-11-00469.1
– volume: 85
  start-page: 5529
  issue: C10
  year: 1980
  ident: 2020061315595432300_bib28
  article-title: Sensitivity of a global climate model to an increase in CO2 concentration in the atmosphere
  publication-title: J. Geophys. Res.
  doi: 10.1029/JC085iC10p05529
– volume: 25
  start-page: 3010
  year: 2012
  ident: 2020061315595432300_bib22
  article-title: Separation of contributions from radiative feedbacks to polar amplification on an aquaplanet
  publication-title: J. Climate
  doi: 10.1175/JCLI-D-11-00246.1
– volume: 24
  start-page: 2737
  year: 2011
  ident: 2020061315595432300_bib41
  article-title: Geographical distribution of climate feedbacks in the NCAR CCSM3.0
  publication-title: J. Climate
  doi: 10.1175/2010JCLI3788.1
– volume: 29
  start-page: 375
  year: 2007
  ident: 2020061315595432300_bib8
  article-title: Dynamical greenhouse-plus feedback and polar warming amplification. Part II: Meridional and vertical asymmetries of the global warming
  publication-title: Climate Dyn.
  doi: 10.1007/s00382-007-0238-9
– volume: 25
  start-page: 608
  year: 2012
  ident: 2020061315595432300_bib51
  article-title: Climate feedbacks and their implications for poleward energy flux changes in a warming climate
  publication-title: J. Climate
  doi: 10.1175/JCLI-D-11-00096.1
– volume: 50
  start-page: 2008
  year: 1993
  ident: 2020061315595432300_bib47
  article-title: Parameterization of the radiative properties of cirrus clouds
  publication-title: J. Atmos. Sci.
  doi: 10.1175/1520-0469(1993)050<2008:POTRPO>2.0.CO;2
– volume: 26
  start-page: 661
  year: 2006
  ident: 2020061315595432300_bib7
  article-title: Dynamical greenhouse-plus feedback and polar warming amplification. Part I: A dry radiative-transportive climate model
  publication-title: Climate Dyn.
  doi: 10.1007/s00382-005-0104-6
– volume: 102
  start-page: 6831
  issue: D6
  year: 1997
  ident: 2020061315595432300_bib16
  article-title: Radiative forcing and climate response
  publication-title: J. Geophys. Res.
  doi: 10.1029/96JD03436
– volume: 8
  start-page: 449
  year: 1995
  ident: 2020061315595432300_bib34
  article-title: The role of sea ice in 2 × CO2 climate model sensitivity. Part I: The total influence of sea ice thickness and extent
  publication-title: J. Climate
  doi: 10.1175/1520-0442(1995)008<0449:TROSII>2.0.CO;2
– volume: 34
  start-page: 669
  year: 2010
  ident: 2020061315595432300_bib26
  article-title: Quantifying contributions to polar warming amplification in an idealized coupled general circulation model
  publication-title: Climate Dyn.
  doi: 10.1007/s00382-009-0673-x
– volume: 33
  start-page: 1099
  year: 2009
  ident: 2020061315595432300_bib44
  article-title: Simulations of 20th and 21st century Arctic cloud amount in the global climate models assessed in the IPCC AR4
  publication-title: Climate Dyn.
  doi: 10.1007/s00382-008-0475-6
– volume: 24
  start-page: 4973
  year: 2011
  ident: 2020061315595432300_bib48
  article-title: The Community Climate System Model version 4
  publication-title: J. Climate
  doi: 10.1175/2011JCLI4083.1
– volume: 108
  start-page: 4376
  year: 2003
  ident: 2020061315595432300_bib32
  article-title: A fast, flexible, approximate technique for computing radiative transfer in inhomogeneous cloud fields
  publication-title: J. Geophys. Res.
  doi: 10.1029/2002JD003322
– volume: 32
  start-page: 873
  year: 2009
  ident: 2020061315595432300_bib24
  article-title: A new framework for isolating individual feedback processes in coupled general circulation climate models. Part I: Formulation
  publication-title: Climate Dyn.
  doi: 10.1007/s00382-008-0425-3
– volume: 32
  start-page: 3
  year: 1975
  ident: 2020061315595432300_bib27
  article-title: The effects of doubling the CO2 concentration on the climate of a general circulation model
  publication-title: J. Atmos. Sci.
  doi: 10.1175/1520-0469(1975)032<0003:TEODTC>2.0.CO;2
– volume: 22
  start-page: 748
  year: 2009
  ident: 2020061315595432300_bib23
  article-title: Toward optimal closure of the earth's top-of-atmosphere radiation budget
  publication-title: J. Climate
  doi: 10.1175/2008JCLI2637.1
– year: 2007
  ident: 2020061315595432300_bib30
– volume: 3
  start-page: 11
  year: 2009
  ident: 2020061315595432300_bib36
  article-title: The emergence of surface-based Arctic amplification
  publication-title: Cryosphere
  doi: 10.5194/tc-3-11-2009
– volume: 21
  start-page: 221
  year: 2003
  ident: 2020061315595432300_bib17
  article-title: Polar amplifications of climate change in coupled models
  publication-title: Climate Dyn.
  doi: 10.1007/s00382-003-0332-6
– volume: 21
  start-page: 3504
  year: 2008
  ident: 2020061315595432300_bib38
  article-title: Quantifying climate feedbacks using radiative kernels
  publication-title: J. Climate
  doi: 10.1175/2007JCLI2110.1
– volume: 19
  start-page: 3445
  year: 2006
  ident: 2020061315595432300_bib5
  article-title: How well do we understand and evaluate climate feedback processes
  publication-title: J. Climate
  doi: 10.1175/JCLI3819.1
– volume: 25
  start-page: 3053
  year: 2012
  ident: 2020061315595432300_bib4
  article-title: Climate sensitivity of the Community Climate System Model, version 4
  publication-title: J. Climate
  doi: 10.1175/JCLI-D-11-00290.1
– volume: 25
  start-page: 6175
  year: 2012
  ident: 2020061315595432300_bib29
  article-title: Southeast Pacific stratocumulus in the Community Atmosphere Model
  publication-title: J. Climate
  doi: 10.1175/JCLI-D-11-00503.1
– volume: 25
  start-page: 3661
  year: 2012
  ident: 2020061315595432300_bib31
  article-title: Climate system response to external forcings and climate change projections in CCSM4
  publication-title: J. Climate
  doi: 10.1175/JCLI-D-11-00240.1
– volume: 24
  start-page: 3433
  year: 2011
  ident: 2020061315595432300_bib42
  article-title: Seasonal contributions to climate feedbacks in the NCAR CCSM3.0
  publication-title: J. Climate
  doi: 10.1175/2011JCLI3862.1
– volume: 25
  start-page: 1453
  year: 2012
  ident: 2020061315595432300_bib12
  article-title: The evolution of climate sensitivity and climate feedbacks in the Community Atmosphere Model
  publication-title: J. Climate
  doi: 10.1175/JCLI-D-11-00197.1
– volume: 17
  start-page: 603
  year: 2004
  ident: 2020061315595432300_bib43
  article-title: The impact of cloud feedbacks on Arctic climate under greenhouse forcing
  publication-title: J. Climate
  doi: 10.1175/1520-0442(2004)017<0603:TIOCFO>2.0.CO;2
– volume: 32
  start-page: 887
  year: 2009
  ident: 2020061315595432300_bib9
  article-title: A new framework for isolating individual feedback processes in coupled general circulation climate models. Part II: Method demonstrations and comparisons
  publication-title: Climate Dyn.
  doi: 10.1007/s00382-008-0424-4
– volume: 45
  start-page: 1397
  year: 1988
  ident: 2020061315595432300_bib50
  article-title: Cloud feedback processes in a general circulation model
  publication-title: J. Atmos. Sci.
  doi: 10.1175/1520-0469(1988)045<1397:CFPIAG>2.0.CO;2
– volume: 17
  start-page: 1500
  year: 2004
  ident: 2020061315595432300_bib14
  article-title: The role of surface albedo feedback in climate
  publication-title: J. Climate
  doi: 10.1175/1520-0442(2004)017<1550:TROSAF>2.0.CO;2
– volume: 36
  start-page: L16704
  year: 2009
  ident: 2020061315595432300_bib25
  article-title: Seasonality of polar surface warming amplification in climate simulations
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2009GL040133
– volume: 49
  start-page: 2139
  year: 1992
  ident: 2020061315595432300_bib46
  article-title: On the correlated k-distribution method for radiative transfer in nonhomogeneous atmosphere
  publication-title: J. Atmos. Sci.
  doi: 10.1175/1520-0469(1992)049<2139:OTCDMF>2.0.CO;2
– volume: 36
  year: 2009
  ident: 2020061315595432300_bib11
  article-title: Arctic air temperature change amplification and the Atlantic multidecadal oscillation
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2009GL038777
– volume: 33
  year: 2009
  ident: 2020061315595432300_bib13
  article-title: Polar amplification in a coupled climate model with locked albedo
  publication-title: Climate Dyn.
  doi: 10.1007/s00382-009-0535-6
– year: 2013
  ident: 2020061315595432300_bib40
  article-title: Quantifying contributions of climate feedbacks to tropospheric warming in the NCAR CCSM3.0
  publication-title: Climate Dyn.
– year: 2007
  ident: 2020061315595432300_bib39
– volume: 114
  start-page: D18204
  year: 2009
  ident: 2020061315595432300_bib20
  article-title: Cloud influence on and response to seasonal Arctic sea ice loss
  publication-title: J. Geophys. Res.
  doi: 10.1029/2009JD011773
– volume: 44
  start-page: 3235
  year: 1987
  ident: 2020061315595432300_bib33
  article-title: The doubled CO2 climate: Impact of the sea surface temperature gradient
  publication-title: J. Atmos. Sci.
  doi: 10.1175/1520-0469(1987)044<3235:TDCCIO>2.0.CO;2
– volume: 33
  start-page: L03701
  year: 2006
  ident: 2020061315595432300_bib45
  article-title: Amplified Arctic climate change: What does surface albedo feedback have to do with it?
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2005GL025244
– volume: 32
  start-page: L22710
  year: 2005
  ident: 2020061315595432300_bib6
  article-title: Dynamical amplification of polar warming
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2005GL024481
– volume: 69
  start-page: 2256
  year: 2012
  ident: 2020061315595432300_bib10
  article-title: Robustness of dynamical feedbacks from radiative forcing: 2% solar versus 2 × CO2 experiments in an idealized GCM
  publication-title: J. Atmos. Sci.
  doi: 10.1175/JAS-D-11-0117.1
– volume: 77
  start-page: 85
  year: 2011
  ident: 2020061315595432300_bib35
  article-title: Processes and impacts of Arctic amplification: A research synthesis
  publication-title: Global Planet. Change
  doi: 10.1016/j.gloplacha.2011.03.004
– year: 2005
  ident: 2020061315595432300_bib1
– volume: 41
  start-page: 533
  year: 2013
  ident: 2020061315595432300_bib2
  article-title: Polar amplification: Is atmospheric heat transport important?
  publication-title: Climate Dyn.
  doi: 10.1007/s00382-012-1601-z
– volume: 19
  start-page: 3354
  year: 2006
  ident: 2020061315595432300_bib37
  article-title: An assessment of climate feedbacks in coupled ocean–atmosphere models
  publication-title: J. Climate
  doi: 10.1175/JCLI3799.1
– volume: 38
  start-page: L17704
  year: 2011
  ident: 2020061315595432300_bib18
  article-title: Coupling between Arctic feedbacks and changes in poleward energy transport
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2011GL048546
– volume: 24
  start-page: 6392
  year: 2011
  ident: 2020061315595432300_bib19
  article-title: Detection of atmospheric changes in spatially and temporally averaged infrared spectra observed from space
  publication-title: J. Climate
  doi: 10.1175/JCLI-D-10-05005.1
SSID ssj0012600
Score 2.5293612
Snippet Polar surface temperatures are expected to warm 2–3 times faster than the global-mean surface temperature: a phenomenon referred to as polar warming...
Polar surface temperatures are expected to warm 2-3 times faster than the global-mean surface temperature: a phenomenon referred to as polar warming...
SourceID proquest
pascalfrancis
crossref
jstor
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 7023
SubjectTerms Albedo
Amplification
Atmosphere
Atmospherics
Carbon dioxide
Climate
Climate change
Climate feedback
Climate models
Climate sensitivity
Climate system
Climatology. Bioclimatology. Climate change
Clouds
Decomposition
Earth, ocean, space
Energy
Exact sciences and technology
External geophysics
Feedback
General circulation models
Global climate
Global climate models
Global warming
Heat
Heat transport
Long wave radiation
Marine
Meteorology
Ocean warming
Oceans
Polar regions
Polar waters
Radiation
Response analysis
Simulation
Southern Hemisphere
Storage
Surface temperature
Transport
Troposphere
Turbulent fluxes
Water vapor
Water vapour
Title A Decomposition of Feedback Contributions to Polar Warming Amplification
URI https://www.jstor.org/stable/26192839
https://www.proquest.com/docview/1444879031
https://www.proquest.com/docview/2813975364
https://www.proquest.com/docview/1439222139
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB7xuPRStaWoaenKSKiHSi6JX7FP1XaXZUEFIQQqt8hx7Koq2lB2-f8de72LUCuOSSY-eOyZb2Y-zQAcoE_k3ilDUb-MCqUrakJZ09Z7btHHBpsmz52dq-m1OL2RNznhNs-0ypVNTIa6613MkR8yHbGK5Ep8vftD49SoWF3NIzQ2YRtNsMbga_vb0fnF5bqOENuvJxxpBN57KXNdE33m4eno-wkdJ2ZCqYz6Uj3xTEtyYmRK2jluVlhOufjHYCcvNHkFLzN8JMOlvl_Dhp-9geIMkW9_nxLk5BMZ3f5CGJqedmA6JGMfeeOZnEX6QCbosVrrfpPYmmo18GpOFj25iIEu-WEjQeYnGUa2echJvbdwPTm6Gk1pnp5AHQY9C4pGGPUjtNXacl8zy4PiwbhaVR2iGnyLjqktWy6VcJZ33LYIRryQ2vNOGM93YWvWz_w7IAhitA3eaNca0UplS8c6VmqLWCB03hdQrnaucbm1eJxwcdukEKOWTdzsZtxUrEmb3VQFfF7_crfsq_Gc8G5Sx1oyhX0I7QoYPNHPo0Bdc1NxXcDeSmFNvpxzjHYwJq0NmrP_fn48aQXsrz_jrYulFDvz_UNcAnElYyj4_vklPsALlgZoGFrJPdha3D_4jwhjFu0ANvXkeJBP7F9_Ve-z
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcoALKo-KQClGAg5IpokfiX1AaLXLstvuVhxa0ZtxHAchqk3b3Qrxp_iNjJ1kqwrUW49JHCuaGc_3jT2ZAXiNmMi9yzVF_TIqcpVRXacFLb3nFjG2trHz3PwwnxyL_RN5sgF_-n9hQlpl7xOjo64aF_bI95gKXEXyXHw8O6eha1Q4Xe1baLRmceB__8KQbflhOkL9vmFs_OloOKFdVwHqMBhYUXRO-N1CWaUs9wWzvM55rR3G8xWiPd5Fh12mJZe5cJZX3JYI0l5I5XkltOc47x24KzjXYUWp8ef1qUUo9h5ZqxboZaTsTlERoff2h7MpHcU8iDTX-fvsGg62qZAhL9MuUTV121PjH3iImDfeggcdWSWD1roewoZfPIJkjjy7uYjb8eQtGZ7-QNIbrx7DZEBGPmSpd6lgpKnJGPGxtO4nCYWw-vZaS7JqyJcQVpOvNqTjfCeDkNted1uIT-D4VqS6DZuLZuGfAkHKpGzttXKlFqXMbepYxVJlkXnUlfcJpL3kjOsKmYd-GqcmBjSFNEHYZmQyZqKwTZbAu_UrZ20Vj5sGb0d1rEfGIBOJZAK71_RzNaAouM64SmCnV5jpXMESYyuMgAuNzvO_j6_sOoFX68e4xsPBjV345jJMgSyWMRz47OYpXsK9ydF8ZmbTw4PncJ_F1h2aZnIHNlcXl_4FEqhVuRutlsC3214mfwFk4Cqk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1da9swFL10KYy9jO6jzGvXabDtYaDFlmRbeigjixuSfoQwVtY3V7alMVritkkZ-2v7db2S7ZSy0bc-JlYE0ZXuOUc61gV4j5jITZkoivFlVCQyosqGKS2M4Rox1mpfee5omoyPxf5JfLIGf7t3YZytssuJPlFXden2yPtMOq4S80T0bWuLmGWjLxeX1FWQcietXTmNZoocmD-_Ub4tdicZxvoDY6O978MxbSsM0BKFwZJiosL_IKSWUnOTMs1twq0qUdtXiPz4LSbvIix4nIhS84rrAgHbiFgaXgllOPb7CNZTVEVhD9a_7k1n31ZnGO7qd89hlcCcE8ftmSridX9_eDihmXdFhIlKPkd3ULExRjqXpl5goGxTYeMfsPAIONqApy11JYNmrj2DNTN_DsERsu76ym_Ok49keP4LKbD_9ALGA5IZ51lvjWGktmSEaFno8oy4a7G6YlsLsqzJzIls8kM7c85PMnBOd9tuKL6E4wcZ103ozeu5eQUECZTU1ihZFkoUcaLDklUslBp5iK2MCSDsRi4v22vNXXWN89zLmzTO3WDnWR6x3A92HgXwafWTi-ZOj_sab_pwrFp6yYm0MoCdO_G5bZCmXEVcBrDdBSxvE8MClRbq4VRhKv3v49tZHsC71WNc8e4YR89Nfe26QE7LGDZ8fX8Xb-ExLpH8cDI92IInzNfxUDSKt6G3vLo2b5BNLYuddtoSOH3olXIDV9UwNg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Decomposition+of+Feedback+Contributions+to+Polar+Warming+Amplification&rft.jtitle=Journal+of+climate&rft.au=Taylor%2C+Patrick+C.&rft.au=Cai%2C+Ming&rft.au=Hu%2C+Aixue&rft.au=Meehl%2C+Jerry&rft.date=2013-09-15&rft.issn=0894-8755&rft.eissn=1520-0442&rft.volume=26&rft.issue=18&rft.spage=7023&rft.epage=7043&rft_id=info:doi/10.1175%2FJCLI-D-12-00696.1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1175_JCLI_D_12_00696_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0894-8755&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0894-8755&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0894-8755&client=summon