REST and Its Corepressors Mediate Plasticity of Neuronal Gene Chromatin throughout Neurogenesis
Regulation of neuronal gene expression is critical to central nervous system development. Here, we show that REST regulates the transitions from pluripotent to neural stem/progenitor cell and from progenitor to mature neuron. In the transition to progenitor cell, REST is degraded to levels just suff...
Saved in:
Published in | Cell Vol. 121; no. 4; pp. 645 - 657 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
20.05.2005
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Regulation of neuronal gene expression is critical to central nervous system development. Here, we show that REST regulates the transitions from pluripotent to neural stem/progenitor cell and from progenitor to mature neuron. In the transition to progenitor cell, REST is degraded to levels just sufficient to maintain neuronal gene chromatin in an inactive state that is nonetheless poised for expression. As progenitors differentiate into neurons, REST and its corepressors dissociate from the RE1 site, triggering activation of neuronal genes. In some genes, the level of expression is adjusted further in neurons by CoREST/MeCP2 repressor complexes that remain bound to a site of methylated DNA distinct from the RE1 site. Expression profiling based on this mechanism indicates that REST defines a gene set subject to plasticity in mature neurons. Thus, a multistage repressor mechanism controls the orderly expression of genes during development while still permitting fine tuning in response to specific stimuli. |
---|---|
AbstractList | Regulation of neuronal gene expression is critical to central nervous system development. Here, we show that REST regulates the transitions from pluripotent to neural stem/progenitor cell and from progenitor to mature neuron. In the transition to progenitor cell, REST is degraded to levels just sufficient to maintain neuronal gene chromatin in an inactive state that is nonetheless poised for expression. As progenitors differentiate into neurons, REST and its co-repressors dissociate from the RE1 site, triggering activation of neuronal genes. In some genes, the level of expression is adjusted further in neurons by CoREST/MeCP2 repressor complexes that remain bound to a site of methylated DNA distinct from the RE1 site. Expression profiling based on this mechanism indicates that REST defines a gene set subject to plasticity in mature neurons. Thus, a multistage repressor mechanism controls the orderly expression of genes during development while still permitting fine tuning in response to specific stimuli.Regulation of neuronal gene expression is critical to central nervous system development. Here, we show that REST regulates the transitions from pluripotent to neural stem/progenitor cell and from progenitor to mature neuron. In the transition to progenitor cell, REST is degraded to levels just sufficient to maintain neuronal gene chromatin in an inactive state that is nonetheless poised for expression. As progenitors differentiate into neurons, REST and its co-repressors dissociate from the RE1 site, triggering activation of neuronal genes. In some genes, the level of expression is adjusted further in neurons by CoREST/MeCP2 repressor complexes that remain bound to a site of methylated DNA distinct from the RE1 site. Expression profiling based on this mechanism indicates that REST defines a gene set subject to plasticity in mature neurons. Thus, a multistage repressor mechanism controls the orderly expression of genes during development while still permitting fine tuning in response to specific stimuli. Regulation of neuronal gene expression is critical to central nervous system development. Here, we show that REST regulates the transitions from pluripotent to neural stem/progenitor cell and from progenitor to mature neuron. In the transition to progenitor cell, REST is degraded to levels just sufficient to maintain neuronal gene chromatin in an inactive state that is nonetheless poised for expression. As progenitors differentiate into neurons, REST and its corepressors dissociate from the RE1 site, triggering activation of neuronal genes. In some genes, the level of expression is adjusted further in neurons by CoREST/MeCP2 repressor complexes that remain bound to a site of methylated DNA distinct from the RE1 site. Expression profiling based on this mechanism indicates that REST defines a gene set subject to plasticity in mature neurons. Thus, a multistage repressor mechanism controls the orderly expression of genes during development while still permitting fine tuning in response to specific stimuli. Regulation of neuronal gene expression is critical to central nervous system development. Here, we show that REST regulates the transitions from pluripotent to neural stem/progenitor cell and from progenitor to mature neuron. In the transition to progenitor cell, REST is degraded to levels just sufficient to maintain neuronal gene chromatin in an inactive state that is nonetheless poised for expression. As progenitors differentiate into neurons, REST and its co-repressors dissociate from the RE1 site, triggering activation of neuronal genes. In some genes, the level of expression is adjusted further in neurons by CoREST/MeCP2 repressor complexes that remain bound to a site of methylated DNA distinct from the RE1 site. Expression profiling based on this mechanism indicates that REST defines a gene set subject to plasticity in mature neurons. Thus, a multistage repressor mechanism controls the orderly expression of genes during development while still permitting fine tuning in response to specific stimuli. |
Author | Mandel, Gail Speh, Joan C. Ballas, Nurit Lu, Diane D. Grunseich, Christopher |
Author_xml | – sequence: 1 givenname: Nurit surname: Ballas fullname: Ballas, Nurit email: nballas@notes.cc.sunysb.edu – sequence: 2 givenname: Christopher surname: Grunseich fullname: Grunseich, Christopher – sequence: 3 givenname: Diane D. surname: Lu fullname: Lu, Diane D. – sequence: 4 givenname: Joan C. surname: Speh fullname: Speh, Joan C. – sequence: 5 givenname: Gail surname: Mandel fullname: Mandel, Gail |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/15907476$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1rFTEUhrOo2A_9Ay4kK3d3TCbJJANu5FJroX6gdR3ycabNZW5yTTJC_70ZbkVwUVcncJ73QJ73HJ3EFAGhV5R0lNDh7a5zMM9dT4joCOsIZSfojJCx36hB8lN0XsqOEKKEEM_RKRUjkVwOZ0h_u_x-i030-LoWvE0ZDhlKSbngT-CDqYC_zqbU4EJ9wGnCn2HJKZoZX0EEvL3PaW9qiLi213J3n5Z6RO7auoTyAj2bzFzg5eO8QD8-XN5uP25uvlxdb9_fbBwfRd0AN1w6UE6Z3gtniWeeUWqVJF4o6-wgJ-97B3ZkdmyfBOCeMyZ6YdlkObtAb453Dzn9XKBUvQ9lVWIipKXoQSo-MDb8F6SSD5KqFXz9CC52D14fctib_KD_uGtAfwRcTqVkmP4iRK-l6J1eD-u1FE2YbqW0kPon1MQ2gSnWbML8dPTdMQrN468AWRcXILpWUwZXtU_hqfhv41Oqtg |
CitedBy_id | crossref_primary_10_1093_nar_gkr857 crossref_primary_10_1186_s13072_023_00505_7 crossref_primary_10_1038_nature06863 crossref_primary_10_1038_s41467_020_18526_1 crossref_primary_10_1038_s41598_024_63371_7 crossref_primary_10_1038_s41467_022_30119_8 crossref_primary_10_3389_fphar_2020_584770 crossref_primary_10_1007_s00795_018_0187_x crossref_primary_10_1016_j_gene_2024_148737 crossref_primary_10_1016_j_stemcr_2019_01_003 crossref_primary_10_1038_s41419_020_2269_7 crossref_primary_10_1038_srep34556 crossref_primary_10_1038_s41593_021_00858_w crossref_primary_10_3389_fonc_2020_590033 crossref_primary_10_1007_s00221_018_5363_7 crossref_primary_10_1016_j_febslet_2012_04_052 crossref_primary_10_1016_j_stem_2009_12_003 crossref_primary_10_1111_gtc_12172 crossref_primary_10_1146_annurev_neuro_29_051605_112839 crossref_primary_10_1242_dev_080994 crossref_primary_10_1016_j_molcel_2008_05_023 crossref_primary_10_1111_j_1440_1827_2011_02781_x crossref_primary_10_1523_JNEUROSCI_5037_05_2006 crossref_primary_10_1016_j_celrep_2022_111578 crossref_primary_10_4161_rna_8_5_16154 crossref_primary_10_1016_j_neuron_2005_04_027 crossref_primary_10_1016_j_bbrc_2009_05_007 crossref_primary_10_1038_s41388_020_1268_6 crossref_primary_10_1016_j_biochi_2022_10_012 crossref_primary_10_1042_BJ20080963 crossref_primary_10_1371_journal_pone_0178680 crossref_primary_10_1038_s41419_018_0473_5 crossref_primary_10_21307_ane_2018_007 crossref_primary_10_3390_ijms20143478 crossref_primary_10_4137_GRSB_S424 crossref_primary_10_1016_j_yexcr_2013_12_013 crossref_primary_10_1371_journal_pgen_1002494 crossref_primary_10_1016_j_neuropharm_2013_12_024 crossref_primary_10_1016_j_scr_2015_05_003 crossref_primary_10_1634_stemcells_2006_0207 crossref_primary_10_1093_humrep_der233 crossref_primary_10_1093_cercor_bhr218 crossref_primary_10_1002_jnr_21595 crossref_primary_10_1007_s00018_025_05643_7 crossref_primary_10_1016_j_yexcr_2016_02_014 crossref_primary_10_3390_catal9100842 crossref_primary_10_1016_j_tins_2009_07_005 crossref_primary_10_1002_stem_2304 crossref_primary_10_1634_stemcells_2007_0080 crossref_primary_10_1002_pro_3142 crossref_primary_10_1186_1741_7007_10_93 crossref_primary_10_1016_j_cub_2008_08_048 crossref_primary_10_1002_mabi_201500101 crossref_primary_10_1016_j_stemcr_2014_07_008 crossref_primary_10_1038_nrn2739 crossref_primary_10_1371_journal_pone_0212553 crossref_primary_10_1093_cercor_bhq284 crossref_primary_10_15252_emmm_201607471 crossref_primary_10_1523_ENEURO_0010_15_2015 crossref_primary_10_1016_j_neuint_2021_105076 crossref_primary_10_1007_s10735_021_10055_5 crossref_primary_10_1002_jcp_21521 crossref_primary_10_1016_j_neuropharm_2015_07_015 crossref_primary_10_1186_s13148_017_0376_9 crossref_primary_10_3390_genes8080196 crossref_primary_10_1097_WNR_0b013e328011dc81 crossref_primary_10_1523_JNEUROSCI_0169_11_2011 crossref_primary_10_1007_s10059_012_0182_3 crossref_primary_10_1038_jid_2008_406 crossref_primary_10_1021_cr800414e crossref_primary_10_1016_j_ceb_2005_09_002 crossref_primary_10_1038_s41398_023_02415_4 crossref_primary_10_1002_stem_1004 crossref_primary_10_1007_s12264_007_0036_8 crossref_primary_10_7554_eLife_69058 crossref_primary_10_1016_j_biomaterials_2015_12_008 crossref_primary_10_1016_j_ceb_2005_09_006 crossref_primary_10_1093_hmg_ddq548 crossref_primary_10_1016_j_arr_2023_102090 crossref_primary_10_1155_2012_421564 crossref_primary_10_1093_nar_gkn488 crossref_primary_10_1002_ajmg_c_31416 crossref_primary_10_1016_j_conb_2017_12_008 crossref_primary_10_1038_s41593_022_01128_z crossref_primary_10_3389_fcell_2020_00635 crossref_primary_10_1038_nature07925 crossref_primary_10_1039_b801920g crossref_primary_10_1016_j_ajpath_2022_03_007 crossref_primary_10_1073_pnas_1010741107 crossref_primary_10_1038_ncb2153 crossref_primary_10_1002_cam4_220 crossref_primary_10_1186_s12885_022_09280_2 crossref_primary_10_1002_bies_20813 crossref_primary_10_3390_v5051208 crossref_primary_10_1038_s41467_024_55741_6 crossref_primary_10_1016_j_neuropharm_2017_05_021 crossref_primary_10_1074_jbc_M709388200 crossref_primary_10_1016_j_neubiorev_2015_06_022 crossref_primary_10_1038_srep32298 crossref_primary_10_2174_1567202620666230727153306 crossref_primary_10_1038_srep37863 crossref_primary_10_1002_jnr_21139 crossref_primary_10_1016_j_nbd_2011_03_011 crossref_primary_10_1146_annurev_cellbio_092910_154121 crossref_primary_10_1128_MCB_26_9_3565_3581_2006 crossref_primary_10_1007_s00401_006_0102_8 crossref_primary_10_1073_pnas_1620230114 crossref_primary_10_1002_trc2_12003 crossref_primary_10_1016_j_expneurol_2013_01_027 crossref_primary_10_1016_j_molcel_2013_07_017 crossref_primary_10_18632_oncotarget_2406 crossref_primary_10_3390_biom11010075 crossref_primary_10_1523_JNEUROSCI_1246_16_2016 crossref_primary_10_3389_fncel_2018_00158 crossref_primary_10_1371_journal_pone_0163042 crossref_primary_10_2217_epi_10_76 crossref_primary_10_1016_j_nlm_2018_02_010 crossref_primary_10_1016_j_neuroscience_2015_07_038 crossref_primary_10_1038_ncomms13360 crossref_primary_10_3389_fnmol_2017_00128 crossref_primary_10_1016_j_ydbio_2010_10_008 crossref_primary_10_1007_s12015_019_09904_4 crossref_primary_10_1038_s41598_025_87314_y crossref_primary_10_1096_fj_09_140145 crossref_primary_10_1016_j_cell_2012_11_045 crossref_primary_10_1093_abbs_gms016 crossref_primary_10_1101_gad_1558107 crossref_primary_10_1007_s00018_015_2125_6 crossref_primary_10_1016_j_bbrc_2011_04_082 crossref_primary_10_1007_s00441_014_2046_y crossref_primary_10_1016_j_cell_2009_03_024 crossref_primary_10_1038_s41598_019_39544_0 crossref_primary_10_1038_nature06780 crossref_primary_10_1039_D4CP03291H crossref_primary_10_3389_fendo_2023_1191311 crossref_primary_10_1016_j_neuroscience_2017_09_018 crossref_primary_10_1021_acschemneuro_8b00620 crossref_primary_10_1038_nature06641 crossref_primary_10_1002_hipo_23336 crossref_primary_10_1016_j_bbrc_2013_06_036 crossref_primary_10_1074_jbc_M703026200 crossref_primary_10_1186_s13072_021_00425_4 crossref_primary_10_1371_journal_pcbi_1003671 crossref_primary_10_4103_tcmj_tcmj_220_20 crossref_primary_10_1152_physrev_00012_2010 crossref_primary_10_1091_mbc_e06_04_0322 crossref_primary_10_3390_jdb9010006 crossref_primary_10_1128_MCB_26_5_1666_1678_2006 crossref_primary_10_2217_epi_11_67 crossref_primary_10_1016_j_ymeth_2017_08_014 crossref_primary_10_1186_s13148_023_01514_9 crossref_primary_10_1016_j_ijdevneu_2013_10_001 crossref_primary_10_1016_j_ccell_2019_09_005 crossref_primary_10_1002_stem_1430 crossref_primary_10_1016_j_mcn_2009_09_012 crossref_primary_10_1042_BSR20080058 crossref_primary_10_1093_molbev_msp058 crossref_primary_10_3389_fgene_2014_00311 crossref_primary_10_1038_s41419_019_2133_9 crossref_primary_10_1038_srep36328 crossref_primary_10_1083_jcb_201802117 crossref_primary_10_1111_jnc_13629 crossref_primary_10_1038_nrn_2016_27 crossref_primary_10_1016_j_neuropharm_2013_03_024 crossref_primary_10_1101_gr_258400_119 crossref_primary_10_1089_scd_2008_0036 crossref_primary_10_7554_eLife_01267 crossref_primary_10_1016_j_mcn_2008_07_006 crossref_primary_10_1038_s41598_020_60065_8 crossref_primary_10_1371_journal_pone_0088556 crossref_primary_10_1016_j_phrs_2021_105958 crossref_primary_10_1101_gad_1519107 crossref_primary_10_1038_nature13163 crossref_primary_10_1038_s41398_022_02199_z crossref_primary_10_1111_apha_14146 crossref_primary_10_1002_bdra_20807 crossref_primary_10_1007_s13238_010_0078_y crossref_primary_10_1146_annurev_neuro_083022_113120 crossref_primary_10_1016_j_conb_2010_04_001 crossref_primary_10_1016_j_csbj_2020_04_007 crossref_primary_10_1089_neu_2018_5793 crossref_primary_10_1016_j_neuron_2007_06_029 crossref_primary_10_1098_rstb_2008_2262 crossref_primary_10_1002_cbf_3183 crossref_primary_10_1371_journal_pone_0131760 crossref_primary_10_18632_oncotarget_7225 crossref_primary_10_3390_v13091856 crossref_primary_10_1016_j_jmb_2019_11_003 crossref_primary_10_1242_jcs_257535 crossref_primary_10_3389_fpsyt_2023_1296527 crossref_primary_10_1017_S1740925X09990494 crossref_primary_10_1016_j_yjmcc_2011_01_017 crossref_primary_10_1080_15592294_2016_1265713 crossref_primary_10_18632_oncotarget_8433 crossref_primary_10_1016_j_bcp_2010_04_035 crossref_primary_10_1073_pnas_0906917107 crossref_primary_10_1186_1471_2164_14_720 crossref_primary_10_1186_s40478_024_01779_y crossref_primary_10_1051_rmr_170004 crossref_primary_10_1016_j_cell_2012_10_043 crossref_primary_10_1016_j_ajhg_2008_08_012 crossref_primary_10_1016_j_neubiorev_2018_08_001 crossref_primary_10_4161_cam_3_2_8278 crossref_primary_10_1007_s00125_008_0984_1 crossref_primary_10_1038_nature07785 crossref_primary_10_12688_f1000research_12169_1 crossref_primary_10_1016_j_cub_2005_08_032 crossref_primary_10_1155_2015_202914 crossref_primary_10_1126_sciadv_aba5933 crossref_primary_10_1523_JNEUROSCI_4286_14_2015 crossref_primary_10_1016_j_neurobiolaging_2006_05_036 crossref_primary_10_1016_j_neuro_2015_11_007 crossref_primary_10_1038_s41467_021_25596_2 crossref_primary_10_1007_s12035_023_03242_w crossref_primary_10_1016_j_bbcan_2024_189150 crossref_primary_10_1038_s41380_018_0036_2 crossref_primary_10_1038_nrn1712 crossref_primary_10_3945_ajcn_2009_27113B crossref_primary_10_1073_pnas_0511041103 crossref_primary_10_2217_epi_15_39 crossref_primary_10_1007_s12035_011_8165_5 crossref_primary_10_1073_pnas_1414770111 crossref_primary_10_1186_s12864_015_1591_4 crossref_primary_10_1039_D1MO00352F crossref_primary_10_1038_nrn_2017_46 crossref_primary_10_1523_JNEUROSCI_2390_08_2008 crossref_primary_10_1007_s11010_019_03600_0 crossref_primary_10_1007_s12035_012_8376_4 crossref_primary_10_1523_JNEUROSCI_1615_07_2007 crossref_primary_10_1016_j_celrep_2014_10_011 crossref_primary_10_1016_j_biopsych_2013_09_034 crossref_primary_10_1016_j_yfrne_2019_04_001 crossref_primary_10_1038_npp_2012_124 crossref_primary_10_1016_j_stemcr_2017_04_032 crossref_primary_10_1002_alz_12553 crossref_primary_10_1016_j_tins_2010_01_007 crossref_primary_10_1002_jnr_22804 crossref_primary_10_1038_nmeth_1246 crossref_primary_10_1038_s41598_022_21767_3 crossref_primary_10_1186_s13064_015_0045_7 crossref_primary_10_1007_s12035_018_1254_y crossref_primary_10_1038_npp_2012_134 crossref_primary_10_1073_pnas_2015454118 crossref_primary_10_1038_s41435_018_0053_9 crossref_primary_10_1016_j_neulet_2016_06_050 crossref_primary_10_1074_jbc_M705120200 crossref_primary_10_1111_gtc_12235 crossref_primary_10_1038_nrg2100 crossref_primary_10_1016_j_neulet_2009_07_093 crossref_primary_10_1093_cercor_bhy274 crossref_primary_10_1042_BJ20140496 crossref_primary_10_1007_s11011_021_00719_2 crossref_primary_10_1371_journal_pone_0014311 crossref_primary_10_1038_s41419_021_03465_6 crossref_primary_10_2217_fnl_09_1 crossref_primary_10_1016_j_celrep_2014_03_075 crossref_primary_10_1016_j_nbd_2010_01_008 crossref_primary_10_1038_s41389_020_0239_7 crossref_primary_10_1016_j_brainres_2005_09_061 crossref_primary_10_1038_onc_2012_182 crossref_primary_10_1016_j_neuroscience_2020_05_056 crossref_primary_10_1523_JNEUROSCI_1281_19_2020 crossref_primary_10_3390_pharmaceutics11100526 crossref_primary_10_1242_dev_160325 crossref_primary_10_1038_s41580_021_00335_z crossref_primary_10_1371_journal_pone_0055221 crossref_primary_10_1016_j_neuron_2019_06_027 crossref_primary_10_1016_j_neuropharm_2014_01_003 crossref_primary_10_1073_pnas_1524013113 crossref_primary_10_1158_1535_7163_MCT_11_0990 crossref_primary_10_1016_j_neuropharm_2014_01_001 crossref_primary_10_1016_j_jsbmb_2019_03_003 crossref_primary_10_18632_oncotarget_9447 crossref_primary_10_1016_j_neuron_2021_07_007 crossref_primary_10_1111_epi_12030 crossref_primary_10_1007_s00412_009_0221_9 crossref_primary_10_1007_s00125_008_1043_7 crossref_primary_10_1016_j_isci_2024_109507 crossref_primary_10_1134_S0006297907110016 crossref_primary_10_1101_gr_181966_114 crossref_primary_10_1038_s41467_023_42704_6 crossref_primary_10_1038_s41380_019_0597_8 crossref_primary_10_1038_nrurol_2018_22 crossref_primary_10_1203_01_pdr_0000203565_76028_2a crossref_primary_10_1002_stem_1949 crossref_primary_10_1002_cne_21350 crossref_primary_10_1523_JNEUROSCI_5500_09_2010 crossref_primary_10_1016_j_mce_2010_02_038 crossref_primary_10_1371_journal_pone_0003656 crossref_primary_10_4137_BBI_S13279 crossref_primary_10_5402_2012_690901 crossref_primary_10_1111_j_1365_2443_2010_01471_x crossref_primary_10_1016_j_molcel_2015_03_007 crossref_primary_10_1089_scd_2013_0410 crossref_primary_10_4161_cc_25035 crossref_primary_10_1016_j_tibs_2008_01_003 crossref_primary_10_1016_j_neuro_2017_07_002 crossref_primary_10_1523_JNEUROSCI_1149_19_2019 crossref_primary_10_1007_s00018_014_1590_7 crossref_primary_10_3390_brainsci10110788 crossref_primary_10_1089_dna_2017_3780 crossref_primary_10_1016_j_celrep_2019_03_072 crossref_primary_10_1128_MCB_00083_14 crossref_primary_10_1016_j_biomaterials_2024_122879 crossref_primary_10_1016_j_neuron_2012_02_021 crossref_primary_10_2217_epi_2017_0022 crossref_primary_10_1016_j_heliyon_2024_e32680 crossref_primary_10_1073_pnas_0809130106 crossref_primary_10_1016_j_mrrev_2008_01_008 crossref_primary_10_1155_2017_2493752 crossref_primary_10_3389_fnins_2024_1348478 crossref_primary_10_1016_j_tibs_2005_12_008 crossref_primary_10_1093_nar_gkw1258 crossref_primary_10_1016_j_mocell_2025_100193 crossref_primary_10_1007_s13148_011_0025_7 crossref_primary_10_1016_j_gde_2008_10_001 crossref_primary_10_3389_fncel_2019_00580 crossref_primary_10_1186_s12867_015_0043_7 crossref_primary_10_1002_stem_1725 crossref_primary_10_2217_epi_14_53 crossref_primary_10_1186_1471_213X_8_23 crossref_primary_10_1016_j_bbr_2015_02_026 crossref_primary_10_1073_pnas_2009393118 crossref_primary_10_1038_nrn2810 crossref_primary_10_1038_s42003_023_05652_x crossref_primary_10_1016_j_mcn_2010_03_006 crossref_primary_10_1128_MCB_00269_07 crossref_primary_10_1186_gb_2006_7_9_r85 crossref_primary_10_1093_nar_gkab248 crossref_primary_10_4161_23723548_2014_970048 crossref_primary_10_1101_gr_089086_108 crossref_primary_10_1371_journal_pone_0015834 crossref_primary_10_7554_eLife_02755 crossref_primary_10_1002_jnr_21649 crossref_primary_10_1038_s41598_024_74487_1 crossref_primary_10_1016_j_celrep_2020_108511 crossref_primary_10_1016_j_ydbio_2019_03_013 crossref_primary_10_1093_bfgp_elw023 crossref_primary_10_1002_1878_0261_12903 crossref_primary_10_1016_j_jmb_2014_07_032 crossref_primary_10_1101_gad_177774_111 crossref_primary_10_1124_jpet_111_181289 crossref_primary_10_1074_jbc_M111_265173 crossref_primary_10_1038_mp_2016_240 crossref_primary_10_3389_fgene_2014_00164 crossref_primary_10_3390_brainsci8100187 crossref_primary_10_1038_s41368_019_0053_2 crossref_primary_10_1016_j_cell_2005_08_020 crossref_primary_10_1042_BST20120006 crossref_primary_10_3389_fncel_2014_00397 crossref_primary_10_1242_dev_014977 crossref_primary_10_3389_fncel_2014_00396 crossref_primary_10_1007_s00441_017_2735_4 crossref_primary_10_1007_s12035_023_03271_5 crossref_primary_10_1038_s41598_020_77725_4 crossref_primary_10_3389_fnmol_2022_992627 crossref_primary_10_1091_mbc_e10_10_0817 crossref_primary_10_1016_j_devcel_2009_02_002 crossref_primary_10_1093_hmg_ddu446 crossref_primary_10_1016_j_seizure_2023_08_009 crossref_primary_10_1038_s41467_023_42371_7 crossref_primary_10_1371_journal_pone_0011109 crossref_primary_10_1038_s41380_021_01342_4 crossref_primary_10_15252_embj_2019103786 crossref_primary_10_2174_1389201022666210830142827 crossref_primary_10_3390_genes15121653 crossref_primary_10_1016_j_molcel_2009_03_013 crossref_primary_10_23868_201811033 crossref_primary_10_1523_JNEUROSCI_1869_12_2012 crossref_primary_10_1016_j_jgg_2013_04_007 crossref_primary_10_15252_embr_201949431 crossref_primary_10_4103_1673_5374_386400 crossref_primary_10_1073_pnas_2205524119 crossref_primary_10_1097_j_pain_0000000000001633 crossref_primary_10_7554_eLife_09584 crossref_primary_10_1016_j_neuron_2014_11_011 crossref_primary_10_1093_nar_gkt590 crossref_primary_10_1039_c1cs15050b crossref_primary_10_3390_cells11040748 crossref_primary_10_1016_j_bbrc_2009_10_021 crossref_primary_10_1016_j_ijdevneu_2012_11_009 crossref_primary_10_1016_j_stemcr_2023_06_007 crossref_primary_10_2217_epi_15_119 crossref_primary_10_3390_brainsci8120226 crossref_primary_10_1523_ENEURO_0337_19_2020 crossref_primary_10_1016_j_biocel_2008_08_009 crossref_primary_10_1016_j_ydbio_2012_09_013 crossref_primary_10_3389_fncel_2017_00023 crossref_primary_10_15252_emmm_202012525 crossref_primary_10_1002_mgg3_1429 crossref_primary_10_1016_j_jpsychires_2009_09_009 crossref_primary_10_1146_annurev_nutr_071715_050808 crossref_primary_10_1016_j_biochi_2012_08_020 crossref_primary_10_1631_jzus_B1600355 crossref_primary_10_1016_j_annonc_2020_02_002 crossref_primary_10_1073_pnas_1121568109 crossref_primary_10_1073_pnas_1106906108 crossref_primary_10_1074_jbc_M112_351395 crossref_primary_10_1016_j_molcel_2014_06_006 crossref_primary_10_3389_fnmol_2018_00046 crossref_primary_10_1002_bies_202000231 crossref_primary_10_1152_ajpcell_00022_2019 crossref_primary_10_1016_j_jbc_2024_108137 crossref_primary_10_1073_pnas_2119078119 crossref_primary_10_1371_journal_pone_0000553 crossref_primary_10_1242_dev_074765 crossref_primary_10_1093_nar_gkv514 crossref_primary_10_1126_science_1141319 crossref_primary_10_1146_annurev_cellbio_042308_113256 crossref_primary_10_18632_oncotarget_7640 crossref_primary_10_1016_j_febslet_2010_03_032 crossref_primary_10_1146_annurev_cellbio_042308_113259 crossref_primary_10_1016_j_pneurobio_2009_10_020 crossref_primary_10_1111_j_1471_4159_2009_06052_x crossref_primary_10_1038_s41392_024_01800_9 crossref_primary_10_3389_fncel_2015_00058 crossref_primary_10_3390_ncrna7040075 crossref_primary_10_1038_nature19357 crossref_primary_10_1248_yakushi_14_00241 crossref_primary_10_1038_nn_2294 crossref_primary_10_1186_s13059_016_1097_7 crossref_primary_10_1111_j_1471_4159_2008_05259_x crossref_primary_10_3389_fonc_2020_574011 crossref_primary_10_1038_s41594_018_0070_4 crossref_primary_10_1038_aps_2011_49 crossref_primary_10_1158_0008_5472_CAN_12_0614 crossref_primary_10_4161_cam_3_4_8803 crossref_primary_10_1186_s13195_024_01659_6 crossref_primary_10_2139_ssrn_3284454 crossref_primary_10_1038_stemcells_2008_51 crossref_primary_10_1016_j_neurot_2024_e00517 crossref_primary_10_1093_neuonc_noad175 crossref_primary_10_1007_BF02698059 crossref_primary_10_1080_23262133_2015_1055419 crossref_primary_10_1111_j_1365_2443_2011_01537_x crossref_primary_10_1016_j_neuroscience_2006_08_082 crossref_primary_10_1371_journal_pgen_1000979 crossref_primary_10_1093_nar_gkl1062 crossref_primary_10_1186_s13046_021_02163_7 crossref_primary_10_3390_ijms18030571 crossref_primary_10_1038_s41598_018_29480_w crossref_primary_10_1042_BCJ20170983 crossref_primary_10_1016_j_ijdevneu_2013_04_003 crossref_primary_10_1074_jbc_M112_392746 crossref_primary_10_1111_j_1528_1167_2011_03171_x crossref_primary_10_1073_pnas_1114357108 crossref_primary_10_1002_jez_b_21134 crossref_primary_10_1016_j_neuint_2009_10_014 crossref_primary_10_1002_stem_2190 crossref_primary_10_1007_s40944_023_00736_2 crossref_primary_10_3390_genes13030425 crossref_primary_10_1155_2022_5283615 crossref_primary_10_1038_srep17851 crossref_primary_10_1111_j_1471_4159_2008_05486_x crossref_primary_10_1074_jbc_M509549200 crossref_primary_10_1016_j_neulet_2015_12_003 crossref_primary_10_1093_oons_kvac011 crossref_primary_10_1261_rna_080220_124 crossref_primary_10_1371_journal_pone_0123380 crossref_primary_10_1002_dvg_22771 crossref_primary_10_4161_cc_9_22_13973 crossref_primary_10_1073_pnas_1014030108 crossref_primary_10_1186_1471_2202_9_42 crossref_primary_10_1186_s13072_019_0264_y crossref_primary_10_3390_cells11071180 crossref_primary_10_1016_j_bbadis_2010_08_006 crossref_primary_10_1111_gtc_12819 crossref_primary_10_1016_j_ab_2019_113418 crossref_primary_10_1523_JNEUROSCI_1650_14_2014 crossref_primary_10_3389_adar_2024_12094 crossref_primary_10_1002_jcp_22294 crossref_primary_10_3390_ijms22136765 crossref_primary_10_1172_JCI168982 crossref_primary_10_1016_j_expneurol_2021_113880 crossref_primary_10_1002_dvdy_21094 crossref_primary_10_1038_nrg2046 crossref_primary_10_1038_s41585_021_00490_0 crossref_primary_10_1002_pd_4942 crossref_primary_10_1016_j_devcel_2018_06_007 crossref_primary_10_1073_pnas_0914328107 crossref_primary_10_1111_j_1440_169X_2010_01175_x crossref_primary_10_1021_acschemneuro_1c00775 crossref_primary_10_1073_pnas_1222497110 crossref_primary_10_1523_JNEUROSCI_5541_09_2010 crossref_primary_10_1016_j_ymthe_2017_01_016 crossref_primary_10_1038_nn1791 crossref_primary_10_1523_JNEUROSCI_4045_13_2014 crossref_primary_10_1007_s00005_009_0019_8 crossref_primary_10_1007_s12035_020_02274_w crossref_primary_10_1016_j_ebiom_2017_01_021 crossref_primary_10_1016_j_neuron_2006_09_037 crossref_primary_10_3233_ADR_220098 crossref_primary_10_1002_jcb_22610 crossref_primary_10_1016_j_conb_2012_07_001 crossref_primary_10_1016_j_critrevonc_2007_06_004 crossref_primary_10_1016_j_biopha_2023_115257 crossref_primary_10_1091_mbc_e05_07_0687 crossref_primary_10_1111_pin_13426 crossref_primary_10_1016_j_expneurol_2020_113572 crossref_primary_10_1186_gb_2009_10_1_r9 crossref_primary_10_1038_hdy_2010_27 crossref_primary_10_7554_eLife_46703 crossref_primary_10_1002_emmm_201302848 crossref_primary_10_1016_j_ydbio_2015_07_002 crossref_primary_10_1074_jbc_M112_362467 crossref_primary_10_1007_s11434_015_0871_3 crossref_primary_10_1038_srep42795 crossref_primary_10_1186_1471_2164_12_24 crossref_primary_10_1016_j_neuint_2024_105889 crossref_primary_10_1038_nature08139 crossref_primary_10_3389_fcell_2017_00012 crossref_primary_10_18632_oncotarget_23750 crossref_primary_10_1016_j_stemcr_2014_10_015 crossref_primary_10_1002_cncr_26145 crossref_primary_10_1016_j_yexcr_2013_09_020 crossref_primary_10_1038_nn_3214 crossref_primary_10_1146_annurev_cellbio_24_110707_175411 crossref_primary_10_1371_journal_pone_0145280 crossref_primary_10_1073_pnas_1507355112 crossref_primary_10_1016_j_bbrc_2017_03_020 crossref_primary_10_1016_j_nbd_2010_02_003 crossref_primary_10_1074_jbc_M110_174540 crossref_primary_10_1242_jcs_151944 crossref_primary_10_1038_s41380_023_02313_7 crossref_primary_10_18632_oncotarget_18195 crossref_primary_10_1007_s12033_020_00283_7 crossref_primary_10_1016_j_neuroscience_2012_11_040 crossref_primary_10_1073_pnas_1113486108 crossref_primary_10_3389_fonc_2020_576362 crossref_primary_10_1007_s12035_024_04598_3 crossref_primary_10_3389_fonc_2022_855167 crossref_primary_10_1002_jnr_23007 crossref_primary_10_1007_s00018_012_0946_0 crossref_primary_10_1016_j_lfs_2024_122649 crossref_primary_10_1128_MCB_05088_11 crossref_primary_10_1016_j_conb_2005_08_015 crossref_primary_10_1016_j_pneurobio_2008_10_002 crossref_primary_10_1038_nn_2671 crossref_primary_10_1042_BJ20100158 crossref_primary_10_1016_j_ijpharm_2015_11_020 crossref_primary_10_1016_j_bbrc_2010_03_115 crossref_primary_10_3389_fcell_2024_1413248 crossref_primary_10_1016_j_cell_2005_05_003 crossref_primary_10_1074_jbc_RA118_004722 crossref_primary_10_15252_embr_201846960 crossref_primary_10_3390_biom13101477 crossref_primary_10_1016_j_cell_2006_12_038 crossref_primary_10_1186_s12915_022_01385_1 crossref_primary_10_1126_scisignal_aan8680 crossref_primary_10_1095_biolreprod_108_074690 crossref_primary_10_1016_j_molcel_2007_05_018 crossref_primary_10_1038_s41380_024_02595_5 crossref_primary_10_1016_j_mcn_2021_103683 crossref_primary_10_1093_hmg_ddac253 crossref_primary_10_1016_j_neuropharm_2019_107741 crossref_primary_10_1111_j_1742_4658_2011_08269_x crossref_primary_10_3390_cancers13040692 crossref_primary_10_3390_medicina59030537 crossref_primary_10_1186_s13045_022_01337_w crossref_primary_10_1242_dev_072272 crossref_primary_10_1074_jbc_M605370200 crossref_primary_10_1016_j_neuron_2017_11_028 crossref_primary_10_1098_rstb_2006_2010 crossref_primary_10_3390_cells9112451 crossref_primary_10_1155_2014_208751 crossref_primary_10_1007_s00441_014_1899_4 crossref_primary_10_1002_glia_23818 crossref_primary_10_1074_jbc_M700149200 crossref_primary_10_1242_dev_028548 crossref_primary_10_1016_j_pneurobio_2014_11_001 crossref_primary_10_1111_j_1582_4934_2008_00571_x crossref_primary_10_1074_jbc_M110_210740 crossref_primary_10_1016_S1672_0229_08_60003_0 crossref_primary_10_1089_dna_2011_1557 crossref_primary_10_1111_j_1471_4159_2008_05303_x crossref_primary_10_1089_ars_2011_4375 crossref_primary_10_1038_s41380_023_02160_6 crossref_primary_10_1016_j_diff_2008_09_001 crossref_primary_10_1142_S2339547816400070 crossref_primary_10_1038_scibx_2008_252 crossref_primary_10_1016_j_bbagrm_2013_11_004 crossref_primary_10_4103_1673_5374_257537 crossref_primary_10_1101_gad_184416_111 crossref_primary_10_1007_s12031_014_0474_5 crossref_primary_10_1016_j_ydbio_2015_02_021 crossref_primary_10_4103_1673_5374_193227 crossref_primary_10_1146_annurev_genet_071719_023616 crossref_primary_10_1523_JNEUROSCI_1226_07_2007 crossref_primary_10_1038_ng_3440 crossref_primary_10_1016_j_conb_2009_04_006 crossref_primary_10_1634_stemcells_2006_0383 crossref_primary_10_1016_j_tins_2007_01_006 crossref_primary_10_1093_hmg_ddp047 crossref_primary_10_1007_s00018_020_03691_9 crossref_primary_10_1016_j_jmb_2005_10_008 crossref_primary_10_1371_journal_pgen_1004017 crossref_primary_10_1002_bdrc_20149 crossref_primary_10_1101_gad_1575607 crossref_primary_10_3390_jcm13195772 crossref_primary_10_1101_gr_4997306 crossref_primary_10_1111_j_1349_7006_2011_02006_x crossref_primary_10_1007_s00018_014_1576_5 crossref_primary_10_4103_1673_5374_280301 crossref_primary_10_1101_gr_114488_110 crossref_primary_10_1111_nan_12451 crossref_primary_10_1111_jnc_12457 crossref_primary_10_1074_jbc_RA118_005846 crossref_primary_10_1002_glia_22708 crossref_primary_10_1007_s00018_008_8432_4 crossref_primary_10_1016_j_cell_2005_03_033 crossref_primary_10_1186_1471_2164_13_686 crossref_primary_10_1371_journal_pone_0097684 crossref_primary_10_1261_rna_1127009 crossref_primary_10_1002_stem_1020 crossref_primary_10_2353_ajpath_2007_070520 crossref_primary_10_1128_MCB_00287_08 crossref_primary_10_1016_j_ijdevneu_2016_12_006 crossref_primary_10_1016_j_bbrc_2007_06_116 crossref_primary_10_1073_pnas_1812518115 crossref_primary_10_1016_j_molcel_2007_06_039 crossref_primary_10_1038_nrclinonc_2016_181 crossref_primary_10_1016_j_ydbio_2010_01_029 crossref_primary_10_1016_j_cell_2017_12_014 crossref_primary_10_1007_s10565_022_09761_x crossref_primary_10_1038_nrn3482 crossref_primary_10_1093_hmg_ddr416 crossref_primary_10_1038_nrn3009 crossref_primary_10_1093_noajnl_vdae162 crossref_primary_10_1186_s40035_024_00450_9 crossref_primary_10_1111_febs_70024 crossref_primary_10_1111_j_1582_4934_2006_tb00526_x crossref_primary_10_7554_eLife_04235 crossref_primary_10_1016_j_neubiorev_2023_105113 crossref_primary_10_1101_gad_350269_122 crossref_primary_10_1016_j_ncrna_2017_04_002 crossref_primary_10_1016_j_psyneuen_2009_05_012 crossref_primary_10_1073_pnas_0811648106 crossref_primary_10_1242_jcs_03099 crossref_primary_10_2217_epi_2016_0009 crossref_primary_10_3390_cells11111725 crossref_primary_10_1007_s00441_014_1963_0 crossref_primary_10_1038_cdd_2014_226 crossref_primary_10_1016_j_ydbio_2005_10_044 crossref_primary_10_1016_j_neuroscience_2011_02_059 crossref_primary_10_1038_s41598_017_10245_w crossref_primary_10_1371_journal_pone_0038486 crossref_primary_10_1073_pnas_1109023108 crossref_primary_10_1038_s41585_020_0298_8 crossref_primary_10_1371_journal_pone_0040315 crossref_primary_10_1073_pnas_0611704104 crossref_primary_10_1016_j_ydbio_2006_11_012 crossref_primary_10_33590_emjdiabet_10313731 crossref_primary_10_1016_j_cell_2009_01_038 crossref_primary_10_1016_j_ceca_2020_102194 crossref_primary_10_1371_journal_pone_0007665 crossref_primary_10_1016_j_semcancer_2023_01_004 crossref_primary_10_26508_lsa_202000841 crossref_primary_10_4161_psb_2_3_3726 crossref_primary_10_1016_j_bbagrm_2008_07_006 crossref_primary_10_1073_pnas_1809609115 crossref_primary_10_1371_journal_pone_0011803 crossref_primary_10_1016_j_cell_2018_06_004 crossref_primary_10_1016_j_molcel_2008_06_015 crossref_primary_10_1523_JNEUROSCI_2768_10_2011 crossref_primary_10_1007_s11515_017_1465_z crossref_primary_10_1101_lm_049239_118 crossref_primary_10_1186_s13072_017_0150_4 crossref_primary_10_1111_j_1742_4658_2010_07954_x crossref_primary_10_1016_j_bbr_2009_11_008 crossref_primary_10_1080_15384101_2016_1222339 crossref_primary_10_15252_embr_202051524 crossref_primary_10_1007_s00441_012_1367_y crossref_primary_10_1124_pharmrev_122_000710 crossref_primary_10_1016_j_devcel_2013_04_005 crossref_primary_10_1038_oncsis_2017_60 crossref_primary_10_1002_wdev_271 crossref_primary_10_2217_epi_10_12 crossref_primary_10_1111_jnc_15755 crossref_primary_10_1002_bip_22643 crossref_primary_10_1007_s12272_010_1001_z crossref_primary_10_1371_journal_pone_0095374 crossref_primary_10_1002_jor_21151 crossref_primary_10_1002_stem_2001 crossref_primary_10_1002_dvdy_86 crossref_primary_10_1073_pnas_1504232112 crossref_primary_10_1002_bies_20330 crossref_primary_10_3389_fncel_2023_1267609 crossref_primary_10_1038_s41573_019_0044_1 crossref_primary_10_3390_ijms25084171 crossref_primary_10_1155_2018_6087143 crossref_primary_10_1111_jnc_12372 crossref_primary_10_1126_sciadv_adj4452 crossref_primary_10_1155_2012_141624 crossref_primary_10_1016_j_molmed_2024_07_004 crossref_primary_10_1097_YCO_0000000000000238 crossref_primary_10_1083_jcb_200908048 crossref_primary_10_1016_j_neuint_2019_04_003 crossref_primary_10_1371_journal_pgen_1000936 |
Cites_doi | 10.1126/science.1090842 10.1073/pnas.97.22.12318 10.1083/jcb.200211117 10.1016/S0092-8674(02)00835-8 10.1016/0092-8674(95)90298-8 10.1006/dbio.1995.1085 10.1073/pnas.0407643101 10.1007/s00018-004-4133-9 10.1073/pnas.112008599 10.1126/science.1076469 10.1074/jbc.M205691200 10.1126/science.1086446 10.1038/2431 10.1016/S1097-2765(03)00276-4 10.1016/S0896-6273(02)00835-8 10.1016/S0896-6273(00)80554-1 10.1016/j.cell.2004.12.012 10.1073/pnas.93.18.9881 10.1101/gad.947102 10.1101/gad.908801 10.1007/BF02740674 10.1093/nar/22.15.2990 10.1101/gad.11.19.2494 10.1038/85899 10.1038/35102174 10.1038/ncb1076 10.1016/S0955-0674(03)00013-9 10.1073/pnas.0401827101 10.1074/jbc.275.13.9461 10.1038/ng1491 10.1016/S0092-8674(02)00798-5 10.1016/S0092-8674(00)80561-9 10.1242/dev.126.3.525 10.1038/nature01550 10.1073/pnas.94.16.8842 10.1016/S0387-7604(01)00333-3 10.1073/pnas.96.17.9873 10.1016/S0896-6273(01)00371-3 10.1016/j.molcel.2004.05.026 10.1126/science.7871435 10.1073/pnas.242566899 10.1038/85906 10.1016/S0387-7604(01)00376-X 10.1016/S0092-8674(04)00248-X 10.1083/jcb.140.6.1497 10.1038/nrn786 10.1016/S0896-6273(02)00768-7 |
ContentType | Journal Article |
Copyright | 2005 Elsevier Inc. |
Copyright_xml | – notice: 2005 Elsevier Inc. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TK 8FD FR3 P64 RC3 7X8 |
DOI | 10.1016/j.cell.2005.03.013 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Neurosciences Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Engineering Research Database Technology Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Genetics Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EndPage | 657 |
ExternalDocumentID | 15907476 10_1016_j_cell_2005_03_013 S0092867405002850 |
Genre | Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S Journal Article |
GroupedDBID | --- --K -DZ -ET -~X .-4 .55 .GJ 0R~ 0WA 1RT 1~5 29B 2FS 2WC 3EH 3O- 4.4 457 4G. 53G 5GY 5RE 62- 6I. 6J9 6TJ 7-5 85S 9M8 AACTN AAEDT AAEDW AAFTH AAFWJ AAHBH AAIKJ AAKRW AAKUH AALRI AAMRU AAVLU AAXUO AAYJJ ABCQX ABJNI ABMAC ABOCM ABTAH ACGFO ACGFS ACNCT ADBBV ADEZE ADVLN AEFWE AENEX AETEA AEXQZ AFTJW AGHFR AGHSJ AGKMS AHHHB AI. AIDAL AITUG AKAPO AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL CS3 DIK DU5 E3Z EBS EJD F5P FCP FDB FIRID HH5 HZ~ IH2 IHE IXB J1W JIG K-O KOO KQ8 L7B LX5 M3Z M41 MVM N9A O-L O9- OK1 OZT P2P RIG RNS ROL RPZ SCP SDG SDP SES SSZ TAE TN5 TR2 TWZ UKR UPT VH1 WH7 X7M YYQ YZZ ZCA ZGI ZHY ZY4 .HR 1CY 1VV 2KS 5VS AAQFI AAQXK AAYWO AAYXX ABDGV ABDPE ABEFU ABWVN ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEUPX AFPUW AGCQF AGQPQ AIGII AKBMS AKYEP APXCP CITATION FEDTE FGOYB G-2 HVGLF H~9 OHT OMK PUQ R2- UBW UHB YYP ZKB 0SF ABVKL CGR CUY CVF ECM EIF NCXOZ NPM PKN RCE VQA 7TK 8FD FR3 P64 RC3 7X8 EFKBS |
ID | FETCH-LOGICAL-c495t-e4a47ce8c8a2d5cb0d3d311b870d58bcb67fdd2ceb93b9005ee4d433525b3fb43 |
IEDL.DBID | IXB |
ISSN | 0092-8674 |
IngestDate | Mon Jul 21 11:07:24 EDT 2025 Thu Jul 10 21:57:45 EDT 2025 Wed Feb 19 02:41:37 EST 2025 Tue Jul 01 03:51:46 EDT 2025 Thu Apr 24 23:11:12 EDT 2025 Sun Apr 06 06:53:06 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | http://www.elsevier.com/open-access/userlicense/1.0 https://www.elsevier.com/tdm/userlicense/1.0 https://www.elsevier.com/open-access/userlicense/1.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c495t-e4a47ce8c8a2d5cb0d3d311b870d58bcb67fdd2ceb93b9005ee4d433525b3fb43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0092867405002850 |
PMID | 15907476 |
PQID | 17467186 |
PQPubID | 23462 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_67846336 proquest_miscellaneous_17467186 pubmed_primary_15907476 crossref_primary_10_1016_j_cell_2005_03_013 crossref_citationtrail_10_1016_j_cell_2005_03_013 elsevier_sciencedirect_doi_10_1016_j_cell_2005_03_013 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2005-05-20 |
PublicationDateYYYYMMDD | 2005-05-20 |
PublicationDate_xml | – month: 05 year: 2005 text: 2005-05-20 day: 20 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cell |
PublicationTitleAlternate | Cell |
PublicationYear | 2005 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Schneider, Bannister, Myers, Thorne, Crane-Robinson, Kouzarides (bib35) 2004; 6 Weston, Blumberg, Underhill (bib47) 2003; 161 Wichterle, Lieberam, Porter, Jessell (bib48) 2002; 110 Kuwabara, Hsieh, Nakashima, Taira, Gage (bib27) 2004; 116 Anderson, Jan (bib1) 1997 Sucov, Evans (bib43) 1995; 10 Shahbazian, Young, Yuva-Paylor, Spencer, Antalffy, Noebels, Armstrong, Paylor, Zoghbi (bib38) 2002; 35 Battaglioli, Andres, Rose, Chenoweth, Rosenfeld, Anderson, Mandel (bib8) 2002; 277 Munoz-Sanjuan, Brivanlou (bib30) 2002; 3 Schoenherr, Anderson (bib36) 1995; 267 Slack, El-Bizri, Wong, Belliveau, Miller (bib41) 1998; 140 Horike, Cai, Miyano, Cheng, Kohwi-Shigematsu (bib23) 2005; 37 Bain, Kitchens, Yao, Huettner, Gottlieb (bib5) 1995; 168 Chen, Akbarian, Tudor, Jaenisch (bib14) 2001; 27 Shi, Sawada, Sui, Affar el, Whetstine, Lan, Ogawa, Luke, Nakatani (bib39) 2003; 422 Bruce, Donaldson, Wood, Yerbury, Sadowski, Chapman, Gottgens, Buckley (bib10) 2004; 101 Casarosa, Fode, Guillemot (bib12) 1999; 126 Temple (bib44) 2001; 414 Andres, Burger, Peral-Rubio, Battaglioli, Anderson, Grimes, Dallman, Ballas, Mandel (bib2) 1999; 96 Chen, Paquette, Anderson (bib13) 1998; 20 Hoyt, Coffino (bib24) 2004; 61 Chong, Tapia-Ramirez, Kim, Toledo-Aral, Zheng, Boutros, Altshuller, Frohman, Kraner, Mandel (bib16) 1995; 80 Schoenherr, Paquette, Anderson (bib37) 1996; 93 Edlund, Jessell (bib18) 1999; 96 Grimes, Nielsen, Battaglioli, Miska, Speh, Berry, Atouf, Holdener, Mandel, Kouzarides (bib20) 2000; 275 Koide, Downes, Chandraratna, Blumberg, Umesono (bib26) 2001; 15 Stancheva, Collins, Van den Veyver, Zoghbi, Meehan (bib42) 2003; 12 Ashe, Monks, Wijgerde, Fraser, Proudfoot (bib4) 1997; 11 Fischle, Wang, Allis (bib19) 2003; 15 Hsieh, Nakashima, Kuwabara, Mejia, Gage (bib25) 2004; 101 Sasai (bib34) 1998; 21 Martinowich, Hattori, Wu, Fouse, He, Hu, Fan, Sun (bib29) 2003; 302 Bannister, Schneider, Kouzarides (bib7) 2002; 109 Shi, Lan, Matson, Mulligan, Whetstine, Cole, Casero (bib40) 2004; 119 Ballas, Battaglioli, Atouf, Andres, Chenoweth, Anderson, Burger, Moniwa, Davie, Bowers (bib6) 2001; 31 Clark, Harrison, Paul, Frommer (bib17) 1994; 22 Guy, Hendrich, Holmes, Martin, Bird (bib21) 2001; 27 Lunyak, Burgess, Prefontaine, Nelson, Sze, Chenoweth, Schwartz, Pevzner, Glass, Mandel, Rosenfeld (bib28) 2002; 298 Tudor, Akbarian, Chen, Jaenisch (bib45) 2002; 99 Arnold, Heintz (bib3) 1997; 94 Nan, Bird (bib31) 2001; 23 Capela, Temple (bib11) 2002; 35 Chen, Chang, Lin, Meissner, West, Griffith, Jaenisch, Greenberg (bib15) 2003; 302 Van den Veyver, Zoghbi (bib46) 2001; 23 Roopra, Qazi, Schoenike, Daley, Morrison (bib33) 2004; 14 Paquette, Perez, Anderson (bib32) 2000; 97 Hakimi, Bochar, Chenoweth, Lane, Mandel, Shiekhattar (bib22) 2002; 99 Bird (bib9) 2002; 16 Bird (10.1016/j.cell.2005.03.013_bib9) 2002; 16 Lunyak (10.1016/j.cell.2005.03.013_bib28) 2002; 298 Paquette (10.1016/j.cell.2005.03.013_bib32) 2000; 97 Chong (10.1016/j.cell.2005.03.013_bib16) 1995; 80 Hsieh (10.1016/j.cell.2005.03.013_bib25) 2004; 101 Tudor (10.1016/j.cell.2005.03.013_bib45) 2002; 99 Andres (10.1016/j.cell.2005.03.013_bib2) 1999; 96 Sasai (10.1016/j.cell.2005.03.013_bib34) 1998; 21 Guy (10.1016/j.cell.2005.03.013_bib21) 2001; 27 Kuwabara (10.1016/j.cell.2005.03.013_bib27) 2004; 116 Schneider (10.1016/j.cell.2005.03.013_bib35) 2004; 6 Schoenherr (10.1016/j.cell.2005.03.013_bib36) 1995; 267 Bannister (10.1016/j.cell.2005.03.013_bib7) 2002; 109 Koide (10.1016/j.cell.2005.03.013_bib26) 2001; 15 Ashe (10.1016/j.cell.2005.03.013_bib4) 1997; 11 Edlund (10.1016/j.cell.2005.03.013_bib18) 1999; 96 Battaglioli (10.1016/j.cell.2005.03.013_bib8) 2002; 277 Chen (10.1016/j.cell.2005.03.013_bib15) 2003; 302 Hakimi (10.1016/j.cell.2005.03.013_bib22) 2002; 99 Nan (10.1016/j.cell.2005.03.013_bib31) 2001; 23 Martinowich (10.1016/j.cell.2005.03.013_bib29) 2003; 302 Temple (10.1016/j.cell.2005.03.013_bib44) 2001; 414 Schoenherr (10.1016/j.cell.2005.03.013_bib37) 1996; 93 Casarosa (10.1016/j.cell.2005.03.013_bib12) 1999; 126 Grimes (10.1016/j.cell.2005.03.013_bib20) 2000; 275 Roopra (10.1016/j.cell.2005.03.013_bib33) 2004; 14 Van den Veyver (10.1016/j.cell.2005.03.013_bib46) 2001; 23 Hoyt (10.1016/j.cell.2005.03.013_bib24) 2004; 61 Capela (10.1016/j.cell.2005.03.013_bib11) 2002; 35 Shi (10.1016/j.cell.2005.03.013_bib40) 2004; 119 Chen (10.1016/j.cell.2005.03.013_bib13) 1998; 20 Stancheva (10.1016/j.cell.2005.03.013_bib42) 2003; 12 Slack (10.1016/j.cell.2005.03.013_bib41) 1998; 140 Weston (10.1016/j.cell.2005.03.013_bib47) 2003; 161 Sucov (10.1016/j.cell.2005.03.013_bib43) 1995; 10 Ballas (10.1016/j.cell.2005.03.013_bib6) 2001; 31 Bruce (10.1016/j.cell.2005.03.013_bib10) 2004; 101 Anderson (10.1016/j.cell.2005.03.013_bib1) 1997 Munoz-Sanjuan (10.1016/j.cell.2005.03.013_bib30) 2002; 3 Fischle (10.1016/j.cell.2005.03.013_bib19) 2003; 15 Wichterle (10.1016/j.cell.2005.03.013_bib48) 2002; 110 Arnold (10.1016/j.cell.2005.03.013_bib3) 1997; 94 Chen (10.1016/j.cell.2005.03.013_bib14) 2001; 27 Bain (10.1016/j.cell.2005.03.013_bib5) 1995; 168 Clark (10.1016/j.cell.2005.03.013_bib17) 1994; 22 Shahbazian (10.1016/j.cell.2005.03.013_bib38) 2002; 35 Horike (10.1016/j.cell.2005.03.013_bib23) 2005; 37 Shi (10.1016/j.cell.2005.03.013_bib39) 2003; 422 15907461 - Cell. 2005 May 20;121(4):499-501 |
References_xml | – volume: 23 start-page: S147 year: 2001 end-page: S151 ident: bib46 article-title: Mutations in the gene encoding methyl-CpG-binding protein 2 cause Rett syndrome publication-title: Brain Dev. Suppl. – volume: 15 start-page: 2111 year: 2001 end-page: 2121 ident: bib26 article-title: Active repression of RAR signaling is required for head formation publication-title: Genes Dev. – volume: 298 start-page: 1747 year: 2002 end-page: 1752 ident: bib28 article-title: Corepressor-dependent silencing of chromosomal regions encoding neuronal genes publication-title: Science – volume: 35 start-page: 243 year: 2002 end-page: 254 ident: bib38 article-title: Mice with truncated MeCP2 recapitulate many Rett syndrome features and display hyperacetylation of histone H3 publication-title: Neuron – volume: 302 start-page: 885 year: 2003 end-page: 889 ident: bib15 article-title: Derepression of BDNF transcription involves calcium-dependent phosphorylation of MeCP2 publication-title: Science – volume: 161 start-page: 223 year: 2003 end-page: 228 ident: bib47 article-title: Active repression by unliganded retinoid receptors in development: less is sometimes more publication-title: J. Cell Biol. – volume: 35 start-page: 865 year: 2002 end-page: 875 ident: bib11 article-title: LeX/ssea-1 is expressed by adult mouse CNS stem cells, identifying them as nonependymal publication-title: Neuron – volume: 109 start-page: 801 year: 2002 end-page: 806 ident: bib7 article-title: Histone methylation: dynamic or static? publication-title: Cell – volume: 99 start-page: 15536 year: 2002 end-page: 15541 ident: bib45 article-title: Transcriptional profiling of a mouse model for Rett syndrome reveals subtle transcriptional changes in the brain publication-title: Proc. Natl. Acad. Sci. USA – volume: 20 start-page: 136 year: 1998 end-page: 142 ident: bib13 article-title: NRSF/REST is required in vivo for repression of multiple neuronal target genes during embryogenesis publication-title: Nat. Genet. – volume: 37 start-page: 31 year: 2005 end-page: 40 ident: bib23 article-title: Loss of silent-chromatin looping and impaired imprinting of DLX5 in Rett syndrome publication-title: Nat. Genet. – volume: 302 start-page: 890 year: 2003 end-page: 893 ident: bib29 article-title: DNA methylation-related chromatin remodeling in activity-dependent BDNF gene regulation publication-title: Science – volume: 15 start-page: 172 year: 2003 end-page: 183 ident: bib19 article-title: Histone and chromatin cross-talk publication-title: Curr. Opin. Cell Biol. – volume: 99 start-page: 7420 year: 2002 end-page: 7425 ident: bib22 article-title: A core-BRAF35 complex containing histone deacetylase mediates repression of neuronal-specific genes publication-title: Proc. Natl. Acad. Sci. USA – volume: 94 start-page: 8842 year: 1997 end-page: 8847 ident: bib3 article-title: A calcium responsive element that regulates expression of two calcium binding proteins in Purkinje cells publication-title: Proc. Natl. Acad. Sci. USA – volume: 61 start-page: 1596 year: 2004 end-page: 1600 ident: bib24 article-title: Ubiquitin-free routes into the proteasome publication-title: Cell. Mol. Life Sci. – volume: 80 start-page: 949 year: 1995 end-page: 957 ident: bib16 article-title: REST: a mammalian silencer protein that restricts sodium channel gene expression to neurons publication-title: Cell – volume: 168 start-page: 342 year: 1995 end-page: 357 ident: bib5 article-title: Embryonic stem cells express neuronal properties in vitro publication-title: Dev. Biol. – volume: 11 start-page: 2494 year: 1997 end-page: 2509 ident: bib4 article-title: Intergenic transcription and transinduction of the human beta-globin locus publication-title: Genes Dev. – volume: 101 start-page: 10458 year: 2004 end-page: 10463 ident: bib10 article-title: Genome-wide analysis of repressor element 1 silencing transcription factor/neuron-restrictive silencing factor (REST/NRSF) target genes publication-title: Proc. Natl. Acad. Sci. USA – volume: 96 start-page: 9873 year: 1999 end-page: 9878 ident: bib2 article-title: CoREST: a functional corepressor required for regulation of neural-specific gene expression publication-title: Proc. Natl. Acad. Sci. USA – volume: 16 start-page: 6 year: 2002 end-page: 21 ident: bib9 article-title: DNA methylation patterns and epigenetic memory publication-title: Genes Dev. – volume: 126 start-page: 525 year: 1999 end-page: 534 ident: bib12 article-title: Mash1 regulates neurogenesis in the ventral telencephalon publication-title: Development – volume: 27 start-page: 327 year: 2001 end-page: 331 ident: bib14 article-title: Deficiency of methyl-CpG binding protein-2 in CNS neurons results in a Rett-like phenotype in mice publication-title: Nat. Genet. – volume: 119 start-page: 941 year: 2004 end-page: 953 ident: bib40 article-title: Histone demethylation mediated by the nuclear amine oxidase homolog LSD1 publication-title: Cell – volume: 101 start-page: 16659 year: 2004 end-page: 16664 ident: bib25 article-title: Histone deacetylase inhibition-mediated neuronal differentiation of multipotent adult neural progenitor cells publication-title: Proc. Natl. Acad. Sci. USA – volume: 12 start-page: 425 year: 2003 end-page: 435 ident: bib42 article-title: A mutant form of MeCP2 protein associated with human Rett syndrome cannot be displaced from methylated DNA by notch in Xenopus embryos publication-title: Mol. Cell – volume: 277 start-page: 41038 year: 2002 end-page: 41045 ident: bib8 article-title: REST repression of neuronal genes requires components of the hSWI.SNF complex publication-title: J. Biol. Chem. – volume: 275 start-page: 9461 year: 2000 end-page: 9467 ident: bib20 article-title: The corepressor mSin3A is a functional component of the REST-CoREST repressor complex publication-title: J. Biol. Chem. – volume: 23 start-page: S32 year: 2001 end-page: S37 ident: bib31 article-title: The biological functions of the methyl-CpG-binding protein MeCP2 and its implication in Rett syndrome publication-title: Brain Dev. Suppl. – volume: 140 start-page: 1497 year: 1998 end-page: 1509 ident: bib41 article-title: A critical temporal requirement for the retinoblastoma protein family during neuronal determination publication-title: J. Cell Biol. – volume: 10 start-page: 169 year: 1995 end-page: 184 ident: bib43 article-title: Retinoic acid and retinoic acid receptors in development publication-title: Mol. Neurobiol. – volume: 31 start-page: 353 year: 2001 end-page: 365 ident: bib6 article-title: Regulation of neuronal traits by a novel transcriptional complex publication-title: Neuron – volume: 14 start-page: 727 year: 2004 end-page: 738 ident: bib33 article-title: Localized domains of g9a-mediated histone methylation are required for silencing of neuronal genes publication-title: Mol. Cell – volume: 422 start-page: 735 year: 2003 end-page: 738 ident: bib39 article-title: Coordinated histone modifications mediated by a CtBP co-repressor complex publication-title: Nature – volume: 6 start-page: 73 year: 2004 end-page: 77 ident: bib35 article-title: Histone H3 lysine 4 methylation patterns in higher eukaryotic genes publication-title: Nat. Cell Biol. – volume: 93 start-page: 9881 year: 1996 end-page: 9886 ident: bib37 article-title: Identification of potential target genes for the neuron-restrictive silencer factor publication-title: Proc. Natl. Acad. Sci. USA – start-page: 26 year: 1997 end-page: 63 ident: bib1 article-title: The determination of the neuronal phenotype publication-title: Molecular and Cellular Approaches to Neuronal Development – volume: 97 start-page: 12318 year: 2000 end-page: 12323 ident: bib32 article-title: Constitutive expression of the neuron-restrictive silencer factor (NRSF)/REST in differentiating neurons disrupts neuronal gene expression and causes axon pathfinding errors in vivo publication-title: Proc. Natl. Acad. Sci. USA – volume: 22 start-page: 2990 year: 1994 end-page: 2997 ident: bib17 article-title: High sensitivity mapping of methylated cytosines publication-title: Nucleic Acids Res. – volume: 110 start-page: 385 year: 2002 end-page: 397 ident: bib48 article-title: Directed differentiation of embryonic stem cells into motor neurons publication-title: Cell – volume: 3 start-page: 271 year: 2002 end-page: 280 ident: bib30 article-title: Neural induction, the default model and embryonic stem cells publication-title: Nat. Rev. Neurosci. – volume: 414 start-page: 112 year: 2001 end-page: 117 ident: bib44 article-title: The development of neural stem cells publication-title: Nature – volume: 96 start-page: 211 year: 1999 end-page: 224 ident: bib18 article-title: Progression from extrinsic to intrinsic signaling in cell fate specification: a view from the nervous system publication-title: Cell – volume: 116 start-page: 779 year: 2004 end-page: 793 ident: bib27 article-title: A small modulatory dsRNA specifies the fate of adult neural stem cells publication-title: Cell – volume: 27 start-page: 322 year: 2001 end-page: 326 ident: bib21 article-title: A mouse Mecp2-null mutation causes neurological symptoms that mimic Rett syndrome publication-title: Nat. Genet. – volume: 267 start-page: 1360 year: 1995 end-page: 1363 ident: bib36 article-title: The neuron-restrictive silencer factor (NRSF): a coordinate repressor of multiple neuron-specific genes publication-title: Science – volume: 21 start-page: 455 year: 1998 end-page: 458 ident: bib34 article-title: Identifying the missing links: genes that connect neural induction and primary neurogenesis in vertebrate embryos publication-title: Neuron – volume: 302 start-page: 890 year: 2003 ident: 10.1016/j.cell.2005.03.013_bib29 article-title: DNA methylation-related chromatin remodeling in activity-dependent BDNF gene regulation publication-title: Science doi: 10.1126/science.1090842 – volume: 97 start-page: 12318 year: 2000 ident: 10.1016/j.cell.2005.03.013_bib32 article-title: Constitutive expression of the neuron-restrictive silencer factor (NRSF)/REST in differentiating neurons disrupts neuronal gene expression and causes axon pathfinding errors in vivo publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.97.22.12318 – volume: 161 start-page: 223 year: 2003 ident: 10.1016/j.cell.2005.03.013_bib47 article-title: Active repression by unliganded retinoid receptors in development: less is sometimes more publication-title: J. Cell Biol. doi: 10.1083/jcb.200211117 – volume: 110 start-page: 385 year: 2002 ident: 10.1016/j.cell.2005.03.013_bib48 article-title: Directed differentiation of embryonic stem cells into motor neurons publication-title: Cell doi: 10.1016/S0092-8674(02)00835-8 – volume: 80 start-page: 949 year: 1995 ident: 10.1016/j.cell.2005.03.013_bib16 article-title: REST: a mammalian silencer protein that restricts sodium channel gene expression to neurons publication-title: Cell doi: 10.1016/0092-8674(95)90298-8 – volume: 168 start-page: 342 year: 1995 ident: 10.1016/j.cell.2005.03.013_bib5 article-title: Embryonic stem cells express neuronal properties in vitro publication-title: Dev. Biol. doi: 10.1006/dbio.1995.1085 – volume: 101 start-page: 16659 year: 2004 ident: 10.1016/j.cell.2005.03.013_bib25 article-title: Histone deacetylase inhibition-mediated neuronal differentiation of multipotent adult neural progenitor cells publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0407643101 – volume: 61 start-page: 1596 year: 2004 ident: 10.1016/j.cell.2005.03.013_bib24 article-title: Ubiquitin-free routes into the proteasome publication-title: Cell. Mol. Life Sci. doi: 10.1007/s00018-004-4133-9 – volume: 99 start-page: 7420 year: 2002 ident: 10.1016/j.cell.2005.03.013_bib22 article-title: A core-BRAF35 complex containing histone deacetylase mediates repression of neuronal-specific genes publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.112008599 – volume: 298 start-page: 1747 year: 2002 ident: 10.1016/j.cell.2005.03.013_bib28 article-title: Corepressor-dependent silencing of chromosomal regions encoding neuronal genes publication-title: Science doi: 10.1126/science.1076469 – volume: 277 start-page: 41038 year: 2002 ident: 10.1016/j.cell.2005.03.013_bib8 article-title: REST repression of neuronal genes requires components of the hSWI.SNF complex publication-title: J. Biol. Chem. doi: 10.1074/jbc.M205691200 – volume: 302 start-page: 885 year: 2003 ident: 10.1016/j.cell.2005.03.013_bib15 article-title: Derepression of BDNF transcription involves calcium-dependent phosphorylation of MeCP2 publication-title: Science doi: 10.1126/science.1086446 – volume: 20 start-page: 136 year: 1998 ident: 10.1016/j.cell.2005.03.013_bib13 article-title: NRSF/REST is required in vivo for repression of multiple neuronal target genes during embryogenesis publication-title: Nat. Genet. doi: 10.1038/2431 – volume: 12 start-page: 425 year: 2003 ident: 10.1016/j.cell.2005.03.013_bib42 article-title: A mutant form of MeCP2 protein associated with human Rett syndrome cannot be displaced from methylated DNA by notch in Xenopus embryos publication-title: Mol. Cell doi: 10.1016/S1097-2765(03)00276-4 – volume: 35 start-page: 865 year: 2002 ident: 10.1016/j.cell.2005.03.013_bib11 article-title: LeX/ssea-1 is expressed by adult mouse CNS stem cells, identifying them as nonependymal publication-title: Neuron doi: 10.1016/S0896-6273(02)00835-8 – volume: 21 start-page: 455 year: 1998 ident: 10.1016/j.cell.2005.03.013_bib34 article-title: Identifying the missing links: genes that connect neural induction and primary neurogenesis in vertebrate embryos publication-title: Neuron doi: 10.1016/S0896-6273(00)80554-1 – volume: 119 start-page: 941 year: 2004 ident: 10.1016/j.cell.2005.03.013_bib40 article-title: Histone demethylation mediated by the nuclear amine oxidase homolog LSD1 publication-title: Cell doi: 10.1016/j.cell.2004.12.012 – volume: 93 start-page: 9881 year: 1996 ident: 10.1016/j.cell.2005.03.013_bib37 article-title: Identification of potential target genes for the neuron-restrictive silencer factor publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.93.18.9881 – volume: 16 start-page: 6 year: 2002 ident: 10.1016/j.cell.2005.03.013_bib9 article-title: DNA methylation patterns and epigenetic memory publication-title: Genes Dev. doi: 10.1101/gad.947102 – volume: 15 start-page: 2111 year: 2001 ident: 10.1016/j.cell.2005.03.013_bib26 article-title: Active repression of RAR signaling is required for head formation publication-title: Genes Dev. doi: 10.1101/gad.908801 – volume: 10 start-page: 169 year: 1995 ident: 10.1016/j.cell.2005.03.013_bib43 article-title: Retinoic acid and retinoic acid receptors in development publication-title: Mol. Neurobiol. doi: 10.1007/BF02740674 – volume: 22 start-page: 2990 year: 1994 ident: 10.1016/j.cell.2005.03.013_bib17 article-title: High sensitivity mapping of methylated cytosines publication-title: Nucleic Acids Res. doi: 10.1093/nar/22.15.2990 – volume: 11 start-page: 2494 year: 1997 ident: 10.1016/j.cell.2005.03.013_bib4 article-title: Intergenic transcription and transinduction of the human beta-globin locus publication-title: Genes Dev. doi: 10.1101/gad.11.19.2494 – volume: 27 start-page: 322 year: 2001 ident: 10.1016/j.cell.2005.03.013_bib21 article-title: A mouse Mecp2-null mutation causes neurological symptoms that mimic Rett syndrome publication-title: Nat. Genet. doi: 10.1038/85899 – volume: 414 start-page: 112 year: 2001 ident: 10.1016/j.cell.2005.03.013_bib44 article-title: The development of neural stem cells publication-title: Nature doi: 10.1038/35102174 – volume: 6 start-page: 73 year: 2004 ident: 10.1016/j.cell.2005.03.013_bib35 article-title: Histone H3 lysine 4 methylation patterns in higher eukaryotic genes publication-title: Nat. Cell Biol. doi: 10.1038/ncb1076 – volume: 15 start-page: 172 year: 2003 ident: 10.1016/j.cell.2005.03.013_bib19 article-title: Histone and chromatin cross-talk publication-title: Curr. Opin. Cell Biol. doi: 10.1016/S0955-0674(03)00013-9 – volume: 101 start-page: 10458 year: 2004 ident: 10.1016/j.cell.2005.03.013_bib10 article-title: Genome-wide analysis of repressor element 1 silencing transcription factor/neuron-restrictive silencing factor (REST/NRSF) target genes publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0401827101 – volume: 275 start-page: 9461 year: 2000 ident: 10.1016/j.cell.2005.03.013_bib20 article-title: The corepressor mSin3A is a functional component of the REST-CoREST repressor complex publication-title: J. Biol. Chem. doi: 10.1074/jbc.275.13.9461 – volume: 37 start-page: 31 year: 2005 ident: 10.1016/j.cell.2005.03.013_bib23 article-title: Loss of silent-chromatin looping and impaired imprinting of DLX5 in Rett syndrome publication-title: Nat. Genet. doi: 10.1038/ng1491 – volume: 109 start-page: 801 year: 2002 ident: 10.1016/j.cell.2005.03.013_bib7 article-title: Histone methylation: dynamic or static? publication-title: Cell doi: 10.1016/S0092-8674(02)00798-5 – volume: 96 start-page: 211 year: 1999 ident: 10.1016/j.cell.2005.03.013_bib18 article-title: Progression from extrinsic to intrinsic signaling in cell fate specification: a view from the nervous system publication-title: Cell doi: 10.1016/S0092-8674(00)80561-9 – volume: 126 start-page: 525 year: 1999 ident: 10.1016/j.cell.2005.03.013_bib12 article-title: Mash1 regulates neurogenesis in the ventral telencephalon publication-title: Development doi: 10.1242/dev.126.3.525 – volume: 422 start-page: 735 year: 2003 ident: 10.1016/j.cell.2005.03.013_bib39 article-title: Coordinated histone modifications mediated by a CtBP co-repressor complex publication-title: Nature doi: 10.1038/nature01550 – volume: 94 start-page: 8842 year: 1997 ident: 10.1016/j.cell.2005.03.013_bib3 article-title: A calcium responsive element that regulates expression of two calcium binding proteins in Purkinje cells publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.94.16.8842 – volume: 23 start-page: S32 year: 2001 ident: 10.1016/j.cell.2005.03.013_bib31 article-title: The biological functions of the methyl-CpG-binding protein MeCP2 and its implication in Rett syndrome publication-title: Brain Dev. Suppl. doi: 10.1016/S0387-7604(01)00333-3 – volume: 96 start-page: 9873 year: 1999 ident: 10.1016/j.cell.2005.03.013_bib2 article-title: CoREST: a functional corepressor required for regulation of neural-specific gene expression publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.96.17.9873 – volume: 31 start-page: 353 year: 2001 ident: 10.1016/j.cell.2005.03.013_bib6 article-title: Regulation of neuronal traits by a novel transcriptional complex publication-title: Neuron doi: 10.1016/S0896-6273(01)00371-3 – volume: 14 start-page: 727 year: 2004 ident: 10.1016/j.cell.2005.03.013_bib33 article-title: Localized domains of g9a-mediated histone methylation are required for silencing of neuronal genes publication-title: Mol. Cell doi: 10.1016/j.molcel.2004.05.026 – volume: 267 start-page: 1360 year: 1995 ident: 10.1016/j.cell.2005.03.013_bib36 article-title: The neuron-restrictive silencer factor (NRSF): a coordinate repressor of multiple neuron-specific genes publication-title: Science doi: 10.1126/science.7871435 – volume: 99 start-page: 15536 year: 2002 ident: 10.1016/j.cell.2005.03.013_bib45 article-title: Transcriptional profiling of a mouse model for Rett syndrome reveals subtle transcriptional changes in the brain publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.242566899 – volume: 27 start-page: 327 year: 2001 ident: 10.1016/j.cell.2005.03.013_bib14 article-title: Deficiency of methyl-CpG binding protein-2 in CNS neurons results in a Rett-like phenotype in mice publication-title: Nat. Genet. doi: 10.1038/85906 – volume: 23 start-page: S147 year: 2001 ident: 10.1016/j.cell.2005.03.013_bib46 article-title: Mutations in the gene encoding methyl-CpG-binding protein 2 cause Rett syndrome publication-title: Brain Dev. Suppl. doi: 10.1016/S0387-7604(01)00376-X – volume: 116 start-page: 779 year: 2004 ident: 10.1016/j.cell.2005.03.013_bib27 article-title: A small modulatory dsRNA specifies the fate of adult neural stem cells publication-title: Cell doi: 10.1016/S0092-8674(04)00248-X – volume: 140 start-page: 1497 year: 1998 ident: 10.1016/j.cell.2005.03.013_bib41 article-title: A critical temporal requirement for the retinoblastoma protein family during neuronal determination publication-title: J. Cell Biol. doi: 10.1083/jcb.140.6.1497 – start-page: 26 year: 1997 ident: 10.1016/j.cell.2005.03.013_bib1 article-title: The determination of the neuronal phenotype – volume: 3 start-page: 271 year: 2002 ident: 10.1016/j.cell.2005.03.013_bib30 article-title: Neural induction, the default model and embryonic stem cells publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn786 – volume: 35 start-page: 243 year: 2002 ident: 10.1016/j.cell.2005.03.013_bib38 article-title: Mice with truncated MeCP2 recapitulate many Rett syndrome features and display hyperacetylation of histone H3 publication-title: Neuron doi: 10.1016/S0896-6273(02)00768-7 – reference: 15907461 - Cell. 2005 May 20;121(4):499-501 |
SSID | ssj0008555 |
Score | 2.4194198 |
Snippet | Regulation of neuronal gene expression is critical to central nervous system development. Here, we show that REST regulates the transitions from pluripotent to... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 645 |
SubjectTerms | Animals Cell Differentiation - genetics Cells, Cultured Chromatin - genetics Chromatin - metabolism DNA Methylation DNA-Binding Proteins - metabolism Gene Expression Regulation, Developmental - genetics Genes, Regulator - genetics Mice Nerve Tissue Proteins - metabolism Nervous System - embryology Neuronal Plasticity - genetics Neurons - metabolism Pluripotent Stem Cells - metabolism Repressor Proteins - genetics Repressor Proteins - metabolism Transcription Factors - genetics Transcription Factors - metabolism |
Title | REST and Its Corepressors Mediate Plasticity of Neuronal Gene Chromatin throughout Neurogenesis |
URI | https://dx.doi.org/10.1016/j.cell.2005.03.013 https://www.ncbi.nlm.nih.gov/pubmed/15907476 https://www.proquest.com/docview/17467186 https://www.proquest.com/docview/67846336 |
Volume | 121 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6LIHgR32_NwZtU2yZp06MuyiqseFhhb6F5rKxIu-x2D_57Z5pU8bAehJ7aSQmTzJOZ-Qi5NMZIyUAAMzD_EdcsjUoc-skshBvapGCzsFF4-JwNXvnTWIx7pN_1wmBZZdD9Xqe32jq8uQncvJlNp9jjW6Qyy8HjwMChjdsZl20T3_juWxtLITyKQQGSD9ShccbXeGFyPORV2HWcsFXGaZXz2Rqhhy2yGbxHeus3uE16rtoh6x5P8nOXKGDniJaVpY_NgvbruS9zrecLOmwhORx9AW8ZC6mbT1pPaDuaA_-I06cpDspFB7aiAb2nXjae5A014nSxR14f7kf9QRQQFCIDgU8TOV7y3DhpZJlaYXRsmWVJokFIrZDa6CyfWJsapwumC-CDc9xybMMSmk00Z_tkraord0ioSCfWFNIWwlqe5wUwPM-cLcDfLcs4N0ck6VinTBgvjigXH6qrI3tXyG7EvRQqZgrYfUSuvtfM_HCNP6lFdyLq1xVRoP3_XHfRHZ8C2cHPZeXq5UIliLWSyGw1BZhynjEGFAf-3H_2KTCtkGfH_9zVCdlop8DCk8anZK2ZL90Z-DeNPm8v8Bd5mPhG |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQVQUXBC0tj1J84IZSktiOnWO7Au0WFvWwSHuz4sdWi1CCdrMH_j0zsQPisByQckrGkTX2zHy2ZuYj5MxaqxQDAywg_CfcsDypsOknc3DcMDaHmIWFwuPbYnjH_07FdIMM-loYTKuMvj_49M5bxzcXUZsXj_M51viWuSokIA48OOC5_ROgAYn8DaPpnxd3rIQINAYlmD6Ix8qZkOSFt-PxYoX9SjO2LjqtQ59dFLraJTsRPtLfYYZ7ZMPXX8jnQCj59JVo0OeEVrWjo3ZJB80i5Lk2iyUdd5wcnv4DuIyZ1O0TbWa0682Bf8T20xQ75SKCrWmk72lWbRD5jy5xvtwnd1eXk8EwiRQKiYWTT5t4XnFpvbKqyp2wJnXMsSwzYKVOKGNNIWfO5dabkpkS9OA9dxzrsIRhM8PZN7JZN7U_IFTkM2dL5UrhHJeyBI3LwrsSAG9VpdIekqxXnbaxvzjSXDzoPpHsXqO6kfhS6JRpUPchOX8Z8xi6a7wrLfoV0W_2iAb3_-640375NBgPfq5q36yWOkOylUwV6yUglvOCMZD4Htb9dZ4C7xVkcfTBWZ2SreFkfKNvRrfXx2S7awkLT57-IJvtYuVPAOy05me3mZ8B94j7ZQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=REST+and+Its+Corepressors+Mediate+Plasticity+of+Neuronal+Gene+Chromatin+throughout+Neurogenesis&rft.jtitle=Cell&rft.au=Ballas%2C+Nurit&rft.au=Grunseich%2C+Christopher&rft.au=Lu%2C+Diane+D.&rft.au=Speh%2C+Joan+C.&rft.date=2005-05-20&rft.pub=Elsevier+Inc&rft.issn=0092-8674&rft.volume=121&rft.issue=4&rft.spage=645&rft.epage=657&rft_id=info:doi/10.1016%2Fj.cell.2005.03.013&rft.externalDocID=S0092867405002850 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0092-8674&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0092-8674&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0092-8674&client=summon |