REST and Its Corepressors Mediate Plasticity of Neuronal Gene Chromatin throughout Neurogenesis

Regulation of neuronal gene expression is critical to central nervous system development. Here, we show that REST regulates the transitions from pluripotent to neural stem/progenitor cell and from progenitor to mature neuron. In the transition to progenitor cell, REST is degraded to levels just suff...

Full description

Saved in:
Bibliographic Details
Published inCell Vol. 121; no. 4; pp. 645 - 657
Main Authors Ballas, Nurit, Grunseich, Christopher, Lu, Diane D., Speh, Joan C., Mandel, Gail
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 20.05.2005
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Regulation of neuronal gene expression is critical to central nervous system development. Here, we show that REST regulates the transitions from pluripotent to neural stem/progenitor cell and from progenitor to mature neuron. In the transition to progenitor cell, REST is degraded to levels just sufficient to maintain neuronal gene chromatin in an inactive state that is nonetheless poised for expression. As progenitors differentiate into neurons, REST and its corepressors dissociate from the RE1 site, triggering activation of neuronal genes. In some genes, the level of expression is adjusted further in neurons by CoREST/MeCP2 repressor complexes that remain bound to a site of methylated DNA distinct from the RE1 site. Expression profiling based on this mechanism indicates that REST defines a gene set subject to plasticity in mature neurons. Thus, a multistage repressor mechanism controls the orderly expression of genes during development while still permitting fine tuning in response to specific stimuli.
AbstractList Regulation of neuronal gene expression is critical to central nervous system development. Here, we show that REST regulates the transitions from pluripotent to neural stem/progenitor cell and from progenitor to mature neuron. In the transition to progenitor cell, REST is degraded to levels just sufficient to maintain neuronal gene chromatin in an inactive state that is nonetheless poised for expression. As progenitors differentiate into neurons, REST and its co-repressors dissociate from the RE1 site, triggering activation of neuronal genes. In some genes, the level of expression is adjusted further in neurons by CoREST/MeCP2 repressor complexes that remain bound to a site of methylated DNA distinct from the RE1 site. Expression profiling based on this mechanism indicates that REST defines a gene set subject to plasticity in mature neurons. Thus, a multistage repressor mechanism controls the orderly expression of genes during development while still permitting fine tuning in response to specific stimuli.Regulation of neuronal gene expression is critical to central nervous system development. Here, we show that REST regulates the transitions from pluripotent to neural stem/progenitor cell and from progenitor to mature neuron. In the transition to progenitor cell, REST is degraded to levels just sufficient to maintain neuronal gene chromatin in an inactive state that is nonetheless poised for expression. As progenitors differentiate into neurons, REST and its co-repressors dissociate from the RE1 site, triggering activation of neuronal genes. In some genes, the level of expression is adjusted further in neurons by CoREST/MeCP2 repressor complexes that remain bound to a site of methylated DNA distinct from the RE1 site. Expression profiling based on this mechanism indicates that REST defines a gene set subject to plasticity in mature neurons. Thus, a multistage repressor mechanism controls the orderly expression of genes during development while still permitting fine tuning in response to specific stimuli.
Regulation of neuronal gene expression is critical to central nervous system development. Here, we show that REST regulates the transitions from pluripotent to neural stem/progenitor cell and from progenitor to mature neuron. In the transition to progenitor cell, REST is degraded to levels just sufficient to maintain neuronal gene chromatin in an inactive state that is nonetheless poised for expression. As progenitors differentiate into neurons, REST and its corepressors dissociate from the RE1 site, triggering activation of neuronal genes. In some genes, the level of expression is adjusted further in neurons by CoREST/MeCP2 repressor complexes that remain bound to a site of methylated DNA distinct from the RE1 site. Expression profiling based on this mechanism indicates that REST defines a gene set subject to plasticity in mature neurons. Thus, a multistage repressor mechanism controls the orderly expression of genes during development while still permitting fine tuning in response to specific stimuli.
Regulation of neuronal gene expression is critical to central nervous system development. Here, we show that REST regulates the transitions from pluripotent to neural stem/progenitor cell and from progenitor to mature neuron. In the transition to progenitor cell, REST is degraded to levels just sufficient to maintain neuronal gene chromatin in an inactive state that is nonetheless poised for expression. As progenitors differentiate into neurons, REST and its co-repressors dissociate from the RE1 site, triggering activation of neuronal genes. In some genes, the level of expression is adjusted further in neurons by CoREST/MeCP2 repressor complexes that remain bound to a site of methylated DNA distinct from the RE1 site. Expression profiling based on this mechanism indicates that REST defines a gene set subject to plasticity in mature neurons. Thus, a multistage repressor mechanism controls the orderly expression of genes during development while still permitting fine tuning in response to specific stimuli.
Author Mandel, Gail
Speh, Joan C.
Ballas, Nurit
Lu, Diane D.
Grunseich, Christopher
Author_xml – sequence: 1
  givenname: Nurit
  surname: Ballas
  fullname: Ballas, Nurit
  email: nballas@notes.cc.sunysb.edu
– sequence: 2
  givenname: Christopher
  surname: Grunseich
  fullname: Grunseich, Christopher
– sequence: 3
  givenname: Diane D.
  surname: Lu
  fullname: Lu, Diane D.
– sequence: 4
  givenname: Joan C.
  surname: Speh
  fullname: Speh, Joan C.
– sequence: 5
  givenname: Gail
  surname: Mandel
  fullname: Mandel, Gail
BackLink https://www.ncbi.nlm.nih.gov/pubmed/15907476$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1rFTEUhrOo2A_9Ay4kK3d3TCbJJANu5FJroX6gdR3ycabNZW5yTTJC_70ZbkVwUVcncJ73QJ73HJ3EFAGhV5R0lNDh7a5zMM9dT4joCOsIZSfojJCx36hB8lN0XsqOEKKEEM_RKRUjkVwOZ0h_u_x-i030-LoWvE0ZDhlKSbngT-CDqYC_zqbU4EJ9wGnCn2HJKZoZX0EEvL3PaW9qiLi213J3n5Z6RO7auoTyAj2bzFzg5eO8QD8-XN5uP25uvlxdb9_fbBwfRd0AN1w6UE6Z3gtniWeeUWqVJF4o6-wgJ-97B3ZkdmyfBOCeMyZ6YdlkObtAb453Dzn9XKBUvQ9lVWIipKXoQSo-MDb8F6SSD5KqFXz9CC52D14fctib_KD_uGtAfwRcTqVkmP4iRK-l6J1eD-u1FE2YbqW0kPon1MQ2gSnWbML8dPTdMQrN468AWRcXILpWUwZXtU_hqfhv41Oqtg
CitedBy_id crossref_primary_10_1093_nar_gkr857
crossref_primary_10_1186_s13072_023_00505_7
crossref_primary_10_1038_nature06863
crossref_primary_10_1038_s41467_020_18526_1
crossref_primary_10_1038_s41598_024_63371_7
crossref_primary_10_1038_s41467_022_30119_8
crossref_primary_10_3389_fphar_2020_584770
crossref_primary_10_1007_s00795_018_0187_x
crossref_primary_10_1016_j_gene_2024_148737
crossref_primary_10_1016_j_stemcr_2019_01_003
crossref_primary_10_1038_s41419_020_2269_7
crossref_primary_10_1038_srep34556
crossref_primary_10_1038_s41593_021_00858_w
crossref_primary_10_3389_fonc_2020_590033
crossref_primary_10_1007_s00221_018_5363_7
crossref_primary_10_1016_j_febslet_2012_04_052
crossref_primary_10_1016_j_stem_2009_12_003
crossref_primary_10_1111_gtc_12172
crossref_primary_10_1146_annurev_neuro_29_051605_112839
crossref_primary_10_1242_dev_080994
crossref_primary_10_1016_j_molcel_2008_05_023
crossref_primary_10_1111_j_1440_1827_2011_02781_x
crossref_primary_10_1523_JNEUROSCI_5037_05_2006
crossref_primary_10_1016_j_celrep_2022_111578
crossref_primary_10_4161_rna_8_5_16154
crossref_primary_10_1016_j_neuron_2005_04_027
crossref_primary_10_1016_j_bbrc_2009_05_007
crossref_primary_10_1038_s41388_020_1268_6
crossref_primary_10_1016_j_biochi_2022_10_012
crossref_primary_10_1042_BJ20080963
crossref_primary_10_1371_journal_pone_0178680
crossref_primary_10_1038_s41419_018_0473_5
crossref_primary_10_21307_ane_2018_007
crossref_primary_10_3390_ijms20143478
crossref_primary_10_4137_GRSB_S424
crossref_primary_10_1016_j_yexcr_2013_12_013
crossref_primary_10_1371_journal_pgen_1002494
crossref_primary_10_1016_j_neuropharm_2013_12_024
crossref_primary_10_1016_j_scr_2015_05_003
crossref_primary_10_1634_stemcells_2006_0207
crossref_primary_10_1093_humrep_der233
crossref_primary_10_1093_cercor_bhr218
crossref_primary_10_1002_jnr_21595
crossref_primary_10_1007_s00018_025_05643_7
crossref_primary_10_1016_j_yexcr_2016_02_014
crossref_primary_10_3390_catal9100842
crossref_primary_10_1016_j_tins_2009_07_005
crossref_primary_10_1002_stem_2304
crossref_primary_10_1634_stemcells_2007_0080
crossref_primary_10_1002_pro_3142
crossref_primary_10_1186_1741_7007_10_93
crossref_primary_10_1016_j_cub_2008_08_048
crossref_primary_10_1002_mabi_201500101
crossref_primary_10_1016_j_stemcr_2014_07_008
crossref_primary_10_1038_nrn2739
crossref_primary_10_1371_journal_pone_0212553
crossref_primary_10_1093_cercor_bhq284
crossref_primary_10_15252_emmm_201607471
crossref_primary_10_1523_ENEURO_0010_15_2015
crossref_primary_10_1016_j_neuint_2021_105076
crossref_primary_10_1007_s10735_021_10055_5
crossref_primary_10_1002_jcp_21521
crossref_primary_10_1016_j_neuropharm_2015_07_015
crossref_primary_10_1186_s13148_017_0376_9
crossref_primary_10_3390_genes8080196
crossref_primary_10_1097_WNR_0b013e328011dc81
crossref_primary_10_1523_JNEUROSCI_0169_11_2011
crossref_primary_10_1007_s10059_012_0182_3
crossref_primary_10_1038_jid_2008_406
crossref_primary_10_1021_cr800414e
crossref_primary_10_1016_j_ceb_2005_09_002
crossref_primary_10_1038_s41398_023_02415_4
crossref_primary_10_1002_stem_1004
crossref_primary_10_1007_s12264_007_0036_8
crossref_primary_10_7554_eLife_69058
crossref_primary_10_1016_j_biomaterials_2015_12_008
crossref_primary_10_1016_j_ceb_2005_09_006
crossref_primary_10_1093_hmg_ddq548
crossref_primary_10_1016_j_arr_2023_102090
crossref_primary_10_1155_2012_421564
crossref_primary_10_1093_nar_gkn488
crossref_primary_10_1002_ajmg_c_31416
crossref_primary_10_1016_j_conb_2017_12_008
crossref_primary_10_1038_s41593_022_01128_z
crossref_primary_10_3389_fcell_2020_00635
crossref_primary_10_1038_nature07925
crossref_primary_10_1039_b801920g
crossref_primary_10_1016_j_ajpath_2022_03_007
crossref_primary_10_1073_pnas_1010741107
crossref_primary_10_1038_ncb2153
crossref_primary_10_1002_cam4_220
crossref_primary_10_1186_s12885_022_09280_2
crossref_primary_10_1002_bies_20813
crossref_primary_10_3390_v5051208
crossref_primary_10_1038_s41467_024_55741_6
crossref_primary_10_1016_j_neuropharm_2017_05_021
crossref_primary_10_1074_jbc_M709388200
crossref_primary_10_1016_j_neubiorev_2015_06_022
crossref_primary_10_1038_srep32298
crossref_primary_10_2174_1567202620666230727153306
crossref_primary_10_1038_srep37863
crossref_primary_10_1002_jnr_21139
crossref_primary_10_1016_j_nbd_2011_03_011
crossref_primary_10_1146_annurev_cellbio_092910_154121
crossref_primary_10_1128_MCB_26_9_3565_3581_2006
crossref_primary_10_1007_s00401_006_0102_8
crossref_primary_10_1073_pnas_1620230114
crossref_primary_10_1002_trc2_12003
crossref_primary_10_1016_j_expneurol_2013_01_027
crossref_primary_10_1016_j_molcel_2013_07_017
crossref_primary_10_18632_oncotarget_2406
crossref_primary_10_3390_biom11010075
crossref_primary_10_1523_JNEUROSCI_1246_16_2016
crossref_primary_10_3389_fncel_2018_00158
crossref_primary_10_1371_journal_pone_0163042
crossref_primary_10_2217_epi_10_76
crossref_primary_10_1016_j_nlm_2018_02_010
crossref_primary_10_1016_j_neuroscience_2015_07_038
crossref_primary_10_1038_ncomms13360
crossref_primary_10_3389_fnmol_2017_00128
crossref_primary_10_1016_j_ydbio_2010_10_008
crossref_primary_10_1007_s12015_019_09904_4
crossref_primary_10_1038_s41598_025_87314_y
crossref_primary_10_1096_fj_09_140145
crossref_primary_10_1016_j_cell_2012_11_045
crossref_primary_10_1093_abbs_gms016
crossref_primary_10_1101_gad_1558107
crossref_primary_10_1007_s00018_015_2125_6
crossref_primary_10_1016_j_bbrc_2011_04_082
crossref_primary_10_1007_s00441_014_2046_y
crossref_primary_10_1016_j_cell_2009_03_024
crossref_primary_10_1038_s41598_019_39544_0
crossref_primary_10_1038_nature06780
crossref_primary_10_1039_D4CP03291H
crossref_primary_10_3389_fendo_2023_1191311
crossref_primary_10_1016_j_neuroscience_2017_09_018
crossref_primary_10_1021_acschemneuro_8b00620
crossref_primary_10_1038_nature06641
crossref_primary_10_1002_hipo_23336
crossref_primary_10_1016_j_bbrc_2013_06_036
crossref_primary_10_1074_jbc_M703026200
crossref_primary_10_1186_s13072_021_00425_4
crossref_primary_10_1371_journal_pcbi_1003671
crossref_primary_10_4103_tcmj_tcmj_220_20
crossref_primary_10_1152_physrev_00012_2010
crossref_primary_10_1091_mbc_e06_04_0322
crossref_primary_10_3390_jdb9010006
crossref_primary_10_1128_MCB_26_5_1666_1678_2006
crossref_primary_10_2217_epi_11_67
crossref_primary_10_1016_j_ymeth_2017_08_014
crossref_primary_10_1186_s13148_023_01514_9
crossref_primary_10_1016_j_ijdevneu_2013_10_001
crossref_primary_10_1016_j_ccell_2019_09_005
crossref_primary_10_1002_stem_1430
crossref_primary_10_1016_j_mcn_2009_09_012
crossref_primary_10_1042_BSR20080058
crossref_primary_10_1093_molbev_msp058
crossref_primary_10_3389_fgene_2014_00311
crossref_primary_10_1038_s41419_019_2133_9
crossref_primary_10_1038_srep36328
crossref_primary_10_1083_jcb_201802117
crossref_primary_10_1111_jnc_13629
crossref_primary_10_1038_nrn_2016_27
crossref_primary_10_1016_j_neuropharm_2013_03_024
crossref_primary_10_1101_gr_258400_119
crossref_primary_10_1089_scd_2008_0036
crossref_primary_10_7554_eLife_01267
crossref_primary_10_1016_j_mcn_2008_07_006
crossref_primary_10_1038_s41598_020_60065_8
crossref_primary_10_1371_journal_pone_0088556
crossref_primary_10_1016_j_phrs_2021_105958
crossref_primary_10_1101_gad_1519107
crossref_primary_10_1038_nature13163
crossref_primary_10_1038_s41398_022_02199_z
crossref_primary_10_1111_apha_14146
crossref_primary_10_1002_bdra_20807
crossref_primary_10_1007_s13238_010_0078_y
crossref_primary_10_1146_annurev_neuro_083022_113120
crossref_primary_10_1016_j_conb_2010_04_001
crossref_primary_10_1016_j_csbj_2020_04_007
crossref_primary_10_1089_neu_2018_5793
crossref_primary_10_1016_j_neuron_2007_06_029
crossref_primary_10_1098_rstb_2008_2262
crossref_primary_10_1002_cbf_3183
crossref_primary_10_1371_journal_pone_0131760
crossref_primary_10_18632_oncotarget_7225
crossref_primary_10_3390_v13091856
crossref_primary_10_1016_j_jmb_2019_11_003
crossref_primary_10_1242_jcs_257535
crossref_primary_10_3389_fpsyt_2023_1296527
crossref_primary_10_1017_S1740925X09990494
crossref_primary_10_1016_j_yjmcc_2011_01_017
crossref_primary_10_1080_15592294_2016_1265713
crossref_primary_10_18632_oncotarget_8433
crossref_primary_10_1016_j_bcp_2010_04_035
crossref_primary_10_1073_pnas_0906917107
crossref_primary_10_1186_1471_2164_14_720
crossref_primary_10_1186_s40478_024_01779_y
crossref_primary_10_1051_rmr_170004
crossref_primary_10_1016_j_cell_2012_10_043
crossref_primary_10_1016_j_ajhg_2008_08_012
crossref_primary_10_1016_j_neubiorev_2018_08_001
crossref_primary_10_4161_cam_3_2_8278
crossref_primary_10_1007_s00125_008_0984_1
crossref_primary_10_1038_nature07785
crossref_primary_10_12688_f1000research_12169_1
crossref_primary_10_1016_j_cub_2005_08_032
crossref_primary_10_1155_2015_202914
crossref_primary_10_1126_sciadv_aba5933
crossref_primary_10_1523_JNEUROSCI_4286_14_2015
crossref_primary_10_1016_j_neurobiolaging_2006_05_036
crossref_primary_10_1016_j_neuro_2015_11_007
crossref_primary_10_1038_s41467_021_25596_2
crossref_primary_10_1007_s12035_023_03242_w
crossref_primary_10_1016_j_bbcan_2024_189150
crossref_primary_10_1038_s41380_018_0036_2
crossref_primary_10_1038_nrn1712
crossref_primary_10_3945_ajcn_2009_27113B
crossref_primary_10_1073_pnas_0511041103
crossref_primary_10_2217_epi_15_39
crossref_primary_10_1007_s12035_011_8165_5
crossref_primary_10_1073_pnas_1414770111
crossref_primary_10_1186_s12864_015_1591_4
crossref_primary_10_1039_D1MO00352F
crossref_primary_10_1038_nrn_2017_46
crossref_primary_10_1523_JNEUROSCI_2390_08_2008
crossref_primary_10_1007_s11010_019_03600_0
crossref_primary_10_1007_s12035_012_8376_4
crossref_primary_10_1523_JNEUROSCI_1615_07_2007
crossref_primary_10_1016_j_celrep_2014_10_011
crossref_primary_10_1016_j_biopsych_2013_09_034
crossref_primary_10_1016_j_yfrne_2019_04_001
crossref_primary_10_1038_npp_2012_124
crossref_primary_10_1016_j_stemcr_2017_04_032
crossref_primary_10_1002_alz_12553
crossref_primary_10_1016_j_tins_2010_01_007
crossref_primary_10_1002_jnr_22804
crossref_primary_10_1038_nmeth_1246
crossref_primary_10_1038_s41598_022_21767_3
crossref_primary_10_1186_s13064_015_0045_7
crossref_primary_10_1007_s12035_018_1254_y
crossref_primary_10_1038_npp_2012_134
crossref_primary_10_1073_pnas_2015454118
crossref_primary_10_1038_s41435_018_0053_9
crossref_primary_10_1016_j_neulet_2016_06_050
crossref_primary_10_1074_jbc_M705120200
crossref_primary_10_1111_gtc_12235
crossref_primary_10_1038_nrg2100
crossref_primary_10_1016_j_neulet_2009_07_093
crossref_primary_10_1093_cercor_bhy274
crossref_primary_10_1042_BJ20140496
crossref_primary_10_1007_s11011_021_00719_2
crossref_primary_10_1371_journal_pone_0014311
crossref_primary_10_1038_s41419_021_03465_6
crossref_primary_10_2217_fnl_09_1
crossref_primary_10_1016_j_celrep_2014_03_075
crossref_primary_10_1016_j_nbd_2010_01_008
crossref_primary_10_1038_s41389_020_0239_7
crossref_primary_10_1016_j_brainres_2005_09_061
crossref_primary_10_1038_onc_2012_182
crossref_primary_10_1016_j_neuroscience_2020_05_056
crossref_primary_10_1523_JNEUROSCI_1281_19_2020
crossref_primary_10_3390_pharmaceutics11100526
crossref_primary_10_1242_dev_160325
crossref_primary_10_1038_s41580_021_00335_z
crossref_primary_10_1371_journal_pone_0055221
crossref_primary_10_1016_j_neuron_2019_06_027
crossref_primary_10_1016_j_neuropharm_2014_01_003
crossref_primary_10_1073_pnas_1524013113
crossref_primary_10_1158_1535_7163_MCT_11_0990
crossref_primary_10_1016_j_neuropharm_2014_01_001
crossref_primary_10_1016_j_jsbmb_2019_03_003
crossref_primary_10_18632_oncotarget_9447
crossref_primary_10_1016_j_neuron_2021_07_007
crossref_primary_10_1111_epi_12030
crossref_primary_10_1007_s00412_009_0221_9
crossref_primary_10_1007_s00125_008_1043_7
crossref_primary_10_1016_j_isci_2024_109507
crossref_primary_10_1134_S0006297907110016
crossref_primary_10_1101_gr_181966_114
crossref_primary_10_1038_s41467_023_42704_6
crossref_primary_10_1038_s41380_019_0597_8
crossref_primary_10_1038_nrurol_2018_22
crossref_primary_10_1203_01_pdr_0000203565_76028_2a
crossref_primary_10_1002_stem_1949
crossref_primary_10_1002_cne_21350
crossref_primary_10_1523_JNEUROSCI_5500_09_2010
crossref_primary_10_1016_j_mce_2010_02_038
crossref_primary_10_1371_journal_pone_0003656
crossref_primary_10_4137_BBI_S13279
crossref_primary_10_5402_2012_690901
crossref_primary_10_1111_j_1365_2443_2010_01471_x
crossref_primary_10_1016_j_molcel_2015_03_007
crossref_primary_10_1089_scd_2013_0410
crossref_primary_10_4161_cc_25035
crossref_primary_10_1016_j_tibs_2008_01_003
crossref_primary_10_1016_j_neuro_2017_07_002
crossref_primary_10_1523_JNEUROSCI_1149_19_2019
crossref_primary_10_1007_s00018_014_1590_7
crossref_primary_10_3390_brainsci10110788
crossref_primary_10_1089_dna_2017_3780
crossref_primary_10_1016_j_celrep_2019_03_072
crossref_primary_10_1128_MCB_00083_14
crossref_primary_10_1016_j_biomaterials_2024_122879
crossref_primary_10_1016_j_neuron_2012_02_021
crossref_primary_10_2217_epi_2017_0022
crossref_primary_10_1016_j_heliyon_2024_e32680
crossref_primary_10_1073_pnas_0809130106
crossref_primary_10_1016_j_mrrev_2008_01_008
crossref_primary_10_1155_2017_2493752
crossref_primary_10_3389_fnins_2024_1348478
crossref_primary_10_1016_j_tibs_2005_12_008
crossref_primary_10_1093_nar_gkw1258
crossref_primary_10_1016_j_mocell_2025_100193
crossref_primary_10_1007_s13148_011_0025_7
crossref_primary_10_1016_j_gde_2008_10_001
crossref_primary_10_3389_fncel_2019_00580
crossref_primary_10_1186_s12867_015_0043_7
crossref_primary_10_1002_stem_1725
crossref_primary_10_2217_epi_14_53
crossref_primary_10_1186_1471_213X_8_23
crossref_primary_10_1016_j_bbr_2015_02_026
crossref_primary_10_1073_pnas_2009393118
crossref_primary_10_1038_nrn2810
crossref_primary_10_1038_s42003_023_05652_x
crossref_primary_10_1016_j_mcn_2010_03_006
crossref_primary_10_1128_MCB_00269_07
crossref_primary_10_1186_gb_2006_7_9_r85
crossref_primary_10_1093_nar_gkab248
crossref_primary_10_4161_23723548_2014_970048
crossref_primary_10_1101_gr_089086_108
crossref_primary_10_1371_journal_pone_0015834
crossref_primary_10_7554_eLife_02755
crossref_primary_10_1002_jnr_21649
crossref_primary_10_1038_s41598_024_74487_1
crossref_primary_10_1016_j_celrep_2020_108511
crossref_primary_10_1016_j_ydbio_2019_03_013
crossref_primary_10_1093_bfgp_elw023
crossref_primary_10_1002_1878_0261_12903
crossref_primary_10_1016_j_jmb_2014_07_032
crossref_primary_10_1101_gad_177774_111
crossref_primary_10_1124_jpet_111_181289
crossref_primary_10_1074_jbc_M111_265173
crossref_primary_10_1038_mp_2016_240
crossref_primary_10_3389_fgene_2014_00164
crossref_primary_10_3390_brainsci8100187
crossref_primary_10_1038_s41368_019_0053_2
crossref_primary_10_1016_j_cell_2005_08_020
crossref_primary_10_1042_BST20120006
crossref_primary_10_3389_fncel_2014_00397
crossref_primary_10_1242_dev_014977
crossref_primary_10_3389_fncel_2014_00396
crossref_primary_10_1007_s00441_017_2735_4
crossref_primary_10_1007_s12035_023_03271_5
crossref_primary_10_1038_s41598_020_77725_4
crossref_primary_10_3389_fnmol_2022_992627
crossref_primary_10_1091_mbc_e10_10_0817
crossref_primary_10_1016_j_devcel_2009_02_002
crossref_primary_10_1093_hmg_ddu446
crossref_primary_10_1016_j_seizure_2023_08_009
crossref_primary_10_1038_s41467_023_42371_7
crossref_primary_10_1371_journal_pone_0011109
crossref_primary_10_1038_s41380_021_01342_4
crossref_primary_10_15252_embj_2019103786
crossref_primary_10_2174_1389201022666210830142827
crossref_primary_10_3390_genes15121653
crossref_primary_10_1016_j_molcel_2009_03_013
crossref_primary_10_23868_201811033
crossref_primary_10_1523_JNEUROSCI_1869_12_2012
crossref_primary_10_1016_j_jgg_2013_04_007
crossref_primary_10_15252_embr_201949431
crossref_primary_10_4103_1673_5374_386400
crossref_primary_10_1073_pnas_2205524119
crossref_primary_10_1097_j_pain_0000000000001633
crossref_primary_10_7554_eLife_09584
crossref_primary_10_1016_j_neuron_2014_11_011
crossref_primary_10_1093_nar_gkt590
crossref_primary_10_1039_c1cs15050b
crossref_primary_10_3390_cells11040748
crossref_primary_10_1016_j_bbrc_2009_10_021
crossref_primary_10_1016_j_ijdevneu_2012_11_009
crossref_primary_10_1016_j_stemcr_2023_06_007
crossref_primary_10_2217_epi_15_119
crossref_primary_10_3390_brainsci8120226
crossref_primary_10_1523_ENEURO_0337_19_2020
crossref_primary_10_1016_j_biocel_2008_08_009
crossref_primary_10_1016_j_ydbio_2012_09_013
crossref_primary_10_3389_fncel_2017_00023
crossref_primary_10_15252_emmm_202012525
crossref_primary_10_1002_mgg3_1429
crossref_primary_10_1016_j_jpsychires_2009_09_009
crossref_primary_10_1146_annurev_nutr_071715_050808
crossref_primary_10_1016_j_biochi_2012_08_020
crossref_primary_10_1631_jzus_B1600355
crossref_primary_10_1016_j_annonc_2020_02_002
crossref_primary_10_1073_pnas_1121568109
crossref_primary_10_1073_pnas_1106906108
crossref_primary_10_1074_jbc_M112_351395
crossref_primary_10_1016_j_molcel_2014_06_006
crossref_primary_10_3389_fnmol_2018_00046
crossref_primary_10_1002_bies_202000231
crossref_primary_10_1152_ajpcell_00022_2019
crossref_primary_10_1016_j_jbc_2024_108137
crossref_primary_10_1073_pnas_2119078119
crossref_primary_10_1371_journal_pone_0000553
crossref_primary_10_1242_dev_074765
crossref_primary_10_1093_nar_gkv514
crossref_primary_10_1126_science_1141319
crossref_primary_10_1146_annurev_cellbio_042308_113256
crossref_primary_10_18632_oncotarget_7640
crossref_primary_10_1016_j_febslet_2010_03_032
crossref_primary_10_1146_annurev_cellbio_042308_113259
crossref_primary_10_1016_j_pneurobio_2009_10_020
crossref_primary_10_1111_j_1471_4159_2009_06052_x
crossref_primary_10_1038_s41392_024_01800_9
crossref_primary_10_3389_fncel_2015_00058
crossref_primary_10_3390_ncrna7040075
crossref_primary_10_1038_nature19357
crossref_primary_10_1248_yakushi_14_00241
crossref_primary_10_1038_nn_2294
crossref_primary_10_1186_s13059_016_1097_7
crossref_primary_10_1111_j_1471_4159_2008_05259_x
crossref_primary_10_3389_fonc_2020_574011
crossref_primary_10_1038_s41594_018_0070_4
crossref_primary_10_1038_aps_2011_49
crossref_primary_10_1158_0008_5472_CAN_12_0614
crossref_primary_10_4161_cam_3_4_8803
crossref_primary_10_1186_s13195_024_01659_6
crossref_primary_10_2139_ssrn_3284454
crossref_primary_10_1038_stemcells_2008_51
crossref_primary_10_1016_j_neurot_2024_e00517
crossref_primary_10_1093_neuonc_noad175
crossref_primary_10_1007_BF02698059
crossref_primary_10_1080_23262133_2015_1055419
crossref_primary_10_1111_j_1365_2443_2011_01537_x
crossref_primary_10_1016_j_neuroscience_2006_08_082
crossref_primary_10_1371_journal_pgen_1000979
crossref_primary_10_1093_nar_gkl1062
crossref_primary_10_1186_s13046_021_02163_7
crossref_primary_10_3390_ijms18030571
crossref_primary_10_1038_s41598_018_29480_w
crossref_primary_10_1042_BCJ20170983
crossref_primary_10_1016_j_ijdevneu_2013_04_003
crossref_primary_10_1074_jbc_M112_392746
crossref_primary_10_1111_j_1528_1167_2011_03171_x
crossref_primary_10_1073_pnas_1114357108
crossref_primary_10_1002_jez_b_21134
crossref_primary_10_1016_j_neuint_2009_10_014
crossref_primary_10_1002_stem_2190
crossref_primary_10_1007_s40944_023_00736_2
crossref_primary_10_3390_genes13030425
crossref_primary_10_1155_2022_5283615
crossref_primary_10_1038_srep17851
crossref_primary_10_1111_j_1471_4159_2008_05486_x
crossref_primary_10_1074_jbc_M509549200
crossref_primary_10_1016_j_neulet_2015_12_003
crossref_primary_10_1093_oons_kvac011
crossref_primary_10_1261_rna_080220_124
crossref_primary_10_1371_journal_pone_0123380
crossref_primary_10_1002_dvg_22771
crossref_primary_10_4161_cc_9_22_13973
crossref_primary_10_1073_pnas_1014030108
crossref_primary_10_1186_1471_2202_9_42
crossref_primary_10_1186_s13072_019_0264_y
crossref_primary_10_3390_cells11071180
crossref_primary_10_1016_j_bbadis_2010_08_006
crossref_primary_10_1111_gtc_12819
crossref_primary_10_1016_j_ab_2019_113418
crossref_primary_10_1523_JNEUROSCI_1650_14_2014
crossref_primary_10_3389_adar_2024_12094
crossref_primary_10_1002_jcp_22294
crossref_primary_10_3390_ijms22136765
crossref_primary_10_1172_JCI168982
crossref_primary_10_1016_j_expneurol_2021_113880
crossref_primary_10_1002_dvdy_21094
crossref_primary_10_1038_nrg2046
crossref_primary_10_1038_s41585_021_00490_0
crossref_primary_10_1002_pd_4942
crossref_primary_10_1016_j_devcel_2018_06_007
crossref_primary_10_1073_pnas_0914328107
crossref_primary_10_1111_j_1440_169X_2010_01175_x
crossref_primary_10_1021_acschemneuro_1c00775
crossref_primary_10_1073_pnas_1222497110
crossref_primary_10_1523_JNEUROSCI_5541_09_2010
crossref_primary_10_1016_j_ymthe_2017_01_016
crossref_primary_10_1038_nn1791
crossref_primary_10_1523_JNEUROSCI_4045_13_2014
crossref_primary_10_1007_s00005_009_0019_8
crossref_primary_10_1007_s12035_020_02274_w
crossref_primary_10_1016_j_ebiom_2017_01_021
crossref_primary_10_1016_j_neuron_2006_09_037
crossref_primary_10_3233_ADR_220098
crossref_primary_10_1002_jcb_22610
crossref_primary_10_1016_j_conb_2012_07_001
crossref_primary_10_1016_j_critrevonc_2007_06_004
crossref_primary_10_1016_j_biopha_2023_115257
crossref_primary_10_1091_mbc_e05_07_0687
crossref_primary_10_1111_pin_13426
crossref_primary_10_1016_j_expneurol_2020_113572
crossref_primary_10_1186_gb_2009_10_1_r9
crossref_primary_10_1038_hdy_2010_27
crossref_primary_10_7554_eLife_46703
crossref_primary_10_1002_emmm_201302848
crossref_primary_10_1016_j_ydbio_2015_07_002
crossref_primary_10_1074_jbc_M112_362467
crossref_primary_10_1007_s11434_015_0871_3
crossref_primary_10_1038_srep42795
crossref_primary_10_1186_1471_2164_12_24
crossref_primary_10_1016_j_neuint_2024_105889
crossref_primary_10_1038_nature08139
crossref_primary_10_3389_fcell_2017_00012
crossref_primary_10_18632_oncotarget_23750
crossref_primary_10_1016_j_stemcr_2014_10_015
crossref_primary_10_1002_cncr_26145
crossref_primary_10_1016_j_yexcr_2013_09_020
crossref_primary_10_1038_nn_3214
crossref_primary_10_1146_annurev_cellbio_24_110707_175411
crossref_primary_10_1371_journal_pone_0145280
crossref_primary_10_1073_pnas_1507355112
crossref_primary_10_1016_j_bbrc_2017_03_020
crossref_primary_10_1016_j_nbd_2010_02_003
crossref_primary_10_1074_jbc_M110_174540
crossref_primary_10_1242_jcs_151944
crossref_primary_10_1038_s41380_023_02313_7
crossref_primary_10_18632_oncotarget_18195
crossref_primary_10_1007_s12033_020_00283_7
crossref_primary_10_1016_j_neuroscience_2012_11_040
crossref_primary_10_1073_pnas_1113486108
crossref_primary_10_3389_fonc_2020_576362
crossref_primary_10_1007_s12035_024_04598_3
crossref_primary_10_3389_fonc_2022_855167
crossref_primary_10_1002_jnr_23007
crossref_primary_10_1007_s00018_012_0946_0
crossref_primary_10_1016_j_lfs_2024_122649
crossref_primary_10_1128_MCB_05088_11
crossref_primary_10_1016_j_conb_2005_08_015
crossref_primary_10_1016_j_pneurobio_2008_10_002
crossref_primary_10_1038_nn_2671
crossref_primary_10_1042_BJ20100158
crossref_primary_10_1016_j_ijpharm_2015_11_020
crossref_primary_10_1016_j_bbrc_2010_03_115
crossref_primary_10_3389_fcell_2024_1413248
crossref_primary_10_1016_j_cell_2005_05_003
crossref_primary_10_1074_jbc_RA118_004722
crossref_primary_10_15252_embr_201846960
crossref_primary_10_3390_biom13101477
crossref_primary_10_1016_j_cell_2006_12_038
crossref_primary_10_1186_s12915_022_01385_1
crossref_primary_10_1126_scisignal_aan8680
crossref_primary_10_1095_biolreprod_108_074690
crossref_primary_10_1016_j_molcel_2007_05_018
crossref_primary_10_1038_s41380_024_02595_5
crossref_primary_10_1016_j_mcn_2021_103683
crossref_primary_10_1093_hmg_ddac253
crossref_primary_10_1016_j_neuropharm_2019_107741
crossref_primary_10_1111_j_1742_4658_2011_08269_x
crossref_primary_10_3390_cancers13040692
crossref_primary_10_3390_medicina59030537
crossref_primary_10_1186_s13045_022_01337_w
crossref_primary_10_1242_dev_072272
crossref_primary_10_1074_jbc_M605370200
crossref_primary_10_1016_j_neuron_2017_11_028
crossref_primary_10_1098_rstb_2006_2010
crossref_primary_10_3390_cells9112451
crossref_primary_10_1155_2014_208751
crossref_primary_10_1007_s00441_014_1899_4
crossref_primary_10_1002_glia_23818
crossref_primary_10_1074_jbc_M700149200
crossref_primary_10_1242_dev_028548
crossref_primary_10_1016_j_pneurobio_2014_11_001
crossref_primary_10_1111_j_1582_4934_2008_00571_x
crossref_primary_10_1074_jbc_M110_210740
crossref_primary_10_1016_S1672_0229_08_60003_0
crossref_primary_10_1089_dna_2011_1557
crossref_primary_10_1111_j_1471_4159_2008_05303_x
crossref_primary_10_1089_ars_2011_4375
crossref_primary_10_1038_s41380_023_02160_6
crossref_primary_10_1016_j_diff_2008_09_001
crossref_primary_10_1142_S2339547816400070
crossref_primary_10_1038_scibx_2008_252
crossref_primary_10_1016_j_bbagrm_2013_11_004
crossref_primary_10_4103_1673_5374_257537
crossref_primary_10_1101_gad_184416_111
crossref_primary_10_1007_s12031_014_0474_5
crossref_primary_10_1016_j_ydbio_2015_02_021
crossref_primary_10_4103_1673_5374_193227
crossref_primary_10_1146_annurev_genet_071719_023616
crossref_primary_10_1523_JNEUROSCI_1226_07_2007
crossref_primary_10_1038_ng_3440
crossref_primary_10_1016_j_conb_2009_04_006
crossref_primary_10_1634_stemcells_2006_0383
crossref_primary_10_1016_j_tins_2007_01_006
crossref_primary_10_1093_hmg_ddp047
crossref_primary_10_1007_s00018_020_03691_9
crossref_primary_10_1016_j_jmb_2005_10_008
crossref_primary_10_1371_journal_pgen_1004017
crossref_primary_10_1002_bdrc_20149
crossref_primary_10_1101_gad_1575607
crossref_primary_10_3390_jcm13195772
crossref_primary_10_1101_gr_4997306
crossref_primary_10_1111_j_1349_7006_2011_02006_x
crossref_primary_10_1007_s00018_014_1576_5
crossref_primary_10_4103_1673_5374_280301
crossref_primary_10_1101_gr_114488_110
crossref_primary_10_1111_nan_12451
crossref_primary_10_1111_jnc_12457
crossref_primary_10_1074_jbc_RA118_005846
crossref_primary_10_1002_glia_22708
crossref_primary_10_1007_s00018_008_8432_4
crossref_primary_10_1016_j_cell_2005_03_033
crossref_primary_10_1186_1471_2164_13_686
crossref_primary_10_1371_journal_pone_0097684
crossref_primary_10_1261_rna_1127009
crossref_primary_10_1002_stem_1020
crossref_primary_10_2353_ajpath_2007_070520
crossref_primary_10_1128_MCB_00287_08
crossref_primary_10_1016_j_ijdevneu_2016_12_006
crossref_primary_10_1016_j_bbrc_2007_06_116
crossref_primary_10_1073_pnas_1812518115
crossref_primary_10_1016_j_molcel_2007_06_039
crossref_primary_10_1038_nrclinonc_2016_181
crossref_primary_10_1016_j_ydbio_2010_01_029
crossref_primary_10_1016_j_cell_2017_12_014
crossref_primary_10_1007_s10565_022_09761_x
crossref_primary_10_1038_nrn3482
crossref_primary_10_1093_hmg_ddr416
crossref_primary_10_1038_nrn3009
crossref_primary_10_1093_noajnl_vdae162
crossref_primary_10_1186_s40035_024_00450_9
crossref_primary_10_1111_febs_70024
crossref_primary_10_1111_j_1582_4934_2006_tb00526_x
crossref_primary_10_7554_eLife_04235
crossref_primary_10_1016_j_neubiorev_2023_105113
crossref_primary_10_1101_gad_350269_122
crossref_primary_10_1016_j_ncrna_2017_04_002
crossref_primary_10_1016_j_psyneuen_2009_05_012
crossref_primary_10_1073_pnas_0811648106
crossref_primary_10_1242_jcs_03099
crossref_primary_10_2217_epi_2016_0009
crossref_primary_10_3390_cells11111725
crossref_primary_10_1007_s00441_014_1963_0
crossref_primary_10_1038_cdd_2014_226
crossref_primary_10_1016_j_ydbio_2005_10_044
crossref_primary_10_1016_j_neuroscience_2011_02_059
crossref_primary_10_1038_s41598_017_10245_w
crossref_primary_10_1371_journal_pone_0038486
crossref_primary_10_1073_pnas_1109023108
crossref_primary_10_1038_s41585_020_0298_8
crossref_primary_10_1371_journal_pone_0040315
crossref_primary_10_1073_pnas_0611704104
crossref_primary_10_1016_j_ydbio_2006_11_012
crossref_primary_10_33590_emjdiabet_10313731
crossref_primary_10_1016_j_cell_2009_01_038
crossref_primary_10_1016_j_ceca_2020_102194
crossref_primary_10_1371_journal_pone_0007665
crossref_primary_10_1016_j_semcancer_2023_01_004
crossref_primary_10_26508_lsa_202000841
crossref_primary_10_4161_psb_2_3_3726
crossref_primary_10_1016_j_bbagrm_2008_07_006
crossref_primary_10_1073_pnas_1809609115
crossref_primary_10_1371_journal_pone_0011803
crossref_primary_10_1016_j_cell_2018_06_004
crossref_primary_10_1016_j_molcel_2008_06_015
crossref_primary_10_1523_JNEUROSCI_2768_10_2011
crossref_primary_10_1007_s11515_017_1465_z
crossref_primary_10_1101_lm_049239_118
crossref_primary_10_1186_s13072_017_0150_4
crossref_primary_10_1111_j_1742_4658_2010_07954_x
crossref_primary_10_1016_j_bbr_2009_11_008
crossref_primary_10_1080_15384101_2016_1222339
crossref_primary_10_15252_embr_202051524
crossref_primary_10_1007_s00441_012_1367_y
crossref_primary_10_1124_pharmrev_122_000710
crossref_primary_10_1016_j_devcel_2013_04_005
crossref_primary_10_1038_oncsis_2017_60
crossref_primary_10_1002_wdev_271
crossref_primary_10_2217_epi_10_12
crossref_primary_10_1111_jnc_15755
crossref_primary_10_1002_bip_22643
crossref_primary_10_1007_s12272_010_1001_z
crossref_primary_10_1371_journal_pone_0095374
crossref_primary_10_1002_jor_21151
crossref_primary_10_1002_stem_2001
crossref_primary_10_1002_dvdy_86
crossref_primary_10_1073_pnas_1504232112
crossref_primary_10_1002_bies_20330
crossref_primary_10_3389_fncel_2023_1267609
crossref_primary_10_1038_s41573_019_0044_1
crossref_primary_10_3390_ijms25084171
crossref_primary_10_1155_2018_6087143
crossref_primary_10_1111_jnc_12372
crossref_primary_10_1126_sciadv_adj4452
crossref_primary_10_1155_2012_141624
crossref_primary_10_1016_j_molmed_2024_07_004
crossref_primary_10_1097_YCO_0000000000000238
crossref_primary_10_1083_jcb_200908048
crossref_primary_10_1016_j_neuint_2019_04_003
crossref_primary_10_1371_journal_pgen_1000936
Cites_doi 10.1126/science.1090842
10.1073/pnas.97.22.12318
10.1083/jcb.200211117
10.1016/S0092-8674(02)00835-8
10.1016/0092-8674(95)90298-8
10.1006/dbio.1995.1085
10.1073/pnas.0407643101
10.1007/s00018-004-4133-9
10.1073/pnas.112008599
10.1126/science.1076469
10.1074/jbc.M205691200
10.1126/science.1086446
10.1038/2431
10.1016/S1097-2765(03)00276-4
10.1016/S0896-6273(02)00835-8
10.1016/S0896-6273(00)80554-1
10.1016/j.cell.2004.12.012
10.1073/pnas.93.18.9881
10.1101/gad.947102
10.1101/gad.908801
10.1007/BF02740674
10.1093/nar/22.15.2990
10.1101/gad.11.19.2494
10.1038/85899
10.1038/35102174
10.1038/ncb1076
10.1016/S0955-0674(03)00013-9
10.1073/pnas.0401827101
10.1074/jbc.275.13.9461
10.1038/ng1491
10.1016/S0092-8674(02)00798-5
10.1016/S0092-8674(00)80561-9
10.1242/dev.126.3.525
10.1038/nature01550
10.1073/pnas.94.16.8842
10.1016/S0387-7604(01)00333-3
10.1073/pnas.96.17.9873
10.1016/S0896-6273(01)00371-3
10.1016/j.molcel.2004.05.026
10.1126/science.7871435
10.1073/pnas.242566899
10.1038/85906
10.1016/S0387-7604(01)00376-X
10.1016/S0092-8674(04)00248-X
10.1083/jcb.140.6.1497
10.1038/nrn786
10.1016/S0896-6273(02)00768-7
ContentType Journal Article
Copyright 2005 Elsevier Inc.
Copyright_xml – notice: 2005 Elsevier Inc.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
8FD
FR3
P64
RC3
7X8
DOI 10.1016/j.cell.2005.03.013
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Engineering Research Database
Technology Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Genetics Abstracts
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EndPage 657
ExternalDocumentID 15907476
10_1016_j_cell_2005_03_013
S0092867405002850
Genre Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, P.H.S
Journal Article
GroupedDBID ---
--K
-DZ
-ET
-~X
.-4
.55
.GJ
0R~
0WA
1RT
1~5
29B
2FS
2WC
3EH
3O-
4.4
457
4G.
53G
5GY
5RE
62-
6I.
6J9
6TJ
7-5
85S
9M8
AACTN
AAEDT
AAEDW
AAFTH
AAFWJ
AAHBH
AAIKJ
AAKRW
AAKUH
AALRI
AAMRU
AAVLU
AAXUO
AAYJJ
ABCQX
ABJNI
ABMAC
ABOCM
ABTAH
ACGFO
ACGFS
ACNCT
ADBBV
ADEZE
ADVLN
AEFWE
AENEX
AETEA
AEXQZ
AFTJW
AGHFR
AGHSJ
AGKMS
AHHHB
AI.
AIDAL
AITUG
AKAPO
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FCP
FDB
FIRID
HH5
HZ~
IH2
IHE
IXB
J1W
JIG
K-O
KOO
KQ8
L7B
LX5
M3Z
M41
MVM
N9A
O-L
O9-
OK1
OZT
P2P
RIG
RNS
ROL
RPZ
SCP
SDG
SDP
SES
SSZ
TAE
TN5
TR2
TWZ
UKR
UPT
VH1
WH7
X7M
YYQ
YZZ
ZCA
ZGI
ZHY
ZY4
.HR
1CY
1VV
2KS
5VS
AAQFI
AAQXK
AAYWO
AAYXX
ABDGV
ABDPE
ABEFU
ABWVN
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEUPX
AFPUW
AGCQF
AGQPQ
AIGII
AKBMS
AKYEP
APXCP
CITATION
FEDTE
FGOYB
G-2
HVGLF
H~9
OHT
OMK
PUQ
R2-
UBW
UHB
YYP
ZKB
0SF
ABVKL
CGR
CUY
CVF
ECM
EIF
NCXOZ
NPM
PKN
RCE
VQA
7TK
8FD
FR3
P64
RC3
7X8
EFKBS
ID FETCH-LOGICAL-c495t-e4a47ce8c8a2d5cb0d3d311b870d58bcb67fdd2ceb93b9005ee4d433525b3fb43
IEDL.DBID IXB
ISSN 0092-8674
IngestDate Mon Jul 21 11:07:24 EDT 2025
Thu Jul 10 21:57:45 EDT 2025
Wed Feb 19 02:41:37 EST 2025
Tue Jul 01 03:51:46 EDT 2025
Thu Apr 24 23:11:12 EDT 2025
Sun Apr 06 06:53:06 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
https://www.elsevier.com/tdm/userlicense/1.0
https://www.elsevier.com/open-access/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c495t-e4a47ce8c8a2d5cb0d3d311b870d58bcb67fdd2ceb93b9005ee4d433525b3fb43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0092867405002850
PMID 15907476
PQID 17467186
PQPubID 23462
PageCount 13
ParticipantIDs proquest_miscellaneous_67846336
proquest_miscellaneous_17467186
pubmed_primary_15907476
crossref_primary_10_1016_j_cell_2005_03_013
crossref_citationtrail_10_1016_j_cell_2005_03_013
elsevier_sciencedirect_doi_10_1016_j_cell_2005_03_013
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2005-05-20
PublicationDateYYYYMMDD 2005-05-20
PublicationDate_xml – month: 05
  year: 2005
  text: 2005-05-20
  day: 20
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell
PublicationTitleAlternate Cell
PublicationYear 2005
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Schneider, Bannister, Myers, Thorne, Crane-Robinson, Kouzarides (bib35) 2004; 6
Weston, Blumberg, Underhill (bib47) 2003; 161
Wichterle, Lieberam, Porter, Jessell (bib48) 2002; 110
Kuwabara, Hsieh, Nakashima, Taira, Gage (bib27) 2004; 116
Anderson, Jan (bib1) 1997
Sucov, Evans (bib43) 1995; 10
Shahbazian, Young, Yuva-Paylor, Spencer, Antalffy, Noebels, Armstrong, Paylor, Zoghbi (bib38) 2002; 35
Battaglioli, Andres, Rose, Chenoweth, Rosenfeld, Anderson, Mandel (bib8) 2002; 277
Munoz-Sanjuan, Brivanlou (bib30) 2002; 3
Schoenherr, Anderson (bib36) 1995; 267
Slack, El-Bizri, Wong, Belliveau, Miller (bib41) 1998; 140
Horike, Cai, Miyano, Cheng, Kohwi-Shigematsu (bib23) 2005; 37
Bain, Kitchens, Yao, Huettner, Gottlieb (bib5) 1995; 168
Chen, Akbarian, Tudor, Jaenisch (bib14) 2001; 27
Shi, Sawada, Sui, Affar el, Whetstine, Lan, Ogawa, Luke, Nakatani (bib39) 2003; 422
Bruce, Donaldson, Wood, Yerbury, Sadowski, Chapman, Gottgens, Buckley (bib10) 2004; 101
Casarosa, Fode, Guillemot (bib12) 1999; 126
Temple (bib44) 2001; 414
Andres, Burger, Peral-Rubio, Battaglioli, Anderson, Grimes, Dallman, Ballas, Mandel (bib2) 1999; 96
Chen, Paquette, Anderson (bib13) 1998; 20
Hoyt, Coffino (bib24) 2004; 61
Chong, Tapia-Ramirez, Kim, Toledo-Aral, Zheng, Boutros, Altshuller, Frohman, Kraner, Mandel (bib16) 1995; 80
Schoenherr, Paquette, Anderson (bib37) 1996; 93
Edlund, Jessell (bib18) 1999; 96
Grimes, Nielsen, Battaglioli, Miska, Speh, Berry, Atouf, Holdener, Mandel, Kouzarides (bib20) 2000; 275
Koide, Downes, Chandraratna, Blumberg, Umesono (bib26) 2001; 15
Stancheva, Collins, Van den Veyver, Zoghbi, Meehan (bib42) 2003; 12
Ashe, Monks, Wijgerde, Fraser, Proudfoot (bib4) 1997; 11
Fischle, Wang, Allis (bib19) 2003; 15
Hsieh, Nakashima, Kuwabara, Mejia, Gage (bib25) 2004; 101
Sasai (bib34) 1998; 21
Martinowich, Hattori, Wu, Fouse, He, Hu, Fan, Sun (bib29) 2003; 302
Bannister, Schneider, Kouzarides (bib7) 2002; 109
Shi, Lan, Matson, Mulligan, Whetstine, Cole, Casero (bib40) 2004; 119
Ballas, Battaglioli, Atouf, Andres, Chenoweth, Anderson, Burger, Moniwa, Davie, Bowers (bib6) 2001; 31
Clark, Harrison, Paul, Frommer (bib17) 1994; 22
Guy, Hendrich, Holmes, Martin, Bird (bib21) 2001; 27
Lunyak, Burgess, Prefontaine, Nelson, Sze, Chenoweth, Schwartz, Pevzner, Glass, Mandel, Rosenfeld (bib28) 2002; 298
Tudor, Akbarian, Chen, Jaenisch (bib45) 2002; 99
Arnold, Heintz (bib3) 1997; 94
Nan, Bird (bib31) 2001; 23
Capela, Temple (bib11) 2002; 35
Chen, Chang, Lin, Meissner, West, Griffith, Jaenisch, Greenberg (bib15) 2003; 302
Van den Veyver, Zoghbi (bib46) 2001; 23
Roopra, Qazi, Schoenike, Daley, Morrison (bib33) 2004; 14
Paquette, Perez, Anderson (bib32) 2000; 97
Hakimi, Bochar, Chenoweth, Lane, Mandel, Shiekhattar (bib22) 2002; 99
Bird (bib9) 2002; 16
Bird (10.1016/j.cell.2005.03.013_bib9) 2002; 16
Lunyak (10.1016/j.cell.2005.03.013_bib28) 2002; 298
Paquette (10.1016/j.cell.2005.03.013_bib32) 2000; 97
Chong (10.1016/j.cell.2005.03.013_bib16) 1995; 80
Hsieh (10.1016/j.cell.2005.03.013_bib25) 2004; 101
Tudor (10.1016/j.cell.2005.03.013_bib45) 2002; 99
Andres (10.1016/j.cell.2005.03.013_bib2) 1999; 96
Sasai (10.1016/j.cell.2005.03.013_bib34) 1998; 21
Guy (10.1016/j.cell.2005.03.013_bib21) 2001; 27
Kuwabara (10.1016/j.cell.2005.03.013_bib27) 2004; 116
Schneider (10.1016/j.cell.2005.03.013_bib35) 2004; 6
Schoenherr (10.1016/j.cell.2005.03.013_bib36) 1995; 267
Bannister (10.1016/j.cell.2005.03.013_bib7) 2002; 109
Koide (10.1016/j.cell.2005.03.013_bib26) 2001; 15
Ashe (10.1016/j.cell.2005.03.013_bib4) 1997; 11
Edlund (10.1016/j.cell.2005.03.013_bib18) 1999; 96
Battaglioli (10.1016/j.cell.2005.03.013_bib8) 2002; 277
Chen (10.1016/j.cell.2005.03.013_bib15) 2003; 302
Hakimi (10.1016/j.cell.2005.03.013_bib22) 2002; 99
Nan (10.1016/j.cell.2005.03.013_bib31) 2001; 23
Martinowich (10.1016/j.cell.2005.03.013_bib29) 2003; 302
Temple (10.1016/j.cell.2005.03.013_bib44) 2001; 414
Schoenherr (10.1016/j.cell.2005.03.013_bib37) 1996; 93
Casarosa (10.1016/j.cell.2005.03.013_bib12) 1999; 126
Grimes (10.1016/j.cell.2005.03.013_bib20) 2000; 275
Roopra (10.1016/j.cell.2005.03.013_bib33) 2004; 14
Van den Veyver (10.1016/j.cell.2005.03.013_bib46) 2001; 23
Hoyt (10.1016/j.cell.2005.03.013_bib24) 2004; 61
Capela (10.1016/j.cell.2005.03.013_bib11) 2002; 35
Shi (10.1016/j.cell.2005.03.013_bib40) 2004; 119
Chen (10.1016/j.cell.2005.03.013_bib13) 1998; 20
Stancheva (10.1016/j.cell.2005.03.013_bib42) 2003; 12
Slack (10.1016/j.cell.2005.03.013_bib41) 1998; 140
Weston (10.1016/j.cell.2005.03.013_bib47) 2003; 161
Sucov (10.1016/j.cell.2005.03.013_bib43) 1995; 10
Ballas (10.1016/j.cell.2005.03.013_bib6) 2001; 31
Bruce (10.1016/j.cell.2005.03.013_bib10) 2004; 101
Anderson (10.1016/j.cell.2005.03.013_bib1) 1997
Munoz-Sanjuan (10.1016/j.cell.2005.03.013_bib30) 2002; 3
Fischle (10.1016/j.cell.2005.03.013_bib19) 2003; 15
Wichterle (10.1016/j.cell.2005.03.013_bib48) 2002; 110
Arnold (10.1016/j.cell.2005.03.013_bib3) 1997; 94
Chen (10.1016/j.cell.2005.03.013_bib14) 2001; 27
Bain (10.1016/j.cell.2005.03.013_bib5) 1995; 168
Clark (10.1016/j.cell.2005.03.013_bib17) 1994; 22
Shahbazian (10.1016/j.cell.2005.03.013_bib38) 2002; 35
Horike (10.1016/j.cell.2005.03.013_bib23) 2005; 37
Shi (10.1016/j.cell.2005.03.013_bib39) 2003; 422
15907461 - Cell. 2005 May 20;121(4):499-501
References_xml – volume: 23
  start-page: S147
  year: 2001
  end-page: S151
  ident: bib46
  article-title: Mutations in the gene encoding methyl-CpG-binding protein 2 cause Rett syndrome
  publication-title: Brain Dev. Suppl.
– volume: 15
  start-page: 2111
  year: 2001
  end-page: 2121
  ident: bib26
  article-title: Active repression of RAR signaling is required for head formation
  publication-title: Genes Dev.
– volume: 298
  start-page: 1747
  year: 2002
  end-page: 1752
  ident: bib28
  article-title: Corepressor-dependent silencing of chromosomal regions encoding neuronal genes
  publication-title: Science
– volume: 35
  start-page: 243
  year: 2002
  end-page: 254
  ident: bib38
  article-title: Mice with truncated MeCP2 recapitulate many Rett syndrome features and display hyperacetylation of histone H3
  publication-title: Neuron
– volume: 302
  start-page: 885
  year: 2003
  end-page: 889
  ident: bib15
  article-title: Derepression of BDNF transcription involves calcium-dependent phosphorylation of MeCP2
  publication-title: Science
– volume: 161
  start-page: 223
  year: 2003
  end-page: 228
  ident: bib47
  article-title: Active repression by unliganded retinoid receptors in development: less is sometimes more
  publication-title: J. Cell Biol.
– volume: 35
  start-page: 865
  year: 2002
  end-page: 875
  ident: bib11
  article-title: LeX/ssea-1 is expressed by adult mouse CNS stem cells, identifying them as nonependymal
  publication-title: Neuron
– volume: 109
  start-page: 801
  year: 2002
  end-page: 806
  ident: bib7
  article-title: Histone methylation: dynamic or static?
  publication-title: Cell
– volume: 99
  start-page: 15536
  year: 2002
  end-page: 15541
  ident: bib45
  article-title: Transcriptional profiling of a mouse model for Rett syndrome reveals subtle transcriptional changes in the brain
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 20
  start-page: 136
  year: 1998
  end-page: 142
  ident: bib13
  article-title: NRSF/REST is required in vivo for repression of multiple neuronal target genes during embryogenesis
  publication-title: Nat. Genet.
– volume: 37
  start-page: 31
  year: 2005
  end-page: 40
  ident: bib23
  article-title: Loss of silent-chromatin looping and impaired imprinting of DLX5 in Rett syndrome
  publication-title: Nat. Genet.
– volume: 302
  start-page: 890
  year: 2003
  end-page: 893
  ident: bib29
  article-title: DNA methylation-related chromatin remodeling in activity-dependent BDNF gene regulation
  publication-title: Science
– volume: 15
  start-page: 172
  year: 2003
  end-page: 183
  ident: bib19
  article-title: Histone and chromatin cross-talk
  publication-title: Curr. Opin. Cell Biol.
– volume: 99
  start-page: 7420
  year: 2002
  end-page: 7425
  ident: bib22
  article-title: A core-BRAF35 complex containing histone deacetylase mediates repression of neuronal-specific genes
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 94
  start-page: 8842
  year: 1997
  end-page: 8847
  ident: bib3
  article-title: A calcium responsive element that regulates expression of two calcium binding proteins in Purkinje cells
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 61
  start-page: 1596
  year: 2004
  end-page: 1600
  ident: bib24
  article-title: Ubiquitin-free routes into the proteasome
  publication-title: Cell. Mol. Life Sci.
– volume: 80
  start-page: 949
  year: 1995
  end-page: 957
  ident: bib16
  article-title: REST: a mammalian silencer protein that restricts sodium channel gene expression to neurons
  publication-title: Cell
– volume: 168
  start-page: 342
  year: 1995
  end-page: 357
  ident: bib5
  article-title: Embryonic stem cells express neuronal properties in vitro
  publication-title: Dev. Biol.
– volume: 11
  start-page: 2494
  year: 1997
  end-page: 2509
  ident: bib4
  article-title: Intergenic transcription and transinduction of the human beta-globin locus
  publication-title: Genes Dev.
– volume: 101
  start-page: 10458
  year: 2004
  end-page: 10463
  ident: bib10
  article-title: Genome-wide analysis of repressor element 1 silencing transcription factor/neuron-restrictive silencing factor (REST/NRSF) target genes
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 96
  start-page: 9873
  year: 1999
  end-page: 9878
  ident: bib2
  article-title: CoREST: a functional corepressor required for regulation of neural-specific gene expression
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 16
  start-page: 6
  year: 2002
  end-page: 21
  ident: bib9
  article-title: DNA methylation patterns and epigenetic memory
  publication-title: Genes Dev.
– volume: 126
  start-page: 525
  year: 1999
  end-page: 534
  ident: bib12
  article-title: Mash1 regulates neurogenesis in the ventral telencephalon
  publication-title: Development
– volume: 27
  start-page: 327
  year: 2001
  end-page: 331
  ident: bib14
  article-title: Deficiency of methyl-CpG binding protein-2 in CNS neurons results in a Rett-like phenotype in mice
  publication-title: Nat. Genet.
– volume: 119
  start-page: 941
  year: 2004
  end-page: 953
  ident: bib40
  article-title: Histone demethylation mediated by the nuclear amine oxidase homolog LSD1
  publication-title: Cell
– volume: 101
  start-page: 16659
  year: 2004
  end-page: 16664
  ident: bib25
  article-title: Histone deacetylase inhibition-mediated neuronal differentiation of multipotent adult neural progenitor cells
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 12
  start-page: 425
  year: 2003
  end-page: 435
  ident: bib42
  article-title: A mutant form of MeCP2 protein associated with human Rett syndrome cannot be displaced from methylated DNA by notch in Xenopus embryos
  publication-title: Mol. Cell
– volume: 277
  start-page: 41038
  year: 2002
  end-page: 41045
  ident: bib8
  article-title: REST repression of neuronal genes requires components of the hSWI.SNF complex
  publication-title: J. Biol. Chem.
– volume: 275
  start-page: 9461
  year: 2000
  end-page: 9467
  ident: bib20
  article-title: The corepressor mSin3A is a functional component of the REST-CoREST repressor complex
  publication-title: J. Biol. Chem.
– volume: 23
  start-page: S32
  year: 2001
  end-page: S37
  ident: bib31
  article-title: The biological functions of the methyl-CpG-binding protein MeCP2 and its implication in Rett syndrome
  publication-title: Brain Dev. Suppl.
– volume: 140
  start-page: 1497
  year: 1998
  end-page: 1509
  ident: bib41
  article-title: A critical temporal requirement for the retinoblastoma protein family during neuronal determination
  publication-title: J. Cell Biol.
– volume: 10
  start-page: 169
  year: 1995
  end-page: 184
  ident: bib43
  article-title: Retinoic acid and retinoic acid receptors in development
  publication-title: Mol. Neurobiol.
– volume: 31
  start-page: 353
  year: 2001
  end-page: 365
  ident: bib6
  article-title: Regulation of neuronal traits by a novel transcriptional complex
  publication-title: Neuron
– volume: 14
  start-page: 727
  year: 2004
  end-page: 738
  ident: bib33
  article-title: Localized domains of g9a-mediated histone methylation are required for silencing of neuronal genes
  publication-title: Mol. Cell
– volume: 422
  start-page: 735
  year: 2003
  end-page: 738
  ident: bib39
  article-title: Coordinated histone modifications mediated by a CtBP co-repressor complex
  publication-title: Nature
– volume: 6
  start-page: 73
  year: 2004
  end-page: 77
  ident: bib35
  article-title: Histone H3 lysine 4 methylation patterns in higher eukaryotic genes
  publication-title: Nat. Cell Biol.
– volume: 93
  start-page: 9881
  year: 1996
  end-page: 9886
  ident: bib37
  article-title: Identification of potential target genes for the neuron-restrictive silencer factor
  publication-title: Proc. Natl. Acad. Sci. USA
– start-page: 26
  year: 1997
  end-page: 63
  ident: bib1
  article-title: The determination of the neuronal phenotype
  publication-title: Molecular and Cellular Approaches to Neuronal Development
– volume: 97
  start-page: 12318
  year: 2000
  end-page: 12323
  ident: bib32
  article-title: Constitutive expression of the neuron-restrictive silencer factor (NRSF)/REST in differentiating neurons disrupts neuronal gene expression and causes axon pathfinding errors in vivo
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 22
  start-page: 2990
  year: 1994
  end-page: 2997
  ident: bib17
  article-title: High sensitivity mapping of methylated cytosines
  publication-title: Nucleic Acids Res.
– volume: 110
  start-page: 385
  year: 2002
  end-page: 397
  ident: bib48
  article-title: Directed differentiation of embryonic stem cells into motor neurons
  publication-title: Cell
– volume: 3
  start-page: 271
  year: 2002
  end-page: 280
  ident: bib30
  article-title: Neural induction, the default model and embryonic stem cells
  publication-title: Nat. Rev. Neurosci.
– volume: 414
  start-page: 112
  year: 2001
  end-page: 117
  ident: bib44
  article-title: The development of neural stem cells
  publication-title: Nature
– volume: 96
  start-page: 211
  year: 1999
  end-page: 224
  ident: bib18
  article-title: Progression from extrinsic to intrinsic signaling in cell fate specification: a view from the nervous system
  publication-title: Cell
– volume: 116
  start-page: 779
  year: 2004
  end-page: 793
  ident: bib27
  article-title: A small modulatory dsRNA specifies the fate of adult neural stem cells
  publication-title: Cell
– volume: 27
  start-page: 322
  year: 2001
  end-page: 326
  ident: bib21
  article-title: A mouse Mecp2-null mutation causes neurological symptoms that mimic Rett syndrome
  publication-title: Nat. Genet.
– volume: 267
  start-page: 1360
  year: 1995
  end-page: 1363
  ident: bib36
  article-title: The neuron-restrictive silencer factor (NRSF): a coordinate repressor of multiple neuron-specific genes
  publication-title: Science
– volume: 21
  start-page: 455
  year: 1998
  end-page: 458
  ident: bib34
  article-title: Identifying the missing links: genes that connect neural induction and primary neurogenesis in vertebrate embryos
  publication-title: Neuron
– volume: 302
  start-page: 890
  year: 2003
  ident: 10.1016/j.cell.2005.03.013_bib29
  article-title: DNA methylation-related chromatin remodeling in activity-dependent BDNF gene regulation
  publication-title: Science
  doi: 10.1126/science.1090842
– volume: 97
  start-page: 12318
  year: 2000
  ident: 10.1016/j.cell.2005.03.013_bib32
  article-title: Constitutive expression of the neuron-restrictive silencer factor (NRSF)/REST in differentiating neurons disrupts neuronal gene expression and causes axon pathfinding errors in vivo
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.97.22.12318
– volume: 161
  start-page: 223
  year: 2003
  ident: 10.1016/j.cell.2005.03.013_bib47
  article-title: Active repression by unliganded retinoid receptors in development: less is sometimes more
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200211117
– volume: 110
  start-page: 385
  year: 2002
  ident: 10.1016/j.cell.2005.03.013_bib48
  article-title: Directed differentiation of embryonic stem cells into motor neurons
  publication-title: Cell
  doi: 10.1016/S0092-8674(02)00835-8
– volume: 80
  start-page: 949
  year: 1995
  ident: 10.1016/j.cell.2005.03.013_bib16
  article-title: REST: a mammalian silencer protein that restricts sodium channel gene expression to neurons
  publication-title: Cell
  doi: 10.1016/0092-8674(95)90298-8
– volume: 168
  start-page: 342
  year: 1995
  ident: 10.1016/j.cell.2005.03.013_bib5
  article-title: Embryonic stem cells express neuronal properties in vitro
  publication-title: Dev. Biol.
  doi: 10.1006/dbio.1995.1085
– volume: 101
  start-page: 16659
  year: 2004
  ident: 10.1016/j.cell.2005.03.013_bib25
  article-title: Histone deacetylase inhibition-mediated neuronal differentiation of multipotent adult neural progenitor cells
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0407643101
– volume: 61
  start-page: 1596
  year: 2004
  ident: 10.1016/j.cell.2005.03.013_bib24
  article-title: Ubiquitin-free routes into the proteasome
  publication-title: Cell. Mol. Life Sci.
  doi: 10.1007/s00018-004-4133-9
– volume: 99
  start-page: 7420
  year: 2002
  ident: 10.1016/j.cell.2005.03.013_bib22
  article-title: A core-BRAF35 complex containing histone deacetylase mediates repression of neuronal-specific genes
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.112008599
– volume: 298
  start-page: 1747
  year: 2002
  ident: 10.1016/j.cell.2005.03.013_bib28
  article-title: Corepressor-dependent silencing of chromosomal regions encoding neuronal genes
  publication-title: Science
  doi: 10.1126/science.1076469
– volume: 277
  start-page: 41038
  year: 2002
  ident: 10.1016/j.cell.2005.03.013_bib8
  article-title: REST repression of neuronal genes requires components of the hSWI.SNF complex
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M205691200
– volume: 302
  start-page: 885
  year: 2003
  ident: 10.1016/j.cell.2005.03.013_bib15
  article-title: Derepression of BDNF transcription involves calcium-dependent phosphorylation of MeCP2
  publication-title: Science
  doi: 10.1126/science.1086446
– volume: 20
  start-page: 136
  year: 1998
  ident: 10.1016/j.cell.2005.03.013_bib13
  article-title: NRSF/REST is required in vivo for repression of multiple neuronal target genes during embryogenesis
  publication-title: Nat. Genet.
  doi: 10.1038/2431
– volume: 12
  start-page: 425
  year: 2003
  ident: 10.1016/j.cell.2005.03.013_bib42
  article-title: A mutant form of MeCP2 protein associated with human Rett syndrome cannot be displaced from methylated DNA by notch in Xenopus embryos
  publication-title: Mol. Cell
  doi: 10.1016/S1097-2765(03)00276-4
– volume: 35
  start-page: 865
  year: 2002
  ident: 10.1016/j.cell.2005.03.013_bib11
  article-title: LeX/ssea-1 is expressed by adult mouse CNS stem cells, identifying them as nonependymal
  publication-title: Neuron
  doi: 10.1016/S0896-6273(02)00835-8
– volume: 21
  start-page: 455
  year: 1998
  ident: 10.1016/j.cell.2005.03.013_bib34
  article-title: Identifying the missing links: genes that connect neural induction and primary neurogenesis in vertebrate embryos
  publication-title: Neuron
  doi: 10.1016/S0896-6273(00)80554-1
– volume: 119
  start-page: 941
  year: 2004
  ident: 10.1016/j.cell.2005.03.013_bib40
  article-title: Histone demethylation mediated by the nuclear amine oxidase homolog LSD1
  publication-title: Cell
  doi: 10.1016/j.cell.2004.12.012
– volume: 93
  start-page: 9881
  year: 1996
  ident: 10.1016/j.cell.2005.03.013_bib37
  article-title: Identification of potential target genes for the neuron-restrictive silencer factor
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.93.18.9881
– volume: 16
  start-page: 6
  year: 2002
  ident: 10.1016/j.cell.2005.03.013_bib9
  article-title: DNA methylation patterns and epigenetic memory
  publication-title: Genes Dev.
  doi: 10.1101/gad.947102
– volume: 15
  start-page: 2111
  year: 2001
  ident: 10.1016/j.cell.2005.03.013_bib26
  article-title: Active repression of RAR signaling is required for head formation
  publication-title: Genes Dev.
  doi: 10.1101/gad.908801
– volume: 10
  start-page: 169
  year: 1995
  ident: 10.1016/j.cell.2005.03.013_bib43
  article-title: Retinoic acid and retinoic acid receptors in development
  publication-title: Mol. Neurobiol.
  doi: 10.1007/BF02740674
– volume: 22
  start-page: 2990
  year: 1994
  ident: 10.1016/j.cell.2005.03.013_bib17
  article-title: High sensitivity mapping of methylated cytosines
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/22.15.2990
– volume: 11
  start-page: 2494
  year: 1997
  ident: 10.1016/j.cell.2005.03.013_bib4
  article-title: Intergenic transcription and transinduction of the human beta-globin locus
  publication-title: Genes Dev.
  doi: 10.1101/gad.11.19.2494
– volume: 27
  start-page: 322
  year: 2001
  ident: 10.1016/j.cell.2005.03.013_bib21
  article-title: A mouse Mecp2-null mutation causes neurological symptoms that mimic Rett syndrome
  publication-title: Nat. Genet.
  doi: 10.1038/85899
– volume: 414
  start-page: 112
  year: 2001
  ident: 10.1016/j.cell.2005.03.013_bib44
  article-title: The development of neural stem cells
  publication-title: Nature
  doi: 10.1038/35102174
– volume: 6
  start-page: 73
  year: 2004
  ident: 10.1016/j.cell.2005.03.013_bib35
  article-title: Histone H3 lysine 4 methylation patterns in higher eukaryotic genes
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb1076
– volume: 15
  start-page: 172
  year: 2003
  ident: 10.1016/j.cell.2005.03.013_bib19
  article-title: Histone and chromatin cross-talk
  publication-title: Curr. Opin. Cell Biol.
  doi: 10.1016/S0955-0674(03)00013-9
– volume: 101
  start-page: 10458
  year: 2004
  ident: 10.1016/j.cell.2005.03.013_bib10
  article-title: Genome-wide analysis of repressor element 1 silencing transcription factor/neuron-restrictive silencing factor (REST/NRSF) target genes
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0401827101
– volume: 275
  start-page: 9461
  year: 2000
  ident: 10.1016/j.cell.2005.03.013_bib20
  article-title: The corepressor mSin3A is a functional component of the REST-CoREST repressor complex
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.275.13.9461
– volume: 37
  start-page: 31
  year: 2005
  ident: 10.1016/j.cell.2005.03.013_bib23
  article-title: Loss of silent-chromatin looping and impaired imprinting of DLX5 in Rett syndrome
  publication-title: Nat. Genet.
  doi: 10.1038/ng1491
– volume: 109
  start-page: 801
  year: 2002
  ident: 10.1016/j.cell.2005.03.013_bib7
  article-title: Histone methylation: dynamic or static?
  publication-title: Cell
  doi: 10.1016/S0092-8674(02)00798-5
– volume: 96
  start-page: 211
  year: 1999
  ident: 10.1016/j.cell.2005.03.013_bib18
  article-title: Progression from extrinsic to intrinsic signaling in cell fate specification: a view from the nervous system
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)80561-9
– volume: 126
  start-page: 525
  year: 1999
  ident: 10.1016/j.cell.2005.03.013_bib12
  article-title: Mash1 regulates neurogenesis in the ventral telencephalon
  publication-title: Development
  doi: 10.1242/dev.126.3.525
– volume: 422
  start-page: 735
  year: 2003
  ident: 10.1016/j.cell.2005.03.013_bib39
  article-title: Coordinated histone modifications mediated by a CtBP co-repressor complex
  publication-title: Nature
  doi: 10.1038/nature01550
– volume: 94
  start-page: 8842
  year: 1997
  ident: 10.1016/j.cell.2005.03.013_bib3
  article-title: A calcium responsive element that regulates expression of two calcium binding proteins in Purkinje cells
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.94.16.8842
– volume: 23
  start-page: S32
  year: 2001
  ident: 10.1016/j.cell.2005.03.013_bib31
  article-title: The biological functions of the methyl-CpG-binding protein MeCP2 and its implication in Rett syndrome
  publication-title: Brain Dev. Suppl.
  doi: 10.1016/S0387-7604(01)00333-3
– volume: 96
  start-page: 9873
  year: 1999
  ident: 10.1016/j.cell.2005.03.013_bib2
  article-title: CoREST: a functional corepressor required for regulation of neural-specific gene expression
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.96.17.9873
– volume: 31
  start-page: 353
  year: 2001
  ident: 10.1016/j.cell.2005.03.013_bib6
  article-title: Regulation of neuronal traits by a novel transcriptional complex
  publication-title: Neuron
  doi: 10.1016/S0896-6273(01)00371-3
– volume: 14
  start-page: 727
  year: 2004
  ident: 10.1016/j.cell.2005.03.013_bib33
  article-title: Localized domains of g9a-mediated histone methylation are required for silencing of neuronal genes
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2004.05.026
– volume: 267
  start-page: 1360
  year: 1995
  ident: 10.1016/j.cell.2005.03.013_bib36
  article-title: The neuron-restrictive silencer factor (NRSF): a coordinate repressor of multiple neuron-specific genes
  publication-title: Science
  doi: 10.1126/science.7871435
– volume: 99
  start-page: 15536
  year: 2002
  ident: 10.1016/j.cell.2005.03.013_bib45
  article-title: Transcriptional profiling of a mouse model for Rett syndrome reveals subtle transcriptional changes in the brain
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.242566899
– volume: 27
  start-page: 327
  year: 2001
  ident: 10.1016/j.cell.2005.03.013_bib14
  article-title: Deficiency of methyl-CpG binding protein-2 in CNS neurons results in a Rett-like phenotype in mice
  publication-title: Nat. Genet.
  doi: 10.1038/85906
– volume: 23
  start-page: S147
  year: 2001
  ident: 10.1016/j.cell.2005.03.013_bib46
  article-title: Mutations in the gene encoding methyl-CpG-binding protein 2 cause Rett syndrome
  publication-title: Brain Dev. Suppl.
  doi: 10.1016/S0387-7604(01)00376-X
– volume: 116
  start-page: 779
  year: 2004
  ident: 10.1016/j.cell.2005.03.013_bib27
  article-title: A small modulatory dsRNA specifies the fate of adult neural stem cells
  publication-title: Cell
  doi: 10.1016/S0092-8674(04)00248-X
– volume: 140
  start-page: 1497
  year: 1998
  ident: 10.1016/j.cell.2005.03.013_bib41
  article-title: A critical temporal requirement for the retinoblastoma protein family during neuronal determination
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.140.6.1497
– start-page: 26
  year: 1997
  ident: 10.1016/j.cell.2005.03.013_bib1
  article-title: The determination of the neuronal phenotype
– volume: 3
  start-page: 271
  year: 2002
  ident: 10.1016/j.cell.2005.03.013_bib30
  article-title: Neural induction, the default model and embryonic stem cells
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn786
– volume: 35
  start-page: 243
  year: 2002
  ident: 10.1016/j.cell.2005.03.013_bib38
  article-title: Mice with truncated MeCP2 recapitulate many Rett syndrome features and display hyperacetylation of histone H3
  publication-title: Neuron
  doi: 10.1016/S0896-6273(02)00768-7
– reference: 15907461 - Cell. 2005 May 20;121(4):499-501
SSID ssj0008555
Score 2.4194198
Snippet Regulation of neuronal gene expression is critical to central nervous system development. Here, we show that REST regulates the transitions from pluripotent to...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 645
SubjectTerms Animals
Cell Differentiation - genetics
Cells, Cultured
Chromatin - genetics
Chromatin - metabolism
DNA Methylation
DNA-Binding Proteins - metabolism
Gene Expression Regulation, Developmental - genetics
Genes, Regulator - genetics
Mice
Nerve Tissue Proteins - metabolism
Nervous System - embryology
Neuronal Plasticity - genetics
Neurons - metabolism
Pluripotent Stem Cells - metabolism
Repressor Proteins - genetics
Repressor Proteins - metabolism
Transcription Factors - genetics
Transcription Factors - metabolism
Title REST and Its Corepressors Mediate Plasticity of Neuronal Gene Chromatin throughout Neurogenesis
URI https://dx.doi.org/10.1016/j.cell.2005.03.013
https://www.ncbi.nlm.nih.gov/pubmed/15907476
https://www.proquest.com/docview/17467186
https://www.proquest.com/docview/67846336
Volume 121
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6LIHgR32_NwZtU2yZp06MuyiqseFhhb6F5rKxIu-x2D_57Z5pU8bAehJ7aSQmTzJOZ-Qi5NMZIyUAAMzD_EdcsjUoc-skshBvapGCzsFF4-JwNXvnTWIx7pN_1wmBZZdD9Xqe32jq8uQncvJlNp9jjW6Qyy8HjwMChjdsZl20T3_juWxtLITyKQQGSD9ShccbXeGFyPORV2HWcsFXGaZXz2Rqhhy2yGbxHeus3uE16rtoh6x5P8nOXKGDniJaVpY_NgvbruS9zrecLOmwhORx9AW8ZC6mbT1pPaDuaA_-I06cpDspFB7aiAb2nXjae5A014nSxR14f7kf9QRQQFCIDgU8TOV7y3DhpZJlaYXRsmWVJokFIrZDa6CyfWJsapwumC-CDc9xybMMSmk00Z_tkraord0ioSCfWFNIWwlqe5wUwPM-cLcDfLcs4N0ck6VinTBgvjigXH6qrI3tXyG7EvRQqZgrYfUSuvtfM_HCNP6lFdyLq1xVRoP3_XHfRHZ8C2cHPZeXq5UIliLWSyGw1BZhynjEGFAf-3H_2KTCtkGfH_9zVCdlop8DCk8anZK2ZL90Z-DeNPm8v8Bd5mPhG
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQVQUXBC0tj1J84IZSktiOnWO7Au0WFvWwSHuz4sdWi1CCdrMH_j0zsQPisByQckrGkTX2zHy2ZuYj5MxaqxQDAywg_CfcsDypsOknc3DcMDaHmIWFwuPbYnjH_07FdIMM-loYTKuMvj_49M5bxzcXUZsXj_M51viWuSokIA48OOC5_ROgAYn8DaPpnxd3rIQINAYlmD6Ix8qZkOSFt-PxYoX9SjO2LjqtQ59dFLraJTsRPtLfYYZ7ZMPXX8jnQCj59JVo0OeEVrWjo3ZJB80i5Lk2iyUdd5wcnv4DuIyZ1O0TbWa0682Bf8T20xQ75SKCrWmk72lWbRD5jy5xvtwnd1eXk8EwiRQKiYWTT5t4XnFpvbKqyp2wJnXMsSwzYKVOKGNNIWfO5dabkpkS9OA9dxzrsIRhM8PZN7JZN7U_IFTkM2dL5UrhHJeyBI3LwrsSAG9VpdIekqxXnbaxvzjSXDzoPpHsXqO6kfhS6JRpUPchOX8Z8xi6a7wrLfoV0W_2iAb3_-640375NBgPfq5q36yWOkOylUwV6yUglvOCMZD4Htb9dZ4C7xVkcfTBWZ2SreFkfKNvRrfXx2S7awkLT57-IJvtYuVPAOy05me3mZ8B94j7ZQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=REST+and+Its+Corepressors+Mediate+Plasticity+of+Neuronal+Gene+Chromatin+throughout+Neurogenesis&rft.jtitle=Cell&rft.au=Ballas%2C+Nurit&rft.au=Grunseich%2C+Christopher&rft.au=Lu%2C+Diane+D.&rft.au=Speh%2C+Joan+C.&rft.date=2005-05-20&rft.pub=Elsevier+Inc&rft.issn=0092-8674&rft.volume=121&rft.issue=4&rft.spage=645&rft.epage=657&rft_id=info:doi/10.1016%2Fj.cell.2005.03.013&rft.externalDocID=S0092867405002850
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0092-8674&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0092-8674&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0092-8674&client=summon