Scientific and technological advances in the development of sustainable disease management tools: a case study on kiwifruit bacterial canker

Plant disease outbreaks are increasing in a world facing climate change and globalized markets, representing a serious threat to food security. Kiwifruit Bacterial Canker (KBC), caused by the bacterium Pseudomonas syringae pv. actinidiae (Psa), was selected as a case study for being an example of a...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in plant science Vol. 14; p. 1306420
Main Authors Santos, Miguel G., Nunes da Silva, Marta, Vasconcelos, Marta W., Carvalho, Susana M. P.
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Plant disease outbreaks are increasing in a world facing climate change and globalized markets, representing a serious threat to food security. Kiwifruit Bacterial Canker (KBC), caused by the bacterium Pseudomonas syringae pv. actinidiae (Psa), was selected as a case study for being an example of a pandemic disease that severely impacted crop production, leading to huge economic losses, and for the effort that has been made to control this disease. This review provides an in-depth and critical analysis on the scientific progress made for developing alternative tools for sustainable KBC management. Their status in terms of technological maturity is discussed and a set of opportunities and threats are also presented. The gradual replacement of susceptible kiwifruit cultivars, with more tolerant ones, significantly reduced KBC incidence and was a major milestone for Psa containment – which highlights the importance of plant breeding. Nonetheless, this is a very laborious process. Moreover, the potential threat of Psa evolving to more virulent biovars, or resistant lineages to existing control methods, strengthens the need of keep on exploring effective and more environmentally friendly tools for KBC management. Currently, plant elicitors and beneficial fungi and bacteria are already being used in the field with some degree of success. Precision agriculture technologies, for improving early disease detection and preventing pathogen dispersal, are also being developed and optimized. These include hyperspectral technologies and forecast models for Psa risk assessment, with the latter being slightly more advanced in terms of technological maturity. Additionally, plant protection products based on innovative formulations with molecules with antibacterial activity against Psa ( e.g ., essential oils, phages and antimicrobial peptides) have been validated primarily in laboratory trials and with few compounds already reaching field application. The lessons learned with this pandemic disease, and the acquired scientific and technological knowledge, can be of importance for sustainably managing other plant diseases and handling future pandemic outbreaks.
AbstractList Plant disease outbreaks are increasing in a world facing climate change and globalized markets, representing a serious threat to food security. Kiwifruit Bacterial Canker (KBC), caused by the bacterium Pseudomonas syringae pv. actinidiae (Psa), was selected as a case study for being an example of a pandemic disease that severely impacted crop production, leading to huge economic losses, and for the effort that has been made to control this disease. This review provides an in-depth and critical analysis on the scientific progress made for developing alternative tools for sustainable KBC management. Their status in terms of technological maturity is discussed and a set of opportunities and threats are also presented. The gradual replacement of susceptible kiwifruit cultivars, with more tolerant ones, significantly reduced KBC incidence and was a major milestone for Psa containment – which highlights the importance of plant breeding. Nonetheless, this is a very laborious process. Moreover, the potential threat of Psa evolving to more virulent biovars, or resistant lineages to existing control methods, strengthens the need of keep on exploring effective and more environmentally friendly tools for KBC management. Currently, plant elicitors and beneficial fungi and bacteria are already being used in the field with some degree of success. Precision agriculture technologies, for improving early disease detection and preventing pathogen dispersal, are also being developed and optimized. These include hyperspectral technologies and forecast models for Psa risk assessment, with the latter being slightly more advanced in terms of technological maturity. Additionally, plant protection products based on innovative formulations with molecules with antibacterial activity against Psa ( e.g ., essential oils, phages and antimicrobial peptides) have been validated primarily in laboratory trials and with few compounds already reaching field application. The lessons learned with this pandemic disease, and the acquired scientific and technological knowledge, can be of importance for sustainably managing other plant diseases and handling future pandemic outbreaks.
Plant disease outbreaks are increasing in a world facing climate change and globalized markets, representing a serious threat to food security. Kiwifruit Bacterial Canker (KBC), caused by the bacterium pv. (Psa), was selected as a case study for being an example of a pandemic disease that severely impacted crop production, leading to huge economic losses, and for the effort that has been made to control this disease. This review provides an in-depth and critical analysis on the scientific progress made for developing alternative tools for sustainable KBC management. Their status in terms of technological maturity is discussed and a set of opportunities and threats are also presented. The gradual replacement of susceptible kiwifruit cultivars, with more tolerant ones, significantly reduced KBC incidence and was a major milestone for Psa containment - which highlights the importance of plant breeding. Nonetheless, this is a very laborious process. Moreover, the potential threat of Psa evolving to more virulent biovars, or resistant lineages to existing control methods, strengthens the need of keep on exploring effective and more environmentally friendly tools for KBC management. Currently, plant elicitors and beneficial fungi and bacteria are already being used in the field with some degree of success. Precision agriculture technologies, for improving early disease detection and preventing pathogen dispersal, are also being developed and optimized. These include hyperspectral technologies and forecast models for Psa risk assessment, with the latter being slightly more advanced in terms of technological maturity. Additionally, plant protection products based on innovative formulations with molecules with antibacterial activity against Psa ( ., essential oils, phages and antimicrobial peptides) have been validated primarily in laboratory trials and with few compounds already reaching field application. The lessons learned with this pandemic disease, and the acquired scientific and technological knowledge, can be of importance for sustainably managing other plant diseases and handling future pandemic outbreaks.
Plant disease outbreaks are increasing in a world facing climate change and globalized markets, representing a serious threat to food security. Kiwifruit Bacterial Canker (KBC), caused by the bacterium Pseudomonas syringae pv. actinidiae (Psa), was selected as a case study for being an example of a pandemic disease that severely impacted crop production, leading to huge economic losses, and for the effort that has been made to control this disease. This review provides an in-depth and critical analysis on the scientific progress made for developing alternative tools for sustainable KBC management. Their status in terms of technological maturity is discussed and a set of opportunities and threats are also presented. The gradual replacement of susceptible kiwifruit cultivars, with more tolerant ones, significantly reduced KBC incidence and was a major milestone for Psa containment – which highlights the importance of plant breeding. Nonetheless, this is a very laborious process. Moreover, the potential threat of Psa evolving to more virulent biovars, or resistant lineages to existing control methods, strengthens the need of keep on exploring effective and more environmentally friendly tools for KBC management. Currently, plant elicitors and beneficial fungi and bacteria are already being used in the field with some degree of success. Precision agriculture technologies, for improving early disease detection and preventing pathogen dispersal, are also being developed and optimized. These include hyperspectral technologies and forecast models for Psa risk assessment, with the latter being slightly more advanced in terms of technological maturity. Additionally, plant protection products based on innovative formulations with molecules with antibacterial activity against Psa (e.g., essential oils, phages and antimicrobial peptides) have been validated primarily in laboratory trials and with few compounds already reaching field application. The lessons learned with this pandemic disease, and the acquired scientific and technological knowledge, can be of importance for sustainably managing other plant diseases and handling future pandemic outbreaks.
Plant disease outbreaks are increasing in a world facing climate change and globalized markets, representing a serious threat to food security. Kiwifruit Bacterial Canker (KBC), caused by the bacterium Pseudomonas syringae pv. actinidiae (Psa), was selected as a case study for being an example of a pandemic disease that severely impacted crop production, leading to huge economic losses, and for the effort that has been made to control this disease. This review provides an in-depth and critical analysis on the scientific progress made for developing alternative tools for sustainable KBC management. Their status in terms of technological maturity is discussed and a set of opportunities and threats are also presented. The gradual replacement of susceptible kiwifruit cultivars, with more tolerant ones, significantly reduced KBC incidence and was a major milestone for Psa containment - which highlights the importance of plant breeding. Nonetheless, this is a very laborious process. Moreover, the potential threat of Psa evolving to more virulent biovars, or resistant lineages to existing control methods, strengthens the need of keep on exploring effective and more environmentally friendly tools for KBC management. Currently, plant elicitors and beneficial fungi and bacteria are already being used in the field with some degree of success. Precision agriculture technologies, for improving early disease detection and preventing pathogen dispersal, are also being developed and optimized. These include hyperspectral technologies and forecast models for Psa risk assessment, with the latter being slightly more advanced in terms of technological maturity. Additionally, plant protection products based on innovative formulations with molecules with antibacterial activity against Psa (e.g., essential oils, phages and antimicrobial peptides) have been validated primarily in laboratory trials and with few compounds already reaching field application. The lessons learned with this pandemic disease, and the acquired scientific and technological knowledge, can be of importance for sustainably managing other plant diseases and handling future pandemic outbreaks.Plant disease outbreaks are increasing in a world facing climate change and globalized markets, representing a serious threat to food security. Kiwifruit Bacterial Canker (KBC), caused by the bacterium Pseudomonas syringae pv. actinidiae (Psa), was selected as a case study for being an example of a pandemic disease that severely impacted crop production, leading to huge economic losses, and for the effort that has been made to control this disease. This review provides an in-depth and critical analysis on the scientific progress made for developing alternative tools for sustainable KBC management. Their status in terms of technological maturity is discussed and a set of opportunities and threats are also presented. The gradual replacement of susceptible kiwifruit cultivars, with more tolerant ones, significantly reduced KBC incidence and was a major milestone for Psa containment - which highlights the importance of plant breeding. Nonetheless, this is a very laborious process. Moreover, the potential threat of Psa evolving to more virulent biovars, or resistant lineages to existing control methods, strengthens the need of keep on exploring effective and more environmentally friendly tools for KBC management. Currently, plant elicitors and beneficial fungi and bacteria are already being used in the field with some degree of success. Precision agriculture technologies, for improving early disease detection and preventing pathogen dispersal, are also being developed and optimized. These include hyperspectral technologies and forecast models for Psa risk assessment, with the latter being slightly more advanced in terms of technological maturity. Additionally, plant protection products based on innovative formulations with molecules with antibacterial activity against Psa (e.g., essential oils, phages and antimicrobial peptides) have been validated primarily in laboratory trials and with few compounds already reaching field application. The lessons learned with this pandemic disease, and the acquired scientific and technological knowledge, can be of importance for sustainably managing other plant diseases and handling future pandemic outbreaks.
Author Carvalho, Susana M. P.
Santos, Miguel G.
Nunes da Silva, Marta
Vasconcelos, Marta W.
AuthorAffiliation 2 Universidade Católica Portuguesa, CBQF – Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia , Porto , Portugal
1 GreenUPorto—Sustainable Agrifood Production Research Centre/Inov4Agro, DGAOT, Faculty of Sciences of the University of Porto , Vairão , Portugal
AuthorAffiliation_xml – name: 2 Universidade Católica Portuguesa, CBQF – Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia , Porto , Portugal
– name: 1 GreenUPorto—Sustainable Agrifood Production Research Centre/Inov4Agro, DGAOT, Faculty of Sciences of the University of Porto , Vairão , Portugal
Author_xml – sequence: 1
  givenname: Miguel G.
  surname: Santos
  fullname: Santos, Miguel G.
– sequence: 2
  givenname: Marta
  surname: Nunes da Silva
  fullname: Nunes da Silva, Marta
– sequence: 3
  givenname: Marta W.
  surname: Vasconcelos
  fullname: Vasconcelos, Marta W.
– sequence: 4
  givenname: Susana M. P.
  surname: Carvalho
  fullname: Carvalho, Susana M. P.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38273947$$D View this record in MEDLINE/PubMed
BookMark eNp1kk1vVCEUhm9Mja21P8CNYelmRi5wP3BjTONHkyYu1MQdORcOU1oGRuCO6X_wR8t0pqY1kQ0f57zPmxPe581RiAGb5mVLl5yP8o3d-LxklPFly2kvGH3SnLR9LxaiZz-OHpyPm7Ocr2ldHaVSDs-aYz6ygUsxnDS_v2qHoTjrNIFgSEF9FaKPK6fBEzBbCBozcYGUKyQGt-jjZl0VJFqS51zABZh8LbmMkJGsIcAK7zpKjD6_JUD0rpDLbG5JDOTG_XI2za6QCXTB5KqRhnCD6UXz1ILPeHbYT5vvHz98O_-8uPzy6eL8_eVCC9mVhZlsCzhqYHycKE68Dt8blIbaiXeMItLeMk2xRRg4wCil7QZab30n5GT5aXOx55oI12qT3BrSrYrg1N1DTCsFqTjtUQlTjdhgBeOdoGM3ilbIvmPCmAGENZX1bs_azNMaja6DJ_CPoI8rwV2pVdyqlo6V13WV8PpASPHnjLmotcsavYeAcc6KSSbp2Iu2ra2vHpr9dbn_z9ow7Bt0ijkntEq7AsXFnbfz1VTtwqN24VG78KhDeKqy_Ud5D_-_5g_b1svm
CitedBy_id crossref_primary_10_1039_D4RA02006E
crossref_primary_10_3390_horticulturae11030300
crossref_primary_10_3390_horticulturae10090944
crossref_primary_10_3390_agronomy14020383
crossref_primary_10_1016_j_scienta_2024_113543
crossref_primary_10_3390_agriculture15010001
crossref_primary_10_1079_planthealthcases_2024_0022
Cites_doi 10.17660/ActaHortic.2015.1095.21
10.1007/978-1-4939-2285-7_3
10.1186/s12864-018-4967-4
10.1007/s00705-022-05440-8
10.5423/PPJ.OA.02.2019.0035
10.1080/01140671.2014.894543
10.3233/JBR-160115
10.30843/nzpp.2013.66.5601
10.1016/j.pbi.2019.12.006
10.34133/2019/9237136
10.1007/s10658-021-02441-2
10.3389/fpls.2018.01245
10.1007/s10658-014-0515-5
10.1002/ps.7548
10.1104/pp.18.01224
10.1016/j.bioteChadv.2015.03.007
10.17660/ActaHortic.2019.1243.14
10.3390/cli10020014
10.3389/fmedt.2020.610997
10.3390/ijms22094375
10.21273/HORTSCI.39.6.1165
10.1002/ps.5324
10.1080/0972060X.2016.1278184
10.1111/pce.14224
10.17660/ActaHortic.2014.1048.2
10.1016/j.fitote.2021.105070
10.4014/jmb.1806.06055
10.1007/s00253-019-10301-7
10.1016/j.cpb.2019.03.002
10.3390/plants12040918
10.3390/plants11162154
10.1016/j.rse.2012.09.019
10.3389/fpls.2019.00941
10.17660/ActaHortic.2022.1332.15
10.1128/AAC.50.4.1480–1488.2006
10.5423/PPJ.NT.01.2016.0006
10.3389/fpls.2020.01022
10.1016/j.phytochem.2021.113050
10.3389/fpls.2014.00804
10.1111/ppa.13184
10.3389/fpls.2018.00268
10.1016/j.jbiotec.2018.07.044
10.17660/ActaHortic.2011.913.59
10.1007/s10658-020-02119-1
10.1007/s00248-019-01459-8
10.3390/antibiotics10050554
10.3390/crops2040025
10.1071/FP14021
10.1146/annurev-phyto-021621-114208
10.1007/s13313-021-00783-3
10.1007/s10327-018-0804-5
10.4172/2471-2698.1000126
10.17660/ActaHortic.2019.1243.12
10.17660/ActaHortic.2022.1332.16
10.18805/ag.R-1835
10.5423/PPJ.OA.05.2019.0154
10.17660/ActaHortic.2022.1332.14
10.17660/eJHS.2019/84.4.2
10.5897/AJPP12.263
10.1094/PDIS-03-15-0340-FE
10.1080/14786419.2015.1022543
10.1371/journal.pone.0192153
10.3390/v13040631
10.1186/s13007-015-0043-0
10.1371/journal.ppat.1010542
10.1371/journal.pone.0071687
10.1016/j.micres.2022.127048
10.17660/ActaHortic.2015.1096.24
10.1039/d1ra02120f
10.1016/j.cclet.2018.04.011
10.1111/ppa.12938
10.1007/s00425-020-03549-1
10.17660/ActaHortic.2015.1096.50
10.3390/cells8091029
10.1371/journal.pone.0201571
10.3390/v13112275
10.17660/ActaHortic.2015.1095.17
10.1128/AEM.00062-14
10.1146/annurev-phyto-080516-035530
10.1038/ncomms3640
10.1080/11263504.2019.1699194
10.1111/ppa.13112
10.1094/PHYTO-04-16-0166-R
10.1080/14786419.2019.1574784
10.3389/fpls.2017.00711
10.1016/j.btre.2015.10.007
10.1093/jxb/erx044
10.3390/ijms222212185
10.3233/JBR-160128
10.3390/pharmaceutics14020427
10.3390/plants8080287
10.3389/fpls.2018.01563
10.1016/j.plaphy.2021.02.045
10.1007/s00226-018-1063-5
10.1007/s00248-019-01416-5
10.3390/ijms19020373
10.1002/jobm.201300951
10.9787/PBB.2014.2.1.001
10.1093/gigascience/giz027
10.1146/annurev-arplant-042916-041132
10.1111/1462-2920.13662
10.1073/pnas.2022239118
10.1021/jm501084q
10.17660/ActaHortic.2016.1113.13
10.1021/acs.jafc.3c00233
10.1111/pbi.12733
10.1586/14787210.5.6.951
10.3390/molecules26051461
10.17660/ActaHortic.2015.1095.22
10.3923/ajppaj.2018.16.26
10.1094/PDIS-02-22-0348-SC
10.3389/fmicb.2019.02362
10.1111/aab.12476
10.1016/j.peptides.2021.170666
10.1007/s11103-015-0406-y
10.1007/s13197-019-04009-9
10.1016/j.chemosphere.2022.135045
10.1002/bip.22423
10.3390/jof8010009
10.1111/ppa.12810
10.17660/ActaHortic.2015.1096.40
10.1002/ptr.6823
10.17660/ActaHortic.2015.1095.16
10.17660/ActaHortic.2007.753.83
10.1007/s41348-022-00599-3
10.1093/jxb/erab550
10.1016/S0065-2164(10)70007-1
10.1016/j.jare.2019.03.004
10.5423/PPJ.OA.03.2016.0068
10.1016/j.jhazmat.2021.126193
10.1016/j.aac.2023.01.003
10.1111/aab.12150
10.3389/fpls.2019.00845
10.3389/fpls.2021.753217
10.3390/medicines4030058
10.1186/s40529-016-0159-1
10.1007/s11295-014-0771-8
10.3390/antibiotics10101143
10.3390/microorganisms8070974
10.1007/s10142-022-00887-z
10.1021/acsami.9b10028
10.1038/s41438-020-0338-9
10.3390/biom8010004
10.1186/s12896-019-0535-5
10.1007/s11104-015-2624-0
10.3390/toxins9120408
10.3390/v11020195
10.1016/j.jep.2011.10.029
10.1016/j.tibtech.2011.05.001
10.3390/rs6064723
10.3390/engproc2021009033
10.3389/fchem.2022.990734
10.1093/bioinformatics/btv537
10.1093/gbe/evx055
10.1111/ppa.13040
10.1111/pbi.12884
10.3390/microorganisms8060837
10.1371/journal.pone.0216120
10.3233/JBR-160118
10.1016/j.biocontrol.2017.03.003
10.1007/s10658-016-1080-x
10.3389/fmicb.2016.00208
10.1016/j.scienta.2021.109994
10.3389/fpls.2016.01419
10.1016/j.scienta.2023.111896
10.1016/j.peptides.2012.01.015
10.2503/hortj.OKD-163
10.1111/pbi.13006
10.1007/s11119-018-9594-1
10.3390/horticulturae9060712
10.5423/PPJ.RW.04.2020.0074
10.1590/0103-8478cr20180597
10.1371/journal.pone.0151169
10.3390/plants12040833
10.1371/journal.pone.0181499
10.3390/microorganisms10020425
10.1111/pbi.13021
10.1111/ppa.13734
10.1038/s41438-019-0184-9
10.3390/microorganisms7090286
10.17660/ActaHortic.2022.1332.13
10.1080/09064710.2018.1526965
10.1093/nar/gky425
10.1016/j.phytochem.2018.07.002
10.17660/ActaHortic.2015.1096.49
10.3389/fpls.2017.00696
10.1016/j.micres.2010.11.006
10.1080/03235408.2019.1647014
10.30843/nzpp.2017.70.61
10.1007/s41348-017-0096-6
10.1007/s13313-014-0328-1
10.1146/annurev-phyto-080417-050100
10.19084/rca.16916
10.1128/AEM.01688-15
10.1016/j.biocontrol.2022.104893
10.3390/CSAC2021-10560
10.3390/s17122772
10.1016/j.micpath.2022.105858
10.4014/jmb.1509.09012
ContentType Journal Article
Copyright Copyright © 2024 Santos, Nunes da Silva, Vasconcelos and Carvalho.
Copyright © 2024 Santos, Nunes da Silva, Vasconcelos and Carvalho 2024 Santos, Nunes da Silva, Vasconcelos and Carvalho
Copyright_xml – notice: Copyright © 2024 Santos, Nunes da Silva, Vasconcelos and Carvalho.
– notice: Copyright © 2024 Santos, Nunes da Silva, Vasconcelos and Carvalho 2024 Santos, Nunes da Silva, Vasconcelos and Carvalho
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3389/fpls.2023.1306420
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList CrossRef
PubMed


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1664-462X
ExternalDocumentID oai_doaj_org_article_4de8c27f42354085841496524dd7a4fd
PMC10808555
38273947
10_3389_fpls_2023_1306420
Genre Journal Article
Review
GroupedDBID 5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
CITATION
EBD
ECGQY
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
OK1
PGMZT
RNS
RPM
IPNFZ
NPM
RIG
7X8
5PM
ID FETCH-LOGICAL-c495t-dbf1ae8ca238b0eb34206de9d0fb3520ee06f2c0e1ea73aa899f5701ea6549bf3
IEDL.DBID M48
ISSN 1664-462X
IngestDate Wed Aug 27 01:25:27 EDT 2025
Thu Aug 21 18:36:06 EDT 2025
Fri Jul 11 10:29:42 EDT 2025
Thu Apr 03 06:51:34 EDT 2025
Thu Apr 24 22:55:49 EDT 2025
Tue Jul 01 03:41:48 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords precision agriculture
antimicrobial molecules
Actinidia spp
sustainable horticulture
plant breeding
plant elicitors
microbial biological control agents
Pseudomonas syringae pv. actinidiae
Language English
License Copyright © 2024 Santos, Nunes da Silva, Vasconcelos and Carvalho.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c495t-dbf1ae8ca238b0eb34206de9d0fb3520ee06f2c0e1ea73aa899f5701ea6549bf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
Edited by: Eduardo V. Soares, Instituto Superior de Engenharia do Porto (ISEP), Portugal
Joel L. Vanneste, The New Zealand Institute for Plant and Food Research Ltd, New Zealand
These authors have contributed equally to this work
Reviewed by: Pasquale Saldarelli, National Research Council (CNR), Italy
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fpls.2023.1306420
PMID 38273947
PQID 2929086411
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_4de8c27f42354085841496524dd7a4fd
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10808555
proquest_miscellaneous_2929086411
pubmed_primary_38273947
crossref_citationtrail_10_3389_fpls_2023_1306420
crossref_primary_10_3389_fpls_2023_1306420
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-00-00
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – year: 2023
  text: 2023-00-00
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in plant science
PublicationTitleAlternate Front Plant Sci
PublicationYear 2023
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Reis-Pereira (B153) 2021; 5
Atkinson (B10) 2009; 39
Ni (B127) 2021; 13
Beatrice (B15) 2017; 148
Callaway (B28) 2018; 560
Nguyen (B126) 2011; 29
Sawada (B159) 2019; 68
Zeitler (B210) 2013; 8
Krishna (B98) 2022; 73
Rossetti (B157) 2017; 124
Michelotti (B118) 2018; 19
Al-Saddik (B2) 2017; 17
Han (B74) 2021; 146
Borrelli (B23) 2018; 9
Urionabarrenetxea (B178) 2022; 303
Huang (B81) 2004; 39
Chen (B35) 2022; 195
Monchiero (B121) 2015; 44
Nunes da Silva (B130) 2019; 84
Wagemans (B187) 2022; 60
Song (B164) 2016; 32
Beatson (B16) 2012; 1048
Cacioppo (B27) 2015; 1095
Park (B141) 2018; 28
Ordóñez (B138) 2011; 166
Pinheiro (B146) 2020; 104
Holaskova (B77) 2015; 33
Yi (B203) 2021; 11
Vu (B184) 2020; 36
Wilson (B199) 2019; 19
Abelleira (B1) 2015; 38
Cellini (B31) 2021; 22
Stewart (B167) 2011; 1
Gu (B70) 2017; 58
Köhl (B97) 2019; 10
Narouei-Khandan (B124) 2013; 66
Kim (B90) 2018; 67
Oliveira (B136) 2019; 68
Asakura (B7) 2018; 87
Dong (B53) 2019; 180
Donati (B52) 2020; 80
Tontou (B176) 2016; 6
Wang (B190) 2020; 69
Bokor (B22) 2021; 416
B55
Gong (B68) 2019; 11
B56
Kumar (B99) 2018; 8
Liu (B103) 2021; 13
Park (B140) 2015; 31
Zhang (B211) 2022; 167
Collina (B38) 2016; 6
Flores (B62) 2020; 8
Bai (B13) 2022; 169
Colombi (B39) 2017; 19
Hoyte (B78) 2018; 133
Nardozza (B123) 2015; 1096
Gontijo (B69) 2021; 10
Ortigosa (B139) 2019; 17
Brunetti (B25) 2020; 158
Correia (B42) 2022; 1332
Yu (B205) 2016; 26
Benfield (B18) 2020; 2
Wang (B192) 2018; 13
Wicaksono (B198) 2018; 116
Jang (B84) 2012; 34
Di Lallo (B50) 2014; 54
Li (B101) 2019; 8
Pinheiro (B145) 2019; 7
Bergsträsser (B20) 2015; 11
Tang (B170) 2018; 154
Mariz-Ponte (B112) 2021; 26
Oliveira (B135) 2016; 7
Toda (B174) 2019; 2019
Vanneste (B179) 2017; 55
Yue (B209) 2020; 7
(B57) 2018
Chen (B34) 2021; 12
Bai (B12) 2021; 281
Mattarelli (B113) 2017; 20
Tripathi (B177) 2019; 17
Gao (B64) 2016; 11
Fister (B61) 2018; 9
Nunes da Silva (B131) 2022; 2
Taylor (B172) 2014; 42
Cotrut (B43) 2013; 56
White (B197) 2022; 129
Cellini (B30) 2022; 260
Chouhan (B37) 2017; 4
Cellini (B33) 2014; 165
Mohanty (B120) 2016; 7
Ramírez-Carrasco (B151) 2017; 8
Hemara (B75) 2022; 18
Sartori (B158) 2015; 1096
Debenham (B49) 2013; 1113
Kering (B89) 2019; 75
Jiang (B86) 2023; 72
Daranas (B46) 2018; 174
Wachowska (B186) 2017; 9
Balestra (B14) 2007; 753
Ma (B105) 2023; 71
Fiorentini (B58) 2019; 1243
Antoniacci (B6) 2019; 1243
Narouei-Khandan (B125) 2022; 10
Srivastava (B166) 2021; 35
Maes (B107) 2014; 41
Boulent (B24) 2019; 10
Varkonyi-Gasic (B181) 2019; 17
Nunes da Silva (B134) 2021; 1332
Zoysa (B215) 2015; 58
Qin (B150) 2020; 69
Kai (B88) 2018; 29
Zhang (B213) 2017; 8
McCann (B116) 2017; 9
Purahong (B149) 2018; 9
Gimranov (B66) 2022; 162
Voogd (B183) 2017; 68
Al-Saddik (B3) 2019; 20
Vanneste (B180) 2011; 913
Ashrafzadeh (B9) 2019; 52
Chibani (B36) 2019; 11
Sulakvelidze (B168) 2005
Rheinländer (B155) 2021; 50
Song (B165) 2021; 10
Beresford (B19) 2017; 107
de Jong (B48) 2019; 8
Kim (B91) 2019; 35
Ali (B4) 2022; 10
Wang (B196) 2018; 16
Reis-Pereira (B154) 2022; 11
Frampton (B63) 2014; 80
Wang (B189) 2023; 313
Sciubba (B160) 2019; 34
Couvin (B44) 2018; 46
Wang (B193) 2007; 1
Wang (B195) 2023; 12
Pucci (B148) 2018; 12
Hale (B73) 2007; 5
Tang (B171) 2019; 8
Yu (B207) 2022; 10
Marcon (B111) 2015; 1096
Yin (B204) 2019; 69
Tahir (B169) 2019; 9
Bektas (B17) 2015; 5
Do (B51) 2016; 32
Li (B1001) 2005; 32
Huang (B80) 2014; 10
Peng (B143) 2017; 15
Huang (B82) 2013; 4
Córdova (B41) 2023; 9
Mauri (B115) 2016; 6
Mahlein (B109) 2018; 56
Ashourloo (B8) 2014; 6
Ristaino (B156) 2021; 118
Woodcock (B200) 2016; 5
Biondi (B21) 2022; 1332
Wang (B194) 2018; 19
Ma (B106) 2022; 156
Tontou (B175) 2016; 405
Wurms (B201) 2017; 70
Mauch-Mani (B114) 2017; 68
Cunty (B45) 2015; 81
Kisaki (B92) 2018; 84
Hyman (B83) 2010
Simonetti (B163) 2020; 154
Baccelli (B11) 2016; 91
Pei (B142) 2022; 173
Liu (B102) 2022; 14
Michelotti (B119) 2022
Bulman (B26) 2011; 138
Vu (B185) 2017; 12
Eckert (B54) 2006; 50
Gogoi (B67) 2018; 39
Zhang (B212) 2023; 79
Yuan (B208) 2022; 22
Lovato (B104) 2019; 10
Wang (B188) 2019; 35
Pereira (B144) 2021; 253
Gu (B71) 2021; 22
Pobiega (B147) 2019; 56
Jung (B87) 2014; 2
Mori (B122) 2019; 53
Compant (B40) 2019; 19
Fira (B60) 2018; 285
Scortichini (B161) 2014; 140
Gunaseelan (B72) 2019; 14
Ni (B128) 2020; 8
Gavanji (B65) 2012; 6
Mahlein (B108) 2016; 100
Hoyte (B79) 2015; 1095
Lei (B100) 2015; 1096
Mahlein (B110) 2013; 128
Vavala (B182) 2016; 30
Wang (B191) 2015
Nunes da Silva (B133) 2021; 162
Zhang (B214) 2023; 2
Yu (B206) 2022; 8
Datson (B47) 2015; 1095
Oliveras (B137) 2018; 13
Shanmugam (B162) 2016; 9
Cameron (B29) 2014; 102
Hill (B76) 2015; 1095
Anderson (B5) 2020; 56
Cellini (B32) 2020; 79
Thomidis (B173) 2021; 9
Fiorillo (B59) 2023; 107
Nunes da Silva (B129) 2022; 45
Jaski (B85) 2019; 49
Reglinski (B152) 2023; 12
Yang (B202) 2017; 3
Nunes da Silva (B132) 2020; 11
References_xml – volume: 1095
  start-page: 171
  year: 2015
  ident: B79
  article-title: Developing and using bioassays to screen for Psa resistance in New Zealand kiwifruit
  publication-title: Acta Hortic.
  doi: 10.17660/ActaHortic.2015.1095.21
– start-page: 43
  volume-title: Computational Peptidology, Methods in Molecular Biology
  year: 2015
  ident: B191
  article-title: Improved methods for classification, prediction, and design of antimicrobial peptides
  doi: 10.1007/978-1-4939-2285-7_3
– volume: 19
  start-page: 585
  year: 2018
  ident: B118
  article-title: Comparative transcriptome analysis of the interaction between Actinidia chinensis var. chinensis and Pseudomonas syringae pv. actinidiae in absence and presence of acibenzolar-S-methyl
  publication-title: BMC Genomics
  doi: 10.1186/s12864-018-4967-4
– volume: 1
  start-page: 175
  year: 2007
  ident: B193
  article-title: High throughput transformation of Actinidia: a platform for kiwifruit functional genomics and molecular breeding
  publication-title: Transgenic Plant J.
– volume: 133
  start-page: 164
  year: 2018
  ident: B78
  article-title: Development of a new biocontrol product (AUREO® Gold) for control of Pseudomonas syringae pv. actinidiae in kiwifruit
  publication-title: IOBC/WPRS Bull.
– volume: 167
  start-page: 1713
  year: 2022
  ident: B211
  article-title: Genomic characterization of two nickie−like bacteriophages that infect the kiwifruit canker phytopathogen Pseudomonas syringae pv. actinidiae
  publication-title: Arch. Virol.
  doi: 10.1007/s00705-022-05440-8
– volume: 35
  start-page: 372
  year: 2019
  ident: B188
  article-title: An in vitro Actinidia bioassay to evaluate the resistance to Pseudomonas syringae pv. actinidiae
  publication-title: Plant Pathol. J.
  doi: 10.5423/PPJ.OA.02.2019.0035
– volume: 42
  start-page: 303
  year: 2014
  ident: B172
  article-title: Early season detection and mapping of Pseudomonas syringae pv. actinidae infected kiwifruit (Actinidia sp.) orchards
  publication-title: New Z. J. Crop Hortic. Sci.
  doi: 10.1080/01140671.2014.894543
– volume: 6
  start-page: 355
  year: 2016
  ident: B115
  article-title: Optimization of cultural practices to reduce the development of Pseudomonas syringae pv. actinidiae, causal agent of the bacterial canker of kiwifruit
  publication-title: J. Berry Res.
  doi: 10.3233/JBR-160115
– volume: 66
  start-page: 184
  year: 2013
  ident: B124
  article-title: Predicting the potential global distribution of Pseudomonas syringae pv. actinidiae (Psa)
  publication-title: New Z. Plant Prot.
  doi: 10.30843/nzpp.2013.66.5601
– volume: 56
  start-page: 197
  year: 2020
  ident: B5
  article-title: Climate change and the need for agricultural adaptation
  publication-title: Curr. Opin. Plant Biol.
  doi: 10.1016/j.pbi.2019.12.006
– volume: 2019
  start-page: 9237136
  year: 2019
  ident: B174
  article-title: How convolutional neural networks diagnose plant disease
  publication-title: Plant Phenomics
  doi: 10.34133/2019/9237136
– volume: 162
  start-page: 843
  year: 2022
  ident: B66
  article-title: Marine bacterial activity against phytopathogenic Pseudomonas show high efficiency of Planctomycetes extracts
  publication-title: Eur. J. Plant Pathol.
  doi: 10.1007/s10658-021-02441-2
– volume: 9
  year: 2018
  ident: B23
  article-title: The enhancement of plant disease resistance using CRISPR/cas9 technology
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2018.01245
– volume: 140
  start-page: 887
  year: 2014
  ident: B161
  article-title: Field efficacy of chitosan to control Pseudomonas syringae pv. actinidiae, the causal agent of kiwifruit bacterial canker
  publication-title: Eur. J. Plant Pathol.
  doi: 10.1007/s10658-014-0515-5
– volume: 79
  start-page: 3681
  year: 2023
  ident: B212
  article-title: Antibacterial mechanism of the novel antimicrobial peptide Jelleine-Ic and its efficacy in controlling Pseudomonas syringae pv. actinidiae in kiwifruit
  publication-title: Pest Manage. Sci.
  doi: 10.1002/ps.7548
– volume: 180
  start-page: 26
  year: 2019
  ident: B53
  article-title: Genetic engineering for disease resistance in plants: recent progress and future perspectives
  publication-title: Plant Physiol.
  doi: 10.1104/pp.18.01224
– volume: 33
  start-page: 1005
  year: 2015
  ident: B77
  article-title: Antimicrobial peptide production and plant-based expression systems for medical and agricultural biotechnology
  publication-title: Biotechnol. Adv.
  doi: 10.1016/j.bioteChadv.2015.03.007
– volume: 1243
  start-page: 85
  year: 2019
  ident: B58
  article-title: Quorum sensing in Pseudomonas syringae pv. actinidiae (Psa)
  publication-title: Acta Hortic.
  doi: 10.17660/ActaHortic.2019.1243.14
– volume: 10
  year: 2022
  ident: B125
  article-title: The potential global climate suitability of kiwifruit bacterial canker disease (Pseudomonas syringae pv. actinidiae (Psa)) using three modelling approaches: CLIMEX, Maxent and Multimodel Framework
  publication-title: Climate
  doi: 10.3390/cli10020014
– volume: 2
  year: 2020
  ident: B18
  article-title: Mode-of-action of antimicrobial peptides: membrane disruption vs. intracellular mechanisms
  publication-title: Front. Med. Technol.
  doi: 10.3389/fmedt.2020.610997
– volume: 22
  year: 2021
  ident: B31
  article-title: A breach in pant defences: Pseudomonas syringae pv. actinidiae targets ethylene signalling to overcome Actinidia chinensis pathogen responses
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms22094375
– volume: 39
  start-page: 1165
  year: 2004
  ident: B81
  article-title: Actinidia germplasm resources and kiwifruit industry in China
  publication-title: HortScience
  doi: 10.21273/HORTSCI.39.6.1165
– volume: 75
  start-page: 1775
  year: 2019
  ident: B89
  article-title: Biocontrol of phytobacteria wit bacteriophage cocktails
  publication-title: Pest Manage. Sci.
  doi: 10.1002/ps.5324
– volume: 20
  start-page: 76
  year: 2017
  ident: B113
  article-title: Chemical composition and antimicrobial activity of essential oils from aerial parts of Monarda didyma and Monarda fistulosa cultivated in Italy
  publication-title: J. Essential Oil Bearing Plants
  doi: 10.1080/0972060X.2016.1278184
– volume: 45
  start-page: 528
  year: 2022
  ident: B129
  article-title: Defence-related pathways, phytohormones and primary metabolism are key players in kiwifruit plant tolerance to Pseudomonas syringae pv. actinidiae
  publication-title: Plant Cell Environ.
  doi: 10.1111/pce.14224
– volume: 1048
  start-page: 25
  year: 2012
  ident: B16
  article-title: Use of kiwifruit germplasm resources for genetic improvement
  publication-title: Acta Hortic.
  doi: 10.17660/ActaHortic.2014.1048.2
– volume: 156
  year: 2022
  ident: B106
  article-title: Natural imidazole alkaloids as antibacterial agents against Pseudomonas syringae pv. actinidiae isolated from kiwi endophytic fungus Fusarium tricinctum
  publication-title: Fitoterapia
  doi: 10.1016/j.fitote.2021.105070
– volume: 28
  start-page: 1542
  year: 2018
  ident: B141
  article-title: Genomic features and lytic activity of the bacteriophage PPPL-1 effective against Pseudomonas syringae pv. actinidiae, a cause of bacterial canker in kiwifruit
  publication-title: J. Microbiol. Biotechnol.
  doi: 10.4014/jmb.1806.06055
– volume: 104
  start-page: 1319
  year: 2020
  ident: B146
  article-title: Use of phage ϕ6 to inactivate Pseudomonas syringae pv. actinidiae in kiwifruit plants: in vitro and ex vivo experiments
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-019-10301-7
– volume: 17
  start-page: 48
  year: 2019
  ident: B177
  article-title: Chemical elicitors of systemic acquired resistance—Salicylic acid and its functional analogs
  publication-title: Curr. Plant Biol.
  doi: 10.1016/j.cpb.2019.03.002
– volume: 12
  year: 2023
  ident: B195
  article-title: Contribution of sucrose metabolism in phloem to kiwifruit bacterial canker resistance
  publication-title: Plants
  doi: 10.3390/plants12040918
– volume: 11
  year: 2022
  ident: B154
  article-title: Kiwi plant canker diagnosis using hyperspectral signal processing and machine learning: detecting symptoms caused by Pseudomonas syringae pv. actinidiae
  publication-title: Plants
  doi: 10.3390/plants11162154
– volume: 128
  start-page: 21
  year: 2013
  ident: B110
  article-title: Development of spectral indices for detecting and identifying plant diseases
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2012.09.019
– volume: 10
  year: 2019
  ident: B24
  article-title: Convolutional neural networks for the automatic identification of plant diseases
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2019.00941
– start-page: 1332
  year: 2022
  ident: B119
  article-title: Preliminary results on the development of a genome editing protocol in Actinidia chinensis var. chinensis as Psa resistance approach
  publication-title: Acta Hortic.
  doi: 10.17660/ActaHortic.2022.1332.15
– volume: 50
  start-page: 1480
  year: 2006
  ident: B54
  article-title: Adding selectivity to antimicrobial peptides: rational design of a multidomain peptide against Pseudomonas spp
  publication-title: Antimicrobial Agents chemotherapy
  doi: 10.1128/AAC.50.4.1480–1488.2006
– volume: 32
  start-page: 363
  year: 2016
  ident: B164
  article-title: Antibacterial activity of cinnamaldehyde and estragole extracted from plant essential oils against Pseudomonas syringae pv. actinidiae causing bacterial canker disease in kiwifruit
  publication-title: Plant Pathol. J.
  doi: 10.5423/PPJ.NT.01.2016.0006
– volume: 11
  year: 2020
  ident: B132
  article-title: Early pathogen recognition and antioxidant system activation contributes to Actinidia arguta tolerance against Pseudomonas syringae pathovars actinidiae and actinidifoliorum
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2020.01022
– volume: 195
  year: 2022
  ident: B35
  article-title: Isobenzofuranones and isocoumarins from kiwi endophytic fungus Paraphaeosphaeria sporulosa and their antibacterial activity against Pseudomonas syringae pv. actinidiae
  publication-title: Phytochemistry
  doi: 10.1016/j.phytochem.2021.113050
– volume: 5
  year: 2015
  ident: B17
  article-title: Synthetic plant defense elicitors
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2014.00804
– volume: 69
  start-page: 979
  year: 2020
  ident: B190
  article-title: Evaluation of the wild Actinidia germplasm for resistance to Pseudomonas syringae pv. actinidiae
  publication-title: Plant Pathol.
  doi: 10.1111/ppa.13184
– volume: 9
  year: 2018
  ident: B61
  article-title: Transient expression of CRISPR/Cas9 machinery targeting TcNPR3 enhances defense response in Theobroma cacao
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2018.00268
– volume: 285
  start-page: 44
  year: 2018
  ident: B60
  article-title: Biological control of plant pathogens by Bacillus species
  publication-title: J. Biotechnol.
  doi: 10.1016/j.jbiotec.2018.07.044
– volume: 913
  start-page: 443
  year: 2011
  ident: B180
  article-title: Recent advances in the characterisation and control of Pseudomonas syringae pv. actinidiae, the causal agent of bacterial canker on kiwifruit
  publication-title: Acta Hortic.
  doi: 10.17660/ActaHortic.2011.913.59
– volume: 158
  start-page: 829
  year: 2020
  ident: B25
  article-title: In vitro and in planta screening of compounds for the control of Pseudomonas syringae pv. actinidiae in Actinidia chinensis var. chinensis
  publication-title: Eur. J. Plant Patholgoy
  doi: 10.1007/s10658-020-02119-1
– volume: 80
  start-page: 81
  year: 2020
  ident: B52
  article-title: Pseudomonas syringae pv. actinidiae: ecology, infection dynamics and disease epidemiology
  publication-title: Microbial Ecol.
  doi: 10.1007/s00248-019-01459-8
– volume: 10
  year: 2021
  ident: B165
  article-title: Phage PPPL-1, a new biological agent to control bacterial canker caused by Pseudomonas syringae pv. actinidiae in kiwifruit
  publication-title: Antibiotics
  doi: 10.3390/antibiotics10050554
– volume: 2
  start-page: 351
  year: 2022
  ident: B131
  article-title: Mitigation of emergent bacterial pathogens using Pseudomonas syringae pv. actinidiae as a case study—from orchard to gene and everything in between
  publication-title: Crops
  doi: 10.3390/crops2040025
– volume: 41
  start-page: 1207
  year: 2014
  ident: B107
  article-title: Early detection of Psa infection in kiwifruit by means of infrared thermography at leaf and orchard scale
  publication-title: Funct. Plant Biol.
  doi: 10.1071/FP14021
– volume: 60
  start-page: 21
  year: 2022
  ident: B187
  article-title: Going viral: Virus-based biological control agents for plant protection
  publication-title: Annu. Rev. Phytopathol.
  doi: 10.1146/annurev-phyto-021621-114208
– volume: 50
  start-page: 379
  year: 2021
  ident: B155
  article-title: Visualisation of the mode of action of a biological control agent, Aureobasidium pullulans (strain YBCA5) against Pseudomonas syringae pv. actinidiae biovar 3 on the kiwifruit phylloplane
  publication-title: Australas. Plant Pathol.
  doi: 10.1007/s13313-021-00783-3
– volume: 84
  start-page: 399
  year: 2018
  ident: B92
  article-title: Evaluation of various cultivars of Actinidia species and breeding source Actinidia rufa for resistance to Pseudomonas syringae pv. actinidiae biovar 3
  publication-title: J. Gen. Plant Pathol.
  doi: 10.1007/s10327-018-0804-5
– volume: 3
  start-page: 126
  year: 2017
  ident: B202
  article-title: Study on the antimicrobial activity of C3,6- dibenzoylated phenyl-thiosemicarbazone-chitosan derivatives
  publication-title: Pharm. Analytical Chem.
  doi: 10.4172/2471-2698.1000126
– volume: 1243
  start-page: 71
  year: 2019
  ident: B6
  article-title: Validation of the New Zealand Psa forecasting model in Emilia Romagna Region (Italy)
  publication-title: Acta Hortic.
  doi: 10.17660/ActaHortic.2019.1243.12
– volume: 1332
  start-page: 117
  year: 2022
  ident: B42
  article-title: Selection of biological control agents against the pathogen Pseudomonas syringae pv. actinidiae from phyllosphere of kiwifruit leaves
  publication-title: Acta Hortic.
  doi: 10.17660/ActaHortic.2022.1332.16
– volume: 39
  start-page: 307
  year: 2018
  ident: B67
  article-title: Remote sensing and its use in detection and monitoring plant diseases: A review
  publication-title: Agric. Rev.
  doi: 10.18805/ag.R-1835
– volume: 35
  start-page: 473
  year: 2019
  ident: B91
  article-title: Characterization of antibacterial strains against kiwifruit bacterial canker pathogen
  publication-title: Plant Pathol. J.
  doi: 10.5423/PPJ.OA.05.2019.0154
– volume: 1332
  start-page: 103
  year: 2021
  ident: B134
  article-title: Influence of the nitrogen source on the tolerance of Actinidia chinensis to Pseudomonas syringae pv. actinidiae
  publication-title: Acta Hortic.
  doi: 10.17660/ActaHortic.2022.1332.14
– volume: 84
  start-page: 206
  year: 2019
  ident: B130
  article-title: Exploring the expression of defence-related genes in Actinidia spp. after infection with Pseudomonas syringae pv. actinidiae and pv. actinidifoliorum: first steps
  publication-title: Eur. J. Hortic. Sci.
  doi: 10.17660/eJHS.2019/84.4.2
– volume: 6
  start-page: 2408
  year: 2012
  ident: B65
  article-title: Comparative effects of propolis of honey bee on pathogenic bacteria
  publication-title: Afr. J. Pharm. Pharmacol.
  doi: 10.5897/AJPP12.263
– volume: 100
  start-page: 241
  year: 2016
  ident: B108
  article-title: Plant disease detection by imaging sensors - parallels and specific demands for precision agriculture and plant phenotyping
  publication-title: Plant Dis.
  doi: 10.1094/PDIS-03-15-0340-FE
– volume: 30
  start-page: 412
  year: 2016
  ident: B182
  article-title: Antibacterial activity of essential oils mixture against PSA
  publication-title: Natural Product Res.
  doi: 10.1080/14786419.2015.1022543
– volume: 13
  year: 2018
  ident: B192
  article-title: Modeling and mapping the current and future distribution of Pseudomonas syringae pv. actinidiae under climate change in China
  publication-title: PloS One
  doi: 10.1371/journal.pone.0192153
– volume: 39
  start-page: 207
  year: 2009
  ident: B10
  article-title: Actinidia eriantha: a parental species for breeding kiwifruit with novel peelability and health attributes
  publication-title: New Z. J. Forestry Sci.
– volume: 13
  year: 2021
  ident: B127
  article-title: Characterization of a lytic bacteriophage against Pseudomonas syringae pv. actinidiae and its endolysin
  publication-title: Viruses
  doi: 10.3390/v13040631
– volume: 11
  year: 2015
  ident: B20
  article-title: HyperART: non-invasive quantification of leaf traits using hyperspectral absorption-reflectance-transmittance imaging
  publication-title: Plant Methods
  doi: 10.1186/s13007-015-0043-0
– volume: 18
  year: 2022
  ident: B75
  article-title: Effector loss drives adaptation of Pseudomonas syringae pv. actinidiae biovar 3 to Actinidia arguta
  publication-title: PloS Pathog.
  doi: 10.1371/journal.ppat.1010542
– volume: 8
  year: 2013
  ident: B210
  article-title: De-novo design of antimicrobial peptides for plant protection
  publication-title: PloS One
  doi: 10.1371/journal.pone.0071687
– volume: 260
  start-page: 127048
  year: 2022
  ident: B30
  article-title: Host-specific signal perception by PsaR2 LuxR solo induces Pseudomonas syringae pv. actinidiae virulence traits
  publication-title: Microbiological Res.
  doi: 10.1016/j.micres.2022.127048
– volume: 1096
  start-page: 221
  year: 2015
  ident: B158
  article-title: EMS mutagenesis and selection of genotypes resistant or tolerant to Pseudomonas syringae pv. actinidiae
  publication-title: Acta Hortic.
  doi: 10.17660/ActaHortic.2015.1096.24
– volume: 11
  start-page: 18827
  year: 2021
  ident: B203
  article-title: 3-Decalinoyltetramic acids from kiwi-associated fungus Zopfiella sp. and their antibacterial activity against Pseudomonas syringae
  publication-title: R. Soc. Chem. Adv.
  doi: 10.1039/d1ra02120f
– start-page: 16
  volume-title: Off. J. Eur. Union
  year: 2018
  ident: B57
  article-title: Commission Implementing Regulation (EU) 2018/1981 of 13 December 2018 renewing the approval of the active substances copper compounds, as candidates for substitution, in accordance with Regulation (EC) No 1107/2009 of the European Parliament and of the Council concerning the placing of plant protection products on the market, and amending the Annex to Commission Implementing Regulation (EU) No 540/2011
– volume: 29
  start-page: 1163
  year: 2018
  ident: B88
  article-title: Effects of linker amino acids on the potency and selectivity of dimeric antimicrobial peptides
  publication-title: Chin. Chem. Lett.
  doi: 10.1016/j.cclet.2018.04.011
– volume: 68
  start-page: 3
  year: 2019
  ident: B136
  article-title: Conventional and novel approaches for managing “flavescence dorée” in grapevine: knowledge gaps and future prospects
  publication-title: Plant Pathol.
  doi: 10.1111/ppa.12938
– volume: 253
  start-page: 49
  year: 2021
  ident: B144
  article-title: Kiwifruit bacterial canker: an integrative view focused on biocontrol strategies
  publication-title: Planta
  doi: 10.1007/s00425-020-03549-1
– volume: 1096
  start-page: 413
  year: 2015
  ident: B100
  article-title: Selection and evaluation of a new kiwifruit rootstock hybrid for bacterial canker resistance
  publication-title: Acta Hortic.
  doi: 10.17660/ActaHortic.2015.1096.50
– volume: 8
  year: 2019
  ident: B101
  article-title: β-aminobutyric acid priming acquisition and defense response of mango fruit to Colletotrichum gloeosporioides infection based on quantitative proteomics
  publication-title: Cells
  doi: 10.3390/cells8091029
– volume: 13
  year: 2018
  ident: B137
  article-title: Antimicrobial activity of linear lipopeptides derived from BP100 towards plant pathogens
  publication-title: PloS One
  doi: 10.1371/journal.pone.0201571
– volume: 13
  start-page: 2275
  year: 2021
  ident: B103
  article-title: Isolation of the novel phage PHB09 and its potential use against the plant pathogen Pseudomonas syringae pv. actinidiae
  publication-title: Viruses
  doi: 10.3390/v13112275
– volume: 1095
  start-page: 137
  year: 2015
  ident: B76
  article-title: Use of beneficial microorganisms and elicitors for control of Pseudomonas syringae pv. actinidiae in kiwifruit (Actinidia spp.)
  publication-title: Acta Hortic.
  doi: 10.17660/ActaHortic.2015.1095.17
– volume: 80
  start-page: 2216
  year: 2014
  ident: B63
  article-title: Identification of bacteriophages for biocontrol of the kiwifruit canker phytopathogen Pseudomonas syringae pv. actinidiae
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.00062-14
– volume: 55
  start-page: 377
  year: 2017
  ident: B179
  article-title: The scientific, economic, and social impacts of the New Zealand outbreak of bacterial canker of kiwifruit (Pseudomonas syringae pv. actinidiae)
  publication-title: Annu. Rev. Phytopathol.
  doi: 10.1146/annurev-phyto-080516-035530
– volume: 4
  start-page: 2640
  year: 2013
  ident: B82
  article-title: Draft genome of the kiwifruit Actinidia chinensis
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3640
– volume: 154
  start-page: 100
  year: 2020
  ident: B163
  article-title: In vitro antimicrobial activity of plant extracts against Pseudomonas syringae pv. actinidiae causal agent of bacterial canker in kiwifruit
  publication-title: Plant Biosyst. - Int. J. Dealing all Aspects Plant Biol.
  doi: 10.1080/11263504.2019.1699194
– volume: 69
  start-page: 120
  year: 2020
  ident: B150
  article-title: Predicting the potential distribution of Pseudomonas syringae pv. actinidiae in China using ensemble models
  publication-title: Plant Pathol.
  doi: 10.1111/ppa.13112
– volume: 107
  start-page: 184
  year: 2017
  ident: B19
  article-title: Development and validation of an infection risk model for bacterial canker of kiwifruit, using a multiplication and dispersal concept for forecasting bacterial diseases
  publication-title: Phytopathology
  doi: 10.1094/PHYTO-04-16-0166-R
– volume: 34
  start-page: 2043
  year: 2019
  ident: B160
  article-title: NMR-based metabolic study of leaves of three species of Actinidia with different degrees of susceptibility to Pseudomonas syringae pv. actinidiae
  publication-title: Natural Product Res.
  doi: 10.1080/14786419.2019.1574784
– volume: 8
  year: 2017
  ident: B213
  article-title: Agronomic trait variations and ploidy differentiation of kiwiberries in northwest China: implication for breeding
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2017.00711
– volume: 9
  start-page: 25
  year: 2016
  ident: B162
  article-title: Preparation, characterization and antibacterial activity of chitosan and phosphorylated chitosan from cuttlebone of Sepia kobiensis (Hoyle 1885)
  publication-title: Biotechnol. Rep.
  doi: 10.1016/j.btre.2015.10.007
– volume: 68
  start-page: 1539
  year: 2017
  ident: B183
  article-title: Three FT and multiple CEN and BFT genes regulate maturity, flowering, and vegetative phenology in kiwifruit
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erx044
– volume: 22
  start-page: 12185, 1
  year: 2021
  ident: B71
  article-title: Sulfur induces resistance against canker caused by Pseudomonas syringae pv. actinidae via phenolic components increase and morphological structure modification in the kiwifruit stems
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms222212185
– volume: 6
  start-page: 407
  year: 2016
  ident: B38
  article-title: Greenhouse assays on the control of the bacterial canker of kiwifruit (Pseudomonas syringae pv. actinidiae)
  publication-title: J. Berry Res.
  doi: 10.3233/JBR-160128
– volume: 14
  year: 2022
  ident: B102
  article-title: Phages against pathogenic bacterial biofilms and biofilm-based infections: a review
  publication-title: Pharmaceutics
  doi: 10.3390/pharmaceutics14020427
– volume: 8
  year: 2019
  ident: B48
  article-title: Integrated use of Aureobasidium pullulans strain CG163 and acibenzolar-S-methyl for management of bacterial canker in kiwifruit
  publication-title: Plants
  doi: 10.3390/plants8080287
– volume: 9
  year: 2018
  ident: B149
  article-title: Plant microbiome and its link to plant health: host species, organs and Pseudomonas syringae pv. actinidiae infection shaping bacterial phyllosphere communities of kiwifruit plants
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2018.01563
– volume: 56
  start-page: 1
  year: 2013
  ident: B43
  article-title: Actinidia arguta ploidy level variation in relation to Pseudomonas syringae pv. actinidiae susceptibility
  publication-title: Lucrări Ştiinţifice
– ident: B56
– volume: 162
  start-page: 258
  year: 2021
  ident: B133
  article-title: Role of methyl jasmonate and salicylic acid in kiwifruit plants further subjected to Psa infection: biochemical and genetic responses
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2021.02.045
– volume: 53
  start-page: 135
  year: 2019
  ident: B122
  article-title: Inhibitory effects of Moso bamboo (Phyllostachys heterocycla f. pubescens) extracts on phytopathogenic bacterial and fungal growth
  publication-title: Wood Sci. Technol.
  doi: 10.1007/s00226-018-1063-5
– volume: 79
  start-page: 383
  year: 2020
  ident: B32
  article-title: N-acyl homoserine lactones and Lux solos regulate social behaviour and virulence of Pseudomonas syringae pv. actinidiae
  publication-title: Microbial Ecol.
  doi: 10.1007/s00248-019-01416-5
– volume: 19
  year: 2018
  ident: B194
  article-title: Transcriptome analysis of kiwifruit in response to Pseudomonas syringae pv. actinidiae infection
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms19020373
– volume: 54
  start-page: 1210
  year: 2014
  ident: B50
  article-title: Isolation and partial characterization of bacteriophages infecting Pseudomonas syringae pv. actinidiae, causal agent of kiwifruit bacterial canker
  publication-title: J. Basic Microbiol.
  doi: 10.1002/jobm.201300951
– volume: 2
  start-page: 1
  year: 2014
  ident: B87
  article-title: Application of antimicrobial peptides for disease control in plants
  publication-title: Plant Breed. Biotechnol.
  doi: 10.9787/PBB.2014.2.1.001
– volume: 8
  start-page: 1
  year: 2019
  ident: B171
  article-title: Chromosome-scale genome assembly of kiwifruit Actinidia eriantha with single-molecule sequencing and chromatin interaction mapping
  publication-title: GigaScience
  doi: 10.1093/gigascience/giz027
– volume: 68
  start-page: 485
  year: 2017
  ident: B114
  article-title: Defense priming: an adaptive part of induced resistance
  publication-title: Annu. Rev. Plant Biol.
  doi: 10.1146/annurev-arplant-042916-041132
– volume: 19
  start-page: 819
  year: 2017
  ident: B39
  article-title: Evolution of copper resistance in the kiwifruit pathogen Pseudomonas syringae pv. actinidiae through acquisition of integrative conjugative elements and plasmids
  publication-title: Environ. Microbiol.
  doi: 10.1111/1462-2920.13662
– volume: 118
  year: 2021
  ident: B156
  article-title: The persistent threat of emerging plant disease pandemics to global food security
  publication-title: PNAS
  doi: 10.1073/pnas.2022239118
– volume: 58
  start-page: 625
  year: 2015
  ident: B215
  article-title: Antimicrobial peptides with potential for biofilm eradication: synthesis and structure activity relationship studies of battacin peptides
  publication-title: J. Med. Chem.
  doi: 10.1021/jm501084q
– volume: 1113
  start-page: 93
  year: 2013
  ident: B49
  article-title: An in vitro repository for clonal kiwifruit germplasm
  publication-title: Acta Hortic.
  doi: 10.17660/ActaHortic.2016.1113.13
– volume: 32
  start-page: 37
  year: 2005
  ident: B1001
  article-title: Resistance mechanism of kiwifruit cultivars to Pseudomonas syringae pv. actinidiae
  publication-title: J. Plant Prot
– start-page: 335
  volume-title: Bacteriophages: Biology and Applications
  year: 2005
  ident: B168
  article-title: Phage therapy in animals and agribusiness
– volume: 71
  start-page: 7679
  year: 2023
  ident: B105
  article-title: Antibacterial metabolites from kiwi endophytic fungus Fusarium tricinctum, a potential biocontrol strain for kiwi canker disease
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/acs.jafc.3c00233
– volume: 15
  start-page: 1509
  year: 2017
  ident: B143
  article-title: Engineering canker-resistant plants through CRISPR/Cas9-targeted editing of the susceptibility gene CsLOB1 promoter in citrus
  publication-title: Plant Biotechnol. J.
  doi: 10.1111/pbi.12733
– volume: 5
  start-page: 951
  year: 2007
  ident: B73
  article-title: Alternative mechanisms of action of cationic antimicrobial peptides on bacteria
  publication-title: Expert Rev. Anti-infective Ther.
  doi: 10.1586/14787210.5.6.951
– volume: 26
  year: 2021
  ident: B112
  article-title: A synergic potential of antimicrobial peptides against Pseudomonas syringae pv. actinidiae
  publication-title: Molecules
  doi: 10.3390/molecules26051461
– volume: 1095
  start-page: 181
  year: 2015
  ident: B47
  article-title: Monitoring the Actinidia germplasm for resistance to Pseudomonas syringae pv. actinidiae
  publication-title: Acta Hortic.
  doi: 10.17660/ActaHortic.2015.1095.22
– volume: 12
  start-page: 16
  year: 2018
  ident: B148
  article-title: Essential oils with inhibitory capacities on Pseudomonas syringae pv. actinidiae, the causal agent of kiwifruit bacterial canker
  publication-title: Asianl J. Plant Pathol.
  doi: 10.3923/ajppaj.2018.16.26
– volume: 107
  start-page: 267
  year: 2023
  ident: B59
  article-title: A phage therapy model for the prevention of Pseudomonas syringae pv. actinidiae infection of kiwifruit plants
  publication-title: Plant Dis.
  doi: 10.1094/PDIS-02-22-0348-SC
– volume: 10
  year: 2019
  ident: B104
  article-title: Inhibition of virulence-related traits in Pseudomonas syringae pv. actinidiae by gunpowder green tea extracts
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2019.02362
– volume: 174
  start-page: 92
  year: 2018
  ident: B46
  article-title: Biological control of bacterial plant diseases with Lactobacillus plantarum strains selected for their broad-spectrum activity
  publication-title: Ann. Appl. Biol.
  doi: 10.1111/aab.12476
– volume: 146
  year: 2021
  ident: B74
  article-title: Chemical modifications to increase the therapeutic potential of antimicrobial peptides
  publication-title: Peptides
  doi: 10.1016/j.peptides.2021.170666
– volume: 91
  start-page: 703
  year: 2016
  ident: B11
  article-title: Beta−aminobutyric acid priming of plant defense: the role of ABA and other hormones
  publication-title: Plant Mol. Biol.
  doi: 10.1007/s11103-015-0406-y
– volume: 56
  start-page: 5386
  year: 2019
  ident: B147
  article-title: Comparison of the antimicrobial activity of propolis extracts obtained by means of various extraction methods
  publication-title: J. Food Sci. Technol.
  doi: 10.1007/s13197-019-04009-9
– volume: 560
  year: 2018
  ident: B28
  article-title: EU law deals blow to CRISPR crops
  publication-title: Nature
– volume: 303
  year: 2022
  ident: B178
  article-title: Predicting environmental concentrations and the potential risk of Plant Protection Products (PPP) on non-target soil organisms accounting for regional and landscape ecological variability in european soils
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2022.135045
– volume: 102
  start-page: 88
  year: 2014
  ident: B29
  article-title: Antimicrobial peptides against Pseudomonas syringae pv. actinidiae and Erwinia amylovora: chemical synthesis, secondary structure, efficacy, and mechanistic investigations
  publication-title: Biopolymers
  doi: 10.1002/bip.22423
– volume: 8
  year: 2022
  ident: B206
  article-title: Sesquiterpenoids and xanthones from the kiwifruit-associated fungus Bipolaris sp. and their anti-pathogenic microorganism activity
  publication-title: J. Fungi
  doi: 10.3390/jof8010009
– volume: 67
  start-page: 1208
  year: 2018
  ident: B90
  article-title: Adaptation of the New Zealand Psa risk model for forecasting kiwifruit bacterial canker in Korea
  publication-title: Plant Pathol.
  doi: 10.1111/ppa.12810
– volume: 1096
  start-page: 351
  year: 2015
  ident: B123
  article-title: Screening Actinidia germplasm for different levels of tolerance, or resistance, to Psa (Pseudomonas syringae pv. actinidiae)
  publication-title: Acta Hortic.
  doi: 10.17660/ActaHortic.2015.1096.40
– volume: 35
  start-page: 256
  year: 2021
  ident: B166
  article-title: Cysteine-rich antimicrobial peptides from plants: The future of antimicrobial therapy
  publication-title: Phytotherapy Res.
  doi: 10.1002/ptr.6823
– volume: 1095
  start-page: 129
  year: 2015
  ident: B27
  article-title: Pedoclimatic web monitoring system for Pseudomonas syringae pv. actinidiae (Psa) and orchard management
  publication-title: Acta Hortic.
  doi: 10.17660/ActaHortic.2015.1095.16
– volume: 753
  start-page: 635
  year: 2007
  ident: B14
  article-title: Biocontrol of bacterial pathogens of kiwifruit plants
  publication-title: Acta Hortic.
  doi: 10.17660/ActaHortic.2007.753.83
– volume: 129
  start-page: 1249
  year: 2022
  ident: B197
  article-title: Technology development for the early detection of plant pests: a framework for assessing Technology Readiness Levels (TRLs) in environmental science
  publication-title: J. Plant Dis. Prot.
  doi: 10.1007/s41348-022-00599-3
– ident: B55
– volume: 73
  start-page: 2206
  year: 2022
  ident: B98
  article-title: Pseudomonas syringae addresses distinct environmental challenges during plant infection through the coordinated deployment of polysaccharides
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erab550
– start-page: 217
  volume-title: Advances in Applied Microbiology
  year: 2010
  ident: B83
  article-title: Bacteriophage host range and bacterial resistance
  doi: 10.1016/S0065-2164(10)70007-1
– volume: 19
  start-page: 29
  year: 2019
  ident: B40
  article-title: A review on the plant microbiome: Ecology, functions, and emerging trends in microbial application
  publication-title: J. Advanced Res.
  doi: 10.1016/j.jare.2019.03.004
– volume: 32
  start-page: 537
  year: 2016
  ident: B51
  article-title: D-PSA-K: A model for estimating the accumulated potential damage on kiwifruit canes caused by bacterial canker during the growing and overwintering seasons
  publication-title: Plant Pathol. J.
  doi: 10.5423/PPJ.OA.03.2016.0068
– volume: 416
  year: 2021
  ident: B22
  article-title: Mitigation of climate change and environmental hazards in plants: potential role of beneficial metalloid silicon
  publication-title: J. Hazardous Materials
  doi: 10.1016/j.jhazmat.2021.126193
– volume: 2
  start-page: 58
  year: 2023
  ident: B214
  article-title: Peptides, new tools for plant protection in eco-agriculture
  publication-title: Advanced Agrochem.
  doi: 10.1016/j.aac.2023.01.003
– volume: 165
  start-page: 441
  year: 2014
  ident: B33
  article-title: Elicitors of the salicylic acid pathway reduce incidence of bacterial canker of kiwifruit caused by Pseudomonas syringae pv. actinidae
  publication-title: Ann. Appl. Biol.
  doi: 10.1111/aab.12150
– volume: 10
  year: 2019
  ident: B97
  article-title: Mode of action of microbial biological control agents against plant diseases: relevance beyond efficacy
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2019.00845
– volume: 12
  year: 2021
  ident: B34
  article-title: De novo design of antimicrobial peptides with a special charge pattern and their application in combating plant pathogens
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2021.753217
– volume: 4
  year: 2017
  ident: B37
  article-title: Antimicrobial activity of some essential oils - present status and future perspectives
  publication-title: Medicines
  doi: 10.3390/medicines4030058
– volume: 58
  year: 2017
  ident: B70
  article-title: Multiple regulatory roles of AP2/ERF transcription factor in angiosperm
  publication-title: Botanical Stud.
  doi: 10.1186/s40529-016-0159-1
– volume: 10
  start-page: 1113
  year: 2014
  ident: B80
  article-title: Natural hybridization, introgression breeding, and cultivar improvement in the genus Actinidia
  publication-title: Tree Genet. Genome
  doi: 10.1007/s11295-014-0771-8
– volume: 10
  year: 2021
  ident: B69
  article-title: Current status of endolysin-based treatments against Gram-negative bacteria
  publication-title: Antibiotics
  doi: 10.3390/antibiotics10101143
– volume: 8
  year: 2020
  ident: B62
  article-title: Characterization of bacteriophages against Pseudomonas syringae pv. actinidiae with potential use as natural antimicrobials in kiwifruit plants
  publication-title: Microorganisms
  doi: 10.3390/microorganisms8070974
– volume: 22
  start-page: 731
  year: 2022
  ident: B208
  article-title: Comparative transcriptome analyses identify genes involved into the biosynthesis of forsythin and forsythoside A in Forsythia suspensa
  publication-title: Funct. Integr. Genomics
  doi: 10.1007/s10142-022-00887-z
– volume: 11
  start-page: 34609
  year: 2019
  ident: B68
  article-title: Hydrophobic control of the bioactivity and cytotoxicity of de novo-designed antimicrobial peptides
  publication-title: Appl. Materials Interfaces
  doi: 10.1021/acsami.9b10028
– volume: 7
  start-page: 117
  year: 2020
  ident: B209
  article-title: Kiwifruit Genome Database (KGD): a comprehensive resource for kiwifruit genomics
  publication-title: Horticulture Res.
  doi: 10.1038/s41438-020-0338-9
– volume: 8
  year: 2018
  ident: B99
  article-title: Antimicrobial peptides: diversity, mechanism of action and strategies to improve the activity and biocompatibility in vivo
  publication-title: Biomolecules
  doi: 10.3390/biom8010004
– volume: 19
  start-page: 40
  year: 2019
  ident: B199
  article-title: VARSCOT: variant-aware detection and scoring enables sensitive and personalized off-target detection for CRISPR-Cas9
  publication-title: BMC Biotechnol.
  doi: 10.1186/s12896-019-0535-5
– volume: 405
  start-page: 97
  year: 2016
  ident: B175
  article-title: Molecular characterisation of an endophyte showing a strong antagonistic activity against Pseudomonas syringae pv. actinidiae
  publication-title: Plant Soil
  doi: 10.1007/s11104-015-2624-0
– volume: 9
  year: 2017
  ident: B186
  article-title: Microbial inhibition of Fusarium pathogens and biological modification of trichothecenes in cereal grains
  publication-title: Toxins
  doi: 10.3390/toxins9120408
– volume: 11
  year: 2019
  ident: B36
  article-title: Classifying the uclassified: A phage classification method
  publication-title: Viruses
  doi: 10.3390/v11020195
– volume: 5
  start-page: 871
  year: 2016
  ident: B200
  article-title: A review of research and development undertaken on Psa
  publication-title: Kiwifruit Vine Health
– volume: 138
  start-page: 788
  year: 2011
  ident: B26
  article-title: A novel property of propolis (bee glue): Anti-pathogenic activity by inhibition of N-acyl-homoserine lactone mediated signaling in bacteria
  publication-title: J. Ethnopharmacology
  doi: 10.1016/j.jep.2011.10.029
– volume: 29
  start-page: 464
  year: 2011
  ident: B126
  article-title: The expanding scope of antimicrobial peptide structures and their modes of action
  publication-title: Trends Biotechnol.
  doi: 10.1016/j.tibtech.2011.05.001
– volume: 6
  start-page: 4723
  year: 2014
  ident: B8
  article-title: Developing two spectral disease indices for detection of wheat leaf rust (Pucciniatriticina)
  publication-title: Remote Sens.
  doi: 10.3390/rs6064723
– volume: 9
  year: 2021
  ident: B173
  article-title: Susceptibility of twenty-three kiwifruit cultivars to Pseudomonas syringae pv. actinidiae
  publication-title: Eng. Proc.
  doi: 10.3390/engproc2021009033
– volume: 10
  year: 2022
  ident: B207
  article-title: Terpenoids from kiwi endophytic fungus Bipolaris sp. and their antibacterial activity against Pseudomonas syringae pv. actinidiae
  publication-title: Front. Chem.
  doi: 10.3389/fchem.2022.990734
– volume: 31
  start-page: 4014
  year: 2015
  ident: B140
  article-title: Cas-Designer: a web-based tool for choice of CRISPR-Cas9 target sites
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv537
– volume: 9
  start-page: 932
  year: 2017
  ident: B116
  article-title: Origin and evolution of the kiwifruit canker pandemic
  publication-title: Genome Biol. Evol.
  doi: 10.1093/gbe/evx055
– volume: 68
  start-page: 1235
  year: 2019
  ident: B159
  article-title: Genetic diversity of Pseudomonas syringae pv. actinidiae, pathogen of kiwifruit bacterial canker
  publication-title: Plant Pathol.
  doi: 10.1111/ppa.13040
– volume: 16
  start-page: 1424
  year: 2018
  ident: B196
  article-title: Optimized paired-sgRNA/Cas9 cloning and expression cassette triggers high-efficiency multiplex genome editing in kiwifruit
  publication-title: Plant Biotechnol. J.
  doi: 10.1111/pbi.12884
– volume: 8
  year: 2020
  ident: B128
  article-title: Combined application of bacteriophages and carvacrol in the control of Pseudomonas syringae pv. actinidiae planktonic and biofilm forms
  publication-title: Microorganisms
  doi: 10.3390/microorganisms8060837
– volume: 14
  year: 2019
  ident: B72
  article-title: Copy number variants in kiwifruit ETHYLENE RESPONSE FACTOR/APETALA2 (ERF/AP2)-like genes show divergence in fruit ripening associated cold and ethylene responses in C-REPEAT/DRE BINDING FACTOR-like genes
  publication-title: PloS One
  doi: 10.1371/journal.pone.0216120
– volume: 6
  start-page: 395
  year: 2016
  ident: B176
  article-title: Isolation of bacterial endophytes from Actinidia chinensis and preliminary studies on their possible use as antagonists against Pseudomonas syringae pv. actinidiae
  publication-title: J. Berry Res.
  doi: 10.3233/JBR-160118
– volume: 116
  start-page: 103
  year: 2018
  ident: B198
  article-title: Biological control of Pseudomonas syringae pv. actinidiae (Psa), the causal agent of bacterial canker of kiwifruit, using endophytic bacteria recovered from a medicinal plant
  publication-title: Biol. Control
  doi: 10.1016/j.biocontrol.2017.03.003
– volume: 148
  start-page: 163
  year: 2017
  ident: B15
  article-title: Enhancement of PR1 and PR5 gene expressions by chitosan treatment in kiwifruit plants inoculated with Pseudomonas syringae pv. actinidiae
  publication-title: Eur. J. Plant Pathol.
  doi: 10.1007/s10658-016-1080-x
– volume: 7
  year: 2016
  ident: B135
  article-title: Structural and enzymatic characterization of ABgp46, a novel phage endolysin with broad anti-Gram-negative bacterial activity
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2016.00208
– volume: 281
  year: 2021
  ident: B12
  article-title: Transcriptome-wide identification and expression analysis of ERF family genes in Actinidia valvata during waterlogging stress
  publication-title: Scientia Hortic.
  doi: 10.1016/j.scienta.2021.109994
– volume: 7
  year: 2016
  ident: B120
  article-title: Using deep learning for image-based plant disease detection
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2016.01419
– volume: 313
  year: 2023
  ident: B189
  article-title: In vitro evaluation of Actinidia chinensis cultivars for their resistance to Pseudomonas syringae pv. actinidiae
  publication-title: Scientia Hortic.
  doi: 10.1016/j.scienta.2023.111896
– volume: 34
  start-page: 283
  year: 2012
  ident: B84
  article-title: Mechanism of action and specificity of antimicrobial peptides designed based on buforin IIb
  publication-title: Peptides
  doi: 10.1016/j.peptides.2012.01.015
– volume: 87
  start-page: 481
  year: 2018
  ident: B7
  article-title: Interspecific hybridization using miyama matatabi (Actinidia kolomikta), a Japanese indigenous wild kiwifruit relative
  publication-title: Horticulture J.
  doi: 10.2503/hortj.OKD-163
– volume: 17
  start-page: 665
  year: 2019
  ident: B139
  article-title: Design of a bacterial speck resistant tomato by CRISPR/Cas9-mediated editing of SlJAZ2
  publication-title: Plant Biotechnol. J.
  doi: 10.1111/pbi.13006
– volume: 1
  start-page: 1
  year: 2011
  ident: B167
  article-title: Desktop evaluation on commercially available microbial-based products for control or suppression of Pseudomonas syringae pv. actinidiae
  publication-title: Bio-Protection Res. Centre. Rep. No.
– volume: 20
  start-page: 398
  year: 2019
  ident: B3
  article-title: Assessment of the optimal spectral bands for designing a sensor for vineyard disease detection: the case of ‘Flavescence dorée’
  publication-title: Precis. Agric.
  doi: 10.1007/s11119-018-9594-1
– volume: 9
  year: 2023
  ident: B41
  article-title: Phytopathogenic Pseudomonas syringae as a threat to agriculture: perspectives of a promising biological control using bacteriophages and microorganisms
  publication-title: Horticulturae
  doi: 10.3390/horticulturae9060712
– volume: 36
  start-page: 204
  year: 2020
  ident: B184
  article-title: Bacteriophage usage for bacterial disease management and diagnosis in plants
  publication-title: Plant Pathol. J.
  doi: 10.5423/PPJ.RW.04.2020.0074
– volume: 49
  year: 2019
  ident: B85
  article-title: Green propolis ethanolic extract in bean plant protection against bacterial diseases
  publication-title: Ciênc. Rural
  doi: 10.1590/0103-8478cr20180597
– volume: 11
  year: 2016
  ident: B64
  article-title: Studies on the infection, colonization, and movement of Pseudomonas syringae pv. actinidiae in kiwifruit tissues using a GFPuv-labeled strain
  publication-title: PloS One
  doi: 10.1371/journal.pone.0151169
– volume: 12
  year: 2023
  ident: B152
  article-title: Postharvest application of acibenzolar-S-methyl activates salicylic acid pathway genes in kiwifruit vines
  publication-title: Plants
  doi: 10.3390/plants12040833
– volume: 12
  year: 2017
  ident: B185
  article-title: Antibacterial activity of tannins isolated from Sapium baccatum extract and use for control of tomato bacterial wilt
  publication-title: PloS One
  doi: 10.1371/journal.pone.0181499
– volume: 10
  year: 2022
  ident: B4
  article-title: Pseudomonas bijieensis strain XL17 within the P. corrugata subgroup producing 2,4-diacetylphloroglucinol and lipopeptides controls bacterial canker and gray mold pathogens of Kiwifruit
  publication-title: Microorganisms
  doi: 10.3390/microorganisms10020425
– volume: 17
  start-page: 869
  year: 2019
  ident: B181
  article-title: Mutagenesis of kiwifruit CENTRORADIALIS-like genes transforms a climbing woody perennial with long juvenility and axillary flowering into a compact plant with rapid terminal flowering
  publication-title: Plant Biotechnol. J.
  doi: 10.1111/pbi.13021
– volume: 72
  start-page: 1022
  year: 2023
  ident: B86
  article-title: Nondestructive determination of carotenoids in kiwifruit leaves infected with Pseudomonas syringae pv. actinidiae by surface-enhanced Raman spectroscopy combined with chemical imaging
  publication-title: Plant Pathol.
  doi: 10.1111/ppa.13734
– volume: 9
  start-page: 101
  year: 2019
  ident: B169
  article-title: Multiple quantitative trait loci contribute to resistance to bacterial canker incited by Pseudomonas syringae pv. actinidiae in kiwifruit (Actinidia chinensis)
  publication-title: Horticulture Res.
  doi: 10.1038/s41438-019-0184-9
– volume: 7
  start-page: 286
  year: 2019
  ident: B145
  article-title: Effciency of phage ϕ6 for biocontrol of Pseudomonas syringae pv. syringae: an in vitro preliminary study
  publication-title: Microorganisms
  doi: 10.3390/microorganisms7090286
– volume: 1332
  start-page: 95
  year: 2022
  ident: B21
  article-title: Bacillus amyloliquefaciens subsp. plantarum strain D747 to control the kiwifruit bacterial canker disease
  publication-title: Acta Hortic.
  doi: 10.17660/ActaHortic.2022.1332.13
– volume: 69
  start-page: 199
  year: 2019
  ident: B204
  article-title: Isolation and characterisation of phages against Pseudomonas syringae pv. actinidiae
  publication-title: Acta Agriculturae Scandinavica Section B - Soil Plant Sci.
  doi: 10.1080/09064710.2018.1526965
– volume: 46
  start-page: 246
  year: 2018
  ident: B44
  article-title: CRISPRCasFinder, an update of CRISRFinder, includes a portable version, enhanced performance and integrates search for Cas proteins
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gky425
– volume: 154
  start-page: 94
  year: 2018
  ident: B170
  article-title: Antimicrobial peptides from different plant sources: Isolation, characterisation, and purification
  publication-title: Phytochemistry
  doi: 10.1016/j.phytochem.2018.07.002
– volume: 1096
  start-page: 409
  year: 2015
  ident: B111
  article-title: Osiris: new pedoclimatic web monitoring system for irrigation, management and PSA control
  publication-title: Acta Hortic.
  doi: 10.17660/ActaHortic.2015.1096.49
– volume: 8
  year: 2017
  ident: B151
  article-title: Transgenerational defense priming for crop protection against plant pathogens: a hypothesis
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2017.00696
– volume: 166
  start-page: 578
  year: 2011
  ident: B138
  article-title: Potential application of Northern Argentine propolis to control some phytopathogenic bacteria
  publication-title: Microbiological Res.
  doi: 10.1016/j.micres.2010.11.006
– volume: 52
  start-page: 501
  year: 2019
  ident: B9
  article-title: In vitro breeding – shortcut to Pseudomonas syringae pv. actinidiae (Psa) tolerant kiwifruit
  publication-title: Arch. Phytopathol. Plant Prot.
  doi: 10.1080/03235408.2019.1647014
– volume: 70
  start-page: 272
  year: 2017
  ident: B201
  article-title: Elicitor induction of defence genes and reduction of bacterial canker in kiwifruit
  publication-title: Kiwifruit Grape Pathol.
  doi: 10.30843/nzpp.2017.70.61
– volume: 124
  start-page: 563
  year: 2017
  ident: B157
  article-title: Microparticles containing gallic and ellagic acids for the biological control of bacterial diseases of kiwifruit plants
  publication-title: J. Plant Dis. Prot
  doi: 10.1007/s41348-017-0096-6
– volume: 44
  start-page: 13
  year: 2015
  ident: B121
  article-title: Efficacy of different chemical and biological products in the control of Pseudomonas syringae pv. actinidiae on kiwifruit
  publication-title: Australas. Plant Pathol.
  doi: 10.1007/s13313-014-0328-1
– volume: 56
  start-page: 535
  year: 2018
  ident: B109
  article-title: Hyperspectral sensors and imaging technologies in phytopathology: state of the art
  publication-title: Annu. Rev. Phytopathol.
  doi: 10.1146/annurev-phyto-080417-050100
– volume: 38
  start-page: 206
  year: 2015
  ident: B1
  article-title: Método de detección de Pseudomonas syringae pv. actinidiae (Psa) en ramas asintomáticas de Actinidia spp
  publication-title: Rev. Ciências Agrárias
  doi: 10.19084/rca.16916
– volume: 81
  start-page: 6773
  year: 2015
  ident: B45
  article-title: Origin of the outbreak in France of Pseudomonas syringae pv. actinidiae biovar 3, the causal agent of bacterial canker of kiwifruit, revealed by a multilocus variable-number tandem-repeat analysis
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.01688-15
– volume: 169
  year: 2022
  ident: B13
  article-title: Application of phage therapy against red-fleshed kiwifruit canker
  publication-title: Biol. Control
  doi: 10.1016/j.biocontrol.2022.104893
– volume: 5
  start-page: 18
  year: 2021
  ident: B153
  article-title: Unravelling plant-pathogen interactions: Proximal optical sensing as an effective tool for early detect plant diseases
  publication-title: Chem. Proc.
  doi: 10.3390/CSAC2021-10560
– volume: 17
  year: 2017
  ident: B2
  article-title: Development of spectral disease indices for ‘Flavescence dorée’ grapevine disease identification
  publication-title: Sensors
  doi: 10.3390/s17122772
– volume: 173
  year: 2022
  ident: B142
  article-title: Antibacterial mechanism of forsythoside A against Pseudomonas syringae pv. actinidiae
  publication-title: Microbial Pathogenesis
  doi: 10.1016/j.micpath.2022.105858
– volume: 26
  start-page: 385
  year: 2016
  ident: B205
  article-title: Isolation and characterization of bacteriophages against Pseudomonas syringae pv. actinidiae causing bacterial canker disease in kiwifruit
  publication-title: J. Microbiol. Biotechnol.
  doi: 10.4014/jmb.1509.09012
SSID ssj0000500997
Score 2.3823686
SecondaryResourceType review_article
Snippet Plant disease outbreaks are increasing in a world facing climate change and globalized markets, representing a serious threat to food security. Kiwifruit...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1306420
SubjectTerms Actinidia spp
antimicrobial molecules
microbial biological control agents
plant breeding
plant elicitors
Plant Science
precision agriculture
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYl5NBLadJHnD6YQk8BE9mSLbu3pjSEQnNKIDejJzHZ2mHXS8h_6I_OjOXd7IbSXnq0LSMxM_J8oxl_w9hnZxB2GlmkWoSQSuPKtObCpi5XubbeldVIPP_zvDy7lD-uiquNVl9UExbpgaPgjqXzlc1VQLdfEBtXJTOiOM-lc0rL4Ojriz5vI5iKrN4EfVRMY2IUVh-H2xmxc-eC-h8j6OZbjmjk6_8TyHxaK7nhfE5fshcTaoSvcbV77Jnv9tnuSY_I7v4V-z1u0LHoB3TnYFgdl5MCYMryL6DtANEeuMcyIegDLB7_oIIpWwO_1jUxMPT9bPEFNFh6MJLRQt_BTXvXhvmyHcBEumecCJV04-ev2eXp94tvZ-nUZSG1GBwNqTMh0yhjjc7bcIytUTal87XjwSA6497zMuSW-8xrJbTGAC0UiuNVibGlCeIN2-n6zh8w4FqKgDtaGZfLyonaCKd8kTmhy9pmNmF8JfLGThTk1Alj1mAoQlpqSEsNaamZtJSwo_Urt5F_42-DT0iP64FEnT3eQINqJoNq_mVQCfu0soIGtxrlT3Tn-yVOhVASI0CZZQl7G61iPZWoEAfWUiWs2rKXrbVsP-na65HOm6o8q6IoDv_H6t-x5ySReEj0nu0M86X_gLBpMB_HHfIAtNkYXA
  priority: 102
  providerName: Directory of Open Access Journals
Title Scientific and technological advances in the development of sustainable disease management tools: a case study on kiwifruit bacterial canker
URI https://www.ncbi.nlm.nih.gov/pubmed/38273947
https://www.proquest.com/docview/2929086411
https://pubmed.ncbi.nlm.nih.gov/PMC10808555
https://doaj.org/article/4de8c27f42354085841496524dd7a4fd
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqwoEL4k14VEbihBRwYidOkBCiiFIhlRMr7S3yE6Juk5LNqu1_4Ecz43i3LFpx4BIpD8uJx6P5PnvyDSEvrQbYqUWRKu59KrQt05pxk9pc5so4W1ZBeP7ka3k8E1_mxXyPrMtbxQFc7qR2WE9qNixeX_68eg8O_w4ZJ8TbN_58gcLbOcfSxoCngcHfgMAksaDBSUT7k9Q34iE57W3ubrkVnYKI_y7k-XcC5R8R6egOuR2hJP0w2f4u2XPdPXLzsAe4d3Wf_ApeGzKBqOosHddr6GgVGrf-l7TtKEBAaq9zh2jv6fL6tyoat3Do2SZRho59v1i-pYoavBEUamnf0dP2ovXDqh2pnjSgoSOw3KkbHpDZ0advH4_TWHohNcCYxtRqnylXGQURXTMg3DA2pXW1ZV4DZGPOsdLnhrnMKcmVAtbmC8ngrATCqT1_SPa7vnOPCWVKcA9uLrXNRWV5rbmVrsgsV2VtMpMQth7yxkRdciyPsWiAn6CVGrRSg1ZqopUS8mrT5HwS5fjXw4dox82DqKcdLvTD9ya6ZyMsfGwuPYDLAjXfKpGhkH4urJVKeJuQF-tZ0ID_4aaK6ly_gq4AXwItFFmWkEfTrNh0xSsAh7WQCam25svWu2zf6dofQeMbUz-roiie_H_Tp-QWjsO0XvSM7I_Dyj0HBDXqg7DyAMfP8-wg-MhvfLQiIw
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Scientific+and+technological+advances+in+the+development+of+sustainable+disease+management+tools%3A+a+case+study+on+kiwifruit+bacterial+canker&rft.jtitle=Frontiers+in+plant+science&rft.au=Santos%2C+Miguel+G.&rft.au=Nunes+da+Silva%2C+Marta&rft.au=Vasconcelos%2C+Marta+W.&rft.au=Carvalho%2C+Susana+M.+P.&rft.date=2023&rft.pub=Frontiers+Media+S.A&rft.eissn=1664-462X&rft.volume=14&rft_id=info:doi/10.3389%2Ffpls.2023.1306420&rft.externalDocID=PMC10808555
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-462X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-462X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-462X&client=summon