Decoding the role of angiopoietin-like protein 4/8 complex–mediated plasmin generation in the regulation of LPL activity
After feeding, adipose tissue lipoprotein lipase (LPL) activity should be maximized, therefore the potent LPL-inhibitory activity of angiopoietin-like protein 4 (ANGPTL4) must be blocked by ANGPTL8 through formation of ANGPTL4/8 complexes. ANGPTL4/8 tightly binds and protects LPL but also partially...
Saved in:
Published in | Journal of lipid research Vol. 64; no. 10; p. 100441 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
01.10.2023
American Society for Biochemistry and Molecular Biology Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0022-2275 1539-7262 1539-7262 |
DOI | 10.1016/j.jlr.2023.100441 |
Cover
Loading…
Abstract | After feeding, adipose tissue lipoprotein lipase (LPL) activity should be maximized, therefore the potent LPL-inhibitory activity of angiopoietin-like protein 4 (ANGPTL4) must be blocked by ANGPTL8 through formation of ANGPTL4/8 complexes. ANGPTL4/8 tightly binds and protects LPL but also partially inhibits its activity. Recently, we demonstrated ANGPTL4/8 also binds tissue plasminogen activator (tPA) and plasminogen to generate plasmin that cleaves ANGPTL4/8 to restore LPL activity. Although fully active LPL in the fat postprandially is desirable, ANGPTL4/8 removal could subject LPL to profound inhibition by ANGPTL3/8 (the most potent circulating LPL inhibitor), inhibition by other LPL inhibitors like ANGPTL4, ANGPTL3, and ApoC3 or interfere with ApoC2-mediated LPL activation. To understand better these potential paradoxes, we examined LPL inhibition by ANGPTL3/8, ANGPTL4, ANGPTL3, and ApoC3 and LPL stimulation by ApoC2 in the presence of ANGPTL4/8 + tPA + plasminogen. Remarkably, ANGPTL3/8-mediated LPL inhibition was almost completely blocked, with the mechanism being cleavage of fibrinogen-like domain–containing ANGPTL3 present in the ANGPTL3/8 complex. The LPL-inhibitory effects of ANGPTL4, ANGPTL3, and ApoC3 were also largely reduced in the presence of ANGPTL4/8 + tPA + plasminogen. In contrast, the ability of ApoC2 to stimulate LPL activity was unaffected by ANGPTL4/8-mediated plasmin generation. Together, these results explain how plasmin generated by increased postprandial ANGPTL4/8 levels in adipose tissue enables maximal LPL activity by preventing ANGPTL3/8, ANGPTL4, ANGPTL3, and ApoC3 from inhibiting LPL, while permitting ApoC2-mediated LPL activation to occur. |
---|---|
AbstractList | After feeding, adipose tissue lipoprotein lipase (LPL) activity should be maximized, therefore the potent LPL-inhibitory activity of angiopoietin-like protein 4 (ANGPTL4) must be blocked by ANGPTL8 through formation of ANGPTL4/8 complexes. ANGPTL4/8 tightly binds and protects LPL but also partially inhibits its activity. Recently, we demonstrated ANGPTL4/8 also binds tissue plasminogen activator (tPA) and plasminogen to generate plasmin that cleaves ANGPTL4/8 to restore LPL activity. Although fully active LPL in the fat postprandially is desirable, ANGPTL4/8 removal could subject LPL to profound inhibition by ANGPTL3/8 (the most potent circulating LPL inhibitor), inhibition by other LPL inhibitors like ANGPTL4, ANGPTL3, and ApoC3 or interfere with ApoC2-mediated LPL activation. To understand better these potential paradoxes, we examined LPL inhibition by ANGPTL3/8, ANGPTL4, ANGPTL3, and ApoC3 and LPL stimulation by ApoC2 in the presence of ANGPTL4/8 + tPA + plasminogen. Remarkably, ANGPTL3/8-mediated LPL inhibition was almost completely blocked, with the mechanism being cleavage of fibrinogen-like domain–containing ANGPTL3 present in the ANGPTL3/8 complex. The LPL-inhibitory effects of ANGPTL4, ANGPTL3, and ApoC3 were also largely reduced in the presence of ANGPTL4/8 + tPA + plasminogen. In contrast, the ability of ApoC2 to stimulate LPL activity was unaffected by ANGPTL4/8-mediated plasmin generation. Together, these results explain how plasmin generated by increased postprandial ANGPTL4/8 levels in adipose tissue enables maximal LPL activity by preventing ANGPTL3/8, ANGPTL4, ANGPTL3, and ApoC3 from inhibiting LPL, while permitting ApoC2-mediated LPL activation to occur. After feeding, adipose tissue lipoprotein lipase (LPL) activity should be maximized, therefore the potent LPL-inhibitory activity of angiopoietin-like protein 4 (ANGPTL4) must be blocked by ANGPTL8 through formation of ANGPTL4/8 complexes. ANGPTL4/8 tightly binds and protects LPL but also partially inhibits its activity. Recently, we demonstrated ANGPTL4/8 also binds tissue plasminogen activator (tPA) and plasminogen to generate plasmin that cleaves ANGPTL4/8 to restore LPL activity. Although fully active LPL in the fat postprandially is desirable, ANGPTL4/8 removal could subject LPL to profound inhibition by ANGPTL3/8 (the most potent circulating LPL inhibitor), inhibition by other LPL inhibitors like ANGPTL4, ANGPTL3, and ApoC3 or interfere with ApoC2-mediated LPL activation. To understand better these potential paradoxes, we examined LPL inhibition by ANGPTL3/8, ANGPTL4, ANGPTL3, and ApoC3 and LPL stimulation by ApoC2 in the presence of ANGPTL4/8 + tPA + plasminogen. Remarkably, ANGPTL3/8-mediated LPL inhibition was almost completely blocked, with the mechanism being cleavage of fibrinogen-like domain-containing ANGPTL3 present in the ANGPTL3/8 complex. The LPL-inhibitory effects of ANGPTL4, ANGPTL3, and ApoC3 were also largely reduced in the presence of ANGPTL4/8 + tPA + plasminogen. In contrast, the ability of ApoC2 to stimulate LPL activity was unaffected by ANGPTL4/8-mediated plasmin generation. Together, these results explain how plasmin generated by increased postprandial ANGPTL4/8 levels in adipose tissue enables maximal LPL activity by preventing ANGPTL3/8, ANGPTL4, ANGPTL3, and ApoC3 from inhibiting LPL, while permitting ApoC2-mediated LPL activation to occur.After feeding, adipose tissue lipoprotein lipase (LPL) activity should be maximized, therefore the potent LPL-inhibitory activity of angiopoietin-like protein 4 (ANGPTL4) must be blocked by ANGPTL8 through formation of ANGPTL4/8 complexes. ANGPTL4/8 tightly binds and protects LPL but also partially inhibits its activity. Recently, we demonstrated ANGPTL4/8 also binds tissue plasminogen activator (tPA) and plasminogen to generate plasmin that cleaves ANGPTL4/8 to restore LPL activity. Although fully active LPL in the fat postprandially is desirable, ANGPTL4/8 removal could subject LPL to profound inhibition by ANGPTL3/8 (the most potent circulating LPL inhibitor), inhibition by other LPL inhibitors like ANGPTL4, ANGPTL3, and ApoC3 or interfere with ApoC2-mediated LPL activation. To understand better these potential paradoxes, we examined LPL inhibition by ANGPTL3/8, ANGPTL4, ANGPTL3, and ApoC3 and LPL stimulation by ApoC2 in the presence of ANGPTL4/8 + tPA + plasminogen. Remarkably, ANGPTL3/8-mediated LPL inhibition was almost completely blocked, with the mechanism being cleavage of fibrinogen-like domain-containing ANGPTL3 present in the ANGPTL3/8 complex. The LPL-inhibitory effects of ANGPTL4, ANGPTL3, and ApoC3 were also largely reduced in the presence of ANGPTL4/8 + tPA + plasminogen. In contrast, the ability of ApoC2 to stimulate LPL activity was unaffected by ANGPTL4/8-mediated plasmin generation. Together, these results explain how plasmin generated by increased postprandial ANGPTL4/8 levels in adipose tissue enables maximal LPL activity by preventing ANGPTL3/8, ANGPTL4, ANGPTL3, and ApoC3 from inhibiting LPL, while permitting ApoC2-mediated LPL activation to occur. |
ArticleNumber | 100441 |
Author | Zhen, Eugene Y. Russell, Anna M. Qian, Yuewei Ehsani, Mariam Chen, Yan Q. Siegel, Robert W. Konrad, Robert J. |
Author_xml | – sequence: 1 givenname: Yan Q. orcidid: 0000-0001-9311-6077 surname: Chen fullname: Chen, Yan Q. – sequence: 2 givenname: Eugene Y. surname: Zhen fullname: Zhen, Eugene Y. – sequence: 3 givenname: Anna M. surname: Russell fullname: Russell, Anna M. – sequence: 4 givenname: Mariam orcidid: 0000-0002-9484-2481 surname: Ehsani fullname: Ehsani, Mariam – sequence: 5 givenname: Robert W. orcidid: 0000-0002-0833-5580 surname: Siegel fullname: Siegel, Robert W. – sequence: 6 givenname: Yuewei surname: Qian fullname: Qian, Yuewei – sequence: 7 givenname: Robert J. orcidid: 0000-0003-0923-0542 surname: Konrad fullname: Konrad, Robert J. email: konrad_robert@lilly.com |
BookMark | eNp9kc1u1DAUhSNUJKaFB2CXJZtMbefXYoFQgVJpJFjA2nLsm_QGxw62Z9Sy4h36hjwJ7qQsyqIr6_6cT9fnnGYn1lnIsteUbCmhzfm0nYzfMsLKVJOqos-yDa1LXrSsYSfZhhDGCsba-kV2GsJECK2qhm6yXx9AOY12zOM15N4ZyN2QSzuiWxxCRFsY_AH54l0EtHl13uXKzYuBmz-_72bQKCPofDEyzGk8ggUvIzqbp-qIhHFv1k4C777ucqkiHjDevsyeD9IEePXwnmXfP338dvG52H25vLp4vytUxetY6IYo1UpOWV8D5Qp0XcuOD8Dbsm9kI1lNOW2HvuyJHhRQ6IHrDnTLe122sjzLrlaudnISi8dZ-lvhJIpjw_lRSB9RGRBD0pUNJZ3kZUV0x1kj-w4G1SoA6HRivVtZy75Pn1dgo5fmEfTxxOK1GN1BUFLXpKM0Ed48ELz7uYcQxYxBgTHSgtsHwbqGlqSiZZVW23VVeReCh0EojEcrExpNYor77MUkUvbiPnuxZp-U9D_lvwuf0rxdNZCyOCB4ERSCTX6jBxWTWfiE-i-o5M4B |
CitedBy_id | crossref_primary_10_1016_j_jlr_2023_100438 crossref_primary_10_1016_j_rpth_2024_102394 crossref_primary_10_1161_CIRCULATIONAHA_124_069272 crossref_primary_10_1161_CIRCRESAHA_124_324638 crossref_primary_10_3389_fendo_2023_1322869 crossref_primary_10_1016_j_tem_2024_02_016 crossref_primary_10_1016_j_isci_2024_111292 crossref_primary_10_1097_MOL_0000000000000910 |
Cites_doi | 10.1194/jlr.RA120000781 10.1016/j.bbrc.2013.01.129 10.1073/pnas.1315292110 10.1002/adbi.202200093 10.1073/pnas.2211136119 10.1016/j.bbrc.2012.12.025 10.1016/j.jlr.2021.100150 10.1007/s11883-023-01080-8 10.1016/j.bbalip.2014.03.013 10.1016/j.tem.2020.11.005 10.1016/j.molmet.2017.06.014 10.1016/j.jlr.2021.100068 10.1016/j.metabol.2011.12.002 10.1194/jlr.R800030-JLR200 10.1073/pnas.1717420115 10.1016/j.jacl.2018.02.006 10.1161/ATVBAHA.122.317966 10.1093/eurheartj/ehad261 10.1016/j.cmet.2010.11.002 10.1194/jlr.M078220 10.1073/pnas.1217552109 10.1016/j.molmet.2020.101033 10.1097/MOL.0000000000000789 10.1016/j.plipres.2021.101140 10.1007/s11883-019-0791-9 10.1097/MOL.0000000000000800 10.1016/j.atherosclerosis.2017.10.025 10.1210/en.2016-1894 10.1016/j.bbrc.2012.07.038 10.1074/jbc.RA118.002426 10.1074/jbc.M004029200 10.1038/srep18502 10.1073/pnas.2221888120 10.1097/MOL.0000000000000680 10.1073/pnas.2026650118 10.1016/j.jlr.2022.100198 10.1073/pnas.1920202117 10.1194/jlr.M075689 10.1194/jlr.M067363 10.1098/rsob.150272 10.1016/j.cmet.2019.05.023 10.1194/jlr.M088807 10.1210/jc.2016-3903 10.1073/pnas.1515374112 10.1073/pnas.2214081120 10.1210/clinem/dgab120 |
ContentType | Journal Article |
Copyright | 2023 The Authors Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved. 2023 The Authors 2023 |
Copyright_xml | – notice: 2023 The Authors – notice: Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved. – notice: 2023 The Authors 2023 |
DBID | 6I. AAFTH AAYXX CITATION 7X8 5PM DOA |
DOI | 10.1016/j.jlr.2023.100441 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1539-7262 |
ExternalDocumentID | oai_doaj_org_article_fd8e36108a9340d8926ab8efc7ceee8d PMC10550811 10_1016_j_jlr_2023_100441 S0022227523001141 |
GroupedDBID | --- -~X .55 .GJ 0SF 0VX 18M 29K 2WC 34G 39C 4.4 53G 5GY 5RE 5VS 6I. AAEDW AAFTH AAFWJ AAXUO AAYOK ABCQX ABOCM ACCCW ACGFO ACKIV ACNCT ACPRK ADBBV AENEX AEXQZ AFFNX AFOSN AFPKN AHPSJ AI. ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BAWUL BTFSW C1A CS3 D-I DIK DU5 E3Z EBS EJD F5P FDB FRP GROUPED_DOAJ GX1 H13 HH5 HYE H~9 J5H KQ8 L7B MVM OK1 P2P RHF RHI ROL RPM TBC TR2 TWZ VH1 W8F WH7 WOQ X7M XFK YHG YKV ZA5 ZGI ZXP ~KM 0R~ AALRI AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFPUW AIGII AITUG AKBMS AKRWK AKYEP CITATION 7X8 5PM |
ID | FETCH-LOGICAL-c495t-d60cc7a912b5e19ced55a89fe973b6a6a251917fb3b0dfce1ebe9d8ed79bd37a3 |
IEDL.DBID | DOA |
ISSN | 0022-2275 1539-7262 |
IngestDate | Wed Aug 27 01:26:04 EDT 2025 Thu Aug 21 18:35:53 EDT 2025 Fri Jul 11 03:28:13 EDT 2025 Tue Jul 01 01:31:53 EDT 2025 Thu Apr 24 22:55:54 EDT 2025 Fri Feb 23 02:34:50 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | plasminogen tissue plasminogen activator (tPA) apolipoprotein (Apo) triglycerides (TG) lipoprotein lipase (LPL) TG tPA angiopoietin-like protein (ANGPTL) plasmin ANGPTL LPL |
Language | English |
License | This is an open access article under the CC BY license. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c495t-d60cc7a912b5e19ced55a89fe973b6a6a251917fb3b0dfce1ebe9d8ed79bd37a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors contributed equally to this work. |
ORCID | 0000-0003-0923-0542 0000-0001-9311-6077 0000-0002-0833-5580 0000-0002-9484-2481 |
OpenAccessLink | https://doaj.org/article/fd8e36108a9340d8926ab8efc7ceee8d |
PQID | 2861304134 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_fd8e36108a9340d8926ab8efc7ceee8d pubmedcentral_primary_oai_pubmedcentral_nih_gov_10550811 proquest_miscellaneous_2861304134 crossref_citationtrail_10_1016_j_jlr_2023_100441 crossref_primary_10_1016_j_jlr_2023_100441 elsevier_sciencedirect_doi_10_1016_j_jlr_2023_100441 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-10-01 |
PublicationDateYYYYMMDD | 2023-10-01 |
PublicationDate_xml | – month: 10 year: 2023 text: 2023-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Journal of lipid research |
PublicationYear | 2023 |
Publisher | Elsevier Inc American Society for Biochemistry and Molecular Biology Elsevier |
Publisher_xml | – name: Elsevier Inc – name: American Society for Biochemistry and Molecular Biology – name: Elsevier |
References | Kei, Filippatos, Tsimihodimos, Elisaf (bib25) 2012; 61 Banfi, Gusarova, Gromada, Cohen, Hobbs (bib46) 2018; 115 Wen, Chen, Konrad (bib50) 2022; 6 Kersten (bib38) 2021; 62 Taskinen, Packard, Borén (bib14) 2019; 21 Zhang (bib34) 2016; 6 Zhang, Zhang (bib35) 2022; 85 Young, Fong, Beigneux, Allan, He, Jiang (bib4) 2019; 30 Ruppert, Michielsen, Hazebroek, Pirayesh, Olivecrona, Afman (bib21) 2020; 40 Oldoni, Bass, Kozlitina, Hudson, Shihanian, Gusarova (bib45) 2021; 106 Wu, Kersten, Qi (bib1) 2021; 32 Lichtenstein, Mattijssen, de Wit, Georgiadi, Hooiveld, van der Meer (bib37) 2010; 12 Ginsberg, Goldberg (bib17) 2023; 43 Chen, Pottanat, Zhen, Siegel, Ehsani, Qian (bib48) 2021; 62 Larsson, Allan, Jung, Heizer, Beigneux, Young (bib15) 2017; 58 Kovrov, Kristensen, Larsson, Ploug, Olivecrona (bib10) 2019; 60 Silbernagel, Chen, Rief, Kleber, Hoffmann, Stojakovic (bib27) 2023; 44 Wang, McNutt, Banfi, Levin, Holland, Gusarova (bib20) 2015; 112 Wolska, Reimund, Remaley (bib23) 2020; 31 Chi, Britt, Shows, Hjelmaas, Shetty, Cushing (bib12) 2017; 6 Beigneux, Davies, Bensadoun, Fon, Young (bib3) 2009; 50 Chen, Pottanat, Siegel, Ehsani, Qian, Zhen (bib9) 2020; 61 Ueda, Dunbar, Wolska, Sikora, Escobar, Seliktar (bib26) 2017; 102 Wang, Quagliarini, Gusarova, Gromada, Valenzuela, Cohen (bib43) 2013; 110 Kersten (bib2) 2014; 1841 Leth-Espensen, Kristensen, Kumari, Winther, Young, Jørgensen (bib40) 2021; 118 Haller, Mintah, Shihanian, Stevis, Buckler, Alexa-Braun (bib13) 2017; 58 Young, Song, Yang, Birrane, Jiang, Beigneux (bib5) 2022; 119 Balasubramaniam, Schroeder, Russell, Fitchett, Austin, Beyer (bib49) 2022; 63 Plow, Doeuvre, Das (bib28) 2012; 2012 Ploug (bib8) 2022; 33 Kersten, Mandard, Tan, Escher, Metzger, Chambon (bib36) 2000; 275 Fu, Yao, Abou-Samra, Zhang (bib31) 2013; 430 Fu, Abou-Samra, Zhang (bib33) 2015; 5 Dijk, Beigneux, Larsson, Bensadoun, Young, Kersten (bib6) 2016; 57 Kristensen, Leth-Espensen, Mertens, Birrane, Meiyappan, Olivecrona (bib41) 2020; 117 Dijk, Ruppert, Oost, Kersten (bib22) 2018; 293 Kersten (bib18) 2021; 32 Giammanco, Spina, Cefalù, Averna (bib16) 2023; 25 Zhang, Abou-Samra (bib30) 2013; 432 Quagliarini, Wang, Kozlitina, Grishin, Hyde, Boerwinkle (bib42) 2012; 109 Dijk, Schutte, Aarts, Janssen, Afman, Kersten (bib7) 2018; 12 Kumari, Grønnemose, Kristensen, Winther, Young, Jørgensen (bib39) 2023; 120 Romeo, Yin, Kozlitina, Pennacchio, Boerwinkle, Hobbs (bib19) 2009; 119 Oldoni, Cheng, Banfi, Gusarova, Cohen, Hobbs (bib47) 2020; 30 Wolska, Dunbar, Freeman, Ueda, Amar, Sviridov (bib24) 2017; 267 Zhen, Chen, Russell, Ehsani, Siegel, Qian (bib11) 2023; 120 Zhang (bib32) 2021; 8 Gusarova, Banfi, Alexa-Braun, Shihanian, Mintah, Lee (bib44) 2017; 158 Zhang (bib29) 2012; 424 Wen (10.1016/j.jlr.2023.100441_bib50) 2022; 6 Ginsberg (10.1016/j.jlr.2023.100441_bib17) 2023; 43 Dijk (10.1016/j.jlr.2023.100441_bib7) 2018; 12 Kersten (10.1016/j.jlr.2023.100441_bib2) 2014; 1841 Gusarova (10.1016/j.jlr.2023.100441_bib44) 2017; 158 Ueda (10.1016/j.jlr.2023.100441_bib26) 2017; 102 Plow (10.1016/j.jlr.2023.100441_bib28) 2012; 2012 Wu (10.1016/j.jlr.2023.100441_bib1) 2021; 32 Chen (10.1016/j.jlr.2023.100441_bib9) 2020; 61 Banfi (10.1016/j.jlr.2023.100441_bib46) 2018; 115 Beigneux (10.1016/j.jlr.2023.100441_bib3) 2009; 50 Kovrov (10.1016/j.jlr.2023.100441_bib10) 2019; 60 Lichtenstein (10.1016/j.jlr.2023.100441_bib37) 2010; 12 Balasubramaniam (10.1016/j.jlr.2023.100441_bib49) 2022; 63 Silbernagel (10.1016/j.jlr.2023.100441_bib27) 2023; 44 Fu (10.1016/j.jlr.2023.100441_bib31) 2013; 430 Dijk (10.1016/j.jlr.2023.100441_bib22) 2018; 293 Chi (10.1016/j.jlr.2023.100441_bib12) 2017; 6 Oldoni (10.1016/j.jlr.2023.100441_bib47) 2020; 30 Wolska (10.1016/j.jlr.2023.100441_bib23) 2020; 31 Kersten (10.1016/j.jlr.2023.100441_bib36) 2000; 275 Dijk (10.1016/j.jlr.2023.100441_bib6) 2016; 57 Haller (10.1016/j.jlr.2023.100441_bib13) 2017; 58 Ploug (10.1016/j.jlr.2023.100441_bib8) 2022; 33 Kei (10.1016/j.jlr.2023.100441_bib25) 2012; 61 Wang (10.1016/j.jlr.2023.100441_bib43) 2013; 110 Leth-Espensen (10.1016/j.jlr.2023.100441_bib40) 2021; 118 Larsson (10.1016/j.jlr.2023.100441_bib15) 2017; 58 Giammanco (10.1016/j.jlr.2023.100441_bib16) 2023; 25 Oldoni (10.1016/j.jlr.2023.100441_bib45) 2021; 106 Young (10.1016/j.jlr.2023.100441_bib4) 2019; 30 Romeo (10.1016/j.jlr.2023.100441_bib19) 2009; 119 Wolska (10.1016/j.jlr.2023.100441_bib24) 2017; 267 Taskinen (10.1016/j.jlr.2023.100441_bib14) 2019; 21 Kersten (10.1016/j.jlr.2023.100441_bib18) 2021; 32 Zhang (10.1016/j.jlr.2023.100441_bib30) 2013; 432 Kersten (10.1016/j.jlr.2023.100441_bib38) 2021; 62 Zhen (10.1016/j.jlr.2023.100441_bib11) 2023; 120 Zhang (10.1016/j.jlr.2023.100441_bib34) 2016; 6 Wang (10.1016/j.jlr.2023.100441_bib20) 2015; 112 Zhang (10.1016/j.jlr.2023.100441_bib35) 2022; 85 Chen (10.1016/j.jlr.2023.100441_bib48) 2021; 62 Young (10.1016/j.jlr.2023.100441_bib5) 2022; 119 Fu (10.1016/j.jlr.2023.100441_bib33) 2015; 5 Kumari (10.1016/j.jlr.2023.100441_bib39) 2023; 120 Zhang (10.1016/j.jlr.2023.100441_bib32) 2021; 8 Quagliarini (10.1016/j.jlr.2023.100441_bib42) 2012; 109 Ruppert (10.1016/j.jlr.2023.100441_bib21) 2020; 40 Zhang (10.1016/j.jlr.2023.100441_bib29) 2012; 424 Kristensen (10.1016/j.jlr.2023.100441_bib41) 2020; 117 |
References_xml | – volume: 61 start-page: 1203 year: 2020 end-page: 1220 ident: bib9 article-title: Angiopoietin-like protein 8 differentially regulates ANGPTL3 and ANGPTL4 during postprandial partitioning of fatty acids publication-title: J. Lipid Res. – volume: 6 year: 2022 ident: bib50 article-title: The regulation of triacylglycerol metabolism and lipoprotein lipase activity publication-title: Adv. Biol. – volume: 61 start-page: 906 year: 2012 end-page: 921 ident: bib25 article-title: A review of the role of apolipoprotein C-II in lipoprotein metabolism and cardiovascular disease publication-title: Metabolism – volume: 118 year: 2021 ident: bib40 article-title: The intrinsic instability of the hydrolase domain of lipoprotein lipase facilitates its inactivation by ANGPTL4-catalyzed unfolding publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 25 start-page: 67 year: 2023 end-page: 76 ident: bib16 article-title: APOC-III: a gatekeeper in controlling triglyceride metabolism publication-title: Curr. Atheroscler. Rep. – volume: 115 start-page: E1249 year: 2018 end-page: E1258 ident: bib46 article-title: Increased thermogenesis by a noncanonical pathway in ANGPTL3/8-deficient mice publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 12 start-page: 773 year: 2018 end-page: 783 ident: bib7 article-title: Regulation of angiopoietin-like 4 and lipoprotein lipase in human adipose tissue publication-title: J. Clin. Lipidol. – volume: 58 start-page: 1893 year: 2017 end-page: 1902 ident: bib15 article-title: Apolipoprotein C-III inhibits triglyceride hydrolysis by GPIHBP1-bound LPL publication-title: J. Lipid Res. – volume: 8 year: 2021 ident: bib32 article-title: The potential of ANGPTL8 antagonism to simultaneously reduce triglyceride and increase HDL-cholesterol plasma levels publication-title: Front. Cardiovasc. Med. – volume: 32 start-page: 48 year: 2021 end-page: 61 ident: bib1 article-title: Lipoprotein lipase and its regulators: an unfolding story publication-title: Trends Endo. Metab. – volume: 50 start-page: S57 year: 2009 end-page: 62 ident: bib3 article-title: GPIHBP1, a GPI-anchored protein required for the lipolytic processing of triglyceride-rich lipoproteins publication-title: J. Lipid Res. – volume: 12 start-page: 580 year: 2010 end-page: 592 ident: bib37 article-title: Angptl4 protects against severe proinflammatory effects of saturated fat by inhibiting fatty acid uptake into mesenteric lymph node macrophages publication-title: Cell Metabol. – volume: 102 start-page: 1454 year: 2017 end-page: 1457 ident: bib26 article-title: A novel APOC2 missense mutation causing apolipoprotein C-II deficiency with severe triglyceridemia and pancreatitis publication-title: J. Clin. Endocrinol. Metabol. – volume: 30 year: 2020 ident: bib47 article-title: ANGPTL8 has both endocrine and autocrine effects on substrate utilization publication-title: JCI Insight – volume: 267 start-page: 49 year: 2017 end-page: 60 ident: bib24 article-title: Apolipoprotein C-II: new findings related to genetics, biochemistry, and role in triglyceride metabolism publication-title: Atherosclerosis – volume: 6 start-page: 1137 year: 2017 end-page: 1149 ident: bib12 article-title: ANGPTL8 promotes the ability of ANGPTL3 to bind and inhibit lipoprotein lipase publication-title: Mol. Metab. – volume: 120 year: 2023 ident: bib11 article-title: Angiopoietin-like protein 4/8 complex-mediated plasmin generation leads to cleavage of the complex and restoration of LPL activity publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 430 start-page: 1126 year: 2013 end-page: 1131 ident: bib31 article-title: Lipasin, thermoregulated in brown fat, is a novel but atypical member of the angiopoietin-like protein family publication-title: Biochem. Biophys. Res. Commun. – volume: 6 year: 2016 ident: bib34 article-title: The ANGPTL3-4-8 model, a molecular mechanism for triglyceride trafficking publication-title: Open. Biol. – volume: 110 start-page: 16109 year: 2013 end-page: 16114 ident: bib43 article-title: Mice lacking ANGPTL8 (betatrophin) manifest disrupted triglyceride metabolism without impaired glucose homeostasis publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 43 start-page: 388 year: 2023 end-page: 398 ident: bib17 article-title: Broadening the scope of dyslipidemia therapy by targeting APOC3 (apolipoprotein C3) and ANGPTL3 (angiopoietin-like protein 3) publication-title: Arterioscler. Thromb. Vasc. Biol. – volume: 62 year: 2021 ident: bib38 article-title: Role and mechanism of the action of angiopoietin-like protein ANGPTL4 in plasma lipid metabolism publication-title: J. Lipid Res. – volume: 293 start-page: 14134 year: 2018 end-page: 14145 ident: bib22 article-title: Angiopoietin-like 4 promotes the intracellular cleavage of lipoprotein lipase by PCSK3/furin in adipocytes publication-title: J. Biol. Chem. – volume: 432 start-page: 401 year: 2013 end-page: 405 ident: bib30 article-title: Emerging roles of lipasin as a critical lipid regulator publication-title: Biochem. Biophys. Res. Commun. – volume: 117 start-page: 4337 year: 2020 end-page: 4346 ident: bib41 article-title: Unfolding of monomeric lipoprotein lipase by ANGPTL4: Insight into the regulation of plasma triglyceride metabolism publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 1841 start-page: 919 year: 2014 end-page: 933 ident: bib2 article-title: Physiological regulation of lipoprotein lipase publication-title: Biochim. Biophys. Acta – volume: 424 start-page: 786 year: 2012 end-page: 792 ident: bib29 article-title: Lipasin, a novel nutritionally-regulated liver-enriched factor that regulates serum triglyceride levels publication-title: Biochem. Biophys. Res. Commun. – volume: 62 year: 2021 ident: bib48 article-title: ApoA5 lowers triglyceride levels via suppression of ANGPTL3/8-mediated LPL inhibition publication-title: J. Lipid Res. – volume: 106 start-page: 1649 year: 2021 end-page: 1667 ident: bib45 article-title: Genetic and metabolic determinants of plasma levels of ANGPTL8 publication-title: J. Clin. Endo. Metabol. – volume: 60 start-page: 783 year: 2019 end-page: 793 ident: bib10 article-title: On the mechanism of angiopoietin-like protein 8 for control of lipoprotein lipase activity publication-title: J. Lipid. Res. – volume: 63 year: 2022 ident: bib49 article-title: An anti-ANGPTL3/8 antibody decreases circulating triglycerides by binding to a LPL-inhibitory leucine zipper-like motif publication-title: J. Lipid Res. – volume: 2012 year: 2012 ident: bib28 article-title: So many plasminogen receptors: why? publication-title: J. Biomed. Biotech. – volume: 58 start-page: 1166 year: 2017 end-page: 1173 ident: bib13 article-title: ANGPTL8 requires ANGPTL3 to inhibit lipoprotein lipase and plasma triglyceride clearance publication-title: J. Lipid Res. – volume: 44 start-page: 2335 year: 2023 end-page: 2345 ident: bib27 article-title: Inverse association between apolipoprotein C-II and cardiovascular mortality: role of lipoprotein lipase activity modulation publication-title: Eur. Heart J. – volume: 40 year: 2020 ident: bib21 article-title: Fasting induces ANGPTL4 and reduces LPL activity in human adipose tissue publication-title: Mol. Metabol. – volume: 30 start-page: 51 year: 2019 end-page: 65 ident: bib4 article-title: GPIHBP1 and lipoprotein lipase, partners in plasma triglyceride metabolism publication-title: Cell Metab. – volume: 120 year: 2023 ident: bib39 article-title: Inverse effects of APOC2 and ANGPTL4 on the conformational dynamics of lid-anchoring structures in lipoprotein lipase publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 33 start-page: 112 year: 2022 end-page: 119 ident: bib8 article-title: ANGPTL4: a new mode in the regulation of intravascular lipolysis publication-title: Curr. Opin. Lipidol. – volume: 119 start-page: 70 year: 2009 end-page: 79 ident: bib19 article-title: Rare loss-of-function mutations in ANGPTL family members contribute to plasma triglyceride levels in humans publication-title: J. Clin. Invest. – volume: 112 start-page: 11630 year: 2015 end-page: 11635 ident: bib20 article-title: Hepatic ANGPTL3 regulates adipose tissue energy homeostasis publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 119 year: 2022 ident: bib5 article-title: A protein of capillary endothelial cells, GPIHBP1, is crucial for plasma triglyceride metabolism publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 109 start-page: 19751 year: 2012 end-page: 19756 ident: bib42 article-title: Atypical angiopoietin-like protein that regulates ANGPTL3 publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 31 start-page: 147 year: 2020 end-page: 153 ident: bib23 article-title: Apolipoprotein C-II: the re-emergence of a forgotten factor publication-title: Curr. Opin. Lipidol. – volume: 85 year: 2022 ident: bib35 article-title: An updated ANGPTL3-4-8 model as a mechanism of triglyceride partitioning between fat and oxidative tissues publication-title: Prog. Lipid Res. – volume: 21 start-page: 27 year: 2019 ident: bib14 article-title: Emerging evidence that ApoC-III inhibitors provide novel options to reduce the residual CVD publication-title: Curr. Atheroscler. Rep. – volume: 57 start-page: 1670 year: 2016 end-page: 1683 ident: bib6 article-title: Angiopoietin-like 4 promotes intracellular degradation of lipoprotein lipase in adipocytes publication-title: J. Lipid Res. – volume: 158 start-page: 1252 year: 2017 end-page: 1259 ident: bib44 article-title: ANGPTL8 blockade with a monoclonal antibody promotes triglyceride clearance, energy expenditure, and weight loss in mice publication-title: Endocrinology – volume: 32 start-page: 335 year: 2021 end-page: 341 ident: bib18 article-title: ANGPTL3 as therapeutic target publication-title: Curr. Opin. Lipidol. – volume: 5 year: 2015 ident: bib33 article-title: A lipasin/Angptl8 monoclonal antibody lowers mouse serum triglycerides involving increased postprandial activity of the cardiac lipoprotein lipase publication-title: Sci. Rep. – volume: 275 start-page: 28488 year: 2000 end-page: 28493 ident: bib36 article-title: Characterization of the fasting-induced adipose factor FIAF, a novel peroxisome proliferator-activated receptor target gene publication-title: J. Biol. Chem. – volume: 61 start-page: 1203 year: 2020 ident: 10.1016/j.jlr.2023.100441_bib9 article-title: Angiopoietin-like protein 8 differentially regulates ANGPTL3 and ANGPTL4 during postprandial partitioning of fatty acids publication-title: J. Lipid Res. doi: 10.1194/jlr.RA120000781 – volume: 432 start-page: 401 year: 2013 ident: 10.1016/j.jlr.2023.100441_bib30 article-title: Emerging roles of lipasin as a critical lipid regulator publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2013.01.129 – volume: 110 start-page: 16109 year: 2013 ident: 10.1016/j.jlr.2023.100441_bib43 article-title: Mice lacking ANGPTL8 (betatrophin) manifest disrupted triglyceride metabolism without impaired glucose homeostasis publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1315292110 – volume: 2012 year: 2012 ident: 10.1016/j.jlr.2023.100441_bib28 article-title: So many plasminogen receptors: why? publication-title: J. Biomed. Biotech. – volume: 6 year: 2022 ident: 10.1016/j.jlr.2023.100441_bib50 article-title: The regulation of triacylglycerol metabolism and lipoprotein lipase activity publication-title: Adv. Biol. doi: 10.1002/adbi.202200093 – volume: 119 year: 2022 ident: 10.1016/j.jlr.2023.100441_bib5 article-title: A protein of capillary endothelial cells, GPIHBP1, is crucial for plasma triglyceride metabolism publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.2211136119 – volume: 430 start-page: 1126 year: 2013 ident: 10.1016/j.jlr.2023.100441_bib31 article-title: Lipasin, thermoregulated in brown fat, is a novel but atypical member of the angiopoietin-like protein family publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2012.12.025 – volume: 62 year: 2021 ident: 10.1016/j.jlr.2023.100441_bib38 article-title: Role and mechanism of the action of angiopoietin-like protein ANGPTL4 in plasma lipid metabolism publication-title: J. Lipid Res. doi: 10.1016/j.jlr.2021.100150 – volume: 25 start-page: 67 year: 2023 ident: 10.1016/j.jlr.2023.100441_bib16 article-title: APOC-III: a gatekeeper in controlling triglyceride metabolism publication-title: Curr. Atheroscler. Rep. doi: 10.1007/s11883-023-01080-8 – volume: 8 year: 2021 ident: 10.1016/j.jlr.2023.100441_bib32 article-title: The potential of ANGPTL8 antagonism to simultaneously reduce triglyceride and increase HDL-cholesterol plasma levels publication-title: Front. Cardiovasc. Med. – volume: 1841 start-page: 919 year: 2014 ident: 10.1016/j.jlr.2023.100441_bib2 article-title: Physiological regulation of lipoprotein lipase publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbalip.2014.03.013 – volume: 32 start-page: 48 year: 2021 ident: 10.1016/j.jlr.2023.100441_bib1 article-title: Lipoprotein lipase and its regulators: an unfolding story publication-title: Trends Endo. Metab. doi: 10.1016/j.tem.2020.11.005 – volume: 6 start-page: 1137 year: 2017 ident: 10.1016/j.jlr.2023.100441_bib12 article-title: ANGPTL8 promotes the ability of ANGPTL3 to bind and inhibit lipoprotein lipase publication-title: Mol. Metab. doi: 10.1016/j.molmet.2017.06.014 – volume: 62 year: 2021 ident: 10.1016/j.jlr.2023.100441_bib48 article-title: ApoA5 lowers triglyceride levels via suppression of ANGPTL3/8-mediated LPL inhibition publication-title: J. Lipid Res. doi: 10.1016/j.jlr.2021.100068 – volume: 61 start-page: 906 year: 2012 ident: 10.1016/j.jlr.2023.100441_bib25 article-title: A review of the role of apolipoprotein C-II in lipoprotein metabolism and cardiovascular disease publication-title: Metabolism doi: 10.1016/j.metabol.2011.12.002 – volume: 50 start-page: S57 year: 2009 ident: 10.1016/j.jlr.2023.100441_bib3 article-title: GPIHBP1, a GPI-anchored protein required for the lipolytic processing of triglyceride-rich lipoproteins publication-title: J. Lipid Res. doi: 10.1194/jlr.R800030-JLR200 – volume: 115 start-page: E1249 year: 2018 ident: 10.1016/j.jlr.2023.100441_bib46 article-title: Increased thermogenesis by a noncanonical pathway in ANGPTL3/8-deficient mice publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1717420115 – volume: 12 start-page: 773 year: 2018 ident: 10.1016/j.jlr.2023.100441_bib7 article-title: Regulation of angiopoietin-like 4 and lipoprotein lipase in human adipose tissue publication-title: J. Clin. Lipidol. doi: 10.1016/j.jacl.2018.02.006 – volume: 43 start-page: 388 year: 2023 ident: 10.1016/j.jlr.2023.100441_bib17 article-title: Broadening the scope of dyslipidemia therapy by targeting APOC3 (apolipoprotein C3) and ANGPTL3 (angiopoietin-like protein 3) publication-title: Arterioscler. Thromb. Vasc. Biol. doi: 10.1161/ATVBAHA.122.317966 – volume: 119 start-page: 70 year: 2009 ident: 10.1016/j.jlr.2023.100441_bib19 article-title: Rare loss-of-function mutations in ANGPTL family members contribute to plasma triglyceride levels in humans publication-title: J. Clin. Invest. – volume: 44 start-page: 2335 year: 2023 ident: 10.1016/j.jlr.2023.100441_bib27 article-title: Inverse association between apolipoprotein C-II and cardiovascular mortality: role of lipoprotein lipase activity modulation publication-title: Eur. Heart J. doi: 10.1093/eurheartj/ehad261 – volume: 12 start-page: 580 year: 2010 ident: 10.1016/j.jlr.2023.100441_bib37 article-title: Angptl4 protects against severe proinflammatory effects of saturated fat by inhibiting fatty acid uptake into mesenteric lymph node macrophages publication-title: Cell Metabol. doi: 10.1016/j.cmet.2010.11.002 – volume: 58 start-page: 1893 year: 2017 ident: 10.1016/j.jlr.2023.100441_bib15 article-title: Apolipoprotein C-III inhibits triglyceride hydrolysis by GPIHBP1-bound LPL publication-title: J. Lipid Res. doi: 10.1194/jlr.M078220 – volume: 109 start-page: 19751 year: 2012 ident: 10.1016/j.jlr.2023.100441_bib42 article-title: Atypical angiopoietin-like protein that regulates ANGPTL3 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1217552109 – volume: 30 year: 2020 ident: 10.1016/j.jlr.2023.100441_bib47 article-title: ANGPTL8 has both endocrine and autocrine effects on substrate utilization publication-title: JCI Insight – volume: 40 year: 2020 ident: 10.1016/j.jlr.2023.100441_bib21 article-title: Fasting induces ANGPTL4 and reduces LPL activity in human adipose tissue publication-title: Mol. Metabol. doi: 10.1016/j.molmet.2020.101033 – volume: 32 start-page: 335 year: 2021 ident: 10.1016/j.jlr.2023.100441_bib18 article-title: ANGPTL3 as therapeutic target publication-title: Curr. Opin. Lipidol. doi: 10.1097/MOL.0000000000000789 – volume: 85 year: 2022 ident: 10.1016/j.jlr.2023.100441_bib35 article-title: An updated ANGPTL3-4-8 model as a mechanism of triglyceride partitioning between fat and oxidative tissues publication-title: Prog. Lipid Res. doi: 10.1016/j.plipres.2021.101140 – volume: 21 start-page: 27 year: 2019 ident: 10.1016/j.jlr.2023.100441_bib14 article-title: Emerging evidence that ApoC-III inhibitors provide novel options to reduce the residual CVD publication-title: Curr. Atheroscler. Rep. doi: 10.1007/s11883-019-0791-9 – volume: 33 start-page: 112 year: 2022 ident: 10.1016/j.jlr.2023.100441_bib8 article-title: ANGPTL4: a new mode in the regulation of intravascular lipolysis publication-title: Curr. Opin. Lipidol. doi: 10.1097/MOL.0000000000000800 – volume: 267 start-page: 49 year: 2017 ident: 10.1016/j.jlr.2023.100441_bib24 article-title: Apolipoprotein C-II: new findings related to genetics, biochemistry, and role in triglyceride metabolism publication-title: Atherosclerosis doi: 10.1016/j.atherosclerosis.2017.10.025 – volume: 158 start-page: 1252 year: 2017 ident: 10.1016/j.jlr.2023.100441_bib44 article-title: ANGPTL8 blockade with a monoclonal antibody promotes triglyceride clearance, energy expenditure, and weight loss in mice publication-title: Endocrinology doi: 10.1210/en.2016-1894 – volume: 424 start-page: 786 year: 2012 ident: 10.1016/j.jlr.2023.100441_bib29 article-title: Lipasin, a novel nutritionally-regulated liver-enriched factor that regulates serum triglyceride levels publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2012.07.038 – volume: 293 start-page: 14134 year: 2018 ident: 10.1016/j.jlr.2023.100441_bib22 article-title: Angiopoietin-like 4 promotes the intracellular cleavage of lipoprotein lipase by PCSK3/furin in adipocytes publication-title: J. Biol. Chem. doi: 10.1074/jbc.RA118.002426 – volume: 275 start-page: 28488 year: 2000 ident: 10.1016/j.jlr.2023.100441_bib36 article-title: Characterization of the fasting-induced adipose factor FIAF, a novel peroxisome proliferator-activated receptor target gene publication-title: J. Biol. Chem. doi: 10.1074/jbc.M004029200 – volume: 5 year: 2015 ident: 10.1016/j.jlr.2023.100441_bib33 article-title: A lipasin/Angptl8 monoclonal antibody lowers mouse serum triglycerides involving increased postprandial activity of the cardiac lipoprotein lipase publication-title: Sci. Rep. doi: 10.1038/srep18502 – volume: 120 year: 2023 ident: 10.1016/j.jlr.2023.100441_bib39 article-title: Inverse effects of APOC2 and ANGPTL4 on the conformational dynamics of lid-anchoring structures in lipoprotein lipase publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.2221888120 – volume: 31 start-page: 147 year: 2020 ident: 10.1016/j.jlr.2023.100441_bib23 article-title: Apolipoprotein C-II: the re-emergence of a forgotten factor publication-title: Curr. Opin. Lipidol. doi: 10.1097/MOL.0000000000000680 – volume: 118 year: 2021 ident: 10.1016/j.jlr.2023.100441_bib40 article-title: The intrinsic instability of the hydrolase domain of lipoprotein lipase facilitates its inactivation by ANGPTL4-catalyzed unfolding publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.2026650118 – volume: 63 year: 2022 ident: 10.1016/j.jlr.2023.100441_bib49 article-title: An anti-ANGPTL3/8 antibody decreases circulating triglycerides by binding to a LPL-inhibitory leucine zipper-like motif publication-title: J. Lipid Res. doi: 10.1016/j.jlr.2022.100198 – volume: 117 start-page: 4337 year: 2020 ident: 10.1016/j.jlr.2023.100441_bib41 article-title: Unfolding of monomeric lipoprotein lipase by ANGPTL4: Insight into the regulation of plasma triglyceride metabolism publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1920202117 – volume: 58 start-page: 1166 year: 2017 ident: 10.1016/j.jlr.2023.100441_bib13 article-title: ANGPTL8 requires ANGPTL3 to inhibit lipoprotein lipase and plasma triglyceride clearance publication-title: J. Lipid Res. doi: 10.1194/jlr.M075689 – volume: 57 start-page: 1670 year: 2016 ident: 10.1016/j.jlr.2023.100441_bib6 article-title: Angiopoietin-like 4 promotes intracellular degradation of lipoprotein lipase in adipocytes publication-title: J. Lipid Res. doi: 10.1194/jlr.M067363 – volume: 6 year: 2016 ident: 10.1016/j.jlr.2023.100441_bib34 article-title: The ANGPTL3-4-8 model, a molecular mechanism for triglyceride trafficking publication-title: Open. Biol. doi: 10.1098/rsob.150272 – volume: 30 start-page: 51 year: 2019 ident: 10.1016/j.jlr.2023.100441_bib4 article-title: GPIHBP1 and lipoprotein lipase, partners in plasma triglyceride metabolism publication-title: Cell Metab. doi: 10.1016/j.cmet.2019.05.023 – volume: 60 start-page: 783 year: 2019 ident: 10.1016/j.jlr.2023.100441_bib10 article-title: On the mechanism of angiopoietin-like protein 8 for control of lipoprotein lipase activity publication-title: J. Lipid. Res. doi: 10.1194/jlr.M088807 – volume: 102 start-page: 1454 year: 2017 ident: 10.1016/j.jlr.2023.100441_bib26 article-title: A novel APOC2 missense mutation causing apolipoprotein C-II deficiency with severe triglyceridemia and pancreatitis publication-title: J. Clin. Endocrinol. Metabol. doi: 10.1210/jc.2016-3903 – volume: 112 start-page: 11630 year: 2015 ident: 10.1016/j.jlr.2023.100441_bib20 article-title: Hepatic ANGPTL3 regulates adipose tissue energy homeostasis publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1515374112 – volume: 120 year: 2023 ident: 10.1016/j.jlr.2023.100441_bib11 article-title: Angiopoietin-like protein 4/8 complex-mediated plasmin generation leads to cleavage of the complex and restoration of LPL activity publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.2214081120 – volume: 106 start-page: 1649 year: 2021 ident: 10.1016/j.jlr.2023.100441_bib45 article-title: Genetic and metabolic determinants of plasma levels of ANGPTL8 publication-title: J. Clin. Endo. Metabol. doi: 10.1210/clinem/dgab120 |
SSID | ssj0014461 |
Score | 2.4826822 |
Snippet | After feeding, adipose tissue lipoprotein lipase (LPL) activity should be maximized, therefore the potent LPL-inhibitory activity of angiopoietin-like protein... |
SourceID | doaj pubmedcentral proquest crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 100441 |
SubjectTerms | angiopoietin-like protein (ANGPTL) apolipoprotein (Apo) lipoprotein lipase (LPL) plasmin plasminogen tissue plasminogen activator (tPA) triglycerides (TG) |
Title | Decoding the role of angiopoietin-like protein 4/8 complex–mediated plasmin generation in the regulation of LPL activity |
URI | https://dx.doi.org/10.1016/j.jlr.2023.100441 https://www.proquest.com/docview/2861304134 https://pubmed.ncbi.nlm.nih.gov/PMC10550811 https://doaj.org/article/fd8e36108a9340d8926ab8efc7ceee8d |
Volume | 64 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQOcAFQQti-aiMhDgghcZ2EtvHpVBVtEIIUdGb5a-0Kdtk1W4l4MR_4B_yS5hxkmpzKReOcRLHyZtk3sTjN4S8BM7hhbAsc5zbDDxelTlZ2swWupZOeFXZlCD7sdo_Kj4cl8drpb4wJ6yXB-4f3E4dVBTg45XVosiD0ryyTsXaS_i8RxXw6ws-bwymhvkDCHLYqBPOuSzH-cyU2XW2QCFQLt4ktTQ28UhJuH_imNaI5zRtcs0P7d0n9wYCSef9wB-QW7HdJFvzFoLn8x_0FU0pnelf-Sa5szuWc9siP99BoImOigLlo5hUSLua2vak6ZZdgwufs0XzLdIk3NC0tNhRNOWbx-9_fv1OC0yAnNIlsO1z2H2S5KoRVQpbqcu-qj22QMeHnw4prpnA0hQPydHe-y-7-9lQeCHzEC-tslDl3kurGXdlZNrHUJZW6TpqKVxlK4vLXZmsnXB5qH1kYAkacApSuyCkFY_IRtu18TGh0nFoKzxEOXkB6AOYQbqcxaJynAU-I_n48I0fVMmxOMbCjOlnZwbwMoiX6fGakdfXpyx7SY6bDn6LiF4fiGraqQFszAw2Zv5lYzNSjPZgBmLSEw7oqrnp2i9G2zEANs7E2DZ2V5eGKwzbgD8UM6ImRjUZ6HRP25wm-W8saQpEjj35H7f2lNzFEffpic_IxuriKj4HmrVy2-T2_ODz14Pt9Gb9BSG5K4Y |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Decoding+the+role+of+angiopoietin-like+protein+4%2F8+complex%E2%80%93mediated+plasmin+generation+in+the+regulation+of+LPL+activity&rft.jtitle=Journal+of+lipid+research&rft.au=Chen%2C+Yan+Q.&rft.au=Zhen%2C+Eugene+Y.&rft.au=Russell%2C+Anna+M.&rft.au=Ehsani%2C+Mariam&rft.date=2023-10-01&rft.issn=0022-2275&rft.volume=64&rft.issue=10&rft.spage=100441&rft_id=info:doi/10.1016%2Fj.jlr.2023.100441&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jlr_2023_100441 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-2275&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-2275&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-2275&client=summon |