Decoding the role of angiopoietin-like protein 4/8 complex–mediated plasmin generation in the regulation of LPL activity

After feeding, adipose tissue lipoprotein lipase (LPL) activity should be maximized, therefore the potent LPL-inhibitory activity of angiopoietin-like protein 4 (ANGPTL4) must be blocked by ANGPTL8 through formation of ANGPTL4/8 complexes. ANGPTL4/8 tightly binds and protects LPL but also partially...

Full description

Saved in:
Bibliographic Details
Published inJournal of lipid research Vol. 64; no. 10; p. 100441
Main Authors Chen, Yan Q., Zhen, Eugene Y., Russell, Anna M., Ehsani, Mariam, Siegel, Robert W., Qian, Yuewei, Konrad, Robert J.
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.10.2023
American Society for Biochemistry and Molecular Biology
Elsevier
Subjects
Online AccessGet full text
ISSN0022-2275
1539-7262
1539-7262
DOI10.1016/j.jlr.2023.100441

Cover

Loading…
Abstract After feeding, adipose tissue lipoprotein lipase (LPL) activity should be maximized, therefore the potent LPL-inhibitory activity of angiopoietin-like protein 4 (ANGPTL4) must be blocked by ANGPTL8 through formation of ANGPTL4/8 complexes. ANGPTL4/8 tightly binds and protects LPL but also partially inhibits its activity. Recently, we demonstrated ANGPTL4/8 also binds tissue plasminogen activator (tPA) and plasminogen to generate plasmin that cleaves ANGPTL4/8 to restore LPL activity. Although fully active LPL in the fat postprandially is desirable, ANGPTL4/8 removal could subject LPL to profound inhibition by ANGPTL3/8 (the most potent circulating LPL inhibitor), inhibition by other LPL inhibitors like ANGPTL4, ANGPTL3, and ApoC3 or interfere with ApoC2-mediated LPL activation. To understand better these potential paradoxes, we examined LPL inhibition by ANGPTL3/8, ANGPTL4, ANGPTL3, and ApoC3 and LPL stimulation by ApoC2 in the presence of ANGPTL4/8 + tPA + plasminogen. Remarkably, ANGPTL3/8-mediated LPL inhibition was almost completely blocked, with the mechanism being cleavage of fibrinogen-like domain–containing ANGPTL3 present in the ANGPTL3/8 complex. The LPL-inhibitory effects of ANGPTL4, ANGPTL3, and ApoC3 were also largely reduced in the presence of ANGPTL4/8 + tPA + plasminogen. In contrast, the ability of ApoC2 to stimulate LPL activity was unaffected by ANGPTL4/8-mediated plasmin generation. Together, these results explain how plasmin generated by increased postprandial ANGPTL4/8 levels in adipose tissue enables maximal LPL activity by preventing ANGPTL3/8, ANGPTL4, ANGPTL3, and ApoC3 from inhibiting LPL, while permitting ApoC2-mediated LPL activation to occur.
AbstractList After feeding, adipose tissue lipoprotein lipase (LPL) activity should be maximized, therefore the potent LPL-inhibitory activity of angiopoietin-like protein 4 (ANGPTL4) must be blocked by ANGPTL8 through formation of ANGPTL4/8 complexes. ANGPTL4/8 tightly binds and protects LPL but also partially inhibits its activity. Recently, we demonstrated ANGPTL4/8 also binds tissue plasminogen activator (tPA) and plasminogen to generate plasmin that cleaves ANGPTL4/8 to restore LPL activity. Although fully active LPL in the fat postprandially is desirable, ANGPTL4/8 removal could subject LPL to profound inhibition by ANGPTL3/8 (the most potent circulating LPL inhibitor), inhibition by other LPL inhibitors like ANGPTL4, ANGPTL3, and ApoC3 or interfere with ApoC2-mediated LPL activation. To understand better these potential paradoxes, we examined LPL inhibition by ANGPTL3/8, ANGPTL4, ANGPTL3, and ApoC3 and LPL stimulation by ApoC2 in the presence of ANGPTL4/8 + tPA + plasminogen. Remarkably, ANGPTL3/8-mediated LPL inhibition was almost completely blocked, with the mechanism being cleavage of fibrinogen-like domain–containing ANGPTL3 present in the ANGPTL3/8 complex. The LPL-inhibitory effects of ANGPTL4, ANGPTL3, and ApoC3 were also largely reduced in the presence of ANGPTL4/8 + tPA + plasminogen. In contrast, the ability of ApoC2 to stimulate LPL activity was unaffected by ANGPTL4/8-mediated plasmin generation. Together, these results explain how plasmin generated by increased postprandial ANGPTL4/8 levels in adipose tissue enables maximal LPL activity by preventing ANGPTL3/8, ANGPTL4, ANGPTL3, and ApoC3 from inhibiting LPL, while permitting ApoC2-mediated LPL activation to occur.
After feeding, adipose tissue lipoprotein lipase (LPL) activity should be maximized, therefore the potent LPL-inhibitory activity of angiopoietin-like protein 4 (ANGPTL4) must be blocked by ANGPTL8 through formation of ANGPTL4/8 complexes. ANGPTL4/8 tightly binds and protects LPL but also partially inhibits its activity. Recently, we demonstrated ANGPTL4/8 also binds tissue plasminogen activator (tPA) and plasminogen to generate plasmin that cleaves ANGPTL4/8 to restore LPL activity. Although fully active LPL in the fat postprandially is desirable, ANGPTL4/8 removal could subject LPL to profound inhibition by ANGPTL3/8 (the most potent circulating LPL inhibitor), inhibition by other LPL inhibitors like ANGPTL4, ANGPTL3, and ApoC3 or interfere with ApoC2-mediated LPL activation. To understand better these potential paradoxes, we examined LPL inhibition by ANGPTL3/8, ANGPTL4, ANGPTL3, and ApoC3 and LPL stimulation by ApoC2 in the presence of ANGPTL4/8 + tPA + plasminogen. Remarkably, ANGPTL3/8-mediated LPL inhibition was almost completely blocked, with the mechanism being cleavage of fibrinogen-like domain-containing ANGPTL3 present in the ANGPTL3/8 complex. The LPL-inhibitory effects of ANGPTL4, ANGPTL3, and ApoC3 were also largely reduced in the presence of ANGPTL4/8 + tPA + plasminogen. In contrast, the ability of ApoC2 to stimulate LPL activity was unaffected by ANGPTL4/8-mediated plasmin generation. Together, these results explain how plasmin generated by increased postprandial ANGPTL4/8 levels in adipose tissue enables maximal LPL activity by preventing ANGPTL3/8, ANGPTL4, ANGPTL3, and ApoC3 from inhibiting LPL, while permitting ApoC2-mediated LPL activation to occur.After feeding, adipose tissue lipoprotein lipase (LPL) activity should be maximized, therefore the potent LPL-inhibitory activity of angiopoietin-like protein 4 (ANGPTL4) must be blocked by ANGPTL8 through formation of ANGPTL4/8 complexes. ANGPTL4/8 tightly binds and protects LPL but also partially inhibits its activity. Recently, we demonstrated ANGPTL4/8 also binds tissue plasminogen activator (tPA) and plasminogen to generate plasmin that cleaves ANGPTL4/8 to restore LPL activity. Although fully active LPL in the fat postprandially is desirable, ANGPTL4/8 removal could subject LPL to profound inhibition by ANGPTL3/8 (the most potent circulating LPL inhibitor), inhibition by other LPL inhibitors like ANGPTL4, ANGPTL3, and ApoC3 or interfere with ApoC2-mediated LPL activation. To understand better these potential paradoxes, we examined LPL inhibition by ANGPTL3/8, ANGPTL4, ANGPTL3, and ApoC3 and LPL stimulation by ApoC2 in the presence of ANGPTL4/8 + tPA + plasminogen. Remarkably, ANGPTL3/8-mediated LPL inhibition was almost completely blocked, with the mechanism being cleavage of fibrinogen-like domain-containing ANGPTL3 present in the ANGPTL3/8 complex. The LPL-inhibitory effects of ANGPTL4, ANGPTL3, and ApoC3 were also largely reduced in the presence of ANGPTL4/8 + tPA + plasminogen. In contrast, the ability of ApoC2 to stimulate LPL activity was unaffected by ANGPTL4/8-mediated plasmin generation. Together, these results explain how plasmin generated by increased postprandial ANGPTL4/8 levels in adipose tissue enables maximal LPL activity by preventing ANGPTL3/8, ANGPTL4, ANGPTL3, and ApoC3 from inhibiting LPL, while permitting ApoC2-mediated LPL activation to occur.
ArticleNumber 100441
Author Zhen, Eugene Y.
Russell, Anna M.
Qian, Yuewei
Ehsani, Mariam
Chen, Yan Q.
Siegel, Robert W.
Konrad, Robert J.
Author_xml – sequence: 1
  givenname: Yan Q.
  orcidid: 0000-0001-9311-6077
  surname: Chen
  fullname: Chen, Yan Q.
– sequence: 2
  givenname: Eugene Y.
  surname: Zhen
  fullname: Zhen, Eugene Y.
– sequence: 3
  givenname: Anna M.
  surname: Russell
  fullname: Russell, Anna M.
– sequence: 4
  givenname: Mariam
  orcidid: 0000-0002-9484-2481
  surname: Ehsani
  fullname: Ehsani, Mariam
– sequence: 5
  givenname: Robert W.
  orcidid: 0000-0002-0833-5580
  surname: Siegel
  fullname: Siegel, Robert W.
– sequence: 6
  givenname: Yuewei
  surname: Qian
  fullname: Qian, Yuewei
– sequence: 7
  givenname: Robert J.
  orcidid: 0000-0003-0923-0542
  surname: Konrad
  fullname: Konrad, Robert J.
  email: konrad_robert@lilly.com
BookMark eNp9kc1u1DAUhSNUJKaFB2CXJZtMbefXYoFQgVJpJFjA2nLsm_QGxw62Z9Sy4h36hjwJ7qQsyqIr6_6cT9fnnGYn1lnIsteUbCmhzfm0nYzfMsLKVJOqos-yDa1LXrSsYSfZhhDGCsba-kV2GsJECK2qhm6yXx9AOY12zOM15N4ZyN2QSzuiWxxCRFsY_AH54l0EtHl13uXKzYuBmz-_72bQKCPofDEyzGk8ggUvIzqbp-qIhHFv1k4C777ucqkiHjDevsyeD9IEePXwnmXfP338dvG52H25vLp4vytUxetY6IYo1UpOWV8D5Qp0XcuOD8Dbsm9kI1lNOW2HvuyJHhRQ6IHrDnTLe122sjzLrlaudnISi8dZ-lvhJIpjw_lRSB9RGRBD0pUNJZ3kZUV0x1kj-w4G1SoA6HRivVtZy75Pn1dgo5fmEfTxxOK1GN1BUFLXpKM0Ed48ELz7uYcQxYxBgTHSgtsHwbqGlqSiZZVW23VVeReCh0EojEcrExpNYor77MUkUvbiPnuxZp-U9D_lvwuf0rxdNZCyOCB4ERSCTX6jBxWTWfiE-i-o5M4B
CitedBy_id crossref_primary_10_1016_j_jlr_2023_100438
crossref_primary_10_1016_j_rpth_2024_102394
crossref_primary_10_1161_CIRCULATIONAHA_124_069272
crossref_primary_10_1161_CIRCRESAHA_124_324638
crossref_primary_10_3389_fendo_2023_1322869
crossref_primary_10_1016_j_tem_2024_02_016
crossref_primary_10_1016_j_isci_2024_111292
crossref_primary_10_1097_MOL_0000000000000910
Cites_doi 10.1194/jlr.RA120000781
10.1016/j.bbrc.2013.01.129
10.1073/pnas.1315292110
10.1002/adbi.202200093
10.1073/pnas.2211136119
10.1016/j.bbrc.2012.12.025
10.1016/j.jlr.2021.100150
10.1007/s11883-023-01080-8
10.1016/j.bbalip.2014.03.013
10.1016/j.tem.2020.11.005
10.1016/j.molmet.2017.06.014
10.1016/j.jlr.2021.100068
10.1016/j.metabol.2011.12.002
10.1194/jlr.R800030-JLR200
10.1073/pnas.1717420115
10.1016/j.jacl.2018.02.006
10.1161/ATVBAHA.122.317966
10.1093/eurheartj/ehad261
10.1016/j.cmet.2010.11.002
10.1194/jlr.M078220
10.1073/pnas.1217552109
10.1016/j.molmet.2020.101033
10.1097/MOL.0000000000000789
10.1016/j.plipres.2021.101140
10.1007/s11883-019-0791-9
10.1097/MOL.0000000000000800
10.1016/j.atherosclerosis.2017.10.025
10.1210/en.2016-1894
10.1016/j.bbrc.2012.07.038
10.1074/jbc.RA118.002426
10.1074/jbc.M004029200
10.1038/srep18502
10.1073/pnas.2221888120
10.1097/MOL.0000000000000680
10.1073/pnas.2026650118
10.1016/j.jlr.2022.100198
10.1073/pnas.1920202117
10.1194/jlr.M075689
10.1194/jlr.M067363
10.1098/rsob.150272
10.1016/j.cmet.2019.05.023
10.1194/jlr.M088807
10.1210/jc.2016-3903
10.1073/pnas.1515374112
10.1073/pnas.2214081120
10.1210/clinem/dgab120
ContentType Journal Article
Copyright 2023 The Authors
Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.
2023 The Authors 2023
Copyright_xml – notice: 2023 The Authors
– notice: Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.
– notice: 2023 The Authors 2023
DBID 6I.
AAFTH
AAYXX
CITATION
7X8
5PM
DOA
DOI 10.1016/j.jlr.2023.100441
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1539-7262
ExternalDocumentID oai_doaj_org_article_fd8e36108a9340d8926ab8efc7ceee8d
PMC10550811
10_1016_j_jlr_2023_100441
S0022227523001141
GroupedDBID ---
-~X
.55
.GJ
0SF
0VX
18M
29K
2WC
34G
39C
4.4
53G
5GY
5RE
5VS
6I.
AAEDW
AAFTH
AAFWJ
AAXUO
AAYOK
ABCQX
ABOCM
ACCCW
ACGFO
ACKIV
ACNCT
ACPRK
ADBBV
AENEX
AEXQZ
AFFNX
AFOSN
AFPKN
AHPSJ
AI.
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BAWUL
BTFSW
C1A
CS3
D-I
DIK
DU5
E3Z
EBS
EJD
F5P
FDB
FRP
GROUPED_DOAJ
GX1
H13
HH5
HYE
H~9
J5H
KQ8
L7B
MVM
OK1
P2P
RHF
RHI
ROL
RPM
TBC
TR2
TWZ
VH1
W8F
WH7
WOQ
X7M
XFK
YHG
YKV
ZA5
ZGI
ZXP
~KM
0R~
AALRI
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AIGII
AITUG
AKBMS
AKRWK
AKYEP
CITATION
7X8
5PM
ID FETCH-LOGICAL-c495t-d60cc7a912b5e19ced55a89fe973b6a6a251917fb3b0dfce1ebe9d8ed79bd37a3
IEDL.DBID DOA
ISSN 0022-2275
1539-7262
IngestDate Wed Aug 27 01:26:04 EDT 2025
Thu Aug 21 18:35:53 EDT 2025
Fri Jul 11 03:28:13 EDT 2025
Tue Jul 01 01:31:53 EDT 2025
Thu Apr 24 22:55:54 EDT 2025
Fri Feb 23 02:34:50 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords plasminogen
tissue plasminogen activator (tPA)
apolipoprotein (Apo)
triglycerides (TG)
lipoprotein lipase (LPL)
TG
tPA
angiopoietin-like protein (ANGPTL)
plasmin
ANGPTL
LPL
Language English
License This is an open access article under the CC BY license.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c495t-d60cc7a912b5e19ced55a89fe973b6a6a251917fb3b0dfce1ebe9d8ed79bd37a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contributed equally to this work.
ORCID 0000-0003-0923-0542
0000-0001-9311-6077
0000-0002-0833-5580
0000-0002-9484-2481
OpenAccessLink https://doaj.org/article/fd8e36108a9340d8926ab8efc7ceee8d
PQID 2861304134
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_fd8e36108a9340d8926ab8efc7ceee8d
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10550811
proquest_miscellaneous_2861304134
crossref_citationtrail_10_1016_j_jlr_2023_100441
crossref_primary_10_1016_j_jlr_2023_100441
elsevier_sciencedirect_doi_10_1016_j_jlr_2023_100441
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-10-01
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-01
  day: 01
PublicationDecade 2020
PublicationTitle Journal of lipid research
PublicationYear 2023
Publisher Elsevier Inc
American Society for Biochemistry and Molecular Biology
Elsevier
Publisher_xml – name: Elsevier Inc
– name: American Society for Biochemistry and Molecular Biology
– name: Elsevier
References Kei, Filippatos, Tsimihodimos, Elisaf (bib25) 2012; 61
Banfi, Gusarova, Gromada, Cohen, Hobbs (bib46) 2018; 115
Wen, Chen, Konrad (bib50) 2022; 6
Kersten (bib38) 2021; 62
Taskinen, Packard, Borén (bib14) 2019; 21
Zhang (bib34) 2016; 6
Zhang, Zhang (bib35) 2022; 85
Young, Fong, Beigneux, Allan, He, Jiang (bib4) 2019; 30
Ruppert, Michielsen, Hazebroek, Pirayesh, Olivecrona, Afman (bib21) 2020; 40
Oldoni, Bass, Kozlitina, Hudson, Shihanian, Gusarova (bib45) 2021; 106
Wu, Kersten, Qi (bib1) 2021; 32
Lichtenstein, Mattijssen, de Wit, Georgiadi, Hooiveld, van der Meer (bib37) 2010; 12
Ginsberg, Goldberg (bib17) 2023; 43
Chen, Pottanat, Zhen, Siegel, Ehsani, Qian (bib48) 2021; 62
Larsson, Allan, Jung, Heizer, Beigneux, Young (bib15) 2017; 58
Kovrov, Kristensen, Larsson, Ploug, Olivecrona (bib10) 2019; 60
Silbernagel, Chen, Rief, Kleber, Hoffmann, Stojakovic (bib27) 2023; 44
Wang, McNutt, Banfi, Levin, Holland, Gusarova (bib20) 2015; 112
Wolska, Reimund, Remaley (bib23) 2020; 31
Chi, Britt, Shows, Hjelmaas, Shetty, Cushing (bib12) 2017; 6
Beigneux, Davies, Bensadoun, Fon, Young (bib3) 2009; 50
Chen, Pottanat, Siegel, Ehsani, Qian, Zhen (bib9) 2020; 61
Ueda, Dunbar, Wolska, Sikora, Escobar, Seliktar (bib26) 2017; 102
Wang, Quagliarini, Gusarova, Gromada, Valenzuela, Cohen (bib43) 2013; 110
Kersten (bib2) 2014; 1841
Leth-Espensen, Kristensen, Kumari, Winther, Young, Jørgensen (bib40) 2021; 118
Haller, Mintah, Shihanian, Stevis, Buckler, Alexa-Braun (bib13) 2017; 58
Young, Song, Yang, Birrane, Jiang, Beigneux (bib5) 2022; 119
Balasubramaniam, Schroeder, Russell, Fitchett, Austin, Beyer (bib49) 2022; 63
Plow, Doeuvre, Das (bib28) 2012; 2012
Ploug (bib8) 2022; 33
Kersten, Mandard, Tan, Escher, Metzger, Chambon (bib36) 2000; 275
Fu, Yao, Abou-Samra, Zhang (bib31) 2013; 430
Fu, Abou-Samra, Zhang (bib33) 2015; 5
Dijk, Beigneux, Larsson, Bensadoun, Young, Kersten (bib6) 2016; 57
Kristensen, Leth-Espensen, Mertens, Birrane, Meiyappan, Olivecrona (bib41) 2020; 117
Dijk, Ruppert, Oost, Kersten (bib22) 2018; 293
Kersten (bib18) 2021; 32
Giammanco, Spina, Cefalù, Averna (bib16) 2023; 25
Zhang, Abou-Samra (bib30) 2013; 432
Quagliarini, Wang, Kozlitina, Grishin, Hyde, Boerwinkle (bib42) 2012; 109
Dijk, Schutte, Aarts, Janssen, Afman, Kersten (bib7) 2018; 12
Kumari, Grønnemose, Kristensen, Winther, Young, Jørgensen (bib39) 2023; 120
Romeo, Yin, Kozlitina, Pennacchio, Boerwinkle, Hobbs (bib19) 2009; 119
Oldoni, Cheng, Banfi, Gusarova, Cohen, Hobbs (bib47) 2020; 30
Wolska, Dunbar, Freeman, Ueda, Amar, Sviridov (bib24) 2017; 267
Zhen, Chen, Russell, Ehsani, Siegel, Qian (bib11) 2023; 120
Zhang (bib32) 2021; 8
Gusarova, Banfi, Alexa-Braun, Shihanian, Mintah, Lee (bib44) 2017; 158
Zhang (bib29) 2012; 424
Wen (10.1016/j.jlr.2023.100441_bib50) 2022; 6
Ginsberg (10.1016/j.jlr.2023.100441_bib17) 2023; 43
Dijk (10.1016/j.jlr.2023.100441_bib7) 2018; 12
Kersten (10.1016/j.jlr.2023.100441_bib2) 2014; 1841
Gusarova (10.1016/j.jlr.2023.100441_bib44) 2017; 158
Ueda (10.1016/j.jlr.2023.100441_bib26) 2017; 102
Plow (10.1016/j.jlr.2023.100441_bib28) 2012; 2012
Wu (10.1016/j.jlr.2023.100441_bib1) 2021; 32
Chen (10.1016/j.jlr.2023.100441_bib9) 2020; 61
Banfi (10.1016/j.jlr.2023.100441_bib46) 2018; 115
Beigneux (10.1016/j.jlr.2023.100441_bib3) 2009; 50
Kovrov (10.1016/j.jlr.2023.100441_bib10) 2019; 60
Lichtenstein (10.1016/j.jlr.2023.100441_bib37) 2010; 12
Balasubramaniam (10.1016/j.jlr.2023.100441_bib49) 2022; 63
Silbernagel (10.1016/j.jlr.2023.100441_bib27) 2023; 44
Fu (10.1016/j.jlr.2023.100441_bib31) 2013; 430
Dijk (10.1016/j.jlr.2023.100441_bib22) 2018; 293
Chi (10.1016/j.jlr.2023.100441_bib12) 2017; 6
Oldoni (10.1016/j.jlr.2023.100441_bib47) 2020; 30
Wolska (10.1016/j.jlr.2023.100441_bib23) 2020; 31
Kersten (10.1016/j.jlr.2023.100441_bib36) 2000; 275
Dijk (10.1016/j.jlr.2023.100441_bib6) 2016; 57
Haller (10.1016/j.jlr.2023.100441_bib13) 2017; 58
Ploug (10.1016/j.jlr.2023.100441_bib8) 2022; 33
Kei (10.1016/j.jlr.2023.100441_bib25) 2012; 61
Wang (10.1016/j.jlr.2023.100441_bib43) 2013; 110
Leth-Espensen (10.1016/j.jlr.2023.100441_bib40) 2021; 118
Larsson (10.1016/j.jlr.2023.100441_bib15) 2017; 58
Giammanco (10.1016/j.jlr.2023.100441_bib16) 2023; 25
Oldoni (10.1016/j.jlr.2023.100441_bib45) 2021; 106
Young (10.1016/j.jlr.2023.100441_bib4) 2019; 30
Romeo (10.1016/j.jlr.2023.100441_bib19) 2009; 119
Wolska (10.1016/j.jlr.2023.100441_bib24) 2017; 267
Taskinen (10.1016/j.jlr.2023.100441_bib14) 2019; 21
Kersten (10.1016/j.jlr.2023.100441_bib18) 2021; 32
Zhang (10.1016/j.jlr.2023.100441_bib30) 2013; 432
Kersten (10.1016/j.jlr.2023.100441_bib38) 2021; 62
Zhen (10.1016/j.jlr.2023.100441_bib11) 2023; 120
Zhang (10.1016/j.jlr.2023.100441_bib34) 2016; 6
Wang (10.1016/j.jlr.2023.100441_bib20) 2015; 112
Zhang (10.1016/j.jlr.2023.100441_bib35) 2022; 85
Chen (10.1016/j.jlr.2023.100441_bib48) 2021; 62
Young (10.1016/j.jlr.2023.100441_bib5) 2022; 119
Fu (10.1016/j.jlr.2023.100441_bib33) 2015; 5
Kumari (10.1016/j.jlr.2023.100441_bib39) 2023; 120
Zhang (10.1016/j.jlr.2023.100441_bib32) 2021; 8
Quagliarini (10.1016/j.jlr.2023.100441_bib42) 2012; 109
Ruppert (10.1016/j.jlr.2023.100441_bib21) 2020; 40
Zhang (10.1016/j.jlr.2023.100441_bib29) 2012; 424
Kristensen (10.1016/j.jlr.2023.100441_bib41) 2020; 117
References_xml – volume: 61
  start-page: 1203
  year: 2020
  end-page: 1220
  ident: bib9
  article-title: Angiopoietin-like protein 8 differentially regulates ANGPTL3 and ANGPTL4 during postprandial partitioning of fatty acids
  publication-title: J. Lipid Res.
– volume: 6
  year: 2022
  ident: bib50
  article-title: The regulation of triacylglycerol metabolism and lipoprotein lipase activity
  publication-title: Adv. Biol.
– volume: 61
  start-page: 906
  year: 2012
  end-page: 921
  ident: bib25
  article-title: A review of the role of apolipoprotein C-II in lipoprotein metabolism and cardiovascular disease
  publication-title: Metabolism
– volume: 118
  year: 2021
  ident: bib40
  article-title: The intrinsic instability of the hydrolase domain of lipoprotein lipase facilitates its inactivation by ANGPTL4-catalyzed unfolding
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 25
  start-page: 67
  year: 2023
  end-page: 76
  ident: bib16
  article-title: APOC-III: a gatekeeper in controlling triglyceride metabolism
  publication-title: Curr. Atheroscler. Rep.
– volume: 115
  start-page: E1249
  year: 2018
  end-page: E1258
  ident: bib46
  article-title: Increased thermogenesis by a noncanonical pathway in ANGPTL3/8-deficient mice
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 12
  start-page: 773
  year: 2018
  end-page: 783
  ident: bib7
  article-title: Regulation of angiopoietin-like 4 and lipoprotein lipase in human adipose tissue
  publication-title: J. Clin. Lipidol.
– volume: 58
  start-page: 1893
  year: 2017
  end-page: 1902
  ident: bib15
  article-title: Apolipoprotein C-III inhibits triglyceride hydrolysis by GPIHBP1-bound LPL
  publication-title: J. Lipid Res.
– volume: 8
  year: 2021
  ident: bib32
  article-title: The potential of ANGPTL8 antagonism to simultaneously reduce triglyceride and increase HDL-cholesterol plasma levels
  publication-title: Front. Cardiovasc. Med.
– volume: 32
  start-page: 48
  year: 2021
  end-page: 61
  ident: bib1
  article-title: Lipoprotein lipase and its regulators: an unfolding story
  publication-title: Trends Endo. Metab.
– volume: 50
  start-page: S57
  year: 2009
  end-page: 62
  ident: bib3
  article-title: GPIHBP1, a GPI-anchored protein required for the lipolytic processing of triglyceride-rich lipoproteins
  publication-title: J. Lipid Res.
– volume: 12
  start-page: 580
  year: 2010
  end-page: 592
  ident: bib37
  article-title: Angptl4 protects against severe proinflammatory effects of saturated fat by inhibiting fatty acid uptake into mesenteric lymph node macrophages
  publication-title: Cell Metabol.
– volume: 102
  start-page: 1454
  year: 2017
  end-page: 1457
  ident: bib26
  article-title: A novel APOC2 missense mutation causing apolipoprotein C-II deficiency with severe triglyceridemia and pancreatitis
  publication-title: J. Clin. Endocrinol. Metabol.
– volume: 30
  year: 2020
  ident: bib47
  article-title: ANGPTL8 has both endocrine and autocrine effects on substrate utilization
  publication-title: JCI Insight
– volume: 267
  start-page: 49
  year: 2017
  end-page: 60
  ident: bib24
  article-title: Apolipoprotein C-II: new findings related to genetics, biochemistry, and role in triglyceride metabolism
  publication-title: Atherosclerosis
– volume: 6
  start-page: 1137
  year: 2017
  end-page: 1149
  ident: bib12
  article-title: ANGPTL8 promotes the ability of ANGPTL3 to bind and inhibit lipoprotein lipase
  publication-title: Mol. Metab.
– volume: 120
  year: 2023
  ident: bib11
  article-title: Angiopoietin-like protein 4/8 complex-mediated plasmin generation leads to cleavage of the complex and restoration of LPL activity
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 430
  start-page: 1126
  year: 2013
  end-page: 1131
  ident: bib31
  article-title: Lipasin, thermoregulated in brown fat, is a novel but atypical member of the angiopoietin-like protein family
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 6
  year: 2016
  ident: bib34
  article-title: The ANGPTL3-4-8 model, a molecular mechanism for triglyceride trafficking
  publication-title: Open. Biol.
– volume: 110
  start-page: 16109
  year: 2013
  end-page: 16114
  ident: bib43
  article-title: Mice lacking ANGPTL8 (betatrophin) manifest disrupted triglyceride metabolism without impaired glucose homeostasis
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 43
  start-page: 388
  year: 2023
  end-page: 398
  ident: bib17
  article-title: Broadening the scope of dyslipidemia therapy by targeting APOC3 (apolipoprotein C3) and ANGPTL3 (angiopoietin-like protein 3)
  publication-title: Arterioscler. Thromb. Vasc. Biol.
– volume: 62
  year: 2021
  ident: bib38
  article-title: Role and mechanism of the action of angiopoietin-like protein ANGPTL4 in plasma lipid metabolism
  publication-title: J. Lipid Res.
– volume: 293
  start-page: 14134
  year: 2018
  end-page: 14145
  ident: bib22
  article-title: Angiopoietin-like 4 promotes the intracellular cleavage of lipoprotein lipase by PCSK3/furin in adipocytes
  publication-title: J. Biol. Chem.
– volume: 432
  start-page: 401
  year: 2013
  end-page: 405
  ident: bib30
  article-title: Emerging roles of lipasin as a critical lipid regulator
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 117
  start-page: 4337
  year: 2020
  end-page: 4346
  ident: bib41
  article-title: Unfolding of monomeric lipoprotein lipase by ANGPTL4: Insight into the regulation of plasma triglyceride metabolism
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 1841
  start-page: 919
  year: 2014
  end-page: 933
  ident: bib2
  article-title: Physiological regulation of lipoprotein lipase
  publication-title: Biochim. Biophys. Acta
– volume: 424
  start-page: 786
  year: 2012
  end-page: 792
  ident: bib29
  article-title: Lipasin, a novel nutritionally-regulated liver-enriched factor that regulates serum triglyceride levels
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 62
  year: 2021
  ident: bib48
  article-title: ApoA5 lowers triglyceride levels via suppression of ANGPTL3/8-mediated LPL inhibition
  publication-title: J. Lipid Res.
– volume: 106
  start-page: 1649
  year: 2021
  end-page: 1667
  ident: bib45
  article-title: Genetic and metabolic determinants of plasma levels of ANGPTL8
  publication-title: J. Clin. Endo. Metabol.
– volume: 60
  start-page: 783
  year: 2019
  end-page: 793
  ident: bib10
  article-title: On the mechanism of angiopoietin-like protein 8 for control of lipoprotein lipase activity
  publication-title: J. Lipid. Res.
– volume: 63
  year: 2022
  ident: bib49
  article-title: An anti-ANGPTL3/8 antibody decreases circulating triglycerides by binding to a LPL-inhibitory leucine zipper-like motif
  publication-title: J. Lipid Res.
– volume: 2012
  year: 2012
  ident: bib28
  article-title: So many plasminogen receptors: why?
  publication-title: J. Biomed. Biotech.
– volume: 58
  start-page: 1166
  year: 2017
  end-page: 1173
  ident: bib13
  article-title: ANGPTL8 requires ANGPTL3 to inhibit lipoprotein lipase and plasma triglyceride clearance
  publication-title: J. Lipid Res.
– volume: 44
  start-page: 2335
  year: 2023
  end-page: 2345
  ident: bib27
  article-title: Inverse association between apolipoprotein C-II and cardiovascular mortality: role of lipoprotein lipase activity modulation
  publication-title: Eur. Heart J.
– volume: 40
  year: 2020
  ident: bib21
  article-title: Fasting induces ANGPTL4 and reduces LPL activity in human adipose tissue
  publication-title: Mol. Metabol.
– volume: 30
  start-page: 51
  year: 2019
  end-page: 65
  ident: bib4
  article-title: GPIHBP1 and lipoprotein lipase, partners in plasma triglyceride metabolism
  publication-title: Cell Metab.
– volume: 120
  year: 2023
  ident: bib39
  article-title: Inverse effects of APOC2 and ANGPTL4 on the conformational dynamics of lid-anchoring structures in lipoprotein lipase
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 33
  start-page: 112
  year: 2022
  end-page: 119
  ident: bib8
  article-title: ANGPTL4: a new mode in the regulation of intravascular lipolysis
  publication-title: Curr. Opin. Lipidol.
– volume: 119
  start-page: 70
  year: 2009
  end-page: 79
  ident: bib19
  article-title: Rare loss-of-function mutations in ANGPTL family members contribute to plasma triglyceride levels in humans
  publication-title: J. Clin. Invest.
– volume: 112
  start-page: 11630
  year: 2015
  end-page: 11635
  ident: bib20
  article-title: Hepatic ANGPTL3 regulates adipose tissue energy homeostasis
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 119
  year: 2022
  ident: bib5
  article-title: A protein of capillary endothelial cells, GPIHBP1, is crucial for plasma triglyceride metabolism
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 109
  start-page: 19751
  year: 2012
  end-page: 19756
  ident: bib42
  article-title: Atypical angiopoietin-like protein that regulates ANGPTL3
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 31
  start-page: 147
  year: 2020
  end-page: 153
  ident: bib23
  article-title: Apolipoprotein C-II: the re-emergence of a forgotten factor
  publication-title: Curr. Opin. Lipidol.
– volume: 85
  year: 2022
  ident: bib35
  article-title: An updated ANGPTL3-4-8 model as a mechanism of triglyceride partitioning between fat and oxidative tissues
  publication-title: Prog. Lipid Res.
– volume: 21
  start-page: 27
  year: 2019
  ident: bib14
  article-title: Emerging evidence that ApoC-III inhibitors provide novel options to reduce the residual CVD
  publication-title: Curr. Atheroscler. Rep.
– volume: 57
  start-page: 1670
  year: 2016
  end-page: 1683
  ident: bib6
  article-title: Angiopoietin-like 4 promotes intracellular degradation of lipoprotein lipase in adipocytes
  publication-title: J. Lipid Res.
– volume: 158
  start-page: 1252
  year: 2017
  end-page: 1259
  ident: bib44
  article-title: ANGPTL8 blockade with a monoclonal antibody promotes triglyceride clearance, energy expenditure, and weight loss in mice
  publication-title: Endocrinology
– volume: 32
  start-page: 335
  year: 2021
  end-page: 341
  ident: bib18
  article-title: ANGPTL3 as therapeutic target
  publication-title: Curr. Opin. Lipidol.
– volume: 5
  year: 2015
  ident: bib33
  article-title: A lipasin/Angptl8 monoclonal antibody lowers mouse serum triglycerides involving increased postprandial activity of the cardiac lipoprotein lipase
  publication-title: Sci. Rep.
– volume: 275
  start-page: 28488
  year: 2000
  end-page: 28493
  ident: bib36
  article-title: Characterization of the fasting-induced adipose factor FIAF, a novel peroxisome proliferator-activated receptor target gene
  publication-title: J. Biol. Chem.
– volume: 61
  start-page: 1203
  year: 2020
  ident: 10.1016/j.jlr.2023.100441_bib9
  article-title: Angiopoietin-like protein 8 differentially regulates ANGPTL3 and ANGPTL4 during postprandial partitioning of fatty acids
  publication-title: J. Lipid Res.
  doi: 10.1194/jlr.RA120000781
– volume: 432
  start-page: 401
  year: 2013
  ident: 10.1016/j.jlr.2023.100441_bib30
  article-title: Emerging roles of lipasin as a critical lipid regulator
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2013.01.129
– volume: 110
  start-page: 16109
  year: 2013
  ident: 10.1016/j.jlr.2023.100441_bib43
  article-title: Mice lacking ANGPTL8 (betatrophin) manifest disrupted triglyceride metabolism without impaired glucose homeostasis
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1315292110
– volume: 2012
  year: 2012
  ident: 10.1016/j.jlr.2023.100441_bib28
  article-title: So many plasminogen receptors: why?
  publication-title: J. Biomed. Biotech.
– volume: 6
  year: 2022
  ident: 10.1016/j.jlr.2023.100441_bib50
  article-title: The regulation of triacylglycerol metabolism and lipoprotein lipase activity
  publication-title: Adv. Biol.
  doi: 10.1002/adbi.202200093
– volume: 119
  year: 2022
  ident: 10.1016/j.jlr.2023.100441_bib5
  article-title: A protein of capillary endothelial cells, GPIHBP1, is crucial for plasma triglyceride metabolism
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.2211136119
– volume: 430
  start-page: 1126
  year: 2013
  ident: 10.1016/j.jlr.2023.100441_bib31
  article-title: Lipasin, thermoregulated in brown fat, is a novel but atypical member of the angiopoietin-like protein family
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2012.12.025
– volume: 62
  year: 2021
  ident: 10.1016/j.jlr.2023.100441_bib38
  article-title: Role and mechanism of the action of angiopoietin-like protein ANGPTL4 in plasma lipid metabolism
  publication-title: J. Lipid Res.
  doi: 10.1016/j.jlr.2021.100150
– volume: 25
  start-page: 67
  year: 2023
  ident: 10.1016/j.jlr.2023.100441_bib16
  article-title: APOC-III: a gatekeeper in controlling triglyceride metabolism
  publication-title: Curr. Atheroscler. Rep.
  doi: 10.1007/s11883-023-01080-8
– volume: 8
  year: 2021
  ident: 10.1016/j.jlr.2023.100441_bib32
  article-title: The potential of ANGPTL8 antagonism to simultaneously reduce triglyceride and increase HDL-cholesterol plasma levels
  publication-title: Front. Cardiovasc. Med.
– volume: 1841
  start-page: 919
  year: 2014
  ident: 10.1016/j.jlr.2023.100441_bib2
  article-title: Physiological regulation of lipoprotein lipase
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbalip.2014.03.013
– volume: 32
  start-page: 48
  year: 2021
  ident: 10.1016/j.jlr.2023.100441_bib1
  article-title: Lipoprotein lipase and its regulators: an unfolding story
  publication-title: Trends Endo. Metab.
  doi: 10.1016/j.tem.2020.11.005
– volume: 6
  start-page: 1137
  year: 2017
  ident: 10.1016/j.jlr.2023.100441_bib12
  article-title: ANGPTL8 promotes the ability of ANGPTL3 to bind and inhibit lipoprotein lipase
  publication-title: Mol. Metab.
  doi: 10.1016/j.molmet.2017.06.014
– volume: 62
  year: 2021
  ident: 10.1016/j.jlr.2023.100441_bib48
  article-title: ApoA5 lowers triglyceride levels via suppression of ANGPTL3/8-mediated LPL inhibition
  publication-title: J. Lipid Res.
  doi: 10.1016/j.jlr.2021.100068
– volume: 61
  start-page: 906
  year: 2012
  ident: 10.1016/j.jlr.2023.100441_bib25
  article-title: A review of the role of apolipoprotein C-II in lipoprotein metabolism and cardiovascular disease
  publication-title: Metabolism
  doi: 10.1016/j.metabol.2011.12.002
– volume: 50
  start-page: S57
  year: 2009
  ident: 10.1016/j.jlr.2023.100441_bib3
  article-title: GPIHBP1, a GPI-anchored protein required for the lipolytic processing of triglyceride-rich lipoproteins
  publication-title: J. Lipid Res.
  doi: 10.1194/jlr.R800030-JLR200
– volume: 115
  start-page: E1249
  year: 2018
  ident: 10.1016/j.jlr.2023.100441_bib46
  article-title: Increased thermogenesis by a noncanonical pathway in ANGPTL3/8-deficient mice
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1717420115
– volume: 12
  start-page: 773
  year: 2018
  ident: 10.1016/j.jlr.2023.100441_bib7
  article-title: Regulation of angiopoietin-like 4 and lipoprotein lipase in human adipose tissue
  publication-title: J. Clin. Lipidol.
  doi: 10.1016/j.jacl.2018.02.006
– volume: 43
  start-page: 388
  year: 2023
  ident: 10.1016/j.jlr.2023.100441_bib17
  article-title: Broadening the scope of dyslipidemia therapy by targeting APOC3 (apolipoprotein C3) and ANGPTL3 (angiopoietin-like protein 3)
  publication-title: Arterioscler. Thromb. Vasc. Biol.
  doi: 10.1161/ATVBAHA.122.317966
– volume: 119
  start-page: 70
  year: 2009
  ident: 10.1016/j.jlr.2023.100441_bib19
  article-title: Rare loss-of-function mutations in ANGPTL family members contribute to plasma triglyceride levels in humans
  publication-title: J. Clin. Invest.
– volume: 44
  start-page: 2335
  year: 2023
  ident: 10.1016/j.jlr.2023.100441_bib27
  article-title: Inverse association between apolipoprotein C-II and cardiovascular mortality: role of lipoprotein lipase activity modulation
  publication-title: Eur. Heart J.
  doi: 10.1093/eurheartj/ehad261
– volume: 12
  start-page: 580
  year: 2010
  ident: 10.1016/j.jlr.2023.100441_bib37
  article-title: Angptl4 protects against severe proinflammatory effects of saturated fat by inhibiting fatty acid uptake into mesenteric lymph node macrophages
  publication-title: Cell Metabol.
  doi: 10.1016/j.cmet.2010.11.002
– volume: 58
  start-page: 1893
  year: 2017
  ident: 10.1016/j.jlr.2023.100441_bib15
  article-title: Apolipoprotein C-III inhibits triglyceride hydrolysis by GPIHBP1-bound LPL
  publication-title: J. Lipid Res.
  doi: 10.1194/jlr.M078220
– volume: 109
  start-page: 19751
  year: 2012
  ident: 10.1016/j.jlr.2023.100441_bib42
  article-title: Atypical angiopoietin-like protein that regulates ANGPTL3
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1217552109
– volume: 30
  year: 2020
  ident: 10.1016/j.jlr.2023.100441_bib47
  article-title: ANGPTL8 has both endocrine and autocrine effects on substrate utilization
  publication-title: JCI Insight
– volume: 40
  year: 2020
  ident: 10.1016/j.jlr.2023.100441_bib21
  article-title: Fasting induces ANGPTL4 and reduces LPL activity in human adipose tissue
  publication-title: Mol. Metabol.
  doi: 10.1016/j.molmet.2020.101033
– volume: 32
  start-page: 335
  year: 2021
  ident: 10.1016/j.jlr.2023.100441_bib18
  article-title: ANGPTL3 as therapeutic target
  publication-title: Curr. Opin. Lipidol.
  doi: 10.1097/MOL.0000000000000789
– volume: 85
  year: 2022
  ident: 10.1016/j.jlr.2023.100441_bib35
  article-title: An updated ANGPTL3-4-8 model as a mechanism of triglyceride partitioning between fat and oxidative tissues
  publication-title: Prog. Lipid Res.
  doi: 10.1016/j.plipres.2021.101140
– volume: 21
  start-page: 27
  year: 2019
  ident: 10.1016/j.jlr.2023.100441_bib14
  article-title: Emerging evidence that ApoC-III inhibitors provide novel options to reduce the residual CVD
  publication-title: Curr. Atheroscler. Rep.
  doi: 10.1007/s11883-019-0791-9
– volume: 33
  start-page: 112
  year: 2022
  ident: 10.1016/j.jlr.2023.100441_bib8
  article-title: ANGPTL4: a new mode in the regulation of intravascular lipolysis
  publication-title: Curr. Opin. Lipidol.
  doi: 10.1097/MOL.0000000000000800
– volume: 267
  start-page: 49
  year: 2017
  ident: 10.1016/j.jlr.2023.100441_bib24
  article-title: Apolipoprotein C-II: new findings related to genetics, biochemistry, and role in triglyceride metabolism
  publication-title: Atherosclerosis
  doi: 10.1016/j.atherosclerosis.2017.10.025
– volume: 158
  start-page: 1252
  year: 2017
  ident: 10.1016/j.jlr.2023.100441_bib44
  article-title: ANGPTL8 blockade with a monoclonal antibody promotes triglyceride clearance, energy expenditure, and weight loss in mice
  publication-title: Endocrinology
  doi: 10.1210/en.2016-1894
– volume: 424
  start-page: 786
  year: 2012
  ident: 10.1016/j.jlr.2023.100441_bib29
  article-title: Lipasin, a novel nutritionally-regulated liver-enriched factor that regulates serum triglyceride levels
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2012.07.038
– volume: 293
  start-page: 14134
  year: 2018
  ident: 10.1016/j.jlr.2023.100441_bib22
  article-title: Angiopoietin-like 4 promotes the intracellular cleavage of lipoprotein lipase by PCSK3/furin in adipocytes
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.RA118.002426
– volume: 275
  start-page: 28488
  year: 2000
  ident: 10.1016/j.jlr.2023.100441_bib36
  article-title: Characterization of the fasting-induced adipose factor FIAF, a novel peroxisome proliferator-activated receptor target gene
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M004029200
– volume: 5
  year: 2015
  ident: 10.1016/j.jlr.2023.100441_bib33
  article-title: A lipasin/Angptl8 monoclonal antibody lowers mouse serum triglycerides involving increased postprandial activity of the cardiac lipoprotein lipase
  publication-title: Sci. Rep.
  doi: 10.1038/srep18502
– volume: 120
  year: 2023
  ident: 10.1016/j.jlr.2023.100441_bib39
  article-title: Inverse effects of APOC2 and ANGPTL4 on the conformational dynamics of lid-anchoring structures in lipoprotein lipase
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.2221888120
– volume: 31
  start-page: 147
  year: 2020
  ident: 10.1016/j.jlr.2023.100441_bib23
  article-title: Apolipoprotein C-II: the re-emergence of a forgotten factor
  publication-title: Curr. Opin. Lipidol.
  doi: 10.1097/MOL.0000000000000680
– volume: 118
  year: 2021
  ident: 10.1016/j.jlr.2023.100441_bib40
  article-title: The intrinsic instability of the hydrolase domain of lipoprotein lipase facilitates its inactivation by ANGPTL4-catalyzed unfolding
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.2026650118
– volume: 63
  year: 2022
  ident: 10.1016/j.jlr.2023.100441_bib49
  article-title: An anti-ANGPTL3/8 antibody decreases circulating triglycerides by binding to a LPL-inhibitory leucine zipper-like motif
  publication-title: J. Lipid Res.
  doi: 10.1016/j.jlr.2022.100198
– volume: 117
  start-page: 4337
  year: 2020
  ident: 10.1016/j.jlr.2023.100441_bib41
  article-title: Unfolding of monomeric lipoprotein lipase by ANGPTL4: Insight into the regulation of plasma triglyceride metabolism
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1920202117
– volume: 58
  start-page: 1166
  year: 2017
  ident: 10.1016/j.jlr.2023.100441_bib13
  article-title: ANGPTL8 requires ANGPTL3 to inhibit lipoprotein lipase and plasma triglyceride clearance
  publication-title: J. Lipid Res.
  doi: 10.1194/jlr.M075689
– volume: 57
  start-page: 1670
  year: 2016
  ident: 10.1016/j.jlr.2023.100441_bib6
  article-title: Angiopoietin-like 4 promotes intracellular degradation of lipoprotein lipase in adipocytes
  publication-title: J. Lipid Res.
  doi: 10.1194/jlr.M067363
– volume: 6
  year: 2016
  ident: 10.1016/j.jlr.2023.100441_bib34
  article-title: The ANGPTL3-4-8 model, a molecular mechanism for triglyceride trafficking
  publication-title: Open. Biol.
  doi: 10.1098/rsob.150272
– volume: 30
  start-page: 51
  year: 2019
  ident: 10.1016/j.jlr.2023.100441_bib4
  article-title: GPIHBP1 and lipoprotein lipase, partners in plasma triglyceride metabolism
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2019.05.023
– volume: 60
  start-page: 783
  year: 2019
  ident: 10.1016/j.jlr.2023.100441_bib10
  article-title: On the mechanism of angiopoietin-like protein 8 for control of lipoprotein lipase activity
  publication-title: J. Lipid. Res.
  doi: 10.1194/jlr.M088807
– volume: 102
  start-page: 1454
  year: 2017
  ident: 10.1016/j.jlr.2023.100441_bib26
  article-title: A novel APOC2 missense mutation causing apolipoprotein C-II deficiency with severe triglyceridemia and pancreatitis
  publication-title: J. Clin. Endocrinol. Metabol.
  doi: 10.1210/jc.2016-3903
– volume: 112
  start-page: 11630
  year: 2015
  ident: 10.1016/j.jlr.2023.100441_bib20
  article-title: Hepatic ANGPTL3 regulates adipose tissue energy homeostasis
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1515374112
– volume: 120
  year: 2023
  ident: 10.1016/j.jlr.2023.100441_bib11
  article-title: Angiopoietin-like protein 4/8 complex-mediated plasmin generation leads to cleavage of the complex and restoration of LPL activity
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.2214081120
– volume: 106
  start-page: 1649
  year: 2021
  ident: 10.1016/j.jlr.2023.100441_bib45
  article-title: Genetic and metabolic determinants of plasma levels of ANGPTL8
  publication-title: J. Clin. Endo. Metabol.
  doi: 10.1210/clinem/dgab120
SSID ssj0014461
Score 2.4826822
Snippet After feeding, adipose tissue lipoprotein lipase (LPL) activity should be maximized, therefore the potent LPL-inhibitory activity of angiopoietin-like protein...
SourceID doaj
pubmedcentral
proquest
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 100441
SubjectTerms angiopoietin-like protein (ANGPTL)
apolipoprotein (Apo)
lipoprotein lipase (LPL)
plasmin
plasminogen
tissue plasminogen activator (tPA)
triglycerides (TG)
Title Decoding the role of angiopoietin-like protein 4/8 complex–mediated plasmin generation in the regulation of LPL activity
URI https://dx.doi.org/10.1016/j.jlr.2023.100441
https://www.proquest.com/docview/2861304134
https://pubmed.ncbi.nlm.nih.gov/PMC10550811
https://doaj.org/article/fd8e36108a9340d8926ab8efc7ceee8d
Volume 64
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQOcAFQQti-aiMhDgghcZ2EtvHpVBVtEIIUdGb5a-0Kdtk1W4l4MR_4B_yS5hxkmpzKReOcRLHyZtk3sTjN4S8BM7hhbAsc5zbDDxelTlZ2swWupZOeFXZlCD7sdo_Kj4cl8drpb4wJ6yXB-4f3E4dVBTg45XVosiD0ryyTsXaS_i8RxXw6ws-bwymhvkDCHLYqBPOuSzH-cyU2XW2QCFQLt4ktTQ28UhJuH_imNaI5zRtcs0P7d0n9wYCSef9wB-QW7HdJFvzFoLn8x_0FU0pnelf-Sa5szuWc9siP99BoImOigLlo5hUSLua2vak6ZZdgwufs0XzLdIk3NC0tNhRNOWbx-9_fv1OC0yAnNIlsO1z2H2S5KoRVQpbqcu-qj22QMeHnw4prpnA0hQPydHe-y-7-9lQeCHzEC-tslDl3kurGXdlZNrHUJZW6TpqKVxlK4vLXZmsnXB5qH1kYAkacApSuyCkFY_IRtu18TGh0nFoKzxEOXkB6AOYQbqcxaJynAU-I_n48I0fVMmxOMbCjOlnZwbwMoiX6fGakdfXpyx7SY6bDn6LiF4fiGraqQFszAw2Zv5lYzNSjPZgBmLSEw7oqrnp2i9G2zEANs7E2DZ2V5eGKwzbgD8UM6ImRjUZ6HRP25wm-W8saQpEjj35H7f2lNzFEffpic_IxuriKj4HmrVy2-T2_ODz14Pt9Gb9BSG5K4Y
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Decoding+the+role+of+angiopoietin-like+protein+4%2F8+complex%E2%80%93mediated+plasmin+generation+in+the+regulation+of+LPL+activity&rft.jtitle=Journal+of+lipid+research&rft.au=Chen%2C+Yan+Q.&rft.au=Zhen%2C+Eugene+Y.&rft.au=Russell%2C+Anna+M.&rft.au=Ehsani%2C+Mariam&rft.date=2023-10-01&rft.issn=0022-2275&rft.volume=64&rft.issue=10&rft.spage=100441&rft_id=info:doi/10.1016%2Fj.jlr.2023.100441&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jlr_2023_100441
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-2275&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-2275&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-2275&client=summon