Induction and suppression of tick cell antiviral RNAi responses by tick-borne flaviviruses
Arboviruses are transmitted by distantly related arthropod vectors such as mosquitoes (class Insecta) and ticks (class Arachnida). RNA interference (RNAi) is the major antiviral mechanism in arthropods against arboviruses. Unlike in mosquitoes, tick antiviral RNAi is not understood, although this in...
Saved in:
Published in | Nucleic acids research Vol. 42; no. 14; pp. 9436 - 9446 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
18.08.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Arboviruses are transmitted by distantly related arthropod vectors such as mosquitoes (class Insecta) and ticks (class Arachnida). RNA interference (RNAi) is the major antiviral mechanism in arthropods against arboviruses. Unlike in mosquitoes, tick antiviral RNAi is not understood, although this information is important to compare arbovirus/host interactions in different classes of arbovirus vectos. Using an Ixodes scapularis-derived cell line, key Argonaute proteins involved in RNAi and the response against tick-borne Langat virus (Flaviviridae) replication were identified and phylogenetic relationships characterized. Analysis of small RNAs in infected cells showed the production of virus-derived small interfering RNAs (viRNAs), which are key molecules of the antiviral RNAi response. Importantly, viRNAs were longer (22 nucleotides) than those from other arbovirus vectors and mapped at highest frequency to the termini of the viral genome, as opposed to mosquito-borne flaviviruses. Moreover, tick-borne flaviviruses expressed subgenomic flavivirus RNAs that interfere with tick RNAi. Our results characterize the antiviral RNAi response in tick cells including phylogenetic analysis of genes encoding antiviral proteins, and viral interference with this pathway. This shows important differences in antiviral RNAi between the two major classes of arbovirus vectors, and our data broadens our understanding of arthropod antiviral RNAi. |
---|---|
AbstractList | Arboviruses are transmitted by distantly related arthropod vectors such as mosquitoes (class Insecta) and ticks (class Arachnida). RNA interference (RNAi) is the major antiviral mechanism in arthropods against arboviruses. Unlike in mosquitoes, tick antiviral RNAi is not understood, although this information is important to compare arbovirus/host interactions in different classes of arbovirus vectos. Using an Ixodes scapularis-derived cell line, key Argonaute proteins involved in RNAi and the response against tick-borne Langat virus (Flaviviridae) replication were identified and phylogenetic relationships characterized. Analysis of small RNAs in infected cells showed the production of virus-derived small interfering RNAs (viRNAs), which are key molecules of the antiviral RNAi response. Importantly, viRNAs were longer (22 nucleotides) than those from other arbovirus vectors and mapped at highest frequency to the termini of the viral genome, as opposed to mosquito-borne flaviviruses. Moreover, tick-borne flaviviruses expressed subgenomic flavivirus RNAs that interfere with tick RNAi. Our results characterize the antiviral RNAi response in tick cells including phylogenetic analysis of genes encoding antiviral proteins, and viral interference with this pathway. This shows important differences in antiviral RNAi between the two major classes of arbovirus vectors, and our data broadens our understanding of arthropod antiviral RNAi. Arboviruses are transmitted by distantly related arthropod vectors such as mosquitoes (class Insecta) and ticks (class Arachnida). RNA interference (RNAi) is the major antiviral mechanism in arthropods against arboviruses. Unlike in mosquitoes, tick antiviral RNAi is not understood, although this information is important to compare arbovirus/host interactions in different classes of arbovirus vectos. Using an Ixodes scapularis-derived cell line, key Argonaute proteins involved in RNAi and the response against tick-borne Langat virus (Flaviviridae) replication were identified and phylogenetic relationships characterized. Analysis of small RNAs in infected cells showed the production of virus-derived small interfering RNAs (viRNAs), which are key molecules of the antiviral RNAi response. Importantly, viRNAs were longer (22 nucleotides) than those from other arbovirus vectors and mapped at highest frequency to the termini of the viral genome, as opposed to mosquito-borne flaviviruses. Moreover, tick-borne flaviviruses expressed subgenomic flavivirus RNAs that interfere with tick RNAi. Our results characterize the antiviral RNAi response in tick cells including phylogenetic analysis of genes encoding antiviral proteins, and viral interference with this pathway. This shows important differences in antiviral RNAi between the two major classes of arbovirus vectors, and our data broadens our understanding of arthropod antiviral RNAi.Arboviruses are transmitted by distantly related arthropod vectors such as mosquitoes (class Insecta) and ticks (class Arachnida). RNA interference (RNAi) is the major antiviral mechanism in arthropods against arboviruses. Unlike in mosquitoes, tick antiviral RNAi is not understood, although this information is important to compare arbovirus/host interactions in different classes of arbovirus vectos. Using an Ixodes scapularis-derived cell line, key Argonaute proteins involved in RNAi and the response against tick-borne Langat virus (Flaviviridae) replication were identified and phylogenetic relationships characterized. Analysis of small RNAs in infected cells showed the production of virus-derived small interfering RNAs (viRNAs), which are key molecules of the antiviral RNAi response. Importantly, viRNAs were longer (22 nucleotides) than those from other arbovirus vectors and mapped at highest frequency to the termini of the viral genome, as opposed to mosquito-borne flaviviruses. Moreover, tick-borne flaviviruses expressed subgenomic flavivirus RNAs that interfere with tick RNAi. Our results characterize the antiviral RNAi response in tick cells including phylogenetic analysis of genes encoding antiviral proteins, and viral interference with this pathway. This shows important differences in antiviral RNAi between the two major classes of arbovirus vectors, and our data broadens our understanding of arthropod antiviral RNAi. Arboviruses are transmitted by distantly related arthropod vectors such as mosquitoes (class Insecta ) and ticks (class Arachnida ). RNA interference (RNAi) is the major antiviral mechanism in arthropods against arboviruses. Unlike in mosquitoes, tick antiviral RNAi is not understood, although this information is important to compare arbovirus/host interactions in different classes of arbovirus vectos. Using an Ixodes scapularis- derived cell line, key Argonaute proteins involved in RNAi and the response against tick-borne Langat virus ( Flaviviridae ) replication were identified and phylogenetic relationships characterized. Analysis of small RNAs in infected cells showed the production of virus-derived small interfering RNAs (viRNAs), which are key molecules of the antiviral RNAi response. Importantly, viRNAs were longer (22 nucleotides) than those from other arbovirus vectors and mapped at highest frequency to the termini of the viral genome, as opposed to mosquito-borne flaviviruses. Moreover, tick-borne flaviviruses expressed subgenomic flavivirus RNAs that interfere with tick RNAi. Our results characterize the antiviral RNAi response in tick cells including phylogenetic analysis of genes encoding antiviral proteins, and viral interference with this pathway. This shows important differences in antiviral RNAi between the two major classes of arbovirus vectors, and our data broadens our understanding of arthropod antiviral RNAi. |
Author | Weisheit, Sabine Kuhn, Richard J. Chase-Topping, Margo E. Kohl, Alain Fazakerley, John K. Tykalová, Hana Gould, Ernest A. Bell-Sakyi, Lesley McFarlane, Melanie Barry, Gerald Obbard, Darren J. Schnettler, Esther Pijlman, Gorben P. Best, Sonja M. Watson, Mick Sharma, Mayuri Lewis, Samuel H. Grubhoffer, Libor Sterken, Mark G. |
Author_xml | – sequence: 1 givenname: Esther surname: Schnettler fullname: Schnettler, Esther – sequence: 2 givenname: Hana surname: Tykalová fullname: Tykalová, Hana – sequence: 3 givenname: Mick surname: Watson fullname: Watson, Mick – sequence: 4 givenname: Mayuri surname: Sharma fullname: Sharma, Mayuri – sequence: 5 givenname: Mark G. surname: Sterken fullname: Sterken, Mark G. – sequence: 6 givenname: Darren J. surname: Obbard fullname: Obbard, Darren J. – sequence: 7 givenname: Samuel H. surname: Lewis fullname: Lewis, Samuel H. – sequence: 8 givenname: Melanie surname: McFarlane fullname: McFarlane, Melanie – sequence: 9 givenname: Lesley surname: Bell-Sakyi fullname: Bell-Sakyi, Lesley – sequence: 10 givenname: Gerald surname: Barry fullname: Barry, Gerald – sequence: 11 givenname: Sabine surname: Weisheit fullname: Weisheit, Sabine – sequence: 12 givenname: Sonja M. surname: Best fullname: Best, Sonja M. – sequence: 13 givenname: Richard J. surname: Kuhn fullname: Kuhn, Richard J. – sequence: 14 givenname: Gorben P. surname: Pijlman fullname: Pijlman, Gorben P. – sequence: 15 givenname: Margo E. surname: Chase-Topping fullname: Chase-Topping, Margo E. – sequence: 16 givenname: Ernest A. surname: Gould fullname: Gould, Ernest A. – sequence: 17 givenname: Libor surname: Grubhoffer fullname: Grubhoffer, Libor – sequence: 18 givenname: John K. surname: Fazakerley fullname: Fazakerley, John K. – sequence: 19 givenname: Alain surname: Kohl fullname: Kohl, Alain |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25053841$$D View this record in MEDLINE/PubMed |
BookMark | eNptUUtrFTEUDqXS3lY3_QEySymMzXtmXAilVC0UBdGNm5BkztzGzk2mycwt_fcm3la0uDmH5HwPzvmO0L4PHhA6IfgtwR078zqerW8XKZo9tCJM0pp3ku6jFWZY1ATz9hAdpfQTY8KJ4AfokAosWMvJCv248v1iZxd8pX1fpWWaIqRU3mGoZmdvKwvjmIez27qox-rr53NXZcwUfIJUmYffqNqE6KEaRr0tuCWPXqIXgx4TvHrsx-j7h8tvF5_q6y8fry7Or2vLOzHnKgjNe3DTgO4kaW0nSGsEk8YCoRSzgdrWghBtb6Cx0PbUWM4zD5qmo-wYvdvp3us1eOdzUfkk1iUVtFOjM1HHB3W_ROXH0qbFJMWFxFJm8vsdOX9uoLfg57ykmqLbFFIR-Hfi3Y1ah63ihNFGkizw5lEghrsF0qw2LpWTaQ9hSYoIwRqCMSter__2-mPylEYG4B3AxpBShEFZN-sSTrZ2oyJYlcDLdmoXeKacPqM8qf4H_AvFs7FF |
CitedBy_id | crossref_primary_10_1080_15476286_2021_1907044 crossref_primary_10_1016_j_virusres_2015_10_002 crossref_primary_10_1371_journal_pntd_0004180 crossref_primary_10_1093_bioinformatics_btaa759 crossref_primary_10_1371_journal_pone_0281195 crossref_primary_10_1038_s41467_017_02604_y crossref_primary_10_3389_fcimb_2020_00142 crossref_primary_10_3390_v13112129 crossref_primary_10_3390_v10060329 crossref_primary_10_1016_j_antiviral_2018_09_006 crossref_primary_10_1093_molbev_msw053 crossref_primary_10_1371_journal_pbio_1002210 crossref_primary_10_1016_j_virusres_2015_09_009 crossref_primary_10_1038_s41598_019_43390_5 crossref_primary_10_1128_mBio_02352_20 crossref_primary_10_3389_fimmu_2021_628054 crossref_primary_10_3389_fcimb_2017_00519 crossref_primary_10_1186_s12915_022_01463_4 crossref_primary_10_1099_jgv_0_002041 crossref_primary_10_1038_s41598_021_04498_9 crossref_primary_10_3389_fmicb_2019_00022 crossref_primary_10_3390_ijms24119694 crossref_primary_10_1093_molbev_msv093 crossref_primary_10_1186_s13071_015_1210_x crossref_primary_10_1186_s13071_016_1944_0 crossref_primary_10_1002_cpmc_118 crossref_primary_10_3390_v10070340 crossref_primary_10_1080_20477724_2016_1211475 crossref_primary_10_1186_s13071_017_2011_1 crossref_primary_10_1371_journal_ppat_1004604 crossref_primary_10_1128_jvi_01149_23 crossref_primary_10_1371_journal_pgen_1007533 crossref_primary_10_1016_j_csbj_2021_07_024 crossref_primary_10_1111_1348_0421_12971 crossref_primary_10_1016_j_csbj_2022_05_052 crossref_primary_10_3389_fpls_2020_01237 crossref_primary_10_3389_fmicb_2021_773211 crossref_primary_10_3389_fcimb_2021_739419 crossref_primary_10_1371_journal_pone_0133038 crossref_primary_10_1016_j_ttbdis_2022_101906 crossref_primary_10_1038_ncomms10507 crossref_primary_10_3389_fcimb_2020_00453 crossref_primary_10_1186_s12864_017_3769_4 crossref_primary_10_1016_j_mib_2016_05_002 crossref_primary_10_1111_pim_12815 crossref_primary_10_1002_wrna_1351 crossref_primary_10_1042_BJ20150445 crossref_primary_10_1038_s41467_023_36838_w crossref_primary_10_1038_s41598_019_45658_2 crossref_primary_10_1371_journal_pntd_0012172 crossref_primary_10_3389_fimmu_2018_03138 crossref_primary_10_3390_v10080395 crossref_primary_10_1186_s12985_016_0541_3 crossref_primary_10_3390_v7020820 crossref_primary_10_3390_pathogens10111511 crossref_primary_10_1016_j_ttbdis_2018_05_015 crossref_primary_10_15252_embr_202255806 crossref_primary_10_1016_j_bbrc_2017_02_006 crossref_primary_10_3390_v12101177 crossref_primary_10_1080_20477724_2021_1944539 crossref_primary_10_1093_ve_veab040 crossref_primary_10_3390_v15061220 crossref_primary_10_1093_ve_vez010 crossref_primary_10_1128_mBio_01255_17 crossref_primary_10_1002_wrna_1361 crossref_primary_10_1016_j_dci_2021_104012 crossref_primary_10_1128_JVI_00930_16 crossref_primary_10_3390_pathogens11080827 crossref_primary_10_1016_j_tim_2017_12_005 crossref_primary_10_1111_cmi_12737 crossref_primary_10_1038_srep39265 crossref_primary_10_1038_s41467_020_16086_y crossref_primary_10_1016_j_jip_2020_107481 crossref_primary_10_3389_fcell_2024_1460705 crossref_primary_10_3390_v6114314 crossref_primary_10_1016_j_virusres_2018_03_006 crossref_primary_10_1093_ve_vew033 crossref_primary_10_33442_978_981_14_0914_1_4 crossref_primary_10_1016_j_virusres_2024_199522 crossref_primary_10_1128_mBio_02461_18 crossref_primary_10_1021_acsinfecdis_7b00274 crossref_primary_10_1038_s41467_022_28977_3 crossref_primary_10_1371_journal_ppat_1007515 crossref_primary_10_1089_vbz_2017_2224 crossref_primary_10_1038_srep38065 crossref_primary_10_2903_sp_efsa_2017_EN_1246 crossref_primary_10_1016_j_virusres_2015_01_026 crossref_primary_10_1371_journal_ppat_1010119 crossref_primary_10_3390_v9060137 crossref_primary_10_1038_s41598_017_08043_5 crossref_primary_10_1261_rna_077065_120 crossref_primary_10_3389_fcimb_2017_00293 crossref_primary_10_3389_fphys_2019_00890 crossref_primary_10_2217_fvl_2017_0106 crossref_primary_10_3389_fcimb_2017_00339 crossref_primary_10_1186_s12915_020_00865_6 crossref_primary_10_2807_1560_7917_ES_2021_26_35_2002108 crossref_primary_10_1093_nar_gkae1288 crossref_primary_10_33442_26613980_4_5 crossref_primary_10_1111_1749_4877_12875 crossref_primary_10_33442_26613980_4_6 crossref_primary_10_33442_26613980_4_4 crossref_primary_10_1371_journal_pntd_0005048 |
Cites_doi | 10.1186/1758-907X-3-4 10.1093/nar/gkr1263 10.1186/1471-2180-8-47 10.1093/bioinformatics/btt297 10.1371/journal.pntd.0000848 10.1111/j.1600-065X.2008.00722.x 10.1099/vir.0.81827-0 10.1073/pnas.0803408105 10.1186/1471-2199-10-26 10.1128/JVI.01047-10 10.1016/j.pt.2007.07.002 10.1128/JVI.02052-10 10.1016/j.virol.2008.08.030 10.1016/j.coi.2009.01.007 10.1016/j.ttbdis.2012.05.002 10.1007/s10493-012-9598-x 10.1099/vir.0.010488-0 10.1128/JVI.02830-06 10.1073/pnas.0406983101 10.1016/S0065-3527(06)69005-2 10.1099/vir.0.026997-0 10.1186/1471-2180-9-49 10.1128/JVI.01104-12 10.1093/sysbio/sys029 10.3390/insects3020511 10.1016/j.virol.2007.04.011 10.1371/journal.pntd.0000856 10.1099/0022-1317-82-4-795 10.1186/1471-2105-11-579 10.1073/pnas.0911353107 10.1093/nar/gkf436 10.1016/j.virol.2008.04.035 10.1016/j.virusres.2008.07.016 10.1006/viro.2001.0846 10.1016/j.chom.2008.09.001 10.1371/journal.ppat.1002470 10.1099/vir.0.82182-0 10.1128/JVI.77.16.8924-8933.2003 10.4161/rna.6.4.8946 10.1128/JVI.01159-10 10.1371/journal.ppat.1000502 10.1016/j.chom.2008.10.007 10.1016/S0065-3527(03)59006-6 10.1111/j.1469-0691.2004.01022.x 10.1038/nri2824 10.1371/journal.ppat.1003133 10.1007/BF01194061 10.1073/pnas.0813412106 10.1016/S0065-3527(03)61008-0 10.1371/journal.pcbi.0030065 10.1101/gad.1482006 10.2217/fmb.11.11 10.1128/JVI.79.14.8942-8947.2005 10.1089/vbz.2011.0766 10.1099/vir.0.013201-0 10.1128/JVI.02848-12 10.1371/journal.pbio.1000586 10.1016/j.coviro.2011.10.028 10.1128/JVI.79.20.12828-12839.2005 10.1007/s00294-006-0078-x 10.1016/j.jcpa.2003.12.002 10.1016/S0065-3527(03)59002-9 10.1080/10635150701472164 10.1128/JVI.02037-10 10.1146/annurev.micro.60.080805.142205 |
ContentType | Journal Article |
Copyright | The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research. The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research. 2014 Wageningen University & Research |
Copyright_xml | – notice: The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research. – notice: The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research. 2014 – notice: Wageningen University & Research |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM QVL |
DOI | 10.1093/nar/gku657 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) NARCIS:Publications |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1362-4962 |
EndPage | 9446 |
ExternalDocumentID | oai_library_wur_nl_wurpubs_456066 PMC4132761 25053841 10_1093_nar_gku657 |
Genre | Research Support, N.I.H., Intramural Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: Wellcome Trust grantid: 085064/Z/08/Z – fundername: Intramural NIH HHS – fundername: Medical Research Council grantid: MC_UU_12014/8 – fundername: Medical Research Council grantid: MC_UP_A550_1031 – fundername: PHS HHS grantid: AIO055672 – fundername: Wellcome Trust grantid: 088588 – fundername: NIAID NIH HHS grantid: P01 AI055672 – fundername: Wellcome Trust grantid: 095831 – fundername: Biotechnology and Biological Sciences Research Council |
GroupedDBID | --- -DZ -~X .I3 0R~ 123 18M 1TH 29N 2WC 4.4 482 53G 5VS 5WA 70E 85S A8Z AAFWJ AAHBH AAMVS AAOGV AAPXW AAUQX AAVAP AAYXX ABEJV ABGNP ABPTD ABQLI ABXVV ACGFO ACGFS ACIWK ACNCT ACPRK ACUTJ ADBBV ADHZD AEGXH AENEX AENZO AFFNX AFPKN AFRAH AFYAG AHMBA AIAGR ALMA_UNASSIGNED_HOLDINGS ALUQC AMNDL AOIJS BAWUL BAYMD BCNDV CAG CIDKT CITATION CS3 CZ4 DIK DU5 D~K E3Z EBD EBS EJD EMOBN F5P GROUPED_DOAJ GX1 H13 HH5 HYE HZ~ IH2 KAQDR KQ8 KSI OAWHX OBC OBS OEB OES OJQWA OVD OVT P2P PEELM PQQKQ R44 RD5 RNS ROL ROZ RPM RXO SV3 TEORI TN5 TOX TR2 WG7 WOQ X7H XSB YSK ZKX ~91 ~D7 ~KM .55 .GJ 3O- AAWDT AAYJJ ABIME ABNGD ABPIB ABSMQ ABZEO ACFRR ACIPB ACPQN ACUKT ACVCV ACZBC AEHUL AEKPW AFSHK AGKRT AGMDO AGQPQ ANFBD APJGH AQDSO ASAOO ASPBG ATDFG ATTQO AVWKF AZFZN BEYMZ C1A CGR COF CUY CVF CXTWN D0S DFGAJ ECM EIF ELUNK FEDTE HVGLF H~9 MBTAY MVM NPM NTWIH O~Y PB- QBD RNI RZF RZO SJN TCN UHB X7M XSW ZXP 7X8 5PM - 08R 1AW 55 6.Y 91 AAPBV AAPPN ABFLS ABQTQ ABSAR ADACO ADBIT AHGVY BTTYL D7 DZ F20 GJ HZ I3 KC5 KM LI0 M49 M~E NU- O0- PQEST QVL RHF RIG ROX UNR X XFK XHC ZA5 ZY4 |
ID | FETCH-LOGICAL-c495t-c45121094b7ea9618c9518b536bce12203f2c8ce558dbe7ce8d2bc44c45e77923 |
ISSN | 0305-1048 1362-4962 |
IngestDate | Tue Jan 05 18:09:39 EST 2021 Thu Aug 21 13:30:29 EDT 2025 Fri Jul 11 16:12:16 EDT 2025 Mon Jul 21 06:05:56 EDT 2025 Tue Jul 01 01:41:31 EDT 2025 Thu Apr 24 23:07:53 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Language | English |
License | http://creativecommons.org/licenses/by/4.0 The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c495t-c45121094b7ea9618c9518b536bce12203f2c8ce558dbe7ce8d2bc44c45e77923 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://dx.doi.org/10.1093/nar/gku657 |
PMID | 25053841 |
PQID | 1553710036 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | wageningen_narcis_oai_library_wur_nl_wurpubs_456066 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4132761 proquest_miscellaneous_1553710036 pubmed_primary_25053841 crossref_citationtrail_10_1093_nar_gku657 crossref_primary_10_1093_nar_gku657 |
ProviderPackageCode | CITATION AAYXX QVL |
PublicationCentury | 2000 |
PublicationDate | 2014-08-18 |
PublicationDateYYYYMMDD | 2014-08-18 |
PublicationDate_xml | – month: 08 year: 2014 text: 2014-08-18 day: 18 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Nucleic acids research |
PublicationTitleAlternate | Nucleic Acids Res |
PublicationYear | 2014 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | 2016012122322232000_42.14.9436.9 2016012122322232000_42.14.9436.6 2016012122322232000_42.14.9436.5 2016012122322232000_42.14.9436.7 2016012122322232000_42.14.9436.47 2016012122322232000_42.14.9436.48 2016012122322232000_42.14.9436.2 2016012122322232000_42.14.9436.43 2016012122322232000_42.14.9436.1 2016012122322232000_42.14.9436.44 2016012122322232000_42.14.9436.4 2016012122322232000_42.14.9436.45 2016012122322232000_42.14.9436.3 2016012122322232000_42.14.9436.46 2016012122322232000_42.14.9436.40 2016012122322232000_42.14.9436.41 2016012122322232000_42.14.9436.42 2016012122322232000_42.14.9436.60 2016012122322232000_42.14.9436.18 2016012122322232000_42.14.9436.19 2016012122322232000_42.14.9436.14 2016012122322232000_42.14.9436.58 2016012122322232000_42.14.9436.15 2016012122322232000_42.14.9436.59 2016012122322232000_42.14.9436.16 2016012122322232000_42.14.9436.17 2016012122322232000_42.14.9436.10 2016012122322232000_42.14.9436.54 2016012122322232000_42.14.9436.11 2016012122322232000_42.14.9436.55 2016012122322232000_42.14.9436.12 2016012122322232000_42.14.9436.56 2016012122322232000_42.14.9436.13 2016012122322232000_42.14.9436.57 2016012122322232000_42.14.9436.50 2016012122322232000_42.14.9436.51 2016012122322232000_42.14.9436.52 2016012122322232000_42.14.9436.53 Gritsun (2016012122322232000_42.14.9436.8) 2007; 69 2016012122322232000_42.14.9436.29 2016012122322232000_42.14.9436.25 2016012122322232000_42.14.9436.26 2016012122322232000_42.14.9436.27 2016012122322232000_42.14.9436.28 2016012122322232000_42.14.9436.21 2016012122322232000_42.14.9436.65 2016012122322232000_42.14.9436.22 2016012122322232000_42.14.9436.23 2016012122322232000_42.14.9436.24 2016012122322232000_42.14.9436.61 2016012122322232000_42.14.9436.62 2016012122322232000_42.14.9436.63 2016012122322232000_42.14.9436.20 2016012122322232000_42.14.9436.64 2016012122322232000_42.14.9436.36 Attoui (2016012122322232000_42.14.9436.49) 2001; 82 2016012122322232000_42.14.9436.37 2016012122322232000_42.14.9436.38 2016012122322232000_42.14.9436.39 2016012122322232000_42.14.9436.32 2016012122322232000_42.14.9436.33 2016012122322232000_42.14.9436.34 2016012122322232000_42.14.9436.35 2016012122322232000_42.14.9436.30 2016012122322232000_42.14.9436.31 |
References_xml | – ident: 2016012122322232000_42.14.9436.59 doi: 10.1186/1758-907X-3-4 – ident: 2016012122322232000_42.14.9436.60 doi: 10.1093/nar/gkr1263 – ident: 2016012122322232000_42.14.9436.36 doi: 10.1186/1471-2180-8-47 – ident: 2016012122322232000_42.14.9436.29 doi: 10.1093/bioinformatics/btt297 – ident: 2016012122322232000_42.14.9436.41 doi: 10.1371/journal.pntd.0000848 – ident: 2016012122322232000_42.14.9436.50 doi: 10.1111/j.1600-065X.2008.00722.x – ident: 2016012122322232000_42.14.9436.18 doi: 10.1099/vir.0.81827-0 – ident: 2016012122322232000_42.14.9436.40 doi: 10.1073/pnas.0803408105 – ident: 2016012122322232000_42.14.9436.19 doi: 10.1186/1471-2199-10-26 – ident: 2016012122322232000_42.14.9436.54 doi: 10.1128/JVI.01047-10 – ident: 2016012122322232000_42.14.9436.15 doi: 10.1016/j.pt.2007.07.002 – ident: 2016012122322232000_42.14.9436.21 doi: 10.1128/JVI.02052-10 – ident: 2016012122322232000_42.14.9436.56 doi: 10.1016/j.virol.2008.08.030 – ident: 2016012122322232000_42.14.9436.14 doi: 10.1016/j.coi.2009.01.007 – ident: 2016012122322232000_42.14.9436.48 doi: 10.1016/j.ttbdis.2012.05.002 – ident: 2016012122322232000_42.14.9436.16 doi: 10.1007/s10493-012-9598-x – ident: 2016012122322232000_42.14.9436.35 doi: 10.1099/vir.0.010488-0 – ident: 2016012122322232000_42.14.9436.3 doi: 10.1128/JVI.02830-06 – ident: 2016012122322232000_42.14.9436.57 doi: 10.1073/pnas.0406983101 – volume: 69 start-page: 203 year: 2007 ident: 2016012122322232000_42.14.9436.8 article-title: Origin and evolution of 3′UTR of flaviviruses: long direct repeats as a basis for the formation of secondary structures and their significance for virus transmission publication-title: Adv. Virus Res. doi: 10.1016/S0065-3527(06)69005-2 – ident: 2016012122322232000_42.14.9436.64 doi: 10.1099/vir.0.026997-0 – ident: 2016012122322232000_42.14.9436.65 doi: 10.1186/1471-2180-9-49 – ident: 2016012122322232000_42.14.9436.22 doi: 10.1128/JVI.01104-12 – ident: 2016012122322232000_42.14.9436.33 doi: 10.1093/sysbio/sys029 – ident: 2016012122322232000_42.14.9436.10 doi: 10.3390/insects3020511 – ident: 2016012122322232000_42.14.9436.7 doi: 10.1016/j.virol.2007.04.011 – ident: 2016012122322232000_42.14.9436.43 doi: 10.1371/journal.pntd.0000856 – volume: 82 start-page: 795 year: 2001 ident: 2016012122322232000_42.14.9436.49 article-title: Complete sequence characterization of the genome of the St Croix River virus, a new orbivirus isolated from cells of Ixodes scapularis publication-title: J. Gen. Virol. doi: 10.1099/0022-1317-82-4-795 – ident: 2016012122322232000_42.14.9436.31 doi: 10.1186/1471-2105-11-579 – ident: 2016012122322232000_42.14.9436.46 doi: 10.1073/pnas.0911353107 – ident: 2016012122322232000_42.14.9436.30 doi: 10.1093/nar/gkf436 – ident: 2016012122322232000_42.14.9436.23 doi: 10.1016/j.virol.2008.04.035 – ident: 2016012122322232000_42.14.9436.6 doi: 10.1016/j.virusres.2008.07.016 – ident: 2016012122322232000_42.14.9436.4 doi: 10.1006/viro.2001.0846 – ident: 2016012122322232000_42.14.9436.47 doi: 10.1016/j.chom.2008.09.001 – ident: 2016012122322232000_42.14.9436.38 doi: 10.1371/journal.ppat.1002470 – ident: 2016012122322232000_42.14.9436.63 doi: 10.1099/vir.0.82182-0 – ident: 2016012122322232000_42.14.9436.24 doi: 10.1128/JVI.77.16.8924-8933.2003 – ident: 2016012122322232000_42.14.9436.39 doi: 10.4161/rna.6.4.8946 – ident: 2016012122322232000_42.14.9436.52 doi: 10.1128/JVI.01159-10 – ident: 2016012122322232000_42.14.9436.42 doi: 10.1371/journal.ppat.1000502 – ident: 2016012122322232000_42.14.9436.53 doi: 10.1016/j.chom.2008.10.007 – ident: 2016012122322232000_42.14.9436.55 doi: 10.1016/S0065-3527(03)59006-6 – ident: 2016012122322232000_42.14.9436.13 doi: 10.1111/j.1469-0691.2004.01022.x – ident: 2016012122322232000_42.14.9436.20 doi: 10.1038/nri2824 – ident: 2016012122322232000_42.14.9436.25 doi: 10.1371/journal.ppat.1003133 – ident: 2016012122322232000_42.14.9436.26 doi: 10.1007/BF01194061 – ident: 2016012122322232000_42.14.9436.37 doi: 10.1073/pnas.0813412106 – ident: 2016012122322232000_42.14.9436.1 doi: 10.1016/S0065-3527(03)61008-0 – ident: 2016012122322232000_42.14.9436.34 doi: 10.1371/journal.pcbi.0030065 – ident: 2016012122322232000_42.14.9436.58 doi: 10.1101/gad.1482006 – ident: 2016012122322232000_42.14.9436.11 doi: 10.2217/fmb.11.11 – ident: 2016012122322232000_42.14.9436.17 doi: 10.1128/JVI.79.14.8942-8947.2005 – ident: 2016012122322232000_42.14.9436.9 doi: 10.1089/vbz.2011.0766 – ident: 2016012122322232000_42.14.9436.12 doi: 10.1099/vir.0.013201-0 – ident: 2016012122322232000_42.14.9436.28 doi: 10.1128/JVI.02848-12 – ident: 2016012122322232000_42.14.9436.45 doi: 10.1371/journal.pbio.1000586 – ident: 2016012122322232000_42.14.9436.44 doi: 10.1016/j.coviro.2011.10.028 – ident: 2016012122322232000_42.14.9436.2 doi: 10.1128/JVI.79.20.12828-12839.2005 – ident: 2016012122322232000_42.14.9436.51 doi: 10.1007/s00294-006-0078-x – ident: 2016012122322232000_42.14.9436.27 doi: 10.1016/j.jcpa.2003.12.002 – ident: 2016012122322232000_42.14.9436.5 doi: 10.1016/S0065-3527(03)59002-9 – ident: 2016012122322232000_42.14.9436.32 doi: 10.1080/10635150701472164 – ident: 2016012122322232000_42.14.9436.62 doi: 10.1128/JVI.02037-10 – ident: 2016012122322232000_42.14.9436.61 doi: 10.1146/annurev.micro.60.080805.142205 |
SSID | ssj0014154 |
Score | 2.465547 |
Snippet | Arboviruses are transmitted by distantly related arthropod vectors such as mosquitoes (class Insecta) and ticks (class Arachnida). RNA interference (RNAi) is... Arboviruses are transmitted by distantly related arthropod vectors such as mosquitoes (class Insecta ) and ticks (class Arachnida ). RNA interference (RNAi) is... |
SourceID | wageningen pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 9436 |
SubjectTerms | alphavirus Animals arbovirus infection Argonaute Proteins - physiology Cell Line drosophila Encephalitis Viruses, Tick-Borne - genetics forest-virus replicon identification immunity interferon antagonist Ixodes - genetics Ixodes - virology mosquitos origin replication Ribonuclease III - physiology RNA RNA Interference RNA, Small Interfering - chemistry RNA, Small Untranslated - chemistry RNA, Viral - chemistry |
Title | Induction and suppression of tick cell antiviral RNAi responses by tick-borne flaviviruses |
URI | https://www.ncbi.nlm.nih.gov/pubmed/25053841 https://www.proquest.com/docview/1553710036 https://pubmed.ncbi.nlm.nih.gov/PMC4132761 http://www.narcis.nl/publication/RecordID/oai:library.wur.nl:wurpubs%2F456066 |
Volume | 42 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdgPLAXNDY-ymAyAiGhKWxJnI8-VtOmCYk9wCZNvES262yhnVM1yaby13NnJ25KhwS8pFViOx-_s30-3_2OkPcKOjNMO2OPwdzrsZTnHo8V9xKRjxOVjkU4xgDnL2fx6QX7fBldLt3GTHRJLT7Jn_fGlfwPqnAOcMUo2X9A1jUKJ-A_4AtHQBiOf4Ux5t1oU32j-buZtV6tRgWE0pN9tMvDRUwRgZH4X89Gxf7cusWqyqieUMoDOQBdM5_yWyzXVK1f4Y8uNBdui7SushjjJkPP_mV2cK61QiJkGzdToULpzAGLCZ-Wt2Yz3jeTHNfLaYDXlXPdd_FC3wyVto0iWjTzom-V8BmaWduBVNmR1IRjDVeHWhb0RYr1Bs4hszwoayO6ZbvS6G1-cjVpYktn3QN3dmPQRVUuTC2J1m8M2t2lh-RRAIsJzHORHB67vSZQYVhHXDsMD-BWB_ZGSBTdVl3VWtaWIusetZt38FbaxMf19JXzLfKkXWjQkZWap-SB0ttkZ6R5Xd4s6AdqXH_Nnso2eXzUpf3bId-dUFEQKtoTKlrmFMWFolBRJ1QUhYo6oaJiQZdCRftC9YxcnByfH516bQIOT8K6uYZjhPxyQyYSxTE1kAR9PBVRGAup_CA4DPNAplJFEXRqlUjo24GQjEE9lSAx5XOyoUutXhKaxDLK0wi6P6z_I9wdZlL6MpaxEDH3xYB87D5wJlt2ekySMs2sl0SYAS6ZxWVA3rmyM8vJcm-ptx1OGXxC_DRcq7KpMkyVhaRWYTwgLyxurp0O8AFJVhB1BZCOffWKLq4NLTuog0ESQ81wiT0-jywqU6s1y2Z3zTzTU_yBdqoMVjCg9r_645Psks1lB3tNNup5o96AIlyLPSPHe8aM9AslSb6U |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Induction+and+suppression+of+tick+cell+antiviral+RNAi+responses+by+tick-borne+flaviviruses&rft.jtitle=Nucleic+acids+research&rft.au=Schnettler%2C+Esther&rft.au=Tykalov%C3%A1%2C+Hana&rft.au=Watson%2C+Mick&rft.au=Sharma%2C+Mayuri&rft.date=2014-08-18&rft.eissn=1362-4962&rft.volume=42&rft.issue=14&rft.spage=9436&rft_id=info:doi/10.1093%2Fnar%2Fgku657&rft_id=info%3Apmid%2F25053841&rft.externalDocID=25053841 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-1048&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-1048&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-1048&client=summon |