Hypericin-functionalized graphene oxide for enhanced mitochondria-targeting and synergistic anticancer effect
[Display omitted] Effective targeting of mitochondria has emerged as a beneficial strategy in cancer therapy. However, the development of mitochondria-targeting ligands is difficult because of the low permeability of the mitochondrial double membrane. We found that hypericin (HY), a natural product...
Saved in:
Published in | Acta biomaterialia Vol. 77; pp. 268 - 281 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.09.2018
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
Effective targeting of mitochondria has emerged as a beneficial strategy in cancer therapy. However, the development of mitochondria-targeting ligands is difficult because of the low permeability of the mitochondrial double membrane. We found that hypericin (HY), a natural product isolated from Hypericum perforatum L., is an effective mitochondria-targeting ligand. HY-functionalized graphene oxide (GO) loaded with doxorubicin (GO-PEG-SS-HY/DOX) increased the synergistic anticancer efficacy of phototherapy and chemotherapy in the absence of apparent adverse side effects. In vitro and in vivo assays suggested GO-PEG-SS-HY/DOX induced the expression of the key proteins of the mitochondria-mediated apoptosis pathway and caused apoptosis of breast carcinoma cells. In addition, GO vehicle exhibited low toxicity toward normal cells, indicating high safety of functionalized GO preparations in antitumor therapy. Therefore, HY-functionalized GO can be successfully used as a platform technology to target mitochondria in cancer cells and improve the therapeutic efficacy of chemotherapeutic drugs.
Induction of mitochondria-mediated apoptosis is a promising approach in cancer therapy. However, mitochondria are difficult to access and permeate because of their negative membrane potential and highly dense double membrane. Mitochondria-targeting ligands can be conjugated to nanoparticles or small-molecule drugs to enhance their antitumor effect. Here, we showed that the natural photosensitizer hypericin is a novel mitochondria-targeting ligand and that graphene oxide particles co-loaded with hypericin and the chemotherapeutic agent doxorubicin exhibited a synergistic antitumor effect mediated by the mitochondrial-mediated apoptosis. Treatment with such particles in combination with laser irradiation led to apoptosis of the tumor MDA-MB-231 and MCF-7 cells in vitro and in vivo. Furthermore, treatment with hypericin/doxorubicin-functionalized graphene oxide had low cellular toxicity. |
---|---|
AbstractList | Effective targeting of mitochondria has emerged as a beneficial strategy in cancer therapy. However, the development of mitochondria-targeting ligands is difficult because of the low permeability of the mitochondrial double membrane. We found that hypericin (HY), a natural product isolated from Hypericum perforatum L., is an effective mitochondria-targeting ligand. HY-functionalized graphene oxide (GO) loaded with doxorubicin (GO-PEG-SS-HY/DOX) increased the synergistic anticancer efficacy of phototherapy and chemotherapy in the absence of apparent adverse side effects. In vitro and in vivo assays suggested GO-PEG-SS-HY/DOX induced the expression of the key proteins of the mitochondria-mediated apoptosis pathway and caused apoptosis of breast carcinoma cells. In addition, GO vehicle exhibited low toxicity toward normal cells, indicating high safety of functionalized GO preparations in antitumor therapy. Therefore, HY-functionalized GO can be successfully used as a platform technology to target mitochondria in cancer cells and improve the therapeutic efficacy of chemotherapeutic drugs. Effective targeting of mitochondria has emerged as a beneficial strategy in cancer therapy. However, the development of mitochondria-targeting ligands is difficult because of the low permeability of the mitochondrial double membrane. We found that hypericin (HY), a natural product isolated from Hypericum perforatum L., is an effective mitochondria-targeting ligand. HY-functionalized graphene oxide (GO) loaded with doxorubicin (GO-PEG-SS-HY/DOX) increased the synergistic anticancer efficacy of phototherapy and chemotherapy in the absence of apparent adverse side effects. In vitro and in vivo assays suggested GO-PEG-SS-HY/DOX induced the expression of the key proteins of the mitochondria-mediated apoptosis pathway and caused apoptosis of breast carcinoma cells. In addition, GO vehicle exhibited low toxicity toward normal cells, indicating high safety of functionalized GO preparations in antitumor therapy. Therefore, HY-functionalized GO can be successfully used as a platform technology to target mitochondria in cancer cells and improve the therapeutic efficacy of chemotherapeutic drugs. Induction of mitochondria-mediated apoptosis is a promising approach in cancer therapy. However, mitochondria are difficult to access and permeate because of their negative membrane potential and highly dense double membrane. Mitochondria-targeting ligands can be conjugated to nanoparticles or small-molecule drugs to enhance their antitumor effect. Here, we showed that the natural photosensitizer hypericin is a novel mitochondria-targeting ligand and that graphene oxide particles co-loaded with hypericin and the chemotherapeutic agent doxorubicin exhibited a synergistic antitumor effect mediated by the mitochondrial-mediated apoptosis. Treatment with such particles in combination with laser irradiation led to apoptosis of the tumor MDA-MB-231 and MCF-7 cells in vitro and in vivo. Furthermore, treatment with hypericin/doxorubicin-functionalized graphene oxide had low cellular toxicity. [Display omitted] Effective targeting of mitochondria has emerged as a beneficial strategy in cancer therapy. However, the development of mitochondria-targeting ligands is difficult because of the low permeability of the mitochondrial double membrane. We found that hypericin (HY), a natural product isolated from Hypericum perforatum L., is an effective mitochondria-targeting ligand. HY-functionalized graphene oxide (GO) loaded with doxorubicin (GO-PEG-SS-HY/DOX) increased the synergistic anticancer efficacy of phototherapy and chemotherapy in the absence of apparent adverse side effects. In vitro and in vivo assays suggested GO-PEG-SS-HY/DOX induced the expression of the key proteins of the mitochondria-mediated apoptosis pathway and caused apoptosis of breast carcinoma cells. In addition, GO vehicle exhibited low toxicity toward normal cells, indicating high safety of functionalized GO preparations in antitumor therapy. Therefore, HY-functionalized GO can be successfully used as a platform technology to target mitochondria in cancer cells and improve the therapeutic efficacy of chemotherapeutic drugs. Induction of mitochondria-mediated apoptosis is a promising approach in cancer therapy. However, mitochondria are difficult to access and permeate because of their negative membrane potential and highly dense double membrane. Mitochondria-targeting ligands can be conjugated to nanoparticles or small-molecule drugs to enhance their antitumor effect. Here, we showed that the natural photosensitizer hypericin is a novel mitochondria-targeting ligand and that graphene oxide particles co-loaded with hypericin and the chemotherapeutic agent doxorubicin exhibited a synergistic antitumor effect mediated by the mitochondrial-mediated apoptosis. Treatment with such particles in combination with laser irradiation led to apoptosis of the tumor MDA-MB-231 and MCF-7 cells in vitro and in vivo. Furthermore, treatment with hypericin/doxorubicin-functionalized graphene oxide had low cellular toxicity. Effective targeting of mitochondria has emerged as a beneficial strategy in cancer therapy. However, the development of mitochondria-targeting ligands is difficult because of the low permeability of the mitochondrial double membrane. We found that hypericin (HY), a natural product isolated from Hypericum perforatum L., is an effective mitochondria-targeting ligand. HY-functionalized graphene oxide (GO) loaded with doxorubicin (GO-PEG-SS-HY/DOX) increased the synergistic anticancer efficacy of phototherapy and chemotherapy in the absence of apparent adverse side effects. In vitro and in vivo assays suggested GO-PEG-SS-HY/DOX induced the expression of the key proteins of the mitochondria-mediated apoptosis pathway and caused apoptosis of breast carcinoma cells. In addition, GO vehicle exhibited low toxicity toward normal cells, indicating high safety of functionalized GO preparations in antitumor therapy. Therefore, HY-functionalized GO can be successfully used as a platform technology to target mitochondria in cancer cells and improve the therapeutic efficacy of chemotherapeutic drugs.Effective targeting of mitochondria has emerged as a beneficial strategy in cancer therapy. However, the development of mitochondria-targeting ligands is difficult because of the low permeability of the mitochondrial double membrane. We found that hypericin (HY), a natural product isolated from Hypericum perforatum L., is an effective mitochondria-targeting ligand. HY-functionalized graphene oxide (GO) loaded with doxorubicin (GO-PEG-SS-HY/DOX) increased the synergistic anticancer efficacy of phototherapy and chemotherapy in the absence of apparent adverse side effects. In vitro and in vivo assays suggested GO-PEG-SS-HY/DOX induced the expression of the key proteins of the mitochondria-mediated apoptosis pathway and caused apoptosis of breast carcinoma cells. In addition, GO vehicle exhibited low toxicity toward normal cells, indicating high safety of functionalized GO preparations in antitumor therapy. Therefore, HY-functionalized GO can be successfully used as a platform technology to target mitochondria in cancer cells and improve the therapeutic efficacy of chemotherapeutic drugs.Induction of mitochondria-mediated apoptosis is a promising approach in cancer therapy. However, mitochondria are difficult to access and permeate because of their negative membrane potential and highly dense double membrane. Mitochondria-targeting ligands can be conjugated to nanoparticles or small-molecule drugs to enhance their antitumor effect. Here, we showed that the natural photosensitizer hypericin is a novel mitochondria-targeting ligand and that graphene oxide particles co-loaded with hypericin and the chemotherapeutic agent doxorubicin exhibited a synergistic antitumor effect mediated by the mitochondrial-mediated apoptosis. Treatment with such particles in combination with laser irradiation led to apoptosis of the tumor MDA-MB-231 and MCF-7 cells in vitro and in vivo. Furthermore, treatment with hypericin/doxorubicin-functionalized graphene oxide had low cellular toxicity.STATEMENT OF SIGNIFICANCEInduction of mitochondria-mediated apoptosis is a promising approach in cancer therapy. However, mitochondria are difficult to access and permeate because of their negative membrane potential and highly dense double membrane. Mitochondria-targeting ligands can be conjugated to nanoparticles or small-molecule drugs to enhance their antitumor effect. Here, we showed that the natural photosensitizer hypericin is a novel mitochondria-targeting ligand and that graphene oxide particles co-loaded with hypericin and the chemotherapeutic agent doxorubicin exhibited a synergistic antitumor effect mediated by the mitochondrial-mediated apoptosis. Treatment with such particles in combination with laser irradiation led to apoptosis of the tumor MDA-MB-231 and MCF-7 cells in vitro and in vivo. Furthermore, treatment with hypericin/doxorubicin-functionalized graphene oxide had low cellular toxicity. |
Author | Ma, Ting Zhao, Huijun Luo, Jianguang Xu, Xiao Zhang, Chao Kong, Lingyi Han, Chao Zhang, Can Chen, Yan |
Author_xml | – sequence: 1 givenname: Chao surname: Han fullname: Han, Chao organization: Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China – sequence: 2 givenname: Can surname: Zhang fullname: Zhang, Can organization: State Key Laboratory of Natural Medicines, Center of Drug Discovery and Department of Pharmaceutics, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China – sequence: 3 givenname: Ting surname: Ma fullname: Ma, Ting organization: Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China – sequence: 4 givenname: Chao surname: Zhang fullname: Zhang, Chao organization: Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China – sequence: 5 givenname: Jianguang surname: Luo fullname: Luo, Jianguang organization: Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China – sequence: 6 givenname: Xiao surname: Xu fullname: Xu, Xiao organization: Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China – sequence: 7 givenname: Huijun surname: Zhao fullname: Zhao, Huijun organization: Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China – sequence: 8 givenname: Yan surname: Chen fullname: Chen, Yan organization: Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China – sequence: 9 givenname: Lingyi surname: Kong fullname: Kong, Lingyi email: cpu_lykong@126.com organization: Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30006311$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtv1DAUhS1URB_wDxCKxIZNhmvnYYcFEqoKRarEBtbWjXMz41FiD7ZTMfz6Opp20wVsfGz5O2dxziU7c94RY285bDjw9uN-gyb11m8EcLUBucnygl1wJVUpm1ad5busRSmh5efsMsY9QKW4UK_YeQUAbcX5BZtvjwcK1lhXjoszyXqHk_1LQ7ENeNiRo8L_sQMVow8FuR06k_9mm7zZeTcEi2XCsKVk3bZANxTx6ChsbUzW5Hc-V0e2jiOZ9Jq9HHGK9OZRr9ivrzc_r2_Lux_fvl9_uStN3TWp7IlqAI6Cc0RTtwKARN81PSpVtU3TQSsEdNT3pDjKvhJcdAK5MtVIVYfVFftwyj0E_3uhmPRso6FpQkd-iVqABFGDlFVG3z9D934JuYRMcZ4b7FTNM_XukVr6mQZ9CHbGcNRPRWbg0wkwwccYaNTGJlzrTAHtpDnodTW916fV9LqaBqmzZHP9zPyU_x_b55ONcpX3loKOxtI6kA25bD14---AB9cVs9g |
CitedBy_id | crossref_primary_10_1002_adma_202007778 crossref_primary_10_1016_j_sjbs_2020_07_030 crossref_primary_10_1002_ange_201915826 crossref_primary_10_1016_j_actbio_2022_04_035 crossref_primary_10_1002_cam4_6502 crossref_primary_10_3389_fbioe_2021_786621 crossref_primary_10_1016_j_actbio_2018_11_050 crossref_primary_10_1039_D3MA00629H crossref_primary_10_1016_j_jcis_2019_08_113 crossref_primary_10_3390_pharmaceutics14102212 crossref_primary_10_1016_j_ajps_2020_10_002 crossref_primary_10_1007_s12668_023_01099_w crossref_primary_10_1021_acsabm_1c00155 crossref_primary_10_1016_j_mtchem_2019_02_004 crossref_primary_10_1021_acsanm_0c00630 crossref_primary_10_1155_ijbc_3013009 crossref_primary_10_1016_j_phymed_2023_154654 crossref_primary_10_1016_j_phymed_2022_154356 crossref_primary_10_1039_D1BM02006D crossref_primary_10_1002_anie_201915826 crossref_primary_10_1016_j_inoche_2022_109869 crossref_primary_10_1016_j_jconrel_2023_01_028 crossref_primary_10_1039_D1BM01802G crossref_primary_10_1186_s12951_021_00902_8 crossref_primary_10_1016_j_humgen_2023_201154 crossref_primary_10_1080_15422119_2020_1797792 crossref_primary_10_1016_j_bbiosy_2021_100023 crossref_primary_10_1016_j_mtcomm_2020_101319 crossref_primary_10_1002_ptr_8011 crossref_primary_10_1021_acsbiomaterials_9b01894 crossref_primary_10_1080_14737140_2024_2337259 crossref_primary_10_1088_1742_6596_2970_1_012013 crossref_primary_10_1016_j_jconrel_2022_05_033 crossref_primary_10_3390_app112311151 crossref_primary_10_1016_j_addr_2021_113917 crossref_primary_10_2147_IJN_S315368 crossref_primary_10_3390_biomedicines9111703 crossref_primary_10_1016_j_actbio_2021_04_054 crossref_primary_10_1016_j_jsps_2022_05_011 crossref_primary_10_14336_AD_2023_0520 crossref_primary_10_1016_j_ijpharm_2021_120644 crossref_primary_10_1155_2019_1983780 crossref_primary_10_1002_adhm_202404485 crossref_primary_10_1016_j_biotechadv_2023_108104 crossref_primary_10_1016_j_msec_2021_112420 crossref_primary_10_1080_17425247_2022_2041598 crossref_primary_10_3390_ijms232012624 crossref_primary_10_1080_10717544_2019_1628118 crossref_primary_10_1016_j_cclet_2022_02_047 crossref_primary_10_1016_j_pdpdt_2021_102343 |
Cites_doi | 10.1038/nrm2952 10.1039/C7NR07603G 10.1007/s12274-017-1728-7 10.3322/caac.20114 10.1038/cddis.2013.219 10.1002/jps.24230 10.1038/ncomms4364 10.1039/C6TB03062A 10.1126/science.1095833 10.7150/thno.5790 10.1038/nrd4510 10.1016/j.biomaterials.2011.03.060 10.1089/ars.2011.3969 10.1016/j.biomaterials.2017.05.016 10.2174/092986712799034842 10.1124/mi.7.4.8 10.1039/C4SC01963F 10.1016/j.tips.2012.03.010 10.1038/srep18398 10.1016/j.actbio.2017.12.028 10.1039/c3cc48740g 10.1002/hep.22239 10.1016/S0302-2838(02)00402-5 10.1002/adhm.201600212 10.1016/S0304-3835(03)00207-6 10.1158/0008-5472.CAN-16-1248 10.1021/acsami.7b16910 10.1016/j.jphotobiol.2013.05.010 10.1021/cb400821p 10.1016/j.actbio.2017.12.003 10.1016/j.bbabio.2004.05.012 10.1021/am5090226 10.1016/j.nantod.2012.12.003 10.3109/10717544.2013.873838 10.4161/auto.25399 10.1039/C2CS35342C 10.1056/NEJMp1101548 10.1016/j.actbio.2017.11.036 10.1021/acs.jmedchem.6b00408 10.1073/pnas.1210096109 10.1039/c3nr02724d 10.1016/j.actbio.2015.09.033 10.1038/nrd3137 10.1002/ijc.26492 10.1002/adfm.201400221 10.1038/onc.2014.96 10.1021/ol202139z 10.1002/chem.201502543 10.1016/j.actbio.2017.12.033 10.1126/science.278.5336.294 10.1021/ja961783k |
ContentType | Journal Article |
Copyright | 2018 Acta Materialia Inc. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. Copyright Elsevier BV Sep 2018 |
Copyright_xml | – notice: 2018 Acta Materialia Inc. – notice: Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. – notice: Copyright Elsevier BV Sep 2018 |
DBID | AAYXX CITATION NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7T7 7TA 7TB 7U5 8BQ 8FD C1K F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
DOI | 10.1016/j.actbio.2018.07.018 |
DatabaseName | CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Biotechnology Research Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | Materials Research Database PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1878-7568 |
EndPage | 281 |
ExternalDocumentID | 30006311 10_1016_j_actbio_2018_07_018 S1742706118304124 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABGSF ABJNI ABMAC ABNUV ABUDA ABXRA ABYKQ ACDAQ ACGFS ACIWK ACPRK ACRLP ADBBV ADEWK ADEZE ADUVX AEBSH AEHWI AEKER AENEX AEZYN AFKWA AFRAH AFRZQ AFTJW AFXIZ AGHFR AGUBO AGYEJ AHPOS AIEXJ AIKHN AITUG AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DOVZS EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W KOM M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SES SPC SPCBC SSG SSM SSU SSZ T5K ~G- AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SEW SSH NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7T7 7TA 7TB 7U5 8BQ 8FD C1K EFKBS F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
ID | FETCH-LOGICAL-c495t-bee4001a211aac46200e2b95ba8836559062209ebbe81a7b321292a18c3fe39a3 |
IEDL.DBID | .~1 |
ISSN | 1742-7061 1878-7568 |
IngestDate | Thu Jul 10 23:06:02 EDT 2025 Wed Aug 13 04:50:31 EDT 2025 Wed Feb 19 02:37:26 EST 2025 Tue Jul 01 01:17:19 EDT 2025 Thu Apr 24 22:53:28 EDT 2025 Fri Feb 23 02:39:50 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Synergistic anticancer Mitochondria targeting Graphene oxide Drug delivery Hypericin |
Language | English |
License | Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c495t-bee4001a211aac46200e2b95ba8836559062209ebbe81a7b321292a18c3fe39a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 30006311 |
PQID | 2111749841 |
PQPubID | 2045286 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_2070240773 proquest_journals_2111749841 pubmed_primary_30006311 crossref_citationtrail_10_1016_j_actbio_2018_07_018 crossref_primary_10_1016_j_actbio_2018_07_018 elsevier_sciencedirect_doi_10_1016_j_actbio_2018_07_018 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-09-01 |
PublicationDateYYYYMMDD | 2018-09-01 |
PublicationDate_xml | – month: 09 year: 2018 text: 2018-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Kidlington |
PublicationTitle | Acta biomaterialia |
PublicationTitleAlternate | Acta Biomater |
PublicationYear | 2018 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Sureau, Miskovsky, Chinsky, Turpin (b0105) 1996; 118 Marrache, Dhar (b0055) 2014; 6 Luo, Chen, Chen, Xie, He, Wang, Li (b0170) 2018; 67 Croce, Reed (b0255) 2016; 76 Bonora, Wieckowski, Chinopoulos, Kepp, Kroemer, Galluzzi, Pintonet (b0260) 2015; 34 Fiore, Salvi, Palermo, Sinigaglia, Armanini, Toninello, On (b0175) 2004; 1658 Chen, Xu, Shu, Wu, Wang, Zhang, Zheng, Chen, Wang, Y. Li2, J. Shi (b0200) 2014; 24 Xu, Luo, Yao, Cai, Miao, Wu, Yang, Wu, Xie, Yao, Chen, Xu (b0080) 2016; 59 Barras, Boussekey, Courtade, Boukherroub (b0100) 2013; 5 Zhao, Wei, Zhao, Miao, Qiu, Yang, Jia, Liu, Hou (b0215) 2018; 10 Dong, Liu, Liu, Wu, Neumann, Wang, Schäfer-Korting, Kleuser, Chang, Li, Ma, Haag (b0025) 2016; 5 Marrache, Dhar (b0050) 2012; 109 Krammer, Verwanger (b0135) 2012; 19 Zhao, Biswas, Hu, Joo, Wang, Gu, Tang (b0240) 2011; 32 Agostinis, Berg, Cengel, Foster, Girotti, Gollnick, Hahn, Hamblin, Juzeniene, Kessel, Korbelik, Moan, Mroz, Nowis, Piette, Wilson, Golab (b0195) 2011; 61 Mayer, Janoff (b0235) 2007; 7 Kumar, La Clair, Fuchs (b0070) 2011; 13 Cona, Feng, Zhang, Li, Verbruggen, Oyen, Ni (b0110) 2015; 22 Liu, Jiang, Li, Liu, Nan (b0145) 2015; 104 Suntharalingam, Song, Lippard (b0065) 2014; 50 D’Hallewin, Bezdetnaya, Guillemin (b0140) 2002; 42 Allen, Cullis (b0205) 2004; 303 Barathan, Mariappan, Shankar, Abdullah, Goh, Vadivelu (b0125) 2013; 4 Fulda, Galluzzi, Kroemer (b0005) 2010; 9 Tait, Green (b0035) 2010; 11 Jean, Tulumello, Wisnovsky, Lei, Pereira, Kelley (b0015) 2014; 9 Parmar, Meenakshi Sundaram, Remant Bahadur, Maranchuk, Aliabadi, Hugh, Löbenberg, Uludağ (b0165) 2017; 66 Kim, Jin, Park, Jung, Lee, Park, Kim, Bae, Jung (b0045) 2018; 11 de Putte, Marysael, Fonge, Roskams, Cona, Li, Bormans, Verbruggen, Ni, de Witte (b0150) 2012; 131 Thapa, Ku, Choi, Yong, Byeon, Kim (b0250) 2018; 10 Garg, Dudek, Ferreira, Verfaillie, Venabeele, Krysko, Mathieu, Agostinis (b0130) 2013; 9 Zhao, Hu, Gu, Joo, Wang, Tang (b0245) 2013; 8 Smith, Hartley, Cocheme, Murphy (b0010) 2012; 33 Wu, Zhang, Gurley, Studer, Shang, Wang, Wang, Yan, Jiang, Hylemon, Sanyal, Pandak, Zhou (b0180) 2008; 47 Harvey, Edrada-Ebel, Quinn (b0085) 2015; 14 Smith, Hartley, Murphy (b0030) 2011; 15 Yang, Feng, Shi, Liu (b0225) 2013; 42 Zhang, Ba, Gu, Guo, Zhou, Xu, Wang, Ye, Liu (b0075) 2015; 21 Woodcock, Griffin, Behrman (b0230) 2011; 364 Siboni, Amit-Patito, Weizman, Waintraub-Porat, Weitman, Ehrenberg, Malika (b0160) 2003; 196 Mallick, More, Ghosh, Chippalkatti, Chopade, Lahiri, Basu (b0060) 2015; 7 Zhang, Li, Li, Shi, Zhou, Fu, Zhang, Yang, Fu, Lu (b0115) 2015; 5 Kang, Lu, Lan, Ding, Yang, Zhang, Zhao, Zhang, Ho (b0185) 2018; 68 Nguyen, Phung, Thapa, Pham, Tran, Jeong, Ku, Choi, Yong, Kim (b0190) 2018; 68 Mo, Jiang, DiSanto, Tai, Gu (b0210) 2014; 5 Lima, Pizzol, Monteiro, Creczynski-Pasa, Andrade, Ribeiro, Perussi (b0120) 2013; 125 Li, Cona, Chen, Feng, Zhou, Zhang, Nuyts, de Witte, Zhang, Yu, Oyen, Verbruggen, Ni (b0155) 2013; 3 Baeza, Castillo, Torres-Pardo, González-Calbet, Vallet-Regí (b0220) 2017; 5 Zhang, Yang, Ling, Shao, Wang, Edwards, Bai (b0020) 2015; 28 Newman, Cragg (b0090) 1981; 79 Yamada, Ishikawa, Harashima (b0040) 2017; 136 Zhang, Liu, Zheng, Geng, Han, Shi, Sun, Zhang, Chen, Zhang, Guo, Yang, Zhou, Kong (b0095) 2017; 1703306 Kothakota, Azuma, Reinhard, Klippel, Tang, Chu, McGarry, Kirschner, Koths, Kwiatkowski, Williams (b0265) 1997; 278 Suntharalingam (10.1016/j.actbio.2018.07.018_b0065) 2014; 50 Garg (10.1016/j.actbio.2018.07.018_b0130) 2013; 9 Zhao (10.1016/j.actbio.2018.07.018_b0215) 2018; 10 Bonora (10.1016/j.actbio.2018.07.018_b0260) 2015; 34 Cona (10.1016/j.actbio.2018.07.018_b0110) 2015; 22 Kumar (10.1016/j.actbio.2018.07.018_b0070) 2011; 13 Yang (10.1016/j.actbio.2018.07.018_b0225) 2013; 42 Marrache (10.1016/j.actbio.2018.07.018_b0055) 2014; 6 Mo (10.1016/j.actbio.2018.07.018_b0210) 2014; 5 Fiore (10.1016/j.actbio.2018.07.018_b0175) 2004; 1658 Croce (10.1016/j.actbio.2018.07.018_b0255) 2016; 76 de Putte (10.1016/j.actbio.2018.07.018_b0150) 2012; 131 Allen (10.1016/j.actbio.2018.07.018_b0205) 2004; 303 Woodcock (10.1016/j.actbio.2018.07.018_b0230) 2011; 364 Kothakota (10.1016/j.actbio.2018.07.018_b0265) 1997; 278 Chen (10.1016/j.actbio.2018.07.018_b0200) 2014; 24 Zhang (10.1016/j.actbio.2018.07.018_b0075) 2015; 21 Thapa (10.1016/j.actbio.2018.07.018_b0250) 2018; 10 Zhang (10.1016/j.actbio.2018.07.018_b0115) 2015; 5 Li (10.1016/j.actbio.2018.07.018_b0155) 2013; 3 Zhang (10.1016/j.actbio.2018.07.018_b0020) 2015; 28 Zhao (10.1016/j.actbio.2018.07.018_b0245) 2013; 8 Barathan (10.1016/j.actbio.2018.07.018_b0125) 2013; 4 Marrache (10.1016/j.actbio.2018.07.018_b0050) 2012; 109 Baeza (10.1016/j.actbio.2018.07.018_b0220) 2017; 5 Liu (10.1016/j.actbio.2018.07.018_b0145) 2015; 104 Jean (10.1016/j.actbio.2018.07.018_b0015) 2014; 9 Barras (10.1016/j.actbio.2018.07.018_b0100) 2013; 5 D’Hallewin (10.1016/j.actbio.2018.07.018_b0140) 2002; 42 Nguyen (10.1016/j.actbio.2018.07.018_b0190) 2018; 68 Sureau (10.1016/j.actbio.2018.07.018_b0105) 1996; 118 Harvey (10.1016/j.actbio.2018.07.018_b0085) 2015; 14 Krammer (10.1016/j.actbio.2018.07.018_b0135) 2012; 19 Mallick (10.1016/j.actbio.2018.07.018_b0060) 2015; 7 Yamada (10.1016/j.actbio.2018.07.018_b0040) 2017; 136 Smith (10.1016/j.actbio.2018.07.018_b0030) 2011; 15 Tait (10.1016/j.actbio.2018.07.018_b0035) 2010; 11 Siboni (10.1016/j.actbio.2018.07.018_b0160) 2003; 196 Mayer (10.1016/j.actbio.2018.07.018_b0235) 2007; 7 Parmar (10.1016/j.actbio.2018.07.018_b0165) 2017; 66 Luo (10.1016/j.actbio.2018.07.018_b0170) 2018; 67 Lima (10.1016/j.actbio.2018.07.018_b0120) 2013; 125 Kang (10.1016/j.actbio.2018.07.018_b0185) 2018; 68 Agostinis (10.1016/j.actbio.2018.07.018_b0195) 2011; 61 Zhao (10.1016/j.actbio.2018.07.018_b0240) 2011; 32 Kim (10.1016/j.actbio.2018.07.018_b0045) 2018; 11 Dong (10.1016/j.actbio.2018.07.018_b0025) 2016; 5 Xu (10.1016/j.actbio.2018.07.018_b0080) 2016; 59 Smith (10.1016/j.actbio.2018.07.018_b0010) 2012; 33 Newman (10.1016/j.actbio.2018.07.018_b0090) 1981; 79 Fulda (10.1016/j.actbio.2018.07.018_b0005) 2010; 9 Zhang (10.1016/j.actbio.2018.07.018_b0095) 2017; 1703306 Wu (10.1016/j.actbio.2018.07.018_b0180) 2008; 47 |
References_xml | – volume: 79 start-page: 629 year: 1981 end-page: 661 ident: b0090 article-title: Natural products as sources of new drugs from 1981 to 2014 publication-title: J. Nat. Prod. – volume: 68 start-page: 154 year: 2018 end-page: 167 ident: b0190 article-title: Multifunctional nanoparticles as somatostatin receptor-targeting delivery system of polyaniline and methotrexate for combined chemo–photothermal therapy publication-title: Acta Biomater. – volume: 13 start-page: 5334 year: 2011 end-page: 5337 ident: b0070 article-title: Synthesis and evaluation of a fluorescent ritterazine-cephalostatin hybrid publication-title: Org. Lett. – volume: 278 start-page: 294 year: 1997 end-page: 298 ident: b0265 article-title: Caspase-3-generated fragment of gelsolin: effector of morphological change in apoptosis publication-title: Science – volume: 3 start-page: 127 year: 2013 end-page: 137 ident: b0155 article-title: Sequential systemic administrations of combretastatin A4 phosphate and radioiodinated hypericin exert synergistic targeted theranostic effects with prolonged survival on SCID mice carrying bifocal tumor xenografts publication-title: Theranostics – volume: 32 start-page: 5223 year: 2011 end-page: 5230 ident: b0240 article-title: Redox-responsive nanocapsules for intracellular protein delivery publication-title: Biomaterials – volume: 5 start-page: 18398 year: 2015 ident: b0115 article-title: Hypericin-photodynamic therapy induces human umbilical vein endothelial cell apoptosis publication-title: Sci. Rep. – volume: 8 start-page: 11 year: 2013 end-page: 20 ident: b0245 article-title: Degradable polymeric nanocapsule for efficient intracellular delivery of a high molecular weight tumor-selective protein complex publication-title: Nano Today – volume: 42 start-page: 530 year: 2013 end-page: 547 ident: b0225 article-title: Nano-graphene in biomedicine: theranostic applications publication-title: Chem. Soc. Rev. – volume: 1703306 year: 2017 ident: b0095 article-title: Glycyrrhetinic acid functionalized graphene oxide for mitochondria targeting and cancer treatment in vivo publication-title: Small – volume: 131 start-page: 129 year: 2012 end-page: 137 ident: b0150 article-title: Radiolabeled iodohypericin as tumor necrosis avid tracer: diagnostic and therapeutic potential publication-title: Int. J. Cancer – volume: 196 start-page: 57 year: 2003 end-page: 64 ident: b0160 article-title: Specificity of photosensitizer accumulation in undifferentiated versus differentiated colon carcinoma cells publication-title: Cancer Lett. – volume: 136 start-page: 56 year: 2017 end-page: 66 ident: b0040 article-title: Validation of the use of an artificial mitochondrial reporter DNA vector containing a Cytomegalovirus promoter for mitochondrial transgene expression publication-title: Biomaterials – volume: 364 start-page: 985 year: 2011 end-page: 987 ident: b0230 article-title: Development of novel combination therapies publication-title: New Eng. J. Med. – volume: 22 start-page: 427 year: 2015 end-page: 435 ident: b0110 article-title: Sodium cholate, a solubilizing agent for the necrosis avid radioiodinated hypericin in rabbits with acute myocardial infarction publication-title: Drug Deliv. – volume: 118 start-page: 9484 year: 1996 end-page: 9487 ident: b0105 article-title: Hypericin-induced cell photosensitization involves an intracellular pH decrease publication-title: J. Am. Chem. Soc. – volume: 125 start-page: 146 year: 2013 end-page: 154 ident: b0120 article-title: Hypericin encapsulated in solid lipid nanoparticles: phototoxicity and photodynamic efficiency publication-title: J. Photochem. Photobiol. B – volume: 5 start-page: 2214 year: 2016 end-page: 2226 ident: b0025 article-title: A highly photostable hyperbranched polyglycerol-based NIR fluorescence nanoplatform for mitochondria-specific cell imaging publication-title: Adv. Healthc. Mater. – volume: 68 start-page: 137 year: 2018 end-page: 153 ident: b0185 article-title: Redox-responsive polymeric micelles formed by conjugating gambogic acid with bioreducible poly(amido amine)s for the co-delivery of docetaxel and MMP-9 shRNA publication-title: Acta Biomater. – volume: 34 start-page: 1475 year: 2015 end-page: 1486 ident: b0260 article-title: Molecular mechanisms of cell death: central implication of ATP synthase in mitochondrial permeability transition publication-title: Oncogene – volume: 303 start-page: 1818 year: 2004 end-page: 1822 ident: b0205 article-title: Drug delivery systems: entering the mainstream publication-title: Science – volume: 61 start-page: 250 year: 2011 end-page: 281 ident: b0195 article-title: Photodynamic therapy of cancer: an update publication-title: CA Cancer J. Clin. – volume: 5 start-page: 2714 year: 2017 end-page: 2725 ident: b0220 article-title: Electron microscopy for inorganic-type drug delivery nanocarriers for antitumoral applications: what does it reveal? publication-title: J. Mater. Chem. B – volume: 10 start-page: 1742 year: 2018 end-page: 1749 ident: b0250 article-title: Vibrating droplet generation to assemble zwitterion-coated gold-graphene oxide stealth nanovesicles for effective pancreatic cancer chemo-phototherapy publication-title: Nanoscale – volume: 9 start-page: 447 year: 2010 end-page: 464 ident: b0005 article-title: Targeting mitochondria for cancer therapy publication-title: Nat. Rev. Drug Discov. – volume: 7 start-page: 216 year: 2007 end-page: 223 ident: b0235 article-title: Optimizing combination chemotherapy by controlling drug ratios publication-title: Mol. Interv. – volume: 5 start-page: 10562 year: 2013 end-page: 10572 ident: b0100 article-title: Hypericin-loaded lipid nanocapsules for photodynamic cancer therapy in vitro publication-title: Nanoscale – volume: 11 start-page: 621 year: 2010 end-page: 632 ident: b0035 article-title: Mitochondria and cell death: outer membrane permeabilization and beyond publication-title: Nat. Rev. Mol. Cell Biol. – volume: 9 start-page: 1292 year: 2013 end-page: 1307 ident: b0130 article-title: ROS-induced autophagy in cancer cells assists in evasion from determinants of immunogenic cell death publication-title: Autophagy – volume: 7 start-page: 7584 year: 2015 end-page: 7598 ident: b0060 article-title: Dual drug conjugated nanoparticle for simultaneous targeting of mitochondria and nucleus in cancer cells publication-title: ACS Appl. Mater. Interfaces – volume: 24 start-page: 4386 year: 2014 end-page: 4396 ident: b0200 article-title: Multifunctional graphene oxide-based triple stimuli-responsive nanotheranostics publication-title: Adv. Funct. Mater. – volume: 15 start-page: 3021 year: 2011 end-page: 3038 ident: b0030 article-title: Mitochondria-targeted small molecule therapeutics and probes publication-title: Antioxid. Redox. Signal. – volume: 109 start-page: 16288 year: 2012 end-page: 16293 ident: b0050 article-title: Engineering of blended nanoparticle platform for delivery of mitochondria-acting therapeutics publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 33 start-page: 341 year: 2012 end-page: 352 ident: b0010 article-title: Mitochondrial pharmacology publication-title: Trends Pharmacol. Sci. – volume: 4 start-page: e697 year: 2013 ident: b0125 article-title: Hypericin-photodynamic therapy leads to interleukin-6 secretion by HepG2 cells and their apoptosis via recruitment of BH3 interacting-domain death agonist and caspases publication-title: Cell Death Dis. – volume: 14 start-page: 111 year: 2015 end-page: 129 ident: b0085 article-title: The re-emergence of natural products for drug discovery in the genomics era publication-title: Nat. Rev. Drug Disco. – volume: 5 start-page: 3364 year: 2014 ident: b0210 article-title: ATP-triggered anticancer drug delivery publication-title: Nat. Comm. – volume: 47 start-page: 1905 year: 2008 end-page: 1915 ident: b0180 article-title: Prevention of free fatty acid-induced hepatic lipotoxicity by 18beta-glycyrrhetinic acid through lysosomal and mitochondrial pathways publication-title: Hepatology – volume: 6 start-page: 1832 year: 2014 end-page: 1845 ident: b0055 article-title: The energy blocker inside the power house: mitochondria targeted delivery of 3-bromopyruvate publication-title: Chem. Sci. – volume: 50 start-page: 2465 year: 2014 end-page: 2468 ident: b0065 article-title: Conjugation of vitamin E analog α-TOS to Pt(IV) complexes for dual-targeting anticancer therapy publication-title: Chem. Commun. – volume: 19 start-page: 793 year: 2012 end-page: 798 ident: b0135 article-title: Molecular response to hypericin-induced photodamage publication-title: Curr. Med. Chem. – volume: 42 start-page: 417 year: 2002 end-page: 425 ident: b0140 article-title: Fluorescence detection of bladder cancer: a review publication-title: Eur. Urol. – volume: 66 start-page: 294 year: 2017 end-page: 309 ident: b0165 article-title: Combinational siRNA delivery using hyaluronic acid modified amphiphilic polyplexes against cell cycle and phosphatase proteins to inhibit growth and migration of triple-negative breast cancer cells publication-title: Acta Biomater. – volume: 21 start-page: 17415 year: 2015 end-page: 17421 ident: b0075 article-title: Fluorescent coumarin-artemisinin conjugates as mitochondria targeting theranostic probes for enhanced anticancer activities publication-title: Chem. Eur. J. – volume: 1658 start-page: 195 year: 2004 end-page: 201 ident: b0175 article-title: the mechanism of mitochondrial permeability transition induction by glycyrrhetinic acid publication-title: Biochim. Biophys. Acta Bioenerg. – volume: 104 start-page: 215 year: 2015 end-page: 222 ident: b0145 article-title: Evaluation of hypericin: effect of aggregation on targeting biodistribution publication-title: J. Pharm. Sci. – volume: 28 start-page: 160 year: 2015 end-page: 170 ident: b0020 article-title: Tumor mitochondria-targeted photodynamic therapy with a translocator protein (TSPO)-specific photosensitizer publication-title: Acta Biomater. – volume: 11 start-page: 1082 year: 2018 end-page: 1098 ident: b0045 article-title: Mitochondria-targeting self-assembled nanoparticles derived from triphenylphosphonium-conjugated cyanostilbene enable site-specific imaging and anticancer drug delivery publication-title: Nano Res. – volume: 59 start-page: 5022 year: 2016 end-page: 5034 ident: b0080 article-title: Probing the anticancer action of oridonin with fluorescent analogues: visualizing subcellular localization to mitochondria publication-title: J. Med. Chem. – volume: 10 start-page: 6608 year: 2018 end-page: 6617 ident: b0215 article-title: Design and development of graphene oxide nanoparticle/chitosan hybrids showing pH-sensitive surface charge-reversible ability for efficient intracellular doxorubicin delivery publication-title: ACS Appl. Mater. Inter. – volume: 76 start-page: 5914 year: 2016 end-page: 5920 ident: b0255 article-title: Finally, an apoptosis-targeting therapeutic for cancer publication-title: Cancer Res. – volume: 67 start-page: 122 year: 2018 end-page: 133 ident: b0170 article-title: An implantable depot capable of in situ generation of micelles to achieve controlled and targeted tumor chemotherapy publication-title: Acta Biomater. – volume: 9 start-page: 323 year: 2014 end-page: 333 ident: b0015 article-title: Molecular vehicles for mitochondrial chemical biology and drug delivery publication-title: ACS Chem. Biol. – volume: 11 start-page: 621 year: 2010 ident: 10.1016/j.actbio.2018.07.018_b0035 article-title: Mitochondria and cell death: outer membrane permeabilization and beyond publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm2952 – volume: 10 start-page: 1742 year: 2018 ident: 10.1016/j.actbio.2018.07.018_b0250 article-title: Vibrating droplet generation to assemble zwitterion-coated gold-graphene oxide stealth nanovesicles for effective pancreatic cancer chemo-phototherapy publication-title: Nanoscale doi: 10.1039/C7NR07603G – volume: 11 start-page: 1082 year: 2018 ident: 10.1016/j.actbio.2018.07.018_b0045 article-title: Mitochondria-targeting self-assembled nanoparticles derived from triphenylphosphonium-conjugated cyanostilbene enable site-specific imaging and anticancer drug delivery publication-title: Nano Res. doi: 10.1007/s12274-017-1728-7 – volume: 61 start-page: 250 year: 2011 ident: 10.1016/j.actbio.2018.07.018_b0195 article-title: Photodynamic therapy of cancer: an update publication-title: CA Cancer J. Clin. doi: 10.3322/caac.20114 – volume: 1703306 year: 2017 ident: 10.1016/j.actbio.2018.07.018_b0095 article-title: Glycyrrhetinic acid functionalized graphene oxide for mitochondria targeting and cancer treatment in vivo publication-title: Small – volume: 4 start-page: e697 year: 2013 ident: 10.1016/j.actbio.2018.07.018_b0125 article-title: Hypericin-photodynamic therapy leads to interleukin-6 secretion by HepG2 cells and their apoptosis via recruitment of BH3 interacting-domain death agonist and caspases publication-title: Cell Death Dis. doi: 10.1038/cddis.2013.219 – volume: 104 start-page: 215 year: 2015 ident: 10.1016/j.actbio.2018.07.018_b0145 article-title: Evaluation of hypericin: effect of aggregation on targeting biodistribution publication-title: J. Pharm. Sci. doi: 10.1002/jps.24230 – volume: 5 start-page: 3364 year: 2014 ident: 10.1016/j.actbio.2018.07.018_b0210 article-title: ATP-triggered anticancer drug delivery publication-title: Nat. Comm. doi: 10.1038/ncomms4364 – volume: 5 start-page: 2714 year: 2017 ident: 10.1016/j.actbio.2018.07.018_b0220 article-title: Electron microscopy for inorganic-type drug delivery nanocarriers for antitumoral applications: what does it reveal? publication-title: J. Mater. Chem. B doi: 10.1039/C6TB03062A – volume: 303 start-page: 1818 year: 2004 ident: 10.1016/j.actbio.2018.07.018_b0205 article-title: Drug delivery systems: entering the mainstream publication-title: Science doi: 10.1126/science.1095833 – volume: 3 start-page: 127 year: 2013 ident: 10.1016/j.actbio.2018.07.018_b0155 article-title: Sequential systemic administrations of combretastatin A4 phosphate and radioiodinated hypericin exert synergistic targeted theranostic effects with prolonged survival on SCID mice carrying bifocal tumor xenografts publication-title: Theranostics doi: 10.7150/thno.5790 – volume: 14 start-page: 111 year: 2015 ident: 10.1016/j.actbio.2018.07.018_b0085 article-title: The re-emergence of natural products for drug discovery in the genomics era publication-title: Nat. Rev. Drug Disco. doi: 10.1038/nrd4510 – volume: 32 start-page: 5223 year: 2011 ident: 10.1016/j.actbio.2018.07.018_b0240 article-title: Redox-responsive nanocapsules for intracellular protein delivery publication-title: Biomaterials doi: 10.1016/j.biomaterials.2011.03.060 – volume: 15 start-page: 3021 year: 2011 ident: 10.1016/j.actbio.2018.07.018_b0030 article-title: Mitochondria-targeted small molecule therapeutics and probes publication-title: Antioxid. Redox. Signal. doi: 10.1089/ars.2011.3969 – volume: 136 start-page: 56 year: 2017 ident: 10.1016/j.actbio.2018.07.018_b0040 article-title: Validation of the use of an artificial mitochondrial reporter DNA vector containing a Cytomegalovirus promoter for mitochondrial transgene expression publication-title: Biomaterials doi: 10.1016/j.biomaterials.2017.05.016 – volume: 19 start-page: 793 year: 2012 ident: 10.1016/j.actbio.2018.07.018_b0135 article-title: Molecular response to hypericin-induced photodamage publication-title: Curr. Med. Chem. doi: 10.2174/092986712799034842 – volume: 7 start-page: 216 year: 2007 ident: 10.1016/j.actbio.2018.07.018_b0235 article-title: Optimizing combination chemotherapy by controlling drug ratios publication-title: Mol. Interv. doi: 10.1124/mi.7.4.8 – volume: 6 start-page: 1832 year: 2014 ident: 10.1016/j.actbio.2018.07.018_b0055 article-title: The energy blocker inside the power house: mitochondria targeted delivery of 3-bromopyruvate publication-title: Chem. Sci. doi: 10.1039/C4SC01963F – volume: 33 start-page: 341 year: 2012 ident: 10.1016/j.actbio.2018.07.018_b0010 article-title: Mitochondrial pharmacology publication-title: Trends Pharmacol. Sci. doi: 10.1016/j.tips.2012.03.010 – volume: 5 start-page: 18398 year: 2015 ident: 10.1016/j.actbio.2018.07.018_b0115 article-title: Hypericin-photodynamic therapy induces human umbilical vein endothelial cell apoptosis publication-title: Sci. Rep. doi: 10.1038/srep18398 – volume: 68 start-page: 137 year: 2018 ident: 10.1016/j.actbio.2018.07.018_b0185 article-title: Redox-responsive polymeric micelles formed by conjugating gambogic acid with bioreducible poly(amido amine)s for the co-delivery of docetaxel and MMP-9 shRNA publication-title: Acta Biomater. doi: 10.1016/j.actbio.2017.12.028 – volume: 50 start-page: 2465 year: 2014 ident: 10.1016/j.actbio.2018.07.018_b0065 article-title: Conjugation of vitamin E analog α-TOS to Pt(IV) complexes for dual-targeting anticancer therapy publication-title: Chem. Commun. doi: 10.1039/c3cc48740g – volume: 47 start-page: 1905 year: 2008 ident: 10.1016/j.actbio.2018.07.018_b0180 article-title: Prevention of free fatty acid-induced hepatic lipotoxicity by 18beta-glycyrrhetinic acid through lysosomal and mitochondrial pathways publication-title: Hepatology doi: 10.1002/hep.22239 – volume: 42 start-page: 417 year: 2002 ident: 10.1016/j.actbio.2018.07.018_b0140 article-title: Fluorescence detection of bladder cancer: a review publication-title: Eur. Urol. doi: 10.1016/S0302-2838(02)00402-5 – volume: 79 start-page: 629 issue: 2016 year: 1981 ident: 10.1016/j.actbio.2018.07.018_b0090 article-title: Natural products as sources of new drugs from 1981 to 2014 publication-title: J. Nat. Prod. – volume: 5 start-page: 2214 year: 2016 ident: 10.1016/j.actbio.2018.07.018_b0025 article-title: A highly photostable hyperbranched polyglycerol-based NIR fluorescence nanoplatform for mitochondria-specific cell imaging publication-title: Adv. Healthc. Mater. doi: 10.1002/adhm.201600212 – volume: 196 start-page: 57 year: 2003 ident: 10.1016/j.actbio.2018.07.018_b0160 article-title: Specificity of photosensitizer accumulation in undifferentiated versus differentiated colon carcinoma cells publication-title: Cancer Lett. doi: 10.1016/S0304-3835(03)00207-6 – volume: 76 start-page: 5914 year: 2016 ident: 10.1016/j.actbio.2018.07.018_b0255 article-title: Finally, an apoptosis-targeting therapeutic for cancer publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-16-1248 – volume: 10 start-page: 6608 year: 2018 ident: 10.1016/j.actbio.2018.07.018_b0215 article-title: Design and development of graphene oxide nanoparticle/chitosan hybrids showing pH-sensitive surface charge-reversible ability for efficient intracellular doxorubicin delivery publication-title: ACS Appl. Mater. Inter. doi: 10.1021/acsami.7b16910 – volume: 125 start-page: 146 year: 2013 ident: 10.1016/j.actbio.2018.07.018_b0120 article-title: Hypericin encapsulated in solid lipid nanoparticles: phototoxicity and photodynamic efficiency publication-title: J. Photochem. Photobiol. B doi: 10.1016/j.jphotobiol.2013.05.010 – volume: 9 start-page: 323 year: 2014 ident: 10.1016/j.actbio.2018.07.018_b0015 article-title: Molecular vehicles for mitochondrial chemical biology and drug delivery publication-title: ACS Chem. Biol. doi: 10.1021/cb400821p – volume: 67 start-page: 122 year: 2018 ident: 10.1016/j.actbio.2018.07.018_b0170 article-title: An implantable depot capable of in situ generation of micelles to achieve controlled and targeted tumor chemotherapy publication-title: Acta Biomater. doi: 10.1016/j.actbio.2017.12.003 – volume: 1658 start-page: 195 year: 2004 ident: 10.1016/j.actbio.2018.07.018_b0175 article-title: the mechanism of mitochondrial permeability transition induction by glycyrrhetinic acid publication-title: Biochim. Biophys. Acta Bioenerg. doi: 10.1016/j.bbabio.2004.05.012 – volume: 7 start-page: 7584 year: 2015 ident: 10.1016/j.actbio.2018.07.018_b0060 article-title: Dual drug conjugated nanoparticle for simultaneous targeting of mitochondria and nucleus in cancer cells publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am5090226 – volume: 8 start-page: 11 year: 2013 ident: 10.1016/j.actbio.2018.07.018_b0245 article-title: Degradable polymeric nanocapsule for efficient intracellular delivery of a high molecular weight tumor-selective protein complex publication-title: Nano Today doi: 10.1016/j.nantod.2012.12.003 – volume: 22 start-page: 427 year: 2015 ident: 10.1016/j.actbio.2018.07.018_b0110 article-title: Sodium cholate, a solubilizing agent for the necrosis avid radioiodinated hypericin in rabbits with acute myocardial infarction publication-title: Drug Deliv. doi: 10.3109/10717544.2013.873838 – volume: 9 start-page: 1292 year: 2013 ident: 10.1016/j.actbio.2018.07.018_b0130 article-title: ROS-induced autophagy in cancer cells assists in evasion from determinants of immunogenic cell death publication-title: Autophagy doi: 10.4161/auto.25399 – volume: 42 start-page: 530 year: 2013 ident: 10.1016/j.actbio.2018.07.018_b0225 article-title: Nano-graphene in biomedicine: theranostic applications publication-title: Chem. Soc. Rev. doi: 10.1039/C2CS35342C – volume: 364 start-page: 985 year: 2011 ident: 10.1016/j.actbio.2018.07.018_b0230 article-title: Development of novel combination therapies publication-title: New Eng. J. Med. doi: 10.1056/NEJMp1101548 – volume: 66 start-page: 294 year: 2017 ident: 10.1016/j.actbio.2018.07.018_b0165 article-title: Combinational siRNA delivery using hyaluronic acid modified amphiphilic polyplexes against cell cycle and phosphatase proteins to inhibit growth and migration of triple-negative breast cancer cells publication-title: Acta Biomater. doi: 10.1016/j.actbio.2017.11.036 – volume: 59 start-page: 5022 year: 2016 ident: 10.1016/j.actbio.2018.07.018_b0080 article-title: Probing the anticancer action of oridonin with fluorescent analogues: visualizing subcellular localization to mitochondria publication-title: J. Med. Chem. doi: 10.1021/acs.jmedchem.6b00408 – volume: 109 start-page: 16288 year: 2012 ident: 10.1016/j.actbio.2018.07.018_b0050 article-title: Engineering of blended nanoparticle platform for delivery of mitochondria-acting therapeutics publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1210096109 – volume: 5 start-page: 10562 year: 2013 ident: 10.1016/j.actbio.2018.07.018_b0100 article-title: Hypericin-loaded lipid nanocapsules for photodynamic cancer therapy in vitro publication-title: Nanoscale doi: 10.1039/c3nr02724d – volume: 28 start-page: 160 year: 2015 ident: 10.1016/j.actbio.2018.07.018_b0020 article-title: Tumor mitochondria-targeted photodynamic therapy with a translocator protein (TSPO)-specific photosensitizer publication-title: Acta Biomater. doi: 10.1016/j.actbio.2015.09.033 – volume: 9 start-page: 447 year: 2010 ident: 10.1016/j.actbio.2018.07.018_b0005 article-title: Targeting mitochondria for cancer therapy publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd3137 – volume: 131 start-page: 129 year: 2012 ident: 10.1016/j.actbio.2018.07.018_b0150 article-title: Radiolabeled iodohypericin as tumor necrosis avid tracer: diagnostic and therapeutic potential publication-title: Int. J. Cancer doi: 10.1002/ijc.26492 – volume: 24 start-page: 4386 year: 2014 ident: 10.1016/j.actbio.2018.07.018_b0200 article-title: Multifunctional graphene oxide-based triple stimuli-responsive nanotheranostics publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201400221 – volume: 34 start-page: 1475 year: 2015 ident: 10.1016/j.actbio.2018.07.018_b0260 article-title: Molecular mechanisms of cell death: central implication of ATP synthase in mitochondrial permeability transition publication-title: Oncogene doi: 10.1038/onc.2014.96 – volume: 13 start-page: 5334 year: 2011 ident: 10.1016/j.actbio.2018.07.018_b0070 article-title: Synthesis and evaluation of a fluorescent ritterazine-cephalostatin hybrid publication-title: Org. Lett. doi: 10.1021/ol202139z – volume: 21 start-page: 17415 year: 2015 ident: 10.1016/j.actbio.2018.07.018_b0075 article-title: Fluorescent coumarin-artemisinin conjugates as mitochondria targeting theranostic probes for enhanced anticancer activities publication-title: Chem. Eur. J. doi: 10.1002/chem.201502543 – volume: 68 start-page: 154 year: 2018 ident: 10.1016/j.actbio.2018.07.018_b0190 article-title: Multifunctional nanoparticles as somatostatin receptor-targeting delivery system of polyaniline and methotrexate for combined chemo–photothermal therapy publication-title: Acta Biomater. doi: 10.1016/j.actbio.2017.12.033 – volume: 278 start-page: 294 year: 1997 ident: 10.1016/j.actbio.2018.07.018_b0265 article-title: Caspase-3-generated fragment of gelsolin: effector of morphological change in apoptosis publication-title: Science doi: 10.1126/science.278.5336.294 – volume: 118 start-page: 9484 year: 1996 ident: 10.1016/j.actbio.2018.07.018_b0105 article-title: Hypericin-induced cell photosensitization involves an intracellular pH decrease publication-title: J. Am. Chem. Soc. doi: 10.1021/ja961783k |
SSID | ssj0038128 |
Score | 2.4740925 |
Snippet | [Display omitted]
Effective targeting of mitochondria has emerged as a beneficial strategy in cancer therapy. However, the development of... Effective targeting of mitochondria has emerged as a beneficial strategy in cancer therapy. However, the development of mitochondria-targeting ligands is... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 268 |
SubjectTerms | Anticancer properties Apoptosis Biocompatibility Breast carcinoma Cancer Chemotherapy Doxorubicin Drug administration Drug delivery Drug delivery systems Drug therapy Graphene Graphene oxide Hypericin Ligands Membrane permeability Mitochondria Mitochondria targeting Natural products Phototherapy Proteins Side effects Synergistic anticancer Targeted cancer therapy Toxicity |
Title | Hypericin-functionalized graphene oxide for enhanced mitochondria-targeting and synergistic anticancer effect |
URI | https://dx.doi.org/10.1016/j.actbio.2018.07.018 https://www.ncbi.nlm.nih.gov/pubmed/30006311 https://www.proquest.com/docview/2111749841 https://www.proquest.com/docview/2070240773 |
Volume | 77 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1LS95AcBB70YP04SOtlS30un5JNs-jSOVrRS9W8LbMbjYY0Xwf_SJUD_72zmweVGgRPIUkM2HZeW_mAfA1NiaxdVlJDDGUSRWRzGFspUVTpa5IkhD5vOPsPJtfJj-u0qs1OB5rYTitctD9vU732np4Mht2c7ZsmtkF-dJxTuaImNLPUOYK9iRnLj98mtI8yCD5-aoMLBl6LJ_zOV5oO9NwCWBU-BaePPrj3-bpf-6nN0Mnb2Fr8B_FUb_Ed7Dm2vew-VdXwQ9wN3_g9sW2aSVbrf6wr3l0lfDdqUm5icXvpnKC_FXh2mufAyDuSLRJFbYVcaTs88PpawLbSqweuEDQd3Smez78JgxC9akg23B58u3n8VwOUxWkpWCok8Y5ktsIKfJDtElGYuJiU6YGi0JlFGCEWRyHpTPGFRHmRpFxK2OMCqtqp0pUO7DeLlq3BwLTOk7rTHGcwhWqhbF5XaHFNCuVCdMA1LiZ2g4tx3nyxa0ec8tudE8CzSTQYa7pEoCcsJZ9y40X4PORTvoZ62iyCi9g7o9k1YPorjTtCzFLWSRRAF-m1yR0_CcFW7e4JxhSlBwK5yqA3Z4dpqUq7_ZF0cdXL-sTbPBdn8m2D-vdr3v3mVyfzhx43j6AN0ffT-fnfwD1TgSF |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiDcLBYwER7OJneehhwqotvRxoZV6M2PHEanabNXdqt0e-FP8QWacZAUSqBJST1HiOLJmxt_MOPMAeKesTVxdVhIjjGRSxbTnUDnp0FapL5IkQj7v2N3LJgfJl8P0cAV-DrkwHFbZY3-H6QGt-yfjnprj06YZfyVbWuWkjkgoQw_lPrJy2y8uyG-brW99Iia_V2rz8_7HiexbC0hHHsFcWu9JeGMk9wfRJRnJile2TC0Whc7Iyo4ypaLSW-uLGHOrCeFLhXHhdO11iZq-ewtuJwQX3Dbhw49lXAlpwNDQlVcneXlDvl4IKkM3tw3nHMZFqBnKvUb-rg__Ze8Gvbf5AO73BqvY6GjyEFZ8-wju_VbG8DGcTBZcL9k1rWQ12Z0uNle-EqEcNqGpmF42lRdkIAvffg9BB-KEsISwt61oC8guIJ2-JrCtxGzBGYmhhDTd82k7zaCpIfbkCRzcCK2fwmo7bf1zEJjWKq0zzY4Rp8QW1uV1hQ7TrNQ2SkegB2Ia19c451Ybx2YIZjsyHQsMs8BEuaHLCORy1mlX4-Oa9_OBT-YPWTWkhq6ZuTaw1fRYMTNEFxKWskjiEbxdDtMu51832PrpOb1DyMy-d65H8KwTh-VSdbAz4_jFfy_rDdyZ7O_umJ2tve2XcJdHujC6NVidn537V2R3ze3rIOcCvt30xvoF1Rw-5Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hypericin-functionalized+graphene+oxide+for+enhanced+mitochondria-targeting+and+synergistic+anticancer+effect&rft.jtitle=Acta+biomaterialia&rft.au=Han%2C+Chao&rft.au=Zhang%2C+Can&rft.au=Ma%2C+Ting&rft.au=Zhang%2C+Chao&rft.date=2018-09-01&rft.issn=1742-7061&rft.volume=77&rft.spage=268&rft.epage=281&rft_id=info:doi/10.1016%2Fj.actbio.2018.07.018&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_actbio_2018_07_018 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-7061&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-7061&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-7061&client=summon |