Hypericin-functionalized graphene oxide for enhanced mitochondria-targeting and synergistic anticancer effect

[Display omitted] Effective targeting of mitochondria has emerged as a beneficial strategy in cancer therapy. However, the development of mitochondria-targeting ligands is difficult because of the low permeability of the mitochondrial double membrane. We found that hypericin (HY), a natural product...

Full description

Saved in:
Bibliographic Details
Published inActa biomaterialia Vol. 77; pp. 268 - 281
Main Authors Han, Chao, Zhang, Can, Ma, Ting, Zhang, Chao, Luo, Jianguang, Xu, Xiao, Zhao, Huijun, Chen, Yan, Kong, Lingyi
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.09.2018
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] Effective targeting of mitochondria has emerged as a beneficial strategy in cancer therapy. However, the development of mitochondria-targeting ligands is difficult because of the low permeability of the mitochondrial double membrane. We found that hypericin (HY), a natural product isolated from Hypericum perforatum L., is an effective mitochondria-targeting ligand. HY-functionalized graphene oxide (GO) loaded with doxorubicin (GO-PEG-SS-HY/DOX) increased the synergistic anticancer efficacy of phototherapy and chemotherapy in the absence of apparent adverse side effects. In vitro and in vivo assays suggested GO-PEG-SS-HY/DOX induced the expression of the key proteins of the mitochondria-mediated apoptosis pathway and caused apoptosis of breast carcinoma cells. In addition, GO vehicle exhibited low toxicity toward normal cells, indicating high safety of functionalized GO preparations in antitumor therapy. Therefore, HY-functionalized GO can be successfully used as a platform technology to target mitochondria in cancer cells and improve the therapeutic efficacy of chemotherapeutic drugs. Induction of mitochondria-mediated apoptosis is a promising approach in cancer therapy. However, mitochondria are difficult to access and permeate because of their negative membrane potential and highly dense double membrane. Mitochondria-targeting ligands can be conjugated to nanoparticles or small-molecule drugs to enhance their antitumor effect. Here, we showed that the natural photosensitizer hypericin is a novel mitochondria-targeting ligand and that graphene oxide particles co-loaded with hypericin and the chemotherapeutic agent doxorubicin exhibited a synergistic antitumor effect mediated by the mitochondrial-mediated apoptosis. Treatment with such particles in combination with laser irradiation led to apoptosis of the tumor MDA-MB-231 and MCF-7 cells in vitro and in vivo. Furthermore, treatment with hypericin/doxorubicin-functionalized graphene oxide had low cellular toxicity.
AbstractList Effective targeting of mitochondria has emerged as a beneficial strategy in cancer therapy. However, the development of mitochondria-targeting ligands is difficult because of the low permeability of the mitochondrial double membrane. We found that hypericin (HY), a natural product isolated from Hypericum perforatum L., is an effective mitochondria-targeting ligand. HY-functionalized graphene oxide (GO) loaded with doxorubicin (GO-PEG-SS-HY/DOX) increased the synergistic anticancer efficacy of phototherapy and chemotherapy in the absence of apparent adverse side effects. In vitro and in vivo assays suggested GO-PEG-SS-HY/DOX induced the expression of the key proteins of the mitochondria-mediated apoptosis pathway and caused apoptosis of breast carcinoma cells. In addition, GO vehicle exhibited low toxicity toward normal cells, indicating high safety of functionalized GO preparations in antitumor therapy. Therefore, HY-functionalized GO can be successfully used as a platform technology to target mitochondria in cancer cells and improve the therapeutic efficacy of chemotherapeutic drugs.
Effective targeting of mitochondria has emerged as a beneficial strategy in cancer therapy. However, the development of mitochondria-targeting ligands is difficult because of the low permeability of the mitochondrial double membrane. We found that hypericin (HY), a natural product isolated from Hypericum perforatum L., is an effective mitochondria-targeting ligand. HY-functionalized graphene oxide (GO) loaded with doxorubicin (GO-PEG-SS-HY/DOX) increased the synergistic anticancer efficacy of phototherapy and chemotherapy in the absence of apparent adverse side effects. In vitro and in vivo assays suggested GO-PEG-SS-HY/DOX induced the expression of the key proteins of the mitochondria-mediated apoptosis pathway and caused apoptosis of breast carcinoma cells. In addition, GO vehicle exhibited low toxicity toward normal cells, indicating high safety of functionalized GO preparations in antitumor therapy. Therefore, HY-functionalized GO can be successfully used as a platform technology to target mitochondria in cancer cells and improve the therapeutic efficacy of chemotherapeutic drugs. Induction of mitochondria-mediated apoptosis is a promising approach in cancer therapy. However, mitochondria are difficult to access and permeate because of their negative membrane potential and highly dense double membrane. Mitochondria-targeting ligands can be conjugated to nanoparticles or small-molecule drugs to enhance their antitumor effect. Here, we showed that the natural photosensitizer hypericin is a novel mitochondria-targeting ligand and that graphene oxide particles co-loaded with hypericin and the chemotherapeutic agent doxorubicin exhibited a synergistic antitumor effect mediated by the mitochondrial-mediated apoptosis. Treatment with such particles in combination with laser irradiation led to apoptosis of the tumor MDA-MB-231 and MCF-7 cells in vitro and in vivo. Furthermore, treatment with hypericin/doxorubicin-functionalized graphene oxide had low cellular toxicity.
[Display omitted] Effective targeting of mitochondria has emerged as a beneficial strategy in cancer therapy. However, the development of mitochondria-targeting ligands is difficult because of the low permeability of the mitochondrial double membrane. We found that hypericin (HY), a natural product isolated from Hypericum perforatum L., is an effective mitochondria-targeting ligand. HY-functionalized graphene oxide (GO) loaded with doxorubicin (GO-PEG-SS-HY/DOX) increased the synergistic anticancer efficacy of phototherapy and chemotherapy in the absence of apparent adverse side effects. In vitro and in vivo assays suggested GO-PEG-SS-HY/DOX induced the expression of the key proteins of the mitochondria-mediated apoptosis pathway and caused apoptosis of breast carcinoma cells. In addition, GO vehicle exhibited low toxicity toward normal cells, indicating high safety of functionalized GO preparations in antitumor therapy. Therefore, HY-functionalized GO can be successfully used as a platform technology to target mitochondria in cancer cells and improve the therapeutic efficacy of chemotherapeutic drugs. Induction of mitochondria-mediated apoptosis is a promising approach in cancer therapy. However, mitochondria are difficult to access and permeate because of their negative membrane potential and highly dense double membrane. Mitochondria-targeting ligands can be conjugated to nanoparticles or small-molecule drugs to enhance their antitumor effect. Here, we showed that the natural photosensitizer hypericin is a novel mitochondria-targeting ligand and that graphene oxide particles co-loaded with hypericin and the chemotherapeutic agent doxorubicin exhibited a synergistic antitumor effect mediated by the mitochondrial-mediated apoptosis. Treatment with such particles in combination with laser irradiation led to apoptosis of the tumor MDA-MB-231 and MCF-7 cells in vitro and in vivo. Furthermore, treatment with hypericin/doxorubicin-functionalized graphene oxide had low cellular toxicity.
Effective targeting of mitochondria has emerged as a beneficial strategy in cancer therapy. However, the development of mitochondria-targeting ligands is difficult because of the low permeability of the mitochondrial double membrane. We found that hypericin (HY), a natural product isolated from Hypericum perforatum L., is an effective mitochondria-targeting ligand. HY-functionalized graphene oxide (GO) loaded with doxorubicin (GO-PEG-SS-HY/DOX) increased the synergistic anticancer efficacy of phototherapy and chemotherapy in the absence of apparent adverse side effects. In vitro and in vivo assays suggested GO-PEG-SS-HY/DOX induced the expression of the key proteins of the mitochondria-mediated apoptosis pathway and caused apoptosis of breast carcinoma cells. In addition, GO vehicle exhibited low toxicity toward normal cells, indicating high safety of functionalized GO preparations in antitumor therapy. Therefore, HY-functionalized GO can be successfully used as a platform technology to target mitochondria in cancer cells and improve the therapeutic efficacy of chemotherapeutic drugs.Effective targeting of mitochondria has emerged as a beneficial strategy in cancer therapy. However, the development of mitochondria-targeting ligands is difficult because of the low permeability of the mitochondrial double membrane. We found that hypericin (HY), a natural product isolated from Hypericum perforatum L., is an effective mitochondria-targeting ligand. HY-functionalized graphene oxide (GO) loaded with doxorubicin (GO-PEG-SS-HY/DOX) increased the synergistic anticancer efficacy of phototherapy and chemotherapy in the absence of apparent adverse side effects. In vitro and in vivo assays suggested GO-PEG-SS-HY/DOX induced the expression of the key proteins of the mitochondria-mediated apoptosis pathway and caused apoptosis of breast carcinoma cells. In addition, GO vehicle exhibited low toxicity toward normal cells, indicating high safety of functionalized GO preparations in antitumor therapy. Therefore, HY-functionalized GO can be successfully used as a platform technology to target mitochondria in cancer cells and improve the therapeutic efficacy of chemotherapeutic drugs.Induction of mitochondria-mediated apoptosis is a promising approach in cancer therapy. However, mitochondria are difficult to access and permeate because of their negative membrane potential and highly dense double membrane. Mitochondria-targeting ligands can be conjugated to nanoparticles or small-molecule drugs to enhance their antitumor effect. Here, we showed that the natural photosensitizer hypericin is a novel mitochondria-targeting ligand and that graphene oxide particles co-loaded with hypericin and the chemotherapeutic agent doxorubicin exhibited a synergistic antitumor effect mediated by the mitochondrial-mediated apoptosis. Treatment with such particles in combination with laser irradiation led to apoptosis of the tumor MDA-MB-231 and MCF-7 cells in vitro and in vivo. Furthermore, treatment with hypericin/doxorubicin-functionalized graphene oxide had low cellular toxicity.STATEMENT OF SIGNIFICANCEInduction of mitochondria-mediated apoptosis is a promising approach in cancer therapy. However, mitochondria are difficult to access and permeate because of their negative membrane potential and highly dense double membrane. Mitochondria-targeting ligands can be conjugated to nanoparticles or small-molecule drugs to enhance their antitumor effect. Here, we showed that the natural photosensitizer hypericin is a novel mitochondria-targeting ligand and that graphene oxide particles co-loaded with hypericin and the chemotherapeutic agent doxorubicin exhibited a synergistic antitumor effect mediated by the mitochondrial-mediated apoptosis. Treatment with such particles in combination with laser irradiation led to apoptosis of the tumor MDA-MB-231 and MCF-7 cells in vitro and in vivo. Furthermore, treatment with hypericin/doxorubicin-functionalized graphene oxide had low cellular toxicity.
Author Ma, Ting
Zhao, Huijun
Luo, Jianguang
Xu, Xiao
Zhang, Chao
Kong, Lingyi
Han, Chao
Zhang, Can
Chen, Yan
Author_xml – sequence: 1
  givenname: Chao
  surname: Han
  fullname: Han, Chao
  organization: Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
– sequence: 2
  givenname: Can
  surname: Zhang
  fullname: Zhang, Can
  organization: State Key Laboratory of Natural Medicines, Center of Drug Discovery and Department of Pharmaceutics, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
– sequence: 3
  givenname: Ting
  surname: Ma
  fullname: Ma, Ting
  organization: Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
– sequence: 4
  givenname: Chao
  surname: Zhang
  fullname: Zhang, Chao
  organization: Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
– sequence: 5
  givenname: Jianguang
  surname: Luo
  fullname: Luo, Jianguang
  organization: Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
– sequence: 6
  givenname: Xiao
  surname: Xu
  fullname: Xu, Xiao
  organization: Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
– sequence: 7
  givenname: Huijun
  surname: Zhao
  fullname: Zhao, Huijun
  organization: Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
– sequence: 8
  givenname: Yan
  surname: Chen
  fullname: Chen, Yan
  organization: Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
– sequence: 9
  givenname: Lingyi
  surname: Kong
  fullname: Kong, Lingyi
  email: cpu_lykong@126.com
  organization: Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30006311$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtv1DAUhS1URB_wDxCKxIZNhmvnYYcFEqoKRarEBtbWjXMz41FiD7ZTMfz6Opp20wVsfGz5O2dxziU7c94RY285bDjw9uN-gyb11m8EcLUBucnygl1wJVUpm1ad5busRSmh5efsMsY9QKW4UK_YeQUAbcX5BZtvjwcK1lhXjoszyXqHk_1LQ7ENeNiRo8L_sQMVow8FuR06k_9mm7zZeTcEi2XCsKVk3bZANxTx6ChsbUzW5Hc-V0e2jiOZ9Jq9HHGK9OZRr9ivrzc_r2_Lux_fvl9_uStN3TWp7IlqAI6Cc0RTtwKARN81PSpVtU3TQSsEdNT3pDjKvhJcdAK5MtVIVYfVFftwyj0E_3uhmPRso6FpQkd-iVqABFGDlFVG3z9D934JuYRMcZ4b7FTNM_XukVr6mQZ9CHbGcNRPRWbg0wkwwccYaNTGJlzrTAHtpDnodTW916fV9LqaBqmzZHP9zPyU_x_b55ONcpX3loKOxtI6kA25bD14---AB9cVs9g
CitedBy_id crossref_primary_10_1002_adma_202007778
crossref_primary_10_1016_j_sjbs_2020_07_030
crossref_primary_10_1002_ange_201915826
crossref_primary_10_1016_j_actbio_2022_04_035
crossref_primary_10_1002_cam4_6502
crossref_primary_10_3389_fbioe_2021_786621
crossref_primary_10_1016_j_actbio_2018_11_050
crossref_primary_10_1039_D3MA00629H
crossref_primary_10_1016_j_jcis_2019_08_113
crossref_primary_10_3390_pharmaceutics14102212
crossref_primary_10_1016_j_ajps_2020_10_002
crossref_primary_10_1007_s12668_023_01099_w
crossref_primary_10_1021_acsabm_1c00155
crossref_primary_10_1016_j_mtchem_2019_02_004
crossref_primary_10_1021_acsanm_0c00630
crossref_primary_10_1155_ijbc_3013009
crossref_primary_10_1016_j_phymed_2023_154654
crossref_primary_10_1016_j_phymed_2022_154356
crossref_primary_10_1039_D1BM02006D
crossref_primary_10_1002_anie_201915826
crossref_primary_10_1016_j_inoche_2022_109869
crossref_primary_10_1016_j_jconrel_2023_01_028
crossref_primary_10_1039_D1BM01802G
crossref_primary_10_1186_s12951_021_00902_8
crossref_primary_10_1016_j_humgen_2023_201154
crossref_primary_10_1080_15422119_2020_1797792
crossref_primary_10_1016_j_bbiosy_2021_100023
crossref_primary_10_1016_j_mtcomm_2020_101319
crossref_primary_10_1002_ptr_8011
crossref_primary_10_1021_acsbiomaterials_9b01894
crossref_primary_10_1080_14737140_2024_2337259
crossref_primary_10_1088_1742_6596_2970_1_012013
crossref_primary_10_1016_j_jconrel_2022_05_033
crossref_primary_10_3390_app112311151
crossref_primary_10_1016_j_addr_2021_113917
crossref_primary_10_2147_IJN_S315368
crossref_primary_10_3390_biomedicines9111703
crossref_primary_10_1016_j_actbio_2021_04_054
crossref_primary_10_1016_j_jsps_2022_05_011
crossref_primary_10_14336_AD_2023_0520
crossref_primary_10_1016_j_ijpharm_2021_120644
crossref_primary_10_1155_2019_1983780
crossref_primary_10_1002_adhm_202404485
crossref_primary_10_1016_j_biotechadv_2023_108104
crossref_primary_10_1016_j_msec_2021_112420
crossref_primary_10_1080_17425247_2022_2041598
crossref_primary_10_3390_ijms232012624
crossref_primary_10_1080_10717544_2019_1628118
crossref_primary_10_1016_j_cclet_2022_02_047
crossref_primary_10_1016_j_pdpdt_2021_102343
Cites_doi 10.1038/nrm2952
10.1039/C7NR07603G
10.1007/s12274-017-1728-7
10.3322/caac.20114
10.1038/cddis.2013.219
10.1002/jps.24230
10.1038/ncomms4364
10.1039/C6TB03062A
10.1126/science.1095833
10.7150/thno.5790
10.1038/nrd4510
10.1016/j.biomaterials.2011.03.060
10.1089/ars.2011.3969
10.1016/j.biomaterials.2017.05.016
10.2174/092986712799034842
10.1124/mi.7.4.8
10.1039/C4SC01963F
10.1016/j.tips.2012.03.010
10.1038/srep18398
10.1016/j.actbio.2017.12.028
10.1039/c3cc48740g
10.1002/hep.22239
10.1016/S0302-2838(02)00402-5
10.1002/adhm.201600212
10.1016/S0304-3835(03)00207-6
10.1158/0008-5472.CAN-16-1248
10.1021/acsami.7b16910
10.1016/j.jphotobiol.2013.05.010
10.1021/cb400821p
10.1016/j.actbio.2017.12.003
10.1016/j.bbabio.2004.05.012
10.1021/am5090226
10.1016/j.nantod.2012.12.003
10.3109/10717544.2013.873838
10.4161/auto.25399
10.1039/C2CS35342C
10.1056/NEJMp1101548
10.1016/j.actbio.2017.11.036
10.1021/acs.jmedchem.6b00408
10.1073/pnas.1210096109
10.1039/c3nr02724d
10.1016/j.actbio.2015.09.033
10.1038/nrd3137
10.1002/ijc.26492
10.1002/adfm.201400221
10.1038/onc.2014.96
10.1021/ol202139z
10.1002/chem.201502543
10.1016/j.actbio.2017.12.033
10.1126/science.278.5336.294
10.1021/ja961783k
ContentType Journal Article
Copyright 2018 Acta Materialia Inc.
Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Copyright Elsevier BV Sep 2018
Copyright_xml – notice: 2018 Acta Materialia Inc.
– notice: Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
– notice: Copyright Elsevier BV Sep 2018
DBID AAYXX
CITATION
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7T7
7TA
7TB
7U5
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1016/j.actbio.2018.07.018
DatabaseName CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList Materials Research Database
PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1878-7568
EndPage 281
ExternalDocumentID 30006311
10_1016_j_actbio_2018_07_018
S1742706118304124
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABGSF
ABJNI
ABMAC
ABNUV
ABUDA
ABXRA
ABYKQ
ACDAQ
ACGFS
ACIWK
ACPRK
ACRLP
ADBBV
ADEWK
ADEZE
ADUVX
AEBSH
AEHWI
AEKER
AENEX
AEZYN
AFKWA
AFRAH
AFRZQ
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DOVZS
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSG
SSM
SSU
SSZ
T5K
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SEW
SSH
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7T7
7TA
7TB
7U5
8BQ
8FD
C1K
EFKBS
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c495t-bee4001a211aac46200e2b95ba8836559062209ebbe81a7b321292a18c3fe39a3
IEDL.DBID .~1
ISSN 1742-7061
1878-7568
IngestDate Thu Jul 10 23:06:02 EDT 2025
Wed Aug 13 04:50:31 EDT 2025
Wed Feb 19 02:37:26 EST 2025
Tue Jul 01 01:17:19 EDT 2025
Thu Apr 24 22:53:28 EDT 2025
Fri Feb 23 02:39:50 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Synergistic anticancer
Mitochondria targeting
Graphene oxide
Drug delivery
Hypericin
Language English
License Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c495t-bee4001a211aac46200e2b95ba8836559062209ebbe81a7b321292a18c3fe39a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 30006311
PQID 2111749841
PQPubID 2045286
PageCount 14
ParticipantIDs proquest_miscellaneous_2070240773
proquest_journals_2111749841
pubmed_primary_30006311
crossref_citationtrail_10_1016_j_actbio_2018_07_018
crossref_primary_10_1016_j_actbio_2018_07_018
elsevier_sciencedirect_doi_10_1016_j_actbio_2018_07_018
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-09-01
PublicationDateYYYYMMDD 2018-09-01
PublicationDate_xml – month: 09
  year: 2018
  text: 2018-09-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Kidlington
PublicationTitle Acta biomaterialia
PublicationTitleAlternate Acta Biomater
PublicationYear 2018
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Sureau, Miskovsky, Chinsky, Turpin (b0105) 1996; 118
Marrache, Dhar (b0055) 2014; 6
Luo, Chen, Chen, Xie, He, Wang, Li (b0170) 2018; 67
Croce, Reed (b0255) 2016; 76
Bonora, Wieckowski, Chinopoulos, Kepp, Kroemer, Galluzzi, Pintonet (b0260) 2015; 34
Fiore, Salvi, Palermo, Sinigaglia, Armanini, Toninello, On (b0175) 2004; 1658
Chen, Xu, Shu, Wu, Wang, Zhang, Zheng, Chen, Wang, Y. Li2, J. Shi (b0200) 2014; 24
Xu, Luo, Yao, Cai, Miao, Wu, Yang, Wu, Xie, Yao, Chen, Xu (b0080) 2016; 59
Barras, Boussekey, Courtade, Boukherroub (b0100) 2013; 5
Zhao, Wei, Zhao, Miao, Qiu, Yang, Jia, Liu, Hou (b0215) 2018; 10
Dong, Liu, Liu, Wu, Neumann, Wang, Schäfer-Korting, Kleuser, Chang, Li, Ma, Haag (b0025) 2016; 5
Marrache, Dhar (b0050) 2012; 109
Krammer, Verwanger (b0135) 2012; 19
Zhao, Biswas, Hu, Joo, Wang, Gu, Tang (b0240) 2011; 32
Agostinis, Berg, Cengel, Foster, Girotti, Gollnick, Hahn, Hamblin, Juzeniene, Kessel, Korbelik, Moan, Mroz, Nowis, Piette, Wilson, Golab (b0195) 2011; 61
Mayer, Janoff (b0235) 2007; 7
Kumar, La Clair, Fuchs (b0070) 2011; 13
Cona, Feng, Zhang, Li, Verbruggen, Oyen, Ni (b0110) 2015; 22
Liu, Jiang, Li, Liu, Nan (b0145) 2015; 104
Suntharalingam, Song, Lippard (b0065) 2014; 50
D’Hallewin, Bezdetnaya, Guillemin (b0140) 2002; 42
Allen, Cullis (b0205) 2004; 303
Barathan, Mariappan, Shankar, Abdullah, Goh, Vadivelu (b0125) 2013; 4
Fulda, Galluzzi, Kroemer (b0005) 2010; 9
Tait, Green (b0035) 2010; 11
Jean, Tulumello, Wisnovsky, Lei, Pereira, Kelley (b0015) 2014; 9
Parmar, Meenakshi Sundaram, Remant Bahadur, Maranchuk, Aliabadi, Hugh, Löbenberg, Uludağ (b0165) 2017; 66
Kim, Jin, Park, Jung, Lee, Park, Kim, Bae, Jung (b0045) 2018; 11
de Putte, Marysael, Fonge, Roskams, Cona, Li, Bormans, Verbruggen, Ni, de Witte (b0150) 2012; 131
Thapa, Ku, Choi, Yong, Byeon, Kim (b0250) 2018; 10
Garg, Dudek, Ferreira, Verfaillie, Venabeele, Krysko, Mathieu, Agostinis (b0130) 2013; 9
Zhao, Hu, Gu, Joo, Wang, Tang (b0245) 2013; 8
Smith, Hartley, Cocheme, Murphy (b0010) 2012; 33
Wu, Zhang, Gurley, Studer, Shang, Wang, Wang, Yan, Jiang, Hylemon, Sanyal, Pandak, Zhou (b0180) 2008; 47
Harvey, Edrada-Ebel, Quinn (b0085) 2015; 14
Smith, Hartley, Murphy (b0030) 2011; 15
Yang, Feng, Shi, Liu (b0225) 2013; 42
Zhang, Ba, Gu, Guo, Zhou, Xu, Wang, Ye, Liu (b0075) 2015; 21
Woodcock, Griffin, Behrman (b0230) 2011; 364
Siboni, Amit-Patito, Weizman, Waintraub-Porat, Weitman, Ehrenberg, Malika (b0160) 2003; 196
Mallick, More, Ghosh, Chippalkatti, Chopade, Lahiri, Basu (b0060) 2015; 7
Zhang, Li, Li, Shi, Zhou, Fu, Zhang, Yang, Fu, Lu (b0115) 2015; 5
Kang, Lu, Lan, Ding, Yang, Zhang, Zhao, Zhang, Ho (b0185) 2018; 68
Nguyen, Phung, Thapa, Pham, Tran, Jeong, Ku, Choi, Yong, Kim (b0190) 2018; 68
Mo, Jiang, DiSanto, Tai, Gu (b0210) 2014; 5
Lima, Pizzol, Monteiro, Creczynski-Pasa, Andrade, Ribeiro, Perussi (b0120) 2013; 125
Li, Cona, Chen, Feng, Zhou, Zhang, Nuyts, de Witte, Zhang, Yu, Oyen, Verbruggen, Ni (b0155) 2013; 3
Baeza, Castillo, Torres-Pardo, González-Calbet, Vallet-Regí (b0220) 2017; 5
Zhang, Yang, Ling, Shao, Wang, Edwards, Bai (b0020) 2015; 28
Newman, Cragg (b0090) 1981; 79
Yamada, Ishikawa, Harashima (b0040) 2017; 136
Zhang, Liu, Zheng, Geng, Han, Shi, Sun, Zhang, Chen, Zhang, Guo, Yang, Zhou, Kong (b0095) 2017; 1703306
Kothakota, Azuma, Reinhard, Klippel, Tang, Chu, McGarry, Kirschner, Koths, Kwiatkowski, Williams (b0265) 1997; 278
Suntharalingam (10.1016/j.actbio.2018.07.018_b0065) 2014; 50
Garg (10.1016/j.actbio.2018.07.018_b0130) 2013; 9
Zhao (10.1016/j.actbio.2018.07.018_b0215) 2018; 10
Bonora (10.1016/j.actbio.2018.07.018_b0260) 2015; 34
Cona (10.1016/j.actbio.2018.07.018_b0110) 2015; 22
Kumar (10.1016/j.actbio.2018.07.018_b0070) 2011; 13
Yang (10.1016/j.actbio.2018.07.018_b0225) 2013; 42
Marrache (10.1016/j.actbio.2018.07.018_b0055) 2014; 6
Mo (10.1016/j.actbio.2018.07.018_b0210) 2014; 5
Fiore (10.1016/j.actbio.2018.07.018_b0175) 2004; 1658
Croce (10.1016/j.actbio.2018.07.018_b0255) 2016; 76
de Putte (10.1016/j.actbio.2018.07.018_b0150) 2012; 131
Allen (10.1016/j.actbio.2018.07.018_b0205) 2004; 303
Woodcock (10.1016/j.actbio.2018.07.018_b0230) 2011; 364
Kothakota (10.1016/j.actbio.2018.07.018_b0265) 1997; 278
Chen (10.1016/j.actbio.2018.07.018_b0200) 2014; 24
Zhang (10.1016/j.actbio.2018.07.018_b0075) 2015; 21
Thapa (10.1016/j.actbio.2018.07.018_b0250) 2018; 10
Zhang (10.1016/j.actbio.2018.07.018_b0115) 2015; 5
Li (10.1016/j.actbio.2018.07.018_b0155) 2013; 3
Zhang (10.1016/j.actbio.2018.07.018_b0020) 2015; 28
Zhao (10.1016/j.actbio.2018.07.018_b0245) 2013; 8
Barathan (10.1016/j.actbio.2018.07.018_b0125) 2013; 4
Marrache (10.1016/j.actbio.2018.07.018_b0050) 2012; 109
Baeza (10.1016/j.actbio.2018.07.018_b0220) 2017; 5
Liu (10.1016/j.actbio.2018.07.018_b0145) 2015; 104
Jean (10.1016/j.actbio.2018.07.018_b0015) 2014; 9
Barras (10.1016/j.actbio.2018.07.018_b0100) 2013; 5
D’Hallewin (10.1016/j.actbio.2018.07.018_b0140) 2002; 42
Nguyen (10.1016/j.actbio.2018.07.018_b0190) 2018; 68
Sureau (10.1016/j.actbio.2018.07.018_b0105) 1996; 118
Harvey (10.1016/j.actbio.2018.07.018_b0085) 2015; 14
Krammer (10.1016/j.actbio.2018.07.018_b0135) 2012; 19
Mallick (10.1016/j.actbio.2018.07.018_b0060) 2015; 7
Yamada (10.1016/j.actbio.2018.07.018_b0040) 2017; 136
Smith (10.1016/j.actbio.2018.07.018_b0030) 2011; 15
Tait (10.1016/j.actbio.2018.07.018_b0035) 2010; 11
Siboni (10.1016/j.actbio.2018.07.018_b0160) 2003; 196
Mayer (10.1016/j.actbio.2018.07.018_b0235) 2007; 7
Parmar (10.1016/j.actbio.2018.07.018_b0165) 2017; 66
Luo (10.1016/j.actbio.2018.07.018_b0170) 2018; 67
Lima (10.1016/j.actbio.2018.07.018_b0120) 2013; 125
Kang (10.1016/j.actbio.2018.07.018_b0185) 2018; 68
Agostinis (10.1016/j.actbio.2018.07.018_b0195) 2011; 61
Zhao (10.1016/j.actbio.2018.07.018_b0240) 2011; 32
Kim (10.1016/j.actbio.2018.07.018_b0045) 2018; 11
Dong (10.1016/j.actbio.2018.07.018_b0025) 2016; 5
Xu (10.1016/j.actbio.2018.07.018_b0080) 2016; 59
Smith (10.1016/j.actbio.2018.07.018_b0010) 2012; 33
Newman (10.1016/j.actbio.2018.07.018_b0090) 1981; 79
Fulda (10.1016/j.actbio.2018.07.018_b0005) 2010; 9
Zhang (10.1016/j.actbio.2018.07.018_b0095) 2017; 1703306
Wu (10.1016/j.actbio.2018.07.018_b0180) 2008; 47
References_xml – volume: 79
  start-page: 629
  year: 1981
  end-page: 661
  ident: b0090
  article-title: Natural products as sources of new drugs from 1981 to 2014
  publication-title: J. Nat. Prod.
– volume: 68
  start-page: 154
  year: 2018
  end-page: 167
  ident: b0190
  article-title: Multifunctional nanoparticles as somatostatin receptor-targeting delivery system of polyaniline and methotrexate for combined chemo–photothermal therapy
  publication-title: Acta Biomater.
– volume: 13
  start-page: 5334
  year: 2011
  end-page: 5337
  ident: b0070
  article-title: Synthesis and evaluation of a fluorescent ritterazine-cephalostatin hybrid
  publication-title: Org. Lett.
– volume: 278
  start-page: 294
  year: 1997
  end-page: 298
  ident: b0265
  article-title: Caspase-3-generated fragment of gelsolin: effector of morphological change in apoptosis
  publication-title: Science
– volume: 3
  start-page: 127
  year: 2013
  end-page: 137
  ident: b0155
  article-title: Sequential systemic administrations of combretastatin A4 phosphate and radioiodinated hypericin exert synergistic targeted theranostic effects with prolonged survival on SCID mice carrying bifocal tumor xenografts
  publication-title: Theranostics
– volume: 32
  start-page: 5223
  year: 2011
  end-page: 5230
  ident: b0240
  article-title: Redox-responsive nanocapsules for intracellular protein delivery
  publication-title: Biomaterials
– volume: 5
  start-page: 18398
  year: 2015
  ident: b0115
  article-title: Hypericin-photodynamic therapy induces human umbilical vein endothelial cell apoptosis
  publication-title: Sci. Rep.
– volume: 8
  start-page: 11
  year: 2013
  end-page: 20
  ident: b0245
  article-title: Degradable polymeric nanocapsule for efficient intracellular delivery of a high molecular weight tumor-selective protein complex
  publication-title: Nano Today
– volume: 42
  start-page: 530
  year: 2013
  end-page: 547
  ident: b0225
  article-title: Nano-graphene in biomedicine: theranostic applications
  publication-title: Chem. Soc. Rev.
– volume: 1703306
  year: 2017
  ident: b0095
  article-title: Glycyrrhetinic acid functionalized graphene oxide for mitochondria targeting and cancer treatment in vivo
  publication-title: Small
– volume: 131
  start-page: 129
  year: 2012
  end-page: 137
  ident: b0150
  article-title: Radiolabeled iodohypericin as tumor necrosis avid tracer: diagnostic and therapeutic potential
  publication-title: Int. J. Cancer
– volume: 196
  start-page: 57
  year: 2003
  end-page: 64
  ident: b0160
  article-title: Specificity of photosensitizer accumulation in undifferentiated versus differentiated colon carcinoma cells
  publication-title: Cancer Lett.
– volume: 136
  start-page: 56
  year: 2017
  end-page: 66
  ident: b0040
  article-title: Validation of the use of an artificial mitochondrial reporter DNA vector containing a Cytomegalovirus promoter for mitochondrial transgene expression
  publication-title: Biomaterials
– volume: 364
  start-page: 985
  year: 2011
  end-page: 987
  ident: b0230
  article-title: Development of novel combination therapies
  publication-title: New Eng. J. Med.
– volume: 22
  start-page: 427
  year: 2015
  end-page: 435
  ident: b0110
  article-title: Sodium cholate, a solubilizing agent for the necrosis avid radioiodinated hypericin in rabbits with acute myocardial infarction
  publication-title: Drug Deliv.
– volume: 118
  start-page: 9484
  year: 1996
  end-page: 9487
  ident: b0105
  article-title: Hypericin-induced cell photosensitization involves an intracellular pH decrease
  publication-title: J. Am. Chem. Soc.
– volume: 125
  start-page: 146
  year: 2013
  end-page: 154
  ident: b0120
  article-title: Hypericin encapsulated in solid lipid nanoparticles: phototoxicity and photodynamic efficiency
  publication-title: J. Photochem. Photobiol. B
– volume: 5
  start-page: 2214
  year: 2016
  end-page: 2226
  ident: b0025
  article-title: A highly photostable hyperbranched polyglycerol-based NIR fluorescence nanoplatform for mitochondria-specific cell imaging
  publication-title: Adv. Healthc. Mater.
– volume: 68
  start-page: 137
  year: 2018
  end-page: 153
  ident: b0185
  article-title: Redox-responsive polymeric micelles formed by conjugating gambogic acid with bioreducible poly(amido amine)s for the co-delivery of docetaxel and MMP-9 shRNA
  publication-title: Acta Biomater.
– volume: 34
  start-page: 1475
  year: 2015
  end-page: 1486
  ident: b0260
  article-title: Molecular mechanisms of cell death: central implication of ATP synthase in mitochondrial permeability transition
  publication-title: Oncogene
– volume: 303
  start-page: 1818
  year: 2004
  end-page: 1822
  ident: b0205
  article-title: Drug delivery systems: entering the mainstream
  publication-title: Science
– volume: 61
  start-page: 250
  year: 2011
  end-page: 281
  ident: b0195
  article-title: Photodynamic therapy of cancer: an update
  publication-title: CA Cancer J. Clin.
– volume: 5
  start-page: 2714
  year: 2017
  end-page: 2725
  ident: b0220
  article-title: Electron microscopy for inorganic-type drug delivery nanocarriers for antitumoral applications: what does it reveal?
  publication-title: J. Mater. Chem. B
– volume: 10
  start-page: 1742
  year: 2018
  end-page: 1749
  ident: b0250
  article-title: Vibrating droplet generation to assemble zwitterion-coated gold-graphene oxide stealth nanovesicles for effective pancreatic cancer chemo-phototherapy
  publication-title: Nanoscale
– volume: 9
  start-page: 447
  year: 2010
  end-page: 464
  ident: b0005
  article-title: Targeting mitochondria for cancer therapy
  publication-title: Nat. Rev. Drug Discov.
– volume: 7
  start-page: 216
  year: 2007
  end-page: 223
  ident: b0235
  article-title: Optimizing combination chemotherapy by controlling drug ratios
  publication-title: Mol. Interv.
– volume: 5
  start-page: 10562
  year: 2013
  end-page: 10572
  ident: b0100
  article-title: Hypericin-loaded lipid nanocapsules for photodynamic cancer therapy in vitro
  publication-title: Nanoscale
– volume: 11
  start-page: 621
  year: 2010
  end-page: 632
  ident: b0035
  article-title: Mitochondria and cell death: outer membrane permeabilization and beyond
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 9
  start-page: 1292
  year: 2013
  end-page: 1307
  ident: b0130
  article-title: ROS-induced autophagy in cancer cells assists in evasion from determinants of immunogenic cell death
  publication-title: Autophagy
– volume: 7
  start-page: 7584
  year: 2015
  end-page: 7598
  ident: b0060
  article-title: Dual drug conjugated nanoparticle for simultaneous targeting of mitochondria and nucleus in cancer cells
  publication-title: ACS Appl. Mater. Interfaces
– volume: 24
  start-page: 4386
  year: 2014
  end-page: 4396
  ident: b0200
  article-title: Multifunctional graphene oxide-based triple stimuli-responsive nanotheranostics
  publication-title: Adv. Funct. Mater.
– volume: 15
  start-page: 3021
  year: 2011
  end-page: 3038
  ident: b0030
  article-title: Mitochondria-targeted small molecule therapeutics and probes
  publication-title: Antioxid. Redox. Signal.
– volume: 109
  start-page: 16288
  year: 2012
  end-page: 16293
  ident: b0050
  article-title: Engineering of blended nanoparticle platform for delivery of mitochondria-acting therapeutics
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 33
  start-page: 341
  year: 2012
  end-page: 352
  ident: b0010
  article-title: Mitochondrial pharmacology
  publication-title: Trends Pharmacol. Sci.
– volume: 4
  start-page: e697
  year: 2013
  ident: b0125
  article-title: Hypericin-photodynamic therapy leads to interleukin-6 secretion by HepG2 cells and their apoptosis via recruitment of BH3 interacting-domain death agonist and caspases
  publication-title: Cell Death Dis.
– volume: 14
  start-page: 111
  year: 2015
  end-page: 129
  ident: b0085
  article-title: The re-emergence of natural products for drug discovery in the genomics era
  publication-title: Nat. Rev. Drug Disco.
– volume: 5
  start-page: 3364
  year: 2014
  ident: b0210
  article-title: ATP-triggered anticancer drug delivery
  publication-title: Nat. Comm.
– volume: 47
  start-page: 1905
  year: 2008
  end-page: 1915
  ident: b0180
  article-title: Prevention of free fatty acid-induced hepatic lipotoxicity by 18beta-glycyrrhetinic acid through lysosomal and mitochondrial pathways
  publication-title: Hepatology
– volume: 6
  start-page: 1832
  year: 2014
  end-page: 1845
  ident: b0055
  article-title: The energy blocker inside the power house: mitochondria targeted delivery of 3-bromopyruvate
  publication-title: Chem. Sci.
– volume: 50
  start-page: 2465
  year: 2014
  end-page: 2468
  ident: b0065
  article-title: Conjugation of vitamin E analog α-TOS to Pt(IV) complexes for dual-targeting anticancer therapy
  publication-title: Chem. Commun.
– volume: 19
  start-page: 793
  year: 2012
  end-page: 798
  ident: b0135
  article-title: Molecular response to hypericin-induced photodamage
  publication-title: Curr. Med. Chem.
– volume: 42
  start-page: 417
  year: 2002
  end-page: 425
  ident: b0140
  article-title: Fluorescence detection of bladder cancer: a review
  publication-title: Eur. Urol.
– volume: 66
  start-page: 294
  year: 2017
  end-page: 309
  ident: b0165
  article-title: Combinational siRNA delivery using hyaluronic acid modified amphiphilic polyplexes against cell cycle and phosphatase proteins to inhibit growth and migration of triple-negative breast cancer cells
  publication-title: Acta Biomater.
– volume: 21
  start-page: 17415
  year: 2015
  end-page: 17421
  ident: b0075
  article-title: Fluorescent coumarin-artemisinin conjugates as mitochondria targeting theranostic probes for enhanced anticancer activities
  publication-title: Chem. Eur. J.
– volume: 1658
  start-page: 195
  year: 2004
  end-page: 201
  ident: b0175
  article-title: the mechanism of mitochondrial permeability transition induction by glycyrrhetinic acid
  publication-title: Biochim. Biophys. Acta Bioenerg.
– volume: 104
  start-page: 215
  year: 2015
  end-page: 222
  ident: b0145
  article-title: Evaluation of hypericin: effect of aggregation on targeting biodistribution
  publication-title: J. Pharm. Sci.
– volume: 28
  start-page: 160
  year: 2015
  end-page: 170
  ident: b0020
  article-title: Tumor mitochondria-targeted photodynamic therapy with a translocator protein (TSPO)-specific photosensitizer
  publication-title: Acta Biomater.
– volume: 11
  start-page: 1082
  year: 2018
  end-page: 1098
  ident: b0045
  article-title: Mitochondria-targeting self-assembled nanoparticles derived from triphenylphosphonium-conjugated cyanostilbene enable site-specific imaging and anticancer drug delivery
  publication-title: Nano Res.
– volume: 59
  start-page: 5022
  year: 2016
  end-page: 5034
  ident: b0080
  article-title: Probing the anticancer action of oridonin with fluorescent analogues: visualizing subcellular localization to mitochondria
  publication-title: J. Med. Chem.
– volume: 10
  start-page: 6608
  year: 2018
  end-page: 6617
  ident: b0215
  article-title: Design and development of graphene oxide nanoparticle/chitosan hybrids showing pH-sensitive surface charge-reversible ability for efficient intracellular doxorubicin delivery
  publication-title: ACS Appl. Mater. Inter.
– volume: 76
  start-page: 5914
  year: 2016
  end-page: 5920
  ident: b0255
  article-title: Finally, an apoptosis-targeting therapeutic for cancer
  publication-title: Cancer Res.
– volume: 67
  start-page: 122
  year: 2018
  end-page: 133
  ident: b0170
  article-title: An implantable depot capable of in situ generation of micelles to achieve controlled and targeted tumor chemotherapy
  publication-title: Acta Biomater.
– volume: 9
  start-page: 323
  year: 2014
  end-page: 333
  ident: b0015
  article-title: Molecular vehicles for mitochondrial chemical biology and drug delivery
  publication-title: ACS Chem. Biol.
– volume: 11
  start-page: 621
  year: 2010
  ident: 10.1016/j.actbio.2018.07.018_b0035
  article-title: Mitochondria and cell death: outer membrane permeabilization and beyond
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm2952
– volume: 10
  start-page: 1742
  year: 2018
  ident: 10.1016/j.actbio.2018.07.018_b0250
  article-title: Vibrating droplet generation to assemble zwitterion-coated gold-graphene oxide stealth nanovesicles for effective pancreatic cancer chemo-phototherapy
  publication-title: Nanoscale
  doi: 10.1039/C7NR07603G
– volume: 11
  start-page: 1082
  year: 2018
  ident: 10.1016/j.actbio.2018.07.018_b0045
  article-title: Mitochondria-targeting self-assembled nanoparticles derived from triphenylphosphonium-conjugated cyanostilbene enable site-specific imaging and anticancer drug delivery
  publication-title: Nano Res.
  doi: 10.1007/s12274-017-1728-7
– volume: 61
  start-page: 250
  year: 2011
  ident: 10.1016/j.actbio.2018.07.018_b0195
  article-title: Photodynamic therapy of cancer: an update
  publication-title: CA Cancer J. Clin.
  doi: 10.3322/caac.20114
– volume: 1703306
  year: 2017
  ident: 10.1016/j.actbio.2018.07.018_b0095
  article-title: Glycyrrhetinic acid functionalized graphene oxide for mitochondria targeting and cancer treatment in vivo
  publication-title: Small
– volume: 4
  start-page: e697
  year: 2013
  ident: 10.1016/j.actbio.2018.07.018_b0125
  article-title: Hypericin-photodynamic therapy leads to interleukin-6 secretion by HepG2 cells and their apoptosis via recruitment of BH3 interacting-domain death agonist and caspases
  publication-title: Cell Death Dis.
  doi: 10.1038/cddis.2013.219
– volume: 104
  start-page: 215
  year: 2015
  ident: 10.1016/j.actbio.2018.07.018_b0145
  article-title: Evaluation of hypericin: effect of aggregation on targeting biodistribution
  publication-title: J. Pharm. Sci.
  doi: 10.1002/jps.24230
– volume: 5
  start-page: 3364
  year: 2014
  ident: 10.1016/j.actbio.2018.07.018_b0210
  article-title: ATP-triggered anticancer drug delivery
  publication-title: Nat. Comm.
  doi: 10.1038/ncomms4364
– volume: 5
  start-page: 2714
  year: 2017
  ident: 10.1016/j.actbio.2018.07.018_b0220
  article-title: Electron microscopy for inorganic-type drug delivery nanocarriers for antitumoral applications: what does it reveal?
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C6TB03062A
– volume: 303
  start-page: 1818
  year: 2004
  ident: 10.1016/j.actbio.2018.07.018_b0205
  article-title: Drug delivery systems: entering the mainstream
  publication-title: Science
  doi: 10.1126/science.1095833
– volume: 3
  start-page: 127
  year: 2013
  ident: 10.1016/j.actbio.2018.07.018_b0155
  article-title: Sequential systemic administrations of combretastatin A4 phosphate and radioiodinated hypericin exert synergistic targeted theranostic effects with prolonged survival on SCID mice carrying bifocal tumor xenografts
  publication-title: Theranostics
  doi: 10.7150/thno.5790
– volume: 14
  start-page: 111
  year: 2015
  ident: 10.1016/j.actbio.2018.07.018_b0085
  article-title: The re-emergence of natural products for drug discovery in the genomics era
  publication-title: Nat. Rev. Drug Disco.
  doi: 10.1038/nrd4510
– volume: 32
  start-page: 5223
  year: 2011
  ident: 10.1016/j.actbio.2018.07.018_b0240
  article-title: Redox-responsive nanocapsules for intracellular protein delivery
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2011.03.060
– volume: 15
  start-page: 3021
  year: 2011
  ident: 10.1016/j.actbio.2018.07.018_b0030
  article-title: Mitochondria-targeted small molecule therapeutics and probes
  publication-title: Antioxid. Redox. Signal.
  doi: 10.1089/ars.2011.3969
– volume: 136
  start-page: 56
  year: 2017
  ident: 10.1016/j.actbio.2018.07.018_b0040
  article-title: Validation of the use of an artificial mitochondrial reporter DNA vector containing a Cytomegalovirus promoter for mitochondrial transgene expression
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2017.05.016
– volume: 19
  start-page: 793
  year: 2012
  ident: 10.1016/j.actbio.2018.07.018_b0135
  article-title: Molecular response to hypericin-induced photodamage
  publication-title: Curr. Med. Chem.
  doi: 10.2174/092986712799034842
– volume: 7
  start-page: 216
  year: 2007
  ident: 10.1016/j.actbio.2018.07.018_b0235
  article-title: Optimizing combination chemotherapy by controlling drug ratios
  publication-title: Mol. Interv.
  doi: 10.1124/mi.7.4.8
– volume: 6
  start-page: 1832
  year: 2014
  ident: 10.1016/j.actbio.2018.07.018_b0055
  article-title: The energy blocker inside the power house: mitochondria targeted delivery of 3-bromopyruvate
  publication-title: Chem. Sci.
  doi: 10.1039/C4SC01963F
– volume: 33
  start-page: 341
  year: 2012
  ident: 10.1016/j.actbio.2018.07.018_b0010
  article-title: Mitochondrial pharmacology
  publication-title: Trends Pharmacol. Sci.
  doi: 10.1016/j.tips.2012.03.010
– volume: 5
  start-page: 18398
  year: 2015
  ident: 10.1016/j.actbio.2018.07.018_b0115
  article-title: Hypericin-photodynamic therapy induces human umbilical vein endothelial cell apoptosis
  publication-title: Sci. Rep.
  doi: 10.1038/srep18398
– volume: 68
  start-page: 137
  year: 2018
  ident: 10.1016/j.actbio.2018.07.018_b0185
  article-title: Redox-responsive polymeric micelles formed by conjugating gambogic acid with bioreducible poly(amido amine)s for the co-delivery of docetaxel and MMP-9 shRNA
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2017.12.028
– volume: 50
  start-page: 2465
  year: 2014
  ident: 10.1016/j.actbio.2018.07.018_b0065
  article-title: Conjugation of vitamin E analog α-TOS to Pt(IV) complexes for dual-targeting anticancer therapy
  publication-title: Chem. Commun.
  doi: 10.1039/c3cc48740g
– volume: 47
  start-page: 1905
  year: 2008
  ident: 10.1016/j.actbio.2018.07.018_b0180
  article-title: Prevention of free fatty acid-induced hepatic lipotoxicity by 18beta-glycyrrhetinic acid through lysosomal and mitochondrial pathways
  publication-title: Hepatology
  doi: 10.1002/hep.22239
– volume: 42
  start-page: 417
  year: 2002
  ident: 10.1016/j.actbio.2018.07.018_b0140
  article-title: Fluorescence detection of bladder cancer: a review
  publication-title: Eur. Urol.
  doi: 10.1016/S0302-2838(02)00402-5
– volume: 79
  start-page: 629
  issue: 2016
  year: 1981
  ident: 10.1016/j.actbio.2018.07.018_b0090
  article-title: Natural products as sources of new drugs from 1981 to 2014
  publication-title: J. Nat. Prod.
– volume: 5
  start-page: 2214
  year: 2016
  ident: 10.1016/j.actbio.2018.07.018_b0025
  article-title: A highly photostable hyperbranched polyglycerol-based NIR fluorescence nanoplatform for mitochondria-specific cell imaging
  publication-title: Adv. Healthc. Mater.
  doi: 10.1002/adhm.201600212
– volume: 196
  start-page: 57
  year: 2003
  ident: 10.1016/j.actbio.2018.07.018_b0160
  article-title: Specificity of photosensitizer accumulation in undifferentiated versus differentiated colon carcinoma cells
  publication-title: Cancer Lett.
  doi: 10.1016/S0304-3835(03)00207-6
– volume: 76
  start-page: 5914
  year: 2016
  ident: 10.1016/j.actbio.2018.07.018_b0255
  article-title: Finally, an apoptosis-targeting therapeutic for cancer
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-16-1248
– volume: 10
  start-page: 6608
  year: 2018
  ident: 10.1016/j.actbio.2018.07.018_b0215
  article-title: Design and development of graphene oxide nanoparticle/chitosan hybrids showing pH-sensitive surface charge-reversible ability for efficient intracellular doxorubicin delivery
  publication-title: ACS Appl. Mater. Inter.
  doi: 10.1021/acsami.7b16910
– volume: 125
  start-page: 146
  year: 2013
  ident: 10.1016/j.actbio.2018.07.018_b0120
  article-title: Hypericin encapsulated in solid lipid nanoparticles: phototoxicity and photodynamic efficiency
  publication-title: J. Photochem. Photobiol. B
  doi: 10.1016/j.jphotobiol.2013.05.010
– volume: 9
  start-page: 323
  year: 2014
  ident: 10.1016/j.actbio.2018.07.018_b0015
  article-title: Molecular vehicles for mitochondrial chemical biology and drug delivery
  publication-title: ACS Chem. Biol.
  doi: 10.1021/cb400821p
– volume: 67
  start-page: 122
  year: 2018
  ident: 10.1016/j.actbio.2018.07.018_b0170
  article-title: An implantable depot capable of in situ generation of micelles to achieve controlled and targeted tumor chemotherapy
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2017.12.003
– volume: 1658
  start-page: 195
  year: 2004
  ident: 10.1016/j.actbio.2018.07.018_b0175
  article-title: the mechanism of mitochondrial permeability transition induction by glycyrrhetinic acid
  publication-title: Biochim. Biophys. Acta Bioenerg.
  doi: 10.1016/j.bbabio.2004.05.012
– volume: 7
  start-page: 7584
  year: 2015
  ident: 10.1016/j.actbio.2018.07.018_b0060
  article-title: Dual drug conjugated nanoparticle for simultaneous targeting of mitochondria and nucleus in cancer cells
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am5090226
– volume: 8
  start-page: 11
  year: 2013
  ident: 10.1016/j.actbio.2018.07.018_b0245
  article-title: Degradable polymeric nanocapsule for efficient intracellular delivery of a high molecular weight tumor-selective protein complex
  publication-title: Nano Today
  doi: 10.1016/j.nantod.2012.12.003
– volume: 22
  start-page: 427
  year: 2015
  ident: 10.1016/j.actbio.2018.07.018_b0110
  article-title: Sodium cholate, a solubilizing agent for the necrosis avid radioiodinated hypericin in rabbits with acute myocardial infarction
  publication-title: Drug Deliv.
  doi: 10.3109/10717544.2013.873838
– volume: 9
  start-page: 1292
  year: 2013
  ident: 10.1016/j.actbio.2018.07.018_b0130
  article-title: ROS-induced autophagy in cancer cells assists in evasion from determinants of immunogenic cell death
  publication-title: Autophagy
  doi: 10.4161/auto.25399
– volume: 42
  start-page: 530
  year: 2013
  ident: 10.1016/j.actbio.2018.07.018_b0225
  article-title: Nano-graphene in biomedicine: theranostic applications
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C2CS35342C
– volume: 364
  start-page: 985
  year: 2011
  ident: 10.1016/j.actbio.2018.07.018_b0230
  article-title: Development of novel combination therapies
  publication-title: New Eng. J. Med.
  doi: 10.1056/NEJMp1101548
– volume: 66
  start-page: 294
  year: 2017
  ident: 10.1016/j.actbio.2018.07.018_b0165
  article-title: Combinational siRNA delivery using hyaluronic acid modified amphiphilic polyplexes against cell cycle and phosphatase proteins to inhibit growth and migration of triple-negative breast cancer cells
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2017.11.036
– volume: 59
  start-page: 5022
  year: 2016
  ident: 10.1016/j.actbio.2018.07.018_b0080
  article-title: Probing the anticancer action of oridonin with fluorescent analogues: visualizing subcellular localization to mitochondria
  publication-title: J. Med. Chem.
  doi: 10.1021/acs.jmedchem.6b00408
– volume: 109
  start-page: 16288
  year: 2012
  ident: 10.1016/j.actbio.2018.07.018_b0050
  article-title: Engineering of blended nanoparticle platform for delivery of mitochondria-acting therapeutics
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1210096109
– volume: 5
  start-page: 10562
  year: 2013
  ident: 10.1016/j.actbio.2018.07.018_b0100
  article-title: Hypericin-loaded lipid nanocapsules for photodynamic cancer therapy in vitro
  publication-title: Nanoscale
  doi: 10.1039/c3nr02724d
– volume: 28
  start-page: 160
  year: 2015
  ident: 10.1016/j.actbio.2018.07.018_b0020
  article-title: Tumor mitochondria-targeted photodynamic therapy with a translocator protein (TSPO)-specific photosensitizer
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2015.09.033
– volume: 9
  start-page: 447
  year: 2010
  ident: 10.1016/j.actbio.2018.07.018_b0005
  article-title: Targeting mitochondria for cancer therapy
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/nrd3137
– volume: 131
  start-page: 129
  year: 2012
  ident: 10.1016/j.actbio.2018.07.018_b0150
  article-title: Radiolabeled iodohypericin as tumor necrosis avid tracer: diagnostic and therapeutic potential
  publication-title: Int. J. Cancer
  doi: 10.1002/ijc.26492
– volume: 24
  start-page: 4386
  year: 2014
  ident: 10.1016/j.actbio.2018.07.018_b0200
  article-title: Multifunctional graphene oxide-based triple stimuli-responsive nanotheranostics
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201400221
– volume: 34
  start-page: 1475
  year: 2015
  ident: 10.1016/j.actbio.2018.07.018_b0260
  article-title: Molecular mechanisms of cell death: central implication of ATP synthase in mitochondrial permeability transition
  publication-title: Oncogene
  doi: 10.1038/onc.2014.96
– volume: 13
  start-page: 5334
  year: 2011
  ident: 10.1016/j.actbio.2018.07.018_b0070
  article-title: Synthesis and evaluation of a fluorescent ritterazine-cephalostatin hybrid
  publication-title: Org. Lett.
  doi: 10.1021/ol202139z
– volume: 21
  start-page: 17415
  year: 2015
  ident: 10.1016/j.actbio.2018.07.018_b0075
  article-title: Fluorescent coumarin-artemisinin conjugates as mitochondria targeting theranostic probes for enhanced anticancer activities
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.201502543
– volume: 68
  start-page: 154
  year: 2018
  ident: 10.1016/j.actbio.2018.07.018_b0190
  article-title: Multifunctional nanoparticles as somatostatin receptor-targeting delivery system of polyaniline and methotrexate for combined chemo–photothermal therapy
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2017.12.033
– volume: 278
  start-page: 294
  year: 1997
  ident: 10.1016/j.actbio.2018.07.018_b0265
  article-title: Caspase-3-generated fragment of gelsolin: effector of morphological change in apoptosis
  publication-title: Science
  doi: 10.1126/science.278.5336.294
– volume: 118
  start-page: 9484
  year: 1996
  ident: 10.1016/j.actbio.2018.07.018_b0105
  article-title: Hypericin-induced cell photosensitization involves an intracellular pH decrease
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja961783k
SSID ssj0038128
Score 2.4740925
Snippet [Display omitted] Effective targeting of mitochondria has emerged as a beneficial strategy in cancer therapy. However, the development of...
Effective targeting of mitochondria has emerged as a beneficial strategy in cancer therapy. However, the development of mitochondria-targeting ligands is...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 268
SubjectTerms Anticancer properties
Apoptosis
Biocompatibility
Breast carcinoma
Cancer
Chemotherapy
Doxorubicin
Drug administration
Drug delivery
Drug delivery systems
Drug therapy
Graphene
Graphene oxide
Hypericin
Ligands
Membrane permeability
Mitochondria
Mitochondria targeting
Natural products
Phototherapy
Proteins
Side effects
Synergistic anticancer
Targeted cancer therapy
Toxicity
Title Hypericin-functionalized graphene oxide for enhanced mitochondria-targeting and synergistic anticancer effect
URI https://dx.doi.org/10.1016/j.actbio.2018.07.018
https://www.ncbi.nlm.nih.gov/pubmed/30006311
https://www.proquest.com/docview/2111749841
https://www.proquest.com/docview/2070240773
Volume 77
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1LS95AcBB70YP04SOtlS30un5JNs-jSOVrRS9W8LbMbjYY0Xwf_SJUD_72zmweVGgRPIUkM2HZeW_mAfA1NiaxdVlJDDGUSRWRzGFspUVTpa5IkhD5vOPsPJtfJj-u0qs1OB5rYTitctD9vU732np4Mht2c7ZsmtkF-dJxTuaImNLPUOYK9iRnLj98mtI8yCD5-aoMLBl6LJ_zOV5oO9NwCWBU-BaePPrj3-bpf-6nN0Mnb2Fr8B_FUb_Ed7Dm2vew-VdXwQ9wN3_g9sW2aSVbrf6wr3l0lfDdqUm5icXvpnKC_FXh2mufAyDuSLRJFbYVcaTs88PpawLbSqweuEDQd3Smez78JgxC9akg23B58u3n8VwOUxWkpWCok8Y5ktsIKfJDtElGYuJiU6YGi0JlFGCEWRyHpTPGFRHmRpFxK2OMCqtqp0pUO7DeLlq3BwLTOk7rTHGcwhWqhbF5XaHFNCuVCdMA1LiZ2g4tx3nyxa0ec8tudE8CzSTQYa7pEoCcsJZ9y40X4PORTvoZ62iyCi9g7o9k1YPorjTtCzFLWSRRAF-m1yR0_CcFW7e4JxhSlBwK5yqA3Z4dpqUq7_ZF0cdXL-sTbPBdn8m2D-vdr3v3mVyfzhx43j6AN0ffT-fnfwD1TgSF
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiDcLBYwER7OJneehhwqotvRxoZV6M2PHEanabNXdqt0e-FP8QWacZAUSqBJST1HiOLJmxt_MOPMAeKesTVxdVhIjjGRSxbTnUDnp0FapL5IkQj7v2N3LJgfJl8P0cAV-DrkwHFbZY3-H6QGt-yfjnprj06YZfyVbWuWkjkgoQw_lPrJy2y8uyG-brW99Iia_V2rz8_7HiexbC0hHHsFcWu9JeGMk9wfRJRnJile2TC0Whc7Iyo4ypaLSW-uLGHOrCeFLhXHhdO11iZq-ewtuJwQX3Dbhw49lXAlpwNDQlVcneXlDvl4IKkM3tw3nHMZFqBnKvUb-rg__Ze8Gvbf5AO73BqvY6GjyEFZ8-wju_VbG8DGcTBZcL9k1rWQ12Z0uNle-EqEcNqGpmF42lRdkIAvffg9BB-KEsISwt61oC8guIJ2-JrCtxGzBGYmhhDTd82k7zaCpIfbkCRzcCK2fwmo7bf1zEJjWKq0zzY4Rp8QW1uV1hQ7TrNQ2SkegB2Ia19c451Ybx2YIZjsyHQsMs8BEuaHLCORy1mlX4-Oa9_OBT-YPWTWkhq6ZuTaw1fRYMTNEFxKWskjiEbxdDtMu51832PrpOb1DyMy-d65H8KwTh-VSdbAz4_jFfy_rDdyZ7O_umJ2tve2XcJdHujC6NVidn537V2R3ze3rIOcCvt30xvoF1Rw-5Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hypericin-functionalized+graphene+oxide+for+enhanced+mitochondria-targeting+and+synergistic+anticancer+effect&rft.jtitle=Acta+biomaterialia&rft.au=Han%2C+Chao&rft.au=Zhang%2C+Can&rft.au=Ma%2C+Ting&rft.au=Zhang%2C+Chao&rft.date=2018-09-01&rft.issn=1742-7061&rft.volume=77&rft.spage=268&rft.epage=281&rft_id=info:doi/10.1016%2Fj.actbio.2018.07.018&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_actbio_2018_07_018
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-7061&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-7061&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-7061&client=summon