A Survey of Hardware Self-Organizing Maps

Self-organizing feature maps (SOMs) are commonly used technique for clustering and data dimensionality reduction in many application fields. Indeed, their inherent property of topology preservation and unsupervised learning of processed data without any prior knowledge put them in the front of candi...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 34; no. 11; pp. 8154 - 8173
Main Authors Jovanovic, Slavisa, Hikawa, Hiroomi
Format Journal Article
LanguageEnglish
Published United States IEEE 01.11.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2162-237X
2162-2388
2162-2388
DOI10.1109/TNNLS.2022.3152690

Cover

Loading…
Abstract Self-organizing feature maps (SOMs) are commonly used technique for clustering and data dimensionality reduction in many application fields. Indeed, their inherent property of topology preservation and unsupervised learning of processed data without any prior knowledge put them in the front of candidates for data reduction in the Internet of Things (IoT) and big data (BD) technologies. However, the high computational cost of SOMs limits their use to offline approaches and makes the online real-time high-performance SOM processing more challenging and mostly reserved to specific hardware implementations. In this article, we present a survey of hardware (HW) SOM implementations found in the literature so far: the most widely used computing blocks, architectures, design choices, adaptation, and optimization techniques that have been reported in the field of hardware SOMs. Moreover, we give an overview of main challenges and trends for their ubiquitous adoption as hardware accelerators in many application fields. This article is expected to be useful for researchers in the areas of artificial intelligence, hardware architecture, and system design.
AbstractList Self-organizing feature maps (SOMs) are commonly used technique for clustering and data dimensionality reduction in many application fields. Indeed, their inherent property of topology preservation and unsupervised learning of processed data without any prior knowledge put them in the front of candidates for data reduction in the Internet of Things (IoT) and big data (BD) technologies. However, the high computational cost of SOMs limits their use to offline approaches and makes the online real-time high-performance SOM processing more challenging and mostly reserved to specific hardware implementations. In this article, we present a survey of hardware (HW) SOM implementations found in the literature so far: the most widely used computing blocks, architectures, design choices, adaptation, and optimization techniques that have been reported in the field of hardware SOMs. Moreover, we give an overview of main challenges and trends for their ubiquitous adoption as hardware accelerators in many application fields. This article is expected to be useful for researchers in the areas of artificial intelligence, hardware architecture, and system design.Self-organizing feature maps (SOMs) are commonly used technique for clustering and data dimensionality reduction in many application fields. Indeed, their inherent property of topology preservation and unsupervised learning of processed data without any prior knowledge put them in the front of candidates for data reduction in the Internet of Things (IoT) and big data (BD) technologies. However, the high computational cost of SOMs limits their use to offline approaches and makes the online real-time high-performance SOM processing more challenging and mostly reserved to specific hardware implementations. In this article, we present a survey of hardware (HW) SOM implementations found in the literature so far: the most widely used computing blocks, architectures, design choices, adaptation, and optimization techniques that have been reported in the field of hardware SOMs. Moreover, we give an overview of main challenges and trends for their ubiquitous adoption as hardware accelerators in many application fields. This article is expected to be useful for researchers in the areas of artificial intelligence, hardware architecture, and system design.
Self-organizing feature maps (SOMs) are commonly used technique for clustering and data dimensionality reduction in many application fields. Indeed, their inherent property of topology preservation and unsupervised learning of processed data without any prior knowledge put them in the front of candidates for data reduction in the Internet of Things (IoT) and big data (BD) technologies. However, the high computational cost of SOMs limits their use to offline approaches and makes the online real-time high-performance SOM processing more challenging and mostly reserved to specific hardware implementations. In this article, we present a survey of hardware (HW) SOM implementations found in the literature so far: the most widely used computing blocks, architectures, design choices, adaptation, and optimization techniques that have been reported in the field of hardware SOMs. Moreover, we give an overview of main challenges and trends for their ubiquitous adoption as hardware accelerators in many application fields. This article is expected to be useful for researchers in the areas of artificial intelligence, hardware architecture, and system design.
Author Hikawa, Hiroomi
Jovanovic, Slavisa
Author_xml – sequence: 1
  givenname: Slavisa
  orcidid: 0000-0001-6459-7043
  surname: Jovanovic
  fullname: Jovanovic, Slavisa
  email: slavisa.jovanovic@univ-lorraine.fr
  organization: CNRS, IJL, Université de Lorraine, Nancy, France
– sequence: 2
  givenname: Hiroomi
  orcidid: 0000-0003-2609-3500
  surname: Hikawa
  fullname: Hikawa, Hiroomi
  email: hikawa@kansai-u.ac.jp
  organization: Department of Science and Engineering, Kansai University, Osaka, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35294355$$D View this record in MEDLINE/PubMed
https://hal.univ-lorraine.fr/hal-04140621$$DView record in HAL
BookMark eNp9kU1P2zAch60JBAz6BTZpisRlHFLsv9-PFdpWpEIPLRI3y3GczihNOjthYp9-KS09cMAXv-h5fpb9-4yOmrbxCH0heEwI1tfL-_vZYgwYYEwJB6HxJ3QGREAOVKmjw1o-nqJRSk94GAJzwfQJOqUcNKOcn6GrSbbo47N_ydoqm9pY_rXRZwtfV_k8rmwT_oVmld3ZTbpAx5Wtkx_t53P08PPH8maaz-a_bm8ms9wxzbu8cMIJzEqmZenKqigYV67CWJNhrytWShCCKudtSaSiWBIYDK0KbSX2TNJzdLXL_W1rs4lhbeOLaW0w08nMbM8wIwwLIM9kYL_v2E1s__Q-dWYdkvN1bRvf9smAYJgC4wADevkOfWr72AwvMaAUcIkp2wZ-21N9sfbl4f63DxsAtQNcbFOKvjIudLYLbdNFG2pDsNnWY17rMdt6zL6eQYV36lv6h9LXnRS89wdBSyoYo_Q_b0-WiQ
CODEN ITNNAL
CitedBy_id crossref_primary_10_3390_electronics12214523
crossref_primary_10_1007_s10692_024_10523_0
crossref_primary_10_1007_s11277_022_09965_8
Cites_doi 10.1016/j.neucom.2012.11.045
10.1007/s11554-020-00957-0
10.1162/neco.2009.07-08-829
10.1093/bioinformatics/btu849
10.1007/978-3-642-56927-2
10.1016/j.procs.2013.09.238
10.1007/978-3-030-63833-7_34
10.1109/ISCAS.2019.8702430
10.1109/IJCNN.2017.7966351
10.1109/IJCNN.2019.8851797
10.1109/82.471393
10.1109/ITAIC.2014.7065113
10.1109/IJCNN.2018.8489518
10.1007/978-3-030-61616-8_66
10.1016/j.neunet.2020.02.019
10.1109/ICECS.2016.7841138
10.1109/ICECS49266.2020.9294921
10.1109/IPAS.2018.8708894
10.1109/TNNLS.2015.2398932
10.1007/978-3-540-85563-7_11
10.1007/s11554-013-0387-5
10.1016/j.micpro.2015.01.009
10.1109/IJCNN.2015.7280581
10.1109/72.557669
10.1109/TNN.2003.816368
10.1109/IJCNN.2019.8852471
10.1109/CYBConf.2015.7175903
10.1109/TCSI.2020.3046795
10.1109/ICASSP.2007.366172
10.1109/ACCESS.2020.3000829
10.1007/978-3-7908-1810-9_11
10.1109/IPAS.2018.8708904
10.1093/bioinformatics/btaa925
10.1109/IJCNN.2019.8851894
10.1109/TCSII.2017.2672789
10.1109/IJCNN.2013.6707075
10.1109/JETCAS.2017.2777784
10.1109/72.668899
10.1109/DCIS201949030.2019.8959841
10.1016/j.amc.2017.01.043
10.1016/j.ins.2013.10.002
10.1109/SBAC-PAD49847.2020.00037
10.1016/j.micpro.2017.12.007
10.1016/S1383-7621(03)00021-3
10.1109/TCSVT.2012.2197077
10.1109/AICAS.2019.8771556
10.1016/S0141-9331(02)00065-0
10.21236/ADA451466
10.1109/ISIE.2007.4375170
10.1109/TCSVT.2014.2335831
10.1109/FPT.2004.1393256
10.1155/2019/8212867
10.1007/11550822_56
10.1016/j.neucom.2015.10.129
10.1109/IJCNN.2009.5178751
10.1109/MASSP.1987.1165576
10.1016/j.neunet.2005.06.012
10.1016/j.micpro.2007.06.004
10.1007/BFb0032538
10.3390/app7111106
10.1109/TNN.2011.2169809
10.1109/TNN.2003.816353
10.1109/2.976921
10.1109/IPAS.2018.8708863
10.1109/TCSII.2019.2909117
10.1109/ICECS.2016.7841201
10.1109/ICECS49266.2020.9294973
10.1109/72.846731
10.1109/IJCNN.2017.7966400
10.1016/S0893-6080(02)00069-2
10.2991/978-94-91216-77-0_14
10.1016/j.neunet.2011.09.002
10.1109/ISCAS.2018.8351364
10.1007/s00521-010-0403-7
10.1109/JIOT.2020.2994627
10.1016/j.ins.2015.10.013
10.18637/jss.v078.i09
10.1109/TNNLS.2017.2699674
10.1109/NSSMIC.2014.7430955
10.1109/TNNLS.2020.3009047
10.1007/s11554-011-0199-4
10.1007/s00521-013-1416-9
10.1007/978-3-319-28518-4_14
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
1XC
DOI 10.1109/TNNLS.2022.3152690
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
PubMed
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Chemoreception Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed


Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2162-2388
EndPage 8173
ExternalDocumentID oai_HAL_hal_04140621v1
35294355
10_1109_TNNLS_2022_3152690
9736443
Genre orig-research
Journal Article
GrantInformation_xml – fundername: JSPS KAKENHI
  grantid: JP20K11999
  funderid: 10.13039/501100001691
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
1XC
ID FETCH-LOGICAL-c495t-bc6c604d497dcdfbb458cf00917dc9f4d726638cead17830712c6c98b9a70e473
IEDL.DBID RIE
ISSN 2162-237X
2162-2388
IngestDate Fri May 09 12:21:53 EDT 2025
Fri Jul 11 11:30:24 EDT 2025
Sun Jun 29 16:21:41 EDT 2025
Mon Jul 21 06:04:16 EDT 2025
Tue Jul 01 00:27:45 EDT 2025
Thu Apr 24 22:54:56 EDT 2025
Wed Aug 27 02:35:08 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 11
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c495t-bc6c604d497dcdfbb458cf00917dc9f4d726638cead17830712c6c98b9a70e473
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6459-7043
0000-0003-2609-3500
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9736443
PMID 35294355
PQID 2882570341
PQPubID 85436
PageCount 20
ParticipantIDs crossref_citationtrail_10_1109_TNNLS_2022_3152690
pubmed_primary_35294355
hal_primary_oai_HAL_hal_04140621v1
crossref_primary_10_1109_TNNLS_2022_3152690
ieee_primary_9736443
proquest_journals_2882570341
proquest_miscellaneous_2640324522
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-11-01
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationTitleAlternate IEEE Trans Neural Netw Learn Syst
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref56
ref59
dlugosz (ref81) 2012
ref58
ref53
ref52
ref55
matsopoulos (ref3) 2010
ref54
moosavi (ref37) 2014
porrmann (ref6) 2002
ref50
ref46
ref45
dlugosz (ref14) 2011
ref48
ref47
ref42
ref44
ref43
dally (ref78) 2001
ref49
ref8
ref7
ref4
ref5
ref100
dlugosz (ref51) 2012
ref40
kung (ref80) 1993
ref35
ref36
ref31
ref30
kung (ref75) 1998
ref33
ref32
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref28
ref27
ref29
ref13
ref12
ref15
ref97
ref96
ref99
ref10
ref98
d?ugosz (ref65) 2010
ref17
ref16
ref19
ref18
tamukoh (ref9) 2003; 4
ref93
(ref92) 2021
ref95
ref94
liu (ref34) 2018
ref91
ref90
ref89
ref86
ref85
ref88
ref87
ref84
ref83
ref79
porrmann (ref41) 2006
kohonen (ref82) 1996; 34
ref74
ref77
ref76
ref2
ref1
de sousa (ref21) 2017
ref71
ref70
ref73
ref72
ref68
ref67
ref69
ref64
ref63
ref66
ref60
ref62
ref61
pena (ref11) 2006
References_xml – ident: ref15
  doi: 10.1016/j.neucom.2012.11.045
– ident: ref96
  doi: 10.1007/s11554-020-00957-0
– ident: ref57
  doi: 10.1162/neco.2009.07-08-829
– volume: 4
  start-page: 2683
  year: 2003
  ident: ref9
  article-title: Self-organizing map hardware accelerator system and its application to realtime image enlargement
  publication-title: Proc IEEE Int Joint Conf Neural Netw
– ident: ref36
  doi: 10.1093/bioinformatics/btu849
– ident: ref1
  doi: 10.1007/978-3-642-56927-2
– ident: ref47
  doi: 10.1016/j.procs.2013.09.238
– year: 2021
  ident: ref92
  publication-title: The MNIST Database of Handwritten Digits
– ident: ref29
  doi: 10.1007/978-3-030-63833-7_34
– start-page: 337
  year: 2002
  ident: ref6
  article-title: A reconfigurable SOM hardware accelerator
  publication-title: Proc Eur Symp Artif Neural Netw (ESANN)
– ident: ref27
  doi: 10.1109/ISCAS.2019.8702430
– ident: ref73
  doi: 10.1109/IJCNN.2017.7966351
– ident: ref76
  doi: 10.1109/IJCNN.2019.8851797
– ident: ref83
  doi: 10.1109/82.471393
– ident: ref95
  doi: 10.1109/ITAIC.2014.7065113
– ident: ref24
  doi: 10.1109/IJCNN.2018.8489518
– ident: ref99
  doi: 10.1007/978-3-030-61616-8_66
– ident: ref72
  doi: 10.1016/j.neunet.2020.02.019
– ident: ref88
  doi: 10.1109/ICECS.2016.7841138
– year: 2014
  ident: ref37
  publication-title: SOMPY A Python Library for Self Organizing Map
– ident: ref100
  doi: 10.1109/ICECS49266.2020.9294921
– start-page: 633
  year: 2012
  ident: ref81
  article-title: Implementation issues of Kohonen self-organizing map realized on FPGA
  publication-title: Proc Eur Symp Artif Neural Netw Comput Intell Mach Learn (ESANN)
– ident: ref23
  doi: 10.1109/IPAS.2018.8708894
– ident: ref17
  doi: 10.1109/TNNLS.2015.2398932
– ident: ref46
  doi: 10.1007/978-3-540-85563-7_11
– ident: ref91
  doi: 10.1007/s11554-013-0387-5
– start-page: 264
  year: 2018
  ident: ref34
  article-title: A scalable heterogeneous parallel SOM based on MPI/CUDA
  publication-title: Proc Asian Conf Mach Learn
– ident: ref62
  doi: 10.1016/j.micpro.2015.01.009
– ident: ref87
  doi: 10.1109/IJCNN.2015.7280581
– ident: ref5
  doi: 10.1109/72.557669
– ident: ref8
  doi: 10.1109/TNN.2003.816368
– ident: ref53
  doi: 10.1109/IJCNN.2019.8852471
– ident: ref49
  doi: 10.1109/CYBConf.2015.7175903
– ident: ref54
  doi: 10.1109/TCSI.2020.3046795
– ident: ref12
  doi: 10.1109/ICASSP.2007.366172
– ident: ref98
  doi: 10.1109/ACCESS.2020.3000829
– ident: ref42
  doi: 10.1007/978-3-7908-1810-9_11
– ident: ref74
  doi: 10.1109/IPAS.2018.8708904
– ident: ref31
  doi: 10.1093/bioinformatics/btaa925
– ident: ref26
  doi: 10.1109/IJCNN.2019.8851894
– start-page: 1
  year: 2006
  ident: ref11
  article-title: Digital hardware architectures of Kohonen's self organizing feature maps with exponential neighboring function
  publication-title: Proc IEEE Int Conf Reconfigurable Comput FPGA's (ReConFig)
– ident: ref63
  doi: 10.1109/TCSII.2017.2672789
– ident: ref86
  doi: 10.1109/IJCNN.2013.6707075
– year: 1998
  ident: ref75
  publication-title: VLSI Array Processors
– ident: ref79
  doi: 10.1109/JETCAS.2017.2777784
– ident: ref58
  doi: 10.1109/72.668899
– ident: ref85
  doi: 10.1109/DCIS201949030.2019.8959841
– start-page: 328
  year: 2010
  ident: ref65
  article-title: Programmable triangular neighborhood function for Kohonen self-organizing map implemented on chip
  publication-title: Proc Int Conf Mixed Design Integr Circuits Syst (MIXDES'06)
– ident: ref50
  doi: 10.1016/j.amc.2017.01.043
– ident: ref93
  doi: 10.1016/j.ins.2013.10.002
– start-page: 684
  year: 2001
  ident: ref78
  article-title: Route packets, not wires: on-chip interconnection networks
  publication-title: the 38th Design Automation Conference (IEEE Cat No 01CH37232) DAC-1
– start-page: 615
  year: 2012
  ident: ref51
  article-title: Low-power Manhattan distance calculation circuit for self-organizing neural networks implemented in the CMOS technology
  publication-title: Proc Eur Symp Artif Neural Netw Comput Intell Mach Learn (ESANN)
– ident: ref33
  doi: 10.1109/SBAC-PAD49847.2020.00037
– year: 1993
  ident: ref80
  publication-title: Digital Neural Networks
– ident: ref40
  doi: 10.1016/j.micpro.2017.12.007
– ident: ref68
  doi: 10.1016/S1383-7621(03)00021-3
– ident: ref52
  doi: 10.1109/TCSVT.2012.2197077
– ident: ref71
  doi: 10.1109/AICAS.2019.8771556
– ident: ref61
  doi: 10.1016/S0141-9331(02)00065-0
– ident: ref56
  doi: 10.21236/ADA451466
– ident: ref59
  doi: 10.1109/ISIE.2007.4375170
– ident: ref90
  doi: 10.1109/TCSVT.2014.2335831
– ident: ref10
  doi: 10.1109/FPT.2004.1393256
– ident: ref28
  doi: 10.1155/2019/8212867
– ident: ref45
  doi: 10.1007/11550822_56
– ident: ref39
  doi: 10.1016/j.neucom.2015.10.129
– ident: ref60
  doi: 10.1109/IJCNN.2009.5178751
– ident: ref55
  doi: 10.1109/MASSP.1987.1165576
– ident: ref16
  doi: 10.1016/j.neunet.2005.06.012
– ident: ref13
  doi: 10.1016/j.micpro.2007.06.004
– ident: ref4
  doi: 10.1007/BFb0032538
– start-page: 1
  year: 2017
  ident: ref21
  article-title: Comparison of three FPGA architectures for embedded multidimensional categorization through Kohonen's delf-organizing maps
  publication-title: Proc IEEE Int Symp Circuits Syst (ISCAS)
– ident: ref20
  doi: 10.3390/app7111106
– ident: ref64
  doi: 10.1109/TNN.2011.2169809
– ident: ref7
  doi: 10.1109/TNN.2003.816353
– start-page: 247
  year: 2006
  ident: ref41
  publication-title: Implementation of Self-Organizing Feature Maps in Reconfigurable Hardware
– ident: ref77
  doi: 10.1109/2.976921
– ident: ref22
  doi: 10.1109/IPAS.2018.8708863
– ident: ref67
  doi: 10.1109/TCSII.2019.2909117
– ident: ref18
  doi: 10.1109/ICECS.2016.7841201
– ident: ref69
  doi: 10.1109/ICECS49266.2020.9294973
– ident: ref44
  doi: 10.1109/72.846731
– ident: ref35
  doi: 10.1109/IJCNN.2017.7966400
– ident: ref43
  doi: 10.1016/S0893-6080(02)00069-2
– ident: ref2
  doi: 10.2991/978-94-91216-77-0_14
– ident: ref66
  doi: 10.1016/j.neunet.2011.09.002
– ident: ref25
  doi: 10.1109/ISCAS.2018.8351364
– volume: 34
  start-page: 5
  year: 1996
  ident: ref82
  article-title: The self-organizing map, a possible model of brain maps
  publication-title: Med Biol Eng Comput
– ident: ref30
  doi: 10.1007/s00521-010-0403-7
– ident: ref97
  doi: 10.1109/JIOT.2020.2994627
– ident: ref48
  doi: 10.1016/j.ins.2015.10.013
– ident: ref32
  doi: 10.18637/jss.v078.i09
– ident: ref94
  doi: 10.1109/TNNLS.2017.2699674
– ident: ref89
  doi: 10.1109/NSSMIC.2014.7430955
– ident: ref84
  doi: 10.1109/TNNLS.2020.3009047
– start-page: 258
  year: 2011
  ident: ref14
  article-title: An FPGA implementation of the asynchronous programmable neighborhood mechanism for WTM self-organizing map
  publication-title: Proc Int Conf Mixed Design Integr Circuits Syst (MIXDES'06)
– ident: ref70
  doi: 10.1007/s11554-011-0199-4
– year: 2010
  ident: ref3
  publication-title: Self-Organizing Maps
– ident: ref38
  doi: 10.1007/s00521-013-1416-9
– ident: ref19
  doi: 10.1007/978-3-319-28518-4_14
SSID ssj0000605649
Score 2.4896896
Snippet Self-organizing feature maps (SOMs) are commonly used technique for clustering and data dimensionality reduction in many application fields. Indeed, their...
SourceID hal
proquest
pubmed
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 8154
SubjectTerms Application-specific integrated circuit (ASIC)
Artificial intelligence
Big Data
Clustering
Clustering algorithms
Computer architecture
Computer Science
Data reduction
Design optimization
Feature maps
field-programmable gate array (FPGA)
Graphics processing units
Hardware
Internet of Things
Neurons
Optimization techniques
real time
Self organizing maps
Self-organizing feature maps
self-organizing map
survey
Surveys
Systems design
Topology
Training
Unsupervised learning
vector quantization
Title A Survey of Hardware Self-Organizing Maps
URI https://ieeexplore.ieee.org/document/9736443
https://www.ncbi.nlm.nih.gov/pubmed/35294355
https://www.proquest.com/docview/2882570341
https://www.proquest.com/docview/2640324522
https://hal.univ-lorraine.fr/hal-04140621
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB51e-JCoeURWlBAXBB469fG8XGFqFaou5dtpb1FtmMLiWq32m5atb-esfOQQIB6y2McJ55x5huPZwbgowpBcqsdYYZKIgPTRBshCEPlazktfPBxaWC-KGaX8vtqstqDL0MsjPc-bT7z43iYfPn1xjVxqexUK4HqW4xghIZbG6s1rKdQxOVFQrucFZxwoVZ9jAzVpxeLxfkSrUHO0UiNRbVjBTjEHhrRwuQ3lTT6ETdEpkor_wadSfmcHcC8f-12z8nPcbOzY_fwR0bHx37XM3jaodB82orNc9jz60M46Cs85N2EP4JP03zZbG_9fb4JeXTy35mtz5f-KpAuiBM1Xz431zcv4PLs28XXGemKKxCHNtGOWFe4gspaalW7OlgrJ6ULiLgYnusga4WqW5QOJY2pEv8EjGMLXVptFPVSiZewv96s_WvIjXDKe25LWTspJ94YJQNNZDpYZjNg_fhWrss8HgtgXFXJAqG6SuypInuqjj0ZfB7aXLd5N_5L_QHZNhDGlNmz6XkVr1GJJmTB2S3L4CgO_UDVjXoGJz2Xq27-3lQcDY-Ym0xiq_fDbZx50Z1i1n7TIE0hqYiOa57Bq1Y6hmf3ovXm730ew5NYtr6NaTyB_d228W8R3OzsuyTVvwAdcO8w
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED9t4wFeGDA-AgMC4gWBO9tx4vixQkwF2r60k_pmxY6tSUzt1DWbxl_P2fmQQIB4y8c5Tnzn3O98vjuAd9J7wY2yhFVUEOGZIqrKMsJQ-RpOC-ddWBqYzYvJmfi6yld78HGIhXHOxc1nbhQOoy-_3tgmLJWdKJmh-s724U4egnHbaK1hRYUiMi8i3uWs4IRnctVHyVB1spzPpwu0BzlHMzWU1Q414BB9KMQL-S9Kaf88bImMtVb-Djuj-jk9hFn_4u2uk--jZmdG9sdvOR3_98sewP0Oh6bjVnAewp5bP4LDvsZD2k35I3g_ThfN9trdphufBjf_TbV16cJdeNKFcaLuS2fV5dVjODv9vPw0IV15BWLRKtoRYwtbUFELJWtbe2NEXlqPmIvhufKilqi8s9KirDFZ4r-AcWyhSqMqSZ2Q2RM4WG_W7hmkVWalc9yUorZC5K6qpPA0kilvmEmA9eOrbZd7PJTAuNDRBqFKR_bowB7dsSeBD0Obyzbzxj-p3yLbBsKQNHsynupwjQo0IgvOrlkCR2HoB6pu1BM47rmsuxl8pTmaHiE7mcBWb4bbOPeCQ6Vau02DNIWgWXBd8wSettIxPLsXred_7vM13J0sZ1M9_TL_9gLuhSL2bYTjMRzsto17iVBnZ15FCf8JwAvyeA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Survey+of+Hardware+Self-Organizing+Maps&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Jovanovic%2C+Slavisa&rft.au=Hikawa%2C+Hiroomi&rft.date=2023-11-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=2162-237X&rft.eissn=2162-2388&rft.volume=34&rft.issue=11&rft.spage=8154&rft_id=info:doi/10.1109%2FTNNLS.2022.3152690&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon