A Survey of Hardware Self-Organizing Maps
Self-organizing feature maps (SOMs) are commonly used technique for clustering and data dimensionality reduction in many application fields. Indeed, their inherent property of topology preservation and unsupervised learning of processed data without any prior knowledge put them in the front of candi...
Saved in:
Published in | IEEE transaction on neural networks and learning systems Vol. 34; no. 11; pp. 8154 - 8173 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.11.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 2162-237X 2162-2388 2162-2388 |
DOI | 10.1109/TNNLS.2022.3152690 |
Cover
Loading…
Abstract | Self-organizing feature maps (SOMs) are commonly used technique for clustering and data dimensionality reduction in many application fields. Indeed, their inherent property of topology preservation and unsupervised learning of processed data without any prior knowledge put them in the front of candidates for data reduction in the Internet of Things (IoT) and big data (BD) technologies. However, the high computational cost of SOMs limits their use to offline approaches and makes the online real-time high-performance SOM processing more challenging and mostly reserved to specific hardware implementations. In this article, we present a survey of hardware (HW) SOM implementations found in the literature so far: the most widely used computing blocks, architectures, design choices, adaptation, and optimization techniques that have been reported in the field of hardware SOMs. Moreover, we give an overview of main challenges and trends for their ubiquitous adoption as hardware accelerators in many application fields. This article is expected to be useful for researchers in the areas of artificial intelligence, hardware architecture, and system design. |
---|---|
AbstractList | Self-organizing feature maps (SOMs) are commonly used technique for clustering and data dimensionality reduction in many application fields. Indeed, their inherent property of topology preservation and unsupervised learning of processed data without any prior knowledge put them in the front of candidates for data reduction in the Internet of Things (IoT) and big data (BD) technologies. However, the high computational cost of SOMs limits their use to offline approaches and makes the online real-time high-performance SOM processing more challenging and mostly reserved to specific hardware implementations. In this article, we present a survey of hardware (HW) SOM implementations found in the literature so far: the most widely used computing blocks, architectures, design choices, adaptation, and optimization techniques that have been reported in the field of hardware SOMs. Moreover, we give an overview of main challenges and trends for their ubiquitous adoption as hardware accelerators in many application fields. This article is expected to be useful for researchers in the areas of artificial intelligence, hardware architecture, and system design.Self-organizing feature maps (SOMs) are commonly used technique for clustering and data dimensionality reduction in many application fields. Indeed, their inherent property of topology preservation and unsupervised learning of processed data without any prior knowledge put them in the front of candidates for data reduction in the Internet of Things (IoT) and big data (BD) technologies. However, the high computational cost of SOMs limits their use to offline approaches and makes the online real-time high-performance SOM processing more challenging and mostly reserved to specific hardware implementations. In this article, we present a survey of hardware (HW) SOM implementations found in the literature so far: the most widely used computing blocks, architectures, design choices, adaptation, and optimization techniques that have been reported in the field of hardware SOMs. Moreover, we give an overview of main challenges and trends for their ubiquitous adoption as hardware accelerators in many application fields. This article is expected to be useful for researchers in the areas of artificial intelligence, hardware architecture, and system design. Self-organizing feature maps (SOMs) are commonly used technique for clustering and data dimensionality reduction in many application fields. Indeed, their inherent property of topology preservation and unsupervised learning of processed data without any prior knowledge put them in the front of candidates for data reduction in the Internet of Things (IoT) and big data (BD) technologies. However, the high computational cost of SOMs limits their use to offline approaches and makes the online real-time high-performance SOM processing more challenging and mostly reserved to specific hardware implementations. In this article, we present a survey of hardware (HW) SOM implementations found in the literature so far: the most widely used computing blocks, architectures, design choices, adaptation, and optimization techniques that have been reported in the field of hardware SOMs. Moreover, we give an overview of main challenges and trends for their ubiquitous adoption as hardware accelerators in many application fields. This article is expected to be useful for researchers in the areas of artificial intelligence, hardware architecture, and system design. |
Author | Hikawa, Hiroomi Jovanovic, Slavisa |
Author_xml | – sequence: 1 givenname: Slavisa orcidid: 0000-0001-6459-7043 surname: Jovanovic fullname: Jovanovic, Slavisa email: slavisa.jovanovic@univ-lorraine.fr organization: CNRS, IJL, Université de Lorraine, Nancy, France – sequence: 2 givenname: Hiroomi orcidid: 0000-0003-2609-3500 surname: Hikawa fullname: Hikawa, Hiroomi email: hikawa@kansai-u.ac.jp organization: Department of Science and Engineering, Kansai University, Osaka, Japan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35294355$$D View this record in MEDLINE/PubMed https://hal.univ-lorraine.fr/hal-04140621$$DView record in HAL |
BookMark | eNp9kU1P2zAch60JBAz6BTZpisRlHFLsv9-PFdpWpEIPLRI3y3GczihNOjthYp9-KS09cMAXv-h5fpb9-4yOmrbxCH0heEwI1tfL-_vZYgwYYEwJB6HxJ3QGREAOVKmjw1o-nqJRSk94GAJzwfQJOqUcNKOcn6GrSbbo47N_ydoqm9pY_rXRZwtfV_k8rmwT_oVmld3ZTbpAx5Wtkx_t53P08PPH8maaz-a_bm8ms9wxzbu8cMIJzEqmZenKqigYV67CWJNhrytWShCCKudtSaSiWBIYDK0KbSX2TNJzdLXL_W1rs4lhbeOLaW0w08nMbM8wIwwLIM9kYL_v2E1s__Q-dWYdkvN1bRvf9smAYJgC4wADevkOfWr72AwvMaAUcIkp2wZ-21N9sfbl4f63DxsAtQNcbFOKvjIudLYLbdNFG2pDsNnWY17rMdt6zL6eQYV36lv6h9LXnRS89wdBSyoYo_Q_b0-WiQ |
CODEN | ITNNAL |
CitedBy_id | crossref_primary_10_3390_electronics12214523 crossref_primary_10_1007_s10692_024_10523_0 crossref_primary_10_1007_s11277_022_09965_8 |
Cites_doi | 10.1016/j.neucom.2012.11.045 10.1007/s11554-020-00957-0 10.1162/neco.2009.07-08-829 10.1093/bioinformatics/btu849 10.1007/978-3-642-56927-2 10.1016/j.procs.2013.09.238 10.1007/978-3-030-63833-7_34 10.1109/ISCAS.2019.8702430 10.1109/IJCNN.2017.7966351 10.1109/IJCNN.2019.8851797 10.1109/82.471393 10.1109/ITAIC.2014.7065113 10.1109/IJCNN.2018.8489518 10.1007/978-3-030-61616-8_66 10.1016/j.neunet.2020.02.019 10.1109/ICECS.2016.7841138 10.1109/ICECS49266.2020.9294921 10.1109/IPAS.2018.8708894 10.1109/TNNLS.2015.2398932 10.1007/978-3-540-85563-7_11 10.1007/s11554-013-0387-5 10.1016/j.micpro.2015.01.009 10.1109/IJCNN.2015.7280581 10.1109/72.557669 10.1109/TNN.2003.816368 10.1109/IJCNN.2019.8852471 10.1109/CYBConf.2015.7175903 10.1109/TCSI.2020.3046795 10.1109/ICASSP.2007.366172 10.1109/ACCESS.2020.3000829 10.1007/978-3-7908-1810-9_11 10.1109/IPAS.2018.8708904 10.1093/bioinformatics/btaa925 10.1109/IJCNN.2019.8851894 10.1109/TCSII.2017.2672789 10.1109/IJCNN.2013.6707075 10.1109/JETCAS.2017.2777784 10.1109/72.668899 10.1109/DCIS201949030.2019.8959841 10.1016/j.amc.2017.01.043 10.1016/j.ins.2013.10.002 10.1109/SBAC-PAD49847.2020.00037 10.1016/j.micpro.2017.12.007 10.1016/S1383-7621(03)00021-3 10.1109/TCSVT.2012.2197077 10.1109/AICAS.2019.8771556 10.1016/S0141-9331(02)00065-0 10.21236/ADA451466 10.1109/ISIE.2007.4375170 10.1109/TCSVT.2014.2335831 10.1109/FPT.2004.1393256 10.1155/2019/8212867 10.1007/11550822_56 10.1016/j.neucom.2015.10.129 10.1109/IJCNN.2009.5178751 10.1109/MASSP.1987.1165576 10.1016/j.neunet.2005.06.012 10.1016/j.micpro.2007.06.004 10.1007/BFb0032538 10.3390/app7111106 10.1109/TNN.2011.2169809 10.1109/TNN.2003.816353 10.1109/2.976921 10.1109/IPAS.2018.8708863 10.1109/TCSII.2019.2909117 10.1109/ICECS.2016.7841201 10.1109/ICECS49266.2020.9294973 10.1109/72.846731 10.1109/IJCNN.2017.7966400 10.1016/S0893-6080(02)00069-2 10.2991/978-94-91216-77-0_14 10.1016/j.neunet.2011.09.002 10.1109/ISCAS.2018.8351364 10.1007/s00521-010-0403-7 10.1109/JIOT.2020.2994627 10.1016/j.ins.2015.10.013 10.18637/jss.v078.i09 10.1109/TNNLS.2017.2699674 10.1109/NSSMIC.2014.7430955 10.1109/TNNLS.2020.3009047 10.1007/s11554-011-0199-4 10.1007/s00521-013-1416-9 10.1007/978-3-319-28518-4_14 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | 97E ESBDL RIA RIE AAYXX CITATION NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 1XC |
DOI | 10.1109/TNNLS.2022.3152690 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic Hyper Article en Ligne (HAL) |
DatabaseTitle | CrossRef PubMed Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Chemoreception Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE/IET Electronic Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2162-2388 |
EndPage | 8173 |
ExternalDocumentID | oai_HAL_hal_04140621v1 35294355 10_1109_TNNLS_2022_3152690 9736443 |
Genre | orig-research Journal Article |
GrantInformation_xml | – fundername: JSPS KAKENHI grantid: JP20K11999 funderid: 10.13039/501100001691 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL IFIPE IPLJI JAVBF M43 MS~ O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION RIG NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 1XC |
ID | FETCH-LOGICAL-c495t-bc6c604d497dcdfbb458cf00917dc9f4d726638cead17830712c6c98b9a70e473 |
IEDL.DBID | RIE |
ISSN | 2162-237X 2162-2388 |
IngestDate | Fri May 09 12:21:53 EDT 2025 Fri Jul 11 11:30:24 EDT 2025 Sun Jun 29 16:21:41 EDT 2025 Mon Jul 21 06:04:16 EDT 2025 Tue Jul 01 00:27:45 EDT 2025 Thu Apr 24 22:54:56 EDT 2025 Wed Aug 27 02:35:08 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 11 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c495t-bc6c604d497dcdfbb458cf00917dc9f4d726638cead17830712c6c98b9a70e473 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-6459-7043 0000-0003-2609-3500 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9736443 |
PMID | 35294355 |
PQID | 2882570341 |
PQPubID | 85436 |
PageCount | 20 |
ParticipantIDs | crossref_citationtrail_10_1109_TNNLS_2022_3152690 pubmed_primary_35294355 hal_primary_oai_HAL_hal_04140621v1 crossref_primary_10_1109_TNNLS_2022_3152690 ieee_primary_9736443 proquest_journals_2882570341 proquest_miscellaneous_2640324522 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-11-01 |
PublicationDateYYYYMMDD | 2023-11-01 |
PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Piscataway |
PublicationTitle | IEEE transaction on neural networks and learning systems |
PublicationTitleAbbrev | TNNLS |
PublicationTitleAlternate | IEEE Trans Neural Netw Learn Syst |
PublicationYear | 2023 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref57 ref56 ref59 dlugosz (ref81) 2012 ref58 ref53 ref52 ref55 matsopoulos (ref3) 2010 ref54 moosavi (ref37) 2014 porrmann (ref6) 2002 ref50 ref46 ref45 dlugosz (ref14) 2011 ref48 ref47 ref42 ref44 ref43 dally (ref78) 2001 ref49 ref8 ref7 ref4 ref5 ref100 dlugosz (ref51) 2012 ref40 kung (ref80) 1993 ref35 ref36 ref31 ref30 kung (ref75) 1998 ref33 ref32 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref28 ref27 ref29 ref13 ref12 ref15 ref97 ref96 ref99 ref10 ref98 d?ugosz (ref65) 2010 ref17 ref16 ref19 ref18 tamukoh (ref9) 2003; 4 ref93 (ref92) 2021 ref95 ref94 liu (ref34) 2018 ref91 ref90 ref89 ref86 ref85 ref88 ref87 ref84 ref83 ref79 porrmann (ref41) 2006 kohonen (ref82) 1996; 34 ref74 ref77 ref76 ref2 ref1 de sousa (ref21) 2017 ref71 ref70 ref73 ref72 ref68 ref67 ref69 ref64 ref63 ref66 ref60 ref62 ref61 pena (ref11) 2006 |
References_xml | – ident: ref15 doi: 10.1016/j.neucom.2012.11.045 – ident: ref96 doi: 10.1007/s11554-020-00957-0 – ident: ref57 doi: 10.1162/neco.2009.07-08-829 – volume: 4 start-page: 2683 year: 2003 ident: ref9 article-title: Self-organizing map hardware accelerator system and its application to realtime image enlargement publication-title: Proc IEEE Int Joint Conf Neural Netw – ident: ref36 doi: 10.1093/bioinformatics/btu849 – ident: ref1 doi: 10.1007/978-3-642-56927-2 – ident: ref47 doi: 10.1016/j.procs.2013.09.238 – year: 2021 ident: ref92 publication-title: The MNIST Database of Handwritten Digits – ident: ref29 doi: 10.1007/978-3-030-63833-7_34 – start-page: 337 year: 2002 ident: ref6 article-title: A reconfigurable SOM hardware accelerator publication-title: Proc Eur Symp Artif Neural Netw (ESANN) – ident: ref27 doi: 10.1109/ISCAS.2019.8702430 – ident: ref73 doi: 10.1109/IJCNN.2017.7966351 – ident: ref76 doi: 10.1109/IJCNN.2019.8851797 – ident: ref83 doi: 10.1109/82.471393 – ident: ref95 doi: 10.1109/ITAIC.2014.7065113 – ident: ref24 doi: 10.1109/IJCNN.2018.8489518 – ident: ref99 doi: 10.1007/978-3-030-61616-8_66 – ident: ref72 doi: 10.1016/j.neunet.2020.02.019 – ident: ref88 doi: 10.1109/ICECS.2016.7841138 – year: 2014 ident: ref37 publication-title: SOMPY A Python Library for Self Organizing Map – ident: ref100 doi: 10.1109/ICECS49266.2020.9294921 – start-page: 633 year: 2012 ident: ref81 article-title: Implementation issues of Kohonen self-organizing map realized on FPGA publication-title: Proc Eur Symp Artif Neural Netw Comput Intell Mach Learn (ESANN) – ident: ref23 doi: 10.1109/IPAS.2018.8708894 – ident: ref17 doi: 10.1109/TNNLS.2015.2398932 – ident: ref46 doi: 10.1007/978-3-540-85563-7_11 – ident: ref91 doi: 10.1007/s11554-013-0387-5 – start-page: 264 year: 2018 ident: ref34 article-title: A scalable heterogeneous parallel SOM based on MPI/CUDA publication-title: Proc Asian Conf Mach Learn – ident: ref62 doi: 10.1016/j.micpro.2015.01.009 – ident: ref87 doi: 10.1109/IJCNN.2015.7280581 – ident: ref5 doi: 10.1109/72.557669 – ident: ref8 doi: 10.1109/TNN.2003.816368 – ident: ref53 doi: 10.1109/IJCNN.2019.8852471 – ident: ref49 doi: 10.1109/CYBConf.2015.7175903 – ident: ref54 doi: 10.1109/TCSI.2020.3046795 – ident: ref12 doi: 10.1109/ICASSP.2007.366172 – ident: ref98 doi: 10.1109/ACCESS.2020.3000829 – ident: ref42 doi: 10.1007/978-3-7908-1810-9_11 – ident: ref74 doi: 10.1109/IPAS.2018.8708904 – ident: ref31 doi: 10.1093/bioinformatics/btaa925 – ident: ref26 doi: 10.1109/IJCNN.2019.8851894 – start-page: 1 year: 2006 ident: ref11 article-title: Digital hardware architectures of Kohonen's self organizing feature maps with exponential neighboring function publication-title: Proc IEEE Int Conf Reconfigurable Comput FPGA's (ReConFig) – ident: ref63 doi: 10.1109/TCSII.2017.2672789 – ident: ref86 doi: 10.1109/IJCNN.2013.6707075 – year: 1998 ident: ref75 publication-title: VLSI Array Processors – ident: ref79 doi: 10.1109/JETCAS.2017.2777784 – ident: ref58 doi: 10.1109/72.668899 – ident: ref85 doi: 10.1109/DCIS201949030.2019.8959841 – start-page: 328 year: 2010 ident: ref65 article-title: Programmable triangular neighborhood function for Kohonen self-organizing map implemented on chip publication-title: Proc Int Conf Mixed Design Integr Circuits Syst (MIXDES'06) – ident: ref50 doi: 10.1016/j.amc.2017.01.043 – ident: ref93 doi: 10.1016/j.ins.2013.10.002 – start-page: 684 year: 2001 ident: ref78 article-title: Route packets, not wires: on-chip interconnection networks publication-title: the 38th Design Automation Conference (IEEE Cat No 01CH37232) DAC-1 – start-page: 615 year: 2012 ident: ref51 article-title: Low-power Manhattan distance calculation circuit for self-organizing neural networks implemented in the CMOS technology publication-title: Proc Eur Symp Artif Neural Netw Comput Intell Mach Learn (ESANN) – ident: ref33 doi: 10.1109/SBAC-PAD49847.2020.00037 – year: 1993 ident: ref80 publication-title: Digital Neural Networks – ident: ref40 doi: 10.1016/j.micpro.2017.12.007 – ident: ref68 doi: 10.1016/S1383-7621(03)00021-3 – ident: ref52 doi: 10.1109/TCSVT.2012.2197077 – ident: ref71 doi: 10.1109/AICAS.2019.8771556 – ident: ref61 doi: 10.1016/S0141-9331(02)00065-0 – ident: ref56 doi: 10.21236/ADA451466 – ident: ref59 doi: 10.1109/ISIE.2007.4375170 – ident: ref90 doi: 10.1109/TCSVT.2014.2335831 – ident: ref10 doi: 10.1109/FPT.2004.1393256 – ident: ref28 doi: 10.1155/2019/8212867 – ident: ref45 doi: 10.1007/11550822_56 – ident: ref39 doi: 10.1016/j.neucom.2015.10.129 – ident: ref60 doi: 10.1109/IJCNN.2009.5178751 – ident: ref55 doi: 10.1109/MASSP.1987.1165576 – ident: ref16 doi: 10.1016/j.neunet.2005.06.012 – ident: ref13 doi: 10.1016/j.micpro.2007.06.004 – ident: ref4 doi: 10.1007/BFb0032538 – start-page: 1 year: 2017 ident: ref21 article-title: Comparison of three FPGA architectures for embedded multidimensional categorization through Kohonen's delf-organizing maps publication-title: Proc IEEE Int Symp Circuits Syst (ISCAS) – ident: ref20 doi: 10.3390/app7111106 – ident: ref64 doi: 10.1109/TNN.2011.2169809 – ident: ref7 doi: 10.1109/TNN.2003.816353 – start-page: 247 year: 2006 ident: ref41 publication-title: Implementation of Self-Organizing Feature Maps in Reconfigurable Hardware – ident: ref77 doi: 10.1109/2.976921 – ident: ref22 doi: 10.1109/IPAS.2018.8708863 – ident: ref67 doi: 10.1109/TCSII.2019.2909117 – ident: ref18 doi: 10.1109/ICECS.2016.7841201 – ident: ref69 doi: 10.1109/ICECS49266.2020.9294973 – ident: ref44 doi: 10.1109/72.846731 – ident: ref35 doi: 10.1109/IJCNN.2017.7966400 – ident: ref43 doi: 10.1016/S0893-6080(02)00069-2 – ident: ref2 doi: 10.2991/978-94-91216-77-0_14 – ident: ref66 doi: 10.1016/j.neunet.2011.09.002 – ident: ref25 doi: 10.1109/ISCAS.2018.8351364 – volume: 34 start-page: 5 year: 1996 ident: ref82 article-title: The self-organizing map, a possible model of brain maps publication-title: Med Biol Eng Comput – ident: ref30 doi: 10.1007/s00521-010-0403-7 – ident: ref97 doi: 10.1109/JIOT.2020.2994627 – ident: ref48 doi: 10.1016/j.ins.2015.10.013 – ident: ref32 doi: 10.18637/jss.v078.i09 – ident: ref94 doi: 10.1109/TNNLS.2017.2699674 – ident: ref89 doi: 10.1109/NSSMIC.2014.7430955 – ident: ref84 doi: 10.1109/TNNLS.2020.3009047 – start-page: 258 year: 2011 ident: ref14 article-title: An FPGA implementation of the asynchronous programmable neighborhood mechanism for WTM self-organizing map publication-title: Proc Int Conf Mixed Design Integr Circuits Syst (MIXDES'06) – ident: ref70 doi: 10.1007/s11554-011-0199-4 – year: 2010 ident: ref3 publication-title: Self-Organizing Maps – ident: ref38 doi: 10.1007/s00521-013-1416-9 – ident: ref19 doi: 10.1007/978-3-319-28518-4_14 |
SSID | ssj0000605649 |
Score | 2.4896896 |
Snippet | Self-organizing feature maps (SOMs) are commonly used technique for clustering and data dimensionality reduction in many application fields. Indeed, their... |
SourceID | hal proquest pubmed crossref ieee |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 8154 |
SubjectTerms | Application-specific integrated circuit (ASIC) Artificial intelligence Big Data Clustering Clustering algorithms Computer architecture Computer Science Data reduction Design optimization Feature maps field-programmable gate array (FPGA) Graphics processing units Hardware Internet of Things Neurons Optimization techniques real time Self organizing maps Self-organizing feature maps self-organizing map survey Surveys Systems design Topology Training Unsupervised learning vector quantization |
Title | A Survey of Hardware Self-Organizing Maps |
URI | https://ieeexplore.ieee.org/document/9736443 https://www.ncbi.nlm.nih.gov/pubmed/35294355 https://www.proquest.com/docview/2882570341 https://www.proquest.com/docview/2640324522 https://hal.univ-lorraine.fr/hal-04140621 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB51e-JCoeURWlBAXBB469fG8XGFqFaou5dtpb1FtmMLiWq32m5atb-esfOQQIB6y2McJ55x5huPZwbgowpBcqsdYYZKIgPTRBshCEPlazktfPBxaWC-KGaX8vtqstqDL0MsjPc-bT7z43iYfPn1xjVxqexUK4HqW4xghIZbG6s1rKdQxOVFQrucFZxwoVZ9jAzVpxeLxfkSrUHO0UiNRbVjBTjEHhrRwuQ3lTT6ETdEpkor_wadSfmcHcC8f-12z8nPcbOzY_fwR0bHx37XM3jaodB82orNc9jz60M46Cs85N2EP4JP03zZbG_9fb4JeXTy35mtz5f-KpAuiBM1Xz431zcv4PLs28XXGemKKxCHNtGOWFe4gspaalW7OlgrJ6ULiLgYnusga4WqW5QOJY2pEv8EjGMLXVptFPVSiZewv96s_WvIjXDKe25LWTspJ94YJQNNZDpYZjNg_fhWrss8HgtgXFXJAqG6SuypInuqjj0ZfB7aXLd5N_5L_QHZNhDGlNmz6XkVr1GJJmTB2S3L4CgO_UDVjXoGJz2Xq27-3lQcDY-Ym0xiq_fDbZx50Z1i1n7TIE0hqYiOa57Bq1Y6hmf3ovXm730ew5NYtr6NaTyB_d228W8R3OzsuyTVvwAdcO8w |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED9t4wFeGDA-AgMC4gWBO9tx4vixQkwF2r60k_pmxY6tSUzt1DWbxl_P2fmQQIB4y8c5Tnzn3O98vjuAd9J7wY2yhFVUEOGZIqrKMsJQ-RpOC-ddWBqYzYvJmfi6yld78HGIhXHOxc1nbhQOoy-_3tgmLJWdKJmh-s724U4egnHbaK1hRYUiMi8i3uWs4IRnctVHyVB1spzPpwu0BzlHMzWU1Q414BB9KMQL-S9Kaf88bImMtVb-Djuj-jk9hFn_4u2uk--jZmdG9sdvOR3_98sewP0Oh6bjVnAewp5bP4LDvsZD2k35I3g_ThfN9trdphufBjf_TbV16cJdeNKFcaLuS2fV5dVjODv9vPw0IV15BWLRKtoRYwtbUFELJWtbe2NEXlqPmIvhufKilqi8s9KirDFZ4r-AcWyhSqMqSZ2Q2RM4WG_W7hmkVWalc9yUorZC5K6qpPA0kilvmEmA9eOrbZd7PJTAuNDRBqFKR_bowB7dsSeBD0Obyzbzxj-p3yLbBsKQNHsynupwjQo0IgvOrlkCR2HoB6pu1BM47rmsuxl8pTmaHiE7mcBWb4bbOPeCQ6Vau02DNIWgWXBd8wSettIxPLsXred_7vM13J0sZ1M9_TL_9gLuhSL2bYTjMRzsto17iVBnZ15FCf8JwAvyeA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Survey+of+Hardware+Self-Organizing+Maps&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Jovanovic%2C+Slavisa&rft.au=Hikawa%2C+Hiroomi&rft.date=2023-11-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=2162-237X&rft.eissn=2162-2388&rft.volume=34&rft.issue=11&rft.spage=8154&rft_id=info:doi/10.1109%2FTNNLS.2022.3152690&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon |