Deep learning-enabled triboelectric smart socks for IoT-based gait analysis and VR applications

The era of artificial intelligence and internet of things is rapidly developed by recent advances in wearable electronics. Gait reveals sensory information in daily life containing personal information, regarding identification and healthcare. Current wearable electronics of gait analysis are mainly...

Full description

Saved in:
Bibliographic Details
Published inNpj flexible electronics Vol. 4; no. 1; pp. 1 - 12
Main Authors Zhang, Zixuan, He, Tianyiyi, Zhu, Minglu, Sun, Zhongda, Shi, Qiongfeng, Zhu, Jianxiong, Dong, Bowei, Yuce, Mehmet Rasit, Lee, Chengkuo
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 26.10.2020
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The era of artificial intelligence and internet of things is rapidly developed by recent advances in wearable electronics. Gait reveals sensory information in daily life containing personal information, regarding identification and healthcare. Current wearable electronics of gait analysis are mainly limited by high fabrication cost, operation energy consumption, or inferior analysis methods, which barely involve machine learning or implement nonoptimal models that require massive datasets for training. Herein, we developed low-cost triboelectric intelligent socks for harvesting waste energy from low-frequency body motions to transmit wireless sensory data. The sock equipped with self-powered functionality also can be used as wearable sensors to deliver information, regarding the identity, health status, and activity of the users. To further address the issue of ineffective analysis methods, an optimized deep learning model with an end-to-end structure on the socks signals for the gait analysis is proposed, which produces a 93.54% identification accuracy of 13 participants and detects five different human activities with 96.67% accuracy. Toward practical application, we map the physical signals collected through the socks in the virtual space to establish a digital human system for sports monitoring, healthcare, identification, and future smart home applications.
AbstractList The era of artificial intelligence and internet of things is rapidly developed by recent advances in wearable electronics. Gait reveals sensory information in daily life containing personal information, regarding identification and healthcare. Current wearable electronics of gait analysis are mainly limited by high fabrication cost, operation energy consumption, or inferior analysis methods, which barely involve machine learning or implement nonoptimal models that require massive datasets for training. Herein, we developed low-cost triboelectric intelligent socks for harvesting waste energy from low-frequency body motions to transmit wireless sensory data. The sock equipped with self-powered functionality also can be used as wearable sensors to deliver information, regarding the identity, health status, and activity of the users. To further address the issue of ineffective analysis methods, an optimized deep learning model with an end-to-end structure on the socks signals for the gait analysis is proposed, which produces a 93.54% identification accuracy of 13 participants and detects five different human activities with 96.67% accuracy. Toward practical application, we map the physical signals collected through the socks in the virtual space to establish a digital human system for sports monitoring, healthcare, identification, and future smart home applications.
Abstract The era of artificial intelligence and internet of things is rapidly developed by recent advances in wearable electronics. Gait reveals sensory information in daily life containing personal information, regarding identification and healthcare. Current wearable electronics of gait analysis are mainly limited by high fabrication cost, operation energy consumption, or inferior analysis methods, which barely involve machine learning or implement nonoptimal models that require massive datasets for training. Herein, we developed low-cost triboelectric intelligent socks for harvesting waste energy from low-frequency body motions to transmit wireless sensory data. The sock equipped with self-powered functionality also can be used as wearable sensors to deliver information, regarding the identity, health status, and activity of the users. To further address the issue of ineffective analysis methods, an optimized deep learning model with an end-to-end structure on the socks signals for the gait analysis is proposed, which produces a 93.54% identification accuracy of 13 participants and detects five different human activities with 96.67% accuracy. Toward practical application, we map the physical signals collected through the socks in the virtual space to establish a digital human system for sports monitoring, healthcare, identification, and future smart home applications.
ArticleNumber 29
Author Zhang, Zixuan
Zhu, Jianxiong
Shi, Qiongfeng
Zhu, Minglu
Yuce, Mehmet Rasit
Sun, Zhongda
Dong, Bowei
Lee, Chengkuo
He, Tianyiyi
Author_xml – sequence: 1
  givenname: Zixuan
  surname: Zhang
  fullname: Zhang, Zixuan
  organization: Department of Electrical & Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Centre for Intelligent Sensors and MEMS (CISM), National University of Singapore, 4 Engineering Drive 3, Hybrid Integrated Flexible Electronic Systems (HIFES), 5 Engineering Drive 1, Smart Systems Institute, National University of Singapore, 3 Research Link
– sequence: 2
  givenname: Tianyiyi
  surname: He
  fullname: He, Tianyiyi
  organization: Department of Electrical & Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Centre for Intelligent Sensors and MEMS (CISM), National University of Singapore, 4 Engineering Drive 3, Hybrid Integrated Flexible Electronic Systems (HIFES), 5 Engineering Drive 1, National University of Singapore Suzhou Research Institute (NUSRI), Suzhou Industrial Park
– sequence: 3
  givenname: Minglu
  surname: Zhu
  fullname: Zhu, Minglu
  organization: Department of Electrical & Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Centre for Intelligent Sensors and MEMS (CISM), National University of Singapore, 4 Engineering Drive 3, Hybrid Integrated Flexible Electronic Systems (HIFES), 5 Engineering Drive 1, National University of Singapore Suzhou Research Institute (NUSRI), Suzhou Industrial Park
– sequence: 4
  givenname: Zhongda
  orcidid: 0000-0001-7365-1945
  surname: Sun
  fullname: Sun, Zhongda
  organization: Department of Electrical & Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Centre for Intelligent Sensors and MEMS (CISM), National University of Singapore, 4 Engineering Drive 3, Hybrid Integrated Flexible Electronic Systems (HIFES), 5 Engineering Drive 1
– sequence: 5
  givenname: Qiongfeng
  orcidid: 0000-0002-5979-1420
  surname: Shi
  fullname: Shi, Qiongfeng
  organization: Department of Electrical & Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Centre for Intelligent Sensors and MEMS (CISM), National University of Singapore, 4 Engineering Drive 3, Hybrid Integrated Flexible Electronic Systems (HIFES), 5 Engineering Drive 1, National University of Singapore Suzhou Research Institute (NUSRI), Suzhou Industrial Park
– sequence: 6
  givenname: Jianxiong
  surname: Zhu
  fullname: Zhu, Jianxiong
  organization: Department of Electrical & Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Centre for Intelligent Sensors and MEMS (CISM), National University of Singapore, 4 Engineering Drive 3, Hybrid Integrated Flexible Electronic Systems (HIFES), 5 Engineering Drive 1, National University of Singapore Suzhou Research Institute (NUSRI), Suzhou Industrial Park
– sequence: 7
  givenname: Bowei
  surname: Dong
  fullname: Dong, Bowei
  organization: Department of Electrical & Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Centre for Intelligent Sensors and MEMS (CISM), National University of Singapore, 4 Engineering Drive 3, Hybrid Integrated Flexible Electronic Systems (HIFES), 5 Engineering Drive 1, National University of Singapore Suzhou Research Institute (NUSRI), Suzhou Industrial Park
– sequence: 8
  givenname: Mehmet Rasit
  surname: Yuce
  fullname: Yuce, Mehmet Rasit
  organization: Department of Electrical and Computer Systems Engineering, Monash University
– sequence: 9
  givenname: Chengkuo
  orcidid: 0000-0002-8886-3649
  surname: Lee
  fullname: Lee, Chengkuo
  email: elelc@nus.edu.sg
  organization: Department of Electrical & Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Centre for Intelligent Sensors and MEMS (CISM), National University of Singapore, 4 Engineering Drive 3, Hybrid Integrated Flexible Electronic Systems (HIFES), 5 Engineering Drive 1, Smart Systems Institute, National University of Singapore, 3 Research Link, National University of Singapore Suzhou Research Institute (NUSRI), Suzhou Industrial Park, NUS Graduate School for Integrative Science and Engineering (NGS), National University of Singapore
BookMark eNp9UU1r3DAUFCWBJtv8gZ4EPSvRl235WNJ8LAQKJc1VPMlPi7au5UrOIf8-yrqhJYecNIiZ92benJKjKU1IyGfBzwVX5qJo0UjDuOSMc95L1n0gJ1L1HdOtFEf_4Y_krJR9JUnZGtGLE2K_Ic50RMhTnHYMJ3AjDnTJ0SUc0VfgafkNeaEl-V-FhpTpNt0zB6XydhAXChOMTyWWCgb68IPCPI_RwxLTVD6R4wBjwbO_74b8vL66v7xld99vtpdf75jXfbMwp0II0mjnBqXAGeW7RgcuAkJvuFQwiCC9E9yhcp3icuhaHrBpUXDRB6c2ZLvOHRLs7ZxjtfxkE0R7-Eh5Z2uG6Ee0vG5Q2psOtNbeG2Nk4EbUrYNo--Fl1pd11pzTn0csi92nx1xDFit1V28tGtVUlllZPqdSMgbr43IIvWSIoxXcvrRj13Zsbcce2rFdlco30lfD74rUKiqVPO0w_3P1juoZUO6juw
CitedBy_id crossref_primary_10_1021_acsanm_3c02085
crossref_primary_10_1016_j_nanoen_2024_109882
crossref_primary_10_1016_j_esr_2024_101422
crossref_primary_10_1063_5_0217328
crossref_primary_10_1016_j_mtsust_2024_100801
crossref_primary_10_1016_j_isci_2020_101934
crossref_primary_10_1109_ACCESS_2024_3421573
crossref_primary_10_1021_acsaelm_4c00534
crossref_primary_10_1007_s12274_022_5321_3
crossref_primary_10_1016_j_iot_2024_101187
crossref_primary_10_1002_admt_202200282
crossref_primary_10_1016_j_nanoen_2021_106650
crossref_primary_10_1016_j_nanoen_2022_107588
crossref_primary_10_1002_admt_202401282
crossref_primary_10_1088_1361_6439_ac168e
crossref_primary_10_1007_s40820_022_00981_8
crossref_primary_10_1016_j_nanoen_2024_109521
crossref_primary_10_1016_j_device_2024_100466
crossref_primary_10_1016_j_nanoen_2023_109252
crossref_primary_10_3390_s24082462
crossref_primary_10_1002_admt_202301316
crossref_primary_10_3390_s24092944
crossref_primary_10_1016_j_jnca_2021_103244
crossref_primary_10_1007_s12274_023_5879_4
crossref_primary_10_1002_adma_202203073
crossref_primary_10_1016_j_nanoen_2022_107219
crossref_primary_10_1039_D1TA02518J
crossref_primary_10_1016_j_csite_2024_105115
crossref_primary_10_1016_j_nanoen_2024_109510
crossref_primary_10_1021_acsanm_2c05360
crossref_primary_10_1016_j_mtcomm_2025_112187
crossref_primary_10_1007_s00521_024_09645_7
crossref_primary_10_1016_j_apmt_2025_102661
crossref_primary_10_1021_acsnano_1c10676
crossref_primary_10_1038_s41467_022_34918_x
crossref_primary_10_1109_JSEN_2023_3312737
crossref_primary_10_1002_admt_202301681
crossref_primary_10_1016_j_apmt_2022_101612
crossref_primary_10_1038_s41467_021_25637_w
crossref_primary_10_1088_2631_7990_acded1
crossref_primary_10_1557_s43577_021_00123_2
crossref_primary_10_1007_s40820_022_00965_8
crossref_primary_10_1109_JIOT_2021_3093245
crossref_primary_10_1016_j_nanoen_2021_106517
crossref_primary_10_1002_adfm_202301589
crossref_primary_10_1016_j_mtbio_2023_100565
crossref_primary_10_1016_j_nanoen_2023_109034
crossref_primary_10_3390_s22020438
crossref_primary_10_1002_advs_202100230
crossref_primary_10_1021_acsaelm_2c01525
crossref_primary_10_7498_aps_71_20211632
crossref_primary_10_1016_j_nanoen_2023_108180
crossref_primary_10_1016_j_mtsust_2022_100219
crossref_primary_10_1109_JSEN_2024_3349430
crossref_primary_10_1016_j_nanoen_2024_110045
crossref_primary_10_1360_TB_2023_0636
crossref_primary_10_1021_acsaelm_4c02266
crossref_primary_10_1002_adfm_202112155
crossref_primary_10_1007_s11814_024_00227_w
crossref_primary_10_1016_j_mattod_2024_08_013
crossref_primary_10_1002_inf2_12360
crossref_primary_10_3390_app131810489
crossref_primary_10_1016_j_sna_2023_114877
crossref_primary_10_1126_sciadv_abg9450
crossref_primary_10_1016_j_medntd_2024_100311
crossref_primary_10_1016_j_nanoen_2022_107112
crossref_primary_10_1016_j_nanoen_2023_108984
crossref_primary_10_1002_adfm_202008805
crossref_primary_10_1002_advs_202305025
crossref_primary_10_1002_smll_202100804
crossref_primary_10_1021_acsbiomaterials_3c01633
crossref_primary_10_1016_j_nanoen_2024_109321
crossref_primary_10_1016_j_nanoen_2023_108473
crossref_primary_10_1016_j_envres_2024_119248
crossref_primary_10_1002_aesr_202400116
crossref_primary_10_1021_acsami_3c10846
crossref_primary_10_1038_s41598_023_29261_0
crossref_primary_10_1021_acsnano_4c04052
crossref_primary_10_1080_15599612_2024_2342279
crossref_primary_10_1016_j_dsp_2021_103038
crossref_primary_10_1016_j_nanoen_2024_110550
crossref_primary_10_1038_s41467_022_29083_0
crossref_primary_10_1016_j_nanoen_2021_105887
crossref_primary_10_1021_acsaelm_3c01043
crossref_primary_10_1145_3705320
crossref_primary_10_1002_admt_202201294
crossref_primary_10_1016_j_cej_2025_160501
crossref_primary_10_1016_j_nanoen_2021_106616
crossref_primary_10_1109_JSEN_2023_3241947
crossref_primary_10_1021_acsami_2c10245
crossref_primary_10_1038_s42256_023_00760_z
crossref_primary_10_1002_advs_202303234
crossref_primary_10_1002_aisy_202100228
crossref_primary_10_1063_5_0169868
crossref_primary_10_1016_j_nanoen_2025_110724
crossref_primary_10_1021_acsnano_1c07579
crossref_primary_10_1021_acsami_2c00384
crossref_primary_10_1002_smll_202402452
crossref_primary_10_1021_acsami_3c11805
crossref_primary_10_3390_nanoenergyadv1010005
crossref_primary_10_1021_acsnano_2c04043
crossref_primary_10_1007_s12213_025_00182_7
crossref_primary_10_34133_2021_6849171
crossref_primary_10_1002_adfm_202312443
crossref_primary_10_1016_j_ergon_2023_103445
crossref_primary_10_1109_JSEN_2024_3443229
crossref_primary_10_1126_sciadv_adk7488
crossref_primary_10_1109_JSEN_2024_3419917
crossref_primary_10_3390_mi12080946
crossref_primary_10_3390_s24020626
crossref_primary_10_1038_s41528_022_00218_z
crossref_primary_10_1002_admt_202302211
crossref_primary_10_1109_JSEN_2022_3155188
crossref_primary_10_1016_j_cej_2024_154441
crossref_primary_10_1002_adfm_202406773
crossref_primary_10_1002_adfm_202405321
crossref_primary_10_1016_j_nanoen_2022_107447
crossref_primary_10_1021_acsmaterialsau_2c00001
crossref_primary_10_1016_j_joule_2022_06_001
crossref_primary_10_1186_s11671_023_03783_y
crossref_primary_10_1016_j_nanoen_2025_110821
crossref_primary_10_3390_nano14141173
crossref_primary_10_1002_advs_202201056
crossref_primary_10_1002_smll_202405064
crossref_primary_10_1155_2022_6115513
crossref_primary_10_3390_nano14020165
crossref_primary_10_1016_j_nanoen_2022_107557
crossref_primary_10_1016_j_joule_2022_06_011
crossref_primary_10_1088_1361_6439_ad6778
crossref_primary_10_1016_j_joule_2022_06_013
crossref_primary_10_1021_acssensors_4c02734
crossref_primary_10_1063_5_0219223
crossref_primary_10_1016_j_nanoen_2023_108792
crossref_primary_10_1021_acsami_1c19718
crossref_primary_10_3390_s22207784
crossref_primary_10_1016_j_nanoen_2021_106492
crossref_primary_10_1016_j_nanoen_2024_110118
crossref_primary_10_1109_JSEN_2024_3405173
crossref_primary_10_1126_sciadv_abl9874
crossref_primary_10_1016_j_nanoen_2021_106807
crossref_primary_10_1002_admt_202301022
crossref_primary_10_1016_j_ymssp_2023_110843
crossref_primary_10_1088_1361_665X_ada331
crossref_primary_10_1016_j_nanoen_2023_108559
crossref_primary_10_3390_s24041069
crossref_primary_10_1109_JIOT_2024_3434657
crossref_primary_10_1016_j_nanoen_2023_108312
crossref_primary_10_1088_1361_6439_ac3ab9
crossref_primary_10_3390_mi12030337
crossref_primary_10_1016_j_nanoen_2022_107978
crossref_primary_10_3233_THC_213004
crossref_primary_10_3390_micro3020032
crossref_primary_10_3390_nano11112975
crossref_primary_10_1016_j_nanoen_2020_105670
crossref_primary_10_1155_2024_5572736
crossref_primary_10_1016_j_nanoen_2024_109465
crossref_primary_10_1016_j_xcrp_2024_101888
crossref_primary_10_1038_s41467_021_23020_3
crossref_primary_10_1016_j_dsp_2022_103570
crossref_primary_10_1002_cav_2293
crossref_primary_10_1016_j_ultrasmedbio_2022_04_005
crossref_primary_10_1109_LED_2023_3249340
crossref_primary_10_1002_adma_202409440
crossref_primary_10_1109_JSEN_2023_3287291
crossref_primary_10_3389_frobt_2021_749274
crossref_primary_10_1002_adom_202301028
crossref_primary_10_1016_j_jksuci_2023_101846
crossref_primary_10_1109_JSEN_2021_3099016
crossref_primary_10_1016_j_nanoen_2022_107764
crossref_primary_10_1016_j_cej_2023_146292
crossref_primary_10_1016_j_nanoen_2022_107762
crossref_primary_10_1002_aenm_202302699
crossref_primary_10_1007_s40820_023_01235_x
crossref_primary_10_1007_s11664_024_11316_1
crossref_primary_10_34133_research_0154
crossref_primary_10_1021_acsami_3c06256
crossref_primary_10_1038_s41528_022_00181_9
crossref_primary_10_3390_polym17020210
crossref_primary_10_1002_inf2_12527
crossref_primary_10_1109_JSEN_2023_3347423
crossref_primary_10_1002_smtd_202200830
crossref_primary_10_1002_admt_202300095
crossref_primary_10_1002_inf2_12520
crossref_primary_10_1186_s42234_023_00118_1
crossref_primary_10_1002_aisy_202400124
crossref_primary_10_1038_s41528_022_00203_6
crossref_primary_10_3390_s23041868
crossref_primary_10_1039_D2NA00608A
crossref_primary_10_1002_aenm_202301254
crossref_primary_10_1016_j_sna_2024_115985
crossref_primary_10_1002_advs_202101834
crossref_primary_10_3390_su151612589
crossref_primary_10_1016_j_nanoen_2022_108110
crossref_primary_10_1002_advs_202103694
crossref_primary_10_1021_acs_analchem_2c04527
crossref_primary_10_1007_s42235_022_00320_y
crossref_primary_10_1021_acs_chemrev_3c00507
crossref_primary_10_1002_inf2_12412
crossref_primary_10_1002_aisy_202300222
crossref_primary_10_3390_ma14206073
crossref_primary_10_1007_s12274_023_5784_x
crossref_primary_10_1080_15435075_2024_2437511
crossref_primary_10_1016_j_nanoen_2021_106330
crossref_primary_10_3389_felec_2022_1017511
crossref_primary_10_1039_D3NR01334K
crossref_primary_10_1016_j_apmt_2023_101874
crossref_primary_10_1016_j_sna_2023_114549
crossref_primary_10_1080_10447318_2023_2276991
crossref_primary_10_3390_s24020449
crossref_primary_10_1016_j_nanoen_2021_106698
crossref_primary_10_1002_adma_202109355
crossref_primary_10_1021_acsnano_1c04464
crossref_primary_10_3390_s24010075
crossref_primary_10_1002_admt_202400554
crossref_primary_10_1007_s40820_021_00644_0
crossref_primary_10_1016_j_seta_2023_103349
crossref_primary_10_1109_JSEN_2022_3216459
crossref_primary_10_1002_aelm_202400884
crossref_primary_10_1002_advs_202300471
crossref_primary_10_1007_s40820_023_01029_1
crossref_primary_10_1038_s41467_022_32745_8
crossref_primary_10_1016_j_csite_2024_104867
crossref_primary_10_1016_j_nanoen_2024_109956
crossref_primary_10_1108_SR_02_2024_0080
crossref_primary_10_1002_aenm_202203040
crossref_primary_10_1007_s11431_021_1984_9
crossref_primary_10_1016_j_apmt_2023_102039
crossref_primary_10_1109_OJCAS_2021_3123272
crossref_primary_10_1016_j_jechem_2022_12_024
crossref_primary_10_1109_ACCESS_2021_3124812
crossref_primary_10_1021_acsami_4c01929
crossref_primary_10_1021_acsbiomaterials_1c00741
crossref_primary_10_1021_acs_langmuir_4c02832
crossref_primary_10_1016_j_compositesb_2024_111615
crossref_primary_10_1002_advs_202408384
crossref_primary_10_1109_ACCESS_2024_3380360
crossref_primary_10_1088_1361_665X_adb404
crossref_primary_10_1021_acsami_2c19233
crossref_primary_10_1016_j_apenergy_2023_122524
crossref_primary_10_1002_VIW_20220026
crossref_primary_10_1016_j_nanoen_2022_108137
crossref_primary_10_1016_j_nanoen_2023_108656
crossref_primary_10_34133_research_0333
crossref_primary_10_1016_j_sna_2022_113836
crossref_primary_10_1109_JSEN_2023_3260846
crossref_primary_10_1002_advs_202100711
crossref_primary_10_1002_adsr_202200072
crossref_primary_10_1016_j_nanoen_2024_110124
crossref_primary_10_1002_aisy_202200371
crossref_primary_10_1007_s40820_022_00874_w
crossref_primary_10_1016_j_nanoen_2024_110125
crossref_primary_10_1016_j_sna_2023_114311
crossref_primary_10_1002_adma_202404763
crossref_primary_10_1111_exsy_12955
crossref_primary_10_1021_acsami_2c01972
crossref_primary_10_1002_admt_202302068
crossref_primary_10_1016_j_device_2025_100707
crossref_primary_10_1088_1402_4896_acc98c
crossref_primary_10_3390_nano12081366
crossref_primary_10_1016_j_nanoen_2023_108787
crossref_primary_10_1016_j_nanoen_2023_108783
crossref_primary_10_1149_1945_7111_ac72c3
crossref_primary_10_1039_D4TA07127A
crossref_primary_10_1002_adfm_202301816
crossref_primary_10_3390_s24113343
Cites_doi 10.1002/adma.201802405
10.1002/adfm.201910541
10.1038/s41565-018-0244-6
10.3390/s19173785
10.1126/sciadv.1601185
10.1007/s10916-015-0344-x
10.1016/j.nanoen.2019.06.038
10.1002/inf2.12103
10.1038/s41528-018-0037-x
10.1016/j.nanoen.2019.01.002
10.1002/adma.201703700
10.1007/s12274-018-2018-8
10.1126/sciadv.1600097
10.3390/s19081757
10.1002/aenm.202001424
10.1016/j.patrec.2019.02.016
10.1002/adma.201703456
10.1109/JSEN.2013.2259693
10.1038/s41928-019-0286-2
10.1109/TII.2018.2799177
10.1007/s00170-017-0233-1
10.1002/aisy.201900088
10.1109/ACCESS.2019.2927394
10.1002/aenm.201600665
10.1002/adma.201906269
10.1002/admt.201800360
10.1002/inf2.12122
10.1016/j.nanoen.2017.05.048
10.1002/adma.201902549
10.1038/s41528-020-0066-0
10.1038/nature14539
10.1002/admt.201800167
10.1038/s41528-018-0022-4
10.1002/adhm.201800074
10.1002/adma.201500009
10.1038/s41586-019-1234-z
10.1002/aisy.201970060
10.1002/aenm.201703086
10.1016/j.nanoen.2019.104417
10.1109/TNANO.2018.2876824
10.1002/adma.201603679
10.1038/s41928-019-0257-7
10.3390/s20030747
10.1021/acsnano.8b00147
10.1016/j.patrec.2018.02.010
10.1038/s41528-019-0062-4
10.1002/advs.201901437
10.1002/adma.201902831
10.1126/sciadv.aaz8693
10.1109/JMEMS.2015.2403256
10.1002/adfm.201703420
10.1126/scirobotics.aat2516
10.1016/j.nanoen.2020.104528
10.1063/5.0016485
10.3390/s18041055
10.1016/j.nanoen.2019.104039
10.1002/advs.201903636
10.1016/j.nanoen.2018.11.078
10.1016/j.nanoen.2019.03.005
10.1002/adma.201707442
10.1016/j.mtener.2020.100386
10.1038/s41586-019-1687-0
10.1016/j.nanoen.2019.104266
10.1016/j.nanoen.2018.11.025
10.1016/j.nanoen.2018.12.032
10.3390/s17122735
10.1002/advs.201600190
10.1038/s41467-020-15368-9
10.1002/aisy.201900090
10.1126/sciadv.aat0098
10.1063/1.5063498
10.1021/acsnano.0c03728
10.1038/s41528-018-0040-2
10.1109/TNANO.2020.2976154
10.3390/s20030656
10.1016/j.smaim.2020.07.005
10.1021/acs.nanolett.9b02081
10.1038/s41928-018-0043-y
10.3390/systems7010007
10.1002/adma.201504366
10.1038/s41467-020-18471-z
10.1109/ISWC.2006.286346
10.1109/MeMeA.2017.7985886
10.1038/s41467-020-19059-3
ContentType Journal Article
Copyright The Author(s) 2020
The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2020
– notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOA
DOI 10.1038/s41528-020-00092-7
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central Korea
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ - Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2397-4621
EndPage 12
ExternalDocumentID oai_doaj_org_article_033a34c87a444cc8882f081ab8d169db
10_1038_s41528_020_00092_7
GrantInformation_xml – fundername: This research is supported by the National Research Foundation Singapore under its AI Singapore Programme (Award Number: AISG-GC-2019-002); and National Key Research and Development Program of China (Grant No. 2019YFB2004800, Project No. R-2020-S-002).
GroupedDBID 0R~
AAJSJ
ACGFS
ACSMW
ADBBV
ADMLS
AFKRA
AJTQC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARCSS
BCNDV
BENPR
BGLVJ
C6C
CCPQU
EBLON
EBS
GROUPED_DOAJ
HCIFZ
M~E
NAO
OK1
PIMPY
RNT
SNYQT
AASML
AAYXX
CITATION
PHGZM
PHGZT
8FE
8FG
ABUWG
AZQEC
DWQXO
P62
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c495t-b3fff284bbd33ab83c754f01fea98023ad1f2cb10be3b7302d760fe56e1019fb3
IEDL.DBID DOA
ISSN 2397-4621
IngestDate Wed Aug 27 01:32:02 EDT 2025
Sun Jul 13 04:29:38 EDT 2025
Thu Apr 24 23:11:49 EDT 2025
Tue Jul 01 00:41:07 EDT 2025
Fri Feb 21 02:40:19 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c495t-b3fff284bbd33ab83c754f01fea98023ad1f2cb10be3b7302d760fe56e1019fb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8886-3649
0000-0001-7365-1945
0000-0002-5979-1420
OpenAccessLink https://doaj.org/article/033a34c87a444cc8882f081ab8d169db
PQID 2471521535
PQPubID 4669720
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_033a34c87a444cc8882f081ab8d169db
proquest_journals_2471521535
crossref_citationtrail_10_1038_s41528_020_00092_7
crossref_primary_10_1038_s41528_020_00092_7
springer_journals_10_1038_s41528_020_00092_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-10-26
PublicationDateYYYYMMDD 2020-10-26
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-26
  day: 26
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Npj flexible electronics
PublicationTitleAbbrev npj Flex Electron
PublicationYear 2020
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Lu (CR10) 2020; 4
Li, Ni, Sun, Min, Al-Rubaye (CR16) 2018; 14
Liao (CR32) 2020; 69
Madni, Madni, Lucero (CR66) 2019; 7
Zhang (CR78) 2019; 63
Wen (CR35) 2016; 2
Lund (CR23) 2018; 2
Guo (CR54) 2018; 3
Khan, Mahmud, Ban (CR20) 2019; 18
CR72
Aqueveque, Germany, Osorio, Pastene (CR77) 2020; 20
Bariya, Nyein, Javey (CR1) 2018; 1
Zhang (CR8) 2018; 4
Liu (CR5) 2016; 2
Liu (CR27) 2017; 29
Tian (CR14) 2019; 2
Dong (CR19) 2020; 14
Hassani, Lee (CR18) 2015; 24
Niu (CR73) 2019; 2
Dong, Peng, Wang (CR44) 2020; 32
Liu (CR17) 2018; 8
Jiang (CR70) 2020; 16
Wen (CR13) 2020; 67
Hu, Zheng (CR43) 2019; 56
Tao (CR67) 2018; 94
Smirnov (CR22) 2019; 3
Wang, Dong, Peng, Pan (CR79) 2019; 1
CR48
Zhu, He, Lee (CR60) 2020; 7
Zhao (CR81) 2019; 4
Liu (CR21) 2020; 11
Linghu, Zhang, Wang, Song (CR76) 2018; 2
Zhu (CR57) 2020; 6
Qiu, Wu, Shi, Lee, Yuce (CR62) 2019; 7
Jiang (CR34) 2020; 2
CR83
Sorrentino (CR52) 2020; 20
Shi, He, Lee (CR2) 2019; 57
Wang, Chen, Hao, Peng, Hu (CR58) 2019; 119
Khan, Ostfeld, Lochner, Pierre, Arias (CR7) 2016; 28
Lee, Choi, Choi (CR50) 2019; 19
Chen (CR38) 2018; 30
Wang, He, Lee (CR69) 2019; 65
Cheng (CR29) 2020; 19
Lee, Shi, Lee (CR15) 2019; 7
Sundaram (CR61) 2019; 569
Li (CR9) 2019; 19
Shen (CR31) 2018; 28
Trung (CR6) 2018; 7
Zhao (CR42) 2016; 28
Lee (CR63) 2019; 32
Cho, Yoon (CR84) 2018; 18
Son (CR74) 2018; 13
Lee (CR26) 2015; 27
Baloglu, Talo, Yildirim, Tan, Acharya (CR85) 2019; 122
Yu (CR68) 2019; 575
Tai (CR3) 2018; 30
Liang (CR12) 2019; 1
Shi (CR64) 2020; 2
Zhao (CR41) 2020; 70
Han (CR49) 2019; 56
Torres Alonso (CR24) 2018; 2
Mezghani, Exposito, Drira, Da Silveira, Pruski (CR65) 2015; 39
Yang (CR55) 2018; 12
Cheng, Amft, Bahle, Lukowicz (CR71) 2013; 13
Ouyang (CR4) 2017; 29
Choi, Moon, Park, Choi (CR47) 2019; 19
Dehzangi, Taherisadr, ChangalVala (CR11) 2017; 17
Huang (CR40) 2020; 30
Cao, Jie, Wang, Wang (CR28) 2016; 6
Sun (CR33) 2017; 38
He (CR37) 2019; 57
Lin (CR51) 2019; 4
He (CR45) 2019; 6
Dong (CR36) 2020; 7
Song, Zhao, Wang, Yang (CR53) 2019; 31
He (CR56) 2019; 59
Mackanic, Kao, Bao (CR75) 2020; 2001424
Shi (CR82) 2020; 11
Zhou (CR30) 2018; 11
Cai (CR39) 2017; 4
LeCun, Bengio, Hinton (CR59) 2015; 521
Arab Hassani (CR25) 2020; 1
Li (CR80) 2019; 1
Zhu (CR46) 2019; 13
Y-Z Zhang (92_CR8) 2018; 4
G Lee (92_CR63) 2019; 32
N Sun (92_CR33) 2017; 38
T He (92_CR45) 2019; 6
Q Shen (92_CR31) 2018; 28
K Dong (92_CR44) 2020; 32
I Sorrentino (92_CR52) 2020; 20
L Chen (92_CR38) 2018; 30
Q Shi (92_CR64) 2020; 2
J Lee (92_CR26) 2015; 27
X Cao (92_CR28) 2016; 6
P Cheng (92_CR29) 2020; 19
E Torres Alonso (92_CR24) 2018; 2
M Zhu (92_CR46) 2019; 13
F Tao (92_CR67) 2018; 94
J Li (92_CR80) 2019; 1
Q Lu (92_CR10) 2020; 4
Y Hu (92_CR43) 2019; 56
Z Zhao (92_CR42) 2016; 28
Y Khan (92_CR7) 2016; 28
Y LeCun (92_CR59) 2015; 521
C Linghu (92_CR76) 2018; 2
TQ Trung (92_CR6) 2018; 7
92_CR72
X Yu (92_CR68) 2019; 575
H Cho (92_CR84) 2018; 18
M Liu (92_CR27) 2017; 29
FA Hassani (92_CR18) 2015; 24
Z Lin (92_CR51) 2019; 4
D Son (92_CR74) 2018; 13
J Wang (92_CR69) 2019; 65
O Dehzangi (92_CR11) 2017; 17
P Aqueveque (92_CR77) 2020; 20
J Wang (92_CR58) 2019; 119
G Liu (92_CR17) 2018; 8
AA Khan (92_CR20) 2019; 18
H Ouyang (92_CR4) 2017; 29
M Zhu (92_CR60) 2020; 7
C Wang (92_CR79) 2019; 1
C Zhou (92_CR30) 2018; 11
Y Yang (92_CR55) 2018; 12
D Jiang (92_CR34) 2020; 2
T He (92_CR37) 2019; 57
Q Huang (92_CR40) 2020; 30
Y Han (92_CR49) 2019; 56
E Mezghani (92_CR65) 2015; 39
F Wen (92_CR13) 2020; 67
J Cheng (92_CR71) 2013; 13
JRC Smirnov (92_CR22) 2019; 3
A Madni (92_CR66) 2019; 7
J Liao (92_CR32) 2020; 69
Y Liu (92_CR21) 2020; 11
Q Shi (92_CR2) 2019; 57
G Zhao (92_CR81) 2019; 4
UB Baloglu (92_CR85) 2019; 122
R Zhang (92_CR78) 2019; 63
S Niu (92_CR73) 2019; 2
B Dong (92_CR19) 2020; 14
A Lund (92_CR23) 2018; 2
K Song (92_CR53) 2019; 31
Q Shi (92_CR82) 2020; 11
S Lee (92_CR15) 2019; 7
L-C Tai (92_CR3) 2018; 30
Z Wen (92_CR35) 2016; 2
F Arab Hassani (92_CR25) 2020; 1
S-S Lee (92_CR50) 2019; 19
DG Mackanic (92_CR75) 2020; 2001424
G Cai (92_CR39) 2017; 4
X Tian (92_CR14) 2019; 2
B Dong (92_CR36) 2020; 7
Z Zhao (92_CR41) 2020; 70
92_CR48
M Zhu (92_CR57) 2020; 6
M Bariya (92_CR1) 2018; 1
X Liang (92_CR12) 2019; 1
Y Liu (92_CR5) 2016; 2
D Jiang (92_CR70) 2020; 16
H Guo (92_CR54) 2018; 3
S Li (92_CR16) 2018; 14
S Sundaram (92_CR61) 2019; 569
L Li (92_CR9) 2019; 19
C Qiu (92_CR62) 2019; 7
Q He (92_CR56) 2019; 59
SIL Choi (92_CR47) 2019; 19
92_CR83
References_xml – volume: 30
  start-page: 1802405
  year: 2018
  ident: CR38
  article-title: Controlling surface charge generated by contact electrification: strategies and applications
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201802405
– volume: 30
  start-page: 1910541
  year: 2020
  ident: CR40
  article-title: Additive functionalization and embroidery for manufacturing wearable and washable textile supercapacitors
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201910541
– volume: 13
  start-page: 1057
  year: 2018
  end-page: 1065
  ident: CR74
  article-title: An integrated self-healable electronic skin system fabricated via dynamic reconstruction of a nanostructured conducting network
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-018-0244-6
– volume: 19
  start-page: 3785
  year: 2019
  ident: CR47
  article-title: User identification from gait analysis using multi-modal sensors in smart insole
  publication-title: Sensors
  doi: 10.3390/s19173785
– volume: 2
  year: 2016
  ident: CR5
  article-title: Epidermal mechano-acoustic sensing electronics for cardiovascular diagnostics and human-machine interfaces
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1601185
– volume: 39
  year: 2015
  ident: CR65
  article-title: A semantic big data platform for integrating heterogeneous wearable data in healthcare
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-015-0344-x
– volume: 63
  start-page: 103842
  year: 2019
  ident: CR78
  article-title: Sensing body motions based on charges generated on the body
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.06.038
– volume: 2
  start-page: 1191
  year: 2020
  end-page: 1200
  ident: CR34
  article-title: A wearable noncontact free-rotating hybrid nanogenerator for self-powered electronics
  publication-title: InfoMat
  doi: 10.1002/inf2.12103
– volume: 2
  year: 2018
  ident: CR76
  article-title: Transfer printing techniques for flexible and stretchable inorganic electronics
  publication-title: npj Flex. Electron.
  doi: 10.1038/s41528-018-0037-x
– volume: 57
  start-page: 851
  year: 2019
  end-page: 871
  ident: CR2
  article-title: More than energy harvesting – combining triboelectric nanogenerator and flexible electronics technology for enabling novel micro-/nano-systems
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.01.002
– volume: 29
  start-page: 1703700
  year: 2017
  ident: CR27
  article-title: Large-area all-textile pressure sensors for monitoring human motion and physiological signals
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201703700
– volume: 11
  start-page: 4313
  year: 2018
  end-page: 4322
  ident: CR30
  article-title: Flexible self-charging power units for portable electronics based on folded carbon paper
  publication-title: Nano Res.
  doi: 10.1007/s12274-018-2018-8
– volume: 2
  year: 2016
  ident: CR35
  article-title: Self-powered textile for wearable electronics by hybridizing fiber-shaped nanogenerators, solar cells, and supercapacitors
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1600097
– volume: 19
  start-page: 1757
  year: 2019
  ident: CR50
  article-title: Classification of gait type based on deep learning using various sensors with smart insole
  publication-title: Sensors
  doi: 10.3390/s19081757
– volume: 2001424
  start-page: 2001424
  year: 2020
  ident: CR75
  article-title: Enabling deformable and stretchable batteries
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202001424
– volume: 122
  start-page: 23
  year: 2019
  end-page: 30
  ident: CR85
  article-title: Classification of myocardial infarction with multi-lead ECG signals and deep CNN
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2019.02.016
– volume: 29
  start-page: 1703456
  year: 2017
  ident: CR4
  article-title: Self-powered pulse sensor for antidiastole of cardiovascular disease
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201703456
– volume: 13
  start-page: 3935
  year: 2013
  end-page: 3947
  ident: CR71
  article-title: Designing sensitive wearable capacitive sensors for activity recognition
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2013.2259693
– volume: 2
  start-page: 361
  year: 2019
  end-page: 368
  ident: CR73
  article-title: A wireless body area sensor network based on stretchable passive tags
  publication-title: Nat. Electron.
  doi: 10.1038/s41928-019-0286-2
– volume: 14
  start-page: 2618
  year: 2018
  end-page: 2628
  ident: CR16
  article-title: Energy-efficient resource allocation for industrial cyber-physical IoT systems in 5G era
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2018.2799177
– volume: 94
  start-page: 3563
  year: 2018
  end-page: 3576
  ident: CR67
  article-title: Digital twin-driven product design, manufacturing and service with big data
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-017-0233-1
– volume: 1
  start-page: 1900088
  year: 2019
  ident: CR12
  article-title: Fusion of wearable and contactless sensors for intelligent gesture recognition
  publication-title: Adv. Intell. Syst.
  doi: 10.1002/aisy.201900088
– volume: 7
  start-page: 92745
  year: 2019
  ident: CR62
  article-title: Sensors and control interface methods based on triboelectric nanogenerator in IoT applications
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2927394
– volume: 6
  start-page: 1600665
  year: 2016
  ident: CR28
  article-title: Triboelectric nanogenerators driven self-powered electrochemical processes for energy and environmental science
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201600665
– volume: 32
  start-page: 1906269
  year: 2019
  ident: CR63
  article-title: Parallel signal processing of a wireless pressure‐sensing platform combined with machine‐learning‐based cognition, inspired by the human somatosensory system
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201906269
– volume: 4
  start-page: 1800360
  year: 2019
  ident: CR51
  article-title: A triboelectric nanogenerator-based smart insole for multifunctional gait monitoring
  publication-title: Adv. Mater. Technol.
  doi: 10.1002/admt.201800360
– volume: 2
  start-page: 1131
  year: 2020
  end-page: 1162
  ident: CR64
  article-title: Progress in wearable electronics/photonics-moving toward the era of artificial intelligence and internet of things
  publication-title: InfoMat
  doi: 10.1002/inf2.12122
– volume: 38
  start-page: 210
  year: 2017
  end-page: 217
  ident: CR33
  article-title: All flexible electrospun papers based self-charging power system
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.05.048
– volume: 32
  start-page: 1902549
  year: 2020
  ident: CR44
  article-title: Fiber/fabric‐based piezoelectric and triboelectric nanogenerators for flexible/stretchable and wearable electronics and artificial intelligence
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201902549
– volume: 4
  year: 2020
  ident: CR10
  article-title: Bio-inspired flexible artificial synapses for pain perception and nerve injuries
  publication-title: npj Flex. Electron.
  doi: 10.1038/s41528-020-0066-0
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: CR59
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 4
  start-page: 1800167
  year: 2019
  ident: CR81
  article-title: Keystroke dynamics identification based on triboelectric nanogenerator for intelligent keyboard using deep learning method
  publication-title: Adv. Mater. Technol.
  doi: 10.1002/admt.201800167
– volume: 13
  start-page: 1940
  year: 2019
  end-page: 1952
  ident: CR46
  article-title: Self-powered and self-functional cotton sock using piezoelectric and triboelectric hybrid mechanism for healthcare and sports monitoring
  publication-title: ACS Nano
– volume: 2
  year: 2018
  ident: CR23
  article-title: Energy harvesting textiles for a rainy day: woven piezoelectrics based on melt-spun PVDF microfibres with a conducting core
  publication-title: npj Flex. Electron.
  doi: 10.1038/s41528-018-0022-4
– volume: 7
  start-page: 1800074
  year: 2018
  ident: CR6
  article-title: Freestanding, fiber-based, wearable temperature sensor with tunable thermal index for healthcare monitoring
  publication-title: Adv. Healthc. Mater.
  doi: 10.1002/adhm.201800074
– volume: 27
  start-page: 2433
  year: 2015
  end-page: 2439
  ident: CR26
  article-title: Conductive fiber-based ultrasensitive textile pressure sensor for wearable electronics
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201500009
– volume: 569
  start-page: 698
  year: 2019
  end-page: 702
  ident: CR61
  article-title: Learning the signatures of the human grasp using a scalable tactile glove
  publication-title: Nature
  doi: 10.1038/s41586-019-1234-z
– volume: 1
  start-page: 1970060
  year: 2019
  ident: CR80
  article-title: Skin‐inspired electronics and its applications in advanced intelligent systems
  publication-title: Adv. Intell. Syst.
  doi: 10.1002/aisy.201970060
– volume: 8
  start-page: 1703086
  year: 2018
  ident: CR17
  article-title: Wireless electric energy transmission through various isolated solid media based on triboelectric nanogenerator
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201703086
– volume: 69
  start-page: 104417
  year: 2020
  ident: CR32
  article-title: Nestable arched triboelectric nanogenerator for large deflection biomechanical sensing and energy harvesting
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.104417
– volume: 18
  start-page: 21
  year: 2019
  end-page: 36
  ident: CR20
  article-title: Evolution from single to hybrid nanogenerator: a contemporary review on multimode energy harvesting for self-powered electronics
  publication-title: IEEE Trans. Nanotechnol.
  doi: 10.1109/TNANO.2018.2876824
– volume: 28
  start-page: 10267
  year: 2016
  end-page: 10274
  ident: CR42
  article-title: Machine-washable textile triboelectric nanogenerators for effective human respiratory monitoring through loom weaving of metallic yarns
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201603679
– volume: 2
  start-page: 243
  year: 2019
  end-page: 251
  ident: CR14
  article-title: Wireless body sensor networks based on metamaterial textiles
  publication-title: Nat. Electron.
  doi: 10.1038/s41928-019-0257-7
– volume: 20
  start-page: 747
  year: 2020
  ident: CR52
  article-title: A novel sensorised insole for sensing feet pressure distributions
  publication-title: Sensors
  doi: 10.3390/s20030747
– volume: 12
  start-page: 2027
  year: 2018
  end-page: 2034
  ident: CR55
  article-title: Liquid-metal-based super-stretchable and structure-designable triboelectric nanogenerator for wearable electronics
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b00147
– volume: 119
  start-page: 3
  year: 2019
  end-page: 11
  ident: CR58
  article-title: Deep learning for sensor-based activity recognition: a survey
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2018.02.010
– volume: 3
  year: 2019
  ident: CR22
  article-title: Flexible distributed feedback lasers based on nanoimprinted cellulose diacetate with efficient multiple wavelength lasing
  publication-title: npj Flex. Electron.
  doi: 10.1038/s41528-019-0062-4
– ident: CR72
– volume: 6
  start-page: 1901437
  year: 2019
  ident: CR45
  article-title: Self-sustainable wearable textile nano-energy nano-system (NENS) for next-generation healthcare applications
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201901437
– volume: 31
  start-page: 1902831
  year: 2019
  ident: CR53
  article-title: Conjuncted pyro-piezoelectric effect for self-powered simultaneous temperature and pressure sensing
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201902831
– volume: 6
  year: 2020
  ident: CR57
  article-title: Haptic-feedback smart glove as a creative human-machine interface (HMI) for virtual/augmented reality applications
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aaz8693
– volume: 24
  start-page: 1338
  year: 2015
  end-page: 1345
  ident: CR18
  article-title: A triboelectric energy harvester using low-cost, flexible, and biocompatible ethylene vinyl acetate (EVA)
  publication-title: J. Microelectromech. Syst.
  doi: 10.1109/JMEMS.2015.2403256
– volume: 28
  start-page: 1703420
  year: 2018
  ident: CR31
  article-title: Self-powered vehicle emission testing system based on coupling of triboelectric and chemoresistive effects
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201703420
– volume: 3
  year: 2018
  ident: CR54
  article-title: A highly sensitive, self-powered triboelectric auditory sensor for social robotics and hearing aids
  publication-title: Sci. Robot.
  doi: 10.1126/scirobotics.aat2516
– volume: 70
  start-page: 104528
  year: 2020
  ident: CR41
  article-title: Machine-washable and breathable pressure sensors based on triboelectric nanogenerators enabled by textile technologies
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.104528
– volume: 7
  start-page: 031305
  year: 2020
  ident: CR60
  article-title: Technologies toward next generation human machine interfaces: From machine learning enhanced tactile sensing to neuromorphic sensory systems
  publication-title: Appl. Phys. Rev.
  doi: 10.1063/5.0016485
– volume: 18
  start-page: 1055
  year: 2018
  ident: CR84
  article-title: Divide and conquer-based 1D CNN human activity recognition using test data sharpening
  publication-title: Sensors
  doi: 10.3390/s18041055
– volume: 65
  start-page: 104039
  year: 2019
  ident: CR69
  article-title: Development of neural interfaces and energy harvesters towards self-powered implantable systems for healthcare monitoring and rehabilitation purposes
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.104039
– volume: 7
  start-page: 1903636
  year: 2020
  ident: CR36
  article-title: Wearable triboelectric/aluminum nitride nano‐energy‐nano‐system with self‐sustainable photonic modulation and continuous force sensing
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201903636
– volume: 56
  start-page: 516
  year: 2019
  end-page: 523
  ident: CR49
  article-title: Self-powered gait pattern-based identity recognition by a soft and stretchable triboelectric band
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.11.078
– volume: 59
  start-page: 689
  year: 2019
  end-page: 696
  ident: CR56
  article-title: Triboelectric vibration sensor for a human-machine interface built on ubiquitous surfaces
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.03.005
– volume: 30
  start-page: 1707442
  year: 2018
  ident: CR3
  article-title: Methylxanthine drug monitoring with wearable sweat sensors
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201707442
– volume: 16
  start-page: 100386
  year: 2020
  ident: CR70
  article-title: A 25-year bibliometric study of implantable energy harvesters and self-powered implantable medical electronics researches
  publication-title: Mater. Today Energy
  doi: 10.1016/j.mtener.2020.100386
– volume: 575
  start-page: 473
  year: 2019
  end-page: 479
  ident: CR68
  article-title: Skin-integrated wireless haptic interfaces for virtual and augmented reality
  publication-title: Nature
  doi: 10.1038/s41586-019-1687-0
– volume: 67
  start-page: 104266
  year: 2020
  ident: CR13
  article-title: Battery-free short-range self-powered wireless sensor network (SS-WSN) using TENG based direct sensory transmission (TDST) mechanism
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.104266
– volume: 56
  start-page: 16
  year: 2019
  end-page: 24
  ident: CR43
  article-title: Progress in textile-based triboelectric nanogenerators for smart fabrics
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.11.025
– volume: 57
  start-page: 338
  year: 2019
  end-page: 352
  ident: CR37
  article-title: Beyond energy harvesting - multi-functional triboelectric nanosensors on a textile
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.12.032
– volume: 17
  start-page: 2735
  year: 2017
  ident: CR11
  article-title: IMU-based gait recognition using convolutional neural networks and multi-sensor fusion
  publication-title: Sensors
  doi: 10.3390/s17122735
– volume: 4
  start-page: 1600190
  year: 2017
  ident: CR39
  article-title: Extremely stretchable strain sensors based on conductive self-healing dynamic cross-links hydrogels for human-motion detection
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201600190
– volume: 11
  year: 2020
  ident: CR21
  article-title: Quantifying contact status and the air-breakdown model of charge-excitation triboelectric nanogenerators to maximize charge density
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-15368-9
– volume: 1
  start-page: 1900090
  year: 2019
  ident: CR79
  article-title: Tactile sensors for advanced intelligent systems
  publication-title: Adv. Intell. Syst.
  doi: 10.1002/aisy.201900090
– volume: 4
  year: 2018
  ident: CR8
  article-title: MXenes stretch hydrogel sensor performance to new limits
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aat0098
– volume: 7
  start-page: 031302
  year: 2019
  ident: CR15
  article-title: From flexible electronics technology in the era of IoT and artificial intelligence toward future implanted body sensor networks
  publication-title: APL Mater.
  doi: 10.1063/1.5063498
– ident: CR48
– volume: 14
  start-page: 8915
  year: 2020
  end-page: 8930
  ident: CR19
  article-title: Wearable triboelectric–human–machine interface (THMI) using robust nanophotonic readout
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c03728
– volume: 2
  year: 2018
  ident: CR24
  article-title: Graphene electronic fibres with touch-sensing and light-emitting functionalities for smart textiles
  publication-title: npj Flex. Electron.
  doi: 10.1038/s41528-018-0040-2
– volume: 19
  start-page: 230
  year: 2020
  end-page: 235
  ident: CR29
  article-title: Self-powered active spherical triboelectric sensor for fluid velocity detection
  publication-title: IEEE Trans. Nanotechnol.
  doi: 10.1109/TNANO.2020.2976154
– volume: 20
  start-page: 656
  year: 2020
  ident: CR77
  article-title: Gait segmentation method using a plantar pressure measurement system with custom-made capacitive sensors
  publication-title: Sensors
  doi: 10.3390/s20030656
– volume: 1
  start-page: 92
  year: 2020
  end-page: 124
  ident: CR25
  article-title: Smart materials for smart healthcare–moving from sensors and actuators to self-sustained nanoenergy nanosystems
  publication-title: Smart Mater. Med.
  doi: 10.1016/j.smaim.2020.07.005
– ident: CR83
– volume: 19
  start-page: 5544
  year: 2019
  end-page: 5552
  ident: CR9
  article-title: Moisture-driven power generation for multifunctional flexible sensing systems
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.9b02081
– volume: 1
  start-page: 160
  year: 2018
  end-page: 171
  ident: CR1
  article-title: Wearable sweat sensors
  publication-title: Nat. Electron.
  doi: 10.1038/s41928-018-0043-y
– volume: 7
  start-page: 7
  year: 2019
  ident: CR66
  article-title: Leveraging digital twin technology in model-based systems engineering
  publication-title: Systems
  doi: 10.3390/systems7010007
– volume: 28
  start-page: 4373
  year: 2016
  end-page: 4395
  ident: CR7
  article-title: Monitoring of vital signs with flexible and wearable medical devices
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201504366
– volume: 11
  year: 2020
  ident: CR82
  article-title: Deep learning enabled smart mats as a scalable floor monitoring system
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-18471-z
– volume: 12
  start-page: 2027
  year: 2018
  ident: 92_CR55
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b00147
– volume: 17
  start-page: 2735
  year: 2017
  ident: 92_CR11
  publication-title: Sensors
  doi: 10.3390/s17122735
– volume: 8
  start-page: 1703086
  year: 2018
  ident: 92_CR17
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201703086
– volume: 1
  start-page: 1900088
  year: 2019
  ident: 92_CR12
  publication-title: Adv. Intell. Syst.
  doi: 10.1002/aisy.201900088
– volume: 31
  start-page: 1902831
  year: 2019
  ident: 92_CR53
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201902831
– volume: 2
  start-page: 1131
  year: 2020
  ident: 92_CR64
  publication-title: InfoMat
  doi: 10.1002/inf2.12122
– volume: 20
  start-page: 656
  year: 2020
  ident: 92_CR77
  publication-title: Sensors
  doi: 10.3390/s20030656
– volume: 56
  start-page: 516
  year: 2019
  ident: 92_CR49
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.11.078
– volume: 28
  start-page: 10267
  year: 2016
  ident: 92_CR42
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201603679
– volume: 4
  start-page: 1800167
  year: 2019
  ident: 92_CR81
  publication-title: Adv. Mater. Technol.
  doi: 10.1002/admt.201800167
– volume: 67
  start-page: 104266
  year: 2020
  ident: 92_CR13
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.104266
– volume: 29
  start-page: 1703700
  year: 2017
  ident: 92_CR27
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201703700
– volume: 1
  start-page: 92
  year: 2020
  ident: 92_CR25
  publication-title: Smart Mater. Med.
  doi: 10.1016/j.smaim.2020.07.005
– volume: 13
  start-page: 3935
  year: 2013
  ident: 92_CR71
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2013.2259693
– volume: 11
  year: 2020
  ident: 92_CR82
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-18471-z
– volume: 2
  start-page: 361
  year: 2019
  ident: 92_CR73
  publication-title: Nat. Electron.
  doi: 10.1038/s41928-019-0286-2
– volume: 18
  start-page: 21
  year: 2019
  ident: 92_CR20
  publication-title: IEEE Trans. Nanotechnol.
  doi: 10.1109/TNANO.2018.2876824
– volume: 2
  start-page: 1191
  year: 2020
  ident: 92_CR34
  publication-title: InfoMat
  doi: 10.1002/inf2.12103
– volume: 19
  start-page: 3785
  year: 2019
  ident: 92_CR47
  publication-title: Sensors
  doi: 10.3390/s19173785
– volume: 1
  start-page: 1900090
  year: 2019
  ident: 92_CR79
  publication-title: Adv. Intell. Syst.
  doi: 10.1002/aisy.201900090
– volume: 56
  start-page: 16
  year: 2019
  ident: 92_CR43
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.11.025
– volume: 4
  start-page: 1800360
  year: 2019
  ident: 92_CR51
  publication-title: Adv. Mater. Technol.
  doi: 10.1002/admt.201800360
– volume: 18
  start-page: 1055
  year: 2018
  ident: 92_CR84
  publication-title: Sensors
  doi: 10.3390/s18041055
– volume: 2
  year: 2018
  ident: 92_CR76
  publication-title: npj Flex. Electron.
  doi: 10.1038/s41528-018-0037-x
– volume: 3
  year: 2019
  ident: 92_CR22
  publication-title: npj Flex. Electron.
  doi: 10.1038/s41528-019-0062-4
– volume: 4
  year: 2020
  ident: 92_CR10
  publication-title: npj Flex. Electron.
  doi: 10.1038/s41528-020-0066-0
– volume: 569
  start-page: 698
  year: 2019
  ident: 92_CR61
  publication-title: Nature
  doi: 10.1038/s41586-019-1234-z
– volume: 3
  year: 2018
  ident: 92_CR54
  publication-title: Sci. Robot.
  doi: 10.1126/scirobotics.aat2516
– volume: 2
  start-page: 243
  year: 2019
  ident: 92_CR14
  publication-title: Nat. Electron.
  doi: 10.1038/s41928-019-0257-7
– volume: 19
  start-page: 230
  year: 2020
  ident: 92_CR29
  publication-title: IEEE Trans. Nanotechnol.
  doi: 10.1109/TNANO.2020.2976154
– volume: 122
  start-page: 23
  year: 2019
  ident: 92_CR85
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2019.02.016
– volume: 11
  year: 2020
  ident: 92_CR21
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-15368-9
– volume: 13
  start-page: 1057
  year: 2018
  ident: 92_CR74
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-018-0244-6
– volume: 57
  start-page: 338
  year: 2019
  ident: 92_CR37
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.12.032
– volume: 6
  start-page: 1901437
  year: 2019
  ident: 92_CR45
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201901437
– volume: 38
  start-page: 210
  year: 2017
  ident: 92_CR33
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.05.048
– volume: 30
  start-page: 1707442
  year: 2018
  ident: 92_CR3
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201707442
– volume: 6
  start-page: 1600665
  year: 2016
  ident: 92_CR28
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201600665
– volume: 2
  year: 2018
  ident: 92_CR24
  publication-title: npj Flex. Electron.
  doi: 10.1038/s41528-018-0040-2
– volume: 28
  start-page: 4373
  year: 2016
  ident: 92_CR7
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201504366
– volume: 16
  start-page: 100386
  year: 2020
  ident: 92_CR70
  publication-title: Mater. Today Energy
  doi: 10.1016/j.mtener.2020.100386
– volume: 119
  start-page: 3
  year: 2019
  ident: 92_CR58
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2018.02.010
– volume: 1
  start-page: 1970060
  year: 2019
  ident: 92_CR80
  publication-title: Adv. Intell. Syst.
  doi: 10.1002/aisy.201970060
– volume: 7
  start-page: 031302
  year: 2019
  ident: 92_CR15
  publication-title: APL Mater.
  doi: 10.1063/1.5063498
– volume: 19
  start-page: 5544
  year: 2019
  ident: 92_CR9
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.9b02081
– volume: 575
  start-page: 473
  year: 2019
  ident: 92_CR68
  publication-title: Nature
  doi: 10.1038/s41586-019-1687-0
– volume: 7
  start-page: 92745
  year: 2019
  ident: 92_CR62
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2927394
– volume: 7
  start-page: 7
  year: 2019
  ident: 92_CR66
  publication-title: Systems
  doi: 10.3390/systems7010007
– volume: 65
  start-page: 104039
  year: 2019
  ident: 92_CR69
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.104039
– volume: 14
  start-page: 2618
  year: 2018
  ident: 92_CR16
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2018.2799177
– volume: 14
  start-page: 8915
  year: 2020
  ident: 92_CR19
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c03728
– volume: 29
  start-page: 1703456
  year: 2017
  ident: 92_CR4
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201703456
– volume: 24
  start-page: 1338
  year: 2015
  ident: 92_CR18
  publication-title: J. Microelectromech. Syst.
  doi: 10.1109/JMEMS.2015.2403256
– volume: 19
  start-page: 1757
  year: 2019
  ident: 92_CR50
  publication-title: Sensors
  doi: 10.3390/s19081757
– volume: 2001424
  start-page: 2001424
  year: 2020
  ident: 92_CR75
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202001424
– volume: 70
  start-page: 104528
  year: 2020
  ident: 92_CR41
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.104528
– volume: 32
  start-page: 1902549
  year: 2020
  ident: 92_CR44
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201902549
– ident: 92_CR72
  doi: 10.1109/ISWC.2006.286346
– volume: 521
  start-page: 436
  year: 2015
  ident: 92_CR59
  publication-title: Nature
  doi: 10.1038/nature14539
– ident: 92_CR48
  doi: 10.1109/MeMeA.2017.7985886
– volume: 28
  start-page: 1703420
  year: 2018
  ident: 92_CR31
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201703420
– volume: 69
  start-page: 104417
  year: 2020
  ident: 92_CR32
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.104417
– volume: 30
  start-page: 1802405
  year: 2018
  ident: 92_CR38
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201802405
– volume: 63
  start-page: 103842
  year: 2019
  ident: 92_CR78
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.06.038
– volume: 20
  start-page: 747
  year: 2020
  ident: 92_CR52
  publication-title: Sensors
  doi: 10.3390/s20030747
– volume: 11
  start-page: 4313
  year: 2018
  ident: 92_CR30
  publication-title: Nano Res.
  doi: 10.1007/s12274-018-2018-8
– volume: 27
  start-page: 2433
  year: 2015
  ident: 92_CR26
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201500009
– volume: 4
  start-page: 1600190
  year: 2017
  ident: 92_CR39
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201600190
– volume: 13
  start-page: 1940
  year: 2019
  ident: 92_CR46
  publication-title: ACS Nano
– volume: 2
  year: 2018
  ident: 92_CR23
  publication-title: npj Flex. Electron.
  doi: 10.1038/s41528-018-0022-4
– volume: 30
  start-page: 1910541
  year: 2020
  ident: 92_CR40
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201910541
– volume: 7
  start-page: 031305
  year: 2020
  ident: 92_CR60
  publication-title: Appl. Phys. Rev.
  doi: 10.1063/5.0016485
– volume: 6
  year: 2020
  ident: 92_CR57
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aaz8693
– volume: 57
  start-page: 851
  year: 2019
  ident: 92_CR2
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.01.002
– volume: 1
  start-page: 160
  year: 2018
  ident: 92_CR1
  publication-title: Nat. Electron.
  doi: 10.1038/s41928-018-0043-y
– volume: 2
  year: 2016
  ident: 92_CR5
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1601185
– volume: 7
  start-page: 1800074
  year: 2018
  ident: 92_CR6
  publication-title: Adv. Healthc. Mater.
  doi: 10.1002/adhm.201800074
– volume: 59
  start-page: 689
  year: 2019
  ident: 92_CR56
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.03.005
– volume: 94
  start-page: 3563
  year: 2018
  ident: 92_CR67
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-017-0233-1
– volume: 39
  year: 2015
  ident: 92_CR65
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-015-0344-x
– volume: 7
  start-page: 1903636
  year: 2020
  ident: 92_CR36
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201903636
– volume: 32
  start-page: 1906269
  year: 2019
  ident: 92_CR63
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201906269
– volume: 4
  year: 2018
  ident: 92_CR8
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aat0098
– volume: 2
  year: 2016
  ident: 92_CR35
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1600097
– ident: 92_CR83
  doi: 10.1038/s41467-020-19059-3
SSID ssj0002268191
Score 2.5945392
Snippet The era of artificial intelligence and internet of things is rapidly developed by recent advances in wearable electronics. Gait reveals sensory information in...
Abstract The era of artificial intelligence and internet of things is rapidly developed by recent advances in wearable electronics. Gait reveals sensory...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms 639/166/987
639/301/1005
Artificial intelligence
Chemistry and Materials Science
Cost analysis
Deep learning
Electronics
Electronics and Microelectronics
Energy consumption
Energy harvesting
Gait
Health care
Instrumentation
Internet of Things
Machine learning
Massive data points
Materials Science
Optical and Electronic Materials
Polymer Sciences
Smart buildings
Virtual reality
Wearable technology
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3JTuQwEC1Bc4HDiG00PQPIB26MReIlcU6IVYAEGiFA3Kx4ayGg05Ce_6ecdjeLBLcom-La3is7rgLY9nllGEIfNVXuqLBSUeOKmsoguPLeyLLrEnFxWZzeiPM7eZcm3Nr0W-U0JnaB2jU2zpHvMoyiCDWSy73RM41do-LqamqhMQ8LGIKV6sHCwfHlv6vZLAuSi5iRpN0yGVe7bUQsRWPWFPkF0ssPiNQV7v_ANj8tkHa4c7IMPxJhJPsTDa_AnB-uwtK7MoJroI-8H5HU_2FAfbcdypHYy6qZtLm5t6R9QiMhqIuHliBRJWfNNY0Q5sigvh-TOhUnwQNHbq_I-4Xtdbg5Ob4-PKWpcQK1mO-MqeEhBMQdYxzntVHcllKELA--rmLBt9rlgVmTZ8Zzgy7OXFlkwcvCo4NWwfCf0Bs2Q_8LiGHMiRLTrLhboeZSWWeQkJcCaYzAbKgP-VR42qaq4rG5xaPuVre50hOBaxS47gSuyz7szJ4ZTWpqfHv3QdTJ7M5YD7s70bwMdHIvneE4ubCqrIUQ1mJazwKSHRy7y4vKmT5sTDWqk5O2-s2k-vB3quW3y19_0u_v3_YHFlm0L0Q4VmxAb_zy328idRmbrWSfr-8y6bU
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTxsxEB4FcikHVFqqBijyoTew2PVjH8f0EYVI9FCgys1av6IISBAJ_5-x4w0PQSVuq11bWo_H-32z9nwD8N3ltWYIfVTXuaXCyIpqWzRUesEr57QsY5WIsz_F8FKMxnLcAdbmwsRD-1HSMn6m29NhJ4sANBUNwU6gBcgKN6AbpNrRt7v9_uh8tP6zgoQiRCEpQybj1Sudn6FQFOt_xjBfbIpGrBl8hO1EEkl_9Vo70HGzT7D1RDrwM6hfzt2SVPNhQl1MgbIk1K-ar0rbTA1Z3ODICNr_akGQnJLT-QUNsGXJpJkuSZMESfDCkn9_ydPN7F24HPy--DmkqVgCNRjjLKnm3nvEGq0t542uuCml8FnuXVMHkbfG5p4ZnWfacY3LmtmyyLyThcNFWXvNv8DmbD5zX4FoxqwoMbQKGQoNl5WxGkl4KZC6CIyAepC3xlMmKYmHghbXKu5o80qtDK7Q4CoaXJU9OFr3uV3paPy39Y8wJ-uWQQM73pjfTVTyCZXhOLkwVdkIIYzBUJ55JDg4dpsXtdU9OGhnVKWFuVAMwRgZi-SyB8ftLD8-fvuV9t7XfB8-sOBviHKsOIDN5d29-4b0ZakPk78-AIZ752w
  priority: 102
  providerName: Springer Nature
Title Deep learning-enabled triboelectric smart socks for IoT-based gait analysis and VR applications
URI https://link.springer.com/article/10.1038/s41528-020-00092-7
https://www.proquest.com/docview/2471521535
https://doaj.org/article/033a34c87a444cc8882f081ab8d169db
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BucAB8RQLZeUDN7Ca-JE4x-3SpaxEhUqLerM8flQtsFuxy_9n7GTLFgm4cErkOJI9M873jRx_A_Aq1h0Kgj6OXR248tpwDI3jOilpYkTdlioRH46aw1M1P9NnW6W-8j9hvTxwb7i9SkonlTetU0p5TwmbSARjDk2omy5g_voS5m0lU5dF1KXJmchwSqaSZm-VkcrwnC1lXkG08gYSFcH-Gyzzt43RgjezB3B_IIps0g_wIdyKi0dwb0s-8DHYtzFesaHuwzmP5RhUYLmG1bIvb3Ph2eobzZGRD76sGBFU9n55wjN0BXbuLtbMDaIkdBPY52O2vaH9BE5nByfTQz4UTOCe8pw1R5lSIrxBDGQ1NNK3WqWqTtF1WejNhToJj3WFUSItbRHapkpRN5EWZpdQPoWdxXIRnwFDIYJqKb3KpxSc1MYHJCLeKqIvirKgEdQb41k_qInnohZfbdnVlsb2BrdkcFsMbtsRvL5-56rX0vhr7_3sk-ueWQe7NFB02CE67L-iYwS7G4_aYXGurCBAJtaipR7Bm42Xfz3-85Ce_48hvYC7Ikch4Z9odmFn_f1HfEnEZo1juG1m78ZwZzKZf5rTdf_g6OMxtU6b6bjE90_AW_V8
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiKdYKOADnMBq4kfiHBACyrJLHwe0Rb2Z-LWqgM3SLEL8KX4jYyfZtkj01luUh5XMjGe-sTPzATzzeWUYhj5qqtxRYaWixhU1lUFw5b2RZWKJ2D8oJofi45E82oA_Qy1M_K1y8InJUbvGxjXybYZeFEON5PL18geNrFFxd3Wg0OjMYtf__oUpW_tquoP6fc7Y-P3s3YT2rALUYjKwooaHENApG-M4r43itpQiZHnwdRW7odUuD8yaPDOeG7R_5soiC14WHq23CobjuFfgquAYyWNl-vjDek0HoUzMf_ranIyr7TbGR0VjjhbRDILZc_Ev0QScw7b_bMemKDe-BTd7eEredPZ0Gzb84g7cONO08C7oHe-XpGebmFOfiq8cicxZTUeqc2xJ-x1NkqDmv7YEYTGZNjMaA6Yj8_p4Req-FQoeOPL5Ezm7jX4PDi9FoPdhc9Es_AMghjEnSkzqYm1EzaWyziD8LwWCJoG51wjyQXja9j3MI5XGN5320rnSncA1ClwngetyBC_Wzyy7Dh4X3v026mR9Z-y-nU40J3PdT2ad4XdyYVVZCyGsVZilBIRW-O0uLypnRrA1aFT3LqHVpwY8gpeDlk8v__-VHl482lO4Npnt7-m96cHuI7jOoq1hbGXFFmyuTn76xwiaVuZJslQCXy57avwFaoomXA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB7BIiF6QJSH2EKpD70VQ-JHHselsIJtQRWFipsVv1ao7e6K3f5_xl5ngaqt1FuUOFE8Y-f7JvZ8A_De5bVmCH1U17mlwsiKals0VHrBK-e0LGOViMur4vxWDO7k3RIUbS5M3LQfJS3jZ7rdHXY8DUBT0RDsBFqArPBoYv0yrCDfzkUHVnq9wdfB4u8KkooQiaQsmYxXf3jACySKgv0vWOZvC6MRb_obsJ6IIunNX-01LLnRJrx6Jh-4BerUuQlJdR-G1MU0KEtCDavxvLzNvSHTn9g7gj74PiVIUMnF-IYG6LJk2NzPSJNESfDAkm_X5PmC9jbc9s9uPp7TVDCBGoxzZlRz7z3ijdaW80ZX3JRS-Cz3rqmD0Ftjc8-MzjPtuMapzWxZZN7JwuHErL3mO9AZjUduF4hmzIoSw6uQpdBwWRmrkYiXAumLwCioC3lrPGWSmngoavFDxVVtXqm5wRUaXEWDq7ILHxb3TOZaGv9sfRJ8smgZdLDjifHDUKVxoTLsJxemKhshhDEYzjOPJAf7bvOitroL-61HVZqcU8UQkJG1SC67cNh6-eny31_pzf81fwerX0776vPF1ac9WGNh6CHosWIfOrOHX-4tspmZPkhD9xH5outk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning-enabled+triboelectric+smart+socks+for+IoT-based+gait+analysis+and+VR+applications&rft.jtitle=Npj+flexible+electronics&rft.au=Zixuan+Zhang&rft.au=Tianyiyi+He&rft.au=Minglu+Zhu&rft.au=Zhongda+Sun&rft.date=2020-10-26&rft.pub=Nature+Portfolio&rft.eissn=2397-4621&rft.volume=4&rft.issue=1&rft.spage=1&rft.epage=12&rft_id=info:doi/10.1038%2Fs41528-020-00092-7&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_033a34c87a444cc8882f081ab8d169db
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2397-4621&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2397-4621&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2397-4621&client=summon