Deep learning-enabled triboelectric smart socks for IoT-based gait analysis and VR applications
The era of artificial intelligence and internet of things is rapidly developed by recent advances in wearable electronics. Gait reveals sensory information in daily life containing personal information, regarding identification and healthcare. Current wearable electronics of gait analysis are mainly...
Saved in:
Published in | Npj flexible electronics Vol. 4; no. 1; pp. 1 - 12 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
26.10.2020
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The era of artificial intelligence and internet of things is rapidly developed by recent advances in wearable electronics. Gait reveals sensory information in daily life containing personal information, regarding identification and healthcare. Current wearable electronics of gait analysis are mainly limited by high fabrication cost, operation energy consumption, or inferior analysis methods, which barely involve machine learning or implement nonoptimal models that require massive datasets for training. Herein, we developed low-cost triboelectric intelligent socks for harvesting waste energy from low-frequency body motions to transmit wireless sensory data. The sock equipped with self-powered functionality also can be used as wearable sensors to deliver information, regarding the identity, health status, and activity of the users. To further address the issue of ineffective analysis methods, an optimized deep learning model with an end-to-end structure on the socks signals for the gait analysis is proposed, which produces a 93.54% identification accuracy of 13 participants and detects five different human activities with 96.67% accuracy. Toward practical application, we map the physical signals collected through the socks in the virtual space to establish a digital human system for sports monitoring, healthcare, identification, and future smart home applications. |
---|---|
AbstractList | The era of artificial intelligence and internet of things is rapidly developed by recent advances in wearable electronics. Gait reveals sensory information in daily life containing personal information, regarding identification and healthcare. Current wearable electronics of gait analysis are mainly limited by high fabrication cost, operation energy consumption, or inferior analysis methods, which barely involve machine learning or implement nonoptimal models that require massive datasets for training. Herein, we developed low-cost triboelectric intelligent socks for harvesting waste energy from low-frequency body motions to transmit wireless sensory data. The sock equipped with self-powered functionality also can be used as wearable sensors to deliver information, regarding the identity, health status, and activity of the users. To further address the issue of ineffective analysis methods, an optimized deep learning model with an end-to-end structure on the socks signals for the gait analysis is proposed, which produces a 93.54% identification accuracy of 13 participants and detects five different human activities with 96.67% accuracy. Toward practical application, we map the physical signals collected through the socks in the virtual space to establish a digital human system for sports monitoring, healthcare, identification, and future smart home applications. Abstract The era of artificial intelligence and internet of things is rapidly developed by recent advances in wearable electronics. Gait reveals sensory information in daily life containing personal information, regarding identification and healthcare. Current wearable electronics of gait analysis are mainly limited by high fabrication cost, operation energy consumption, or inferior analysis methods, which barely involve machine learning or implement nonoptimal models that require massive datasets for training. Herein, we developed low-cost triboelectric intelligent socks for harvesting waste energy from low-frequency body motions to transmit wireless sensory data. The sock equipped with self-powered functionality also can be used as wearable sensors to deliver information, regarding the identity, health status, and activity of the users. To further address the issue of ineffective analysis methods, an optimized deep learning model with an end-to-end structure on the socks signals for the gait analysis is proposed, which produces a 93.54% identification accuracy of 13 participants and detects five different human activities with 96.67% accuracy. Toward practical application, we map the physical signals collected through the socks in the virtual space to establish a digital human system for sports monitoring, healthcare, identification, and future smart home applications. |
ArticleNumber | 29 |
Author | Zhang, Zixuan Zhu, Jianxiong Shi, Qiongfeng Zhu, Minglu Yuce, Mehmet Rasit Sun, Zhongda Dong, Bowei Lee, Chengkuo He, Tianyiyi |
Author_xml | – sequence: 1 givenname: Zixuan surname: Zhang fullname: Zhang, Zixuan organization: Department of Electrical & Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Centre for Intelligent Sensors and MEMS (CISM), National University of Singapore, 4 Engineering Drive 3, Hybrid Integrated Flexible Electronic Systems (HIFES), 5 Engineering Drive 1, Smart Systems Institute, National University of Singapore, 3 Research Link – sequence: 2 givenname: Tianyiyi surname: He fullname: He, Tianyiyi organization: Department of Electrical & Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Centre for Intelligent Sensors and MEMS (CISM), National University of Singapore, 4 Engineering Drive 3, Hybrid Integrated Flexible Electronic Systems (HIFES), 5 Engineering Drive 1, National University of Singapore Suzhou Research Institute (NUSRI), Suzhou Industrial Park – sequence: 3 givenname: Minglu surname: Zhu fullname: Zhu, Minglu organization: Department of Electrical & Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Centre for Intelligent Sensors and MEMS (CISM), National University of Singapore, 4 Engineering Drive 3, Hybrid Integrated Flexible Electronic Systems (HIFES), 5 Engineering Drive 1, National University of Singapore Suzhou Research Institute (NUSRI), Suzhou Industrial Park – sequence: 4 givenname: Zhongda orcidid: 0000-0001-7365-1945 surname: Sun fullname: Sun, Zhongda organization: Department of Electrical & Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Centre for Intelligent Sensors and MEMS (CISM), National University of Singapore, 4 Engineering Drive 3, Hybrid Integrated Flexible Electronic Systems (HIFES), 5 Engineering Drive 1 – sequence: 5 givenname: Qiongfeng orcidid: 0000-0002-5979-1420 surname: Shi fullname: Shi, Qiongfeng organization: Department of Electrical & Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Centre for Intelligent Sensors and MEMS (CISM), National University of Singapore, 4 Engineering Drive 3, Hybrid Integrated Flexible Electronic Systems (HIFES), 5 Engineering Drive 1, National University of Singapore Suzhou Research Institute (NUSRI), Suzhou Industrial Park – sequence: 6 givenname: Jianxiong surname: Zhu fullname: Zhu, Jianxiong organization: Department of Electrical & Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Centre for Intelligent Sensors and MEMS (CISM), National University of Singapore, 4 Engineering Drive 3, Hybrid Integrated Flexible Electronic Systems (HIFES), 5 Engineering Drive 1, National University of Singapore Suzhou Research Institute (NUSRI), Suzhou Industrial Park – sequence: 7 givenname: Bowei surname: Dong fullname: Dong, Bowei organization: Department of Electrical & Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Centre for Intelligent Sensors and MEMS (CISM), National University of Singapore, 4 Engineering Drive 3, Hybrid Integrated Flexible Electronic Systems (HIFES), 5 Engineering Drive 1, National University of Singapore Suzhou Research Institute (NUSRI), Suzhou Industrial Park – sequence: 8 givenname: Mehmet Rasit surname: Yuce fullname: Yuce, Mehmet Rasit organization: Department of Electrical and Computer Systems Engineering, Monash University – sequence: 9 givenname: Chengkuo orcidid: 0000-0002-8886-3649 surname: Lee fullname: Lee, Chengkuo email: elelc@nus.edu.sg organization: Department of Electrical & Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Centre for Intelligent Sensors and MEMS (CISM), National University of Singapore, 4 Engineering Drive 3, Hybrid Integrated Flexible Electronic Systems (HIFES), 5 Engineering Drive 1, Smart Systems Institute, National University of Singapore, 3 Research Link, National University of Singapore Suzhou Research Institute (NUSRI), Suzhou Industrial Park, NUS Graduate School for Integrative Science and Engineering (NGS), National University of Singapore |
BookMark | eNp9UU1r3DAUFCWBJtv8gZ4EPSvRl235WNJ8LAQKJc1VPMlPi7au5UrOIf8-yrqhJYecNIiZ92benJKjKU1IyGfBzwVX5qJo0UjDuOSMc95L1n0gJ1L1HdOtFEf_4Y_krJR9JUnZGtGLE2K_Ic50RMhTnHYMJ3AjDnTJ0SUc0VfgafkNeaEl-V-FhpTpNt0zB6XydhAXChOMTyWWCgb68IPCPI_RwxLTVD6R4wBjwbO_74b8vL66v7xld99vtpdf75jXfbMwp0II0mjnBqXAGeW7RgcuAkJvuFQwiCC9E9yhcp3icuhaHrBpUXDRB6c2ZLvOHRLs7ZxjtfxkE0R7-Eh5Z2uG6Ee0vG5Q2psOtNbeG2Nk4EbUrYNo--Fl1pd11pzTn0csi92nx1xDFit1V28tGtVUlllZPqdSMgbr43IIvWSIoxXcvrRj13Zsbcce2rFdlco30lfD74rUKiqVPO0w_3P1juoZUO6juw |
CitedBy_id | crossref_primary_10_1021_acsanm_3c02085 crossref_primary_10_1016_j_nanoen_2024_109882 crossref_primary_10_1016_j_esr_2024_101422 crossref_primary_10_1063_5_0217328 crossref_primary_10_1016_j_mtsust_2024_100801 crossref_primary_10_1016_j_isci_2020_101934 crossref_primary_10_1109_ACCESS_2024_3421573 crossref_primary_10_1021_acsaelm_4c00534 crossref_primary_10_1007_s12274_022_5321_3 crossref_primary_10_1016_j_iot_2024_101187 crossref_primary_10_1002_admt_202200282 crossref_primary_10_1016_j_nanoen_2021_106650 crossref_primary_10_1016_j_nanoen_2022_107588 crossref_primary_10_1002_admt_202401282 crossref_primary_10_1088_1361_6439_ac168e crossref_primary_10_1007_s40820_022_00981_8 crossref_primary_10_1016_j_nanoen_2024_109521 crossref_primary_10_1016_j_device_2024_100466 crossref_primary_10_1016_j_nanoen_2023_109252 crossref_primary_10_3390_s24082462 crossref_primary_10_1002_admt_202301316 crossref_primary_10_3390_s24092944 crossref_primary_10_1016_j_jnca_2021_103244 crossref_primary_10_1007_s12274_023_5879_4 crossref_primary_10_1002_adma_202203073 crossref_primary_10_1016_j_nanoen_2022_107219 crossref_primary_10_1039_D1TA02518J crossref_primary_10_1016_j_csite_2024_105115 crossref_primary_10_1016_j_nanoen_2024_109510 crossref_primary_10_1021_acsanm_2c05360 crossref_primary_10_1016_j_mtcomm_2025_112187 crossref_primary_10_1007_s00521_024_09645_7 crossref_primary_10_1016_j_apmt_2025_102661 crossref_primary_10_1021_acsnano_1c10676 crossref_primary_10_1038_s41467_022_34918_x crossref_primary_10_1109_JSEN_2023_3312737 crossref_primary_10_1002_admt_202301681 crossref_primary_10_1016_j_apmt_2022_101612 crossref_primary_10_1038_s41467_021_25637_w crossref_primary_10_1088_2631_7990_acded1 crossref_primary_10_1557_s43577_021_00123_2 crossref_primary_10_1007_s40820_022_00965_8 crossref_primary_10_1109_JIOT_2021_3093245 crossref_primary_10_1016_j_nanoen_2021_106517 crossref_primary_10_1002_adfm_202301589 crossref_primary_10_1016_j_mtbio_2023_100565 crossref_primary_10_1016_j_nanoen_2023_109034 crossref_primary_10_3390_s22020438 crossref_primary_10_1002_advs_202100230 crossref_primary_10_1021_acsaelm_2c01525 crossref_primary_10_7498_aps_71_20211632 crossref_primary_10_1016_j_nanoen_2023_108180 crossref_primary_10_1016_j_mtsust_2022_100219 crossref_primary_10_1109_JSEN_2024_3349430 crossref_primary_10_1016_j_nanoen_2024_110045 crossref_primary_10_1360_TB_2023_0636 crossref_primary_10_1021_acsaelm_4c02266 crossref_primary_10_1002_adfm_202112155 crossref_primary_10_1007_s11814_024_00227_w crossref_primary_10_1016_j_mattod_2024_08_013 crossref_primary_10_1002_inf2_12360 crossref_primary_10_3390_app131810489 crossref_primary_10_1016_j_sna_2023_114877 crossref_primary_10_1126_sciadv_abg9450 crossref_primary_10_1016_j_medntd_2024_100311 crossref_primary_10_1016_j_nanoen_2022_107112 crossref_primary_10_1016_j_nanoen_2023_108984 crossref_primary_10_1002_adfm_202008805 crossref_primary_10_1002_advs_202305025 crossref_primary_10_1002_smll_202100804 crossref_primary_10_1021_acsbiomaterials_3c01633 crossref_primary_10_1016_j_nanoen_2024_109321 crossref_primary_10_1016_j_nanoen_2023_108473 crossref_primary_10_1016_j_envres_2024_119248 crossref_primary_10_1002_aesr_202400116 crossref_primary_10_1021_acsami_3c10846 crossref_primary_10_1038_s41598_023_29261_0 crossref_primary_10_1021_acsnano_4c04052 crossref_primary_10_1080_15599612_2024_2342279 crossref_primary_10_1016_j_dsp_2021_103038 crossref_primary_10_1016_j_nanoen_2024_110550 crossref_primary_10_1038_s41467_022_29083_0 crossref_primary_10_1016_j_nanoen_2021_105887 crossref_primary_10_1021_acsaelm_3c01043 crossref_primary_10_1145_3705320 crossref_primary_10_1002_admt_202201294 crossref_primary_10_1016_j_cej_2025_160501 crossref_primary_10_1016_j_nanoen_2021_106616 crossref_primary_10_1109_JSEN_2023_3241947 crossref_primary_10_1021_acsami_2c10245 crossref_primary_10_1038_s42256_023_00760_z crossref_primary_10_1002_advs_202303234 crossref_primary_10_1002_aisy_202100228 crossref_primary_10_1063_5_0169868 crossref_primary_10_1016_j_nanoen_2025_110724 crossref_primary_10_1021_acsnano_1c07579 crossref_primary_10_1021_acsami_2c00384 crossref_primary_10_1002_smll_202402452 crossref_primary_10_1021_acsami_3c11805 crossref_primary_10_3390_nanoenergyadv1010005 crossref_primary_10_1021_acsnano_2c04043 crossref_primary_10_1007_s12213_025_00182_7 crossref_primary_10_34133_2021_6849171 crossref_primary_10_1002_adfm_202312443 crossref_primary_10_1016_j_ergon_2023_103445 crossref_primary_10_1109_JSEN_2024_3443229 crossref_primary_10_1126_sciadv_adk7488 crossref_primary_10_1109_JSEN_2024_3419917 crossref_primary_10_3390_mi12080946 crossref_primary_10_3390_s24020626 crossref_primary_10_1038_s41528_022_00218_z crossref_primary_10_1002_admt_202302211 crossref_primary_10_1109_JSEN_2022_3155188 crossref_primary_10_1016_j_cej_2024_154441 crossref_primary_10_1002_adfm_202406773 crossref_primary_10_1002_adfm_202405321 crossref_primary_10_1016_j_nanoen_2022_107447 crossref_primary_10_1021_acsmaterialsau_2c00001 crossref_primary_10_1016_j_joule_2022_06_001 crossref_primary_10_1186_s11671_023_03783_y crossref_primary_10_1016_j_nanoen_2025_110821 crossref_primary_10_3390_nano14141173 crossref_primary_10_1002_advs_202201056 crossref_primary_10_1002_smll_202405064 crossref_primary_10_1155_2022_6115513 crossref_primary_10_3390_nano14020165 crossref_primary_10_1016_j_nanoen_2022_107557 crossref_primary_10_1016_j_joule_2022_06_011 crossref_primary_10_1088_1361_6439_ad6778 crossref_primary_10_1016_j_joule_2022_06_013 crossref_primary_10_1021_acssensors_4c02734 crossref_primary_10_1063_5_0219223 crossref_primary_10_1016_j_nanoen_2023_108792 crossref_primary_10_1021_acsami_1c19718 crossref_primary_10_3390_s22207784 crossref_primary_10_1016_j_nanoen_2021_106492 crossref_primary_10_1016_j_nanoen_2024_110118 crossref_primary_10_1109_JSEN_2024_3405173 crossref_primary_10_1126_sciadv_abl9874 crossref_primary_10_1016_j_nanoen_2021_106807 crossref_primary_10_1002_admt_202301022 crossref_primary_10_1016_j_ymssp_2023_110843 crossref_primary_10_1088_1361_665X_ada331 crossref_primary_10_1016_j_nanoen_2023_108559 crossref_primary_10_3390_s24041069 crossref_primary_10_1109_JIOT_2024_3434657 crossref_primary_10_1016_j_nanoen_2023_108312 crossref_primary_10_1088_1361_6439_ac3ab9 crossref_primary_10_3390_mi12030337 crossref_primary_10_1016_j_nanoen_2022_107978 crossref_primary_10_3233_THC_213004 crossref_primary_10_3390_micro3020032 crossref_primary_10_3390_nano11112975 crossref_primary_10_1016_j_nanoen_2020_105670 crossref_primary_10_1155_2024_5572736 crossref_primary_10_1016_j_nanoen_2024_109465 crossref_primary_10_1016_j_xcrp_2024_101888 crossref_primary_10_1038_s41467_021_23020_3 crossref_primary_10_1016_j_dsp_2022_103570 crossref_primary_10_1002_cav_2293 crossref_primary_10_1016_j_ultrasmedbio_2022_04_005 crossref_primary_10_1109_LED_2023_3249340 crossref_primary_10_1002_adma_202409440 crossref_primary_10_1109_JSEN_2023_3287291 crossref_primary_10_3389_frobt_2021_749274 crossref_primary_10_1002_adom_202301028 crossref_primary_10_1016_j_jksuci_2023_101846 crossref_primary_10_1109_JSEN_2021_3099016 crossref_primary_10_1016_j_nanoen_2022_107764 crossref_primary_10_1016_j_cej_2023_146292 crossref_primary_10_1016_j_nanoen_2022_107762 crossref_primary_10_1002_aenm_202302699 crossref_primary_10_1007_s40820_023_01235_x crossref_primary_10_1007_s11664_024_11316_1 crossref_primary_10_34133_research_0154 crossref_primary_10_1021_acsami_3c06256 crossref_primary_10_1038_s41528_022_00181_9 crossref_primary_10_3390_polym17020210 crossref_primary_10_1002_inf2_12527 crossref_primary_10_1109_JSEN_2023_3347423 crossref_primary_10_1002_smtd_202200830 crossref_primary_10_1002_admt_202300095 crossref_primary_10_1002_inf2_12520 crossref_primary_10_1186_s42234_023_00118_1 crossref_primary_10_1002_aisy_202400124 crossref_primary_10_1038_s41528_022_00203_6 crossref_primary_10_3390_s23041868 crossref_primary_10_1039_D2NA00608A crossref_primary_10_1002_aenm_202301254 crossref_primary_10_1016_j_sna_2024_115985 crossref_primary_10_1002_advs_202101834 crossref_primary_10_3390_su151612589 crossref_primary_10_1016_j_nanoen_2022_108110 crossref_primary_10_1002_advs_202103694 crossref_primary_10_1021_acs_analchem_2c04527 crossref_primary_10_1007_s42235_022_00320_y crossref_primary_10_1021_acs_chemrev_3c00507 crossref_primary_10_1002_inf2_12412 crossref_primary_10_1002_aisy_202300222 crossref_primary_10_3390_ma14206073 crossref_primary_10_1007_s12274_023_5784_x crossref_primary_10_1080_15435075_2024_2437511 crossref_primary_10_1016_j_nanoen_2021_106330 crossref_primary_10_3389_felec_2022_1017511 crossref_primary_10_1039_D3NR01334K crossref_primary_10_1016_j_apmt_2023_101874 crossref_primary_10_1016_j_sna_2023_114549 crossref_primary_10_1080_10447318_2023_2276991 crossref_primary_10_3390_s24020449 crossref_primary_10_1016_j_nanoen_2021_106698 crossref_primary_10_1002_adma_202109355 crossref_primary_10_1021_acsnano_1c04464 crossref_primary_10_3390_s24010075 crossref_primary_10_1002_admt_202400554 crossref_primary_10_1007_s40820_021_00644_0 crossref_primary_10_1016_j_seta_2023_103349 crossref_primary_10_1109_JSEN_2022_3216459 crossref_primary_10_1002_aelm_202400884 crossref_primary_10_1002_advs_202300471 crossref_primary_10_1007_s40820_023_01029_1 crossref_primary_10_1038_s41467_022_32745_8 crossref_primary_10_1016_j_csite_2024_104867 crossref_primary_10_1016_j_nanoen_2024_109956 crossref_primary_10_1108_SR_02_2024_0080 crossref_primary_10_1002_aenm_202203040 crossref_primary_10_1007_s11431_021_1984_9 crossref_primary_10_1016_j_apmt_2023_102039 crossref_primary_10_1109_OJCAS_2021_3123272 crossref_primary_10_1016_j_jechem_2022_12_024 crossref_primary_10_1109_ACCESS_2021_3124812 crossref_primary_10_1021_acsami_4c01929 crossref_primary_10_1021_acsbiomaterials_1c00741 crossref_primary_10_1021_acs_langmuir_4c02832 crossref_primary_10_1016_j_compositesb_2024_111615 crossref_primary_10_1002_advs_202408384 crossref_primary_10_1109_ACCESS_2024_3380360 crossref_primary_10_1088_1361_665X_adb404 crossref_primary_10_1021_acsami_2c19233 crossref_primary_10_1016_j_apenergy_2023_122524 crossref_primary_10_1002_VIW_20220026 crossref_primary_10_1016_j_nanoen_2022_108137 crossref_primary_10_1016_j_nanoen_2023_108656 crossref_primary_10_34133_research_0333 crossref_primary_10_1016_j_sna_2022_113836 crossref_primary_10_1109_JSEN_2023_3260846 crossref_primary_10_1002_advs_202100711 crossref_primary_10_1002_adsr_202200072 crossref_primary_10_1016_j_nanoen_2024_110124 crossref_primary_10_1002_aisy_202200371 crossref_primary_10_1007_s40820_022_00874_w crossref_primary_10_1016_j_nanoen_2024_110125 crossref_primary_10_1016_j_sna_2023_114311 crossref_primary_10_1002_adma_202404763 crossref_primary_10_1111_exsy_12955 crossref_primary_10_1021_acsami_2c01972 crossref_primary_10_1002_admt_202302068 crossref_primary_10_1016_j_device_2025_100707 crossref_primary_10_1088_1402_4896_acc98c crossref_primary_10_3390_nano12081366 crossref_primary_10_1016_j_nanoen_2023_108787 crossref_primary_10_1016_j_nanoen_2023_108783 crossref_primary_10_1149_1945_7111_ac72c3 crossref_primary_10_1039_D4TA07127A crossref_primary_10_1002_adfm_202301816 crossref_primary_10_3390_s24113343 |
Cites_doi | 10.1002/adma.201802405 10.1002/adfm.201910541 10.1038/s41565-018-0244-6 10.3390/s19173785 10.1126/sciadv.1601185 10.1007/s10916-015-0344-x 10.1016/j.nanoen.2019.06.038 10.1002/inf2.12103 10.1038/s41528-018-0037-x 10.1016/j.nanoen.2019.01.002 10.1002/adma.201703700 10.1007/s12274-018-2018-8 10.1126/sciadv.1600097 10.3390/s19081757 10.1002/aenm.202001424 10.1016/j.patrec.2019.02.016 10.1002/adma.201703456 10.1109/JSEN.2013.2259693 10.1038/s41928-019-0286-2 10.1109/TII.2018.2799177 10.1007/s00170-017-0233-1 10.1002/aisy.201900088 10.1109/ACCESS.2019.2927394 10.1002/aenm.201600665 10.1002/adma.201906269 10.1002/admt.201800360 10.1002/inf2.12122 10.1016/j.nanoen.2017.05.048 10.1002/adma.201902549 10.1038/s41528-020-0066-0 10.1038/nature14539 10.1002/admt.201800167 10.1038/s41528-018-0022-4 10.1002/adhm.201800074 10.1002/adma.201500009 10.1038/s41586-019-1234-z 10.1002/aisy.201970060 10.1002/aenm.201703086 10.1016/j.nanoen.2019.104417 10.1109/TNANO.2018.2876824 10.1002/adma.201603679 10.1038/s41928-019-0257-7 10.3390/s20030747 10.1021/acsnano.8b00147 10.1016/j.patrec.2018.02.010 10.1038/s41528-019-0062-4 10.1002/advs.201901437 10.1002/adma.201902831 10.1126/sciadv.aaz8693 10.1109/JMEMS.2015.2403256 10.1002/adfm.201703420 10.1126/scirobotics.aat2516 10.1016/j.nanoen.2020.104528 10.1063/5.0016485 10.3390/s18041055 10.1016/j.nanoen.2019.104039 10.1002/advs.201903636 10.1016/j.nanoen.2018.11.078 10.1016/j.nanoen.2019.03.005 10.1002/adma.201707442 10.1016/j.mtener.2020.100386 10.1038/s41586-019-1687-0 10.1016/j.nanoen.2019.104266 10.1016/j.nanoen.2018.11.025 10.1016/j.nanoen.2018.12.032 10.3390/s17122735 10.1002/advs.201600190 10.1038/s41467-020-15368-9 10.1002/aisy.201900090 10.1126/sciadv.aat0098 10.1063/1.5063498 10.1021/acsnano.0c03728 10.1038/s41528-018-0040-2 10.1109/TNANO.2020.2976154 10.3390/s20030656 10.1016/j.smaim.2020.07.005 10.1021/acs.nanolett.9b02081 10.1038/s41928-018-0043-y 10.3390/systems7010007 10.1002/adma.201504366 10.1038/s41467-020-18471-z 10.1109/ISWC.2006.286346 10.1109/MeMeA.2017.7985886 10.1038/s41467-020-19059-3 |
ContentType | Journal Article |
Copyright | The Author(s) 2020 The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2020 – notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS DOA |
DOI | 10.1038/s41528-020-00092-7 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central Korea SciTech Premium Collection Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ - Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: Directory of Open Access Journals (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2397-4621 |
EndPage | 12 |
ExternalDocumentID | oai_doaj_org_article_033a34c87a444cc8882f081ab8d169db 10_1038_s41528_020_00092_7 |
GrantInformation_xml | – fundername: This research is supported by the National Research Foundation Singapore under its AI Singapore Programme (Award Number: AISG-GC-2019-002); and National Key Research and Development Program of China (Grant No. 2019YFB2004800, Project No. R-2020-S-002). |
GroupedDBID | 0R~ AAJSJ ACGFS ACSMW ADBBV ADMLS AFKRA AJTQC ALMA_UNASSIGNED_HOLDINGS ARAPS ARCSS BCNDV BENPR BGLVJ C6C CCPQU EBLON EBS GROUPED_DOAJ HCIFZ M~E NAO OK1 PIMPY RNT SNYQT AASML AAYXX CITATION PHGZM PHGZT 8FE 8FG ABUWG AZQEC DWQXO P62 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c495t-b3fff284bbd33ab83c754f01fea98023ad1f2cb10be3b7302d760fe56e1019fb3 |
IEDL.DBID | DOA |
ISSN | 2397-4621 |
IngestDate | Wed Aug 27 01:32:02 EDT 2025 Sun Jul 13 04:29:38 EDT 2025 Thu Apr 24 23:11:49 EDT 2025 Tue Jul 01 00:41:07 EDT 2025 Fri Feb 21 02:40:19 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c495t-b3fff284bbd33ab83c754f01fea98023ad1f2cb10be3b7302d760fe56e1019fb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-8886-3649 0000-0001-7365-1945 0000-0002-5979-1420 |
OpenAccessLink | https://doaj.org/article/033a34c87a444cc8882f081ab8d169db |
PQID | 2471521535 |
PQPubID | 4669720 |
PageCount | 12 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_033a34c87a444cc8882f081ab8d169db proquest_journals_2471521535 crossref_citationtrail_10_1038_s41528_020_00092_7 crossref_primary_10_1038_s41528_020_00092_7 springer_journals_10_1038_s41528_020_00092_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-10-26 |
PublicationDateYYYYMMDD | 2020-10-26 |
PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-26 day: 26 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Npj flexible electronics |
PublicationTitleAbbrev | npj Flex Electron |
PublicationYear | 2020 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Lu (CR10) 2020; 4 Li, Ni, Sun, Min, Al-Rubaye (CR16) 2018; 14 Liao (CR32) 2020; 69 Madni, Madni, Lucero (CR66) 2019; 7 Zhang (CR78) 2019; 63 Wen (CR35) 2016; 2 Lund (CR23) 2018; 2 Guo (CR54) 2018; 3 Khan, Mahmud, Ban (CR20) 2019; 18 CR72 Aqueveque, Germany, Osorio, Pastene (CR77) 2020; 20 Bariya, Nyein, Javey (CR1) 2018; 1 Zhang (CR8) 2018; 4 Liu (CR5) 2016; 2 Liu (CR27) 2017; 29 Tian (CR14) 2019; 2 Dong (CR19) 2020; 14 Hassani, Lee (CR18) 2015; 24 Niu (CR73) 2019; 2 Dong, Peng, Wang (CR44) 2020; 32 Liu (CR17) 2018; 8 Jiang (CR70) 2020; 16 Wen (CR13) 2020; 67 Hu, Zheng (CR43) 2019; 56 Tao (CR67) 2018; 94 Smirnov (CR22) 2019; 3 Wang, Dong, Peng, Pan (CR79) 2019; 1 CR48 Zhu, He, Lee (CR60) 2020; 7 Zhao (CR81) 2019; 4 Liu (CR21) 2020; 11 Linghu, Zhang, Wang, Song (CR76) 2018; 2 Zhu (CR57) 2020; 6 Qiu, Wu, Shi, Lee, Yuce (CR62) 2019; 7 Jiang (CR34) 2020; 2 CR83 Sorrentino (CR52) 2020; 20 Shi, He, Lee (CR2) 2019; 57 Wang, Chen, Hao, Peng, Hu (CR58) 2019; 119 Khan, Ostfeld, Lochner, Pierre, Arias (CR7) 2016; 28 Lee, Choi, Choi (CR50) 2019; 19 Chen (CR38) 2018; 30 Wang, He, Lee (CR69) 2019; 65 Cheng (CR29) 2020; 19 Lee, Shi, Lee (CR15) 2019; 7 Sundaram (CR61) 2019; 569 Li (CR9) 2019; 19 Shen (CR31) 2018; 28 Trung (CR6) 2018; 7 Zhao (CR42) 2016; 28 Lee (CR63) 2019; 32 Cho, Yoon (CR84) 2018; 18 Son (CR74) 2018; 13 Lee (CR26) 2015; 27 Baloglu, Talo, Yildirim, Tan, Acharya (CR85) 2019; 122 Yu (CR68) 2019; 575 Tai (CR3) 2018; 30 Liang (CR12) 2019; 1 Shi (CR64) 2020; 2 Zhao (CR41) 2020; 70 Han (CR49) 2019; 56 Torres Alonso (CR24) 2018; 2 Mezghani, Exposito, Drira, Da Silveira, Pruski (CR65) 2015; 39 Yang (CR55) 2018; 12 Cheng, Amft, Bahle, Lukowicz (CR71) 2013; 13 Ouyang (CR4) 2017; 29 Choi, Moon, Park, Choi (CR47) 2019; 19 Dehzangi, Taherisadr, ChangalVala (CR11) 2017; 17 Huang (CR40) 2020; 30 Cao, Jie, Wang, Wang (CR28) 2016; 6 Sun (CR33) 2017; 38 He (CR37) 2019; 57 Lin (CR51) 2019; 4 He (CR45) 2019; 6 Dong (CR36) 2020; 7 Song, Zhao, Wang, Yang (CR53) 2019; 31 He (CR56) 2019; 59 Mackanic, Kao, Bao (CR75) 2020; 2001424 Shi (CR82) 2020; 11 Zhou (CR30) 2018; 11 Cai (CR39) 2017; 4 LeCun, Bengio, Hinton (CR59) 2015; 521 Arab Hassani (CR25) 2020; 1 Li (CR80) 2019; 1 Zhu (CR46) 2019; 13 Y-Z Zhang (92_CR8) 2018; 4 G Lee (92_CR63) 2019; 32 N Sun (92_CR33) 2017; 38 T He (92_CR45) 2019; 6 Q Shen (92_CR31) 2018; 28 K Dong (92_CR44) 2020; 32 I Sorrentino (92_CR52) 2020; 20 L Chen (92_CR38) 2018; 30 Q Shi (92_CR64) 2020; 2 J Lee (92_CR26) 2015; 27 X Cao (92_CR28) 2016; 6 P Cheng (92_CR29) 2020; 19 E Torres Alonso (92_CR24) 2018; 2 M Zhu (92_CR46) 2019; 13 F Tao (92_CR67) 2018; 94 J Li (92_CR80) 2019; 1 Q Lu (92_CR10) 2020; 4 Y Hu (92_CR43) 2019; 56 Z Zhao (92_CR42) 2016; 28 Y Khan (92_CR7) 2016; 28 Y LeCun (92_CR59) 2015; 521 C Linghu (92_CR76) 2018; 2 TQ Trung (92_CR6) 2018; 7 92_CR72 X Yu (92_CR68) 2019; 575 H Cho (92_CR84) 2018; 18 M Liu (92_CR27) 2017; 29 FA Hassani (92_CR18) 2015; 24 Z Lin (92_CR51) 2019; 4 D Son (92_CR74) 2018; 13 J Wang (92_CR69) 2019; 65 O Dehzangi (92_CR11) 2017; 17 P Aqueveque (92_CR77) 2020; 20 J Wang (92_CR58) 2019; 119 G Liu (92_CR17) 2018; 8 AA Khan (92_CR20) 2019; 18 H Ouyang (92_CR4) 2017; 29 M Zhu (92_CR60) 2020; 7 C Wang (92_CR79) 2019; 1 C Zhou (92_CR30) 2018; 11 Y Yang (92_CR55) 2018; 12 D Jiang (92_CR34) 2020; 2 T He (92_CR37) 2019; 57 Q Huang (92_CR40) 2020; 30 Y Han (92_CR49) 2019; 56 E Mezghani (92_CR65) 2015; 39 F Wen (92_CR13) 2020; 67 J Cheng (92_CR71) 2013; 13 JRC Smirnov (92_CR22) 2019; 3 A Madni (92_CR66) 2019; 7 J Liao (92_CR32) 2020; 69 Y Liu (92_CR21) 2020; 11 Q Shi (92_CR2) 2019; 57 G Zhao (92_CR81) 2019; 4 UB Baloglu (92_CR85) 2019; 122 R Zhang (92_CR78) 2019; 63 S Niu (92_CR73) 2019; 2 B Dong (92_CR19) 2020; 14 A Lund (92_CR23) 2018; 2 K Song (92_CR53) 2019; 31 Q Shi (92_CR82) 2020; 11 S Lee (92_CR15) 2019; 7 L-C Tai (92_CR3) 2018; 30 Z Wen (92_CR35) 2016; 2 F Arab Hassani (92_CR25) 2020; 1 S-S Lee (92_CR50) 2019; 19 DG Mackanic (92_CR75) 2020; 2001424 G Cai (92_CR39) 2017; 4 X Tian (92_CR14) 2019; 2 B Dong (92_CR36) 2020; 7 Z Zhao (92_CR41) 2020; 70 92_CR48 M Zhu (92_CR57) 2020; 6 M Bariya (92_CR1) 2018; 1 X Liang (92_CR12) 2019; 1 Y Liu (92_CR5) 2016; 2 D Jiang (92_CR70) 2020; 16 H Guo (92_CR54) 2018; 3 S Li (92_CR16) 2018; 14 S Sundaram (92_CR61) 2019; 569 L Li (92_CR9) 2019; 19 C Qiu (92_CR62) 2019; 7 Q He (92_CR56) 2019; 59 SIL Choi (92_CR47) 2019; 19 92_CR83 |
References_xml | – volume: 30 start-page: 1802405 year: 2018 ident: CR38 article-title: Controlling surface charge generated by contact electrification: strategies and applications publication-title: Adv. Mater. doi: 10.1002/adma.201802405 – volume: 30 start-page: 1910541 year: 2020 ident: CR40 article-title: Additive functionalization and embroidery for manufacturing wearable and washable textile supercapacitors publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201910541 – volume: 13 start-page: 1057 year: 2018 end-page: 1065 ident: CR74 article-title: An integrated self-healable electronic skin system fabricated via dynamic reconstruction of a nanostructured conducting network publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-018-0244-6 – volume: 19 start-page: 3785 year: 2019 ident: CR47 article-title: User identification from gait analysis using multi-modal sensors in smart insole publication-title: Sensors doi: 10.3390/s19173785 – volume: 2 year: 2016 ident: CR5 article-title: Epidermal mechano-acoustic sensing electronics for cardiovascular diagnostics and human-machine interfaces publication-title: Sci. Adv. doi: 10.1126/sciadv.1601185 – volume: 39 year: 2015 ident: CR65 article-title: A semantic big data platform for integrating heterogeneous wearable data in healthcare publication-title: J. Med. Syst. doi: 10.1007/s10916-015-0344-x – volume: 63 start-page: 103842 year: 2019 ident: CR78 article-title: Sensing body motions based on charges generated on the body publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.06.038 – volume: 2 start-page: 1191 year: 2020 end-page: 1200 ident: CR34 article-title: A wearable noncontact free-rotating hybrid nanogenerator for self-powered electronics publication-title: InfoMat doi: 10.1002/inf2.12103 – volume: 2 year: 2018 ident: CR76 article-title: Transfer printing techniques for flexible and stretchable inorganic electronics publication-title: npj Flex. Electron. doi: 10.1038/s41528-018-0037-x – volume: 57 start-page: 851 year: 2019 end-page: 871 ident: CR2 article-title: More than energy harvesting – combining triboelectric nanogenerator and flexible electronics technology for enabling novel micro-/nano-systems publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.01.002 – volume: 29 start-page: 1703700 year: 2017 ident: CR27 article-title: Large-area all-textile pressure sensors for monitoring human motion and physiological signals publication-title: Adv. Mater. doi: 10.1002/adma.201703700 – volume: 11 start-page: 4313 year: 2018 end-page: 4322 ident: CR30 article-title: Flexible self-charging power units for portable electronics based on folded carbon paper publication-title: Nano Res. doi: 10.1007/s12274-018-2018-8 – volume: 2 year: 2016 ident: CR35 article-title: Self-powered textile for wearable electronics by hybridizing fiber-shaped nanogenerators, solar cells, and supercapacitors publication-title: Sci. Adv. doi: 10.1126/sciadv.1600097 – volume: 19 start-page: 1757 year: 2019 ident: CR50 article-title: Classification of gait type based on deep learning using various sensors with smart insole publication-title: Sensors doi: 10.3390/s19081757 – volume: 2001424 start-page: 2001424 year: 2020 ident: CR75 article-title: Enabling deformable and stretchable batteries publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202001424 – volume: 122 start-page: 23 year: 2019 end-page: 30 ident: CR85 article-title: Classification of myocardial infarction with multi-lead ECG signals and deep CNN publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2019.02.016 – volume: 29 start-page: 1703456 year: 2017 ident: CR4 article-title: Self-powered pulse sensor for antidiastole of cardiovascular disease publication-title: Adv. Mater. doi: 10.1002/adma.201703456 – volume: 13 start-page: 3935 year: 2013 end-page: 3947 ident: CR71 article-title: Designing sensitive wearable capacitive sensors for activity recognition publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2013.2259693 – volume: 2 start-page: 361 year: 2019 end-page: 368 ident: CR73 article-title: A wireless body area sensor network based on stretchable passive tags publication-title: Nat. Electron. doi: 10.1038/s41928-019-0286-2 – volume: 14 start-page: 2618 year: 2018 end-page: 2628 ident: CR16 article-title: Energy-efficient resource allocation for industrial cyber-physical IoT systems in 5G era publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2018.2799177 – volume: 94 start-page: 3563 year: 2018 end-page: 3576 ident: CR67 article-title: Digital twin-driven product design, manufacturing and service with big data publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-017-0233-1 – volume: 1 start-page: 1900088 year: 2019 ident: CR12 article-title: Fusion of wearable and contactless sensors for intelligent gesture recognition publication-title: Adv. Intell. Syst. doi: 10.1002/aisy.201900088 – volume: 7 start-page: 92745 year: 2019 ident: CR62 article-title: Sensors and control interface methods based on triboelectric nanogenerator in IoT applications publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2927394 – volume: 6 start-page: 1600665 year: 2016 ident: CR28 article-title: Triboelectric nanogenerators driven self-powered electrochemical processes for energy and environmental science publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201600665 – volume: 32 start-page: 1906269 year: 2019 ident: CR63 article-title: Parallel signal processing of a wireless pressure‐sensing platform combined with machine‐learning‐based cognition, inspired by the human somatosensory system publication-title: Adv. Mater. doi: 10.1002/adma.201906269 – volume: 4 start-page: 1800360 year: 2019 ident: CR51 article-title: A triboelectric nanogenerator-based smart insole for multifunctional gait monitoring publication-title: Adv. Mater. Technol. doi: 10.1002/admt.201800360 – volume: 2 start-page: 1131 year: 2020 end-page: 1162 ident: CR64 article-title: Progress in wearable electronics/photonics-moving toward the era of artificial intelligence and internet of things publication-title: InfoMat doi: 10.1002/inf2.12122 – volume: 38 start-page: 210 year: 2017 end-page: 217 ident: CR33 article-title: All flexible electrospun papers based self-charging power system publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.05.048 – volume: 32 start-page: 1902549 year: 2020 ident: CR44 article-title: Fiber/fabric‐based piezoelectric and triboelectric nanogenerators for flexible/stretchable and wearable electronics and artificial intelligence publication-title: Adv. Mater. doi: 10.1002/adma.201902549 – volume: 4 year: 2020 ident: CR10 article-title: Bio-inspired flexible artificial synapses for pain perception and nerve injuries publication-title: npj Flex. Electron. doi: 10.1038/s41528-020-0066-0 – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: CR59 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 4 start-page: 1800167 year: 2019 ident: CR81 article-title: Keystroke dynamics identification based on triboelectric nanogenerator for intelligent keyboard using deep learning method publication-title: Adv. Mater. Technol. doi: 10.1002/admt.201800167 – volume: 13 start-page: 1940 year: 2019 end-page: 1952 ident: CR46 article-title: Self-powered and self-functional cotton sock using piezoelectric and triboelectric hybrid mechanism for healthcare and sports monitoring publication-title: ACS Nano – volume: 2 year: 2018 ident: CR23 article-title: Energy harvesting textiles for a rainy day: woven piezoelectrics based on melt-spun PVDF microfibres with a conducting core publication-title: npj Flex. Electron. doi: 10.1038/s41528-018-0022-4 – volume: 7 start-page: 1800074 year: 2018 ident: CR6 article-title: Freestanding, fiber-based, wearable temperature sensor with tunable thermal index for healthcare monitoring publication-title: Adv. Healthc. Mater. doi: 10.1002/adhm.201800074 – volume: 27 start-page: 2433 year: 2015 end-page: 2439 ident: CR26 article-title: Conductive fiber-based ultrasensitive textile pressure sensor for wearable electronics publication-title: Adv. Mater. doi: 10.1002/adma.201500009 – volume: 569 start-page: 698 year: 2019 end-page: 702 ident: CR61 article-title: Learning the signatures of the human grasp using a scalable tactile glove publication-title: Nature doi: 10.1038/s41586-019-1234-z – volume: 1 start-page: 1970060 year: 2019 ident: CR80 article-title: Skin‐inspired electronics and its applications in advanced intelligent systems publication-title: Adv. Intell. Syst. doi: 10.1002/aisy.201970060 – volume: 8 start-page: 1703086 year: 2018 ident: CR17 article-title: Wireless electric energy transmission through various isolated solid media based on triboelectric nanogenerator publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201703086 – volume: 69 start-page: 104417 year: 2020 ident: CR32 article-title: Nestable arched triboelectric nanogenerator for large deflection biomechanical sensing and energy harvesting publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.104417 – volume: 18 start-page: 21 year: 2019 end-page: 36 ident: CR20 article-title: Evolution from single to hybrid nanogenerator: a contemporary review on multimode energy harvesting for self-powered electronics publication-title: IEEE Trans. Nanotechnol. doi: 10.1109/TNANO.2018.2876824 – volume: 28 start-page: 10267 year: 2016 end-page: 10274 ident: CR42 article-title: Machine-washable textile triboelectric nanogenerators for effective human respiratory monitoring through loom weaving of metallic yarns publication-title: Adv. Mater. doi: 10.1002/adma.201603679 – volume: 2 start-page: 243 year: 2019 end-page: 251 ident: CR14 article-title: Wireless body sensor networks based on metamaterial textiles publication-title: Nat. Electron. doi: 10.1038/s41928-019-0257-7 – volume: 20 start-page: 747 year: 2020 ident: CR52 article-title: A novel sensorised insole for sensing feet pressure distributions publication-title: Sensors doi: 10.3390/s20030747 – volume: 12 start-page: 2027 year: 2018 end-page: 2034 ident: CR55 article-title: Liquid-metal-based super-stretchable and structure-designable triboelectric nanogenerator for wearable electronics publication-title: ACS Nano doi: 10.1021/acsnano.8b00147 – volume: 119 start-page: 3 year: 2019 end-page: 11 ident: CR58 article-title: Deep learning for sensor-based activity recognition: a survey publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2018.02.010 – volume: 3 year: 2019 ident: CR22 article-title: Flexible distributed feedback lasers based on nanoimprinted cellulose diacetate with efficient multiple wavelength lasing publication-title: npj Flex. Electron. doi: 10.1038/s41528-019-0062-4 – ident: CR72 – volume: 6 start-page: 1901437 year: 2019 ident: CR45 article-title: Self-sustainable wearable textile nano-energy nano-system (NENS) for next-generation healthcare applications publication-title: Adv. Sci. doi: 10.1002/advs.201901437 – volume: 31 start-page: 1902831 year: 2019 ident: CR53 article-title: Conjuncted pyro-piezoelectric effect for self-powered simultaneous temperature and pressure sensing publication-title: Adv. Mater. doi: 10.1002/adma.201902831 – volume: 6 year: 2020 ident: CR57 article-title: Haptic-feedback smart glove as a creative human-machine interface (HMI) for virtual/augmented reality applications publication-title: Sci. Adv. doi: 10.1126/sciadv.aaz8693 – volume: 24 start-page: 1338 year: 2015 end-page: 1345 ident: CR18 article-title: A triboelectric energy harvester using low-cost, flexible, and biocompatible ethylene vinyl acetate (EVA) publication-title: J. Microelectromech. Syst. doi: 10.1109/JMEMS.2015.2403256 – volume: 28 start-page: 1703420 year: 2018 ident: CR31 article-title: Self-powered vehicle emission testing system based on coupling of triboelectric and chemoresistive effects publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201703420 – volume: 3 year: 2018 ident: CR54 article-title: A highly sensitive, self-powered triboelectric auditory sensor for social robotics and hearing aids publication-title: Sci. Robot. doi: 10.1126/scirobotics.aat2516 – volume: 70 start-page: 104528 year: 2020 ident: CR41 article-title: Machine-washable and breathable pressure sensors based on triboelectric nanogenerators enabled by textile technologies publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.104528 – volume: 7 start-page: 031305 year: 2020 ident: CR60 article-title: Technologies toward next generation human machine interfaces: From machine learning enhanced tactile sensing to neuromorphic sensory systems publication-title: Appl. Phys. Rev. doi: 10.1063/5.0016485 – volume: 18 start-page: 1055 year: 2018 ident: CR84 article-title: Divide and conquer-based 1D CNN human activity recognition using test data sharpening publication-title: Sensors doi: 10.3390/s18041055 – volume: 65 start-page: 104039 year: 2019 ident: CR69 article-title: Development of neural interfaces and energy harvesters towards self-powered implantable systems for healthcare monitoring and rehabilitation purposes publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.104039 – volume: 7 start-page: 1903636 year: 2020 ident: CR36 article-title: Wearable triboelectric/aluminum nitride nano‐energy‐nano‐system with self‐sustainable photonic modulation and continuous force sensing publication-title: Adv. Sci. doi: 10.1002/advs.201903636 – volume: 56 start-page: 516 year: 2019 end-page: 523 ident: CR49 article-title: Self-powered gait pattern-based identity recognition by a soft and stretchable triboelectric band publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.11.078 – volume: 59 start-page: 689 year: 2019 end-page: 696 ident: CR56 article-title: Triboelectric vibration sensor for a human-machine interface built on ubiquitous surfaces publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.03.005 – volume: 30 start-page: 1707442 year: 2018 ident: CR3 article-title: Methylxanthine drug monitoring with wearable sweat sensors publication-title: Adv. Mater. doi: 10.1002/adma.201707442 – volume: 16 start-page: 100386 year: 2020 ident: CR70 article-title: A 25-year bibliometric study of implantable energy harvesters and self-powered implantable medical electronics researches publication-title: Mater. Today Energy doi: 10.1016/j.mtener.2020.100386 – volume: 575 start-page: 473 year: 2019 end-page: 479 ident: CR68 article-title: Skin-integrated wireless haptic interfaces for virtual and augmented reality publication-title: Nature doi: 10.1038/s41586-019-1687-0 – volume: 67 start-page: 104266 year: 2020 ident: CR13 article-title: Battery-free short-range self-powered wireless sensor network (SS-WSN) using TENG based direct sensory transmission (TDST) mechanism publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.104266 – volume: 56 start-page: 16 year: 2019 end-page: 24 ident: CR43 article-title: Progress in textile-based triboelectric nanogenerators for smart fabrics publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.11.025 – volume: 57 start-page: 338 year: 2019 end-page: 352 ident: CR37 article-title: Beyond energy harvesting - multi-functional triboelectric nanosensors on a textile publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.12.032 – volume: 17 start-page: 2735 year: 2017 ident: CR11 article-title: IMU-based gait recognition using convolutional neural networks and multi-sensor fusion publication-title: Sensors doi: 10.3390/s17122735 – volume: 4 start-page: 1600190 year: 2017 ident: CR39 article-title: Extremely stretchable strain sensors based on conductive self-healing dynamic cross-links hydrogels for human-motion detection publication-title: Adv. Sci. doi: 10.1002/advs.201600190 – volume: 11 year: 2020 ident: CR21 article-title: Quantifying contact status and the air-breakdown model of charge-excitation triboelectric nanogenerators to maximize charge density publication-title: Nat. Commun. doi: 10.1038/s41467-020-15368-9 – volume: 1 start-page: 1900090 year: 2019 ident: CR79 article-title: Tactile sensors for advanced intelligent systems publication-title: Adv. Intell. Syst. doi: 10.1002/aisy.201900090 – volume: 4 year: 2018 ident: CR8 article-title: MXenes stretch hydrogel sensor performance to new limits publication-title: Sci. Adv. doi: 10.1126/sciadv.aat0098 – volume: 7 start-page: 031302 year: 2019 ident: CR15 article-title: From flexible electronics technology in the era of IoT and artificial intelligence toward future implanted body sensor networks publication-title: APL Mater. doi: 10.1063/1.5063498 – ident: CR48 – volume: 14 start-page: 8915 year: 2020 end-page: 8930 ident: CR19 article-title: Wearable triboelectric–human–machine interface (THMI) using robust nanophotonic readout publication-title: ACS Nano doi: 10.1021/acsnano.0c03728 – volume: 2 year: 2018 ident: CR24 article-title: Graphene electronic fibres with touch-sensing and light-emitting functionalities for smart textiles publication-title: npj Flex. Electron. doi: 10.1038/s41528-018-0040-2 – volume: 19 start-page: 230 year: 2020 end-page: 235 ident: CR29 article-title: Self-powered active spherical triboelectric sensor for fluid velocity detection publication-title: IEEE Trans. Nanotechnol. doi: 10.1109/TNANO.2020.2976154 – volume: 20 start-page: 656 year: 2020 ident: CR77 article-title: Gait segmentation method using a plantar pressure measurement system with custom-made capacitive sensors publication-title: Sensors doi: 10.3390/s20030656 – volume: 1 start-page: 92 year: 2020 end-page: 124 ident: CR25 article-title: Smart materials for smart healthcare–moving from sensors and actuators to self-sustained nanoenergy nanosystems publication-title: Smart Mater. Med. doi: 10.1016/j.smaim.2020.07.005 – ident: CR83 – volume: 19 start-page: 5544 year: 2019 end-page: 5552 ident: CR9 article-title: Moisture-driven power generation for multifunctional flexible sensing systems publication-title: Nano Lett. doi: 10.1021/acs.nanolett.9b02081 – volume: 1 start-page: 160 year: 2018 end-page: 171 ident: CR1 article-title: Wearable sweat sensors publication-title: Nat. Electron. doi: 10.1038/s41928-018-0043-y – volume: 7 start-page: 7 year: 2019 ident: CR66 article-title: Leveraging digital twin technology in model-based systems engineering publication-title: Systems doi: 10.3390/systems7010007 – volume: 28 start-page: 4373 year: 2016 end-page: 4395 ident: CR7 article-title: Monitoring of vital signs with flexible and wearable medical devices publication-title: Adv. Mater. doi: 10.1002/adma.201504366 – volume: 11 year: 2020 ident: CR82 article-title: Deep learning enabled smart mats as a scalable floor monitoring system publication-title: Nat. Commun. doi: 10.1038/s41467-020-18471-z – volume: 12 start-page: 2027 year: 2018 ident: 92_CR55 publication-title: ACS Nano doi: 10.1021/acsnano.8b00147 – volume: 17 start-page: 2735 year: 2017 ident: 92_CR11 publication-title: Sensors doi: 10.3390/s17122735 – volume: 8 start-page: 1703086 year: 2018 ident: 92_CR17 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201703086 – volume: 1 start-page: 1900088 year: 2019 ident: 92_CR12 publication-title: Adv. Intell. Syst. doi: 10.1002/aisy.201900088 – volume: 31 start-page: 1902831 year: 2019 ident: 92_CR53 publication-title: Adv. Mater. doi: 10.1002/adma.201902831 – volume: 2 start-page: 1131 year: 2020 ident: 92_CR64 publication-title: InfoMat doi: 10.1002/inf2.12122 – volume: 20 start-page: 656 year: 2020 ident: 92_CR77 publication-title: Sensors doi: 10.3390/s20030656 – volume: 56 start-page: 516 year: 2019 ident: 92_CR49 publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.11.078 – volume: 28 start-page: 10267 year: 2016 ident: 92_CR42 publication-title: Adv. Mater. doi: 10.1002/adma.201603679 – volume: 4 start-page: 1800167 year: 2019 ident: 92_CR81 publication-title: Adv. Mater. Technol. doi: 10.1002/admt.201800167 – volume: 67 start-page: 104266 year: 2020 ident: 92_CR13 publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.104266 – volume: 29 start-page: 1703700 year: 2017 ident: 92_CR27 publication-title: Adv. Mater. doi: 10.1002/adma.201703700 – volume: 1 start-page: 92 year: 2020 ident: 92_CR25 publication-title: Smart Mater. Med. doi: 10.1016/j.smaim.2020.07.005 – volume: 13 start-page: 3935 year: 2013 ident: 92_CR71 publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2013.2259693 – volume: 11 year: 2020 ident: 92_CR82 publication-title: Nat. Commun. doi: 10.1038/s41467-020-18471-z – volume: 2 start-page: 361 year: 2019 ident: 92_CR73 publication-title: Nat. Electron. doi: 10.1038/s41928-019-0286-2 – volume: 18 start-page: 21 year: 2019 ident: 92_CR20 publication-title: IEEE Trans. Nanotechnol. doi: 10.1109/TNANO.2018.2876824 – volume: 2 start-page: 1191 year: 2020 ident: 92_CR34 publication-title: InfoMat doi: 10.1002/inf2.12103 – volume: 19 start-page: 3785 year: 2019 ident: 92_CR47 publication-title: Sensors doi: 10.3390/s19173785 – volume: 1 start-page: 1900090 year: 2019 ident: 92_CR79 publication-title: Adv. Intell. Syst. doi: 10.1002/aisy.201900090 – volume: 56 start-page: 16 year: 2019 ident: 92_CR43 publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.11.025 – volume: 4 start-page: 1800360 year: 2019 ident: 92_CR51 publication-title: Adv. Mater. Technol. doi: 10.1002/admt.201800360 – volume: 18 start-page: 1055 year: 2018 ident: 92_CR84 publication-title: Sensors doi: 10.3390/s18041055 – volume: 2 year: 2018 ident: 92_CR76 publication-title: npj Flex. Electron. doi: 10.1038/s41528-018-0037-x – volume: 3 year: 2019 ident: 92_CR22 publication-title: npj Flex. Electron. doi: 10.1038/s41528-019-0062-4 – volume: 4 year: 2020 ident: 92_CR10 publication-title: npj Flex. Electron. doi: 10.1038/s41528-020-0066-0 – volume: 569 start-page: 698 year: 2019 ident: 92_CR61 publication-title: Nature doi: 10.1038/s41586-019-1234-z – volume: 3 year: 2018 ident: 92_CR54 publication-title: Sci. Robot. doi: 10.1126/scirobotics.aat2516 – volume: 2 start-page: 243 year: 2019 ident: 92_CR14 publication-title: Nat. Electron. doi: 10.1038/s41928-019-0257-7 – volume: 19 start-page: 230 year: 2020 ident: 92_CR29 publication-title: IEEE Trans. Nanotechnol. doi: 10.1109/TNANO.2020.2976154 – volume: 122 start-page: 23 year: 2019 ident: 92_CR85 publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2019.02.016 – volume: 11 year: 2020 ident: 92_CR21 publication-title: Nat. Commun. doi: 10.1038/s41467-020-15368-9 – volume: 13 start-page: 1057 year: 2018 ident: 92_CR74 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-018-0244-6 – volume: 57 start-page: 338 year: 2019 ident: 92_CR37 publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.12.032 – volume: 6 start-page: 1901437 year: 2019 ident: 92_CR45 publication-title: Adv. Sci. doi: 10.1002/advs.201901437 – volume: 38 start-page: 210 year: 2017 ident: 92_CR33 publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.05.048 – volume: 30 start-page: 1707442 year: 2018 ident: 92_CR3 publication-title: Adv. Mater. doi: 10.1002/adma.201707442 – volume: 6 start-page: 1600665 year: 2016 ident: 92_CR28 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201600665 – volume: 2 year: 2018 ident: 92_CR24 publication-title: npj Flex. Electron. doi: 10.1038/s41528-018-0040-2 – volume: 28 start-page: 4373 year: 2016 ident: 92_CR7 publication-title: Adv. Mater. doi: 10.1002/adma.201504366 – volume: 16 start-page: 100386 year: 2020 ident: 92_CR70 publication-title: Mater. Today Energy doi: 10.1016/j.mtener.2020.100386 – volume: 119 start-page: 3 year: 2019 ident: 92_CR58 publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2018.02.010 – volume: 1 start-page: 1970060 year: 2019 ident: 92_CR80 publication-title: Adv. Intell. Syst. doi: 10.1002/aisy.201970060 – volume: 7 start-page: 031302 year: 2019 ident: 92_CR15 publication-title: APL Mater. doi: 10.1063/1.5063498 – volume: 19 start-page: 5544 year: 2019 ident: 92_CR9 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.9b02081 – volume: 575 start-page: 473 year: 2019 ident: 92_CR68 publication-title: Nature doi: 10.1038/s41586-019-1687-0 – volume: 7 start-page: 92745 year: 2019 ident: 92_CR62 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2927394 – volume: 7 start-page: 7 year: 2019 ident: 92_CR66 publication-title: Systems doi: 10.3390/systems7010007 – volume: 65 start-page: 104039 year: 2019 ident: 92_CR69 publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.104039 – volume: 14 start-page: 2618 year: 2018 ident: 92_CR16 publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2018.2799177 – volume: 14 start-page: 8915 year: 2020 ident: 92_CR19 publication-title: ACS Nano doi: 10.1021/acsnano.0c03728 – volume: 29 start-page: 1703456 year: 2017 ident: 92_CR4 publication-title: Adv. Mater. doi: 10.1002/adma.201703456 – volume: 24 start-page: 1338 year: 2015 ident: 92_CR18 publication-title: J. Microelectromech. Syst. doi: 10.1109/JMEMS.2015.2403256 – volume: 19 start-page: 1757 year: 2019 ident: 92_CR50 publication-title: Sensors doi: 10.3390/s19081757 – volume: 2001424 start-page: 2001424 year: 2020 ident: 92_CR75 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202001424 – volume: 70 start-page: 104528 year: 2020 ident: 92_CR41 publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.104528 – volume: 32 start-page: 1902549 year: 2020 ident: 92_CR44 publication-title: Adv. Mater. doi: 10.1002/adma.201902549 – ident: 92_CR72 doi: 10.1109/ISWC.2006.286346 – volume: 521 start-page: 436 year: 2015 ident: 92_CR59 publication-title: Nature doi: 10.1038/nature14539 – ident: 92_CR48 doi: 10.1109/MeMeA.2017.7985886 – volume: 28 start-page: 1703420 year: 2018 ident: 92_CR31 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201703420 – volume: 69 start-page: 104417 year: 2020 ident: 92_CR32 publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.104417 – volume: 30 start-page: 1802405 year: 2018 ident: 92_CR38 publication-title: Adv. Mater. doi: 10.1002/adma.201802405 – volume: 63 start-page: 103842 year: 2019 ident: 92_CR78 publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.06.038 – volume: 20 start-page: 747 year: 2020 ident: 92_CR52 publication-title: Sensors doi: 10.3390/s20030747 – volume: 11 start-page: 4313 year: 2018 ident: 92_CR30 publication-title: Nano Res. doi: 10.1007/s12274-018-2018-8 – volume: 27 start-page: 2433 year: 2015 ident: 92_CR26 publication-title: Adv. Mater. doi: 10.1002/adma.201500009 – volume: 4 start-page: 1600190 year: 2017 ident: 92_CR39 publication-title: Adv. Sci. doi: 10.1002/advs.201600190 – volume: 13 start-page: 1940 year: 2019 ident: 92_CR46 publication-title: ACS Nano – volume: 2 year: 2018 ident: 92_CR23 publication-title: npj Flex. Electron. doi: 10.1038/s41528-018-0022-4 – volume: 30 start-page: 1910541 year: 2020 ident: 92_CR40 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201910541 – volume: 7 start-page: 031305 year: 2020 ident: 92_CR60 publication-title: Appl. Phys. Rev. doi: 10.1063/5.0016485 – volume: 6 year: 2020 ident: 92_CR57 publication-title: Sci. Adv. doi: 10.1126/sciadv.aaz8693 – volume: 57 start-page: 851 year: 2019 ident: 92_CR2 publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.01.002 – volume: 1 start-page: 160 year: 2018 ident: 92_CR1 publication-title: Nat. Electron. doi: 10.1038/s41928-018-0043-y – volume: 2 year: 2016 ident: 92_CR5 publication-title: Sci. Adv. doi: 10.1126/sciadv.1601185 – volume: 7 start-page: 1800074 year: 2018 ident: 92_CR6 publication-title: Adv. Healthc. Mater. doi: 10.1002/adhm.201800074 – volume: 59 start-page: 689 year: 2019 ident: 92_CR56 publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.03.005 – volume: 94 start-page: 3563 year: 2018 ident: 92_CR67 publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-017-0233-1 – volume: 39 year: 2015 ident: 92_CR65 publication-title: J. Med. Syst. doi: 10.1007/s10916-015-0344-x – volume: 7 start-page: 1903636 year: 2020 ident: 92_CR36 publication-title: Adv. Sci. doi: 10.1002/advs.201903636 – volume: 32 start-page: 1906269 year: 2019 ident: 92_CR63 publication-title: Adv. Mater. doi: 10.1002/adma.201906269 – volume: 4 year: 2018 ident: 92_CR8 publication-title: Sci. Adv. doi: 10.1126/sciadv.aat0098 – volume: 2 year: 2016 ident: 92_CR35 publication-title: Sci. Adv. doi: 10.1126/sciadv.1600097 – ident: 92_CR83 doi: 10.1038/s41467-020-19059-3 |
SSID | ssj0002268191 |
Score | 2.5945392 |
Snippet | The era of artificial intelligence and internet of things is rapidly developed by recent advances in wearable electronics. Gait reveals sensory information in... Abstract The era of artificial intelligence and internet of things is rapidly developed by recent advances in wearable electronics. Gait reveals sensory... |
SourceID | doaj proquest crossref springer |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | 639/166/987 639/301/1005 Artificial intelligence Chemistry and Materials Science Cost analysis Deep learning Electronics Electronics and Microelectronics Energy consumption Energy harvesting Gait Health care Instrumentation Internet of Things Machine learning Massive data points Materials Science Optical and Electronic Materials Polymer Sciences Smart buildings Virtual reality Wearable technology |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3JTuQwEC1Bc4HDiG00PQPIB26MReIlcU6IVYAEGiFA3Kx4ayGg05Ce_6ecdjeLBLcom-La3is7rgLY9nllGEIfNVXuqLBSUeOKmsoguPLeyLLrEnFxWZzeiPM7eZcm3Nr0W-U0JnaB2jU2zpHvMoyiCDWSy73RM41do-LqamqhMQ8LGIKV6sHCwfHlv6vZLAuSi5iRpN0yGVe7bUQsRWPWFPkF0ssPiNQV7v_ANj8tkHa4c7IMPxJhJPsTDa_AnB-uwtK7MoJroI-8H5HU_2FAfbcdypHYy6qZtLm5t6R9QiMhqIuHliBRJWfNNY0Q5sigvh-TOhUnwQNHbq_I-4Xtdbg5Ob4-PKWpcQK1mO-MqeEhBMQdYxzntVHcllKELA--rmLBt9rlgVmTZ8Zzgy7OXFlkwcvCo4NWwfCf0Bs2Q_8LiGHMiRLTrLhboeZSWWeQkJcCaYzAbKgP-VR42qaq4rG5xaPuVre50hOBaxS47gSuyz7szJ4ZTWpqfHv3QdTJ7M5YD7s70bwMdHIvneE4ubCqrIUQ1mJazwKSHRy7y4vKmT5sTDWqk5O2-s2k-vB3quW3y19_0u_v3_YHFlm0L0Q4VmxAb_zy328idRmbrWSfr-8y6bU priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTxsxEB4FcikHVFqqBijyoTew2PVjH8f0EYVI9FCgys1av6IISBAJ_5-x4w0PQSVuq11bWo_H-32z9nwD8N3ltWYIfVTXuaXCyIpqWzRUesEr57QsY5WIsz_F8FKMxnLcAdbmwsRD-1HSMn6m29NhJ4sANBUNwU6gBcgKN6AbpNrRt7v9_uh8tP6zgoQiRCEpQybj1Sudn6FQFOt_xjBfbIpGrBl8hO1EEkl_9Vo70HGzT7D1RDrwM6hfzt2SVPNhQl1MgbIk1K-ar0rbTA1Z3ODICNr_akGQnJLT-QUNsGXJpJkuSZMESfDCkn9_ydPN7F24HPy--DmkqVgCNRjjLKnm3nvEGq0t542uuCml8FnuXVMHkbfG5p4ZnWfacY3LmtmyyLyThcNFWXvNv8DmbD5zX4FoxqwoMbQKGQoNl5WxGkl4KZC6CIyAepC3xlMmKYmHghbXKu5o80qtDK7Q4CoaXJU9OFr3uV3paPy39Y8wJ-uWQQM73pjfTVTyCZXhOLkwVdkIIYzBUJ55JDg4dpsXtdU9OGhnVKWFuVAMwRgZi-SyB8ftLD8-fvuV9t7XfB8-sOBviHKsOIDN5d29-4b0ZakPk78-AIZ752w priority: 102 providerName: Springer Nature |
Title | Deep learning-enabled triboelectric smart socks for IoT-based gait analysis and VR applications |
URI | https://link.springer.com/article/10.1038/s41528-020-00092-7 https://www.proquest.com/docview/2471521535 https://doaj.org/article/033a34c87a444cc8882f081ab8d169db |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BucAB8RQLZeUDN7Ca-JE4x-3SpaxEhUqLerM8flQtsFuxy_9n7GTLFgm4cErkOJI9M873jRx_A_Aq1h0Kgj6OXR248tpwDI3jOilpYkTdlioRH46aw1M1P9NnW6W-8j9hvTxwb7i9SkonlTetU0p5TwmbSARjDk2omy5g_voS5m0lU5dF1KXJmchwSqaSZm-VkcrwnC1lXkG08gYSFcH-Gyzzt43RgjezB3B_IIps0g_wIdyKi0dwb0s-8DHYtzFesaHuwzmP5RhUYLmG1bIvb3Ph2eobzZGRD76sGBFU9n55wjN0BXbuLtbMDaIkdBPY52O2vaH9BE5nByfTQz4UTOCe8pw1R5lSIrxBDGQ1NNK3WqWqTtF1WejNhToJj3WFUSItbRHapkpRN5EWZpdQPoWdxXIRnwFDIYJqKb3KpxSc1MYHJCLeKqIvirKgEdQb41k_qInnohZfbdnVlsb2BrdkcFsMbtsRvL5-56rX0vhr7_3sk-ueWQe7NFB02CE67L-iYwS7G4_aYXGurCBAJtaipR7Bm42Xfz3-85Ce_48hvYC7Ikch4Z9odmFn_f1HfEnEZo1juG1m78ZwZzKZf5rTdf_g6OMxtU6b6bjE90_AW_V8 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiKdYKOADnMBq4kfiHBACyrJLHwe0Rb2Z-LWqgM3SLEL8KX4jYyfZtkj01luUh5XMjGe-sTPzATzzeWUYhj5qqtxRYaWixhU1lUFw5b2RZWKJ2D8oJofi45E82oA_Qy1M_K1y8InJUbvGxjXybYZeFEON5PL18geNrFFxd3Wg0OjMYtf__oUpW_tquoP6fc7Y-P3s3YT2rALUYjKwooaHENApG-M4r43itpQiZHnwdRW7odUuD8yaPDOeG7R_5soiC14WHq23CobjuFfgquAYyWNl-vjDek0HoUzMf_ranIyr7TbGR0VjjhbRDILZc_Ev0QScw7b_bMemKDe-BTd7eEredPZ0Gzb84g7cONO08C7oHe-XpGebmFOfiq8cicxZTUeqc2xJ-x1NkqDmv7YEYTGZNjMaA6Yj8_p4Req-FQoeOPL5Ezm7jX4PDi9FoPdhc9Es_AMghjEnSkzqYm1EzaWyziD8LwWCJoG51wjyQXja9j3MI5XGN5320rnSncA1ClwngetyBC_Wzyy7Dh4X3v026mR9Z-y-nU40J3PdT2ad4XdyYVVZCyGsVZilBIRW-O0uLypnRrA1aFT3LqHVpwY8gpeDlk8v__-VHl482lO4Npnt7-m96cHuI7jOoq1hbGXFFmyuTn76xwiaVuZJslQCXy57avwFaoomXA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB7BIiF6QJSH2EKpD70VQ-JHHselsIJtQRWFipsVv1ao7e6K3f5_xl5ngaqt1FuUOFE8Y-f7JvZ8A_De5bVmCH1U17mlwsiKals0VHrBK-e0LGOViMur4vxWDO7k3RIUbS5M3LQfJS3jZ7rdHXY8DUBT0RDsBFqArPBoYv0yrCDfzkUHVnq9wdfB4u8KkooQiaQsmYxXf3jACySKgv0vWOZvC6MRb_obsJ6IIunNX-01LLnRJrx6Jh-4BerUuQlJdR-G1MU0KEtCDavxvLzNvSHTn9g7gj74PiVIUMnF-IYG6LJk2NzPSJNESfDAkm_X5PmC9jbc9s9uPp7TVDCBGoxzZlRz7z3ijdaW80ZX3JRS-Cz3rqmD0Ftjc8-MzjPtuMapzWxZZN7JwuHErL3mO9AZjUduF4hmzIoSw6uQpdBwWRmrkYiXAumLwCioC3lrPGWSmngoavFDxVVtXqm5wRUaXEWDq7ILHxb3TOZaGv9sfRJ8smgZdLDjifHDUKVxoTLsJxemKhshhDEYzjOPJAf7bvOitroL-61HVZqcU8UQkJG1SC67cNh6-eny31_pzf81fwerX0776vPF1ac9WGNh6CHosWIfOrOHX-4tspmZPkhD9xH5outk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning-enabled+triboelectric+smart+socks+for+IoT-based+gait+analysis+and+VR+applications&rft.jtitle=Npj+flexible+electronics&rft.au=Zixuan+Zhang&rft.au=Tianyiyi+He&rft.au=Minglu+Zhu&rft.au=Zhongda+Sun&rft.date=2020-10-26&rft.pub=Nature+Portfolio&rft.eissn=2397-4621&rft.volume=4&rft.issue=1&rft.spage=1&rft.epage=12&rft_id=info:doi/10.1038%2Fs41528-020-00092-7&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_033a34c87a444cc8882f081ab8d169db |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2397-4621&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2397-4621&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2397-4621&client=summon |