Positive Feedback Regulation of Type I IFN Production by the IFN-Inducible DNA Sensor cGAS

Rapid and robust induction of type I IFN (IFN-I) is a critical event in host antiviral innate immune response. It has been well demonstrated that cyclic GMP-AMP (cGAMP) synthase (cGAS) plays an important role in sensing cytosolic DNA and triggering STING dependent signaling to induce IFN-I. However,...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of immunology (1950) Vol. 194; no. 4; pp. 1545 - 1554
Main Authors Ma, Feng, Li, Bing, Liu, Su-yang, Iyer, Shankar S, Yu, Yongxin, Wu, Aiping, Cheng, Genhong
Format Journal Article
LanguageEnglish
Published United States 15.02.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Rapid and robust induction of type I IFN (IFN-I) is a critical event in host antiviral innate immune response. It has been well demonstrated that cyclic GMP-AMP (cGAMP) synthase (cGAS) plays an important role in sensing cytosolic DNA and triggering STING dependent signaling to induce IFN-I. However, it is largely unknown how cGAS itself is regulated during pathogen infection and IFN-I production. In this study, we show that pattern recognition receptor (PRR) ligands, including lipid A, LPS, poly(I:C), poly(dA:dT), and cGAMP, induce cGAS expression in an IFN-I–dependent manner in both mouse and human macrophages. Further experiments indicated that cGAS is an IFN-stimulated gene (ISG), and two adjacent IFN-sensitive response elements (ISREs) in the promoter region of cGAS mediate the induction of cGAS by IFN-I. Additionally, we show that optimal production of IFN-β triggered by poly (dA:dT) or HSV-1 requires IFNAR signaling. Knockdown of the constitutively expressed DNA sensor DDX41 attenuates poly(dA:dT)-triggered IFN-β production and cGAS induction. By analyzing the dynamic expression of poly(dA:dT)-induced IFN-β and cGAS transcripts, we have found that induction of IFN-β is earlier than cGAS. Furthermore, we have provided evidence that induction of cGAS by IFN-I meditates the subsequent positive feedback regulation of DNA-triggered IFN-I production. Thus, our study not only provides a novel mechanism of modulating cGAS expression, but also adds another layer of regulation in DNA-triggered IFN-I production by induction of cGAS.
AbstractList Rapid and robust induction of type I IFN (IFN-I) is a critical event in host antiviral innate immune response. It has been well demonstrated that cyclic GMP-AMP (cGAMP) synthase (cGAS) plays an important role in sensing cytosolic DNA and triggering STING dependent signaling to induce IFN-I. However, it is largely unknown how cGAS itself is regulated during pathogen infection and IFN-I production. In this study, we show that pattern recognition receptor (PRR) ligands, including lipid A, LPS, poly(I:C), poly(dA:dT), and cGAMP, induce cGAS expression in an IFN-I-dependent manner in both mouse and human macrophages. Further experiments indicated that cGAS is an IFN-stimulated gene (ISG), and two adjacent IFN-sensitive response elements (ISREs) in the promoter region of cGAS mediate the induction of cGAS by IFN-I. Additionally, we show that optimal production of IFN- beta triggered by poly (dA:dT) or HSV-1 requires IFNAR signaling. Knockdown of the constitutively expressed DNA sensor DDX41 attenuates poly(dA:dT)-triggered IFN- beta production and cGAS induction. By analyzing the dynamic expression of poly(dA:dT)-induced IFN- beta and cGAS transcripts, we have found that induction of IFN- beta is earlier than cGAS. Furthermore, we have provided evidence that induction of cGAS by IFN-I meditates the subsequent positive feedback regulation of DNA-triggered IFN-I production. Thus, our study not only provides a novel mechanism of modulating cGAS expression, but also adds another layer of regulation in DNA-triggered IFN-I production by induction of cGAS.
Rapid and robust induction of type I interferon (IFN-I) is a critical event in host antiviral innate immune response. It has been well demonstrated that cyclic GMP-AMP (cGAMP) synthase (cGAS) plays an important role in sensing cytosolic DNA and triggering stimulator of interferon genes (STING)-dependent signaling to induce IFN-I. However, it is largely unknown how cGAS itself is regulated during pathogen infection and IFN-I production. Here, we show that pattern-recognition receptor (PRR) ligands including lipidA, LPS, polyI:C, polydA:dT, and cGAMP induce cGAS expression in a IFN-I-dependent manner in both mouse and human macrophages. Further experiments indicate that cGAS is an IFN-stimulated gene (ISG), and two adjacent IFN-sensitive response elements (ISREs) in the promoter region of cGAS mediate the induction of cGAS by IFN-I. In addition, we show that optimal production of IFNβ triggered by polydA:dT or HSV-1 requires IFNAR signaling. Knockdown of the constitutively expressed DNA sensor DDX41 attenuates polydA:dT-triggered IFNβ production and cGAS induction. By analyzing the dynamic expression of polydA:dT-induced IFNβ and cGAS transcripts, we have found that induction of IFNβ is earlier than cGAS. Furthermore, we have provided evidence that induction of cGAS by IFN-I meditates the subsequent positive feedback regulation of DNA-triggered IFN-I production. Thus, our study not only provides a novel mechanism of modulating cGAS expression, but also adds another layer of regulation in DNA-triggered IFN-I production by induction of cGAS.
Rapid and robust induction of type I IFN (IFN-I) is a critical event in host antiviral innate immune response. It has been well demonstrated that cyclic GMP-AMP (cGAMP) synthase (cGAS) plays an important role in sensing cytosolic DNA and triggering STING dependent signaling to induce IFN-I. However, it is largely unknown how cGAS itself is regulated during pathogen infection and IFN-I production. In this study, we show that pattern recognition receptor (PRR) ligands, including lipid A, LPS, poly(I:C), poly(dA:dT), and cGAMP, induce cGAS expression in an IFN-I-dependent manner in both mouse and human macrophages. Further experiments indicated that cGAS is an IFN-stimulated gene (ISG), and two adjacent IFN-sensitive response elements (ISREs) in the promoter region of cGAS mediate the induction of cGAS by IFN-I. Additionally, we show that optimal production of IFN-β triggered by poly (dA:dT) or HSV-1 requires IFNAR signaling. Knockdown of the constitutively expressed DNA sensor DDX41 attenuates poly(dA:dT)-triggered IFN-β production and cGAS induction. By analyzing the dynamic expression of poly(dA:dT)-induced IFN-β and cGAS transcripts, we have found that induction of IFN-β is earlier than cGAS. Furthermore, we have provided evidence that induction of cGAS by IFN-I meditates the subsequent positive feedback regulation of DNA-triggered IFN-I production. Thus, our study not only provides a novel mechanism of modulating cGAS expression, but also adds another layer of regulation in DNA-triggered IFN-I production by induction of cGAS.Rapid and robust induction of type I IFN (IFN-I) is a critical event in host antiviral innate immune response. It has been well demonstrated that cyclic GMP-AMP (cGAMP) synthase (cGAS) plays an important role in sensing cytosolic DNA and triggering STING dependent signaling to induce IFN-I. However, it is largely unknown how cGAS itself is regulated during pathogen infection and IFN-I production. In this study, we show that pattern recognition receptor (PRR) ligands, including lipid A, LPS, poly(I:C), poly(dA:dT), and cGAMP, induce cGAS expression in an IFN-I-dependent manner in both mouse and human macrophages. Further experiments indicated that cGAS is an IFN-stimulated gene (ISG), and two adjacent IFN-sensitive response elements (ISREs) in the promoter region of cGAS mediate the induction of cGAS by IFN-I. Additionally, we show that optimal production of IFN-β triggered by poly (dA:dT) or HSV-1 requires IFNAR signaling. Knockdown of the constitutively expressed DNA sensor DDX41 attenuates poly(dA:dT)-triggered IFN-β production and cGAS induction. By analyzing the dynamic expression of poly(dA:dT)-induced IFN-β and cGAS transcripts, we have found that induction of IFN-β is earlier than cGAS. Furthermore, we have provided evidence that induction of cGAS by IFN-I meditates the subsequent positive feedback regulation of DNA-triggered IFN-I production. Thus, our study not only provides a novel mechanism of modulating cGAS expression, but also adds another layer of regulation in DNA-triggered IFN-I production by induction of cGAS.
Rapid and robust induction of type I IFN (IFN-I) is a critical event in host antiviral innate immune response. It has been well demonstrated that cyclic GMP-AMP (cGAMP) synthase (cGAS) plays an important role in sensing cytosolic DNA and triggering STING dependent signaling to induce IFN-I. However, it is largely unknown how cGAS itself is regulated during pathogen infection and IFN-I production. In this study, we show that pattern recognition receptor (PRR) ligands, including lipid A, LPS, poly(I:C), poly(dA:dT), and cGAMP, induce cGAS expression in an IFN-I–dependent manner in both mouse and human macrophages. Further experiments indicated that cGAS is an IFN-stimulated gene (ISG), and two adjacent IFN-sensitive response elements (ISREs) in the promoter region of cGAS mediate the induction of cGAS by IFN-I. Additionally, we show that optimal production of IFN-β triggered by poly (dA:dT) or HSV-1 requires IFNAR signaling. Knockdown of the constitutively expressed DNA sensor DDX41 attenuates poly(dA:dT)-triggered IFN-β production and cGAS induction. By analyzing the dynamic expression of poly(dA:dT)-induced IFN-β and cGAS transcripts, we have found that induction of IFN-β is earlier than cGAS. Furthermore, we have provided evidence that induction of cGAS by IFN-I meditates the subsequent positive feedback regulation of DNA-triggered IFN-I production. Thus, our study not only provides a novel mechanism of modulating cGAS expression, but also adds another layer of regulation in DNA-triggered IFN-I production by induction of cGAS.
Author Ma, Feng
Yu, Yongxin
Iyer, Shankar S
Liu, Su-yang
Wu, Aiping
Cheng, Genhong
Li, Bing
AuthorAffiliation Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA 90095
Division of Oral Biology and Medicine, School of Dentistry and Broad Stem Cell Research Center, University of California, Los Angeles, CA 90095
Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095
AuthorAffiliation_xml – name: Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA 90095
– name: Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095
– name: Division of Oral Biology and Medicine, School of Dentistry and Broad Stem Cell Research Center, University of California, Los Angeles, CA 90095
Author_xml – sequence: 1
  givenname: Feng
  surname: Ma
  fullname: Ma, Feng
– sequence: 2
  givenname: Bing
  surname: Li
  fullname: Li, Bing
– sequence: 3
  givenname: Su-yang
  surname: Liu
  fullname: Liu, Su-yang
– sequence: 4
  givenname: Shankar S
  surname: Iyer
  fullname: Iyer, Shankar S
– sequence: 5
  givenname: Yongxin
  surname: Yu
  fullname: Yu, Yongxin
– sequence: 6
  givenname: Aiping
  surname: Wu
  fullname: Wu, Aiping
– sequence: 7
  givenname: Genhong
  surname: Cheng
  fullname: Cheng, Genhong
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25609843$$D View this record in MEDLINE/PubMed
BookMark eNqFUU1v1DAUtFAR3RbunJCPXFKeP9e5IK0KW1aqSkXLhYtlOy-tSxIvcVJp_z3ZdrcqSIjTk958aDRzRA661CEhbxmcSJDlh7vYtmOXmhMmgYPWL8iMKQWF1qAPyAyA84LN9fyQHOV8BwAauHxFDrnSUBopZuTHZcpxiPdIl4iVd-En_YY3Y-OGmDqaanq9WSNd0dXygl72qRrDA-A3dLjF7bdYddMz-gbpp4sFvcIup56Gs8XVa_Kydk3GN7t7TL4vP1-ffinOv56tThfnRZClGgrPq7nxXinPaikqwYTyGCrQzGgFouQIgXvkUAsjpUDndGUMaDkBZTBOHJOPj77r0bdYBeyG3jV23cfW9RubXLR_Il28tTfp3krBJRg1GbzfGfTp14h5sG3MAZvGdZjGbJkBo8VULP8_VSvBuCjLreu757Ge8uy7nwj6kRD6lHOPtQ1xeOh9Shkby8BuR7b7ke1u5EkIfwn33v-U_AaIQ6sP
CitedBy_id crossref_primary_10_1128_JVI_00760_21
crossref_primary_10_4155_fmc_2017_0322
crossref_primary_10_1016_j_celrep_2023_112309
crossref_primary_10_3390_ijms24098151
crossref_primary_10_1128_mBio_01611_17
crossref_primary_10_1016_j_mad_2019_111118
crossref_primary_10_1111_ajt_13963
crossref_primary_10_1111_apha_13194
crossref_primary_10_1016_j_mcpro_2022_100247
crossref_primary_10_1371_journal_ppat_1008429
crossref_primary_10_3390_pathogens10030300
crossref_primary_10_3389_fcimb_2020_576263
crossref_primary_10_1007_s10495_021_01669_x
crossref_primary_10_1155_2021_9975628
crossref_primary_10_1016_j_ecoenv_2021_112712
crossref_primary_10_1016_j_immuni_2024_08_012
crossref_primary_10_4049_jimmunol_2200158
crossref_primary_10_1128_JVI_00748_16
crossref_primary_10_15252_embr_202051345
crossref_primary_10_1016_j_immuni_2024_06_001
crossref_primary_10_3389_fendo_2022_991632
crossref_primary_10_1002_wsbm_1597
crossref_primary_10_1186_s13018_024_04919_1
crossref_primary_10_1016_j_jhepr_2021_100324
crossref_primary_10_3389_fimmu_2021_637399
crossref_primary_10_1007_s10753_024_02093_4
crossref_primary_10_1038_ni_3558
crossref_primary_10_1016_j_exphem_2023_104148
crossref_primary_10_1128_mbio_01738_22
crossref_primary_10_3389_fimmu_2017_01823
crossref_primary_10_1021_acs_chemrev_1c00750
crossref_primary_10_4049_jimmunol_1701733
crossref_primary_10_1128_JVI_01555_20
crossref_primary_10_4103_NRR_NRR_D_24_00015
crossref_primary_10_1016_j_molmed_2018_06_004
crossref_primary_10_2139_ssrn_3188495
crossref_primary_10_1038_cmi_2016_51
crossref_primary_10_1515_mr_2023_0061
crossref_primary_10_1016_j_clim_2016_12_011
crossref_primary_10_1146_annurev_virology_092818_015756
crossref_primary_10_3390_cells10040785
crossref_primary_10_1093_nar_gkac200
crossref_primary_10_1016_j_micinf_2023_105144
crossref_primary_10_3390_cancers13040614
crossref_primary_10_1007_s12250_018_0005_6
crossref_primary_10_1371_journal_ppat_1010725
crossref_primary_10_1158_0008_5472_CAN_19_2330
crossref_primary_10_1038_s41423_021_00668_x
crossref_primary_10_1002_bies_202300045
crossref_primary_10_1016_j_tma_2017_08_001
crossref_primary_10_3389_fimmu_2022_887054
crossref_primary_10_3389_fimmu_2023_1139358
crossref_primary_10_3389_fimmu_2020_611347
crossref_primary_10_1152_ajpgi_00104_2022
crossref_primary_10_15789_1563_0625_SIC_2790
crossref_primary_10_3389_fimmu_2020_00615
crossref_primary_10_1042_BST20230725
crossref_primary_10_1038_s41467_023_40937_z
crossref_primary_10_3390_ijms241914738
crossref_primary_10_1016_j_molimm_2022_10_009
crossref_primary_10_3389_fimmu_2022_941579
crossref_primary_10_1152_physiol_00022_2019
crossref_primary_10_1172_jci_insight_133225
crossref_primary_10_1073_pnas_2218825120
crossref_primary_10_1016_j_virusres_2021_198658
crossref_primary_10_1016_j_fmre_2021_08_015
crossref_primary_10_1002_1873_3468_14885
crossref_primary_10_1016_j_phrs_2021_105514
crossref_primary_10_1093_nar_gkaa084
crossref_primary_10_1007_s13365_020_00852_1
crossref_primary_10_1126_sciadv_abb8941
crossref_primary_10_1002_iub_1566
crossref_primary_10_3389_fphar_2021_771555
crossref_primary_10_1016_j_intimp_2024_112446
crossref_primary_10_1158_1078_0432_CCR_21_1010
crossref_primary_10_3390_ijms21145150
crossref_primary_10_3389_fimmu_2024_1385473
crossref_primary_10_4049_jimmunol_2200351
crossref_primary_10_1128_mBio_00923_18
crossref_primary_10_4049_jimmunol_1502458
crossref_primary_10_3892_etm_2019_8001
crossref_primary_10_1016_j_arr_2022_101765
crossref_primary_10_7554_eLife_39984
crossref_primary_10_3389_fimmu_2019_00836
crossref_primary_10_3389_fimmu_2020_624556
crossref_primary_10_15789_2220_7619_EOT_1928
crossref_primary_10_1002_jmv_28826
crossref_primary_10_1038_s41392_023_01420_9
crossref_primary_10_15252_embj_2021108234
crossref_primary_10_1152_physrev_00041_2016
crossref_primary_10_1016_j_canlet_2024_217410
crossref_primary_10_3390_molecules28073127
crossref_primary_10_3390_cells14060447
crossref_primary_10_1016_j_celrep_2022_110856
crossref_primary_10_1016_j_neuron_2022_10_028
crossref_primary_10_1038_s41590_020_00859_0
crossref_primary_10_1515_hsz_2020_0367
crossref_primary_10_1016_j_cellin_2021_100001
crossref_primary_10_3390_cells10123544
crossref_primary_10_1016_j_molimm_2018_08_005
crossref_primary_10_1007_s12250_015_3683_3
crossref_primary_10_1128_jvi_01815_23
crossref_primary_10_3389_fmicb_2019_00429
crossref_primary_10_1111_imr_12765
crossref_primary_10_1186_s12985_016_0495_5
crossref_primary_10_1016_j_cellsig_2019_109355
crossref_primary_10_1172_jci_insight_120638
crossref_primary_10_3389_fimmu_2023_1127623
crossref_primary_10_1016_j_intimp_2024_111687
crossref_primary_10_1016_j_cyto_2019_02_009
crossref_primary_10_1038_s41577_019_0215_7
crossref_primary_10_3390_ijms20040895
crossref_primary_10_1371_journal_ppat_1010233
crossref_primary_10_1016_j_dnarep_2024_103634
crossref_primary_10_1080_15384101_2019_1638192
crossref_primary_10_1038_s44321_024_00046_w
crossref_primary_10_3389_fimmu_2018_01276
crossref_primary_10_3390_ijms241210115
crossref_primary_10_1186_s12974_024_03155_y
crossref_primary_10_1038_s41467_021_24997_7
crossref_primary_10_1038_srep20158
crossref_primary_10_1016_j_vetmic_2023_109842
crossref_primary_10_1016_j_molimm_2018_01_008
crossref_primary_10_1111_tbed_14416
crossref_primary_10_1016_j_it_2016_06_003
crossref_primary_10_1371_journal_ppat_1010748
crossref_primary_10_1128_spectrum_03796_23
Cites_doi 10.1089/107999003772084860
10.1002/eji.201344127
10.4161/epi.26870
10.1189/jlb.69.6.912
10.1016/j.molcel.2013.05.022
10.1038/nature10429
10.1016/S1074-7613(00)00053-4
10.1111/j.1600-065X.2011.01051.x
10.1016/j.immuni.2012.11.005
10.1038/nature09907
10.1038/ni.2073
10.1038/nature12862
10.1101/cshperspect.a006049
10.1038/nature12306
10.1038/ni.2091
10.1111/j.1600-065X.2008.00737.x
10.4049/jimmunol.178.2.1122
10.1093/nar/gkr1013
10.1073/pnas.1119137109
10.15252/embj.201488029
10.1016/j.chom.2014.01.009
10.1016/j.virol.2007.05.010
10.1093/bioinformatics/bti473
10.1126/science.1244040
10.1128/IAI.00999-10
10.1038/ni.1932
10.1073/pnas.0707882105
10.1126/scisignal.2002521
10.1016/j.cell.2010.01.022
10.1002/ijc.2910490226
10.1074/jbc.M114.554147
10.1038/nri2314
10.1073/pnas.1114981109
10.1016/j.cell.2013.04.046
10.1126/science.1240933
10.1002/hep.21267
10.1073/pnas.95.26.15623
10.1016/j.immuni.2013.05.007
10.1016/j.tim.2013.04.004
10.1126/science.1229963
10.1038/nri1604
10.1038/nature08476
10.1186/gb-2009-10-3-r25
10.1084/jem.20121960
10.1126/science.1232458
10.1093/emboj/17.22.6660
10.4049/jimmunol.171.10.5255
10.1016/j.celrep.2013.05.009
10.4049/jimmunol.1302718
10.1189/jlb.0507273
10.1016/S0014-5793(98)01514-2
10.1038/nprot.2008.73
10.1002/eji.200940203
10.1038/ncomms6494
ContentType Journal Article
Copyright Copyright © 2015 by The American Association of Immunologists, Inc.
Copyright_xml – notice: Copyright © 2015 by The American Association of Immunologists, Inc.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7T5
7TM
H94
5PM
DOI 10.4049/jimmunol.1402066
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Immunology Abstracts
Nucleic Acids Abstracts
AIDS and Cancer Research Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AIDS and Cancer Research Abstracts
Immunology Abstracts
Nucleic Acids Abstracts
DatabaseTitleList AIDS and Cancer Research Abstracts

MEDLINE - Academic
CrossRef
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1550-6606
EndPage 1554
ExternalDocumentID PMC4324085
25609843
10_4049_jimmunol_1402066
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: T32 CA009120
– fundername: NIAID NIH HHS
  grantid: R01 AI056154
– fundername: NCI NIH HHS
  grantid: 5T32CA009120
– fundername: NIAMS NIH HHS
  grantid: P50 AR063020
– fundername: NIAID NIH HHS
  grantid: R01 AI069120
– fundername: NIAID NIH HHS
  grantid: R01 AI078389
GroupedDBID ---
-~X
.55
0R~
18M
2WC
34G
39C
53G
5GY
5RE
5VS
5WD
79B
85S
AARDX
AAYXX
ABCQX
ABDFA
ABEJV
ABGNP
ABJNI
ABOCM
ABPPZ
ABXVV
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
ADBBV
ADIPN
ADNWM
AENEX
AETEA
AFHIN
AFOSN
AFRAH
AGORE
AHMMS
AHWXS
AIZAD
ALMA_UNASSIGNED_HOLDINGS
ARBBW
BAWUL
BCRHZ
BTFSW
CITATION
D0L
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
IH2
K-O
KQ8
L7B
OCZFY
OK1
OWPYF
P0W
P2P
PQQKQ
R.V
RHI
ROX
RZQ
SJN
TR2
TWZ
W8F
WH7
WOQ
X7M
XJT
XSW
XTH
YHG
CGR
CUY
CVF
ECM
EIF
KOP
NPM
7X8
7T5
7TM
H94
5PM
ID FETCH-LOGICAL-c495t-b2d78bb55b1f43d3135becd0618650392e0c2be20f38443eaa6d880642e09c8a3
ISSN 0022-1767
1550-6606
IngestDate Thu Aug 21 14:12:48 EDT 2025
Fri Jul 11 05:03:53 EDT 2025
Fri Jul 11 06:00:36 EDT 2025
Mon Jul 21 06:02:08 EDT 2025
Tue Jul 01 05:23:36 EDT 2025
Thu Apr 24 23:05:23 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://academic.oup.com/pages/standard-publication-reuse-rights
Copyright © 2015 by The American Association of Immunologists, Inc.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c495t-b2d78bb55b1f43d3135becd0618650392e0c2be20f38443eaa6d880642e09c8a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.jimmunol.org/content/jimmunol/194/4/1545.full.pdf
PMID 25609843
PQID 1653123995
PQPubID 23479
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4324085
proquest_miscellaneous_1808631552
proquest_miscellaneous_1653123995
pubmed_primary_25609843
crossref_citationtrail_10_4049_jimmunol_1402066
crossref_primary_10_4049_jimmunol_1402066
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-02-15
PublicationDateYYYYMMDD 2015-02-15
PublicationDate_xml – month: 02
  year: 2015
  text: 2015-02-15
  day: 15
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Journal of immunology (1950)
PublicationTitleAlternate J Immunol
PublicationYear 2015
References Gao (2025030705044821200_r18) 2013; 153
Gao (2025030705044821200_r13) 2013; 341
de Veer (2025030705044821200_r45) 2001; 69
Ishikawa (2025030705044821200_r22) 2009; 461
Burdette (2025030705044821200_r37) 2011; 478
Hilkens (2025030705044821200_r51) 2003; 171
Wang (2025030705044821200_r30) 2012; 40
Brunette (2025030705044821200_r8) 2012; 209
Schmittgen (2025030705044821200_r29) 2008; 3
Ma (2025030705044821200_r28) 2014; 5
Sato (2025030705044821200_r44) 2000; 13
Diner (2025030705044821200_r17) 2013; 3
Thompson (2025030705044821200_r9) 2014; 289
Leaman (2025030705044821200_r47) 2003; 23
Bhat (2025030705044821200_r11) 2014; 44
Platanias (2025030705044821200_r38) 2005; 5
He (2025030705044821200_r50) 2006; 44
Sarasin-Filipowicz (2025030705044821200_r49) 2008; 105
Barber (2025030705044821200_r20) 2011; 243
Indraccolo (2025030705044821200_r52) 2007; 178
Li (2025030705044821200_r14) 2013; 341
Ma (2025030705044821200_r35) 2011; 12
Der (2025030705044821200_r3) 1998; 95
Gürtler (2025030705044821200_r10) 2013; 21
Sadler (2025030705044821200_r1) 2008; 8
Schoggins (2025030705044821200_r23) 2014; 505
Zhang (2025030705044821200_r24) 2014; 193
Cartharius (2025030705044821200_r31) 2005; 21
Takeuchi (2025030705044821200_r6) 2010; 140
Newton (2025030705044821200_r40) 2012; 4
Marié (2025030705044821200_r43) 1998; 17
Langmead (2025030705044821200_r33) 2009; 10
Liu (2025030705044821200_r5) 2012; 109
Hultcrantz (2025030705044821200_r46) 2007; 367
Palleroni (2025030705044821200_r26) 1991; 49
Goubau (2025030705044821200_r2) 2013; 38
Ng (2025030705044821200_r32) 2011; 108
Ablasser (2025030705044821200_r16) 2013; 498
Unterholzner (2025030705044821200_r7) 2010; 11
Zhang (2025030705044821200_r19) 2013; 51
Wu (2025030705044821200_r15) 2013; 339
Li (2025030705044821200_r34) 2014; 9
Rani (2025030705044821200_r48) 2007; 82
Sun (2025030705044821200_r12) 2013; 339
Schoggins (2025030705044821200_r4) 2011; 472
Hansen (2025030705044821200_r25) 2014; 33
Oshiumi (2025030705044821200_r54) 2010; 40
Sauer (2025030705044821200_r36) 2011; 79
Liu (2025030705044821200_r27) 2013; 38
Tanaka (2025030705044821200_r21) 2012; 5
Sato (2025030705044821200_r42) 1998; 441
Liang (2025030705044821200_r53) 2014; 15
Takeuchi (2025030705044821200_r39) 2009; 227
Zhang (2025030705044821200_r41) 2011; 12
23258413 - Science. 2013 Feb 15;339(6121):786-91
16871572 - Hepatology. 2006 Aug;44(2):352-9
22171011 - Proc Natl Acad Sci U S A. 2011 Dec 27;108(52):21170-5
22296764 - Cold Spring Harb Perspect Biol. 2012 Mar;4(3). pii: a006049. doi: 10.1101/cshperspect.a006049
11070172 - Immunity. 2000 Oct;13(4):539-48
23726320 - Trends Microbiol. 2013 Aug;21(8):413-20
24172870 - Epigenetics. 2014 Feb;9(2):257-67
21884170 - Immunol Rev. 2011 Sep;243(1):99-108
24970844 - EMBO J. 2014 Aug 1;33(15):1654-66
23273844 - Immunity. 2013 Jan 24;38(1):92-105
18467494 - Proc Natl Acad Sci U S A. 2008 May 13;105(19):7034-9
18546601 - Nat Protoc. 2008;3(6):1101-8
18575461 - Nat Rev Immunol. 2008 Jul;8(7):559-68
23707065 - Cell Rep. 2013 May 30;3(5):1355-61
22371602 - Proc Natl Acad Sci U S A. 2012 Mar 13;109(11):4239-44
1879973 - Int J Cancer. 1991 Sep 9;49(2):296-302
17202376 - J Immunol. 2007 Jan 15;178(2):1122-35
23706667 - Immunity. 2013 May 23;38(5):855-69
22086960 - Nucleic Acids Res. 2012 Jan;40(Database issue):D1144-9
14769151 - J Interferon Cytokine Res. 2003 Dec;23(12):745-56
20303872 - Cell. 2010 Mar 19;140(6):805-20
23989956 - Science. 2013 Sep 20;341(6152):1390-4
25002588 - J Biol Chem. 2014 Aug 22;289(34):23568-81
9822609 - EMBO J. 1998 Nov 16;17(22):6660-9
23647843 - Cell. 2013 May 23;153(5):1094-107
25070851 - J Immunol. 2014 Sep 1;193(5):2394-404
15864272 - Nat Rev Immunol. 2005 May;5(5):375-86
17559902 - Virology. 2007 Oct 10;367(1):92-101
19120477 - Immunol Rev. 2009 Jan;227(1):75-86
11404376 - J Leukoc Biol. 2001 Jun;69(6):912-20
21947006 - Nature. 2011 Oct 27;478(7370):515-8
20890285 - Nat Immunol. 2010 Nov;11(11):997-1004
9861020 - Proc Natl Acad Sci U S A. 1998 Dec 22;95(26):15623-8
23045604 - J Exp Med. 2012 Oct 22;209(11):1969-83
22394562 - Sci Signal. 2012 Mar 6;5(214):ra20
21478870 - Nature. 2011 Apr 28;472(7344):481-5
21892174 - Nat Immunol. 2011 Oct;12(10):959-65
19776740 - Nature. 2009 Oct 8;461(7265):788-92
15860560 - Bioinformatics. 2005 Jul 1;21(13):2933-42
9877175 - FEBS Lett. 1998 Dec 11;441(1):106-10
23747010 - Mol Cell. 2013 Jul 25;51(2):226-35
24284630 - Nature. 2014 Jan 30;505(7485):691-5
21098106 - Infect Immun. 2011 Feb;79(2):688-94
14607926 - J Immunol. 2003 Nov 15;171(10):5255-63
19261174 - Genome Biol. 2009;10(3):R25
24528868 - Cell Host Microbe. 2014 Feb 12;15(2):228-38
21785411 - Nat Immunol. 2011 Sep;12(9):861-9
23929945 - Science. 2013 Aug 23;341(6148):903-6
23258412 - Science. 2013 Feb 15;339(6121):826-30
20127681 - Eur J Immunol. 2010 Apr;40(4):940-8
23722158 - Nature. 2013 Jun 20;498(7454):380-4
24356864 - Eur J Immunol. 2014 Mar;44(3):634-40
17709400 - J Leukoc Biol. 2007 Nov;82(5):1353-60
25417649 - Nat Commun. 2014;5:5494
References_xml – volume: 23
  start-page: 745
  year: 2003
  ident: 2025030705044821200_r47
  article-title: Novel growth and death related interferon-stimulated genes (ISGs) in melanoma: greater potency of IFN-β compared with IFN-α2
  publication-title: J. Interferon Cytokine Res.
  doi: 10.1089/107999003772084860
– volume: 44
  start-page: 634
  year: 2014
  ident: 2025030705044821200_r11
  article-title: Recognition of cytosolic DNA by cGAS and other STING-dependent sensors
  publication-title: Eur. J. Immunol.
  doi: 10.1002/eji.201344127
– volume: 9
  start-page: 257
  year: 2014
  ident: 2025030705044821200_r34
  article-title: A unique epigenetic signature is associated with active DNA replication loci in human embryonic stem cells
  publication-title: Epigenetics
  doi: 10.4161/epi.26870
– volume: 69
  start-page: 912
  year: 2001
  ident: 2025030705044821200_r45
  article-title: Functional classification of interferon-stimulated genes identified using microarrays
  publication-title: J. Leukoc. Biol.
  doi: 10.1189/jlb.69.6.912
– volume: 51
  start-page: 226
  year: 2013
  ident: 2025030705044821200_r19
  article-title: Cyclic GMP-AMP containing mixed phosphodiester linkages is an endogenous high-affinity ligand for STING
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2013.05.022
– volume: 478
  start-page: 515
  year: 2011
  ident: 2025030705044821200_r37
  article-title: STING is a direct innate immune sensor of cyclic di-GMP
  publication-title: Nature
  doi: 10.1038/nature10429
– volume: 13
  start-page: 539
  year: 2000
  ident: 2025030705044821200_r44
  article-title: Distinct and essential roles of transcription factors IRF-3 and IRF-7 in response to viruses for IFN-α/β gene induction
  publication-title: Immunity
  doi: 10.1016/S1074-7613(00)00053-4
– volume: 243
  start-page: 99
  year: 2011
  ident: 2025030705044821200_r20
  article-title: Cytoplasmic DNA innate immune pathways
  publication-title: Immunol. Rev.
  doi: 10.1111/j.1600-065X.2011.01051.x
– volume: 38
  start-page: 92
  year: 2013
  ident: 2025030705044821200_r27
  article-title: Interferon-inducible cholesterol-25-hydroxylase broadly inhibits viral entry by production of 25-hydroxycholesterol
  publication-title: Immunity
  doi: 10.1016/j.immuni.2012.11.005
– volume: 472
  start-page: 481
  year: 2011
  ident: 2025030705044821200_r4
  article-title: A diverse range of gene products are effectors of the type I interferon antiviral response
  publication-title: Nature
  doi: 10.1038/nature09907
– volume: 12
  start-page: 861
  year: 2011
  ident: 2025030705044821200_r35
  article-title: The microRNA miR-29 controls innate and adaptive immune responses to intracellular bacterial infection by targeting interferon-γ
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.2073
– volume: 505
  start-page: 691
  year: 2014
  ident: 2025030705044821200_r23
  article-title: Pan-viral specificity of IFN-induced genes reveals new roles for cGAS in innate immunity
  publication-title: Nature
  doi: 10.1038/nature12862
– volume: 4
  start-page: 4
  year: 2012
  ident: 2025030705044821200_r40
  article-title: Signaling in innate immunity and inflammation
  publication-title: Cold Spring Harb. Perspect. Biol.
  doi: 10.1101/cshperspect.a006049
– volume: 498
  start-page: 380
  year: 2013
  ident: 2025030705044821200_r16
  article-title: cGAS produces a 2′-5′-linked cyclic dinucleotide second messenger that activates STING
  publication-title: Nature
  doi: 10.1038/nature12306
– volume: 12
  start-page: 959
  year: 2011
  ident: 2025030705044821200_r41
  article-title: The helicase DDX41 senses intracellular DNA mediated by the adaptor STING in dendritic cells
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.2091
– volume: 227
  start-page: 75
  year: 2009
  ident: 2025030705044821200_r39
  article-title: Innate immunity to virus infection
  publication-title: Immunol. Rev.
  doi: 10.1111/j.1600-065X.2008.00737.x
– volume: 178
  start-page: 1122
  year: 2007
  ident: 2025030705044821200_r52
  article-title: Identification of genes selectively regulated by IFNs in endothelial cells
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.178.2.1122
– volume: 40
  start-page: D1144
  year: 2012
  ident: 2025030705044821200_r30
  article-title: PrimerBank: a PCR primer database for quantitative gene expression analysis, 2012 update
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkr1013
– volume: 108
  start-page: 21170
  year: 2011
  ident: 2025030705044821200_r32
  article-title: IκB kinase ε (IKKε) regulates the balance between type I and type II interferon responses
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1119137109
– volume: 33
  start-page: 1654
  year: 2014
  ident: 2025030705044821200_r25
  article-title: Listeria monocytogenes induces IFNβ expression through an IFI16-, cGAS- and STING-dependent pathway
  publication-title: EMBO J.
  doi: 10.15252/embj.201488029
– volume: 15
  start-page: 228
  year: 2014
  ident: 2025030705044821200_r53
  article-title: Crosstalk between the cGAS DNA sensor and Beclin-1 autophagy protein shapes innate antimicrobial immune responses
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2014.01.009
– volume: 367
  start-page: 92
  year: 2007
  ident: 2025030705044821200_r46
  article-title: Interferons induce an antiviral state in human pancreatic islet cells
  publication-title: Virology
  doi: 10.1016/j.virol.2007.05.010
– volume: 21
  start-page: 2933
  year: 2005
  ident: 2025030705044821200_r31
  article-title: MatInspector and beyond: promoter analysis based on transcription factor binding sites
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti473
– volume: 341
  start-page: 1390
  year: 2013
  ident: 2025030705044821200_r14
  article-title: Pivotal roles of cGAS-cGAMP signaling in antiviral defense and immune adjuvant effects
  publication-title: Science
  doi: 10.1126/science.1244040
– volume: 79
  start-page: 688
  year: 2011
  ident: 2025030705044821200_r36
  article-title: The N-ethyl-N-nitrosourea-induced Goldenticket mouse mutant reveals an essential function of Sting in the in vivo interferon response to Listeria monocytogenes and cyclic dinucleotides
  publication-title: Infect. Immun.
  doi: 10.1128/IAI.00999-10
– volume: 11
  start-page: 997
  year: 2010
  ident: 2025030705044821200_r7
  article-title: IFI16 is an innate immune sensor for intracellular DNA
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.1932
– volume: 105
  start-page: 7034
  year: 2008
  ident: 2025030705044821200_r49
  article-title: Interferon signaling and treatment outcome in chronic hepatitis C
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0707882105
– volume: 5
  start-page: ra20
  year: 2012
  ident: 2025030705044821200_r21
  article-title: STING specifies IRF3 phosphorylation by TBK1 in the cytosolic DNA signaling pathway
  publication-title: Sci. Signal.
  doi: 10.1126/scisignal.2002521
– volume: 140
  start-page: 805
  year: 2010
  ident: 2025030705044821200_r6
  article-title: Pattern recognition receptors and inflammation
  publication-title: Cell
  doi: 10.1016/j.cell.2010.01.022
– volume: 49
  start-page: 296
  year: 1991
  ident: 2025030705044821200_r26
  article-title: Tumoricidal alveolar macrophage and tumor infiltrating macrophage cell lines
  publication-title: Int. J. Cancer
  doi: 10.1002/ijc.2910490226
– volume: 289
  start-page: 23568
  year: 2014
  ident: 2025030705044821200_r9
  article-title: Interferon γ-inducible protein (IFI) 16 transcriptionally regulates type I interferons and other interferon-stimulated genes and controls the interferon response to both DNA and RNA viruses
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M114.554147
– volume: 8
  start-page: 559
  year: 2008
  ident: 2025030705044821200_r1
  article-title: Interferon-inducible antiviral effectors
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri2314
– volume: 109
  start-page: 4239
  year: 2012
  ident: 2025030705044821200_r5
  article-title: Systematic identification of type I and type II interferon-induced antiviral factors
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1114981109
– volume: 153
  start-page: 1094
  year: 2013
  ident: 2025030705044821200_r18
  article-title: Cyclic [G(2′,5′)pA(3′,5′)p] is the metazoan second messenger produced by DNA-activated cyclic GMP-AMP synthase
  publication-title: Cell
  doi: 10.1016/j.cell.2013.04.046
– volume: 341
  start-page: 903
  year: 2013
  ident: 2025030705044821200_r13
  article-title: Cyclic GMP-AMP synthase is an innate immune sensor of HIV and other retroviruses
  publication-title: Science
  doi: 10.1126/science.1240933
– volume: 44
  start-page: 352
  year: 2006
  ident: 2025030705044821200_r50
  article-title: Global transcriptional response to interferon is a determinant of HCV treatment outcome and is modified by race
  publication-title: Hepatology
  doi: 10.1002/hep.21267
– volume: 95
  start-page: 15623
  year: 1998
  ident: 2025030705044821200_r3
  article-title: Identification of genes differentially regulated by interferon α, β, or γ using oligonucleotide arrays
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.95.26.15623
– volume: 38
  start-page: 855
  year: 2013
  ident: 2025030705044821200_r2
  article-title: Cytosolic sensing of viruses
  publication-title: Immunity
  doi: 10.1016/j.immuni.2013.05.007
– volume: 21
  start-page: 413
  year: 2013
  ident: 2025030705044821200_r10
  article-title: Innate immune detection of microbial nucleic acids
  publication-title: Trends Microbiol.
  doi: 10.1016/j.tim.2013.04.004
– volume: 339
  start-page: 826
  year: 2013
  ident: 2025030705044821200_r15
  article-title: Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA
  publication-title: Science
  doi: 10.1126/science.1229963
– volume: 5
  start-page: 375
  year: 2005
  ident: 2025030705044821200_r38
  article-title: Mechanisms of type-I- and type-II-interferon-mediated signalling
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri1604
– volume: 461
  start-page: 788
  year: 2009
  ident: 2025030705044821200_r22
  article-title: STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity
  publication-title: Nature
  doi: 10.1038/nature08476
– volume: 10
  start-page: R25
  year: 2009
  ident: 2025030705044821200_r33
  article-title: Ultrafast and memory-efficient alignment of short DNA sequences to the human genome
  publication-title: Genome Biol.
  doi: 10.1186/gb-2009-10-3-r25
– volume: 209
  start-page: 1969
  year: 2012
  ident: 2025030705044821200_r8
  article-title: Extensive evolutionary and functional diversity among mammalian AIM2-like receptors
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20121960
– volume: 339
  start-page: 786
  year: 2013
  ident: 2025030705044821200_r12
  article-title: Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway
  publication-title: Science
  doi: 10.1126/science.1232458
– volume: 17
  start-page: 6660
  year: 1998
  ident: 2025030705044821200_r43
  article-title: Differential viral induction of distinct interferon-αgenes by positive feedback through interferon regulatory factor-7
  publication-title: EMBO J.
  doi: 10.1093/emboj/17.22.6660
– volume: 171
  start-page: 5255
  year: 2003
  ident: 2025030705044821200_r51
  article-title: Differential responses to IFN-α subtypes in human T cells and dendritic cells
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.171.10.5255
– volume: 3
  start-page: 1355
  year: 2013
  ident: 2025030705044821200_r17
  article-title: The innate immune DNA sensor cGAS produces a noncanonical cyclic dinucleotide that activates human STING
  publication-title: Cell Reports
  doi: 10.1016/j.celrep.2013.05.009
– volume: 193
  start-page: 2394
  year: 2014
  ident: 2025030705044821200_r24
  article-title: The DNA sensor, cyclic GMP-AMP synthase, is essential for induction of IFN-β during Chlamydia trachomatis infection
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1302718
– volume: 82
  start-page: 1353
  year: 2007
  ident: 2025030705044821200_r48
  article-title: Novel interferon-β-induced gene expression in peripheral blood cells
  publication-title: J. Leukoc. Biol.
  doi: 10.1189/jlb.0507273
– volume: 441
  start-page: 106
  year: 1998
  ident: 2025030705044821200_r42
  article-title: Positive feedback regulation of type I IFN genes by the IFN-inducible transcription factor IRF-7
  publication-title: FEBS Lett.
  doi: 10.1016/S0014-5793(98)01514-2
– volume: 3
  start-page: 1101
  year: 2008
  ident: 2025030705044821200_r29
  article-title: Analyzing real-time PCR data by the comparative CT method
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2008.73
– volume: 40
  start-page: 940
  year: 2010
  ident: 2025030705044821200_r54
  article-title: DEAD/H BOX 3 (DDX3) helicase binds the RIG-I adaptor IPS-1 to up-regulate IFN-β-inducing potential
  publication-title: Eur. J. Immunol.
  doi: 10.1002/eji.200940203
– volume: 5
  start-page: 5494
  year: 2014
  ident: 2025030705044821200_r28
  article-title: Retinoid X receptor α attenuates host antiviral response by suppressing type I interferon
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms6494
– reference: 22394562 - Sci Signal. 2012 Mar 6;5(214):ra20
– reference: 19776740 - Nature. 2009 Oct 8;461(7265):788-92
– reference: 23929945 - Science. 2013 Aug 23;341(6148):903-6
– reference: 15864272 - Nat Rev Immunol. 2005 May;5(5):375-86
– reference: 23273844 - Immunity. 2013 Jan 24;38(1):92-105
– reference: 22296764 - Cold Spring Harb Perspect Biol. 2012 Mar;4(3). pii: a006049. doi: 10.1101/cshperspect.a006049
– reference: 20303872 - Cell. 2010 Mar 19;140(6):805-20
– reference: 14607926 - J Immunol. 2003 Nov 15;171(10):5255-63
– reference: 24528868 - Cell Host Microbe. 2014 Feb 12;15(2):228-38
– reference: 22371602 - Proc Natl Acad Sci U S A. 2012 Mar 13;109(11):4239-44
– reference: 15860560 - Bioinformatics. 2005 Jul 1;21(13):2933-42
– reference: 19120477 - Immunol Rev. 2009 Jan;227(1):75-86
– reference: 21478870 - Nature. 2011 Apr 28;472(7344):481-5
– reference: 23707065 - Cell Rep. 2013 May 30;3(5):1355-61
– reference: 9861020 - Proc Natl Acad Sci U S A. 1998 Dec 22;95(26):15623-8
– reference: 22171011 - Proc Natl Acad Sci U S A. 2011 Dec 27;108(52):21170-5
– reference: 23989956 - Science. 2013 Sep 20;341(6152):1390-4
– reference: 18467494 - Proc Natl Acad Sci U S A. 2008 May 13;105(19):7034-9
– reference: 23726320 - Trends Microbiol. 2013 Aug;21(8):413-20
– reference: 11070172 - Immunity. 2000 Oct;13(4):539-48
– reference: 25002588 - J Biol Chem. 2014 Aug 22;289(34):23568-81
– reference: 21892174 - Nat Immunol. 2011 Oct;12(10):959-65
– reference: 14769151 - J Interferon Cytokine Res. 2003 Dec;23(12):745-56
– reference: 21785411 - Nat Immunol. 2011 Sep;12(9):861-9
– reference: 23647843 - Cell. 2013 May 23;153(5):1094-107
– reference: 1879973 - Int J Cancer. 1991 Sep 9;49(2):296-302
– reference: 23045604 - J Exp Med. 2012 Oct 22;209(11):1969-83
– reference: 17559902 - Virology. 2007 Oct 10;367(1):92-101
– reference: 21098106 - Infect Immun. 2011 Feb;79(2):688-94
– reference: 19261174 - Genome Biol. 2009;10(3):R25
– reference: 23258412 - Science. 2013 Feb 15;339(6121):826-30
– reference: 20127681 - Eur J Immunol. 2010 Apr;40(4):940-8
– reference: 9822609 - EMBO J. 1998 Nov 16;17(22):6660-9
– reference: 18575461 - Nat Rev Immunol. 2008 Jul;8(7):559-68
– reference: 24356864 - Eur J Immunol. 2014 Mar;44(3):634-40
– reference: 23706667 - Immunity. 2013 May 23;38(5):855-69
– reference: 25417649 - Nat Commun. 2014;5:5494
– reference: 11404376 - J Leukoc Biol. 2001 Jun;69(6):912-20
– reference: 9877175 - FEBS Lett. 1998 Dec 11;441(1):106-10
– reference: 16871572 - Hepatology. 2006 Aug;44(2):352-9
– reference: 18546601 - Nat Protoc. 2008;3(6):1101-8
– reference: 24172870 - Epigenetics. 2014 Feb;9(2):257-67
– reference: 24970844 - EMBO J. 2014 Aug 1;33(15):1654-66
– reference: 22086960 - Nucleic Acids Res. 2012 Jan;40(Database issue):D1144-9
– reference: 23258413 - Science. 2013 Feb 15;339(6121):786-91
– reference: 23722158 - Nature. 2013 Jun 20;498(7454):380-4
– reference: 25070851 - J Immunol. 2014 Sep 1;193(5):2394-404
– reference: 20890285 - Nat Immunol. 2010 Nov;11(11):997-1004
– reference: 24284630 - Nature. 2014 Jan 30;505(7485):691-5
– reference: 23747010 - Mol Cell. 2013 Jul 25;51(2):226-35
– reference: 17709400 - J Leukoc Biol. 2007 Nov;82(5):1353-60
– reference: 21947006 - Nature. 2011 Oct 27;478(7370):515-8
– reference: 21884170 - Immunol Rev. 2011 Sep;243(1):99-108
– reference: 17202376 - J Immunol. 2007 Jan 15;178(2):1122-35
SSID ssj0006024
Score 2.5170302
Snippet Rapid and robust induction of type I IFN (IFN-I) is a critical event in host antiviral innate immune response. It has been well demonstrated that cyclic...
Rapid and robust induction of type I interferon (IFN-I) is a critical event in host antiviral innate immune response. It has been well demonstrated that cyclic...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1545
SubjectTerms Animals
Cell Line
Chromatin Immunoprecipitation
Enzyme-Linked Immunosorbent Assay
Feedback, Physiological
Herpes simplex virus 1
Humans
Immunity, Innate - immunology
Immunoblotting
Interferon Type I - biosynthesis
Interferon Type I - immunology
Macrophages - immunology
Macrophages - metabolism
Male
Mice
Mice, Inbred C57BL
Mice, Knockout
Nucleotidyltransferases - immunology
Nucleotidyltransferases - metabolism
Oligonucleotide Array Sequence Analysis
Real-Time Polymerase Chain Reaction
Title Positive Feedback Regulation of Type I IFN Production by the IFN-Inducible DNA Sensor cGAS
URI https://www.ncbi.nlm.nih.gov/pubmed/25609843
https://www.proquest.com/docview/1653123995
https://www.proquest.com/docview/1808631552
https://pubmed.ncbi.nlm.nih.gov/PMC4324085
Volume 194
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FIhAXBAVKeGmR4IAit2vv-nUshdCAEvXQShUXy7te01BwqjQ5hB_A72Zmd_1IqCroxYqcdVb292V2Zj3zDSFvBHjRYayUFwheeiJMU0_mvva4LFUqmdapKY8eT6LDE_H5NDzt9X53spaWC7mrfl1ZV3ITVOEc4IpVsv-BbPOjcAI-A75wBITh-E8YH5mMK9TthjVI5up8MLet5Z0XaPZXR4PRcIJ5WIUVijUOJ6ZMDiceBORLNcXiqQ-T_cElhLSz-UB9cs2Jv7dM6vitU6woscpNb837MdbZTRgbXxQe0rcm08ekC7yfds8sbT6Qt8rbs6OVawF2llfn-dxtybr9CN_Ud9uKzE59gB_bJhu72pnVEILUiEVrdtd2N3YEEx0rim5dZ0VGl-cqay8gukFr7-4bjD5DcfruUMDr4qdBH127NLGSUBsK20fjA6NLmIS3yO0Awg0Tmo--NCt6xAJRq87jndnX3Tj93ubkKC7tZlr3dP4KXzazcDtuzfEDct_hSvctuR6Snq62yR3boXS1Te6OXe7FI_K1Zhut2UZbttFZSZFtdESBV7RlG5UrCmyja2yjwDZq2UaRbY_JyfDj8cGh5zpzeAoC6oUngyJOpAxD6ZeCF9znIdiCgmHzhZCBy62ZCqQOWMkTIbjO86iAhQJiXc1SleT8CdmqZpV-SmjJ41InRRHFEiLzUEil_VjxWDHhx1KFfbJXP8VMOdl67J7yI4PwFSHIaggyB0GfvGuuuLCSLdeMfV0Dk4FdxZdleaVny8vMj2B1MoXf14xJWBJxFDHskx0LZjNjzYI-iddgbgagrvv6N9X0zOi7OzI-u_GVz8m99p_5gmwt5kv9EnznhXxliP0Hv4zC_w
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Positive+feedback+regulation+of+type+I+IFN+production+by+the+IFN-inducible+DNA+sensor+cGAS&rft.jtitle=The+Journal+of+immunology+%281950%29&rft.au=Ma%2C+Feng&rft.au=Li%2C+Bing&rft.au=Liu%2C+Su-yang&rft.au=Iyer%2C+Shankar+S&rft.date=2015-02-15&rft.issn=0022-1767&rft.eissn=1550-6606&rft.volume=194&rft.issue=4&rft.spage=1545&rft.epage=1554&rft_id=info:doi/10.4049%2Fjimmunol.1402066&rft_id=info%3Apmid%2F25609843&rft.externalDocID=PMC4324085
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1767&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1767&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1767&client=summon