Positive Feedback Regulation of Type I IFN Production by the IFN-Inducible DNA Sensor cGAS
Rapid and robust induction of type I IFN (IFN-I) is a critical event in host antiviral innate immune response. It has been well demonstrated that cyclic GMP-AMP (cGAMP) synthase (cGAS) plays an important role in sensing cytosolic DNA and triggering STING dependent signaling to induce IFN-I. However,...
Saved in:
Published in | The Journal of immunology (1950) Vol. 194; no. 4; pp. 1545 - 1554 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
15.02.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Rapid and robust induction of type I IFN (IFN-I) is a critical event in host antiviral innate immune response. It has been well demonstrated that cyclic GMP-AMP (cGAMP) synthase (cGAS) plays an important role in sensing cytosolic DNA and triggering STING dependent signaling to induce IFN-I. However, it is largely unknown how cGAS itself is regulated during pathogen infection and IFN-I production. In this study, we show that pattern recognition receptor (PRR) ligands, including lipid A, LPS, poly(I:C), poly(dA:dT), and cGAMP, induce cGAS expression in an IFN-I–dependent manner in both mouse and human macrophages. Further experiments indicated that cGAS is an IFN-stimulated gene (ISG), and two adjacent IFN-sensitive response elements (ISREs) in the promoter region of cGAS mediate the induction of cGAS by IFN-I. Additionally, we show that optimal production of IFN-β triggered by poly (dA:dT) or HSV-1 requires IFNAR signaling. Knockdown of the constitutively expressed DNA sensor DDX41 attenuates poly(dA:dT)-triggered IFN-β production and cGAS induction. By analyzing the dynamic expression of poly(dA:dT)-induced IFN-β and cGAS transcripts, we have found that induction of IFN-β is earlier than cGAS. Furthermore, we have provided evidence that induction of cGAS by IFN-I meditates the subsequent positive feedback regulation of DNA-triggered IFN-I production. Thus, our study not only provides a novel mechanism of modulating cGAS expression, but also adds another layer of regulation in DNA-triggered IFN-I production by induction of cGAS. |
---|---|
AbstractList | Rapid and robust induction of type I IFN (IFN-I) is a critical event in host antiviral innate immune response. It has been well demonstrated that cyclic GMP-AMP (cGAMP) synthase (cGAS) plays an important role in sensing cytosolic DNA and triggering STING dependent signaling to induce IFN-I. However, it is largely unknown how cGAS itself is regulated during pathogen infection and IFN-I production. In this study, we show that pattern recognition receptor (PRR) ligands, including lipid A, LPS, poly(I:C), poly(dA:dT), and cGAMP, induce cGAS expression in an IFN-I-dependent manner in both mouse and human macrophages. Further experiments indicated that cGAS is an IFN-stimulated gene (ISG), and two adjacent IFN-sensitive response elements (ISREs) in the promoter region of cGAS mediate the induction of cGAS by IFN-I. Additionally, we show that optimal production of IFN- beta triggered by poly (dA:dT) or HSV-1 requires IFNAR signaling. Knockdown of the constitutively expressed DNA sensor DDX41 attenuates poly(dA:dT)-triggered IFN- beta production and cGAS induction. By analyzing the dynamic expression of poly(dA:dT)-induced IFN- beta and cGAS transcripts, we have found that induction of IFN- beta is earlier than cGAS. Furthermore, we have provided evidence that induction of cGAS by IFN-I meditates the subsequent positive feedback regulation of DNA-triggered IFN-I production. Thus, our study not only provides a novel mechanism of modulating cGAS expression, but also adds another layer of regulation in DNA-triggered IFN-I production by induction of cGAS. Rapid and robust induction of type I interferon (IFN-I) is a critical event in host antiviral innate immune response. It has been well demonstrated that cyclic GMP-AMP (cGAMP) synthase (cGAS) plays an important role in sensing cytosolic DNA and triggering stimulator of interferon genes (STING)-dependent signaling to induce IFN-I. However, it is largely unknown how cGAS itself is regulated during pathogen infection and IFN-I production. Here, we show that pattern-recognition receptor (PRR) ligands including lipidA, LPS, polyI:C, polydA:dT, and cGAMP induce cGAS expression in a IFN-I-dependent manner in both mouse and human macrophages. Further experiments indicate that cGAS is an IFN-stimulated gene (ISG), and two adjacent IFN-sensitive response elements (ISREs) in the promoter region of cGAS mediate the induction of cGAS by IFN-I. In addition, we show that optimal production of IFNβ triggered by polydA:dT or HSV-1 requires IFNAR signaling. Knockdown of the constitutively expressed DNA sensor DDX41 attenuates polydA:dT-triggered IFNβ production and cGAS induction. By analyzing the dynamic expression of polydA:dT-induced IFNβ and cGAS transcripts, we have found that induction of IFNβ is earlier than cGAS. Furthermore, we have provided evidence that induction of cGAS by IFN-I meditates the subsequent positive feedback regulation of DNA-triggered IFN-I production. Thus, our study not only provides a novel mechanism of modulating cGAS expression, but also adds another layer of regulation in DNA-triggered IFN-I production by induction of cGAS. Rapid and robust induction of type I IFN (IFN-I) is a critical event in host antiviral innate immune response. It has been well demonstrated that cyclic GMP-AMP (cGAMP) synthase (cGAS) plays an important role in sensing cytosolic DNA and triggering STING dependent signaling to induce IFN-I. However, it is largely unknown how cGAS itself is regulated during pathogen infection and IFN-I production. In this study, we show that pattern recognition receptor (PRR) ligands, including lipid A, LPS, poly(I:C), poly(dA:dT), and cGAMP, induce cGAS expression in an IFN-I-dependent manner in both mouse and human macrophages. Further experiments indicated that cGAS is an IFN-stimulated gene (ISG), and two adjacent IFN-sensitive response elements (ISREs) in the promoter region of cGAS mediate the induction of cGAS by IFN-I. Additionally, we show that optimal production of IFN-β triggered by poly (dA:dT) or HSV-1 requires IFNAR signaling. Knockdown of the constitutively expressed DNA sensor DDX41 attenuates poly(dA:dT)-triggered IFN-β production and cGAS induction. By analyzing the dynamic expression of poly(dA:dT)-induced IFN-β and cGAS transcripts, we have found that induction of IFN-β is earlier than cGAS. Furthermore, we have provided evidence that induction of cGAS by IFN-I meditates the subsequent positive feedback regulation of DNA-triggered IFN-I production. Thus, our study not only provides a novel mechanism of modulating cGAS expression, but also adds another layer of regulation in DNA-triggered IFN-I production by induction of cGAS.Rapid and robust induction of type I IFN (IFN-I) is a critical event in host antiviral innate immune response. It has been well demonstrated that cyclic GMP-AMP (cGAMP) synthase (cGAS) plays an important role in sensing cytosolic DNA and triggering STING dependent signaling to induce IFN-I. However, it is largely unknown how cGAS itself is regulated during pathogen infection and IFN-I production. In this study, we show that pattern recognition receptor (PRR) ligands, including lipid A, LPS, poly(I:C), poly(dA:dT), and cGAMP, induce cGAS expression in an IFN-I-dependent manner in both mouse and human macrophages. Further experiments indicated that cGAS is an IFN-stimulated gene (ISG), and two adjacent IFN-sensitive response elements (ISREs) in the promoter region of cGAS mediate the induction of cGAS by IFN-I. Additionally, we show that optimal production of IFN-β triggered by poly (dA:dT) or HSV-1 requires IFNAR signaling. Knockdown of the constitutively expressed DNA sensor DDX41 attenuates poly(dA:dT)-triggered IFN-β production and cGAS induction. By analyzing the dynamic expression of poly(dA:dT)-induced IFN-β and cGAS transcripts, we have found that induction of IFN-β is earlier than cGAS. Furthermore, we have provided evidence that induction of cGAS by IFN-I meditates the subsequent positive feedback regulation of DNA-triggered IFN-I production. Thus, our study not only provides a novel mechanism of modulating cGAS expression, but also adds another layer of regulation in DNA-triggered IFN-I production by induction of cGAS. Rapid and robust induction of type I IFN (IFN-I) is a critical event in host antiviral innate immune response. It has been well demonstrated that cyclic GMP-AMP (cGAMP) synthase (cGAS) plays an important role in sensing cytosolic DNA and triggering STING dependent signaling to induce IFN-I. However, it is largely unknown how cGAS itself is regulated during pathogen infection and IFN-I production. In this study, we show that pattern recognition receptor (PRR) ligands, including lipid A, LPS, poly(I:C), poly(dA:dT), and cGAMP, induce cGAS expression in an IFN-I–dependent manner in both mouse and human macrophages. Further experiments indicated that cGAS is an IFN-stimulated gene (ISG), and two adjacent IFN-sensitive response elements (ISREs) in the promoter region of cGAS mediate the induction of cGAS by IFN-I. Additionally, we show that optimal production of IFN-β triggered by poly (dA:dT) or HSV-1 requires IFNAR signaling. Knockdown of the constitutively expressed DNA sensor DDX41 attenuates poly(dA:dT)-triggered IFN-β production and cGAS induction. By analyzing the dynamic expression of poly(dA:dT)-induced IFN-β and cGAS transcripts, we have found that induction of IFN-β is earlier than cGAS. Furthermore, we have provided evidence that induction of cGAS by IFN-I meditates the subsequent positive feedback regulation of DNA-triggered IFN-I production. Thus, our study not only provides a novel mechanism of modulating cGAS expression, but also adds another layer of regulation in DNA-triggered IFN-I production by induction of cGAS. |
Author | Ma, Feng Yu, Yongxin Iyer, Shankar S Liu, Su-yang Wu, Aiping Cheng, Genhong Li, Bing |
AuthorAffiliation | Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA 90095 Division of Oral Biology and Medicine, School of Dentistry and Broad Stem Cell Research Center, University of California, Los Angeles, CA 90095 Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095 |
AuthorAffiliation_xml | – name: Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA 90095 – name: Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095 – name: Division of Oral Biology and Medicine, School of Dentistry and Broad Stem Cell Research Center, University of California, Los Angeles, CA 90095 |
Author_xml | – sequence: 1 givenname: Feng surname: Ma fullname: Ma, Feng – sequence: 2 givenname: Bing surname: Li fullname: Li, Bing – sequence: 3 givenname: Su-yang surname: Liu fullname: Liu, Su-yang – sequence: 4 givenname: Shankar S surname: Iyer fullname: Iyer, Shankar S – sequence: 5 givenname: Yongxin surname: Yu fullname: Yu, Yongxin – sequence: 6 givenname: Aiping surname: Wu fullname: Wu, Aiping – sequence: 7 givenname: Genhong surname: Cheng fullname: Cheng, Genhong |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25609843$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUU1v1DAUtFAR3RbunJCPXFKeP9e5IK0KW1aqSkXLhYtlOy-tSxIvcVJp_z3ZdrcqSIjTk958aDRzRA661CEhbxmcSJDlh7vYtmOXmhMmgYPWL8iMKQWF1qAPyAyA84LN9fyQHOV8BwAauHxFDrnSUBopZuTHZcpxiPdIl4iVd-En_YY3Y-OGmDqaanq9WSNd0dXygl72qRrDA-A3dLjF7bdYddMz-gbpp4sFvcIup56Gs8XVa_Kydk3GN7t7TL4vP1-ffinOv56tThfnRZClGgrPq7nxXinPaikqwYTyGCrQzGgFouQIgXvkUAsjpUDndGUMaDkBZTBOHJOPj77r0bdYBeyG3jV23cfW9RubXLR_Il28tTfp3krBJRg1GbzfGfTp14h5sG3MAZvGdZjGbJkBo8VULP8_VSvBuCjLreu757Ge8uy7nwj6kRD6lHOPtQ1xeOh9Shkby8BuR7b7ke1u5EkIfwn33v-U_AaIQ6sP |
CitedBy_id | crossref_primary_10_1128_JVI_00760_21 crossref_primary_10_4155_fmc_2017_0322 crossref_primary_10_1016_j_celrep_2023_112309 crossref_primary_10_3390_ijms24098151 crossref_primary_10_1128_mBio_01611_17 crossref_primary_10_1016_j_mad_2019_111118 crossref_primary_10_1111_ajt_13963 crossref_primary_10_1111_apha_13194 crossref_primary_10_1016_j_mcpro_2022_100247 crossref_primary_10_1371_journal_ppat_1008429 crossref_primary_10_3390_pathogens10030300 crossref_primary_10_3389_fcimb_2020_576263 crossref_primary_10_1007_s10495_021_01669_x crossref_primary_10_1155_2021_9975628 crossref_primary_10_1016_j_ecoenv_2021_112712 crossref_primary_10_1016_j_immuni_2024_08_012 crossref_primary_10_4049_jimmunol_2200158 crossref_primary_10_1128_JVI_00748_16 crossref_primary_10_15252_embr_202051345 crossref_primary_10_1016_j_immuni_2024_06_001 crossref_primary_10_3389_fendo_2022_991632 crossref_primary_10_1002_wsbm_1597 crossref_primary_10_1186_s13018_024_04919_1 crossref_primary_10_1016_j_jhepr_2021_100324 crossref_primary_10_3389_fimmu_2021_637399 crossref_primary_10_1007_s10753_024_02093_4 crossref_primary_10_1038_ni_3558 crossref_primary_10_1016_j_exphem_2023_104148 crossref_primary_10_1128_mbio_01738_22 crossref_primary_10_3389_fimmu_2017_01823 crossref_primary_10_1021_acs_chemrev_1c00750 crossref_primary_10_4049_jimmunol_1701733 crossref_primary_10_1128_JVI_01555_20 crossref_primary_10_4103_NRR_NRR_D_24_00015 crossref_primary_10_1016_j_molmed_2018_06_004 crossref_primary_10_2139_ssrn_3188495 crossref_primary_10_1038_cmi_2016_51 crossref_primary_10_1515_mr_2023_0061 crossref_primary_10_1016_j_clim_2016_12_011 crossref_primary_10_1146_annurev_virology_092818_015756 crossref_primary_10_3390_cells10040785 crossref_primary_10_1093_nar_gkac200 crossref_primary_10_1016_j_micinf_2023_105144 crossref_primary_10_3390_cancers13040614 crossref_primary_10_1007_s12250_018_0005_6 crossref_primary_10_1371_journal_ppat_1010725 crossref_primary_10_1158_0008_5472_CAN_19_2330 crossref_primary_10_1038_s41423_021_00668_x crossref_primary_10_1002_bies_202300045 crossref_primary_10_1016_j_tma_2017_08_001 crossref_primary_10_3389_fimmu_2022_887054 crossref_primary_10_3389_fimmu_2023_1139358 crossref_primary_10_3389_fimmu_2020_611347 crossref_primary_10_1152_ajpgi_00104_2022 crossref_primary_10_15789_1563_0625_SIC_2790 crossref_primary_10_3389_fimmu_2020_00615 crossref_primary_10_1042_BST20230725 crossref_primary_10_1038_s41467_023_40937_z crossref_primary_10_3390_ijms241914738 crossref_primary_10_1016_j_molimm_2022_10_009 crossref_primary_10_3389_fimmu_2022_941579 crossref_primary_10_1152_physiol_00022_2019 crossref_primary_10_1172_jci_insight_133225 crossref_primary_10_1073_pnas_2218825120 crossref_primary_10_1016_j_virusres_2021_198658 crossref_primary_10_1016_j_fmre_2021_08_015 crossref_primary_10_1002_1873_3468_14885 crossref_primary_10_1016_j_phrs_2021_105514 crossref_primary_10_1093_nar_gkaa084 crossref_primary_10_1007_s13365_020_00852_1 crossref_primary_10_1126_sciadv_abb8941 crossref_primary_10_1002_iub_1566 crossref_primary_10_3389_fphar_2021_771555 crossref_primary_10_1016_j_intimp_2024_112446 crossref_primary_10_1158_1078_0432_CCR_21_1010 crossref_primary_10_3390_ijms21145150 crossref_primary_10_3389_fimmu_2024_1385473 crossref_primary_10_4049_jimmunol_2200351 crossref_primary_10_1128_mBio_00923_18 crossref_primary_10_4049_jimmunol_1502458 crossref_primary_10_3892_etm_2019_8001 crossref_primary_10_1016_j_arr_2022_101765 crossref_primary_10_7554_eLife_39984 crossref_primary_10_3389_fimmu_2019_00836 crossref_primary_10_3389_fimmu_2020_624556 crossref_primary_10_15789_2220_7619_EOT_1928 crossref_primary_10_1002_jmv_28826 crossref_primary_10_1038_s41392_023_01420_9 crossref_primary_10_15252_embj_2021108234 crossref_primary_10_1152_physrev_00041_2016 crossref_primary_10_1016_j_canlet_2024_217410 crossref_primary_10_3390_molecules28073127 crossref_primary_10_3390_cells14060447 crossref_primary_10_1016_j_celrep_2022_110856 crossref_primary_10_1016_j_neuron_2022_10_028 crossref_primary_10_1038_s41590_020_00859_0 crossref_primary_10_1515_hsz_2020_0367 crossref_primary_10_1016_j_cellin_2021_100001 crossref_primary_10_3390_cells10123544 crossref_primary_10_1016_j_molimm_2018_08_005 crossref_primary_10_1007_s12250_015_3683_3 crossref_primary_10_1128_jvi_01815_23 crossref_primary_10_3389_fmicb_2019_00429 crossref_primary_10_1111_imr_12765 crossref_primary_10_1186_s12985_016_0495_5 crossref_primary_10_1016_j_cellsig_2019_109355 crossref_primary_10_1172_jci_insight_120638 crossref_primary_10_3389_fimmu_2023_1127623 crossref_primary_10_1016_j_intimp_2024_111687 crossref_primary_10_1016_j_cyto_2019_02_009 crossref_primary_10_1038_s41577_019_0215_7 crossref_primary_10_3390_ijms20040895 crossref_primary_10_1371_journal_ppat_1010233 crossref_primary_10_1016_j_dnarep_2024_103634 crossref_primary_10_1080_15384101_2019_1638192 crossref_primary_10_1038_s44321_024_00046_w crossref_primary_10_3389_fimmu_2018_01276 crossref_primary_10_3390_ijms241210115 crossref_primary_10_1186_s12974_024_03155_y crossref_primary_10_1038_s41467_021_24997_7 crossref_primary_10_1038_srep20158 crossref_primary_10_1016_j_vetmic_2023_109842 crossref_primary_10_1016_j_molimm_2018_01_008 crossref_primary_10_1111_tbed_14416 crossref_primary_10_1016_j_it_2016_06_003 crossref_primary_10_1371_journal_ppat_1010748 crossref_primary_10_1128_spectrum_03796_23 |
Cites_doi | 10.1089/107999003772084860 10.1002/eji.201344127 10.4161/epi.26870 10.1189/jlb.69.6.912 10.1016/j.molcel.2013.05.022 10.1038/nature10429 10.1016/S1074-7613(00)00053-4 10.1111/j.1600-065X.2011.01051.x 10.1016/j.immuni.2012.11.005 10.1038/nature09907 10.1038/ni.2073 10.1038/nature12862 10.1101/cshperspect.a006049 10.1038/nature12306 10.1038/ni.2091 10.1111/j.1600-065X.2008.00737.x 10.4049/jimmunol.178.2.1122 10.1093/nar/gkr1013 10.1073/pnas.1119137109 10.15252/embj.201488029 10.1016/j.chom.2014.01.009 10.1016/j.virol.2007.05.010 10.1093/bioinformatics/bti473 10.1126/science.1244040 10.1128/IAI.00999-10 10.1038/ni.1932 10.1073/pnas.0707882105 10.1126/scisignal.2002521 10.1016/j.cell.2010.01.022 10.1002/ijc.2910490226 10.1074/jbc.M114.554147 10.1038/nri2314 10.1073/pnas.1114981109 10.1016/j.cell.2013.04.046 10.1126/science.1240933 10.1002/hep.21267 10.1073/pnas.95.26.15623 10.1016/j.immuni.2013.05.007 10.1016/j.tim.2013.04.004 10.1126/science.1229963 10.1038/nri1604 10.1038/nature08476 10.1186/gb-2009-10-3-r25 10.1084/jem.20121960 10.1126/science.1232458 10.1093/emboj/17.22.6660 10.4049/jimmunol.171.10.5255 10.1016/j.celrep.2013.05.009 10.4049/jimmunol.1302718 10.1189/jlb.0507273 10.1016/S0014-5793(98)01514-2 10.1038/nprot.2008.73 10.1002/eji.200940203 10.1038/ncomms6494 |
ContentType | Journal Article |
Copyright | Copyright © 2015 by The American Association of Immunologists, Inc. |
Copyright_xml | – notice: Copyright © 2015 by The American Association of Immunologists, Inc. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7T5 7TM H94 5PM |
DOI | 10.4049/jimmunol.1402066 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Immunology Abstracts Nucleic Acids Abstracts AIDS and Cancer Research Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AIDS and Cancer Research Abstracts Immunology Abstracts Nucleic Acids Abstracts |
DatabaseTitleList | AIDS and Cancer Research Abstracts MEDLINE - Academic CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
EISSN | 1550-6606 |
EndPage | 1554 |
ExternalDocumentID | PMC4324085 25609843 10_4049_jimmunol_1402066 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: T32 CA009120 – fundername: NIAID NIH HHS grantid: R01 AI056154 – fundername: NCI NIH HHS grantid: 5T32CA009120 – fundername: NIAMS NIH HHS grantid: P50 AR063020 – fundername: NIAID NIH HHS grantid: R01 AI069120 – fundername: NIAID NIH HHS grantid: R01 AI078389 |
GroupedDBID | --- -~X .55 0R~ 18M 2WC 34G 39C 53G 5GY 5RE 5VS 5WD 79B 85S AARDX AAYXX ABCQX ABDFA ABEJV ABGNP ABJNI ABOCM ABPPZ ABXVV ACGFO ACGFS ACIWK ACNCT ACPRK ADBBV ADIPN ADNWM AENEX AETEA AFHIN AFOSN AFRAH AGORE AHMMS AHWXS AIZAD ALMA_UNASSIGNED_HOLDINGS ARBBW BAWUL BCRHZ BTFSW CITATION D0L DIK DU5 E3Z EBS EJD F5P FRP GX1 IH2 K-O KQ8 L7B OCZFY OK1 OWPYF P0W P2P PQQKQ R.V RHI ROX RZQ SJN TR2 TWZ W8F WH7 WOQ X7M XJT XSW XTH YHG CGR CUY CVF ECM EIF KOP NPM 7X8 7T5 7TM H94 5PM |
ID | FETCH-LOGICAL-c495t-b2d78bb55b1f43d3135becd0618650392e0c2be20f38443eaa6d880642e09c8a3 |
ISSN | 0022-1767 1550-6606 |
IngestDate | Thu Aug 21 14:12:48 EDT 2025 Fri Jul 11 05:03:53 EDT 2025 Fri Jul 11 06:00:36 EDT 2025 Mon Jul 21 06:02:08 EDT 2025 Tue Jul 01 05:23:36 EDT 2025 Thu Apr 24 23:05:23 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | https://academic.oup.com/pages/standard-publication-reuse-rights Copyright © 2015 by The American Association of Immunologists, Inc. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c495t-b2d78bb55b1f43d3135becd0618650392e0c2be20f38443eaa6d880642e09c8a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.jimmunol.org/content/jimmunol/194/4/1545.full.pdf |
PMID | 25609843 |
PQID | 1653123995 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4324085 proquest_miscellaneous_1808631552 proquest_miscellaneous_1653123995 pubmed_primary_25609843 crossref_citationtrail_10_4049_jimmunol_1402066 crossref_primary_10_4049_jimmunol_1402066 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-02-15 |
PublicationDateYYYYMMDD | 2015-02-15 |
PublicationDate_xml | – month: 02 year: 2015 text: 2015-02-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The Journal of immunology (1950) |
PublicationTitleAlternate | J Immunol |
PublicationYear | 2015 |
References | Gao (2025030705044821200_r18) 2013; 153 Gao (2025030705044821200_r13) 2013; 341 de Veer (2025030705044821200_r45) 2001; 69 Ishikawa (2025030705044821200_r22) 2009; 461 Burdette (2025030705044821200_r37) 2011; 478 Hilkens (2025030705044821200_r51) 2003; 171 Wang (2025030705044821200_r30) 2012; 40 Brunette (2025030705044821200_r8) 2012; 209 Schmittgen (2025030705044821200_r29) 2008; 3 Ma (2025030705044821200_r28) 2014; 5 Sato (2025030705044821200_r44) 2000; 13 Diner (2025030705044821200_r17) 2013; 3 Thompson (2025030705044821200_r9) 2014; 289 Leaman (2025030705044821200_r47) 2003; 23 Bhat (2025030705044821200_r11) 2014; 44 Platanias (2025030705044821200_r38) 2005; 5 He (2025030705044821200_r50) 2006; 44 Sarasin-Filipowicz (2025030705044821200_r49) 2008; 105 Barber (2025030705044821200_r20) 2011; 243 Indraccolo (2025030705044821200_r52) 2007; 178 Li (2025030705044821200_r14) 2013; 341 Ma (2025030705044821200_r35) 2011; 12 Der (2025030705044821200_r3) 1998; 95 Gürtler (2025030705044821200_r10) 2013; 21 Sadler (2025030705044821200_r1) 2008; 8 Schoggins (2025030705044821200_r23) 2014; 505 Zhang (2025030705044821200_r24) 2014; 193 Cartharius (2025030705044821200_r31) 2005; 21 Takeuchi (2025030705044821200_r6) 2010; 140 Newton (2025030705044821200_r40) 2012; 4 Marié (2025030705044821200_r43) 1998; 17 Langmead (2025030705044821200_r33) 2009; 10 Liu (2025030705044821200_r5) 2012; 109 Hultcrantz (2025030705044821200_r46) 2007; 367 Palleroni (2025030705044821200_r26) 1991; 49 Goubau (2025030705044821200_r2) 2013; 38 Ng (2025030705044821200_r32) 2011; 108 Ablasser (2025030705044821200_r16) 2013; 498 Unterholzner (2025030705044821200_r7) 2010; 11 Zhang (2025030705044821200_r19) 2013; 51 Wu (2025030705044821200_r15) 2013; 339 Li (2025030705044821200_r34) 2014; 9 Rani (2025030705044821200_r48) 2007; 82 Sun (2025030705044821200_r12) 2013; 339 Schoggins (2025030705044821200_r4) 2011; 472 Hansen (2025030705044821200_r25) 2014; 33 Oshiumi (2025030705044821200_r54) 2010; 40 Sauer (2025030705044821200_r36) 2011; 79 Liu (2025030705044821200_r27) 2013; 38 Tanaka (2025030705044821200_r21) 2012; 5 Sato (2025030705044821200_r42) 1998; 441 Liang (2025030705044821200_r53) 2014; 15 Takeuchi (2025030705044821200_r39) 2009; 227 Zhang (2025030705044821200_r41) 2011; 12 23258413 - Science. 2013 Feb 15;339(6121):786-91 16871572 - Hepatology. 2006 Aug;44(2):352-9 22171011 - Proc Natl Acad Sci U S A. 2011 Dec 27;108(52):21170-5 22296764 - Cold Spring Harb Perspect Biol. 2012 Mar;4(3). pii: a006049. doi: 10.1101/cshperspect.a006049 11070172 - Immunity. 2000 Oct;13(4):539-48 23726320 - Trends Microbiol. 2013 Aug;21(8):413-20 24172870 - Epigenetics. 2014 Feb;9(2):257-67 21884170 - Immunol Rev. 2011 Sep;243(1):99-108 24970844 - EMBO J. 2014 Aug 1;33(15):1654-66 23273844 - Immunity. 2013 Jan 24;38(1):92-105 18467494 - Proc Natl Acad Sci U S A. 2008 May 13;105(19):7034-9 18546601 - Nat Protoc. 2008;3(6):1101-8 18575461 - Nat Rev Immunol. 2008 Jul;8(7):559-68 23707065 - Cell Rep. 2013 May 30;3(5):1355-61 22371602 - Proc Natl Acad Sci U S A. 2012 Mar 13;109(11):4239-44 1879973 - Int J Cancer. 1991 Sep 9;49(2):296-302 17202376 - J Immunol. 2007 Jan 15;178(2):1122-35 23706667 - Immunity. 2013 May 23;38(5):855-69 22086960 - Nucleic Acids Res. 2012 Jan;40(Database issue):D1144-9 14769151 - J Interferon Cytokine Res. 2003 Dec;23(12):745-56 20303872 - Cell. 2010 Mar 19;140(6):805-20 23989956 - Science. 2013 Sep 20;341(6152):1390-4 25002588 - J Biol Chem. 2014 Aug 22;289(34):23568-81 9822609 - EMBO J. 1998 Nov 16;17(22):6660-9 23647843 - Cell. 2013 May 23;153(5):1094-107 25070851 - J Immunol. 2014 Sep 1;193(5):2394-404 15864272 - Nat Rev Immunol. 2005 May;5(5):375-86 17559902 - Virology. 2007 Oct 10;367(1):92-101 19120477 - Immunol Rev. 2009 Jan;227(1):75-86 11404376 - J Leukoc Biol. 2001 Jun;69(6):912-20 21947006 - Nature. 2011 Oct 27;478(7370):515-8 20890285 - Nat Immunol. 2010 Nov;11(11):997-1004 9861020 - Proc Natl Acad Sci U S A. 1998 Dec 22;95(26):15623-8 23045604 - J Exp Med. 2012 Oct 22;209(11):1969-83 22394562 - Sci Signal. 2012 Mar 6;5(214):ra20 21478870 - Nature. 2011 Apr 28;472(7344):481-5 21892174 - Nat Immunol. 2011 Oct;12(10):959-65 19776740 - Nature. 2009 Oct 8;461(7265):788-92 15860560 - Bioinformatics. 2005 Jul 1;21(13):2933-42 9877175 - FEBS Lett. 1998 Dec 11;441(1):106-10 23747010 - Mol Cell. 2013 Jul 25;51(2):226-35 24284630 - Nature. 2014 Jan 30;505(7485):691-5 21098106 - Infect Immun. 2011 Feb;79(2):688-94 14607926 - J Immunol. 2003 Nov 15;171(10):5255-63 19261174 - Genome Biol. 2009;10(3):R25 24528868 - Cell Host Microbe. 2014 Feb 12;15(2):228-38 21785411 - Nat Immunol. 2011 Sep;12(9):861-9 23929945 - Science. 2013 Aug 23;341(6148):903-6 23258412 - Science. 2013 Feb 15;339(6121):826-30 20127681 - Eur J Immunol. 2010 Apr;40(4):940-8 23722158 - Nature. 2013 Jun 20;498(7454):380-4 24356864 - Eur J Immunol. 2014 Mar;44(3):634-40 17709400 - J Leukoc Biol. 2007 Nov;82(5):1353-60 25417649 - Nat Commun. 2014;5:5494 |
References_xml | – volume: 23 start-page: 745 year: 2003 ident: 2025030705044821200_r47 article-title: Novel growth and death related interferon-stimulated genes (ISGs) in melanoma: greater potency of IFN-β compared with IFN-α2 publication-title: J. Interferon Cytokine Res. doi: 10.1089/107999003772084860 – volume: 44 start-page: 634 year: 2014 ident: 2025030705044821200_r11 article-title: Recognition of cytosolic DNA by cGAS and other STING-dependent sensors publication-title: Eur. J. Immunol. doi: 10.1002/eji.201344127 – volume: 9 start-page: 257 year: 2014 ident: 2025030705044821200_r34 article-title: A unique epigenetic signature is associated with active DNA replication loci in human embryonic stem cells publication-title: Epigenetics doi: 10.4161/epi.26870 – volume: 69 start-page: 912 year: 2001 ident: 2025030705044821200_r45 article-title: Functional classification of interferon-stimulated genes identified using microarrays publication-title: J. Leukoc. Biol. doi: 10.1189/jlb.69.6.912 – volume: 51 start-page: 226 year: 2013 ident: 2025030705044821200_r19 article-title: Cyclic GMP-AMP containing mixed phosphodiester linkages is an endogenous high-affinity ligand for STING publication-title: Mol. Cell doi: 10.1016/j.molcel.2013.05.022 – volume: 478 start-page: 515 year: 2011 ident: 2025030705044821200_r37 article-title: STING is a direct innate immune sensor of cyclic di-GMP publication-title: Nature doi: 10.1038/nature10429 – volume: 13 start-page: 539 year: 2000 ident: 2025030705044821200_r44 article-title: Distinct and essential roles of transcription factors IRF-3 and IRF-7 in response to viruses for IFN-α/β gene induction publication-title: Immunity doi: 10.1016/S1074-7613(00)00053-4 – volume: 243 start-page: 99 year: 2011 ident: 2025030705044821200_r20 article-title: Cytoplasmic DNA innate immune pathways publication-title: Immunol. Rev. doi: 10.1111/j.1600-065X.2011.01051.x – volume: 38 start-page: 92 year: 2013 ident: 2025030705044821200_r27 article-title: Interferon-inducible cholesterol-25-hydroxylase broadly inhibits viral entry by production of 25-hydroxycholesterol publication-title: Immunity doi: 10.1016/j.immuni.2012.11.005 – volume: 472 start-page: 481 year: 2011 ident: 2025030705044821200_r4 article-title: A diverse range of gene products are effectors of the type I interferon antiviral response publication-title: Nature doi: 10.1038/nature09907 – volume: 12 start-page: 861 year: 2011 ident: 2025030705044821200_r35 article-title: The microRNA miR-29 controls innate and adaptive immune responses to intracellular bacterial infection by targeting interferon-γ publication-title: Nat. Immunol. doi: 10.1038/ni.2073 – volume: 505 start-page: 691 year: 2014 ident: 2025030705044821200_r23 article-title: Pan-viral specificity of IFN-induced genes reveals new roles for cGAS in innate immunity publication-title: Nature doi: 10.1038/nature12862 – volume: 4 start-page: 4 year: 2012 ident: 2025030705044821200_r40 article-title: Signaling in innate immunity and inflammation publication-title: Cold Spring Harb. Perspect. Biol. doi: 10.1101/cshperspect.a006049 – volume: 498 start-page: 380 year: 2013 ident: 2025030705044821200_r16 article-title: cGAS produces a 2′-5′-linked cyclic dinucleotide second messenger that activates STING publication-title: Nature doi: 10.1038/nature12306 – volume: 12 start-page: 959 year: 2011 ident: 2025030705044821200_r41 article-title: The helicase DDX41 senses intracellular DNA mediated by the adaptor STING in dendritic cells publication-title: Nat. Immunol. doi: 10.1038/ni.2091 – volume: 227 start-page: 75 year: 2009 ident: 2025030705044821200_r39 article-title: Innate immunity to virus infection publication-title: Immunol. Rev. doi: 10.1111/j.1600-065X.2008.00737.x – volume: 178 start-page: 1122 year: 2007 ident: 2025030705044821200_r52 article-title: Identification of genes selectively regulated by IFNs in endothelial cells publication-title: J. Immunol. doi: 10.4049/jimmunol.178.2.1122 – volume: 40 start-page: D1144 year: 2012 ident: 2025030705044821200_r30 article-title: PrimerBank: a PCR primer database for quantitative gene expression analysis, 2012 update publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkr1013 – volume: 108 start-page: 21170 year: 2011 ident: 2025030705044821200_r32 article-title: IκB kinase ε (IKKε) regulates the balance between type I and type II interferon responses publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1119137109 – volume: 33 start-page: 1654 year: 2014 ident: 2025030705044821200_r25 article-title: Listeria monocytogenes induces IFNβ expression through an IFI16-, cGAS- and STING-dependent pathway publication-title: EMBO J. doi: 10.15252/embj.201488029 – volume: 15 start-page: 228 year: 2014 ident: 2025030705044821200_r53 article-title: Crosstalk between the cGAS DNA sensor and Beclin-1 autophagy protein shapes innate antimicrobial immune responses publication-title: Cell Host Microbe doi: 10.1016/j.chom.2014.01.009 – volume: 367 start-page: 92 year: 2007 ident: 2025030705044821200_r46 article-title: Interferons induce an antiviral state in human pancreatic islet cells publication-title: Virology doi: 10.1016/j.virol.2007.05.010 – volume: 21 start-page: 2933 year: 2005 ident: 2025030705044821200_r31 article-title: MatInspector and beyond: promoter analysis based on transcription factor binding sites publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti473 – volume: 341 start-page: 1390 year: 2013 ident: 2025030705044821200_r14 article-title: Pivotal roles of cGAS-cGAMP signaling in antiviral defense and immune adjuvant effects publication-title: Science doi: 10.1126/science.1244040 – volume: 79 start-page: 688 year: 2011 ident: 2025030705044821200_r36 article-title: The N-ethyl-N-nitrosourea-induced Goldenticket mouse mutant reveals an essential function of Sting in the in vivo interferon response to Listeria monocytogenes and cyclic dinucleotides publication-title: Infect. Immun. doi: 10.1128/IAI.00999-10 – volume: 11 start-page: 997 year: 2010 ident: 2025030705044821200_r7 article-title: IFI16 is an innate immune sensor for intracellular DNA publication-title: Nat. Immunol. doi: 10.1038/ni.1932 – volume: 105 start-page: 7034 year: 2008 ident: 2025030705044821200_r49 article-title: Interferon signaling and treatment outcome in chronic hepatitis C publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0707882105 – volume: 5 start-page: ra20 year: 2012 ident: 2025030705044821200_r21 article-title: STING specifies IRF3 phosphorylation by TBK1 in the cytosolic DNA signaling pathway publication-title: Sci. Signal. doi: 10.1126/scisignal.2002521 – volume: 140 start-page: 805 year: 2010 ident: 2025030705044821200_r6 article-title: Pattern recognition receptors and inflammation publication-title: Cell doi: 10.1016/j.cell.2010.01.022 – volume: 49 start-page: 296 year: 1991 ident: 2025030705044821200_r26 article-title: Tumoricidal alveolar macrophage and tumor infiltrating macrophage cell lines publication-title: Int. J. Cancer doi: 10.1002/ijc.2910490226 – volume: 289 start-page: 23568 year: 2014 ident: 2025030705044821200_r9 article-title: Interferon γ-inducible protein (IFI) 16 transcriptionally regulates type I interferons and other interferon-stimulated genes and controls the interferon response to both DNA and RNA viruses publication-title: J. Biol. Chem. doi: 10.1074/jbc.M114.554147 – volume: 8 start-page: 559 year: 2008 ident: 2025030705044821200_r1 article-title: Interferon-inducible antiviral effectors publication-title: Nat. Rev. Immunol. doi: 10.1038/nri2314 – volume: 109 start-page: 4239 year: 2012 ident: 2025030705044821200_r5 article-title: Systematic identification of type I and type II interferon-induced antiviral factors publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1114981109 – volume: 153 start-page: 1094 year: 2013 ident: 2025030705044821200_r18 article-title: Cyclic [G(2′,5′)pA(3′,5′)p] is the metazoan second messenger produced by DNA-activated cyclic GMP-AMP synthase publication-title: Cell doi: 10.1016/j.cell.2013.04.046 – volume: 341 start-page: 903 year: 2013 ident: 2025030705044821200_r13 article-title: Cyclic GMP-AMP synthase is an innate immune sensor of HIV and other retroviruses publication-title: Science doi: 10.1126/science.1240933 – volume: 44 start-page: 352 year: 2006 ident: 2025030705044821200_r50 article-title: Global transcriptional response to interferon is a determinant of HCV treatment outcome and is modified by race publication-title: Hepatology doi: 10.1002/hep.21267 – volume: 95 start-page: 15623 year: 1998 ident: 2025030705044821200_r3 article-title: Identification of genes differentially regulated by interferon α, β, or γ using oligonucleotide arrays publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.95.26.15623 – volume: 38 start-page: 855 year: 2013 ident: 2025030705044821200_r2 article-title: Cytosolic sensing of viruses publication-title: Immunity doi: 10.1016/j.immuni.2013.05.007 – volume: 21 start-page: 413 year: 2013 ident: 2025030705044821200_r10 article-title: Innate immune detection of microbial nucleic acids publication-title: Trends Microbiol. doi: 10.1016/j.tim.2013.04.004 – volume: 339 start-page: 826 year: 2013 ident: 2025030705044821200_r15 article-title: Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA publication-title: Science doi: 10.1126/science.1229963 – volume: 5 start-page: 375 year: 2005 ident: 2025030705044821200_r38 article-title: Mechanisms of type-I- and type-II-interferon-mediated signalling publication-title: Nat. Rev. Immunol. doi: 10.1038/nri1604 – volume: 461 start-page: 788 year: 2009 ident: 2025030705044821200_r22 article-title: STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity publication-title: Nature doi: 10.1038/nature08476 – volume: 10 start-page: R25 year: 2009 ident: 2025030705044821200_r33 article-title: Ultrafast and memory-efficient alignment of short DNA sequences to the human genome publication-title: Genome Biol. doi: 10.1186/gb-2009-10-3-r25 – volume: 209 start-page: 1969 year: 2012 ident: 2025030705044821200_r8 article-title: Extensive evolutionary and functional diversity among mammalian AIM2-like receptors publication-title: J. Exp. Med. doi: 10.1084/jem.20121960 – volume: 339 start-page: 786 year: 2013 ident: 2025030705044821200_r12 article-title: Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway publication-title: Science doi: 10.1126/science.1232458 – volume: 17 start-page: 6660 year: 1998 ident: 2025030705044821200_r43 article-title: Differential viral induction of distinct interferon-αgenes by positive feedback through interferon regulatory factor-7 publication-title: EMBO J. doi: 10.1093/emboj/17.22.6660 – volume: 171 start-page: 5255 year: 2003 ident: 2025030705044821200_r51 article-title: Differential responses to IFN-α subtypes in human T cells and dendritic cells publication-title: J. Immunol. doi: 10.4049/jimmunol.171.10.5255 – volume: 3 start-page: 1355 year: 2013 ident: 2025030705044821200_r17 article-title: The innate immune DNA sensor cGAS produces a noncanonical cyclic dinucleotide that activates human STING publication-title: Cell Reports doi: 10.1016/j.celrep.2013.05.009 – volume: 193 start-page: 2394 year: 2014 ident: 2025030705044821200_r24 article-title: The DNA sensor, cyclic GMP-AMP synthase, is essential for induction of IFN-β during Chlamydia trachomatis infection publication-title: J. Immunol. doi: 10.4049/jimmunol.1302718 – volume: 82 start-page: 1353 year: 2007 ident: 2025030705044821200_r48 article-title: Novel interferon-β-induced gene expression in peripheral blood cells publication-title: J. Leukoc. Biol. doi: 10.1189/jlb.0507273 – volume: 441 start-page: 106 year: 1998 ident: 2025030705044821200_r42 article-title: Positive feedback regulation of type I IFN genes by the IFN-inducible transcription factor IRF-7 publication-title: FEBS Lett. doi: 10.1016/S0014-5793(98)01514-2 – volume: 3 start-page: 1101 year: 2008 ident: 2025030705044821200_r29 article-title: Analyzing real-time PCR data by the comparative CT method publication-title: Nat. Protoc. doi: 10.1038/nprot.2008.73 – volume: 40 start-page: 940 year: 2010 ident: 2025030705044821200_r54 article-title: DEAD/H BOX 3 (DDX3) helicase binds the RIG-I adaptor IPS-1 to up-regulate IFN-β-inducing potential publication-title: Eur. J. Immunol. doi: 10.1002/eji.200940203 – volume: 5 start-page: 5494 year: 2014 ident: 2025030705044821200_r28 article-title: Retinoid X receptor α attenuates host antiviral response by suppressing type I interferon publication-title: Nat. Commun. doi: 10.1038/ncomms6494 – reference: 22394562 - Sci Signal. 2012 Mar 6;5(214):ra20 – reference: 19776740 - Nature. 2009 Oct 8;461(7265):788-92 – reference: 23929945 - Science. 2013 Aug 23;341(6148):903-6 – reference: 15864272 - Nat Rev Immunol. 2005 May;5(5):375-86 – reference: 23273844 - Immunity. 2013 Jan 24;38(1):92-105 – reference: 22296764 - Cold Spring Harb Perspect Biol. 2012 Mar;4(3). pii: a006049. doi: 10.1101/cshperspect.a006049 – reference: 20303872 - Cell. 2010 Mar 19;140(6):805-20 – reference: 14607926 - J Immunol. 2003 Nov 15;171(10):5255-63 – reference: 24528868 - Cell Host Microbe. 2014 Feb 12;15(2):228-38 – reference: 22371602 - Proc Natl Acad Sci U S A. 2012 Mar 13;109(11):4239-44 – reference: 15860560 - Bioinformatics. 2005 Jul 1;21(13):2933-42 – reference: 19120477 - Immunol Rev. 2009 Jan;227(1):75-86 – reference: 21478870 - Nature. 2011 Apr 28;472(7344):481-5 – reference: 23707065 - Cell Rep. 2013 May 30;3(5):1355-61 – reference: 9861020 - Proc Natl Acad Sci U S A. 1998 Dec 22;95(26):15623-8 – reference: 22171011 - Proc Natl Acad Sci U S A. 2011 Dec 27;108(52):21170-5 – reference: 23989956 - Science. 2013 Sep 20;341(6152):1390-4 – reference: 18467494 - Proc Natl Acad Sci U S A. 2008 May 13;105(19):7034-9 – reference: 23726320 - Trends Microbiol. 2013 Aug;21(8):413-20 – reference: 11070172 - Immunity. 2000 Oct;13(4):539-48 – reference: 25002588 - J Biol Chem. 2014 Aug 22;289(34):23568-81 – reference: 21892174 - Nat Immunol. 2011 Oct;12(10):959-65 – reference: 14769151 - J Interferon Cytokine Res. 2003 Dec;23(12):745-56 – reference: 21785411 - Nat Immunol. 2011 Sep;12(9):861-9 – reference: 23647843 - Cell. 2013 May 23;153(5):1094-107 – reference: 1879973 - Int J Cancer. 1991 Sep 9;49(2):296-302 – reference: 23045604 - J Exp Med. 2012 Oct 22;209(11):1969-83 – reference: 17559902 - Virology. 2007 Oct 10;367(1):92-101 – reference: 21098106 - Infect Immun. 2011 Feb;79(2):688-94 – reference: 19261174 - Genome Biol. 2009;10(3):R25 – reference: 23258412 - Science. 2013 Feb 15;339(6121):826-30 – reference: 20127681 - Eur J Immunol. 2010 Apr;40(4):940-8 – reference: 9822609 - EMBO J. 1998 Nov 16;17(22):6660-9 – reference: 18575461 - Nat Rev Immunol. 2008 Jul;8(7):559-68 – reference: 24356864 - Eur J Immunol. 2014 Mar;44(3):634-40 – reference: 23706667 - Immunity. 2013 May 23;38(5):855-69 – reference: 25417649 - Nat Commun. 2014;5:5494 – reference: 11404376 - J Leukoc Biol. 2001 Jun;69(6):912-20 – reference: 9877175 - FEBS Lett. 1998 Dec 11;441(1):106-10 – reference: 16871572 - Hepatology. 2006 Aug;44(2):352-9 – reference: 18546601 - Nat Protoc. 2008;3(6):1101-8 – reference: 24172870 - Epigenetics. 2014 Feb;9(2):257-67 – reference: 24970844 - EMBO J. 2014 Aug 1;33(15):1654-66 – reference: 22086960 - Nucleic Acids Res. 2012 Jan;40(Database issue):D1144-9 – reference: 23258413 - Science. 2013 Feb 15;339(6121):786-91 – reference: 23722158 - Nature. 2013 Jun 20;498(7454):380-4 – reference: 25070851 - J Immunol. 2014 Sep 1;193(5):2394-404 – reference: 20890285 - Nat Immunol. 2010 Nov;11(11):997-1004 – reference: 24284630 - Nature. 2014 Jan 30;505(7485):691-5 – reference: 23747010 - Mol Cell. 2013 Jul 25;51(2):226-35 – reference: 17709400 - J Leukoc Biol. 2007 Nov;82(5):1353-60 – reference: 21947006 - Nature. 2011 Oct 27;478(7370):515-8 – reference: 21884170 - Immunol Rev. 2011 Sep;243(1):99-108 – reference: 17202376 - J Immunol. 2007 Jan 15;178(2):1122-35 |
SSID | ssj0006024 |
Score | 2.5170302 |
Snippet | Rapid and robust induction of type I IFN (IFN-I) is a critical event in host antiviral innate immune response. It has been well demonstrated that cyclic... Rapid and robust induction of type I interferon (IFN-I) is a critical event in host antiviral innate immune response. It has been well demonstrated that cyclic... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1545 |
SubjectTerms | Animals Cell Line Chromatin Immunoprecipitation Enzyme-Linked Immunosorbent Assay Feedback, Physiological Herpes simplex virus 1 Humans Immunity, Innate - immunology Immunoblotting Interferon Type I - biosynthesis Interferon Type I - immunology Macrophages - immunology Macrophages - metabolism Male Mice Mice, Inbred C57BL Mice, Knockout Nucleotidyltransferases - immunology Nucleotidyltransferases - metabolism Oligonucleotide Array Sequence Analysis Real-Time Polymerase Chain Reaction |
Title | Positive Feedback Regulation of Type I IFN Production by the IFN-Inducible DNA Sensor cGAS |
URI | https://www.ncbi.nlm.nih.gov/pubmed/25609843 https://www.proquest.com/docview/1653123995 https://www.proquest.com/docview/1808631552 https://pubmed.ncbi.nlm.nih.gov/PMC4324085 |
Volume | 194 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FIhAXBAVKeGmR4IAit2vv-nUshdCAEvXQShUXy7te01BwqjQ5hB_A72Zmd_1IqCroxYqcdVb292V2Zj3zDSFvBHjRYayUFwheeiJMU0_mvva4LFUqmdapKY8eT6LDE_H5NDzt9X53spaWC7mrfl1ZV3ITVOEc4IpVsv-BbPOjcAI-A75wBITh-E8YH5mMK9TthjVI5up8MLet5Z0XaPZXR4PRcIJ5WIUVijUOJ6ZMDiceBORLNcXiqQ-T_cElhLSz-UB9cs2Jv7dM6vitU6woscpNb837MdbZTRgbXxQe0rcm08ekC7yfds8sbT6Qt8rbs6OVawF2llfn-dxtybr9CN_Ud9uKzE59gB_bJhu72pnVEILUiEVrdtd2N3YEEx0rim5dZ0VGl-cqay8gukFr7-4bjD5DcfruUMDr4qdBH127NLGSUBsK20fjA6NLmIS3yO0Awg0Tmo--NCt6xAJRq87jndnX3Tj93ubkKC7tZlr3dP4KXzazcDtuzfEDct_hSvctuR6Snq62yR3boXS1Te6OXe7FI_K1Zhut2UZbttFZSZFtdESBV7RlG5UrCmyja2yjwDZq2UaRbY_JyfDj8cGh5zpzeAoC6oUngyJOpAxD6ZeCF9znIdiCgmHzhZCBy62ZCqQOWMkTIbjO86iAhQJiXc1SleT8CdmqZpV-SmjJ41InRRHFEiLzUEil_VjxWDHhx1KFfbJXP8VMOdl67J7yI4PwFSHIaggyB0GfvGuuuLCSLdeMfV0Dk4FdxZdleaVny8vMj2B1MoXf14xJWBJxFDHskx0LZjNjzYI-iddgbgagrvv6N9X0zOi7OzI-u_GVz8m99p_5gmwt5kv9EnznhXxliP0Hv4zC_w |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Positive+feedback+regulation+of+type+I+IFN+production+by+the+IFN-inducible+DNA+sensor+cGAS&rft.jtitle=The+Journal+of+immunology+%281950%29&rft.au=Ma%2C+Feng&rft.au=Li%2C+Bing&rft.au=Liu%2C+Su-yang&rft.au=Iyer%2C+Shankar+S&rft.date=2015-02-15&rft.issn=0022-1767&rft.eissn=1550-6606&rft.volume=194&rft.issue=4&rft.spage=1545&rft.epage=1554&rft_id=info:doi/10.4049%2Fjimmunol.1402066&rft_id=info%3Apmid%2F25609843&rft.externalDocID=PMC4324085 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1767&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1767&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1767&client=summon |