Development of Dembo-PCR for cattle in accordance with Japanese livestock quarantine guidelines

Detection of microorganisms from bovine using real-time PCR (Dembo-PCR) is a comprehensive detection technique that was developed to detect pathogens causing bovine diseases. In Japan, the definitive tests for monitored infectious diseases, which are defined by law, are carried out at government age...

Full description

Saved in:
Bibliographic Details
Published inJournal of Veterinary Medical Science Vol. 87; no. 1; pp. 80 - 85
Main Authors OBA, Mami, IMAI, Ryo, TESHIMA, Natsuko, NODA, Miho, NUNOMURA, Yuka, KAKINUMA, Seiichi, ITO, Kazuki, OGURO, Masashi, KONAKA, Kazunari, ENOMOTO, Tomoya, MORITA, Hisamoto, OMATSU, Tsutomu, NAGAI, Makoto, MIZUTANI, Tetsuya
Format Journal Article
LanguageEnglish
Published Japan JAPANESE SOCIETY OF VETERINARY SCIENCE 01.01.2025
Japan Science and Technology Agency
The Japanese Society of Veterinary Science
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Detection of microorganisms from bovine using real-time PCR (Dembo-PCR) is a comprehensive detection technique that was developed to detect pathogens causing bovine diseases. In Japan, the definitive tests for monitored infectious diseases, which are defined by law, are carried out at government agencies. On the other hand, the existence of pathogens other than monitored infectious diseases are not well understood. From the perspective of livestock quarantine, it is important to make it possible to identify pathogens other than monitored infectious diseases, so we extended the existing Dembo-PCR system in this study. In particular, the number of targets other than monitored infectious disease was increased. The new version of Dembo-PCR may be useful in elucidating new pathologies associated with multiple pathogens.
AbstractList Detection of microorganisms from bovine using real-time PCR (Dembo-PCR) is a comprehensive detection technique that was developed to detect pathogens causing bovine diseases. In Japan, the definitive tests for monitored infectious diseases, which are defined by law, are carried out at government agencies. On the other hand, the existence of pathogens other than monitored infectious diseases are not well understood. From the perspective of livestock quarantine, it is important to make it possible to identify pathogens other than monitored infectious diseases, so we extended the existing Dembo-PCR system in this study. In particular, the number of targets other than monitored infectious disease was increased. The new version of Dembo-PCR may be useful in elucidating new pathologies associated with multiple pathogens.
Detection of microorganisms from bovine using real-time PCR (Dembo-PCR) is a comprehensive detection technique that was developed to detect pathogens causing bovine diseases. In Japan, the definitive tests for monitored infectious diseases, which are defined by law, are carried out at government agencies. On the other hand, the existence of pathogens other than monitored infectious diseases are not well understood. From the perspective of livestock quarantine, it is important to make it possible to identify pathogens other than monitored infectious diseases, so we extended the existing Dembo-PCR system in this study. In particular, the number of targets other than monitored infectious disease was increased. The new version of Dembo-PCR may be useful in elucidating new pathologies associated with multiple pathogens.
Detection of microorganisms from bovine using real-time PCR (Dembo PCR) is a comprehensive detection technique that was developed to detect pathogens causing bovine diseases. In Japan, the definitive tests for monitored infectious diseases, which are defined by law, are carried out at government agencies. On the other hand, the existence of pathogens other than monitored infectious diseases are not well understood. From the perspective of livestock quarantine, it is important to make it possible to identify pathogens other than monitored infectious diseases, so we extended the existing Dembo PCR system in this study. In particular, the number of targets other than monitored infectious disease was increased. The new version of Dembo PCR may be useful in elucidating new pathologies associated with multiple pathogens.Detection of microorganisms from bovine using real-time PCR (Dembo PCR) is a comprehensive detection technique that was developed to detect pathogens causing bovine diseases. In Japan, the definitive tests for monitored infectious diseases, which are defined by law, are carried out at government agencies. On the other hand, the existence of pathogens other than monitored infectious diseases are not well understood. From the perspective of livestock quarantine, it is important to make it possible to identify pathogens other than monitored infectious diseases, so we extended the existing Dembo PCR system in this study. In particular, the number of targets other than monitored infectious disease was increased. The new version of Dembo PCR may be useful in elucidating new pathologies associated with multiple pathogens.
ArticleNumber 24-0030
Author KONAKA, Kazunari
KAKINUMA, Seiichi
OGURO, Masashi
NAGAI, Makoto
IMAI, Ryo
OMATSU, Tsutomu
NUNOMURA, Yuka
MIZUTANI, Tetsuya
OBA, Mami
ITO, Kazuki
NODA, Miho
MORITA, Hisamoto
TESHIMA, Natsuko
ENOMOTO, Tomoya
Author_xml – sequence: 1
  fullname: OBA, Mami
  organization: Center for infectious Disease Epidemiology and Prevention Research, Tokyo University of Agriculture and Technology, Tokyo, Japan
– sequence: 2
  fullname: IMAI, Ryo
  organization: Center for infectious Disease Epidemiology and Prevention Research, Tokyo University of Agriculture and Technology, Tokyo, Japan
– sequence: 3
  fullname: TESHIMA, Natsuko
  organization: Center for infectious Disease Epidemiology and Prevention Research, Tokyo University of Agriculture and Technology, Tokyo, Japan
– sequence: 4
  fullname: NODA, Miho
  organization: Center for infectious Disease Epidemiology and Prevention Research, Tokyo University of Agriculture and Technology, Tokyo, Japan
– sequence: 5
  fullname: NUNOMURA, Yuka
  organization: Center for infectious Disease Epidemiology and Prevention Research, Tokyo University of Agriculture and Technology, Tokyo, Japan
– sequence: 6
  fullname: KAKINUMA, Seiichi
  organization: Kakinuma Veterinary Hospital, Saitama, Japan
– sequence: 7
  fullname: ITO, Kazuki
  organization: Veterinary Clinic, Saitama Agricultural Mutual Aid Association, Saitama, Japan
– sequence: 8
  fullname: OGURO, Masashi
  organization: MYDS Corporation, Gunma, Japan
– sequence: 9
  fullname: KONAKA, Kazunari
  organization: KM Clinic, Tochigi, Japan
– sequence: 10
  fullname: ENOMOTO, Tomoya
  organization: Veterinary Clinic, Kanagawa Agricultural Mutual Aid Association, Kanagawa, Japan
– sequence: 11
  fullname: MORITA, Hisamoto
  organization: Morita Veterinary Hospital, Kanagawa, Japan
– sequence: 12
  fullname: OMATSU, Tsutomu
  organization: Center for infectious Disease Epidemiology and Prevention Research, Tokyo University of Agriculture and Technology, Tokyo, Japan
– sequence: 13
  fullname: NAGAI, Makoto
  organization: School of Veterinary Medicine, Azabu University, Kanagawa, Japan
– sequence: 14
  fullname: MIZUTANI, Tetsuya
  organization: Center for infectious Disease Epidemiology and Prevention Research, Tokyo University of Agriculture and Technology, Tokyo, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39581586$$D View this record in MEDLINE/PubMed
BookMark eNpdkc1vEzEQxS1URNPCjTOyxIUDW_y1a_uEStryoUogBGfL8c4mDrt2au8G8d_jVUIEXDyW5jdP8-ZdoLMQAyD0nJIryjR7s90P-YqJihBOHqEF5UJWUnB9hhZE06aSrCbn6CLnLSGMikY_Qedc14rWqlkgcwN76ONugDDi2OEbGFax-rL8iruYsLPj2AP2AVvnYmptcIB_-nGDP9mdDZAB934PeYzuB36YbLJh9AHwevIt9OWXn6LHne0zPDvWS_T97vbb8kN1__n9x-X1feWErsfKghIrQSVwqjvF5EoLsE3HFbUgWila5SRrnJar1nWNk9LWXLi2FURDTWvNL9Hbg-5uWg3QumIn2d7skh9s-mWi9ebfTvAbs457Q6nkNSOzwqujQooPU_FkBp8d9H3xGadsOOWsIUoJVdCX_6HbOKVQ_BWqaXTdUFEX6sXfK512-XP8Arw-AC7FnBN0J4QSM2dr5mwNE2bOtuDvDvg2j3YNJ9im0bseDrCShs7PcejUdBubDAT-G7vusB0
Cites_doi 10.1016/j.vetmic.2018.04.028
10.1292/jvms.16-0489
10.1111/jam.12103
10.1016/j.jviromet.2003.10.006
10.1016/j.mcp.2006.08.001
10.1128/AEM.05097-11
10.1016/j.jviromet.2014.10.004
10.1128/mBio.01638-21
10.4142/jvs.2018.19.3.350
10.1099/vir.0.82876-0
10.3168/jds.2011-4754
10.1099/jmm.0.47212-0
10.1089/fpd.2009.0430
10.1292/jvms.15-0552
10.3390/microorganisms8050644
10.1099/jgv.0.001718
10.1016/j.mimet.2019.03.024
10.1177/104063870802000511
10.1007/s00705-023-05712-x
10.1111/j.1469-0691.2009.02991.x
ContentType Journal Article
Copyright 2025 by the Japanese Society of Veterinary Science
2025. This work is published under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2025 The Japanese Society of Veterinary Science 2025
Copyright_xml – notice: 2025 by the Japanese Society of Veterinary Science
– notice: 2025. This work is published under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2025 The Japanese Society of Veterinary Science 2025
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QR
7U9
8FD
FR3
H94
M7N
P64
7X8
5PM
DOI 10.1292/jvms.24-0030
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Chemoreception Abstracts
Virology and AIDS Abstracts
Technology Research Database
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList Virology and AIDS Abstracts


MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Veterinary Medicine
EISSN 1347-7439
EndPage 85
ExternalDocumentID PMC11735209
39581586
10_1292_jvms_24_0030
article_jvms_87_1_87_24_0030_article_char_en
Genre Journal Article
GeographicLocations Japan
GeographicLocations_xml – name: Japan
GroupedDBID 29L
2WC
53G
5GY
ACGFO
ACIWK
ACPRK
ADBBV
ADRAZ
AENEX
AFRAH
AI.
ALMA_UNASSIGNED_HOLDINGS
AOIJS
B.T
BAWUL
CS3
DIK
DU5
E3Z
EBS
EJD
HYE
JSF
JSH
KQ8
M48
M~E
N5S
OK1
P2P
PGMZT
RJT
RNS
RPM
RYR
RZJ
TKC
TR2
VH1
XSB
AAYXX
CITATION
OVT
CGR
CUY
CVF
ECM
EIF
NPM
7QR
7U9
8FD
FR3
H94
M7N
P64
7X8
5PM
ID FETCH-LOGICAL-c495t-ae84b417e319f827b94ea6f381ae4d74d8c726c97bdcf6c77a534cdd409e51593
IEDL.DBID M48
ISSN 0916-7250
1347-7439
IngestDate Thu Aug 21 18:28:31 EDT 2025
Fri Jul 11 01:08:58 EDT 2025
Mon Jun 30 12:36:16 EDT 2025
Mon Jul 21 06:03:00 EDT 2025
Tue Jul 01 00:31:13 EDT 2025
Thu Feb 06 17:45:51 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords pathogen
cattle
Dembo-PCR
real-time PCR
comprehensive
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives (by-nc-nd) License. (CC-BY-NC-ND 4.0: https://creativecommons.org/licenses/by-nc-nd/4.0/)
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c495t-ae84b417e319f827b94ea6f381ae4d74d8c726c97bdcf6c77a534cdd409e51593
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1292/jvms.24-0030
PMID 39581586
PQID 3166956145
PQPubID 2028964
PageCount 6
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11735209
proquest_miscellaneous_3132608848
proquest_journals_3166956145
pubmed_primary_39581586
crossref_primary_10_1292_jvms_24_0030
jstage_primary_article_jvms_87_1_87_24_0030_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Japan
PublicationPlace_xml – name: Japan
– name: Tokyo
PublicationTitle Journal of Veterinary Medical Science
PublicationTitleAlternate J. Vet. Med. Sci.
PublicationYear 2025
Publisher JAPANESE SOCIETY OF VETERINARY SCIENCE
Japan Science and Technology Agency
The Japanese Society of Veterinary Science
Publisher_xml – name: JAPANESE SOCIETY OF VETERINARY SCIENCE
– name: Japan Science and Technology Agency
– name: The Japanese Society of Veterinary Science
References 11. Lew AE, Bock RE, Miles J, Cuttell LB, Steer P, Nadin-Davis SA. 2004. Sensitive and specific detection of bovine immunodeficiency virus and bovine syncytial virus by 5′ Taq nuclease assays with fluorescent 3′ minor groove binder-DNA probes. J Virol Methods 116: 1–9.
17. Rahpaya SS, Tsuchiaka S, Kishimoto M, Oba M, Katayama Y, Nunomura Y, Kokawa S, Kimura T, Kobayashi A, Kirino Y, Okabayashi T, Nonaka N, Mekata H, Aoki H, Shiokawa M, Umetsu M, Morita T, Hasebe A, Otsu K, Asai T, Yamaguchi T, Makino S, Murata Y, Abi AJ, Omatsu T, Mizutani T. 2018. Dembo polymerase chain reaction technique for detection of bovine abortion, diarrhea, and respiratory disease complex infectious agents in potential vectors and reservoirs. J Vet Sci 19: 350–357.
22. Zheng W, Porter E, Noll L, Stoy C, Lu N, Wang Y, Liu X, Purvis T, Peddireddi L, Lubbers B, Hanzlicek G, Henningson J, Liu Z, Bai J. 2019. A multiplex real-time PCR assay for the detection and differentiation of five bovine pinkeye pathogens. J Microbiol Methods 160: 87–92.
5. Burnet JB, Ogorzaly L, Tissier A, Penny C, Cauchie HM. 2013. Novel quantitative TaqMan real-time PCR assays for detection of Cryptosporidium at the genus level and genotyping of major human and cattle-infecting species. J Appl Microbiol 114: 1211–1222.
13. Ministry of Agriculture Forestry and Fisheries (MAFF). 2020. Act on the Prevention of Infectious Diseases in Livestock. https://www.japaneselawtranslation.go.jp/ja/laws/view/4114 [accessed on Jan 20, 2024].
16. Ouedraogo A, Luciani L, Zannou O, Biguezoton A, Pezzi L, Thirion L, Belem A, Saegerman C, Charrel R, Lempereur L. 2020. Detection of two species of the genus Parapoxvirus (bovine papular stomatitis virus and pseudocowpox virus) in ticks infesting cattle in Burkina Faso. Microorganisms 8: 8.
18. Schindler AR, Vögtlin A, Hilbe M, Puorger M, Zlinszky K, Ackermann M, Ehrensperger F. 2007. Reverse transcription real-time PCR assays for detection and quantification of Borna disease virus in diseased hosts. Mol Cell Probes 21: 47–55.
21. United States Environmental Protection Agency. 2014. EPA technology for mold identification and enumeration. https://irp-cdn.multiscreensite.com/c4e267ab/files/uploaded/gCQnkBNWQuSD96fPIikY_EPA_Technology%20for%20Mold%20Identification%20and%20Enumeration.pdf [accessed on March 23, 2021].
10. Kishimoto M, Tsuchiaka S, Rahpaya SS, Hasebe A, Otsu K, Sugimura S, Kobayashi S, Komatsu N, Nagai M, Omatsu T, Naoi Y, Sano K, Okazaki-Terashima S, Oba M, Katayama Y, Sato R, Asai T, Mizutani T. 2017. Development of a one-run real-time PCR detection system for pathogens associated with bovine respiratory disease complex. J Vet Med Sci 79: 517–523.
14. Oba M, Obinata S, Takemae H, Kazama K, Oguro M, Ito K, Kakinuma S, Ishida H, Murakami H, Sakaguchi S, Mizutani T, Nagai M. 2023. Prevalence and genetic diversity in bovine parechovirus infecting Japanese cattle. Arch Virol 168: 91.
19. Suo B, He Y, Tu SI, Shi X. 2010. A multiplex real-time polymerase chain reaction for simultaneous detection of Salmonella spp., Escherichia coli O157, and Listeria monocytogenes in meat products. Foodborne Pathog Dis 7: 619–628.
3. Bergmans AM, van der Ent M, Klaassen A, Böhm N, Andriesse GI, Wintermans RG. 2010. Evaluation of a single-tube real-time PCR for detection and identification of 11 dermatophyte species in clinical material. Clin Microbiol Infect 16: 704–710.
7. Decaro N, Carelli G, Lorusso E, Lucente MS, Greco G, Lorusso A, Radogna A, Ceci L, Buonavoglia C. 2008. Duplex real-time polymerase chain reaction for simultaneous detection and quantification of Anaplasma marginale and Anaplasma centrale. J Vet Diagn Invest 20: 606–611.
9. Kawasaki J, Kojima S, Tomonaga K, Horie M. 2021. Hidden viral sequences in public sequencing data and warning for future emerging diseases. MBio 12: e0163821.
12. Maksyutov RA, Gavrilova EV, Meyer H, Shchelkunov SN. 2015. Real-time PCR assay for specific detection of cowpox virus. J Virol Methods 211: 8–11.
20. Tsuchiaka S, Masuda T, Sugimura S, Kobayashi S, Komatsu N, Nagai M, Omatsu T, Furuya T, Oba M, Katayama Y, Kanda S, Yokoyama T, Mizutani T. 2016. Development of a novel detection system for microbes from bovine diarrhea by real-time PCR. J Vet Med Sci 78: 383–389.
1. Ade J, Niethammer F, Schade B, Schilling T, Hoelzle K, Hoelzle LE. 2018. Quantitative analysis of Mycoplasma wenyonii and ‘Candidatus Mycoplasma haemobos” infections in cattle using novel gapN-based realtime PCR assays. Vet Microbiol 220: 1–6.
8. Gomez A, Cook NB, Bernardoni ND, Rieman J, Dusick AF, Hartshorn R, Socha MT, Read DH, Döpfer D. 2012. An experimental infection model to induce digital dermatitis infection in cattle. J Dairy Sci 95: 1821–1830.
15. Oba M, Sakaguchi S, Wu H, Fujioka Y, Takemae H, Oki H, Kawai M, Shiokawa M, Aoki H, Fukase Y, Madarame H, Nakano T, Mizutani T, Nagai M. 2022. First isolation and genomic characterization of bovine parechovirus from faecal samples of cattle in Japan. J Gen Virol 103: 103.
2. Bašková L, Landlinger C, Preuner S, Lion T. 2007. The Pan-AC assay: a single-reaction real-time PCR test for quantitative detection of a broad range of Aspergillus and Candida species. J Med Microbiol 56: 1167–1173.
4. Bogaert L, Van Poucke M, De Baere C, Dewulf J, Peelman L, Ducatelle R, Gasthuys F, Martens A. 2007. Bovine papillomavirus load and mRNA expression, cell proliferation and p53 expression in four clinical types of equine sarcoid. J Gen Virol 88: 2155–2161.
6. de Bruin A, de Groot A, de Heer L, Bok J, Wielinga PR, Hamans M, van Rotterdam BJ, Janse I. 2011. Detection of Coxiella burnetii in complex matrices by using multiplex quantitative PCR during a major Q fever outbreak in The Netherlands. Appl Environ Microbiol 77: 6516–6523.
11
22
12
13
14
15
16
17
18
19
1
2
3
4
5
6
7
8
9
20
10
21
References_xml – reference: 16. Ouedraogo A, Luciani L, Zannou O, Biguezoton A, Pezzi L, Thirion L, Belem A, Saegerman C, Charrel R, Lempereur L. 2020. Detection of two species of the genus Parapoxvirus (bovine papular stomatitis virus and pseudocowpox virus) in ticks infesting cattle in Burkina Faso. Microorganisms 8: 8.
– reference: 22. Zheng W, Porter E, Noll L, Stoy C, Lu N, Wang Y, Liu X, Purvis T, Peddireddi L, Lubbers B, Hanzlicek G, Henningson J, Liu Z, Bai J. 2019. A multiplex real-time PCR assay for the detection and differentiation of five bovine pinkeye pathogens. J Microbiol Methods 160: 87–92.
– reference: 12. Maksyutov RA, Gavrilova EV, Meyer H, Shchelkunov SN. 2015. Real-time PCR assay for specific detection of cowpox virus. J Virol Methods 211: 8–11.
– reference: 13. Ministry of Agriculture Forestry and Fisheries (MAFF). 2020. Act on the Prevention of Infectious Diseases in Livestock. https://www.japaneselawtranslation.go.jp/ja/laws/view/4114 [accessed on Jan 20, 2024].
– reference: 18. Schindler AR, Vögtlin A, Hilbe M, Puorger M, Zlinszky K, Ackermann M, Ehrensperger F. 2007. Reverse transcription real-time PCR assays for detection and quantification of Borna disease virus in diseased hosts. Mol Cell Probes 21: 47–55.
– reference: 14. Oba M, Obinata S, Takemae H, Kazama K, Oguro M, Ito K, Kakinuma S, Ishida H, Murakami H, Sakaguchi S, Mizutani T, Nagai M. 2023. Prevalence and genetic diversity in bovine parechovirus infecting Japanese cattle. Arch Virol 168: 91.
– reference: 10. Kishimoto M, Tsuchiaka S, Rahpaya SS, Hasebe A, Otsu K, Sugimura S, Kobayashi S, Komatsu N, Nagai M, Omatsu T, Naoi Y, Sano K, Okazaki-Terashima S, Oba M, Katayama Y, Sato R, Asai T, Mizutani T. 2017. Development of a one-run real-time PCR detection system for pathogens associated with bovine respiratory disease complex. J Vet Med Sci 79: 517–523.
– reference: 9. Kawasaki J, Kojima S, Tomonaga K, Horie M. 2021. Hidden viral sequences in public sequencing data and warning for future emerging diseases. MBio 12: e0163821.
– reference: 3. Bergmans AM, van der Ent M, Klaassen A, Böhm N, Andriesse GI, Wintermans RG. 2010. Evaluation of a single-tube real-time PCR for detection and identification of 11 dermatophyte species in clinical material. Clin Microbiol Infect 16: 704–710.
– reference: 2. Bašková L, Landlinger C, Preuner S, Lion T. 2007. The Pan-AC assay: a single-reaction real-time PCR test for quantitative detection of a broad range of Aspergillus and Candida species. J Med Microbiol 56: 1167–1173.
– reference: 7. Decaro N, Carelli G, Lorusso E, Lucente MS, Greco G, Lorusso A, Radogna A, Ceci L, Buonavoglia C. 2008. Duplex real-time polymerase chain reaction for simultaneous detection and quantification of Anaplasma marginale and Anaplasma centrale. J Vet Diagn Invest 20: 606–611.
– reference: 19. Suo B, He Y, Tu SI, Shi X. 2010. A multiplex real-time polymerase chain reaction for simultaneous detection of Salmonella spp., Escherichia coli O157, and Listeria monocytogenes in meat products. Foodborne Pathog Dis 7: 619–628.
– reference: 17. Rahpaya SS, Tsuchiaka S, Kishimoto M, Oba M, Katayama Y, Nunomura Y, Kokawa S, Kimura T, Kobayashi A, Kirino Y, Okabayashi T, Nonaka N, Mekata H, Aoki H, Shiokawa M, Umetsu M, Morita T, Hasebe A, Otsu K, Asai T, Yamaguchi T, Makino S, Murata Y, Abi AJ, Omatsu T, Mizutani T. 2018. Dembo polymerase chain reaction technique for detection of bovine abortion, diarrhea, and respiratory disease complex infectious agents in potential vectors and reservoirs. J Vet Sci 19: 350–357.
– reference: 20. Tsuchiaka S, Masuda T, Sugimura S, Kobayashi S, Komatsu N, Nagai M, Omatsu T, Furuya T, Oba M, Katayama Y, Kanda S, Yokoyama T, Mizutani T. 2016. Development of a novel detection system for microbes from bovine diarrhea by real-time PCR. J Vet Med Sci 78: 383–389.
– reference: 5. Burnet JB, Ogorzaly L, Tissier A, Penny C, Cauchie HM. 2013. Novel quantitative TaqMan real-time PCR assays for detection of Cryptosporidium at the genus level and genotyping of major human and cattle-infecting species. J Appl Microbiol 114: 1211–1222.
– reference: 6. de Bruin A, de Groot A, de Heer L, Bok J, Wielinga PR, Hamans M, van Rotterdam BJ, Janse I. 2011. Detection of Coxiella burnetii in complex matrices by using multiplex quantitative PCR during a major Q fever outbreak in The Netherlands. Appl Environ Microbiol 77: 6516–6523.
– reference: 11. Lew AE, Bock RE, Miles J, Cuttell LB, Steer P, Nadin-Davis SA. 2004. Sensitive and specific detection of bovine immunodeficiency virus and bovine syncytial virus by 5′ Taq nuclease assays with fluorescent 3′ minor groove binder-DNA probes. J Virol Methods 116: 1–9.
– reference: 1. Ade J, Niethammer F, Schade B, Schilling T, Hoelzle K, Hoelzle LE. 2018. Quantitative analysis of Mycoplasma wenyonii and ‘Candidatus Mycoplasma haemobos” infections in cattle using novel gapN-based realtime PCR assays. Vet Microbiol 220: 1–6.
– reference: 8. Gomez A, Cook NB, Bernardoni ND, Rieman J, Dusick AF, Hartshorn R, Socha MT, Read DH, Döpfer D. 2012. An experimental infection model to induce digital dermatitis infection in cattle. J Dairy Sci 95: 1821–1830.
– reference: 21. United States Environmental Protection Agency. 2014. EPA technology for mold identification and enumeration. https://irp-cdn.multiscreensite.com/c4e267ab/files/uploaded/gCQnkBNWQuSD96fPIikY_EPA_Technology%20for%20Mold%20Identification%20and%20Enumeration.pdf [accessed on March 23, 2021].
– reference: 4. Bogaert L, Van Poucke M, De Baere C, Dewulf J, Peelman L, Ducatelle R, Gasthuys F, Martens A. 2007. Bovine papillomavirus load and mRNA expression, cell proliferation and p53 expression in four clinical types of equine sarcoid. J Gen Virol 88: 2155–2161.
– reference: 15. Oba M, Sakaguchi S, Wu H, Fujioka Y, Takemae H, Oki H, Kawai M, Shiokawa M, Aoki H, Fukase Y, Madarame H, Nakano T, Mizutani T, Nagai M. 2022. First isolation and genomic characterization of bovine parechovirus from faecal samples of cattle in Japan. J Gen Virol 103: 103.
– ident: 1
  doi: 10.1016/j.vetmic.2018.04.028
– ident: 10
  doi: 10.1292/jvms.16-0489
– ident: 5
  doi: 10.1111/jam.12103
– ident: 11
  doi: 10.1016/j.jviromet.2003.10.006
– ident: 18
  doi: 10.1016/j.mcp.2006.08.001
– ident: 6
  doi: 10.1128/AEM.05097-11
– ident: 12
  doi: 10.1016/j.jviromet.2014.10.004
– ident: 9
  doi: 10.1128/mBio.01638-21
– ident: 17
  doi: 10.4142/jvs.2018.19.3.350
– ident: 4
  doi: 10.1099/vir.0.82876-0
– ident: 8
  doi: 10.3168/jds.2011-4754
– ident: 13
– ident: 2
  doi: 10.1099/jmm.0.47212-0
– ident: 19
  doi: 10.1089/fpd.2009.0430
– ident: 20
  doi: 10.1292/jvms.15-0552
– ident: 16
  doi: 10.3390/microorganisms8050644
– ident: 15
  doi: 10.1099/jgv.0.001718
– ident: 22
  doi: 10.1016/j.mimet.2019.03.024
– ident: 7
  doi: 10.1177/104063870802000511
– ident: 21
– ident: 14
  doi: 10.1007/s00705-023-05712-x
– ident: 3
  doi: 10.1111/j.1469-0691.2009.02991.x
SSID ssj0021469
Score 2.3807907
Snippet Detection of microorganisms from bovine using real-time PCR (Dembo-PCR) is a comprehensive detection technique that was developed to detect pathogens causing...
Detection of microorganisms from bovine using real-time PCR (Dembo PCR) is a comprehensive detection technique that was developed to detect pathogens causing...
SourceID pubmedcentral
proquest
pubmed
crossref
jstage
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 80
SubjectTerms Animals
Cattle
Cattle Diseases - diagnosis
Cattle Diseases - microbiology
comprehensive
Dembo-PCR
Infectious diseases
Japan
Laboratory Animal Science
Livestock
pathogen
Pathogens
Quarantine
Quarantine - veterinary
real-time PCR
Real-Time Polymerase Chain Reaction - methods
Real-Time Polymerase Chain Reaction - veterinary
Title Development of Dembo-PCR for cattle in accordance with Japanese livestock quarantine guidelines
URI https://www.jstage.jst.go.jp/article/jvms/87/1/87_24-0030/_article/-char/en
https://www.ncbi.nlm.nih.gov/pubmed/39581586
https://www.proquest.com/docview/3166956145
https://www.proquest.com/docview/3132608848
https://pubmed.ncbi.nlm.nih.gov/PMC11735209
Volume 87
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Journal of Veterinary Medical Science, 2025, Vol.87(1), pp.80-85
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VwoELgvJooFRGgqNLHDt-CCGEClUpWoQQi3qLYscurdosbXcR_HtmkmzUrXrjkosnUjIPz4xn_A3AS52MQT_tuJNJcyWanFsvBE91aWQZvVdd9XzyRe9P1cFhebgGy2mjAwMvb0ztaJ7U9OJ058_533do8G87bARXvD75fXa5UyhOCnsLbqNPMjTLYKLGegJNr-5R94TmBr3-0AJ__e0V53TnBOOzo3hT6Hm9g_KKS9q7D_eGWJK974X_ANZiuwEbP6jBpbtlyyZD4fwhVFeag9gssQ_xzM_4191vDINWFjokY3bcsjpQNkqawOiElh2gL6UZleyU4GnnuHmyc1SqmuZLRHa0IJAsapx_BNO9j9939_kwW4EHTInmvI5WeWRURBNMtjDeqVjrhP67jqoxqrHBFDo445uQdDCmLqUKTYPpYKQQSD6G9XbWxk1gyZYeXZxJVnqVcuPqRhZ5CDJhtiKsy-DVkqnVrx5Co6LUA5lfEfOrQhFCaZ7Bm57jI9VgPD2VNZWgx0A9LtLtNDTxDLaWYqqWWlRJoTXd3FVlBi_GZTQgqoog-2YLosEIFvdaZTN40kt1_ADpSitKqzOwK_IeCQice3WlPf7ZgXQLgbpe5O7pf_3VM7hb0MDh7sxnC9bnF4v4HKOgud_G-P_T5-1Ozf8Ba2gLow
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+Dembo-PCR+for+cattle+in+accordance+with+Japanese+livestock+quarantine+guidelines&rft.jtitle=Journal+of+Veterinary+Medical+Science&rft.au=OBA%2C+Mami&rft.au=IMAI%2C+Ryo&rft.au=TESHIMA%2C+Natsuko&rft.au=NODA%2C+Miho&rft.date=2025-01-01&rft.pub=JAPANESE+SOCIETY+OF+VETERINARY+SCIENCE&rft.issn=0916-7250&rft.eissn=1347-7439&rft.volume=87&rft.issue=1&rft.spage=80&rft.epage=85&rft_id=info:doi/10.1292%2Fjvms.24-0030&rft.externalDocID=article_jvms_87_1_87_24_0030_article_char_en
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0916-7250&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0916-7250&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0916-7250&client=summon