Tuning Gaps and Schottky Contacts of Graphene/Phosphorene Heterostructures by Vertical Electric Field and Strain
We present a comprehensive study of the structural and electronic properties of a graphene/phosphorene (G/P) heterostructure in the framework of density functional theory, including van der Waals interaction in the exchange–correlation functional. While the G(4 × 1)/P(3 × 1) superlattice usually use...
Saved in:
Published in | Nanomaterials (Basel, Switzerland) Vol. 13; no. 16; p. 2358 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.08.2023
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We present a comprehensive study of the structural and electronic properties of a graphene/phosphorene (G/P) heterostructure in the framework of density functional theory, including van der Waals interaction in the exchange–correlation functional. While the G(4 × 1)/P(3 × 1) superlattice usually used in the literature is subject to a strain as high as about 7%, the in-plane strain could be drastically reduced to under 1% in the G(4 × 13)/P(3 × 12) heterostructure investigated here. Adapting the lattice constants of the rectangular lattices, the equilibrium configuration in the xy plane of phosphorene relative to the graphene layer is optimized. This results in an equilibrium interlayer distance of 3.5 Å and a binding energy per carbon atom of 37 meV, confirming the presence of weak van der Waals interaction between the graphene and the phosphorene layers. The electronic properties of the heterostructure are evaluated under different values of interlayer distance, strain and applied vertical electric field. We demonstrate that G/P heterostructures form an n-type Schottky contact, which can be transformed into p-type under external perturbations. These findings, together with the possibility to control the gaps and barrier heights, suggest that G/P heterostructures are promising for novel applications in electronics and may open a new avenue for the realization of innovative optoelectronic devices. |
---|---|
AbstractList | We present a comprehensive study of the structural and electronic properties of a graphene/phosphorene (G/P) heterostructure in the framework of density functional theory, including van der Waals interaction in the exchange–correlation functional. While the G(4 × 1)/P(3 × 1) superlattice usually used in the literature is subject to a strain as high as about 7%, the in-plane strain could be drastically reduced to under 1% in the G(4 × 13)/P(3 × 12) heterostructure investigated here. Adapting the lattice constants of the rectangular lattices, the equilibrium configuration in the xy plane of phosphorene relative to the graphene layer is optimized. This results in an equilibrium interlayer distance of 3.5 Å and a binding energy per carbon atom of 37 meV, confirming the presence of weak van der Waals interaction between the graphene and the phosphorene layers. The electronic properties of the heterostructure are evaluated under different values of interlayer distance, strain and applied vertical electric field. We demonstrate that G/P heterostructures form an n-type Schottky contact, which can be transformed into p-type under external perturbations. These findings, together with the possibility to control the gaps and barrier heights, suggest that G/P heterostructures are promising for novel applications in electronics and may open a new avenue for the realization of innovative optoelectronic devices. We present a comprehensive study of the structural and electronic properties of a graphene/phosphorene (G/P) heterostructure in the framework of density functional theory, including van der Waals interaction in the exchange-correlation functional. While the G(4 × 1)/P(3 × 1) superlattice usually used in the literature is subject to a strain as high as about 7%, the in-plane strain could be drastically reduced to under 1% in the G(4 × 13)/P(3 × 12) heterostructure investigated here. Adapting the lattice constants of the rectangular lattices, the equilibrium configuration in the xy plane of phosphorene relative to the graphene layer is optimized. This results in an equilibrium interlayer distance of 3.5 Å and a binding energy per carbon atom of 37 meV, confirming the presence of weak van der Waals interaction between the graphene and the phosphorene layers. The electronic properties of the heterostructure are evaluated under different values of interlayer distance, strain and applied vertical electric field. We demonstrate that G/P heterostructures form an n-type Schottky contact, which can be transformed into p-type under external perturbations. These findings, together with the possibility to control the gaps and barrier heights, suggest that G/P heterostructures are promising for novel applications in electronics and may open a new avenue for the realization of innovative optoelectronic devices.We present a comprehensive study of the structural and electronic properties of a graphene/phosphorene (G/P) heterostructure in the framework of density functional theory, including van der Waals interaction in the exchange-correlation functional. While the G(4 × 1)/P(3 × 1) superlattice usually used in the literature is subject to a strain as high as about 7%, the in-plane strain could be drastically reduced to under 1% in the G(4 × 13)/P(3 × 12) heterostructure investigated here. Adapting the lattice constants of the rectangular lattices, the equilibrium configuration in the xy plane of phosphorene relative to the graphene layer is optimized. This results in an equilibrium interlayer distance of 3.5 Å and a binding energy per carbon atom of 37 meV, confirming the presence of weak van der Waals interaction between the graphene and the phosphorene layers. The electronic properties of the heterostructure are evaluated under different values of interlayer distance, strain and applied vertical electric field. We demonstrate that G/P heterostructures form an n-type Schottky contact, which can be transformed into p-type under external perturbations. These findings, together with the possibility to control the gaps and barrier heights, suggest that G/P heterostructures are promising for novel applications in electronics and may open a new avenue for the realization of innovative optoelectronic devices. We present a comprehensive study of the structural and electronic properties of a graphene/phosphorene (G/P) heterostructure in the framework of density functional theory, including van der Waals interaction in the exchange–correlation functional. While the G(4 × 1)/P(3 × 1) superlattice usually used in the literature is subject to a strain as high as about 7%, the in-plane strain could be drastically reduced to under 1% in the G(4 × 13)/P(3 × 12) heterostructure investigated here. Adapting the lattice constants of the rectangular lattices, the equilibrium configuration in the xy plane of phosphorene relative to the graphene layer is optimized. This results in an equilibrium interlayer distance of 3.5 Å and a binding energy per carbon atom of 37 meV, confirming the presence of weak van der Waals interaction between the graphene and the phosphorene layers. The electronic properties of the heterostructure are evaluated under different values of interlayer distance, strain and applied vertical electric field. We demonstrate that G/P heterostructures form an n -type Schottky contact, which can be transformed into p -type under external perturbations. These findings, together with the possibility to control the gaps and barrier heights, suggest that G/P heterostructures are promising for novel applications in electronics and may open a new avenue for the realization of innovative optoelectronic devices. |
Audience | Academic |
Author | Muroni, Alessia Pulci, Olivia Bechstedt, Friedhelm Brozzesi, Simone Gori, Paola |
AuthorAffiliation | 2 Institut für Festkörpertheorie und -Optik, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, 07743 Jena, Germany 3 Department of Industrial, Electronic and Mechanical Engineering, Roma Tre University, Via della Vasca Navale 79, 00146 Rome, Italy 1 Department of Physics, University of Rome ‘Tor Vergata’ and INFN, Via della Ricerca Scientifica 1, 00133 Rome, Italy; alessia.muroni@roma2.infn.it (A.M.); simone.brozzesi@roma2.infn.it (S.B.); olivia.pulci@roma2.infn.it (O.P.) |
AuthorAffiliation_xml | – name: 2 Institut für Festkörpertheorie und -Optik, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, 07743 Jena, Germany – name: 1 Department of Physics, University of Rome ‘Tor Vergata’ and INFN, Via della Ricerca Scientifica 1, 00133 Rome, Italy; alessia.muroni@roma2.infn.it (A.M.); simone.brozzesi@roma2.infn.it (S.B.); olivia.pulci@roma2.infn.it (O.P.) – name: 3 Department of Industrial, Electronic and Mechanical Engineering, Roma Tre University, Via della Vasca Navale 79, 00146 Rome, Italy |
Author_xml | – sequence: 1 givenname: Alessia orcidid: 0009-0000-2141-1296 surname: Muroni fullname: Muroni, Alessia – sequence: 2 givenname: Simone orcidid: 0000-0002-5479-936X surname: Brozzesi fullname: Brozzesi, Simone – sequence: 3 givenname: Friedhelm orcidid: 0000-0002-3294-6082 surname: Bechstedt fullname: Bechstedt, Friedhelm – sequence: 4 givenname: Paola orcidid: 0000-0001-6896-5560 surname: Gori fullname: Gori, Paola – sequence: 5 givenname: Olivia orcidid: 0000-0002-9725-487X surname: Pulci fullname: Pulci, Olivia |
BookMark | eNptUl1rHCEUlZLSpNu89QcIfelDN_FzPp5KWJJNIJBC076K41x33c7qVJ3A_vu62RSSEAW9XM85nqv3IzrywQNCnyk547wl5177QDmtGJfNO3TCSN3ORdvSo2fxMTpNaUPKaClvJP-AjnldcdIKdoLG-8k7v8JLPSasfY9_mnXI-c8OL4LP2uSEg8XLqMc1eDj_sQ5pXIdYYnwNGWJIOU4mTxES7nb4N8TsjB7w5QAmR2fwlYOhPyjnqJ3_hN5bPSQ4fdpn6NfV5f3ien57t7xZXNzOjWhlnutKV7yTQKkVIDghsrF9B20PklMQlmpGKw1aWmYb0nEre8N6IJI2tK_Ke8zQzUG3D3qjxui2Ou5U0E49JkJcKb33OoCShuvC7qBupaht23W1FRK4kawnugQz9P2gNU7dFnoDvpQyvBB9eeLdWq3Cg6JEyJaTvZuvTwox_J0gZbV1ycAwaA9hSoo1sm5EWeoC_fIKuglT9OWtHlGCcslEQZ0dUCtdKnDehnKxKbOHrTOlSawr-Yu6YqIRhO4J7EAw5c9SBKuMyzq7sHfshmJV7TtKPe-oQvr2ivS_5jfh_wA99M8z |
CitedBy_id | crossref_primary_10_1039_D4RA01029A crossref_primary_10_1063_5_0231150 |
Cites_doi | 10.1126/science.1102896 10.1103/PhysRevB.89.245407 10.1016/j.nanoms.2020.12.005 10.1016/j.physb.2019.411923 10.1002/adma.201602254 10.1002/smll.201402041 10.1088/2053-1583/2/1/011002 10.1016/j.physb.2023.414780 10.1103/PhysRevB.90.125441 10.1103/PhysRevB.85.035305 10.1103/PhysRevB.89.235319 10.1039/C7RA12400G 10.1103/PhysRevB.90.085402 10.1103/PhysRevB.84.041402 10.1038/nnano.2014.85 10.1038/srep18000 10.1103/PhysRevB.89.201408 10.1039/C4TA04368E 10.1103/PhysRevB.93.121405 10.1038/natrevmats.2016.61 10.1038/nnano.2015.71 10.1021/jp953141+ 10.1103/PhysRevLett.112.176801 10.1016/j.apmt.2018.12.008 10.1038/nnano.2014.35 10.1038/nmat1849 10.1039/C5TC00759C 10.1021/acs.jpcc.5b02634 10.1021/acs.nanolett.5b04768 10.1016/j.vacuum.2017.12.040 10.1103/PhysRevLett.114.066803 10.1103/PhysRev.71.717 10.1126/sciadv.aap9977 10.7150/thno.22573 10.1088/0953-8984/21/39/395502 10.1103/PhysRevApplied.10.014022 10.1103/PhysRevB.101.235407 10.1038/s41598-022-24425-w 10.1088/2752-5724/ac49e3 10.1109/HPCSim.2014.6903807 10.1021/j100785a001 10.1088/1361-648X/aa8f79 10.1063/1.4947666 10.1039/C6CP03903K 10.1088/2053-1583/abca81 10.1088/1367-2630/16/11/115004 10.1021/nl5043769 10.1039/C4CP04858J 10.1021/acs.jpcc.6b01496 10.1103/PhysRevB.91.115437 10.1002/jcc.20495 10.1038/ncomms5475 10.1021/acs.jpcc.6b10976 10.1103/PhysRevLett.77.3865 10.1021/jp505257g 10.1016/j.progsurf.2021.100615 10.1007/978-3-662-44593-8 10.1021/acs.jpcc.1c08282 10.1038/s41598-020-67667-2 10.1038/ncomms5727 10.1016/j.carbon.2018.08.057 10.1021/nn501226z 10.1038/npjcompumats.2016.11 10.1021/acs.jpclett.5b02513 10.1038/ncomms5458 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 by the authors. 2023 |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 by the authors. 2023 |
DBID | AAYXX CITATION 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG 8FH ABJCF ABUWG AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU D1I DWQXO F28 FR3 GNUQQ H8D H8G HCIFZ JG9 JQ2 KB. KR7 L7M LK8 L~C L~D M7P P64 PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/nano13162358 |
DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection (ProQuest) ProQuest One Community College ProQuest Materials Science Collection ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database ProQuest Central Student Aerospace Database Copper Technical Reference Library ProQuest SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Materials Science Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Biological Sciences Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biological Science Database Biotechnology and BioEngineering Abstracts Materials Science Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Central Student ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Biological Science Collection ProQuest Central (New) ANTE: Abstracts in New Technology & Engineering Aluminium Industry Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection Ceramic Abstracts Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts Materials Science Collection ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Natural Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library Biotechnology Research Abstracts ProQuest Central Korea Materials Science Database Advanced Technologies Database with Aerospace ProQuest Materials Science Collection Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Materials Science & Engineering Collection Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2079-4991 |
ExternalDocumentID | oai_doaj_org_article_5c3adc2be79547f9bb7f45e3c52d0a5e PMC10459302 A762484014 10_3390_nano13162358 |
GeographicLocations | Italy |
GeographicLocations_xml | – name: Italy |
GrantInformation_xml | – fundername: INFN Tor Vergata – fundername: PRIN 2020 “PHOTO” – fundername: EU MSCA-RISE project DiSeTCom grantid: GA 823728 |
GroupedDBID | 53G 5VS 8FE 8FG 8FH AADQD AAFWJ AAHBH AAYXX ABJCF ADBBV ADMLS AENEX AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BBNVY BCNDV BENPR BGLVJ BHPHI CCPQU CITATION D1I GROUPED_DOAJ HCIFZ HYE I-F IAO ITC KB. KQ8 LK8 M7P MODMG M~E OK1 PDBOC PGMZT PHGZM PHGZT PIMPY PROAC RPM PMFND 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC DWQXO F28 FR3 GNUQQ H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c495t-a6a63b5e11f4e430058fdbe9de531e4f1a216aea5f2f80b3f5dc2de05181d6623 |
IEDL.DBID | DOA |
ISSN | 2079-4991 |
IngestDate | Wed Aug 27 01:31:29 EDT 2025 Thu Aug 21 18:36:41 EDT 2025 Fri Jul 11 16:01:05 EDT 2025 Tue Aug 12 16:41:47 EDT 2025 Tue Jun 10 21:12:56 EDT 2025 Thu Apr 24 23:04:02 EDT 2025 Tue Jul 01 00:51:40 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 16 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c495t-a6a63b5e11f4e430058fdbe9de531e4f1a216aea5f2f80b3f5dc2de05181d6623 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-6896-5560 0000-0002-5479-936X 0009-0000-2141-1296 0000-0002-9725-487X 0000-0002-3294-6082 |
OpenAccessLink | https://doaj.org/article/5c3adc2be79547f9bb7f45e3c52d0a5e |
PMID | 37630942 |
PQID | 2857413524 |
PQPubID | 2032354 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_5c3adc2be79547f9bb7f45e3c52d0a5e pubmedcentral_primary_oai_pubmedcentral_nih_gov_10459302 proquest_miscellaneous_2857848577 proquest_journals_2857413524 gale_infotracacademiconefile_A762484014 crossref_citationtrail_10_3390_nano13162358 crossref_primary_10_3390_nano13162358 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-08-01 |
PublicationDateYYYYMMDD | 2023-08-01 |
PublicationDate_xml | – month: 08 year: 2023 text: 2023-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Nanomaterials (Basel, Switzerland) |
PublicationYear | 2023 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Qiao (ref_51) 2014; 5 Shamekhi (ref_38) 2020; 580 Padilha (ref_37) 2015; 114 Wang (ref_19) 2015; 10 Peng (ref_15) 2014; 90 Zhu (ref_33) 2016; 16 Bechstedt (ref_14) 2021; 96 Giannozzi (ref_46) 2009; 21 ref_60 Jiang (ref_16) 2014; 5 Phuc (ref_44) 2018; 149 Koda (ref_52) 2016; 120 Kaur (ref_56) 2016; Volume 1731 ref_66 Prete (ref_17) 2020; 10 Cai (ref_53) 2015; 119 Koda (ref_64) 2017; 121 Novoselov (ref_1) 2004; 306 Sponza (ref_23) 2021; 8 Bondi (ref_55) 1964; 68 Batmunkh (ref_39) 2016; 28 Han (ref_40) 2018; 8 ref_28 Takeuchi (ref_24) 2022; 12 Balendhran (ref_3) 2015; 11 Hu (ref_43) 2015; 3 Surrente (ref_20) 2016; 93 Choi (ref_31) 2018; 8 Liu (ref_36) 2016; 18 Lu (ref_11) 2016; 2 Mu (ref_26) 2022; 1 Li (ref_57) 2018; 140 Hugh (ref_27) 2014; 9 Singh (ref_32) 2018; 10 Island (ref_42) 2015; 2 Haidar (ref_45) 2021; 125 Tran (ref_7) 2014; 89 Tian (ref_22) 2020; 101 Pujari (ref_50) 2011; 84 Gong (ref_65) 2014; 90 Liu (ref_9) 2014; 8 Tran (ref_8) 2014; 89 Perdew (ref_48) 1996; 77 Rodin (ref_5) 2014; 112 Guo (ref_58) 2014; 118 Schleife (ref_63) 2012; 85 Lin (ref_59) 2023; 657 Seixas (ref_18) 2015; 91 Liu (ref_13) 2015; 15 Espinoza (ref_35) 2022; 4 Xia (ref_6) 2014; 5 Bardeen (ref_62) 1947; 71 Geim (ref_2) 2007; 6 Carvalho (ref_10) 2016; 1 Zhang (ref_21) 2018; 4 Zhao (ref_41) 2014; 2 Giannozzi (ref_47) 2017; 29 Rowland (ref_54) 1996; 100 Li (ref_4) 2014; 9 Ezawa (ref_12) 2014; 16 Grimme (ref_49) 2006; 27 Ling (ref_34) 2015; 5 Qin (ref_25) 2015; 17 Tao (ref_29) 2019; 15 Guo (ref_30) 2015; 6 Rudenko (ref_61) 2014; 89 |
References_xml | – volume: 306 start-page: 666 year: 2004 ident: ref_1 article-title: Electric field effect in atomically thin carbon films publication-title: Science doi: 10.1126/science.1102896 – volume: 89 start-page: 245407 year: 2014 ident: ref_7 article-title: Scaling laws for the band gap and optical response of phosphorene nanoribbons publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.89.245407 – volume: 4 start-page: 52 year: 2022 ident: ref_35 article-title: First principles study of field effect device through van der Waals and lateral heterostructures of graphene, phosphorene and graphane publication-title: Nano Mater. Sci. doi: 10.1016/j.nanoms.2020.12.005 – volume: 580 start-page: 411923 year: 2020 ident: ref_38 article-title: Band structure and Schottky barrier modulation in multilayer black phosphorene and black phosphorene/graphene heterostructure through out-of-plane strain publication-title: Phys. B Condens. Matter doi: 10.1016/j.physb.2019.411923 – volume: 28 start-page: 8586 year: 2016 ident: ref_39 article-title: Phosphorene and phosphorene-based materials–prospects for future applications publication-title: Adv. Mater. doi: 10.1002/adma.201602254 – volume: 11 start-page: 640 year: 2015 ident: ref_3 article-title: Elemental analogues of graphene: Silicene, germanene, stanene, and phosphorene publication-title: Small doi: 10.1002/smll.201402041 – volume: 2 start-page: 011002 year: 2015 ident: ref_42 article-title: Environmental instability of few-layer black phosphorus publication-title: 2D Mater. doi: 10.1088/2053-1583/2/1/011002 – volume: 657 start-page: 414780 year: 2023 ident: ref_59 article-title: Monolayer black phosphorus: Tunable band gap and optical properties publication-title: Phys. B Condens. Matter doi: 10.1016/j.physb.2023.414780 – volume: 90 start-page: 125441 year: 2014 ident: ref_65 article-title: Electrical contacts to monolayer black phosphorus: A first-principles investigation publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.90.125441 – volume: 85 start-page: 035305 year: 2012 ident: ref_63 article-title: Band discontinuities at Si-TCO interfaces from quasiparticle calculations: Comparison of two alignment approaches publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.85.035305 – volume: 89 start-page: 235319 year: 2014 ident: ref_8 article-title: Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.89.235319 – volume: 8 start-page: 7196 year: 2018 ident: ref_40 article-title: Density functional theory calculations for evaluation of phosphorene as a potential anode material for magnesium batteries publication-title: RSC Adv. doi: 10.1039/C7RA12400G – volume: 90 start-page: 085402 year: 2014 ident: ref_15 article-title: Strain-engineered direct-indirect band gap transition and its mechanism in two-dimensional phosphorene publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.90.085402 – volume: 84 start-page: 041402 year: 2011 ident: ref_50 article-title: Single-side-hydrogenated graphene: Density functional theory predictions publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.84.041402 – volume: 9 start-page: 330 year: 2014 ident: ref_27 article-title: Two-dimensional crystals: Phosphorus joins the family publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2014.85 – volume: 5 start-page: 18000 year: 2015 ident: ref_34 article-title: Black phosphorus transistors with near band edge contact Schottky barrier publication-title: Sci. Rep. doi: 10.1038/srep18000 – volume: 89 start-page: 201408 year: 2014 ident: ref_61 article-title: Quasiparticle band structure and tight-binding model for single-and bilayer black phosphorus publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.89.201408 – volume: 2 start-page: 19046 year: 2014 ident: ref_41 article-title: The potential application of phosphorene as an anode material in Li-ion batteries publication-title: J. Mater. Chem. A doi: 10.1039/C4TA04368E – volume: 93 start-page: 121405 year: 2016 ident: ref_20 article-title: Excitons in atomically thin black phosphorus publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.93.121405 – volume: 1 start-page: 16061 year: 2016 ident: ref_10 article-title: Phosphorene: From theory to applications publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2016.61 – volume: 10 start-page: 517 year: 2015 ident: ref_19 article-title: Highly anisotropic and robust excitons in monolayer black phosphorus publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2015.71 – volume: 100 start-page: 7384 year: 1996 ident: ref_54 article-title: Intermolecular nonbonded contact distances in organic crystal structures: Comparison with distances expected from van der Waals radii publication-title: J. Phys. Chem. doi: 10.1021/jp953141+ – volume: 112 start-page: 176801 year: 2014 ident: ref_5 article-title: Strain-induced gap modification in black phosphorus publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.112.176801 – volume: 15 start-page: 18 year: 2019 ident: ref_29 article-title: Few-layer phosphorene: An emerging electrode material for electrochemical energy storage publication-title: Appl. Mater. Today doi: 10.1016/j.apmt.2018.12.008 – volume: 9 start-page: 372 year: 2014 ident: ref_4 article-title: Black phosphorus field-effect transistors publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2014.35 – volume: 6 start-page: 183 year: 2007 ident: ref_2 article-title: The rise of graphene publication-title: Nat. Mater. doi: 10.1038/nmat1849 – volume: 3 start-page: 4756 year: 2015 ident: ref_43 article-title: Tunable Schottky contacts in hybrid graphene–phosphorene nanocomposites publication-title: J. Mater. Chem. C doi: 10.1039/C5TC00759C – volume: 119 start-page: 13929 year: 2015 ident: ref_53 article-title: Electronic properties of phosphorene/graphene and phosphorene/hexagonal boron nitride heterostructures publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.5b02634 – volume: 16 start-page: 2301 year: 2016 ident: ref_33 article-title: Black Phosphorus Flexible Thin Film Transistors at Gighertz Frequencies publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b04768 – volume: 149 start-page: 231 year: 2018 ident: ref_44 article-title: Electric-field tunable electronic properties and Schottky contact of graphene/phosphorene heterostructure publication-title: Vacuum doi: 10.1016/j.vacuum.2017.12.040 – volume: 114 start-page: 066803 year: 2015 ident: ref_37 article-title: van der Waals heterostructure of phosphorene and graphene: Tuning the Schottky barrier and doping by electrostatic gating publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.114.066803 – volume: 71 start-page: 717 year: 1947 ident: ref_62 article-title: Surface states and rectification at a metal semi-conductor contact publication-title: Phys. Rev. doi: 10.1103/PhysRev.71.717 – volume: 4 start-page: eaap9977 year: 2018 ident: ref_21 article-title: Determination of layer-dependent exciton binding energies in few-layer black phosphorus publication-title: Sci. Adv. doi: 10.1126/sciadv.aap9977 – volume: 8 start-page: 1005 year: 2018 ident: ref_31 article-title: Black phosphorus and its biomedical applications publication-title: Theranostics doi: 10.7150/thno.22573 – volume: 21 start-page: 395502 year: 2009 ident: ref_46 article-title: QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/21/39/395502 – volume: 10 start-page: 014022 year: 2018 ident: ref_32 article-title: Performance Projections for Two-dimensional Materials in Radio-Frequency Applications publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.10.014022 – volume: 101 start-page: 235407 year: 2020 ident: ref_22 article-title: Observation of excitonic series in monolayer and few-layer black phosphorus publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.101.235407 – volume: 12 start-page: 20979 year: 2022 ident: ref_24 article-title: Electronic and optical properties of the buckled and puckered phases of phosphorene and arsenene publication-title: Sci. Rep. doi: 10.1038/s41598-022-24425-w – volume: 1 start-page: 012301 year: 2022 ident: ref_26 article-title: Interface and surface engineering of black phosphorus: A review for optoelectronic and photonic applications publication-title: Mater. Future doi: 10.1088/2752-5724/ac49e3 – ident: ref_66 doi: 10.1109/HPCSim.2014.6903807 – ident: ref_28 – volume: 68 start-page: 441 year: 1964 ident: ref_55 article-title: van der Waals volumes and radii publication-title: J. Phys. Chem. doi: 10.1021/j100785a001 – volume: 29 start-page: 465901 year: 2017 ident: ref_47 article-title: Advanced capabilities for materials modelling with Quantum ESPRESSO publication-title: J. Phys. Condens. Matter doi: 10.1088/1361-648X/aa8f79 – volume: Volume 1731 start-page: 050012 year: 2016 ident: ref_56 article-title: Electronic properties of phosphorene/graphene heterostructures: Effect of external electric field publication-title: Proceedings of the AIP Conference Proceedings doi: 10.1063/1.4947666 – volume: 18 start-page: 19918 year: 2016 ident: ref_36 article-title: Tuning the Schottky contacts in the phosphorene and graphene heterostructure by applying strain publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C6CP03903K – volume: 8 start-page: 021001 year: 2021 ident: ref_23 article-title: Excitons in bulk black phosphorus evidenced by photoluminescence at low temperature publication-title: 2D Mater. doi: 10.1088/2053-1583/abca81 – volume: 16 start-page: 115004 year: 2014 ident: ref_12 article-title: Topological origin of quasi-flat edge band in phosphorene publication-title: New J. Phys. doi: 10.1088/1367-2630/16/11/115004 – volume: 15 start-page: 1222 year: 2015 ident: ref_13 article-title: Switching a normal insulator into a topological insulator via electric field with application to phosphorene publication-title: Nano Lett. doi: 10.1021/nl5043769 – volume: 17 start-page: 4854 year: 2015 ident: ref_25 article-title: Anisotropic intrinsic lattice thermal conductivity of phosphorene from first principles publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C4CP04858J – volume: 120 start-page: 10895 year: 2016 ident: ref_52 article-title: Coincidence lattices of 2D crystals: Heterostructure predictions and applications publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.6b01496 – volume: 91 start-page: 115437 year: 2015 ident: ref_18 article-title: Exciton binding energies and luminescence of phosphorene under pressure publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.91.115437 – volume: 27 start-page: 1787 year: 2006 ident: ref_49 article-title: Semiempirical GGA-type density functional constructed with a long-range dispersion correction publication-title: J. Comput. Chem. doi: 10.1002/jcc.20495 – volume: 5 start-page: 4475 year: 2014 ident: ref_51 article-title: High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus publication-title: Nat. Commun. doi: 10.1038/ncomms5475 – volume: 121 start-page: 3862 year: 2017 ident: ref_64 article-title: Tuning electronic properties and band alignments of phosphorene combined with MoSe2 and WSe2 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.6b10976 – volume: 77 start-page: 3865 year: 1996 ident: ref_48 article-title: Generalized gradient approximation made simple publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 118 start-page: 14051 year: 2014 ident: ref_58 article-title: Phosphorene nanoribbons, phosphorus nanotubes, and van der Waals multilayers publication-title: J. Phys. Chem. C doi: 10.1021/jp505257g – volume: 96 start-page: 100615 year: 2021 ident: ref_14 article-title: Beyond graphene: Clean, hydrogenated and halogenated silicene, germanene, stanene, and plumbene publication-title: Prog. Surf. Sci. doi: 10.1016/j.progsurf.2021.100615 – ident: ref_60 doi: 10.1007/978-3-662-44593-8 – volume: 125 start-page: 25886 year: 2021 ident: ref_45 article-title: Twist-Dependent Electron Charge Transfer and Transport in Phosphorene—Graphene Heterobilayers publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.1c08282 – volume: 10 start-page: 10719 year: 2020 ident: ref_17 article-title: Giant excitonic absorption and emission in two-dimensional group-III nitrides publication-title: Sci. Rep. doi: 10.1038/s41598-020-67667-2 – volume: 5 start-page: 4727 year: 2014 ident: ref_16 article-title: Negative Poisson’s ratio in single-layer black phosphorus publication-title: Nat. Commun. doi: 10.1038/ncomms5727 – volume: 140 start-page: 164 year: 2018 ident: ref_57 article-title: Asymmetric quantum confinement-induced energetically and spatially splitting Dirac rings in graphene/phosphorene/graphene heterostructure publication-title: Carbon doi: 10.1016/j.carbon.2018.08.057 – volume: 8 start-page: 4033 year: 2014 ident: ref_9 article-title: Phosphorene: An unexplored 2D semiconductor with a high hole mobility publication-title: ACS Nano doi: 10.1021/nn501226z – volume: 2 start-page: 16011 year: 2016 ident: ref_11 article-title: Multiple unpinned Dirac points in group-Va single-layers with phosphorene structure publication-title: npj Comput. Mater. doi: 10.1038/npjcompumats.2016.11 – volume: 6 start-page: 5002 year: 2015 ident: ref_30 article-title: First-principles study of phosphorene and graphene heterostructure as anode materials for rechargeable Li batteries publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.5b02513 – volume: 5 start-page: 4458 year: 2014 ident: ref_6 article-title: Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics publication-title: Nat. Commun. doi: 10.1038/ncomms5458 |
SSID | ssj0000913853 |
Score | 2.241897 |
Snippet | We present a comprehensive study of the structural and electronic properties of a graphene/phosphorene (G/P) heterostructure in the framework of density... |
SourceID | doaj pubmedcentral proquest gale crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 2358 |
SubjectTerms | 2D materials Asymmetry band structure Density functional theory Density functionals Electric contacts Electric fields Electric properties Electronic properties Graphene Heterostructures Interlayers Lattice parameters Lattices Optoelectronic devices Perturbation Phosphorene Phosphorus Phosphorus compounds Plane strain Schottky contact Structure Superlattices Symmetry Transistors Two dimensional materials vdW heterostructure |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagvcAB8RSBgowE4oCiTWI7jxNq0W5XSFQValFv0dix2QoUB5I99N8zk3iXXRBcckgs2_F4nh5_w9hrXRR2rBHW5EURSyNMrCmQrwEqmzpRKEsnup_O8uWl_HilrkLArQ9plRuZOArqxhuKkc-yUqHyQ3NBvu9-xFQ1ik5XQwmN2-wQRXCJztfhyfzs_PM2ykKol6iQpox3gf79rIXWpyLN6Yroni4aIfv_Fsx_JkvuaJ_FfXYvmI38eKLzA3bLtg_Z3R0wwUesu1hTjIOfQtdzaBtOAJvD8O2GEwIVmKHn3vFTAqhG-TY7X_m-W3lCtORLyonxE5TsGv1vrm_4lzHhGsecj4Vyrg1fULLb1PNYWOIxu1zMLz4s41BPITboBg0x5JALrWyaOmkl4dSXrtG2aiwyopUuhSzNwYJymSsTLZxqTNZYZFs0anNcsSfsoPWtfco4NEjjHBKhEyexX3S7RK7ACkCTAI26iL3brGxtAtg4Te17jU4H0aHepUPE3mxbdxPIxj_anRCRtm0IGnt84X9-rQOn1coIwHlrW1RKFq7SunBSWWFU1iSgbMTeEolrYmCckoFwDwF_jKCw6mNUDxLd3lRG7GizC-rA2X39ex9G7NX2M_IkHbRAa_16alNKfBQRK_d2z97U97-016sR3Rv9Y1WJJHv2_9GfszsZ2ltTLuIRO8AtYl-gfTTol4EJfgFNVBSC priority: 102 providerName: ProQuest |
Title | Tuning Gaps and Schottky Contacts of Graphene/Phosphorene Heterostructures by Vertical Electric Field and Strain |
URI | https://www.proquest.com/docview/2857413524 https://www.proquest.com/docview/2857848577 https://pubmed.ncbi.nlm.nih.gov/PMC10459302 https://doaj.org/article/5c3adc2be79547f9bb7f45e3c52d0a5e |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBZtemkPpemDukkXFVp6KGZtS7LsYxL2QaEhlKTkJkayxIYWe2G9h_z7zNjO4m0JufTigyVsaR6aGWn0DWOfrda-qxFW5VrH0gkXW9rItwClT4PQytOJ7o_zfHklv1-r61GpL8oJ6-GBe8JNlRNQucx6XSqpQ2mtDlJ54VRWJaA8rb5o80bBVLcGl6lAQ9RnuguM66c11E0q0pyuhu7ZoA6q_98F-e8kyZHVmb9iLwd3kZ_0wzxkT3z9mr0YgQi-YevLLe1t8AWsNxzqihOwZtv-vuWEPAWu3fAm8AUBU-O6Nr1YNZv1qiEkS76kXJimh5DdYtzN7S3_1SVa4z9nXYGcG8fnlOTWf7krKPGWXc1nl2fLeKijEDsMf9oYcsiFVT5Ng_SS8OmLUFlfVh4V0MuQQpbm4EGFLBSJFUEhwSuP6orObI4Ue8cO6qb27xmHCnmbQyJsEiR-F8MtkSvwAtAVQGcuYt_uKWvcADJOQ_tjMNggPpgxHyL2Zdd73YNrPNDvlJi060OQ2N0LFBQzCIp5TFAi9pVYbEhxcUgOhvsHODGCwDInaBYkhrupjNjxvRSYQaM3JisUOl_ormLzp10z6iIdsEDtm23fp5D40BEr9qRnb-j7LfXNqkP1xrhYlSLJPvyPyR6x5xl6Y32m4jE7QEHyH9F7au2EPS3miwl7djo7v_g56dTmDrX4H18 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqcgAOiKcILWAkKg4o2iR-JDkgVKC7W_oQhy3qLdiO3a1ASUqyQvun-I3M5LHsguDWSw6xlTiZz_Owx98Q8lLHsW1rhOUyjn1umPE1LuRrpVIbOhYLizu6J6dyesY_novzLfJzOAuDaZWDTmwVdV4aXCMfRYkA4wfuAn9bXflYNQp3V4cSGh0sjuzyB4Rs9ZvDDyDfvSgaH8zeT_2-qoBvIBhofCWVZFrYMHTccmRrT1yubZpbgKPlLlRRKJVVwkUuCTRzIjdRbgG84NpJiUQHoPJvcMZSnFHJeLJa00GOTTB_XX49tAejQhVlyEKJB1I3LF9bIOBvM_BnauaarRvfJXd6J5Xud6i6R7ZscZ_cXqMufECq2QJXVOhEVTVVRU6RzrNpvi4p8l0p09S0dHSCdNigTUef5mVdzUvkz6RTzMApO-LaBUT7VC_p5za9G9550JbluTR0jKl13ZPbMhYPydm1_OdHZLsoC_uYUJUDoqQKmA4ch-dCkMekUJYpcEDAhfTI6-HPZqanNsehfcsgxEE5ZOty8MjeqnfVUXr8o987FNKqDxJxtzfK7xdZP68zYZiCcWsbp4LHLtU6dlxYZkSUB0pYj7xCEWeoLmBIRvWnHuDDkHgr2wdjxCHIDrlHdgcUZL0eqbPfqPfIi1UzaADc1lGFLRddn4TDJfZIsoGejaFvthSX85ZLHKJxkbIgevL_tz8nN6ezk-Ps-PD0aIfcisDT67Igd8k2wMU-Bc-s0c_a6UDJl-uef78A5A9QxA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFH-aOgnBAfEpAgOMxMQBRU1iO2kOCG2sXcegqtCGdgu2Y9MJlBSSCvVf46_jvSQtLQhuu-SQWLbj920__x7Ac50ktqkRlsdJ4gvDja9pI18rldrQ8URaOtF9P4nH5-LthbzYgZ-ruzCUVrnSiY2izktDe-T9aCDR-KG7IPquS4uYHo1ez7_5VEGKTlpX5TRaFjm1yx8YvlWvTo6Q1vtRNBqevRn7XYUB32BgUPsqVjHX0oahE1YQcvvA5dqmuUXWtMKFKgpjZZV0kRsEmjuZmyi3yMjo5sUxgR6g-t9NMCoKerB7OJxMP6x3eAhxE41hm23PeRr0C1WUIQ9jup66ZQebcgF_G4U_EzU3LN_oFtzsXFZ20PLYbdixxR24sQFkeBfmZwvaX2HHal4xVeSMwD3r-suSEfqVMnXFSseOCRwbdWt_Oiur-awkNE02pnycsoWxXWDsz_SSfWySvXHMYVOk59KwESXatT03RS3uwfmVrPR96BVlYR8AUznyV6wCrgMnsF8M-XgsleUK3RF0KD14uVrZzHRA5zS1rxkGPESHbJMOHuyvW89bgI9_tDskIq3bECx386L8_jnrpDyThiuct7ZJKkXiUq0TJ6TlRkZ5oKT14AWROCPlgVMyqrsDgT9GMFzZAZomgSF3KDzYW3FB1mmVKvstAx48W39GfUCHPKqw5aJtMxD4SDwYbHHP1tS3vxSXswZZHGNzmfIgevj_0Z_CNZS97N3J5PQRXI_Q7WtTIvegh9xiH6ObVusnnTww-HTVIvgL1mhWVg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tuning+Gaps+and+Schottky+Contacts+of+Graphene%2FPhosphorene+Heterostructures+by+Vertical+Electric+Field+and+Strain&rft.jtitle=Nanomaterials+%28Basel%2C+Switzerland%29&rft.au=Muroni%2C+Alessia&rft.au=Brozzesi%2C+Simone&rft.au=Bechstedt%2C+Friedhelm&rft.au=Gori%2C+Paola&rft.date=2023-08-01&rft.issn=2079-4991&rft.eissn=2079-4991&rft.volume=13&rft.issue=16&rft_id=info:doi/10.3390%2Fnano13162358&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-4991&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-4991&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-4991&client=summon |