A Novel Automatic Change Detection Method for Urban High-Resolution Remotely Sensed Imagery Based on Multiindex Scene Representation
The new generation of Earth observation sensors with high spatial resolution can provide detailed information for change detection. The widely used methods for high-resolution image change detection rely on textural/structural features. However, these spatial features always produce high-dimensional...
Saved in:
Published in | IEEE transactions on geoscience and remote sensing Vol. 54; no. 1; pp. 609 - 625 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.01.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The new generation of Earth observation sensors with high spatial resolution can provide detailed information for change detection. The widely used methods for high-resolution image change detection rely on textural/structural features. However, these spatial features always produce high-dimensional data space since they are related to a series of parameters, e.g., window sizes and directions. Machine learning methods are also commonly employed, but their performances are subject to the quantity and quality of the training samples, and hence, much effort should be made to collect the high-quality samples. To address these problems, in this study, a novel multiindex automatic change detection method is proposed for the high-resolution imagery. The notable advantages of the proposed model include the following: 1) Complicated urban scenes are represented by a set of low dimensional but semantic information indexes, replacing the high-dimensional but low-level features (e.g., textural and structural features), and 2) the change detection model is carried out automatically without using training samples since the information indexes can directly indicate the primitive urban classes. The multiindex representation refers to the enhanced vegetation index, the water index, and the recently developed morphological building index. Experiments were conducted on the multitemporal WorldView-2 images over Shenzhen City (south of China) and Kuala Lumpur (the capital of Malaysia), where promising results were achieved by the proposed method. Moreover, the traditional methods based on the state-of-the-art textural/morphological features were also implemented for the purpose of comparison, which further validates the advantages of our proposed model. |
---|---|
AbstractList | The new generation of Earth observation sensors with high spatial resolution can provide detailed information for change detection. The widely used methods for high-resolution image change detection rely on textural/structural features. However, these spatial features always produce high-dimensional data space since they are related to a series of parameters, e.g., window sizes and directions. Machine learning methods are also commonly employed, but their performances are subject to the quantity and quality of the training samples, and hence, much effort should be made to collect the high-quality samples. To address these problems, in this study, a novel multiindex automatic change detection method is proposed for the high-resolution imagery. The notable advantages of the proposed model include the following: 1) Complicated urban scenes are represented by a set of low dimensional but semantic information indexes, replacing the high-dimensional but low-level features (e.g., textural and structural features), and 2) the change detection model is carried out automatically without using training samples since the information indexes can directly indicate the primitive urban classes. The multiindex representation refers to the enhanced vegetation index, the water index, and the recently developed morphological building index. Experiments were conducted on the multitemporal WorldView-2 images over Shenzhen City (south of China) and Kuala Lumpur (the capital of Malaysia), where promising results were achieved by the proposed method. Moreover, the traditional methods based on the state-of-the-art textural/morphological features were also implemented for the purpose of comparison, which further validates the advantages of our proposed model. |
Author | Dawei Wen Benediktsson, Jon Atli Xin Huang Liangpei Zhang |
Author_xml | – sequence: 1 surname: Dawei Wen fullname: Dawei Wen organization: Mapping & Remote Sensing & also with the Collaborative Innovation Center of Geospatial Technol., Wuhan Univ., Wuhan, China – sequence: 2 surname: Xin Huang fullname: Xin Huang email: huang_whu@163.com organization: Mapping & Remote Sensing & also with the Collaborative Innovation Center of Geospatial Technol., Wuhan Univ., Wuhan, China – sequence: 3 surname: Liangpei Zhang fullname: Liangpei Zhang organization: Mapping & Remote Sensing & also with the Collaborative Innovation Center of Geospatial Technol., Wuhan Univ., Wuhan, China – sequence: 4 givenname: Jon Atli surname: Benediktsson fullname: Benediktsson, Jon Atli organization: Fac. of Electr. & Comput. Eng., Univ. of Iceland, Reykjavik, Iceland |
BookMark | eNqNkctuEzEYRi1UJNLCAyA2ltiwmeDreLwMAdpKBaSkXY8cz-_E1cQOtgeRPQ_emaZi0QViYVmWz_l8-c7RWYgBEHpLyZxSoj_eXq7Wc0aonDNRc6LkCzSjUjYVqYU4QzNCdV2xRrNX6Dzne0KokFTN0J8F_h5_QY8XQ4l7U7zFy50JW8CfoYAtPgb8DcoudtjFhO_SxgR85be7agU59sMjsIJ9LNAf8RpChg5f780W0hF_MtNqShj64n3o4DdeWwgwGocEGUIxU8Br9NKZPsObp_kC3X39cru8qm5-XF4vFzeVFVqWyjBLJXW1s9bVAKJjcsMlNbpWxjnVUTAbNe5TKZx2QjFhteFArNVMCtbwC_ThlHtI8ecAubR7ny30vQkQh9xSpRrCdKPpf6A145IzUo_o-2fofRxSGB8yUpyPQ3E2UvRE2RRzTuDaQ_J7k44tJe1UYTtV2E4Vtk8Vjo565lh_-rGSjO__ab47mR4A_p6kGCXjxfkDnOCr3Q |
CODEN | IGRSD2 |
CitedBy_id | crossref_primary_10_1109_JSTARS_2023_3335287 crossref_primary_10_1061__ASCE_UP_1943_5444_0000891 crossref_primary_10_1080_13658816_2016_1244608 crossref_primary_10_3390_rs12182952 crossref_primary_10_1016_j_jag_2022_102753 crossref_primary_10_1016_j_isprsjprs_2021_03_019 crossref_primary_10_3390_app14167235 crossref_primary_10_1016_j_jag_2020_102278 crossref_primary_10_1109_TGRS_2021_3131993 crossref_primary_10_1109_JSTARS_2022_3144318 crossref_primary_10_1016_j_rse_2017_05_001 crossref_primary_10_1016_j_rse_2020_111802 crossref_primary_10_1109_MGRS_2021_3063465 crossref_primary_10_1016_j_isprsjprs_2024_11_019 crossref_primary_10_1109_TGRS_2021_3095899 crossref_primary_10_3390_rs10070980 crossref_primary_10_3390_rs12152460 crossref_primary_10_4018_IJDWM_2020070101 crossref_primary_10_1109_TGRS_2023_3305554 crossref_primary_10_1007_s10901_023_10109_y crossref_primary_10_1016_j_compenvurbsys_2024_102113 crossref_primary_10_1007_s11430_019_9547_x crossref_primary_10_1080_13658816_2017_1324976 crossref_primary_10_3390_su10093301 crossref_primary_10_3390_rs14040841 crossref_primary_10_3390_rs9111112 crossref_primary_10_1109_TGRS_2024_3370236 crossref_primary_10_1109_TGRS_2018_2841808 crossref_primary_10_1109_TGRS_2021_3066802 crossref_primary_10_3390_rs14122838 crossref_primary_10_1109_TGRS_2024_3386334 crossref_primary_10_1109_TGRS_2022_3171067 crossref_primary_10_1080_10095020_2024_2311866 crossref_primary_10_3390_rs9040365 crossref_primary_10_3390_rs12121933 crossref_primary_10_1109_LGRS_2021_3067927 crossref_primary_10_1109_TGRS_2018_2864750 crossref_primary_10_1109_JSTARS_2020_2990481 crossref_primary_10_3390_rs14215448 crossref_primary_10_1016_j_isprsjprs_2017_09_007 crossref_primary_10_3390_rs13020252 crossref_primary_10_1109_LGRS_2016_2598567 crossref_primary_10_1007_s10586_017_0917_1 crossref_primary_10_1109_TGRS_2024_3442156 crossref_primary_10_3390_s16091377 crossref_primary_10_1109_TGRS_2022_3177478 crossref_primary_10_1016_j_isprsjprs_2018_11_014 crossref_primary_10_1109_ACCESS_2020_3011639 crossref_primary_10_1080_24694452_2020_1769463 crossref_primary_10_1109_JSTARS_2024_3455261 crossref_primary_10_1016_j_isprsjprs_2017_11_017 crossref_primary_10_1007_s11430_021_9896_4 crossref_primary_10_1109_MGRS_2021_3088865 crossref_primary_10_1109_TGRS_2021_3064606 crossref_primary_10_1016_j_isprsjprs_2018_12_016 crossref_primary_10_1109_JSTARS_2021_3108777 crossref_primary_10_1007_s11220_019_0252_0 crossref_primary_10_1109_JSTARS_2018_2804440 crossref_primary_10_1007_s00779_019_01318_w crossref_primary_10_3390_rs12071088 crossref_primary_10_1016_j_compenvurbsys_2018_11_008 crossref_primary_10_1016_j_compenvurbsys_2019_101442 crossref_primary_10_1016_j_isprsjprs_2025_03_008 crossref_primary_10_1016_j_rse_2018_05_006 crossref_primary_10_1360_N072021_0121 crossref_primary_10_3390_rs10020281 crossref_primary_10_1109_JSTARS_2024_3404781 crossref_primary_10_1016_j_compenvurbsys_2022_101807 crossref_primary_10_3390_s20123348 crossref_primary_10_3390_rs8060506 crossref_primary_10_1016_j_ejrs_2018_03_005 crossref_primary_10_3390_buildings12050556 crossref_primary_10_1109_TGRS_2025_3545051 |
Cites_doi | 10.1109/LGRS.2008.917726 10.1109/TGRS.2008.916201 10.1016/j.ins.2014.01.037 10.1109/JSTARS.2011.2168195 10.1109/TGRS.2012.2202912 10.1080/01431169608948714 10.1080/01431160701601782 10.1016/j.rse.2004.01.016 10.1109/JSTARS.2010.2058794 10.1016/0031-3203(95)00066-6 10.1109/TGRS.2014.2321277 10.1016/j.rse.2005.11.016 10.1109/CVPR.2008.4587372 10.1109/LGRS.2009.2021780 10.1109/LGRS.2006.890540 10.1016/S0034-4257(96)00075-2 10.1080/0143116031000101675 10.1109/TGRS.2003.814625 10.1109/ICDMW.2010.151 10.1016/j.patrec.2005.10.010 10.1109/TGRS.2012.2236846 10.1109/IGARSS.2009.5418269 10.1109/LGRS.2009.2026188 10.14358/PERS.77.7.721 10.1016/j.patcog.2006.04.045 10.1016/j.isprsjprs.2014.01.008 10.1080/01431160601075582 10.1016/j.isprsjprs.2003.09.007 10.1109/TGRS.2013.2248738 10.1002/1097-0142(1950)3:1<32::AID-CNCR2820030106>3.0.CO;2-3 10.1080/19479832.2012.702687 10.1109/JSTARS.2008.2002869 10.1109/TGRS.2009.2027702 10.1109/36.905239 10.1109/TGRS.2006.890580 10.1109/TSMC.1979.4310076 10.1016/j.isprsjprs.2003.10.002 10.1016/j.rse.2013.08.037 10.1016/j.patcog.2012.07.024 10.1109/TSMC.1973.4309314 10.1109/LGRS.2012.2222340 10.1016/j.isprsjprs.2013.03.006 10.1016/S0034-4257(02)00096-2 10.1016/j.asoc.2013.09.010 10.1109/JSTARS.2010.2081349 10.1080/01431161.2010.512425 10.1109/TGRS.2010.2066979 10.1109/LGRS.2008.2007429 10.1109/TGRS.2004.839547 10.1016/j.jag.2011.10.013 10.1109/36.377929 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 2016 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 2016 |
DBID | 97E RIA RIE AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M 7QH 7ST 7U6 7SP F28 |
DOI | 10.1109/TGRS.2015.2463075 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Aqualine Environment Abstracts Sustainability Science Abstracts Electronics & Communications Abstracts ANTE: Abstracts in New Technology & Engineering |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management Sustainability Science Abstracts Aqualine Environment Abstracts Electronics & Communications Abstracts ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional Aerospace Database Aerospace Database |
Database_xml | – sequence: 1 dbid: RIE name: Text complet a IEEE Electronic Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1558-0644 |
EndPage | 625 |
ExternalDocumentID | 3867029411 10_1109_TGRS_2015_2463075 7210176 |
Genre | orig-research |
GeographicLocations | ISEW, Malaysia ISEW, China, People's Rep., Guangdong Prov., Shenzhen China, People's Rep |
GeographicLocations_xml | – name: ISEW, China, People's Rep., Guangdong Prov., Shenzhen – name: ISEW, Malaysia – name: China, People's Rep |
GrantInformation_xml | – fundername: China National Science Fund for Excellent Young Scholars – fundername: Foundation for the Author of National Excellent Doctoral Dissertation of PR China (FANEDD) grantid: 201348 – fundername: National Natural Science Foundation of China grantid: 91338111 funderid: 10.13039/501100001809 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 Y6R AAYOK AAYXX CITATION RIG 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M 7QH 7ST 7U6 7SP F28 |
ID | FETCH-LOGICAL-c495t-a2c151f6fccf6ee4d25b351a967aff7d1eab71f6154f9f4724c9a3e0cc9254283 |
IEDL.DBID | RIE |
ISSN | 0196-2892 |
IngestDate | Fri Jul 11 03:01:06 EDT 2025 Fri Jul 11 16:15:28 EDT 2025 Mon Jun 30 08:27:01 EDT 2025 Thu Apr 24 23:03:47 EDT 2025 Tue Jul 01 01:33:59 EDT 2025 Tue Aug 26 16:42:45 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | change detection morphological Building detection high resolution |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c495t-a2c151f6fccf6ee4d25b351a967aff7d1eab71f6154f9f4724c9a3e0cc9254283 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 1733173732 |
PQPubID | 85465 |
PageCount | 17 |
ParticipantIDs | proquest_miscellaneous_1778029891 crossref_primary_10_1109_TGRS_2015_2463075 ieee_primary_7210176 proquest_journals_1733173732 crossref_citationtrail_10_1109_TGRS_2015_2463075 proquest_miscellaneous_1762353206 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-01-01 |
PublicationDateYYYYMMDD | 2016-01-01 |
PublicationDate_xml | – month: 01 year: 2016 text: 2016-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on geoscience and remote sensing |
PublicationTitleAbbrev | TGRS |
PublicationYear | 2016 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref53 ref52 ref11 ref10 chuanwei (ref32) 2009; 33 ref17 ref16 ref18 huang (ref51) 0 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 otsu (ref36) 1979; smc 9 ref35 ref34 ref37 ref31 ref30 ref33 ref2 ref1 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 liu (ref19) 2015; 53 |
References_xml | – ident: ref7 doi: 10.1109/LGRS.2008.917726 – ident: ref11 doi: 10.1109/TGRS.2008.916201 – ident: ref13 doi: 10.1016/j.ins.2014.01.037 – ident: ref21 doi: 10.1109/JSTARS.2011.2168195 – ident: ref3 doi: 10.1109/TGRS.2012.2202912 – ident: ref28 doi: 10.1080/01431169608948714 – ident: ref42 doi: 10.1080/01431160701601782 – ident: ref29 doi: 10.1016/j.rse.2004.01.016 – ident: ref45 doi: 10.1109/JSTARS.2010.2058794 – ident: ref38 doi: 10.1016/0031-3203(95)00066-6 – volume: 53 start-page: 244 year: 2015 ident: ref19 article-title: Hierarchical unsupervised change detection in multitemporal hyperspectral images publication-title: IEEE Trans Geosci Remote Sens doi: 10.1109/TGRS.2014.2321277 – ident: ref30 doi: 10.1016/j.rse.2005.11.016 – ident: ref47 doi: 10.1109/CVPR.2008.4587372 – ident: ref18 doi: 10.1109/LGRS.2009.2021780 – ident: ref41 doi: 10.1109/LGRS.2006.890540 – ident: ref25 doi: 10.1016/S0034-4257(96)00075-2 – ident: ref2 doi: 10.1080/0143116031000101675 – ident: ref24 doi: 10.1109/TGRS.2003.814625 – ident: ref52 doi: 10.1109/ICDMW.2010.151 – ident: ref34 doi: 10.1016/j.patrec.2005.10.010 – ident: ref31 doi: 10.1109/TGRS.2012.2236846 – ident: ref12 doi: 10.1109/IGARSS.2009.5418269 – ident: ref6 doi: 10.1109/LGRS.2009.2026188 – ident: ref20 doi: 10.14358/PERS.77.7.721 – ident: ref50 doi: 10.1016/j.patcog.2006.04.045 – ident: ref10 doi: 10.1016/j.isprsjprs.2014.01.008 – ident: ref37 doi: 10.1080/01431160601075582 – ident: ref4 doi: 10.1016/j.isprsjprs.2003.09.007 – ident: ref9 doi: 10.1109/TGRS.2013.2248738 – ident: ref35 doi: 10.1002/1097-0142(1950)3:1<32::AID-CNCR2820030106>3.0.CO;2-3 – ident: ref44 doi: 10.1080/19479832.2012.702687 – ident: ref22 doi: 10.1109/JSTARS.2008.2002869 – start-page: 2097 year: 0 ident: ref51 article-title: A Bayesian hierarchical detection framework for parking space detection publication-title: Proc IEEE ICASSP – ident: ref53 doi: 10.1109/TGRS.2009.2027702 – ident: ref23 doi: 10.1109/36.905239 – ident: ref33 doi: 10.1109/TGRS.2006.890580 – volume: smc 9 start-page: 62 year: 1979 ident: ref36 article-title: A threshold selection method from gray-level histograms publication-title: IEEE Trans Syst Man Cybern doi: 10.1109/TSMC.1979.4310076 – ident: ref15 doi: 10.1016/j.isprsjprs.2003.10.002 – volume: 33 start-page: 21 year: 2009 ident: ref32 article-title: Community structure and plant diversity of secondary forests in Shenzhen publication-title: Journal of Nanjing Forestry University (Natural Sciences Edition) – ident: ref27 doi: 10.1016/j.rse.2013.08.037 – ident: ref48 doi: 10.1016/j.patcog.2012.07.024 – ident: ref40 doi: 10.1109/TSMC.1973.4309314 – ident: ref17 doi: 10.1109/LGRS.2012.2222340 – ident: ref1 doi: 10.1016/j.isprsjprs.2013.03.006 – ident: ref26 doi: 10.1016/S0034-4257(02)00096-2 – ident: ref14 doi: 10.1016/j.asoc.2013.09.010 – ident: ref46 doi: 10.1109/JSTARS.2010.2081349 – ident: ref43 doi: 10.1080/01431161.2010.512425 – ident: ref5 doi: 10.1109/TGRS.2010.2066979 – ident: ref16 doi: 10.1109/LGRS.2008.2007429 – ident: ref49 doi: 10.1109/TGRS.2004.839547 – ident: ref8 doi: 10.1016/j.jag.2011.10.013 – ident: ref39 doi: 10.1109/36.377929 |
SSID | ssj0014517 |
Score | 2.482232 |
Snippet | The new generation of Earth observation sensors with high spatial resolution can provide detailed information for change detection. The widely used methods for... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 609 |
SubjectTerms | Automation Building detection Buildings Change detection Construction Feature extraction high resolution Histograms Image detection Indexes Methods morphological Morphology Remote sensing Representations Soil Training Vegetation Vegetation mapping |
Title | A Novel Automatic Change Detection Method for Urban High-Resolution Remotely Sensed Imagery Based on Multiindex Scene Representation |
URI | https://ieeexplore.ieee.org/document/7210176 https://www.proquest.com/docview/1733173732 https://www.proquest.com/docview/1762353206 https://www.proquest.com/docview/1778029891 |
Volume | 54 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61lZDgwKMFsdAiI3FCZJuHY8fHUigFaXvodqXeItsZXyhJ1SZI5cwPZ-x4w1MVt0QeP6QZ2zOemW8AXllukBQJk1gnyUCRpkmUtCrJK13RBW4aDGDVixNxvOKfzsvzDXgz5cIgYgg-w7n_DL78prODfyrbJ2uFBEhswiYZbmOu1uQx4GUWU6MFTaTy6MHMUrV_9uF06YO4ynnOBcl0-dsdFIqq_HUSh-vl6AEs1gsbo0o-z4fezO23PzAb_3flD-F-1DPZwSgYj2AD22249wv64DbcCdGf9noHvh-wk-4rEvnQdwHDlY1ZB-wd9iFWq2WLUGqakY7LVldGt8xHiCT-9X-UXXaKxHW8uGFLsoyxYR-_eHiMG_ZW-z8_go9dDOiMbGnpiKUelz-Tn9rHsDp6f3Z4nMTyDIklq6pPdG5JXXDCWesEIm_y0hRlppWQ2jnZZKiNpHZS0pxyXObcKl1gaq0iq5TUmiew1XYtPgWmGiUq1MQ8nvLGcRqaDBmTikqh0bKYQbpmWG0jdrkvoXFRBxsmVbXnce15XEcez-D11OVyBO64jXjH82wijOyawe5aKuq4ta_rzFe5lIUs8hm8nJppU3pPi26xGzwNaZW-5Ia4jUZWAf8-e_bv2Z_DXVpjfO_Zha3-asA90oB68yKI_g_61AMn |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VIkQ5FGipurSAkTghss3DseNjeZQtdPfQ3ZV6i2xncqFNqjZBKmd-OGMnG56quCXy-CHN2J7xzHwD8Mpyg6RImMCWkgwUaYpASauCONMZXeCmQA9WPZ2JyZJ_OkvP1uDNkAuDiD74DMfu0_vyi9q27qnsgKwVEiBxB-7SvZ9GXbbW4DPgadQnRwuaSsW9DzMK1cHi4-nchXGl45gLkur0t1vIl1X56yz2F8zRQ5iultbFlXwZt40Z229_oDb-79ofwWavabLDTjQewxpWW_DgF_zBLbjn4z_t9TZ8P2Sz-isSedvUHsWVdXkH7D02PlqrYlNfbJqRlsuWV0ZXzMWIBO79v5NedorEdzy_YXOyjbFgxxcOIOOGvdXuz43gohc9PiObWzpkqcflz_Sn6gksjz4s3k2CvkBDYMmuagIdW1IYSlFaWwpEXsSpSdJIKyF1WcoiQm0ktZOaVqqSy5hbpRMMrVVkl5JiswPrVV3hLjBVKJGhJubxkBclp6HJlDGhyBQaLZMRhCuG5bZHL3dFNM5zb8WEKnc8zh2P857HI3g9dLnsoDtuI952PBsIe3aNYH8lFXm_ua_zyNW5lIlM4hG8HJppWzpfi66wbh0N6ZWu6Ia4jUZmHgE_evrv2V_A_cliepKfHM8-78EGrbd__dmH9eaqxWekDzXmud8GPwCdwwZw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Automatic+Change+Detection+Method+for+Urban+High-Resolution+Remotely+Sensed+Imagery+Based+on+Multiindex+Scene+Representation&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Wen%2C+Dawei&rft.au=Huang%2C+Xin&rft.au=Zhang%2C+Liangpei&rft.au=Benediktsson%2C+Jon+Atli&rft.date=2016-01-01&rft.issn=0196-2892&rft.eissn=1558-0644&rft.volume=54&rft.issue=1&rft.spage=609&rft.epage=625&rft_id=info:doi/10.1109%2FTGRS.2015.2463075&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon |