Silver Nanoparticles Synthesized by Using Bacillus cereus SZT1 Ameliorated the Damage of Bacterial Leaf Blight Pathogen in Rice
Amongst serious biotic factors deteriorating crop yield, the most destructive pathogen of rice is Xanthomonas oryzae pv. oryzae (Xoo), which causes bacterial leaf blight (BLB) disease. This study involved targeted use of biogenic silver nanoparticles (AgNPs) to control BLB in order to cope with the...
Saved in:
Published in | Pathogens (Basel) Vol. 9; no. 3; p. 160 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI
26.02.2020
MDPI AG |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Amongst serious biotic factors deteriorating crop yield, the most destructive pathogen of rice is Xanthomonas oryzae pv. oryzae (Xoo), which causes bacterial leaf blight (BLB) disease. This study involved targeted use of biogenic silver nanoparticles (AgNPs) to control BLB in order to cope with the disadvantages of chemical disease control. AgNPs were biologically synthesized from natively isolated Bacillus cereus strain SZT1, which was identified through 16S rRNA gene sequence analysis. Synthesis of AgNPs in bacterial culture supernatant was confirmed through UV-VIS spectroscopy. Fourier transform infrared spectroscopy (FTIR) confirmed that the existence of AgNPs was stabilized with proteins and alcoholic groups. X-ray diffraction (XRD) data revealed the crystalline nature and imaging with scanning electron microscopy (SEM) and transmission electron microscopy (TEM), showing the spherical shape of AgNPs with particle sizes ranging from 18 to 39 nm. The silver presence in AgNPs was further confirmed by energy dispersive spectra. Biogenic AgNPs showed substantial antibacterial activity (24.21 ± 1.01 mm) for Xoo. In a pot experiment, AgNPs were found to be effective weapons for BLB by significantly increasing the plant biomass with a decreased cellular concentration of reactive oxygen species and increased concentration of antioxidant enzyme activity. |
---|---|
AbstractList | Amongst serious biotic factors deteriorating crop yield, the most destructive pathogen of rice is Xanthomonas oryzae pv. oryzae (Xoo), which causes bacterial leaf blight (BLB) disease. This study involved targeted use of biogenic silver nanoparticles (AgNPs) to control BLB in order to cope with the disadvantages of chemical disease control. AgNPs were biologically synthesized from natively isolated Bacillus cereus strain SZT1, which was identified through 16S rRNA gene sequence analysis. Synthesis of AgNPs in bacterial culture supernatant was confirmed through UV-VIS spectroscopy. Fourier transform infrared spectroscopy (FTIR) confirmed that the existence of AgNPs was stabilized with proteins and alcoholic groups. X-ray diffraction (XRD) data revealed the crystalline nature and imaging with scanning electron microscopy (SEM) and transmission electron microscopy (TEM), showing the spherical shape of AgNPs with particle sizes ranging from 18 to 39 nm. The silver presence in AgNPs was further confirmed by energy dispersive spectra. Biogenic AgNPs showed substantial antibacterial activity (24.21 ± 1.01 mm) for Xoo. In a pot experiment, AgNPs were found to be effective weapons for BLB by significantly increasing the plant biomass with a decreased cellular concentration of reactive oxygen species and increased concentration of antioxidant enzyme activity.Amongst serious biotic factors deteriorating crop yield, the most destructive pathogen of rice is Xanthomonas oryzae pv. oryzae (Xoo), which causes bacterial leaf blight (BLB) disease. This study involved targeted use of biogenic silver nanoparticles (AgNPs) to control BLB in order to cope with the disadvantages of chemical disease control. AgNPs were biologically synthesized from natively isolated Bacillus cereus strain SZT1, which was identified through 16S rRNA gene sequence analysis. Synthesis of AgNPs in bacterial culture supernatant was confirmed through UV-VIS spectroscopy. Fourier transform infrared spectroscopy (FTIR) confirmed that the existence of AgNPs was stabilized with proteins and alcoholic groups. X-ray diffraction (XRD) data revealed the crystalline nature and imaging with scanning electron microscopy (SEM) and transmission electron microscopy (TEM), showing the spherical shape of AgNPs with particle sizes ranging from 18 to 39 nm. The silver presence in AgNPs was further confirmed by energy dispersive spectra. Biogenic AgNPs showed substantial antibacterial activity (24.21 ± 1.01 mm) for Xoo. In a pot experiment, AgNPs were found to be effective weapons for BLB by significantly increasing the plant biomass with a decreased cellular concentration of reactive oxygen species and increased concentration of antioxidant enzyme activity. Amongst serious biotic factors deteriorating crop yield, the most destructive pathogen of rice is Xanthomonas oryzae pv. oryzae (Xoo), which causes bacterial leaf blight (BLB) disease. This study involved targeted use of biogenic silver nanoparticles (AgNPs) to control BLB in order to cope with the disadvantages of chemical disease control. AgNPs were biologically synthesized from natively isolated Bacillus cereus strain SZT1, which was identified through 16S rRNA gene sequence analysis. Synthesis of AgNPs in bacterial culture supernatant was confirmed through UV-VIS spectroscopy. Fourier transform infrared spectroscopy (FTIR) confirmed that the existence of AgNPs was stabilized with proteins and alcoholic groups. X-ray diffraction (XRD) data revealed the crystalline nature and imaging with scanning electron microscopy (SEM) and transmission electron microscopy (TEM), showing the spherical shape of AgNPs with particle sizes ranging from 18 to 39 nm. The silver presence in AgNPs was further confirmed by energy dispersive spectra. Biogenic AgNPs showed substantial antibacterial activity (24.21 ± 1.01 mm) for Xoo. In a pot experiment, AgNPs were found to be effective weapons for BLB by significantly increasing the plant biomass with a decreased cellular concentration of reactive oxygen species and increased concentration of antioxidant enzyme activity. Amongst serious biotic factors deteriorating crop yield, the most destructive pathogen of rice is pv. ( ), which causes bacterial leaf blight (BLB) disease. This study involved targeted use of biogenic silver nanoparticles (AgNPs) to control BLB in order to cope with the disadvantages of chemical disease control. AgNPs were biologically synthesized from natively isolated cereus strain SZT1, which was identified through 16S rRNA gene sequence analysis. Synthesis of AgNPs in bacterial culture supernatant was confirmed through UV-VIS spectroscopy. Fourier transform infrared spectroscopy (FTIR) confirmed that the existence of AgNPs was stabilized with proteins and alcoholic groups. X-ray diffraction (XRD) data revealed the crystalline nature and imaging with scanning electron microscopy (SEM) and transmission electron microscopy (TEM), showing the spherical shape of AgNPs with particle sizes ranging from 18 to 39 nm. The silver presence in AgNPs was further confirmed by energy dispersive spectra. Biogenic AgNPs showed substantial antibacterial activity (24.21 ± 1.01 mm) for . In a pot experiment, AgNPs were found to be effective weapons for BLB by significantly increasing the plant biomass with a decreased cellular concentration of reactive oxygen species and increased concentration of antioxidant enzyme activity. Amongst serious biotic factors deteriorating crop yield, the most destructive pathogen of rice is Xanthomonas oryzae pv. oryzae ( Xoo ), which causes bacterial leaf blight (BLB) disease. This study involved targeted use of biogenic silver nanoparticles (AgNPs) to control BLB in order to cope with the disadvantages of chemical disease control. AgNPs were biologically synthesized from natively isolated Bacillus cereus strain SZT1, which was identified through 16S rRNA gene sequence analysis. Synthesis of AgNPs in bacterial culture supernatant was confirmed through UV-VIS spectroscopy. Fourier transform infrared spectroscopy (FTIR) confirmed that the existence of AgNPs was stabilized with proteins and alcoholic groups. X-ray diffraction (XRD) data revealed the crystalline nature and imaging with scanning electron microscopy (SEM) and transmission electron microscopy (TEM), showing the spherical shape of AgNPs with particle sizes ranging from 18 to 39 nm. The silver presence in AgNPs was further confirmed by energy dispersive spectra. Biogenic AgNPs showed substantial antibacterial activity (24.21 ± 1.01 mm) for Xoo . In a pot experiment, AgNPs were found to be effective weapons for BLB by significantly increasing the plant biomass with a decreased cellular concentration of reactive oxygen species and increased concentration of antioxidant enzyme activity. |
Author | Niazi, Muhammad Bilal Khan Zhang, Yang Li, Bin Mahmood, Faisal Ahmed, Temoor Noman, Muhammad Shahid, Muhammad Manzoor, Irfan Yan, Chengqi Chen, Jianping Yang, Yong |
AuthorAffiliation | 6 Institute of Plant Virology, Ningbo University, Ningbo 315211, China; yanchengqi@163.com 2 Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan; rana.arfan84@gmail.com 1 State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; temoorahmed248@gmail.com (T.A.); nomansiddique834@gmail.com (M.N.); 0618151@zju.edu.cn (Y.Z.); libin0571@zju.edu.cn (B.L.) 4 Department of Environmental Science and Engineering, Government College University, Faisalabad 38000, Pakistan; fslagronomy@hotmail.com 3 School of Chemical and Materials Engineering (SCME), National University of Sciences & Technology (NUST), Sector H-12, Islamabad 44000, Pakistan; m.b.k.niazi@scme.nust.edu.pk 5 State Key Laboratory for Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; yangyong@zaas.ac.cn |
AuthorAffiliation_xml | – name: 5 State Key Laboratory for Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; yangyong@zaas.ac.cn – name: 2 Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan; rana.arfan84@gmail.com – name: 1 State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; temoorahmed248@gmail.com (T.A.); nomansiddique834@gmail.com (M.N.); 0618151@zju.edu.cn (Y.Z.); libin0571@zju.edu.cn (B.L.) – name: 3 School of Chemical and Materials Engineering (SCME), National University of Sciences & Technology (NUST), Sector H-12, Islamabad 44000, Pakistan; m.b.k.niazi@scme.nust.edu.pk – name: 4 Department of Environmental Science and Engineering, Government College University, Faisalabad 38000, Pakistan; fslagronomy@hotmail.com – name: 6 Institute of Plant Virology, Ningbo University, Ningbo 315211, China; yanchengqi@163.com |
Author_xml | – sequence: 1 givenname: Temoor surname: Ahmed fullname: Ahmed, Temoor – sequence: 2 givenname: Muhammad orcidid: 0000-0002-1317-1621 surname: Shahid fullname: Shahid, Muhammad – sequence: 3 givenname: Muhammad surname: Noman fullname: Noman, Muhammad – sequence: 4 givenname: Muhammad Bilal Khan surname: Niazi fullname: Niazi, Muhammad Bilal Khan – sequence: 5 givenname: Faisal surname: Mahmood fullname: Mahmood, Faisal – sequence: 6 givenname: Irfan surname: Manzoor fullname: Manzoor, Irfan – sequence: 7 givenname: Yang surname: Zhang fullname: Zhang, Yang – sequence: 8 givenname: Bin surname: Li fullname: Li, Bin – sequence: 9 givenname: Yong surname: Yang fullname: Yang, Yong – sequence: 10 givenname: Chengqi surname: Yan fullname: Yan, Chengqi – sequence: 11 givenname: Jianping surname: Chen fullname: Chen, Jianping |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32110981$$D View this record in MEDLINE/PubMed |
BookMark | eNqFks1vEzEQxVeoiJbSOyfkI5fAeL-8viCV8lUpAkTaCxdr7J3duHLWwXYqlQv_Og5JUVsJ4ct47N97epbnaXEw-YmK4jmHV1Ul4fUa09KPNEUJFfAWHhVHJYh2Bh0XB3f2h8VJjFeQVwfb_klxWJWcg-z4UfFrYd01BfYZJ7_GkKxxFNniZkpLivYn9UzfsMtop5G9RWOd20RmKFAui-8XnJ2uyFkfMGUyS9g7XOFIzA9bPFGw6NicMLfOjsvEvu5DMzuxb9bQs-LxgC7Syb4eF5cf3l-cfZrNv3w8Pzudz0wtmzSTGlDUnCN2gAMQyp60Nj2viDdCahTQdqIvSQ_YgijBcDQ6w8RlK8uyOi7Od769xyu1DnaF4UZ5tOrPgQ-j2r9eQdNC23dDV3Nd6xIkYMeNFk3XGhBi6_Vm57Xe6BX1hqYU0N0zvX8z2aUa_bUSOWtZ19ng5d4g-B8bikmtbDTkHE7kN1GVtezKRspa_B-tWllXTS1lRl_cjfU3z-1nZ6DdASb4GAMNytiEyfptSusUB7UdLPVwsLIQHghvvf8p-Q3iOtPF |
CitedBy_id | crossref_primary_10_1016_j_envres_2024_118635 crossref_primary_10_1016_j_matlet_2020_128839 crossref_primary_10_1002_advs_202103414 crossref_primary_10_1016_j_impact_2020_100281 crossref_primary_10_1007_s12668_024_01793_3 crossref_primary_10_1186_s12951_021_00834_3 crossref_primary_10_1016_j_inoche_2021_108866 crossref_primary_10_1007_s00425_022_03900_8 crossref_primary_10_1016_j_scitotenv_2023_168318 crossref_primary_10_1039_D3EN00014A crossref_primary_10_2139_ssrn_4750850 crossref_primary_10_1021_acsagscitech_1c00189 crossref_primary_10_1007_s44297_023_00015_8 crossref_primary_10_3390_ijms26062492 crossref_primary_10_1007_s10340_024_01863_1 crossref_primary_10_3390_jof6040294 crossref_primary_10_1016_j_heliyon_2022_e09472 crossref_primary_10_1016_j_heliyon_2024_e40735 crossref_primary_10_1021_acs_jafc_3c04013 crossref_primary_10_1021_acsomega_3c00110 crossref_primary_10_1016_j_plana_2023_100033 crossref_primary_10_2174_1573413718666220727111319 crossref_primary_10_1039_D2EN00651K crossref_primary_10_3390_nano10061146 crossref_primary_10_3390_plants12173058 crossref_primary_10_1016_j_ijbiomac_2020_11_148 crossref_primary_10_1016_j_ecoenv_2021_112264 crossref_primary_10_1186_s40360_024_00826_7 crossref_primary_10_1016_j_micpath_2024_106639 crossref_primary_10_3389_fmicb_2022_1034779 crossref_primary_10_18006_2023_11_1__105_118 crossref_primary_10_3390_antibiotics12020338 crossref_primary_10_3390_pr11010141 crossref_primary_10_1016_j_molliq_2024_126254 crossref_primary_10_1021_acsagscitech_3c00025 crossref_primary_10_1016_j_chemosphere_2022_137301 crossref_primary_10_1007_s42729_024_02025_z crossref_primary_10_1016_j_scitotenv_2021_145221 crossref_primary_10_1016_j_plantsci_2023_111964 crossref_primary_10_3389_fcimb_2023_1295593 crossref_primary_10_3390_jfb13040242 crossref_primary_10_3390_physchem3010010 crossref_primary_10_1007_s11738_025_03768_7 crossref_primary_10_1016_j_pestbp_2023_105447 crossref_primary_10_1016_j_pestbp_2023_105722 crossref_primary_10_1038_s41598_023_30863_x crossref_primary_10_1016_j_stress_2022_100109 crossref_primary_10_1007_s44297_023_00006_9 crossref_primary_10_1016_j_funbio_2024_07_003 crossref_primary_10_1016_j_jece_2021_106093 crossref_primary_10_1016_j_plana_2024_100063 crossref_primary_10_1016_j_envint_2024_108859 crossref_primary_10_3389_fpls_2022_951752 crossref_primary_10_3390_molecules27217244 crossref_primary_10_3390_microorganisms11020378 crossref_primary_10_1016_j_bcab_2021_102261 crossref_primary_10_1186_s42483_023_00188_8 crossref_primary_10_1016_j_crbiot_2024_100219 crossref_primary_10_1002_ps_7218 crossref_primary_10_1016_j_bcab_2025_103509 crossref_primary_10_1111_jph_13058 crossref_primary_10_1007_s11277_023_10333_3 crossref_primary_10_3390_agriculture13091856 crossref_primary_10_1016_j_cropd_2023_100037 crossref_primary_10_3390_plants13111528 crossref_primary_10_1007_s40858_024_00653_5 crossref_primary_10_3389_fpls_2024_1445786 crossref_primary_10_1080_10408398_2022_2046543 crossref_primary_10_3390_molecules25204795 crossref_primary_10_3390_agronomy13030713 crossref_primary_10_1016_j_enzmictec_2021_109745 crossref_primary_10_1016_j_ecoenv_2020_111829 crossref_primary_10_1016_j_envres_2020_110142 crossref_primary_10_1186_s11671_023_03845_1 crossref_primary_10_1016_j_jphotochem_2024_115498 crossref_primary_10_1016_j_sjbs_2021_03_078 crossref_primary_10_1039_D4EN00053F crossref_primary_10_1002_smll_202205687 crossref_primary_10_1038_s41598_023_49918_0 crossref_primary_10_1039_D3RA05816F crossref_primary_10_1186_s12870_024_05424_7 crossref_primary_10_1007_s11356_022_20950_3 crossref_primary_10_1016_j_jclepro_2022_133729 crossref_primary_10_1007_s11356_021_16209_y crossref_primary_10_3390_pathogens10010001 crossref_primary_10_3390_microorganisms11040886 crossref_primary_10_1007_s42535_022_00514_z crossref_primary_10_1080_07388551_2021_2007842 crossref_primary_10_3390_molecules27154754 crossref_primary_10_1016_j_plana_2023_100039 crossref_primary_10_3390_bioengineering11111095 crossref_primary_10_1007_s13562_024_00925_w crossref_primary_10_1007_s13762_021_03872_4 crossref_primary_10_1007_s10482_023_01809_0 crossref_primary_10_1186_s41938_021_00475_6 crossref_primary_10_1039_D4EN00548A crossref_primary_10_1016_j_chemosphere_2022_133798 crossref_primary_10_1021_acsnano_1c03948 crossref_primary_10_1007_s41204_021_00103_6 crossref_primary_10_1016_j_heliyon_2024_e32333 |
Cites_doi | 10.1016/0304-3770(82)90026-2 10.1016/j.vibspec.2017.06.004 10.1016/j.jcis.2017.08.009 10.1007/BF00018060 10.1016/j.scp.2018.08.005 10.1155/2019/4649506 10.1128/AAC.00026-15 10.1007/s11426-015-5443-5 10.1016/j.micpath.2017.12.075 10.1016/S0076-6879(55)02300-8 10.1039/C4DT03222E 10.1016/j.biocontrol.2011.06.010 10.1371/journal.pone.0160688 10.1007/s13205-013-0130-8 10.1111/lam.12035 10.1016/j.biocontrol.2008.01.004 10.1016/j.foodchem.2017.06.039 10.1111/j.1364-3703.2006.00344.x 10.3389/fmicb.2019.00820 10.1021/jf00062a013 10.1016/j.biocontrol.2016.07.010 10.1002/047010631X 10.1016/j.pmpp.2017.06.005 10.1016/j.ijbiomac.2017.08.179 10.1080/21691401.2018.1557671 10.1016/j.jksus.2017.05.013 10.1080/21691401.2016.1241793 10.1016/0003-9861(68)90654-1 10.1038/nrmicro2558 10.1039/C8DT01152D 10.1007/s00253-019-09740-z 10.1049/iet-nbt.2018.0057 10.1016/S0076-6879(84)05016-3 10.1016/j.jcis.2004.03.003 10.1016/j.matlet.2010.12.056 10.1007/s40097-017-0219-4 10.1016/j.micpath.2018.01.038 10.1098/rstb.2010.0133 10.1128/jb.173.2.697-703.1991 10.1016/j.matlet.2008.06.051 10.1039/C9RA04246F 10.1016/j.chemosphere.2014.03.056 10.1080/02772248.2015.1066176 10.1002/0471142727.mb0204s56 10.1016/j.btre.2017.03.002 10.1016/j.nano.2009.01.012 10.1016/j.colsurfb.2014.05.027 10.1038/s41565-017-0029-3 10.1016/j.kijoms.2017.11.002 10.9734/ARRB/2018/41352 10.1007/s12645-013-0045-4 |
ContentType | Journal Article |
Copyright | 2020 by the authors. 2020 |
Copyright_xml | – notice: 2020 by the authors. 2020 |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 5PM DOA |
DOI | 10.3390/pathogens9030160 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) Open Access Journals (DOAJ) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef PubMed AGRICOLA |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2076-0817 |
ExternalDocumentID | oai_doaj_org_article_05606d8f841b4b2090a81cb7586c0772 PMC7157244 32110981 10_3390_pathogens9030160 |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 31872017, 31571971, 31371904, 31801787 – fundername: National Key Research and Development Program of China grantid: 2017YFD0201104 – fundername: United Nations Educational, Scientific and Cultural Organization grantid: PhosAgro/UNESCO/IUPAC/GCUF grant 82 – fundername: Zhejiang Provincial Project grantid: 2017C02002; 2019C02006 |
GroupedDBID | 53G 5VS 8FE 8FH AADQD AAHBH AAYXX ADBBV AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BBNVY BCNDV BENPR BHPHI CCPQU CITATION DIK GROUPED_DOAJ HCIFZ HYE IHR KQ8 LK8 M48 M7P MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY PROAC RPM NPM 7X8 PQGLB 7S9 L.6 5PM PUEGO |
ID | FETCH-LOGICAL-c495t-9b0a7411aa80af0ea9debbcd13e1579ba70687d2ebfa60720c1acba80e1969223 |
IEDL.DBID | M48 |
ISSN | 2076-0817 |
IngestDate | Wed Aug 27 01:31:07 EDT 2025 Thu Aug 21 14:12:23 EDT 2025 Fri Jul 11 01:36:34 EDT 2025 Thu Jul 10 19:29:33 EDT 2025 Thu Jan 02 22:37:43 EST 2025 Thu Apr 24 23:07:26 EDT 2025 Tue Jul 01 04:15:28 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | nanotechnology B. cereus BLB antimicrobial activity silver nanoparticles rice |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c495t-9b0a7411aa80af0ea9debbcd13e1579ba70687d2ebfa60720c1acba80e1969223 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-1317-1621 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/pathogens9030160 |
PMID | 32110981 |
PQID | 2369435499 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_05606d8f841b4b2090a81cb7586c0772 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7157244 proquest_miscellaneous_2498259947 proquest_miscellaneous_2369435499 pubmed_primary_32110981 crossref_citationtrail_10_3390_pathogens9030160 crossref_primary_10_3390_pathogens9030160 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200226 |
PublicationDateYYYYMMDD | 2020-02-26 |
PublicationDate_xml | – month: 2 year: 2020 text: 20200226 day: 26 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Pathogens (Basel) |
PublicationTitleAlternate | Pathogens |
PublicationYear | 2020 |
Publisher | MDPI MDPI AG |
Publisher_xml | – name: MDPI – name: MDPI AG |
References | Adil (ref_21) 2015; 44 Degrassi (ref_35) 2014; 16 Aebi (ref_57) 1984; Volume 105 ref_11 Heath (ref_54) 1968; 125 Li (ref_3) 2015; 58 Duhan (ref_14) 2017; 15 Ryan (ref_6) 2011; 9 Nasir (ref_36) 2019; 57 Wang (ref_30) 2015; 44 (ref_59) 1985; 33 Khan (ref_19) 2018; 47 Marpu (ref_24) 2017; 507 Khoa (ref_5) 2017; 100 Masum (ref_22) 2019; 10 Orozco (ref_26) 2019; 2019 Salama (ref_38) 2012; 3 Sharma (ref_15) 2017; 92 Wilson (ref_44) 2001; 56 Finley (ref_27) 2015; 59 Shankar (ref_49) 2004; 275 Metch (ref_13) 2018; 13 Kakar (ref_12) 2015; 97 Lutz (ref_4) 2010; 365 Das (ref_52) 2013; 4 Rostami (ref_29) 2018; 107 Khoa (ref_8) 2016; 103 Ejaz (ref_39) 2018; 12 Dakhil (ref_20) 2017; 29 Jana (ref_55) 1982; 12 Majeed (ref_17) 2018; 4 Juibari (ref_47) 2011; 65 Ogunyemi (ref_51) 2019; 47 Wang (ref_53) 2013; 56 Lugo (ref_23) 2018; 115 Nair (ref_40) 2014; 112 Adriano (ref_28) 2018; 25 Chithrashree (ref_7) 2011; 59 Kalishwaralal (ref_32) 2008; 62 Saravanan (ref_25) 2018; 116 Omole (ref_31) 2018; 10 Hulkoti (ref_18) 2014; 121 Bates (ref_56) 1973; 39 Nanda (ref_46) 2009; 5 Ronald (ref_9) 2006; 7 ref_43 ref_42 Zhu (ref_1) 2017; 237 ref_41 Ji (ref_10) 2008; 45 ref_48 Weisburg (ref_45) 1991; 173 Chance (ref_58) 1955; 2 Ibrahim (ref_33) 2019; 9 Sadegh (ref_16) 2017; 7 Firdhouse (ref_50) 2013; 4 Fouad (ref_34) 2016; 45 Zahra (ref_2) 2018; 27 Chikte (ref_37) 2019; 103 |
References_xml | – volume: 12 start-page: 345 year: 1982 ident: ref_55 article-title: Glycolate metabolism of three submersed aquatic angiosperms during ageing publication-title: Aquat. Bot. doi: 10.1016/0304-3770(82)90026-2 – volume: 92 start-page: 135 year: 2017 ident: ref_15 article-title: Rapid analyses of stress of copper oxide nanoparticles on wheat plants at an early stage by laser induced fluorescence and attenuated total reflectance Fourier transform infrared spectroscopy publication-title: Vib. Spectrosc. doi: 10.1016/j.vibspec.2017.06.004 – volume: 507 start-page: 437 year: 2017 ident: ref_24 article-title: Photochemical formation of chitosan-stabilized near-infrared-absorbing silver Nanoworms: A “Green” synthetic strategy and activity on Gram-negative pathogenic bacteria publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2017.08.009 – volume: 39 start-page: 205 year: 1973 ident: ref_56 article-title: Rapid determination of free proline for water-stress studies publication-title: Plant Soil doi: 10.1007/BF00018060 – volume: 25 start-page: 469 year: 2018 ident: ref_28 article-title: Screening of Silver-Tolerant Bacteria from a Major Philippine Landfill as Potential Bioremediation Agents publication-title: Ecol. Chem. Eng. S – volume: 10 start-page: 33 year: 2018 ident: ref_31 article-title: Silver nanoparticles synthesized from Bacillus subtilis for detection of deterioration in the post-harvest spoilage of fruit publication-title: Sustain. Chem. Pharm. doi: 10.1016/j.scp.2018.08.005 – volume: 2019 start-page: 1 year: 2019 ident: ref_26 article-title: Detection of Genes Related to Resistance to Silver Nanoparticles in Bacteria from Secondary Endodontic Infections publication-title: J. Nanomater. – ident: ref_41 doi: 10.1155/2019/4649506 – volume: 59 start-page: 4734 year: 2015 ident: ref_27 article-title: Unprecedented Silver Resistance in Clinically Isolated Enterobacteriaceae: Major Implications for Burn and Wound Management publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.00026-15 – volume: 44 start-page: 1 year: 2015 ident: ref_30 article-title: Green synthesis of silver nanoparticles by Bacillus methylotrophicus, and their antimicrobial activity publication-title: Artif. Cells Nanomed. Biotechnol. – ident: ref_42 – volume: 58 start-page: 1898 year: 2015 ident: ref_3 article-title: Inorganic arsenic contamination of rice from Chinese major rice-producing areas and exposure assessment in Chinese population publication-title: Sci. China Ser. B Chem. doi: 10.1007/s11426-015-5443-5 – volume: 115 start-page: 358 year: 2018 ident: ref_23 article-title: Bactericidal effect of silver nanoparticles against propagation of Clavibacter michiganensis infection in Lycopersicon esculentum Mill publication-title: Microb. Pathog. doi: 10.1016/j.micpath.2017.12.075 – volume: 2 start-page: 764 year: 1955 ident: ref_58 article-title: Assay of catalases and peroxidases publication-title: Methods Enzym. doi: 10.1016/S0076-6879(55)02300-8 – volume: 44 start-page: 9709 year: 2015 ident: ref_21 article-title: Biogenic synthesis of metallic nanoparticles and prospects toward green chemistry publication-title: Dalton Trans. doi: 10.1039/C4DT03222E – volume: 59 start-page: 114 year: 2011 ident: ref_7 article-title: Plant growth-promoting rhizobacteria mediate induced systemic resistance in rice against bacterial leaf blight caused by Xanthomonas oryzae pv. oryzae publication-title: Biol. Control doi: 10.1016/j.biocontrol.2011.06.010 – ident: ref_11 doi: 10.1371/journal.pone.0160688 – volume: 4 start-page: 121 year: 2013 ident: ref_52 article-title: Extracellular synthesis of silver nanoparticles by the Bacillus strain CS 11 isolated from industrialized area publication-title: 3 Biotech doi: 10.1007/s13205-013-0130-8 – volume: 56 start-page: 208 year: 2013 ident: ref_53 article-title: Comparative proteomic analysis of rice seedlings in response to inoculation with Bacillus cereus publication-title: Lett. Appl. Microbiol. doi: 10.1111/lam.12035 – volume: 45 start-page: 288 year: 2008 ident: ref_10 article-title: Biological control of rice bacterial blight by Lysobacter antibioticus strain 13-1 publication-title: Biol. Control doi: 10.1016/j.biocontrol.2008.01.004 – volume: 237 start-page: 936 year: 2017 ident: ref_1 article-title: The effects of chilling stress after anthesis on the physicochemical properties of rice (Oryza sativa L.) starch publication-title: Food Chem. doi: 10.1016/j.foodchem.2017.06.039 – volume: 3 start-page: 190 year: 2012 ident: ref_38 article-title: Effects of silver nanoparticles in some crop plants, common bean (Phaseolus vulgaris L.) and corn (Zea mays L.) publication-title: Int. Res. J. Biotechnol. – volume: 7 start-page: 303 year: 2006 ident: ref_9 article-title: Xanthomonas oryzae pathovars: Model pathogens of a model crop publication-title: Mol. Plant Pathol. doi: 10.1111/j.1364-3703.2006.00344.x – volume: 10 start-page: 820 year: 2019 ident: ref_22 article-title: Biogenic Synthesis of Silver Nanoparticles Using Phyllanthus emblica Fruit Extract and Its Inhibitory Action Against the Pathogen Acidovorax oryzae Strain RS-2 of Rice Bacterial Brown Stripe publication-title: Front. Microbiol. doi: 10.3389/fmicb.2019.00820 – volume: 33 start-page: 213 year: 1985 ident: ref_59 article-title: Phenolic constituents in the leaves of northern willows: Methods for the analysis of certain phenolics publication-title: J. Agric. Food Chem. doi: 10.1021/jf00062a013 – volume: 103 start-page: 1 year: 2016 ident: ref_8 article-title: Effects of Serratia nematodiphila CT-78 on rice bacterial leaf blight caused by Xanthomonas oryzae pv. oryzae publication-title: Biol. Control doi: 10.1016/j.biocontrol.2016.07.010 – ident: ref_48 doi: 10.1002/047010631X – volume: 100 start-page: 57 year: 2017 ident: ref_5 article-title: Disease-reducing effects of aqueous leaf extract of Kalanchoe pinnata on rice bacterial leaf blight caused by Xanthomonas oryzae pv. oryzae involve induced resistance publication-title: Physiol. Mol. Plant Pathol. doi: 10.1016/j.pmpp.2017.06.005 – volume: 107 start-page: 343 year: 2018 ident: ref_29 article-title: Biosynthesis of Ag nanoparticles using isolated bacteria from contaminated sites and its application as an efficient catalyst for hydrazine electrooxidation publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2017.08.179 – volume: 47 start-page: 341 year: 2019 ident: ref_51 article-title: Green synthesis of zinc oxide nanoparticles using different plant extracts and their antibacterial activity against Xanthomonas oryzae pv. oryzae publication-title: Artif. Cells Nanomed. Biotechnol. doi: 10.1080/21691401.2018.1557671 – volume: 29 start-page: 462 year: 2017 ident: ref_20 article-title: Biosynthesis of silver nanoparticle (AgNPs) using Lactobacillus and their effects on oxidative stress biomarkers in rats publication-title: J. King Saud Univ. Sci. doi: 10.1016/j.jksus.2017.05.013 – volume: 45 start-page: 1369 year: 2016 ident: ref_34 article-title: Synthesis and characterization of silver nanoparticles using Bacillus amyloliquefaciens and Bacillus subtilisto control filarial vectorCulex pipiens pallensand its antimicrobial activity publication-title: Artif. Cells Nanomed. Biotechnol. doi: 10.1080/21691401.2016.1241793 – volume: 125 start-page: 189 year: 1968 ident: ref_54 article-title: Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation publication-title: Arch. Biochem. Biophys. doi: 10.1016/0003-9861(68)90654-1 – volume: 9 start-page: 344 year: 2011 ident: ref_6 article-title: Pathogenomics of Xanthomonas: Understanding bacterium—Plant interactions publication-title: Nat. Rev. Genet. doi: 10.1038/nrmicro2558 – volume: 16 start-page: 21 year: 2014 ident: ref_35 article-title: Impact of engineered nanoparticles on virulence of xanthomonas oryzae pv. oryzae and on rice sensitivity at its infection publication-title: EQA-Int. J. Environ. Qual. – volume: 47 start-page: 11988 year: 2018 ident: ref_19 article-title: Plant extracts as green reductants for the synthesis of silver nanoparticles: Lessons from chemical synthesis publication-title: Dalton Trans. doi: 10.1039/C8DT01152D – volume: 103 start-page: 4605 year: 2019 ident: ref_37 article-title: Nanomaterials for the control of bacterial blight disease in pomegranate: Quo vadis? publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-019-09740-z – volume: 12 start-page: 927 year: 2018 ident: ref_39 article-title: Effect of silver nanoparticles and silver nitrate on growth of rice under biotic stress publication-title: IET Nanobiotechnol. doi: 10.1049/iet-nbt.2018.0057 – volume: Volume 105 start-page: 121 year: 1984 ident: ref_57 article-title: Catalase in vitro publication-title: Methods in Enzymology doi: 10.1016/S0076-6879(84)05016-3 – volume: 275 start-page: 496 year: 2004 ident: ref_49 article-title: Rapid synthesis of Au, Ag, and bimetallic Au core–Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2004.03.003 – volume: 65 start-page: 1014 year: 2011 ident: ref_47 article-title: Intensified biosynthesis of silver nanoparticles using a native extremophilic Ureibacillus thermosphaericus strain publication-title: Mater. Lett. doi: 10.1016/j.matlet.2010.12.056 – volume: 7 start-page: 1 year: 2017 ident: ref_16 article-title: The role of nanomaterials as effective adsorbents and their applications in wastewater treatment publication-title: J. Nanostruct. Chem. doi: 10.1007/s40097-017-0219-4 – volume: 116 start-page: 221 year: 2018 ident: ref_25 article-title: Synthesis of silver nanoparticles from Bacillus brevis (NCIM 2533) and their antibacterial activity against pathogenic bacteria publication-title: Microb. Pathog. doi: 10.1016/j.micpath.2018.01.038 – volume: 57 start-page: 99 year: 2019 ident: ref_36 article-title: Chemical management of bacterial leaf blight disease in rice publication-title: J. Agric. Res. – volume: 365 start-page: 2779 year: 2010 ident: ref_4 article-title: Dimensions of global population projections: What do we know about future population trends and structures? publication-title: Philos. Trans. R. Soc. B Biol. Sci. doi: 10.1098/rstb.2010.0133 – volume: 173 start-page: 697 year: 1991 ident: ref_45 article-title: 16S ribosomal DNA amplification for phylogenetic study publication-title: J. Bacteriol. doi: 10.1128/jb.173.2.697-703.1991 – volume: 62 start-page: 4411 year: 2008 ident: ref_32 article-title: Extracellular biosynthesis of silver nanoparticles by the culture supernatant of Bacillus licheniformis publication-title: Mater. Lett. doi: 10.1016/j.matlet.2008.06.051 – volume: 9 start-page: 29293 year: 2019 ident: ref_33 article-title: Biosynthesis of silver nanoparticles using endophytic bacteria and their role in inhibition of rice pathogenic bacteria and plant growth promotion publication-title: RSC Adv. doi: 10.1039/C9RA04246F – volume: 112 start-page: 105 year: 2014 ident: ref_40 article-title: Physiological and molecular level effects of silver nanoparticles exposure in rice (Oryza sativa L.) seedlings publication-title: Chemosphere doi: 10.1016/j.chemosphere.2014.03.056 – volume: 97 start-page: 766 year: 2015 ident: ref_12 article-title: Controlling bacterial leaf blight of rice and enhancing the plant growth with endophytic and rhizobacterialBacillusstrains publication-title: Toxicol. Environ. Chem. doi: 10.1080/02772248.2015.1066176 – volume: 56 start-page: 2.4.1 year: 2001 ident: ref_44 article-title: Preparation of Genomic DNA from Bacteria publication-title: Curr. Protoc. Mol. Biol. doi: 10.1002/0471142727.mb0204s56 – volume: 15 start-page: 11 year: 2017 ident: ref_14 article-title: Nanotechnology: The new perspective in precision agriculture publication-title: Biotechnol. Rep. doi: 10.1016/j.btre.2017.03.002 – volume: 5 start-page: 452 year: 2009 ident: ref_46 article-title: Biosynthesis of silver nanoparticles from Staphylococcus aureus and its antimicrobial activity against MRSA and MRSE publication-title: Nanomed. Nanotechnol. Biol. Med. doi: 10.1016/j.nano.2009.01.012 – volume: 121 start-page: 474 year: 2014 ident: ref_18 article-title: Biosynthesis of nanoparticles using microbes—A review publication-title: Colloids Surf. B Biointerfaces doi: 10.1016/j.colsurfb.2014.05.027 – volume: 13 start-page: 253 year: 2018 ident: ref_13 article-title: Metagenomic analysis of microbial communities yields insight into impacts of nanoparticle design publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-017-0029-3 – volume: 4 start-page: 86 year: 2018 ident: ref_17 article-title: Biosynthesis and characterization of silver nanoparticles from fungal species and its antibacterial and anticancer effect publication-title: Karbala Int. J. Mod. Sci. doi: 10.1016/j.kijoms.2017.11.002 – ident: ref_43 – volume: 27 start-page: 1 year: 2018 ident: ref_2 article-title: Effect of Thiourea on Physiological Performance of Two Salt Affected Rice (Oryza sativa L.) Cultivars publication-title: Annu. Res. Rev. Biol. doi: 10.9734/ARRB/2018/41352 – volume: 4 start-page: 137 year: 2013 ident: ref_50 article-title: Biosynthesis of silver nanoparticles using the extract of Alternanthera sessilis—antiproliferative effect against prostate cancer cells publication-title: Cancer Nanotechnol. doi: 10.1007/s12645-013-0045-4 |
SSID | ssj0000800817 |
Score | 2.4930365 |
Snippet | Amongst serious biotic factors deteriorating crop yield, the most destructive pathogen of rice is Xanthomonas oryzae pv. oryzae (Xoo), which causes bacterial... Amongst serious biotic factors deteriorating crop yield, the most destructive pathogen of rice is pv. ( ), which causes bacterial leaf blight (BLB) disease.... Amongst serious biotic factors deteriorating crop yield, the most destructive pathogen of rice is Xanthomonas oryzae pv. oryzae ( Xoo), which causes bacterial... Amongst serious biotic factors deteriorating crop yield, the most destructive pathogen of rice is Xanthomonas oryzae pv. oryzae ( Xoo ), which causes bacterial... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 160 |
SubjectTerms | antibacterial properties antimicrobial activity b. cereus Bacillus cereus bacterial culture biotic factors blb Cereus crop yield disease control energy-dispersive X-ray analysis Fourier transform infrared spectroscopy image analysis leaf blight nanosilver nanotechnology nucleotide sequences particle size pathogens phytomass proteins rice scanning electron microscopy sequence analysis shape silver silver nanoparticles synthesis transmission electron microscopy ultraviolet-visible spectroscopy X-ray diffraction Xanthomonas oryzae pv. oryzae |
SummonAdditionalLinks | – databaseName: Open Access Journals (DOAJ) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJSQuiDeBgozEhUNUO8n6cWyBqkKAENtKFZdo_FJTpVnU3T1sL_x1ZpJ02a1QuXCKkowl2zMZf188nmHs7cRI5VRh85CcyivQITcVIJBLwSRvRSwTHXD-8lUdnVSfTienG6W-KCZsSA88TNweLtBCYTtTSVe5QlgBRnqHMFd5gdCQvC-ueRtk6nzEQUbqYV-yRF5P8dVnM9TJ3BIJ6DNS_lmH-nT9f8OYN0MlN9aewwfs_gga-f7Q2YfsTuwesbtDGcnVY_Zr2lB8M0dPiRR4jHTj01WH4G7eXMXA3Yr3sQH8AHzTtss59_Ey4mX641jy_YvY0kl9BJ8cm_APcIFehs8SiS96E-WfI-BtS1SefxsHyZuOf0dH84SdHH48fn-Uj4UVco98aJFbJwCRhAQwApKIYEN0zgdZRjnR1oEWyuhQRJdACV0IL8E7FI6UTAcBxVO20826-JxxB1AlFaQHTWXVrY1KFVE4ocCFZCYZ27ue5tqPWcep-EVbI_sgxdQ3FZOxd-sWP4eMG7fIHpDm1nKUK7t_gBZUj_Nd_8uCMvbmWu81flu0YQJdnC3ndVEqi3ASSeEtMpVFkm1tpTP2bLCVdXdKYtfWyIzpLSva6u_2m64563N8a1QEIq8X_2OAL9m9gv4S0EF8tct2FpfL-Aqh1MK97r-a3-S-Hzw priority: 102 providerName: Directory of Open Access Journals |
Title | Silver Nanoparticles Synthesized by Using Bacillus cereus SZT1 Ameliorated the Damage of Bacterial Leaf Blight Pathogen in Rice |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32110981 https://www.proquest.com/docview/2369435499 https://www.proquest.com/docview/2498259947 https://pubmed.ncbi.nlm.nih.gov/PMC7157244 https://doaj.org/article/05606d8f841b4b2090a81cb7586c0772 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEF-kRfBF_DZWjxV88SG6m8vtx4NIT1uK2FJ6PSi-hP1KG0kTe7kDzxf_dWeS9PTKUfApX5OQzMzu_n6b2RlC3owUF1YkOva5FXFqpI9VagDI5V7lTrMwzHGB8-GROJimX85GZ3-XR_cKbDZSO6wnNZ2V735eLT9Cg_-AjBMoO4ZOX9Sg7kYjvhdA4LdhXJJYz-CwB_vfe2yk2hK8CZD3GPe7_5YbH7I2TrXp_Ddh0JuhlP-MTfsPyP0eVNLdzgsekjuhekTudmUml4_J70mB8c8UelKgyH0kHJ0sKwB_TfEreGqXtI0doGPjirJcNNSFWYDN5Nspp7uXocSV_ABOKdxCP5tL6IVonaP4vHVh-jUYOCyR6tPj_iNpUdET6IiekOn-3umng7gvvBA74EvzWFtmAGlwYxQzOQtG-2Ct83wY-EhqayQTSvok2NwIJhPmuHEWhAMm2wHA8ZRsVXUVnhNqjUlz4bkzEsuuax2ESAKzTBjrczWKyPtrNWeuz0qOxTHKDNgJGia7aZiIvF3d8aPLyHGL7Bgtt5LDXNrtiXp2nvX6zgACMgGeqVJuU5swzYzizgKREo4B-YjI62u7Z9D28IeKqUK9aLJkKDTATSCNt8ikGki41qmMyLPOV1avM0T2rRWPiFzzorX3Xb9SFRdtDnAJhgBk9uI_lLFD7iU4WYDr8cVLsjWfLcIrQFRzOyDb472j45NBOyMxaJvNHxt8Jbg |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Silver+Nanoparticles+Synthesized+by+Using+Bacillus+cereus+SZT1+Ameliorated+the+Damage+of+Bacterial+Leaf+Blight+Pathogen+in+Rice&rft.jtitle=Pathogens+%28Basel%29&rft.au=Ahmed%2C+Temoor&rft.au=Shahid%2C+Muhammad&rft.au=Noman%2C+Muhammad&rft.au=Niazi%2C+Muhammad+Bilal+Khan&rft.date=2020-02-26&rft.issn=2076-0817&rft.eissn=2076-0817&rft.volume=9&rft.issue=3&rft.spage=160&rft_id=info:doi/10.3390%2Fpathogens9030160&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_pathogens9030160 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-0817&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-0817&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-0817&client=summon |