Silver Nanoparticles Synthesized by Using Bacillus cereus SZT1 Ameliorated the Damage of Bacterial Leaf Blight Pathogen in Rice

Amongst serious biotic factors deteriorating crop yield, the most destructive pathogen of rice is Xanthomonas oryzae pv. oryzae (Xoo), which causes bacterial leaf blight (BLB) disease. This study involved targeted use of biogenic silver nanoparticles (AgNPs) to control BLB in order to cope with the...

Full description

Saved in:
Bibliographic Details
Published inPathogens (Basel) Vol. 9; no. 3; p. 160
Main Authors Ahmed, Temoor, Shahid, Muhammad, Noman, Muhammad, Niazi, Muhammad Bilal Khan, Mahmood, Faisal, Manzoor, Irfan, Zhang, Yang, Li, Bin, Yang, Yong, Yan, Chengqi, Chen, Jianping
Format Journal Article
LanguageEnglish
Published Switzerland MDPI 26.02.2020
MDPI AG
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Amongst serious biotic factors deteriorating crop yield, the most destructive pathogen of rice is Xanthomonas oryzae pv. oryzae (Xoo), which causes bacterial leaf blight (BLB) disease. This study involved targeted use of biogenic silver nanoparticles (AgNPs) to control BLB in order to cope with the disadvantages of chemical disease control. AgNPs were biologically synthesized from natively isolated Bacillus cereus strain SZT1, which was identified through 16S rRNA gene sequence analysis. Synthesis of AgNPs in bacterial culture supernatant was confirmed through UV-VIS spectroscopy. Fourier transform infrared spectroscopy (FTIR) confirmed that the existence of AgNPs was stabilized with proteins and alcoholic groups. X-ray diffraction (XRD) data revealed the crystalline nature and imaging with scanning electron microscopy (SEM) and transmission electron microscopy (TEM), showing the spherical shape of AgNPs with particle sizes ranging from 18 to 39 nm. The silver presence in AgNPs was further confirmed by energy dispersive spectra. Biogenic AgNPs showed substantial antibacterial activity (24.21 ± 1.01 mm) for Xoo. In a pot experiment, AgNPs were found to be effective weapons for BLB by significantly increasing the plant biomass with a decreased cellular concentration of reactive oxygen species and increased concentration of antioxidant enzyme activity.
AbstractList Amongst serious biotic factors deteriorating crop yield, the most destructive pathogen of rice is Xanthomonas oryzae pv. oryzae (Xoo), which causes bacterial leaf blight (BLB) disease. This study involved targeted use of biogenic silver nanoparticles (AgNPs) to control BLB in order to cope with the disadvantages of chemical disease control. AgNPs were biologically synthesized from natively isolated Bacillus cereus strain SZT1, which was identified through 16S rRNA gene sequence analysis. Synthesis of AgNPs in bacterial culture supernatant was confirmed through UV-VIS spectroscopy. Fourier transform infrared spectroscopy (FTIR) confirmed that the existence of AgNPs was stabilized with proteins and alcoholic groups. X-ray diffraction (XRD) data revealed the crystalline nature and imaging with scanning electron microscopy (SEM) and transmission electron microscopy (TEM), showing the spherical shape of AgNPs with particle sizes ranging from 18 to 39 nm. The silver presence in AgNPs was further confirmed by energy dispersive spectra. Biogenic AgNPs showed substantial antibacterial activity (24.21 ± 1.01 mm) for Xoo. In a pot experiment, AgNPs were found to be effective weapons for BLB by significantly increasing the plant biomass with a decreased cellular concentration of reactive oxygen species and increased concentration of antioxidant enzyme activity.Amongst serious biotic factors deteriorating crop yield, the most destructive pathogen of rice is Xanthomonas oryzae pv. oryzae (Xoo), which causes bacterial leaf blight (BLB) disease. This study involved targeted use of biogenic silver nanoparticles (AgNPs) to control BLB in order to cope with the disadvantages of chemical disease control. AgNPs were biologically synthesized from natively isolated Bacillus cereus strain SZT1, which was identified through 16S rRNA gene sequence analysis. Synthesis of AgNPs in bacterial culture supernatant was confirmed through UV-VIS spectroscopy. Fourier transform infrared spectroscopy (FTIR) confirmed that the existence of AgNPs was stabilized with proteins and alcoholic groups. X-ray diffraction (XRD) data revealed the crystalline nature and imaging with scanning electron microscopy (SEM) and transmission electron microscopy (TEM), showing the spherical shape of AgNPs with particle sizes ranging from 18 to 39 nm. The silver presence in AgNPs was further confirmed by energy dispersive spectra. Biogenic AgNPs showed substantial antibacterial activity (24.21 ± 1.01 mm) for Xoo. In a pot experiment, AgNPs were found to be effective weapons for BLB by significantly increasing the plant biomass with a decreased cellular concentration of reactive oxygen species and increased concentration of antioxidant enzyme activity.
Amongst serious biotic factors deteriorating crop yield, the most destructive pathogen of rice is Xanthomonas oryzae pv. oryzae (Xoo), which causes bacterial leaf blight (BLB) disease. This study involved targeted use of biogenic silver nanoparticles (AgNPs) to control BLB in order to cope with the disadvantages of chemical disease control. AgNPs were biologically synthesized from natively isolated Bacillus cereus strain SZT1, which was identified through 16S rRNA gene sequence analysis. Synthesis of AgNPs in bacterial culture supernatant was confirmed through UV-VIS spectroscopy. Fourier transform infrared spectroscopy (FTIR) confirmed that the existence of AgNPs was stabilized with proteins and alcoholic groups. X-ray diffraction (XRD) data revealed the crystalline nature and imaging with scanning electron microscopy (SEM) and transmission electron microscopy (TEM), showing the spherical shape of AgNPs with particle sizes ranging from 18 to 39 nm. The silver presence in AgNPs was further confirmed by energy dispersive spectra. Biogenic AgNPs showed substantial antibacterial activity (24.21 ± 1.01 mm) for Xoo. In a pot experiment, AgNPs were found to be effective weapons for BLB by significantly increasing the plant biomass with a decreased cellular concentration of reactive oxygen species and increased concentration of antioxidant enzyme activity.
Amongst serious biotic factors deteriorating crop yield, the most destructive pathogen of rice is pv. ( ), which causes bacterial leaf blight (BLB) disease. This study involved targeted use of biogenic silver nanoparticles (AgNPs) to control BLB in order to cope with the disadvantages of chemical disease control. AgNPs were biologically synthesized from natively isolated cereus strain SZT1, which was identified through 16S rRNA gene sequence analysis. Synthesis of AgNPs in bacterial culture supernatant was confirmed through UV-VIS spectroscopy. Fourier transform infrared spectroscopy (FTIR) confirmed that the existence of AgNPs was stabilized with proteins and alcoholic groups. X-ray diffraction (XRD) data revealed the crystalline nature and imaging with scanning electron microscopy (SEM) and transmission electron microscopy (TEM), showing the spherical shape of AgNPs with particle sizes ranging from 18 to 39 nm. The silver presence in AgNPs was further confirmed by energy dispersive spectra. Biogenic AgNPs showed substantial antibacterial activity (24.21 ± 1.01 mm) for . In a pot experiment, AgNPs were found to be effective weapons for BLB by significantly increasing the plant biomass with a decreased cellular concentration of reactive oxygen species and increased concentration of antioxidant enzyme activity.
Amongst serious biotic factors deteriorating crop yield, the most destructive pathogen of rice is Xanthomonas oryzae pv. oryzae ( Xoo ), which causes bacterial leaf blight (BLB) disease. This study involved targeted use of biogenic silver nanoparticles (AgNPs) to control BLB in order to cope with the disadvantages of chemical disease control. AgNPs were biologically synthesized from natively isolated Bacillus cereus strain SZT1, which was identified through 16S rRNA gene sequence analysis. Synthesis of AgNPs in bacterial culture supernatant was confirmed through UV-VIS spectroscopy. Fourier transform infrared spectroscopy (FTIR) confirmed that the existence of AgNPs was stabilized with proteins and alcoholic groups. X-ray diffraction (XRD) data revealed the crystalline nature and imaging with scanning electron microscopy (SEM) and transmission electron microscopy (TEM), showing the spherical shape of AgNPs with particle sizes ranging from 18 to 39 nm. The silver presence in AgNPs was further confirmed by energy dispersive spectra. Biogenic AgNPs showed substantial antibacterial activity (24.21 ± 1.01 mm) for Xoo . In a pot experiment, AgNPs were found to be effective weapons for BLB by significantly increasing the plant biomass with a decreased cellular concentration of reactive oxygen species and increased concentration of antioxidant enzyme activity.
Author Niazi, Muhammad Bilal Khan
Zhang, Yang
Li, Bin
Mahmood, Faisal
Ahmed, Temoor
Noman, Muhammad
Shahid, Muhammad
Manzoor, Irfan
Yan, Chengqi
Chen, Jianping
Yang, Yong
AuthorAffiliation 6 Institute of Plant Virology, Ningbo University, Ningbo 315211, China; yanchengqi@163.com
2 Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan; rana.arfan84@gmail.com
1 State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; temoorahmed248@gmail.com (T.A.); nomansiddique834@gmail.com (M.N.); 0618151@zju.edu.cn (Y.Z.); libin0571@zju.edu.cn (B.L.)
4 Department of Environmental Science and Engineering, Government College University, Faisalabad 38000, Pakistan; fslagronomy@hotmail.com
3 School of Chemical and Materials Engineering (SCME), National University of Sciences & Technology (NUST), Sector H-12, Islamabad 44000, Pakistan; m.b.k.niazi@scme.nust.edu.pk
5 State Key Laboratory for Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; yangyong@zaas.ac.cn
AuthorAffiliation_xml – name: 5 State Key Laboratory for Quality and Safety of Agro-Products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; yangyong@zaas.ac.cn
– name: 2 Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan; rana.arfan84@gmail.com
– name: 1 State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; temoorahmed248@gmail.com (T.A.); nomansiddique834@gmail.com (M.N.); 0618151@zju.edu.cn (Y.Z.); libin0571@zju.edu.cn (B.L.)
– name: 3 School of Chemical and Materials Engineering (SCME), National University of Sciences & Technology (NUST), Sector H-12, Islamabad 44000, Pakistan; m.b.k.niazi@scme.nust.edu.pk
– name: 4 Department of Environmental Science and Engineering, Government College University, Faisalabad 38000, Pakistan; fslagronomy@hotmail.com
– name: 6 Institute of Plant Virology, Ningbo University, Ningbo 315211, China; yanchengqi@163.com
Author_xml – sequence: 1
  givenname: Temoor
  surname: Ahmed
  fullname: Ahmed, Temoor
– sequence: 2
  givenname: Muhammad
  orcidid: 0000-0002-1317-1621
  surname: Shahid
  fullname: Shahid, Muhammad
– sequence: 3
  givenname: Muhammad
  surname: Noman
  fullname: Noman, Muhammad
– sequence: 4
  givenname: Muhammad Bilal Khan
  surname: Niazi
  fullname: Niazi, Muhammad Bilal Khan
– sequence: 5
  givenname: Faisal
  surname: Mahmood
  fullname: Mahmood, Faisal
– sequence: 6
  givenname: Irfan
  surname: Manzoor
  fullname: Manzoor, Irfan
– sequence: 7
  givenname: Yang
  surname: Zhang
  fullname: Zhang, Yang
– sequence: 8
  givenname: Bin
  surname: Li
  fullname: Li, Bin
– sequence: 9
  givenname: Yong
  surname: Yang
  fullname: Yang, Yong
– sequence: 10
  givenname: Chengqi
  surname: Yan
  fullname: Yan, Chengqi
– sequence: 11
  givenname: Jianping
  surname: Chen
  fullname: Chen, Jianping
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32110981$$D View this record in MEDLINE/PubMed
BookMark eNqFks1vEzEQxVeoiJbSOyfkI5fAeL-8viCV8lUpAkTaCxdr7J3duHLWwXYqlQv_Og5JUVsJ4ct47N97epbnaXEw-YmK4jmHV1Ul4fUa09KPNEUJFfAWHhVHJYh2Bh0XB3f2h8VJjFeQVwfb_klxWJWcg-z4UfFrYd01BfYZJ7_GkKxxFNniZkpLivYn9UzfsMtop5G9RWOd20RmKFAui-8XnJ2uyFkfMGUyS9g7XOFIzA9bPFGw6NicMLfOjsvEvu5DMzuxb9bQs-LxgC7Syb4eF5cf3l-cfZrNv3w8Pzudz0wtmzSTGlDUnCN2gAMQyp60Nj2viDdCahTQdqIvSQ_YgijBcDQ6w8RlK8uyOi7Od769xyu1DnaF4UZ5tOrPgQ-j2r9eQdNC23dDV3Nd6xIkYMeNFk3XGhBi6_Vm57Xe6BX1hqYU0N0zvX8z2aUa_bUSOWtZ19ng5d4g-B8bikmtbDTkHE7kN1GVtezKRspa_B-tWllXTS1lRl_cjfU3z-1nZ6DdASb4GAMNytiEyfptSusUB7UdLPVwsLIQHghvvf8p-Q3iOtPF
CitedBy_id crossref_primary_10_1016_j_envres_2024_118635
crossref_primary_10_1016_j_matlet_2020_128839
crossref_primary_10_1002_advs_202103414
crossref_primary_10_1016_j_impact_2020_100281
crossref_primary_10_1007_s12668_024_01793_3
crossref_primary_10_1186_s12951_021_00834_3
crossref_primary_10_1016_j_inoche_2021_108866
crossref_primary_10_1007_s00425_022_03900_8
crossref_primary_10_1016_j_scitotenv_2023_168318
crossref_primary_10_1039_D3EN00014A
crossref_primary_10_2139_ssrn_4750850
crossref_primary_10_1021_acsagscitech_1c00189
crossref_primary_10_1007_s44297_023_00015_8
crossref_primary_10_3390_ijms26062492
crossref_primary_10_1007_s10340_024_01863_1
crossref_primary_10_3390_jof6040294
crossref_primary_10_1016_j_heliyon_2022_e09472
crossref_primary_10_1016_j_heliyon_2024_e40735
crossref_primary_10_1021_acs_jafc_3c04013
crossref_primary_10_1021_acsomega_3c00110
crossref_primary_10_1016_j_plana_2023_100033
crossref_primary_10_2174_1573413718666220727111319
crossref_primary_10_1039_D2EN00651K
crossref_primary_10_3390_nano10061146
crossref_primary_10_3390_plants12173058
crossref_primary_10_1016_j_ijbiomac_2020_11_148
crossref_primary_10_1016_j_ecoenv_2021_112264
crossref_primary_10_1186_s40360_024_00826_7
crossref_primary_10_1016_j_micpath_2024_106639
crossref_primary_10_3389_fmicb_2022_1034779
crossref_primary_10_18006_2023_11_1__105_118
crossref_primary_10_3390_antibiotics12020338
crossref_primary_10_3390_pr11010141
crossref_primary_10_1016_j_molliq_2024_126254
crossref_primary_10_1021_acsagscitech_3c00025
crossref_primary_10_1016_j_chemosphere_2022_137301
crossref_primary_10_1007_s42729_024_02025_z
crossref_primary_10_1016_j_scitotenv_2021_145221
crossref_primary_10_1016_j_plantsci_2023_111964
crossref_primary_10_3389_fcimb_2023_1295593
crossref_primary_10_3390_jfb13040242
crossref_primary_10_3390_physchem3010010
crossref_primary_10_1007_s11738_025_03768_7
crossref_primary_10_1016_j_pestbp_2023_105447
crossref_primary_10_1016_j_pestbp_2023_105722
crossref_primary_10_1038_s41598_023_30863_x
crossref_primary_10_1016_j_stress_2022_100109
crossref_primary_10_1007_s44297_023_00006_9
crossref_primary_10_1016_j_funbio_2024_07_003
crossref_primary_10_1016_j_jece_2021_106093
crossref_primary_10_1016_j_plana_2024_100063
crossref_primary_10_1016_j_envint_2024_108859
crossref_primary_10_3389_fpls_2022_951752
crossref_primary_10_3390_molecules27217244
crossref_primary_10_3390_microorganisms11020378
crossref_primary_10_1016_j_bcab_2021_102261
crossref_primary_10_1186_s42483_023_00188_8
crossref_primary_10_1016_j_crbiot_2024_100219
crossref_primary_10_1002_ps_7218
crossref_primary_10_1016_j_bcab_2025_103509
crossref_primary_10_1111_jph_13058
crossref_primary_10_1007_s11277_023_10333_3
crossref_primary_10_3390_agriculture13091856
crossref_primary_10_1016_j_cropd_2023_100037
crossref_primary_10_3390_plants13111528
crossref_primary_10_1007_s40858_024_00653_5
crossref_primary_10_3389_fpls_2024_1445786
crossref_primary_10_1080_10408398_2022_2046543
crossref_primary_10_3390_molecules25204795
crossref_primary_10_3390_agronomy13030713
crossref_primary_10_1016_j_enzmictec_2021_109745
crossref_primary_10_1016_j_ecoenv_2020_111829
crossref_primary_10_1016_j_envres_2020_110142
crossref_primary_10_1186_s11671_023_03845_1
crossref_primary_10_1016_j_jphotochem_2024_115498
crossref_primary_10_1016_j_sjbs_2021_03_078
crossref_primary_10_1039_D4EN00053F
crossref_primary_10_1002_smll_202205687
crossref_primary_10_1038_s41598_023_49918_0
crossref_primary_10_1039_D3RA05816F
crossref_primary_10_1186_s12870_024_05424_7
crossref_primary_10_1007_s11356_022_20950_3
crossref_primary_10_1016_j_jclepro_2022_133729
crossref_primary_10_1007_s11356_021_16209_y
crossref_primary_10_3390_pathogens10010001
crossref_primary_10_3390_microorganisms11040886
crossref_primary_10_1007_s42535_022_00514_z
crossref_primary_10_1080_07388551_2021_2007842
crossref_primary_10_3390_molecules27154754
crossref_primary_10_1016_j_plana_2023_100039
crossref_primary_10_3390_bioengineering11111095
crossref_primary_10_1007_s13562_024_00925_w
crossref_primary_10_1007_s13762_021_03872_4
crossref_primary_10_1007_s10482_023_01809_0
crossref_primary_10_1186_s41938_021_00475_6
crossref_primary_10_1039_D4EN00548A
crossref_primary_10_1016_j_chemosphere_2022_133798
crossref_primary_10_1021_acsnano_1c03948
crossref_primary_10_1007_s41204_021_00103_6
crossref_primary_10_1016_j_heliyon_2024_e32333
Cites_doi 10.1016/0304-3770(82)90026-2
10.1016/j.vibspec.2017.06.004
10.1016/j.jcis.2017.08.009
10.1007/BF00018060
10.1016/j.scp.2018.08.005
10.1155/2019/4649506
10.1128/AAC.00026-15
10.1007/s11426-015-5443-5
10.1016/j.micpath.2017.12.075
10.1016/S0076-6879(55)02300-8
10.1039/C4DT03222E
10.1016/j.biocontrol.2011.06.010
10.1371/journal.pone.0160688
10.1007/s13205-013-0130-8
10.1111/lam.12035
10.1016/j.biocontrol.2008.01.004
10.1016/j.foodchem.2017.06.039
10.1111/j.1364-3703.2006.00344.x
10.3389/fmicb.2019.00820
10.1021/jf00062a013
10.1016/j.biocontrol.2016.07.010
10.1002/047010631X
10.1016/j.pmpp.2017.06.005
10.1016/j.ijbiomac.2017.08.179
10.1080/21691401.2018.1557671
10.1016/j.jksus.2017.05.013
10.1080/21691401.2016.1241793
10.1016/0003-9861(68)90654-1
10.1038/nrmicro2558
10.1039/C8DT01152D
10.1007/s00253-019-09740-z
10.1049/iet-nbt.2018.0057
10.1016/S0076-6879(84)05016-3
10.1016/j.jcis.2004.03.003
10.1016/j.matlet.2010.12.056
10.1007/s40097-017-0219-4
10.1016/j.micpath.2018.01.038
10.1098/rstb.2010.0133
10.1128/jb.173.2.697-703.1991
10.1016/j.matlet.2008.06.051
10.1039/C9RA04246F
10.1016/j.chemosphere.2014.03.056
10.1080/02772248.2015.1066176
10.1002/0471142727.mb0204s56
10.1016/j.btre.2017.03.002
10.1016/j.nano.2009.01.012
10.1016/j.colsurfb.2014.05.027
10.1038/s41565-017-0029-3
10.1016/j.kijoms.2017.11.002
10.9734/ARRB/2018/41352
10.1007/s12645-013-0045-4
ContentType Journal Article
Copyright 2020 by the authors. 2020
Copyright_xml – notice: 2020 by the authors. 2020
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
5PM
DOA
DOI 10.3390/pathogens9030160
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
Open Access Journals (DOAJ)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic

CrossRef
PubMed
AGRICOLA

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2076-0817
ExternalDocumentID oai_doaj_org_article_05606d8f841b4b2090a81cb7586c0772
PMC7157244
32110981
10_3390_pathogens9030160
Genre Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 31872017, 31571971, 31371904, 31801787
– fundername: National Key Research and Development Program of China
  grantid: 2017YFD0201104
– fundername: United Nations Educational, Scientific and Cultural Organization
  grantid: PhosAgro/UNESCO/IUPAC/GCUF grant 82
– fundername: Zhejiang Provincial Project
  grantid: 2017C02002; 2019C02006
GroupedDBID 53G
5VS
8FE
8FH
AADQD
AAHBH
AAYXX
ADBBV
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
CCPQU
CITATION
DIK
GROUPED_DOAJ
HCIFZ
HYE
IHR
KQ8
LK8
M48
M7P
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
RPM
NPM
7X8
PQGLB
7S9
L.6
5PM
PUEGO
ID FETCH-LOGICAL-c495t-9b0a7411aa80af0ea9debbcd13e1579ba70687d2ebfa60720c1acba80e1969223
IEDL.DBID M48
ISSN 2076-0817
IngestDate Wed Aug 27 01:31:07 EDT 2025
Thu Aug 21 14:12:23 EDT 2025
Fri Jul 11 01:36:34 EDT 2025
Thu Jul 10 19:29:33 EDT 2025
Thu Jan 02 22:37:43 EST 2025
Thu Apr 24 23:07:26 EDT 2025
Tue Jul 01 04:15:28 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords nanotechnology
B. cereus
BLB
antimicrobial activity
silver nanoparticles
rice
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c495t-9b0a7411aa80af0ea9debbcd13e1579ba70687d2ebfa60720c1acba80e1969223
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-1317-1621
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/pathogens9030160
PMID 32110981
PQID 2369435499
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_05606d8f841b4b2090a81cb7586c0772
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7157244
proquest_miscellaneous_2498259947
proquest_miscellaneous_2369435499
pubmed_primary_32110981
crossref_citationtrail_10_3390_pathogens9030160
crossref_primary_10_3390_pathogens9030160
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200226
PublicationDateYYYYMMDD 2020-02-26
PublicationDate_xml – month: 2
  year: 2020
  text: 20200226
  day: 26
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Pathogens (Basel)
PublicationTitleAlternate Pathogens
PublicationYear 2020
Publisher MDPI
MDPI AG
Publisher_xml – name: MDPI
– name: MDPI AG
References Adil (ref_21) 2015; 44
Degrassi (ref_35) 2014; 16
Aebi (ref_57) 1984; Volume 105
ref_11
Heath (ref_54) 1968; 125
Li (ref_3) 2015; 58
Duhan (ref_14) 2017; 15
Ryan (ref_6) 2011; 9
Nasir (ref_36) 2019; 57
Wang (ref_30) 2015; 44
(ref_59) 1985; 33
Khan (ref_19) 2018; 47
Marpu (ref_24) 2017; 507
Khoa (ref_5) 2017; 100
Masum (ref_22) 2019; 10
Orozco (ref_26) 2019; 2019
Salama (ref_38) 2012; 3
Sharma (ref_15) 2017; 92
Wilson (ref_44) 2001; 56
Finley (ref_27) 2015; 59
Shankar (ref_49) 2004; 275
Metch (ref_13) 2018; 13
Kakar (ref_12) 2015; 97
Lutz (ref_4) 2010; 365
Das (ref_52) 2013; 4
Rostami (ref_29) 2018; 107
Khoa (ref_8) 2016; 103
Ejaz (ref_39) 2018; 12
Dakhil (ref_20) 2017; 29
Jana (ref_55) 1982; 12
Majeed (ref_17) 2018; 4
Juibari (ref_47) 2011; 65
Ogunyemi (ref_51) 2019; 47
Wang (ref_53) 2013; 56
Lugo (ref_23) 2018; 115
Nair (ref_40) 2014; 112
Adriano (ref_28) 2018; 25
Chithrashree (ref_7) 2011; 59
Kalishwaralal (ref_32) 2008; 62
Saravanan (ref_25) 2018; 116
Omole (ref_31) 2018; 10
Hulkoti (ref_18) 2014; 121
Bates (ref_56) 1973; 39
Nanda (ref_46) 2009; 5
Ronald (ref_9) 2006; 7
ref_43
ref_42
Zhu (ref_1) 2017; 237
ref_41
Ji (ref_10) 2008; 45
ref_48
Weisburg (ref_45) 1991; 173
Chance (ref_58) 1955; 2
Ibrahim (ref_33) 2019; 9
Sadegh (ref_16) 2017; 7
Firdhouse (ref_50) 2013; 4
Fouad (ref_34) 2016; 45
Zahra (ref_2) 2018; 27
Chikte (ref_37) 2019; 103
References_xml – volume: 12
  start-page: 345
  year: 1982
  ident: ref_55
  article-title: Glycolate metabolism of three submersed aquatic angiosperms during ageing
  publication-title: Aquat. Bot.
  doi: 10.1016/0304-3770(82)90026-2
– volume: 92
  start-page: 135
  year: 2017
  ident: ref_15
  article-title: Rapid analyses of stress of copper oxide nanoparticles on wheat plants at an early stage by laser induced fluorescence and attenuated total reflectance Fourier transform infrared spectroscopy
  publication-title: Vib. Spectrosc.
  doi: 10.1016/j.vibspec.2017.06.004
– volume: 507
  start-page: 437
  year: 2017
  ident: ref_24
  article-title: Photochemical formation of chitosan-stabilized near-infrared-absorbing silver Nanoworms: A “Green” synthetic strategy and activity on Gram-negative pathogenic bacteria
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2017.08.009
– volume: 39
  start-page: 205
  year: 1973
  ident: ref_56
  article-title: Rapid determination of free proline for water-stress studies
  publication-title: Plant Soil
  doi: 10.1007/BF00018060
– volume: 25
  start-page: 469
  year: 2018
  ident: ref_28
  article-title: Screening of Silver-Tolerant Bacteria from a Major Philippine Landfill as Potential Bioremediation Agents
  publication-title: Ecol. Chem. Eng. S
– volume: 10
  start-page: 33
  year: 2018
  ident: ref_31
  article-title: Silver nanoparticles synthesized from Bacillus subtilis for detection of deterioration in the post-harvest spoilage of fruit
  publication-title: Sustain. Chem. Pharm.
  doi: 10.1016/j.scp.2018.08.005
– volume: 2019
  start-page: 1
  year: 2019
  ident: ref_26
  article-title: Detection of Genes Related to Resistance to Silver Nanoparticles in Bacteria from Secondary Endodontic Infections
  publication-title: J. Nanomater.
– ident: ref_41
  doi: 10.1155/2019/4649506
– volume: 59
  start-page: 4734
  year: 2015
  ident: ref_27
  article-title: Unprecedented Silver Resistance in Clinically Isolated Enterobacteriaceae: Major Implications for Burn and Wound Management
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.00026-15
– volume: 44
  start-page: 1
  year: 2015
  ident: ref_30
  article-title: Green synthesis of silver nanoparticles by Bacillus methylotrophicus, and their antimicrobial activity
  publication-title: Artif. Cells Nanomed. Biotechnol.
– ident: ref_42
– volume: 58
  start-page: 1898
  year: 2015
  ident: ref_3
  article-title: Inorganic arsenic contamination of rice from Chinese major rice-producing areas and exposure assessment in Chinese population
  publication-title: Sci. China Ser. B Chem.
  doi: 10.1007/s11426-015-5443-5
– volume: 115
  start-page: 358
  year: 2018
  ident: ref_23
  article-title: Bactericidal effect of silver nanoparticles against propagation of Clavibacter michiganensis infection in Lycopersicon esculentum Mill
  publication-title: Microb. Pathog.
  doi: 10.1016/j.micpath.2017.12.075
– volume: 2
  start-page: 764
  year: 1955
  ident: ref_58
  article-title: Assay of catalases and peroxidases
  publication-title: Methods Enzym.
  doi: 10.1016/S0076-6879(55)02300-8
– volume: 44
  start-page: 9709
  year: 2015
  ident: ref_21
  article-title: Biogenic synthesis of metallic nanoparticles and prospects toward green chemistry
  publication-title: Dalton Trans.
  doi: 10.1039/C4DT03222E
– volume: 59
  start-page: 114
  year: 2011
  ident: ref_7
  article-title: Plant growth-promoting rhizobacteria mediate induced systemic resistance in rice against bacterial leaf blight caused by Xanthomonas oryzae pv. oryzae
  publication-title: Biol. Control
  doi: 10.1016/j.biocontrol.2011.06.010
– ident: ref_11
  doi: 10.1371/journal.pone.0160688
– volume: 4
  start-page: 121
  year: 2013
  ident: ref_52
  article-title: Extracellular synthesis of silver nanoparticles by the Bacillus strain CS 11 isolated from industrialized area
  publication-title: 3 Biotech
  doi: 10.1007/s13205-013-0130-8
– volume: 56
  start-page: 208
  year: 2013
  ident: ref_53
  article-title: Comparative proteomic analysis of rice seedlings in response to inoculation with Bacillus cereus
  publication-title: Lett. Appl. Microbiol.
  doi: 10.1111/lam.12035
– volume: 45
  start-page: 288
  year: 2008
  ident: ref_10
  article-title: Biological control of rice bacterial blight by Lysobacter antibioticus strain 13-1
  publication-title: Biol. Control
  doi: 10.1016/j.biocontrol.2008.01.004
– volume: 237
  start-page: 936
  year: 2017
  ident: ref_1
  article-title: The effects of chilling stress after anthesis on the physicochemical properties of rice (Oryza sativa L.) starch
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2017.06.039
– volume: 3
  start-page: 190
  year: 2012
  ident: ref_38
  article-title: Effects of silver nanoparticles in some crop plants, common bean (Phaseolus vulgaris L.) and corn (Zea mays L.)
  publication-title: Int. Res. J. Biotechnol.
– volume: 7
  start-page: 303
  year: 2006
  ident: ref_9
  article-title: Xanthomonas oryzae pathovars: Model pathogens of a model crop
  publication-title: Mol. Plant Pathol.
  doi: 10.1111/j.1364-3703.2006.00344.x
– volume: 10
  start-page: 820
  year: 2019
  ident: ref_22
  article-title: Biogenic Synthesis of Silver Nanoparticles Using Phyllanthus emblica Fruit Extract and Its Inhibitory Action Against the Pathogen Acidovorax oryzae Strain RS-2 of Rice Bacterial Brown Stripe
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2019.00820
– volume: 33
  start-page: 213
  year: 1985
  ident: ref_59
  article-title: Phenolic constituents in the leaves of northern willows: Methods for the analysis of certain phenolics
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf00062a013
– volume: 103
  start-page: 1
  year: 2016
  ident: ref_8
  article-title: Effects of Serratia nematodiphila CT-78 on rice bacterial leaf blight caused by Xanthomonas oryzae pv. oryzae
  publication-title: Biol. Control
  doi: 10.1016/j.biocontrol.2016.07.010
– ident: ref_48
  doi: 10.1002/047010631X
– volume: 100
  start-page: 57
  year: 2017
  ident: ref_5
  article-title: Disease-reducing effects of aqueous leaf extract of Kalanchoe pinnata on rice bacterial leaf blight caused by Xanthomonas oryzae pv. oryzae involve induced resistance
  publication-title: Physiol. Mol. Plant Pathol.
  doi: 10.1016/j.pmpp.2017.06.005
– volume: 107
  start-page: 343
  year: 2018
  ident: ref_29
  article-title: Biosynthesis of Ag nanoparticles using isolated bacteria from contaminated sites and its application as an efficient catalyst for hydrazine electrooxidation
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2017.08.179
– volume: 47
  start-page: 341
  year: 2019
  ident: ref_51
  article-title: Green synthesis of zinc oxide nanoparticles using different plant extracts and their antibacterial activity against Xanthomonas oryzae pv. oryzae
  publication-title: Artif. Cells Nanomed. Biotechnol.
  doi: 10.1080/21691401.2018.1557671
– volume: 29
  start-page: 462
  year: 2017
  ident: ref_20
  article-title: Biosynthesis of silver nanoparticle (AgNPs) using Lactobacillus and their effects on oxidative stress biomarkers in rats
  publication-title: J. King Saud Univ. Sci.
  doi: 10.1016/j.jksus.2017.05.013
– volume: 45
  start-page: 1369
  year: 2016
  ident: ref_34
  article-title: Synthesis and characterization of silver nanoparticles using Bacillus amyloliquefaciens and Bacillus subtilisto control filarial vectorCulex pipiens pallensand its antimicrobial activity
  publication-title: Artif. Cells Nanomed. Biotechnol.
  doi: 10.1080/21691401.2016.1241793
– volume: 125
  start-page: 189
  year: 1968
  ident: ref_54
  article-title: Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1016/0003-9861(68)90654-1
– volume: 9
  start-page: 344
  year: 2011
  ident: ref_6
  article-title: Pathogenomics of Xanthomonas: Understanding bacterium—Plant interactions
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrmicro2558
– volume: 16
  start-page: 21
  year: 2014
  ident: ref_35
  article-title: Impact of engineered nanoparticles on virulence of xanthomonas oryzae pv. oryzae and on rice sensitivity at its infection
  publication-title: EQA-Int. J. Environ. Qual.
– volume: 47
  start-page: 11988
  year: 2018
  ident: ref_19
  article-title: Plant extracts as green reductants for the synthesis of silver nanoparticles: Lessons from chemical synthesis
  publication-title: Dalton Trans.
  doi: 10.1039/C8DT01152D
– volume: 103
  start-page: 4605
  year: 2019
  ident: ref_37
  article-title: Nanomaterials for the control of bacterial blight disease in pomegranate: Quo vadis?
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-019-09740-z
– volume: 12
  start-page: 927
  year: 2018
  ident: ref_39
  article-title: Effect of silver nanoparticles and silver nitrate on growth of rice under biotic stress
  publication-title: IET Nanobiotechnol.
  doi: 10.1049/iet-nbt.2018.0057
– volume: Volume 105
  start-page: 121
  year: 1984
  ident: ref_57
  article-title: Catalase in vitro
  publication-title: Methods in Enzymology
  doi: 10.1016/S0076-6879(84)05016-3
– volume: 275
  start-page: 496
  year: 2004
  ident: ref_49
  article-title: Rapid synthesis of Au, Ag, and bimetallic Au core–Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2004.03.003
– volume: 65
  start-page: 1014
  year: 2011
  ident: ref_47
  article-title: Intensified biosynthesis of silver nanoparticles using a native extremophilic Ureibacillus thermosphaericus strain
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2010.12.056
– volume: 7
  start-page: 1
  year: 2017
  ident: ref_16
  article-title: The role of nanomaterials as effective adsorbents and their applications in wastewater treatment
  publication-title: J. Nanostruct. Chem.
  doi: 10.1007/s40097-017-0219-4
– volume: 116
  start-page: 221
  year: 2018
  ident: ref_25
  article-title: Synthesis of silver nanoparticles from Bacillus brevis (NCIM 2533) and their antibacterial activity against pathogenic bacteria
  publication-title: Microb. Pathog.
  doi: 10.1016/j.micpath.2018.01.038
– volume: 57
  start-page: 99
  year: 2019
  ident: ref_36
  article-title: Chemical management of bacterial leaf blight disease in rice
  publication-title: J. Agric. Res.
– volume: 365
  start-page: 2779
  year: 2010
  ident: ref_4
  article-title: Dimensions of global population projections: What do we know about future population trends and structures?
  publication-title: Philos. Trans. R. Soc. B Biol. Sci.
  doi: 10.1098/rstb.2010.0133
– volume: 173
  start-page: 697
  year: 1991
  ident: ref_45
  article-title: 16S ribosomal DNA amplification for phylogenetic study
  publication-title: J. Bacteriol.
  doi: 10.1128/jb.173.2.697-703.1991
– volume: 62
  start-page: 4411
  year: 2008
  ident: ref_32
  article-title: Extracellular biosynthesis of silver nanoparticles by the culture supernatant of Bacillus licheniformis
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2008.06.051
– volume: 9
  start-page: 29293
  year: 2019
  ident: ref_33
  article-title: Biosynthesis of silver nanoparticles using endophytic bacteria and their role in inhibition of rice pathogenic bacteria and plant growth promotion
  publication-title: RSC Adv.
  doi: 10.1039/C9RA04246F
– volume: 112
  start-page: 105
  year: 2014
  ident: ref_40
  article-title: Physiological and molecular level effects of silver nanoparticles exposure in rice (Oryza sativa L.) seedlings
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2014.03.056
– volume: 97
  start-page: 766
  year: 2015
  ident: ref_12
  article-title: Controlling bacterial leaf blight of rice and enhancing the plant growth with endophytic and rhizobacterialBacillusstrains
  publication-title: Toxicol. Environ. Chem.
  doi: 10.1080/02772248.2015.1066176
– volume: 56
  start-page: 2.4.1
  year: 2001
  ident: ref_44
  article-title: Preparation of Genomic DNA from Bacteria
  publication-title: Curr. Protoc. Mol. Biol.
  doi: 10.1002/0471142727.mb0204s56
– volume: 15
  start-page: 11
  year: 2017
  ident: ref_14
  article-title: Nanotechnology: The new perspective in precision agriculture
  publication-title: Biotechnol. Rep.
  doi: 10.1016/j.btre.2017.03.002
– volume: 5
  start-page: 452
  year: 2009
  ident: ref_46
  article-title: Biosynthesis of silver nanoparticles from Staphylococcus aureus and its antimicrobial activity against MRSA and MRSE
  publication-title: Nanomed. Nanotechnol. Biol. Med.
  doi: 10.1016/j.nano.2009.01.012
– volume: 121
  start-page: 474
  year: 2014
  ident: ref_18
  article-title: Biosynthesis of nanoparticles using microbes—A review
  publication-title: Colloids Surf. B Biointerfaces
  doi: 10.1016/j.colsurfb.2014.05.027
– volume: 13
  start-page: 253
  year: 2018
  ident: ref_13
  article-title: Metagenomic analysis of microbial communities yields insight into impacts of nanoparticle design
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-017-0029-3
– volume: 4
  start-page: 86
  year: 2018
  ident: ref_17
  article-title: Biosynthesis and characterization of silver nanoparticles from fungal species and its antibacterial and anticancer effect
  publication-title: Karbala Int. J. Mod. Sci.
  doi: 10.1016/j.kijoms.2017.11.002
– ident: ref_43
– volume: 27
  start-page: 1
  year: 2018
  ident: ref_2
  article-title: Effect of Thiourea on Physiological Performance of Two Salt Affected Rice (Oryza sativa L.) Cultivars
  publication-title: Annu. Res. Rev. Biol.
  doi: 10.9734/ARRB/2018/41352
– volume: 4
  start-page: 137
  year: 2013
  ident: ref_50
  article-title: Biosynthesis of silver nanoparticles using the extract of Alternanthera sessilis—antiproliferative effect against prostate cancer cells
  publication-title: Cancer Nanotechnol.
  doi: 10.1007/s12645-013-0045-4
SSID ssj0000800817
Score 2.4930365
Snippet Amongst serious biotic factors deteriorating crop yield, the most destructive pathogen of rice is Xanthomonas oryzae pv. oryzae (Xoo), which causes bacterial...
Amongst serious biotic factors deteriorating crop yield, the most destructive pathogen of rice is pv. ( ), which causes bacterial leaf blight (BLB) disease....
Amongst serious biotic factors deteriorating crop yield, the most destructive pathogen of rice is Xanthomonas oryzae pv. oryzae ( Xoo), which causes bacterial...
Amongst serious biotic factors deteriorating crop yield, the most destructive pathogen of rice is Xanthomonas oryzae pv. oryzae ( Xoo ), which causes bacterial...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 160
SubjectTerms antibacterial properties
antimicrobial activity
b. cereus
Bacillus cereus
bacterial culture
biotic factors
blb
Cereus
crop yield
disease control
energy-dispersive X-ray analysis
Fourier transform infrared spectroscopy
image analysis
leaf blight
nanosilver
nanotechnology
nucleotide sequences
particle size
pathogens
phytomass
proteins
rice
scanning electron microscopy
sequence analysis
shape
silver
silver nanoparticles
synthesis
transmission electron microscopy
ultraviolet-visible spectroscopy
X-ray diffraction
Xanthomonas oryzae pv. oryzae
SummonAdditionalLinks – databaseName: Open Access Journals (DOAJ)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJSQuiDeBgozEhUNUO8n6cWyBqkKAENtKFZdo_FJTpVnU3T1sL_x1ZpJ02a1QuXCKkowl2zMZf188nmHs7cRI5VRh85CcyivQITcVIJBLwSRvRSwTHXD-8lUdnVSfTienG6W-KCZsSA88TNweLtBCYTtTSVe5QlgBRnqHMFd5gdCQvC-ueRtk6nzEQUbqYV-yRF5P8dVnM9TJ3BIJ6DNS_lmH-nT9f8OYN0MlN9aewwfs_gga-f7Q2YfsTuwesbtDGcnVY_Zr2lB8M0dPiRR4jHTj01WH4G7eXMXA3Yr3sQH8AHzTtss59_Ey4mX641jy_YvY0kl9BJ8cm_APcIFehs8SiS96E-WfI-BtS1SefxsHyZuOf0dH84SdHH48fn-Uj4UVco98aJFbJwCRhAQwApKIYEN0zgdZRjnR1oEWyuhQRJdACV0IL8E7FI6UTAcBxVO20826-JxxB1AlFaQHTWXVrY1KFVE4ocCFZCYZ27ue5tqPWcep-EVbI_sgxdQ3FZOxd-sWP4eMG7fIHpDm1nKUK7t_gBZUj_Nd_8uCMvbmWu81flu0YQJdnC3ndVEqi3ASSeEtMpVFkm1tpTP2bLCVdXdKYtfWyIzpLSva6u_2m64563N8a1QEIq8X_2OAL9m9gv4S0EF8tct2FpfL-Aqh1MK97r-a3-S-Hzw
  priority: 102
  providerName: Directory of Open Access Journals
Title Silver Nanoparticles Synthesized by Using Bacillus cereus SZT1 Ameliorated the Damage of Bacterial Leaf Blight Pathogen in Rice
URI https://www.ncbi.nlm.nih.gov/pubmed/32110981
https://www.proquest.com/docview/2369435499
https://www.proquest.com/docview/2498259947
https://pubmed.ncbi.nlm.nih.gov/PMC7157244
https://doaj.org/article/05606d8f841b4b2090a81cb7586c0772
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEF-kRfBF_DZWjxV88SG6m8vtx4NIT1uK2FJ6PSi-hP1KG0kTe7kDzxf_dWeS9PTKUfApX5OQzMzu_n6b2RlC3owUF1YkOva5FXFqpI9VagDI5V7lTrMwzHGB8-GROJimX85GZ3-XR_cKbDZSO6wnNZ2V735eLT9Cg_-AjBMoO4ZOX9Sg7kYjvhdA4LdhXJJYz-CwB_vfe2yk2hK8CZD3GPe7_5YbH7I2TrXp_Ddh0JuhlP-MTfsPyP0eVNLdzgsekjuhekTudmUml4_J70mB8c8UelKgyH0kHJ0sKwB_TfEreGqXtI0doGPjirJcNNSFWYDN5Nspp7uXocSV_ABOKdxCP5tL6IVonaP4vHVh-jUYOCyR6tPj_iNpUdET6IiekOn-3umng7gvvBA74EvzWFtmAGlwYxQzOQtG-2Ct83wY-EhqayQTSvok2NwIJhPmuHEWhAMm2wHA8ZRsVXUVnhNqjUlz4bkzEsuuax2ESAKzTBjrczWKyPtrNWeuz0qOxTHKDNgJGia7aZiIvF3d8aPLyHGL7Bgtt5LDXNrtiXp2nvX6zgACMgGeqVJuU5swzYzizgKREo4B-YjI62u7Z9D28IeKqUK9aLJkKDTATSCNt8ikGki41qmMyLPOV1avM0T2rRWPiFzzorX3Xb9SFRdtDnAJhgBk9uI_lLFD7iU4WYDr8cVLsjWfLcIrQFRzOyDb472j45NBOyMxaJvNHxt8Jbg
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Silver+Nanoparticles+Synthesized+by+Using+Bacillus+cereus+SZT1+Ameliorated+the+Damage+of+Bacterial+Leaf+Blight+Pathogen+in+Rice&rft.jtitle=Pathogens+%28Basel%29&rft.au=Ahmed%2C+Temoor&rft.au=Shahid%2C+Muhammad&rft.au=Noman%2C+Muhammad&rft.au=Niazi%2C+Muhammad+Bilal+Khan&rft.date=2020-02-26&rft.issn=2076-0817&rft.eissn=2076-0817&rft.volume=9&rft.issue=3&rft.spage=160&rft_id=info:doi/10.3390%2Fpathogens9030160&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_pathogens9030160
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-0817&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-0817&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-0817&client=summon