Cover

Loading…
Abstract A model is presented for aerodynamic lift of wind turbine profiles under dynamic stall. The model combines memory delay effects under attached flow with reduced lift due to flow separation under dynamic stall conditions. The model is based on a backbone curve in the form of the static lift as a function of the angle of attack. The static lift is described by two parameters, the lift at fully attached flow and the degree of attachment. A relationship between these parameters and the static lift is available from a thin plate approximation. Assuming the parameters to be known during static conditions, nonstationary effects are included by three mechanisms: a delay of the lift coefficient of fully attached flow via a second-order filter, a delay of the development of separation represented via a first-order filter, and a lift contribution due to leading edge separation also represented via a first-order filter. The latter is likely to occur during active pitch control of vibrations. It is shown that all included effects can be important when considering wind turbine blades. The proposed model is validated against test data from two load cases, one at fully attached flow conditions and one during dynamic stall conditions. The proposed model is compared with five other dynamic stall models including, among others, the Beddoes–Leishman model and the ONERA model. It is demonstrated that the proposed model performs equally well or even better than more complicated models and that the included nonstationary effects are essential for obtaining satisfactory results. Finally, the influence of camber and thickness distribution on the backbone curve are analysed. It is shown that both of these effects are adequately accounted for via the static input data.
AbstractList A model is presented for aerodynamic lift of wind turbine profiles under dynamic stall. The model combines memory delay effects under attached flow with reduced lift due to flow separation under dynamic stall conditions. The model is based on a backbone curve in the form of the static lift as a function of the angle of attack. The static lift is described by two parameters, the lift at fully attached flow and the degree of attachment. A relationship between these parameters and the static lift is available from a thin plate approximation. Assuming the parameters to be known during static conditions, nonstationary effects are included by three mechanisms: a delay of the lift coefficient of fully attached flow via a second-order filter, a delay of the development of separation represented via a first-order filter, and a lift contribution due to leading edge separation also represented via a first-order filter. The latter is likely to occur during active pitch control of vibrations. It is shown that all included effects can be important when considering wind turbine blades. The proposed model is validated against test data from two load cases, one at fully attached flow conditions and one during dynamic stall conditions. The proposed model is compared with five other dynamic stall models including, among others, the Beddoes-Leishman model and the ONERA model. It is demonstrated that the proposed model performs equally well or even better than more complicated models and that the included nonstationary effects are essential for obtaining satisfactory results. Finally, the influence of camber and thickness distribution on the backbone curve are analysed. It is shown that both of these effects are adequately accounted for via the static input data.
Author Nielsen, S.R.K.
Larsen, J.W.
Krenk, S.
Author_xml – sequence: 1
  givenname: J.W.
  surname: Larsen
  fullname: Larsen, J.W.
  email: i5jwl@civil.aau.dk
  organization: Department of Civil Engineering, Aalborg University, DK-9000 Aalborg, Denmark
– sequence: 2
  givenname: S.R.K.
  surname: Nielsen
  fullname: Nielsen, S.R.K.
  organization: Department of Civil Engineering, Aalborg University, DK-9000 Aalborg, Denmark
– sequence: 3
  givenname: S.
  surname: Krenk
  fullname: Krenk, S.
  organization: Department of Mechanical Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19147835$$DView record in Pascal Francis
BookMark eNqNkMtKxDAUhoOM4MzoOxREcdOaS9MmuJJxvMCAG12HNBdIyaRj0irz9raMIG5UzuJsvvP_h28BZqELBoBzBAsEUXXdFq31g9Opj4PqU4EhrAuICwjpEZgjyGnOKoxnYA4Z4zmvy-oELFJqIYS8JGgO8rt9kFunstRL77Ntp43PbBezDxd01g-xccFk0kXbOZ9OwbGVPpmzr70Er_frl9Vjvnl-eFrdbnJVctrnTJGa6xphrpCR41hKsGIc1qhkmBikNCEEUWUrziupZaNZSRFtGiuJJogsweUhdxe7t8GkXmxdUsZ7GUw3JEHG7ymv-Ahe_QqiqsQY1Yyzv1HIMIaE4in15oCq2KUUjRW76LYy7kdITOJFK36IF5N4AbEYxY_XF19FMinpbZRBufQdwVFZMzJx6wNnRpPvzkSRlDNBGe2iUb3QnftX3yd4KKG3
CODEN JFSTEF
CitedBy_id crossref_primary_10_1088_1742_6596_1618_4_042033
crossref_primary_10_1002_we_2789
crossref_primary_10_2514_1_J052633
crossref_primary_10_1016_j_jfluidstructs_2022_103544
crossref_primary_10_1088_1742_6596_2767_2_022016
crossref_primary_10_3390_app9235243
crossref_primary_10_3934_energy_2020_3_493
crossref_primary_10_1016_j_jfluidstructs_2013_08_003
crossref_primary_10_2514_1_J057132
crossref_primary_10_1016_j_jweia_2018_11_009
crossref_primary_10_1016_j_energy_2021_120004
crossref_primary_10_3390_app11178011
crossref_primary_10_3390_app8071111
crossref_primary_10_1098_rsos_170077
crossref_primary_10_1063_1_5126055
crossref_primary_10_1016_j_renene_2022_07_017
crossref_primary_10_1007_s00158_021_02883_6
crossref_primary_10_3390_app112210920
crossref_primary_10_1016_j_jweia_2016_01_010
crossref_primary_10_1016_j_oceaneng_2023_113690
crossref_primary_10_3390_biomimetics8010051
crossref_primary_10_1016_j_renene_2014_12_024
crossref_primary_10_1063_5_0060600
crossref_primary_10_1260_1369_4332_18_12_2075
crossref_primary_10_1017_jfm_2017_305
crossref_primary_10_1088_1742_6596_753_2_022026
crossref_primary_10_1115_1_4003393
crossref_primary_10_1007_s11708_011_0166_6
crossref_primary_10_1016_j_energy_2022_125666
crossref_primary_10_1016_j_apenergy_2015_11_080
crossref_primary_10_2514_1_J061595
crossref_primary_10_1016_j_apm_2015_09_051
crossref_primary_10_1016_j_ijmecsci_2021_106525
crossref_primary_10_1002_we_1685
crossref_primary_10_1016_j_jfluidstructs_2007_07_008
crossref_primary_10_3390_jmse11010117
crossref_primary_10_1016_j_egypro_2018_08_060
crossref_primary_10_1016_j_renene_2014_09_032
crossref_primary_10_1002_we_1712
crossref_primary_10_1016_j_oceaneng_2018_02_029
crossref_primary_10_1016_j_ast_2016_05_004
crossref_primary_10_1016_j_renene_2018_10_089
crossref_primary_10_1002_we_541
crossref_primary_10_1063_5_0170251
crossref_primary_10_1007_s00162_023_00677_8
crossref_primary_10_1016_j_compfluid_2016_02_004
crossref_primary_10_1017_jfm_2020_467
crossref_primary_10_1002_we_548
crossref_primary_10_3390_en12081434
crossref_primary_10_1017_jfm_2015_70
crossref_primary_10_1017_S0001924000004905
crossref_primary_10_3390_en9080613
crossref_primary_10_1260_0309_524X_38_5_549
crossref_primary_10_1007_s10494_013_9474_8
crossref_primary_10_1016_j_energy_2019_06_083
crossref_primary_10_5194_wes_7_75_2022
crossref_primary_10_1155_2017_5263897
crossref_primary_10_1016_j_jfluidstructs_2017_06_016
crossref_primary_10_1016_j_ast_2021_106555
crossref_primary_10_1134_S1810232817040075
crossref_primary_10_1177_13694332221090291
crossref_primary_10_1115_1_4056339
crossref_primary_10_4050_JAHS_68_022009
crossref_primary_10_1007_s10409_023_23056_x
crossref_primary_10_1016_j_ifacol_2021_08_355
crossref_primary_10_1007_s00348_014_1669_9
crossref_primary_10_1016_j_enconman_2019_06_081
crossref_primary_10_1177_0957650912470941
crossref_primary_10_1142_S0218127420502004
crossref_primary_10_1016_j_jweia_2017_12_011
crossref_primary_10_1016_j_engfailanal_2013_05_011
crossref_primary_10_1002_we_2109
crossref_primary_10_1002_we_2627
crossref_primary_10_1017_jfm_2022_381
crossref_primary_10_1146_annurev_fluid_122109_160801
crossref_primary_10_2514_1_J059115
crossref_primary_10_1016_j_egypro_2016_11_144
crossref_primary_10_1017_jfm_2019_235
crossref_primary_10_1002_we_326
crossref_primary_10_1061__ASCE_BE_1943_5592_0001218
crossref_primary_10_1002_we_2463
crossref_primary_10_1016_j_matpr_2021_02_231
crossref_primary_10_1051_jnwpu_20183650875
crossref_primary_10_1017_aer_2023_62
crossref_primary_10_1016_j_ijheatfluidflow_2010_07_008
crossref_primary_10_1016_j_apor_2016_02_002
crossref_primary_10_1016_j_expthermflusci_2015_12_003
crossref_primary_10_1016_j_jweia_2020_104264
crossref_primary_10_1016_j_oceaneng_2023_115556
crossref_primary_10_3923_tasr_2011_309_344
crossref_primary_10_1016_j_compfluid_2013_04_019
crossref_primary_10_1063_1_4940023
crossref_primary_10_1016_j_energy_2017_05_033
crossref_primary_10_1088_1742_6596_1037_2_022010
crossref_primary_10_1016_j_energy_2019_05_069
crossref_primary_10_1061__ASCE_EY_1943_7897_0000276
crossref_primary_10_1016_j_jsv_2016_07_031
crossref_primary_10_1016_j_matpr_2022_08_110
crossref_primary_10_1016_j_renene_2013_11_011
crossref_primary_10_5194_wes_5_1037_2020
crossref_primary_10_1016_j_jfluidstructs_2019_102852
crossref_primary_10_21070_pels_v1i2_986
crossref_primary_10_1016_j_compstruc_2012_09_004
crossref_primary_10_2514_1_J055405
crossref_primary_10_2514_1_J055804
crossref_primary_10_1115_1_4045773
crossref_primary_10_1016_j_jfluidstructs_2021_103318
crossref_primary_10_3390_en6052501
crossref_primary_10_1007_s00348_009_0713_7
crossref_primary_10_1016_j_renene_2012_10_006
crossref_primary_10_1016_j_renene_2020_10_147
crossref_primary_10_1002_we_1596
crossref_primary_10_1115_1_4044559
crossref_primary_10_3390_app10030949
crossref_primary_10_1016_j_renene_2020_04_040
crossref_primary_10_1109_JOE_2014_2331531
crossref_primary_10_1007_s40430_019_1907_4
crossref_primary_10_1063_2_1206201
crossref_primary_10_1016_j_rser_2015_07_065
crossref_primary_10_1016_j_renene_2021_07_131
crossref_primary_10_1088_1742_6596_2767_2_022007
crossref_primary_10_1007_s11831_021_09640_4
crossref_primary_10_1063_5_0075083
crossref_primary_10_3390_en16103994
crossref_primary_10_1016_j_compstruct_2018_10_032
crossref_primary_10_1016_j_energy_2015_06_046
crossref_primary_10_1061__ASCE_AS_1943_5525_0000336
crossref_primary_10_1016_j_mechrescom_2011_12_003
crossref_primary_10_1299_jfst_2015jfst0001
Cites_doi 10.4050/JAHS.34.3
10.2514/3.13177
10.1016/S0889-9746(03)00018-5
10.1017/S0001924000025744
10.1016/S1270-9638(03)00053-1
10.1002/1099-1824(199910/12)2:4<195::AID-WE27>3.0.CO;2-7
10.2514/3.45680
10.2514/3.44000
10.4050/JAHS.17.33
10.1016/S0960-1481(99)00109-3
ContentType Journal Article
Copyright 2007 Elsevier Ltd
2007 INIST-CNRS
Copyright_xml – notice: 2007 Elsevier Ltd
– notice: 2007 INIST-CNRS
DBID IQODW
AAYXX
CITATION
7UA
C1K
F1W
H96
L.G
7TB
8FD
FR3
H8D
KR7
L7M
DOI 10.1016/j.jfluidstructs.2007.02.005
DatabaseName Pascal-Francis
CrossRef
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
Aerospace Database
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitleList Aerospace Database

Aquatic Science & Fisheries Abstracts (ASFA) Professional
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1095-8622
EndPage 982
ExternalDocumentID 10_1016_j_jfluidstructs_2007_02_005
19147835
S0889974607000291
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29K
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADFGL
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CAG
COF
CS3
D-I
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG5
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SPD
SST
SSZ
T5K
TN5
VH1
WUQ
XPP
ZMT
~A~
~G-
ABPIF
IQODW
AAXKI
AAYXX
AFJKZ
AKRWK
CITATION
7UA
C1K
F1W
H96
L.G
7TB
8FD
FR3
H8D
KR7
L7M
ID FETCH-LOGICAL-c495t-8c379d7129c1eaeaef532c890714823e1cd33315cf6996adabd84515bbfa3d313
IEDL.DBID AIKHN
ISSN 0889-9746
IngestDate Fri Oct 25 00:40:04 EDT 2024
Thu Oct 24 22:51:47 EDT 2024
Fri Oct 25 07:23:08 EDT 2024
Thu Sep 26 19:53:05 EDT 2024
Sun Oct 22 16:09:06 EDT 2023
Fri Feb 23 02:35:26 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Wing sections
Wind turbines
Dynamic stall
Airfoil flow
Flow separation
Stall
Pitch angle
Fasteners
Thin plate
Dynamic conditions
Filters
Static conditions
Gas turbines
Size effect
EFD wind generators
Modelling
Dynamic model
Delay effect
Turbine blades
Aerodynamics
Unsteady flow
Leading edge
Critical flow
Instability
Curvature
Memory effect
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c495t-8c379d7129c1eaeaef532c890714823e1cd33315cf6996adabd84515bbfa3d313
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PQID 1082203529
PQPubID 23500
PageCount 24
ParticipantIDs proquest_miscellaneous_30945969
proquest_miscellaneous_1642217898
proquest_miscellaneous_1082203529
crossref_primary_10_1016_j_jfluidstructs_2007_02_005
pascalfrancis_primary_19147835
elsevier_sciencedirect_doi_10_1016_j_jfluidstructs_2007_02_005
PublicationCentury 2000
PublicationDate 2007-10-01
PublicationDateYYYYMMDD 2007-10-01
PublicationDate_xml – month: 10
  year: 2007
  text: 2007-10-01
  day: 01
PublicationDecade 2000
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Journal of fluids and structures
PublicationYear 2007
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Tran, Petot (bib24) 1981; 5
Liiva (bib18) 1969; 6
Leishman (bib15) 2000
Fung (bib8) 1993
Tarzanin (bib22) 1972; 17
Krenk, S., 2006. Airfoil theory for separated flow. Department of Mechanical Engineering, Technical University of Denmark, to be published.
Bisplinghoff (bib5) 1996
Leishman, J.G., Beddoes, T.S., 1986b. A generalised model for airfoil unsteady aerodynamic behaviour and dynamic stall using the indicial method. In: Proceedings of the 42nd Annual Forum of the American Helicopter Society.
Bak, Madsen, Fuglsang, Rasmussen (bib3) 1999; 2
Suresh, Omkar, Mani, Prakash (bib21) 2003; 7
VISCWIND, 1999. Viscous effects on wind turbine blades, final report on the JOR3-CT95-0007, Joule III project, Technical Report ET-AFM-9902, Technical University of Denmark.
Wernert, Geissler, Raffel, Kompenhans (bib26) 1996; 34
Abbott, von Doenhoff (bib1) 1959
Hansen, M.H., Gaunaa, M., Madsen, H.A., 2004. A Beddoes–Leishman type dynamic stall model in state-space and indicial formulations. Risø-R-1354(EN), Risø National Laboratory, Roskilde, Denmark.
Thwaites (bib23) 1960
Srinivasan, Ekaterinaris, McCroskey (bib20) 1995; 24
Leishman, Beddoes (bib16) 1986; 34
Du, Selig (bib6) 1998
Gross, D., Harris, F., 1969. Prediction of inflight stalled airloads from oscillating airfoil data. In: Proceedings of the 25th Annual National Forum of the American Helicopter Society.
Green, Galbraith, Niven (bib9) 1992
Beddoes, T.S., 1978. Onset of leading edge separation effects under dynamic conditions and low Mach numbers. In: Proceedings of the 34th Annual Forum of the American Helicopter Society.
Akbari, Price (bib2) 2003; 7
Jones, R.T., 1940. The unsteady lift of a wing of finite aspect ratio. NACA Report 681, NACA.
Leishman (bib14) 1988; 25
Du, Selig (bib7) 2000; 20
Øye, S., 1991. Dynamic stall simulated as time lag of separation. Technical Report, Department of Fluid Mechanics, Technical University of Denmark.
10.1016/j.jfluidstructs.2007.02.005_bib12
10.1016/j.jfluidstructs.2007.02.005_bib11
10.1016/j.jfluidstructs.2007.02.005_bib10
Leishman (10.1016/j.jfluidstructs.2007.02.005_bib15) 2000
Leishman (10.1016/j.jfluidstructs.2007.02.005_bib16) 1986; 34
Srinivasan (10.1016/j.jfluidstructs.2007.02.005_bib20) 1995; 24
Du (10.1016/j.jfluidstructs.2007.02.005_bib6) 1998
Du (10.1016/j.jfluidstructs.2007.02.005_bib7) 2000; 20
Green (10.1016/j.jfluidstructs.2007.02.005_bib9) 1992
Liiva (10.1016/j.jfluidstructs.2007.02.005_bib18) 1969; 6
Tarzanin (10.1016/j.jfluidstructs.2007.02.005_bib22) 1972; 17
Abbott (10.1016/j.jfluidstructs.2007.02.005_bib1) 1959
10.1016/j.jfluidstructs.2007.02.005_bib25
Thwaites (10.1016/j.jfluidstructs.2007.02.005_bib23) 1960
Fung (10.1016/j.jfluidstructs.2007.02.005_bib8) 1993
Suresh (10.1016/j.jfluidstructs.2007.02.005_bib21) 2003; 7
Bak (10.1016/j.jfluidstructs.2007.02.005_bib3) 1999; 2
Tran (10.1016/j.jfluidstructs.2007.02.005_bib24) 1981; 5
Wernert (10.1016/j.jfluidstructs.2007.02.005_bib26) 1996; 34
Akbari (10.1016/j.jfluidstructs.2007.02.005_bib2) 2003; 7
10.1016/j.jfluidstructs.2007.02.005_bib4
10.1016/j.jfluidstructs.2007.02.005_bib13
Leishman (10.1016/j.jfluidstructs.2007.02.005_bib14) 1988; 25
10.1016/j.jfluidstructs.2007.02.005_bib19
Bisplinghoff (10.1016/j.jfluidstructs.2007.02.005_bib5) 1996
10.1016/j.jfluidstructs.2007.02.005_bib17
References_xml – year: 1993
  ident: bib8
  article-title: An Introduction to the Theory of Aeroelasticity
  contributor:
    fullname: Fung
– year: 2000
  ident: bib15
  article-title: Principles of Helicopter Aerodynamics
  contributor:
    fullname: Leishman
– start-page: 319
  year: 1992
  end-page: 325
  ident: bib9
  article-title: Measurements of the dynamic stall vortex convection speed
  publication-title: Aeronautical Journal
  contributor:
    fullname: Niven
– volume: 17
  start-page: 33
  year: 1972
  end-page: 46
  ident: bib22
  article-title: Prediction of control loads
  publication-title: Journal of the American Helicopter Society
  contributor:
    fullname: Tarzanin
– volume: 34
  start-page: 3
  year: 1986
  end-page: 17
  ident: bib16
  article-title: A semi-empirical model for dynamic stall
  publication-title: Journal of the American Helicopter Society
  contributor:
    fullname: Beddoes
– year: 1960
  ident: bib23
  article-title: Incompressible Aerodynamics
  contributor:
    fullname: Thwaites
– volume: 5
  start-page: 35
  year: 1981
  end-page: 53
  ident: bib24
  article-title: Semi-empirical model for the dynamic stall of airfoils in view of the application to the calculation of responses of a helicopter blade in forward flight
  publication-title: Vertica
  contributor:
    fullname: Petot
– volume: 34
  start-page: 982
  year: 1996
  end-page: 989
  ident: bib26
  article-title: Experimental and numerical investigations of dynamic stall on a pitching airfoil
  publication-title: AIAA Journal
  contributor:
    fullname: Kompenhans
– year: 1996
  ident: bib5
  article-title: Aeroelasticity
  contributor:
    fullname: Bisplinghoff
– volume: 7
  start-page: 595
  year: 2003
  end-page: 602
  ident: bib21
  article-title: Lift coefficient prediction at high angle of attack using recurrent neural network
  publication-title: Aerospace Science and Technology
  contributor:
    fullname: Prakash
– volume: 7
  start-page: 855
  year: 2003
  end-page: 874
  ident: bib2
  article-title: Simulation of dynamic stall for a NACA 0012 airfoil using a vortex method
  publication-title: Journal of Fluids and Structures
  contributor:
    fullname: Price
– start-page: 9
  year: 1998
  end-page: 19
  ident: bib6
  article-title: A 3-D stall-delay model for horizontal axis wind turbine performance prediction
  publication-title: AIAA-98-0021
  contributor:
    fullname: Selig
– volume: 24
  start-page: 833
  year: 1995
  end-page: 861
  ident: bib20
  article-title: Evaluation of turbulence models for unsteady flows of an oscillating airfoil
  publication-title: Computers and Structures
  contributor:
    fullname: McCroskey
– volume: 20
  start-page: 167
  year: 2000
  end-page: 181
  ident: bib7
  article-title: The effect of rotation on the boundary layer of a wind turbine blade
  publication-title: Renewable Energy
  contributor:
    fullname: Selig
– year: 1959
  ident: bib1
  article-title: Theory of Wing Sections
  contributor:
    fullname: von Doenhoff
– volume: 2
  start-page: 195
  year: 1999
  end-page: 210
  ident: bib3
  article-title: Observations and hypothesis of double stall
  publication-title: Wind Energy
  contributor:
    fullname: Rasmussen
– volume: 25
  start-page: 917
  year: 1988
  end-page: 922
  ident: bib14
  article-title: Validation of approximate indicial aerodynamic functions for two-dimensional subsonic flow
  publication-title: Journal of Aircraft
  contributor:
    fullname: Leishman
– volume: 6
  start-page: 46
  year: 1969
  end-page: 51
  ident: bib18
  article-title: Unsteady aerodynamic and stall effects on helicopter rotor blade airfoil sections
  publication-title: Journal of Aircraft
  contributor:
    fullname: Liiva
– ident: 10.1016/j.jfluidstructs.2007.02.005_bib25
– ident: 10.1016/j.jfluidstructs.2007.02.005_bib4
– ident: 10.1016/j.jfluidstructs.2007.02.005_bib19
– year: 1996
  ident: 10.1016/j.jfluidstructs.2007.02.005_bib5
  contributor:
    fullname: Bisplinghoff
– start-page: 9
  year: 1998
  ident: 10.1016/j.jfluidstructs.2007.02.005_bib6
  article-title: A 3-D stall-delay model for horizontal axis wind turbine performance prediction
  contributor:
    fullname: Du
– volume: 34
  start-page: 3
  year: 1986
  ident: 10.1016/j.jfluidstructs.2007.02.005_bib16
  article-title: A semi-empirical model for dynamic stall
  publication-title: Journal of the American Helicopter Society
  doi: 10.4050/JAHS.34.3
  contributor:
    fullname: Leishman
– ident: 10.1016/j.jfluidstructs.2007.02.005_bib13
– ident: 10.1016/j.jfluidstructs.2007.02.005_bib11
– year: 2000
  ident: 10.1016/j.jfluidstructs.2007.02.005_bib15
  contributor:
    fullname: Leishman
– ident: 10.1016/j.jfluidstructs.2007.02.005_bib17
– volume: 34
  start-page: 982
  year: 1996
  ident: 10.1016/j.jfluidstructs.2007.02.005_bib26
  article-title: Experimental and numerical investigations of dynamic stall on a pitching airfoil
  publication-title: AIAA Journal
  doi: 10.2514/3.13177
  contributor:
    fullname: Wernert
– volume: 24
  start-page: 833
  year: 1995
  ident: 10.1016/j.jfluidstructs.2007.02.005_bib20
  article-title: Evaluation of turbulence models for unsteady flows of an oscillating airfoil
  publication-title: Computers and Structures
  contributor:
    fullname: Srinivasan
– volume: 7
  start-page: 855
  year: 2003
  ident: 10.1016/j.jfluidstructs.2007.02.005_bib2
  article-title: Simulation of dynamic stall for a NACA 0012 airfoil using a vortex method
  publication-title: Journal of Fluids and Structures
  doi: 10.1016/S0889-9746(03)00018-5
  contributor:
    fullname: Akbari
– volume: 5
  start-page: 35
  year: 1981
  ident: 10.1016/j.jfluidstructs.2007.02.005_bib24
  article-title: Semi-empirical model for the dynamic stall of airfoils in view of the application to the calculation of responses of a helicopter blade in forward flight
  publication-title: Vertica
  contributor:
    fullname: Tran
– year: 1993
  ident: 10.1016/j.jfluidstructs.2007.02.005_bib8
  contributor:
    fullname: Fung
– start-page: 319
  year: 1992
  ident: 10.1016/j.jfluidstructs.2007.02.005_bib9
  article-title: Measurements of the dynamic stall vortex convection speed
  publication-title: Aeronautical Journal
  doi: 10.1017/S0001924000025744
  contributor:
    fullname: Green
– volume: 7
  start-page: 595
  year: 2003
  ident: 10.1016/j.jfluidstructs.2007.02.005_bib21
  article-title: Lift coefficient prediction at high angle of attack using recurrent neural network
  publication-title: Aerospace Science and Technology
  doi: 10.1016/S1270-9638(03)00053-1
  contributor:
    fullname: Suresh
– ident: 10.1016/j.jfluidstructs.2007.02.005_bib12
– year: 1959
  ident: 10.1016/j.jfluidstructs.2007.02.005_bib1
  contributor:
    fullname: Abbott
– volume: 2
  start-page: 195
  year: 1999
  ident: 10.1016/j.jfluidstructs.2007.02.005_bib3
  article-title: Observations and hypothesis of double stall
  publication-title: Wind Energy
  doi: 10.1002/1099-1824(199910/12)2:4<195::AID-WE27>3.0.CO;2-7
  contributor:
    fullname: Bak
– volume: 25
  start-page: 917
  year: 1988
  ident: 10.1016/j.jfluidstructs.2007.02.005_bib14
  article-title: Validation of approximate indicial aerodynamic functions for two-dimensional subsonic flow
  publication-title: Journal of Aircraft
  doi: 10.2514/3.45680
  contributor:
    fullname: Leishman
– volume: 6
  start-page: 46
  year: 1969
  ident: 10.1016/j.jfluidstructs.2007.02.005_bib18
  article-title: Unsteady aerodynamic and stall effects on helicopter rotor blade airfoil sections
  publication-title: Journal of Aircraft
  doi: 10.2514/3.44000
  contributor:
    fullname: Liiva
– ident: 10.1016/j.jfluidstructs.2007.02.005_bib10
– volume: 17
  start-page: 33
  year: 1972
  ident: 10.1016/j.jfluidstructs.2007.02.005_bib22
  article-title: Prediction of control loads
  publication-title: Journal of the American Helicopter Society
  doi: 10.4050/JAHS.17.33
  contributor:
    fullname: Tarzanin
– volume: 20
  start-page: 167
  year: 2000
  ident: 10.1016/j.jfluidstructs.2007.02.005_bib7
  article-title: The effect of rotation on the boundary layer of a wind turbine blade
  publication-title: Renewable Energy
  doi: 10.1016/S0960-1481(99)00109-3
  contributor:
    fullname: Du
– year: 1960
  ident: 10.1016/j.jfluidstructs.2007.02.005_bib23
  contributor:
    fullname: Thwaites
SSID ssj0009431
Score 2.309528
Snippet A model is presented for aerodynamic lift of wind turbine profiles under dynamic stall. The model combines memory delay effects under attached flow with...
SourceID proquest
crossref
pascalfrancis
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 959
SubjectTerms Airfoil flow
Airfoils
Boundary layer and shear turbulence
Delay
Dynamic stall
Dynamics
Exact sciences and technology
Fluid dynamics
Fundamental areas of phenomenology (including applications)
General theory
Lift
Mathematical models
Physics
Separation
Solid mechanics
Stall
Structural and continuum mechanics
Turbulent flows, convection, and heat transfer
Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)
Wind turbines
Wing sections
Title Dynamic stall model for wind turbine airfoils
URI https://dx.doi.org/10.1016/j.jfluidstructs.2007.02.005
https://search.proquest.com/docview/1082203529
https://search.proquest.com/docview/1642217898
https://search.proquest.com/docview/30945969
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5qC6KI-MT6qBG9xja7m2T3IpRqqYq9aKG3sNlNICW0xbZ487c7mwe1SEWQ3MLmNbOZ-b5k9huAG6L9WCJNtpWmGUGRtnAjZTMhfeZprbln1g6_9L3egD0N3WEFOuVaGFNWWcT-PKZn0brY0yys2ZwmSfPVFOggGvZw0pp_S0iBapiOCK9Crf343OsvtXdZ3pbQFPSYAzbhelnmNYrTRaJzsdZZIWloNDzddYlqZypnaL4473vxI4Rneam7B7sFoLTa-T3vQyUaH8D2N5nBQ7Dv87bzFiLBNLWy5jcWglXrAwm5hTkH2XFkyeQ9niTp7AgG3Ye3Ts8u2iTYCtnN3OaK-kL7mLiVE0ncYpcSxYVZmsQJjRx0A6WOq2IPyY3UMtScIYwJQ_QSeogeQ3U8GUcnYLViIiSToeNxh6mQSD-mGcpSiiNQadWBlTYJprkaRlCWiY2CFVOa_pZ-0CIBmrIOd6X9ghXnBhi3_3aCxorVlxcXDjPfrupwVbohwPfD_PSQ42iymBkBVEKM6Kv4ZQySMKRmXPA6XK4ZQ3EaucITp_99ljPYyr4PZwWB51DFEdEFApt52ICN20-nUUzfLwe5-hk
link.rule.ids 315,783,787,4509,24128,27936,27937,45597,45691
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB6Kgg9EfGJ9tBG9xjbZTbJ7EaRaqra92EJvy2Y3gZTSFtvizd_ubB7UIhVBcgtDHjOTme_bzM4A3Lo6iCXSZFtpkhIUaXMvUjblMqC-1pr5Zu9wp-u3-vRl4A1K0Cj2wpiyyjz2ZzE9jdb5mVquzdo0SWpvpkAH0bCPTmv-LSEF2qQGH6NT330u6zw4zYYSmnIeI74FN8sir2E8WiQ6a9U6yxsamg6e3ro0tTeVM1RenE29-BHA06zUPID9HE5aD9kTH0IpGh_B7rcmg8dgP2ZD5y3EgaORlY6-sRCqWh9Ixy3MOMiNI0sm7_EkGc1OoN986jVadj4kwVbIbeY2UyTgOsC0rZxI4hF7xFWMm41JzCWRg0YgxPFU7CO1kVqGmlEEMWGINkL7kFPYGE_G0RlY9djlksrQ8ZlDVejKICYpxlKKIUypl4EWOhHTrBeGKIrEhmJFlWa6ZSDqrkBVluG-0J9YMa3AqP23C1RWtL68OXeoWbkqw3VhBoFfh_nlIcfRZDEz7U9d17R85b_IIAVDYsY4K0N1jQxBN_K4z8__-y5V2G71Om3Rfu6-XsBOulKclgZewgZKR1cIceZhJXXhL1Em-vI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+stall+model+for+wind+turbine+airfoils&rft.jtitle=Journal+of+fluids+and+structures&rft.au=Larsen%2C+J+W&rft.au=Nielsen%2C+SRK&rft.au=Krenk%2C+S&rft.date=2007-10-01&rft.issn=0889-9746&rft.eissn=1095-8622&rft.volume=23&rft.issue=7&rft.spage=959&rft.epage=982&rft_id=info:doi/10.1016%2Fj.jfluidstructs.2007.02.005&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0889-9746&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0889-9746&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0889-9746&client=summon