Dynamic stall model for wind turbine airfoils
A model is presented for aerodynamic lift of wind turbine profiles under dynamic stall. The model combines memory delay effects under attached flow with reduced lift due to flow separation under dynamic stall conditions. The model is based on a backbone curve in the form of the static lift as a func...
Saved in:
Published in | Journal of fluids and structures Vol. 23; no. 7; pp. 959 - 982 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London
Elsevier Ltd
01.10.2007
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A model is presented for aerodynamic lift of wind turbine profiles under dynamic stall. The model combines memory delay effects under attached flow with reduced lift due to flow separation under dynamic stall conditions. The model is based on a backbone curve in the form of the static lift as a function of the angle of attack. The static lift is described by two parameters, the lift at fully attached flow and the degree of attachment. A relationship between these parameters and the static lift is available from a thin plate approximation. Assuming the parameters to be known during static conditions, nonstationary effects are included by three mechanisms: a delay of the lift coefficient of fully attached flow via a second-order filter, a delay of the development of separation represented via a first-order filter, and a lift contribution due to leading edge separation also represented via a first-order filter. The latter is likely to occur during active pitch control of vibrations. It is shown that all included effects can be important when considering wind turbine blades. The proposed model is validated against test data from two load cases, one at fully attached flow conditions and one during dynamic stall conditions. The proposed model is compared with five other dynamic stall models including, among others, the Beddoes–Leishman model and the ONERA model. It is demonstrated that the proposed model performs equally well or even better than more complicated models and that the included nonstationary effects are essential for obtaining satisfactory results. Finally, the influence of camber and thickness distribution on the backbone curve are analysed. It is shown that both of these effects are adequately accounted for via the static input data. |
---|---|
AbstractList | A model is presented for aerodynamic lift of wind turbine profiles under dynamic stall. The model combines memory delay effects under attached flow with reduced lift due to flow separation under dynamic stall conditions. The model is based on a backbone curve in the form of the static lift as a function of the angle of attack. The static lift is described by two parameters, the lift at fully attached flow and the degree of attachment. A relationship between these parameters and the static lift is available from a thin plate approximation. Assuming the parameters to be known during static conditions, nonstationary effects are included by three mechanisms: a delay of the lift coefficient of fully attached flow via a second-order filter, a delay of the development of separation represented via a first-order filter, and a lift contribution due to leading edge separation also represented via a first-order filter. The latter is likely to occur during active pitch control of vibrations. It is shown that all included effects can be important when considering wind turbine blades. The proposed model is validated against test data from two load cases, one at fully attached flow conditions and one during dynamic stall conditions. The proposed model is compared with five other dynamic stall models including, among others, the Beddoes-Leishman model and the ONERA model. It is demonstrated that the proposed model performs equally well or even better than more complicated models and that the included nonstationary effects are essential for obtaining satisfactory results. Finally, the influence of camber and thickness distribution on the backbone curve are analysed. It is shown that both of these effects are adequately accounted for via the static input data. |
Author | Nielsen, S.R.K. Larsen, J.W. Krenk, S. |
Author_xml | – sequence: 1 givenname: J.W. surname: Larsen fullname: Larsen, J.W. email: i5jwl@civil.aau.dk organization: Department of Civil Engineering, Aalborg University, DK-9000 Aalborg, Denmark – sequence: 2 givenname: S.R.K. surname: Nielsen fullname: Nielsen, S.R.K. organization: Department of Civil Engineering, Aalborg University, DK-9000 Aalborg, Denmark – sequence: 3 givenname: S. surname: Krenk fullname: Krenk, S. organization: Department of Mechanical Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19147835$$DView record in Pascal Francis |
BookMark | eNqNkMtKxDAUhoOM4MzoOxREcdOaS9MmuJJxvMCAG12HNBdIyaRj0irz9raMIG5UzuJsvvP_h28BZqELBoBzBAsEUXXdFq31g9Opj4PqU4EhrAuICwjpEZgjyGnOKoxnYA4Z4zmvy-oELFJqIYS8JGgO8rt9kFunstRL77Ntp43PbBezDxd01g-xccFk0kXbOZ9OwbGVPpmzr70Er_frl9Vjvnl-eFrdbnJVctrnTJGa6xphrpCR41hKsGIc1qhkmBikNCEEUWUrziupZaNZSRFtGiuJJogsweUhdxe7t8GkXmxdUsZ7GUw3JEHG7ymv-Ahe_QqiqsQY1Yyzv1HIMIaE4in15oCq2KUUjRW76LYy7kdITOJFK36IF5N4AbEYxY_XF19FMinpbZRBufQdwVFZMzJx6wNnRpPvzkSRlDNBGe2iUb3QnftX3yd4KKG3 |
CODEN | JFSTEF |
CitedBy_id | crossref_primary_10_1088_1742_6596_1618_4_042033 crossref_primary_10_1002_we_2789 crossref_primary_10_2514_1_J052633 crossref_primary_10_1016_j_jfluidstructs_2022_103544 crossref_primary_10_1088_1742_6596_2767_2_022016 crossref_primary_10_3390_app9235243 crossref_primary_10_3934_energy_2020_3_493 crossref_primary_10_1016_j_jfluidstructs_2013_08_003 crossref_primary_10_2514_1_J057132 crossref_primary_10_1016_j_jweia_2018_11_009 crossref_primary_10_1016_j_energy_2021_120004 crossref_primary_10_3390_app11178011 crossref_primary_10_3390_app8071111 crossref_primary_10_1098_rsos_170077 crossref_primary_10_1063_1_5126055 crossref_primary_10_1016_j_renene_2022_07_017 crossref_primary_10_1007_s00158_021_02883_6 crossref_primary_10_3390_app112210920 crossref_primary_10_1016_j_jweia_2016_01_010 crossref_primary_10_1016_j_oceaneng_2023_113690 crossref_primary_10_3390_biomimetics8010051 crossref_primary_10_1016_j_renene_2014_12_024 crossref_primary_10_1063_5_0060600 crossref_primary_10_1260_1369_4332_18_12_2075 crossref_primary_10_1017_jfm_2017_305 crossref_primary_10_1088_1742_6596_753_2_022026 crossref_primary_10_1115_1_4003393 crossref_primary_10_1007_s11708_011_0166_6 crossref_primary_10_1016_j_energy_2022_125666 crossref_primary_10_1016_j_apenergy_2015_11_080 crossref_primary_10_2514_1_J061595 crossref_primary_10_1016_j_apm_2015_09_051 crossref_primary_10_1016_j_ijmecsci_2021_106525 crossref_primary_10_1002_we_1685 crossref_primary_10_1016_j_jfluidstructs_2007_07_008 crossref_primary_10_3390_jmse11010117 crossref_primary_10_1016_j_egypro_2018_08_060 crossref_primary_10_1016_j_renene_2014_09_032 crossref_primary_10_1002_we_1712 crossref_primary_10_1016_j_oceaneng_2018_02_029 crossref_primary_10_1016_j_ast_2016_05_004 crossref_primary_10_1016_j_renene_2018_10_089 crossref_primary_10_1002_we_541 crossref_primary_10_1063_5_0170251 crossref_primary_10_1007_s00162_023_00677_8 crossref_primary_10_1016_j_compfluid_2016_02_004 crossref_primary_10_1017_jfm_2020_467 crossref_primary_10_1002_we_548 crossref_primary_10_3390_en12081434 crossref_primary_10_1017_jfm_2015_70 crossref_primary_10_1017_S0001924000004905 crossref_primary_10_3390_en9080613 crossref_primary_10_1260_0309_524X_38_5_549 crossref_primary_10_1007_s10494_013_9474_8 crossref_primary_10_1016_j_energy_2019_06_083 crossref_primary_10_5194_wes_7_75_2022 crossref_primary_10_1155_2017_5263897 crossref_primary_10_1016_j_jfluidstructs_2017_06_016 crossref_primary_10_1016_j_ast_2021_106555 crossref_primary_10_1134_S1810232817040075 crossref_primary_10_1177_13694332221090291 crossref_primary_10_1115_1_4056339 crossref_primary_10_4050_JAHS_68_022009 crossref_primary_10_1007_s10409_023_23056_x crossref_primary_10_1016_j_ifacol_2021_08_355 crossref_primary_10_1007_s00348_014_1669_9 crossref_primary_10_1016_j_enconman_2019_06_081 crossref_primary_10_1177_0957650912470941 crossref_primary_10_1142_S0218127420502004 crossref_primary_10_1016_j_jweia_2017_12_011 crossref_primary_10_1016_j_engfailanal_2013_05_011 crossref_primary_10_1002_we_2109 crossref_primary_10_1002_we_2627 crossref_primary_10_1017_jfm_2022_381 crossref_primary_10_1146_annurev_fluid_122109_160801 crossref_primary_10_2514_1_J059115 crossref_primary_10_1016_j_egypro_2016_11_144 crossref_primary_10_1017_jfm_2019_235 crossref_primary_10_1002_we_326 crossref_primary_10_1061__ASCE_BE_1943_5592_0001218 crossref_primary_10_1002_we_2463 crossref_primary_10_1016_j_matpr_2021_02_231 crossref_primary_10_1051_jnwpu_20183650875 crossref_primary_10_1017_aer_2023_62 crossref_primary_10_1016_j_ijheatfluidflow_2010_07_008 crossref_primary_10_1016_j_apor_2016_02_002 crossref_primary_10_1016_j_expthermflusci_2015_12_003 crossref_primary_10_1016_j_jweia_2020_104264 crossref_primary_10_1016_j_oceaneng_2023_115556 crossref_primary_10_3923_tasr_2011_309_344 crossref_primary_10_1016_j_compfluid_2013_04_019 crossref_primary_10_1063_1_4940023 crossref_primary_10_1016_j_energy_2017_05_033 crossref_primary_10_1088_1742_6596_1037_2_022010 crossref_primary_10_1016_j_energy_2019_05_069 crossref_primary_10_1061__ASCE_EY_1943_7897_0000276 crossref_primary_10_1016_j_jsv_2016_07_031 crossref_primary_10_1016_j_matpr_2022_08_110 crossref_primary_10_1016_j_renene_2013_11_011 crossref_primary_10_5194_wes_5_1037_2020 crossref_primary_10_1016_j_jfluidstructs_2019_102852 crossref_primary_10_21070_pels_v1i2_986 crossref_primary_10_1016_j_compstruc_2012_09_004 crossref_primary_10_2514_1_J055405 crossref_primary_10_2514_1_J055804 crossref_primary_10_1115_1_4045773 crossref_primary_10_1016_j_jfluidstructs_2021_103318 crossref_primary_10_3390_en6052501 crossref_primary_10_1007_s00348_009_0713_7 crossref_primary_10_1016_j_renene_2012_10_006 crossref_primary_10_1016_j_renene_2020_10_147 crossref_primary_10_1002_we_1596 crossref_primary_10_1115_1_4044559 crossref_primary_10_3390_app10030949 crossref_primary_10_1016_j_renene_2020_04_040 crossref_primary_10_1109_JOE_2014_2331531 crossref_primary_10_1007_s40430_019_1907_4 crossref_primary_10_1063_2_1206201 crossref_primary_10_1016_j_rser_2015_07_065 crossref_primary_10_1016_j_renene_2021_07_131 crossref_primary_10_1088_1742_6596_2767_2_022007 crossref_primary_10_1007_s11831_021_09640_4 crossref_primary_10_1063_5_0075083 crossref_primary_10_3390_en16103994 crossref_primary_10_1016_j_compstruct_2018_10_032 crossref_primary_10_1016_j_energy_2015_06_046 crossref_primary_10_1061__ASCE_AS_1943_5525_0000336 crossref_primary_10_1016_j_mechrescom_2011_12_003 crossref_primary_10_1299_jfst_2015jfst0001 |
Cites_doi | 10.4050/JAHS.34.3 10.2514/3.13177 10.1016/S0889-9746(03)00018-5 10.1017/S0001924000025744 10.1016/S1270-9638(03)00053-1 10.1002/1099-1824(199910/12)2:4<195::AID-WE27>3.0.CO;2-7 10.2514/3.45680 10.2514/3.44000 10.4050/JAHS.17.33 10.1016/S0960-1481(99)00109-3 |
ContentType | Journal Article |
Copyright | 2007 Elsevier Ltd 2007 INIST-CNRS |
Copyright_xml | – notice: 2007 Elsevier Ltd – notice: 2007 INIST-CNRS |
DBID | IQODW AAYXX CITATION 7UA C1K F1W H96 L.G 7TB 8FD FR3 H8D KR7 L7M |
DOI | 10.1016/j.jfluidstructs.2007.02.005 |
DatabaseName | Pascal-Francis CrossRef Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Aerospace Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management Aerospace Database Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitleList | Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) Professional Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1095-8622 |
EndPage | 982 |
ExternalDocumentID | 10_1016_j_jfluidstructs_2007_02_005 19147835 S0889974607000291 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29K 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADFGL ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AI. AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CAG COF CS3 D-I DM4 DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LG5 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SET SEW SPC SPCBC SPD SST SSZ T5K TN5 VH1 WUQ XPP ZMT ~A~ ~G- ABPIF IQODW AAXKI AAYXX AFJKZ AKRWK CITATION 7UA C1K F1W H96 L.G 7TB 8FD FR3 H8D KR7 L7M |
ID | FETCH-LOGICAL-c495t-8c379d7129c1eaeaef532c890714823e1cd33315cf6996adabd84515bbfa3d313 |
IEDL.DBID | AIKHN |
ISSN | 0889-9746 |
IngestDate | Fri Oct 25 00:40:04 EDT 2024 Thu Oct 24 22:51:47 EDT 2024 Fri Oct 25 07:23:08 EDT 2024 Thu Sep 26 19:53:05 EDT 2024 Sun Oct 22 16:09:06 EDT 2023 Fri Feb 23 02:35:26 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | Wing sections Wind turbines Dynamic stall Airfoil flow Flow separation Stall Pitch angle Fasteners Thin plate Dynamic conditions Filters Static conditions Gas turbines Size effect EFD wind generators Modelling Dynamic model Delay effect Turbine blades Aerodynamics Unsteady flow Leading edge Critical flow Instability Curvature Memory effect |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c495t-8c379d7129c1eaeaef532c890714823e1cd33315cf6996adabd84515bbfa3d313 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
PQID | 1082203529 |
PQPubID | 23500 |
PageCount | 24 |
ParticipantIDs | proquest_miscellaneous_30945969 proquest_miscellaneous_1642217898 proquest_miscellaneous_1082203529 crossref_primary_10_1016_j_jfluidstructs_2007_02_005 pascalfrancis_primary_19147835 elsevier_sciencedirect_doi_10_1016_j_jfluidstructs_2007_02_005 |
PublicationCentury | 2000 |
PublicationDate | 2007-10-01 |
PublicationDateYYYYMMDD | 2007-10-01 |
PublicationDate_xml | – month: 10 year: 2007 text: 2007-10-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Journal of fluids and structures |
PublicationYear | 2007 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Tran, Petot (bib24) 1981; 5 Liiva (bib18) 1969; 6 Leishman (bib15) 2000 Fung (bib8) 1993 Tarzanin (bib22) 1972; 17 Krenk, S., 2006. Airfoil theory for separated flow. Department of Mechanical Engineering, Technical University of Denmark, to be published. Bisplinghoff (bib5) 1996 Leishman, J.G., Beddoes, T.S., 1986b. A generalised model for airfoil unsteady aerodynamic behaviour and dynamic stall using the indicial method. In: Proceedings of the 42nd Annual Forum of the American Helicopter Society. Bak, Madsen, Fuglsang, Rasmussen (bib3) 1999; 2 Suresh, Omkar, Mani, Prakash (bib21) 2003; 7 VISCWIND, 1999. Viscous effects on wind turbine blades, final report on the JOR3-CT95-0007, Joule III project, Technical Report ET-AFM-9902, Technical University of Denmark. Wernert, Geissler, Raffel, Kompenhans (bib26) 1996; 34 Abbott, von Doenhoff (bib1) 1959 Hansen, M.H., Gaunaa, M., Madsen, H.A., 2004. A Beddoes–Leishman type dynamic stall model in state-space and indicial formulations. Risø-R-1354(EN), Risø National Laboratory, Roskilde, Denmark. Thwaites (bib23) 1960 Srinivasan, Ekaterinaris, McCroskey (bib20) 1995; 24 Leishman, Beddoes (bib16) 1986; 34 Du, Selig (bib6) 1998 Gross, D., Harris, F., 1969. Prediction of inflight stalled airloads from oscillating airfoil data. In: Proceedings of the 25th Annual National Forum of the American Helicopter Society. Green, Galbraith, Niven (bib9) 1992 Beddoes, T.S., 1978. Onset of leading edge separation effects under dynamic conditions and low Mach numbers. In: Proceedings of the 34th Annual Forum of the American Helicopter Society. Akbari, Price (bib2) 2003; 7 Jones, R.T., 1940. The unsteady lift of a wing of finite aspect ratio. NACA Report 681, NACA. Leishman (bib14) 1988; 25 Du, Selig (bib7) 2000; 20 Øye, S., 1991. Dynamic stall simulated as time lag of separation. Technical Report, Department of Fluid Mechanics, Technical University of Denmark. 10.1016/j.jfluidstructs.2007.02.005_bib12 10.1016/j.jfluidstructs.2007.02.005_bib11 10.1016/j.jfluidstructs.2007.02.005_bib10 Leishman (10.1016/j.jfluidstructs.2007.02.005_bib15) 2000 Leishman (10.1016/j.jfluidstructs.2007.02.005_bib16) 1986; 34 Srinivasan (10.1016/j.jfluidstructs.2007.02.005_bib20) 1995; 24 Du (10.1016/j.jfluidstructs.2007.02.005_bib6) 1998 Du (10.1016/j.jfluidstructs.2007.02.005_bib7) 2000; 20 Green (10.1016/j.jfluidstructs.2007.02.005_bib9) 1992 Liiva (10.1016/j.jfluidstructs.2007.02.005_bib18) 1969; 6 Tarzanin (10.1016/j.jfluidstructs.2007.02.005_bib22) 1972; 17 Abbott (10.1016/j.jfluidstructs.2007.02.005_bib1) 1959 10.1016/j.jfluidstructs.2007.02.005_bib25 Thwaites (10.1016/j.jfluidstructs.2007.02.005_bib23) 1960 Fung (10.1016/j.jfluidstructs.2007.02.005_bib8) 1993 Suresh (10.1016/j.jfluidstructs.2007.02.005_bib21) 2003; 7 Bak (10.1016/j.jfluidstructs.2007.02.005_bib3) 1999; 2 Tran (10.1016/j.jfluidstructs.2007.02.005_bib24) 1981; 5 Wernert (10.1016/j.jfluidstructs.2007.02.005_bib26) 1996; 34 Akbari (10.1016/j.jfluidstructs.2007.02.005_bib2) 2003; 7 10.1016/j.jfluidstructs.2007.02.005_bib4 10.1016/j.jfluidstructs.2007.02.005_bib13 Leishman (10.1016/j.jfluidstructs.2007.02.005_bib14) 1988; 25 10.1016/j.jfluidstructs.2007.02.005_bib19 Bisplinghoff (10.1016/j.jfluidstructs.2007.02.005_bib5) 1996 10.1016/j.jfluidstructs.2007.02.005_bib17 |
References_xml | – year: 1993 ident: bib8 article-title: An Introduction to the Theory of Aeroelasticity contributor: fullname: Fung – year: 2000 ident: bib15 article-title: Principles of Helicopter Aerodynamics contributor: fullname: Leishman – start-page: 319 year: 1992 end-page: 325 ident: bib9 article-title: Measurements of the dynamic stall vortex convection speed publication-title: Aeronautical Journal contributor: fullname: Niven – volume: 17 start-page: 33 year: 1972 end-page: 46 ident: bib22 article-title: Prediction of control loads publication-title: Journal of the American Helicopter Society contributor: fullname: Tarzanin – volume: 34 start-page: 3 year: 1986 end-page: 17 ident: bib16 article-title: A semi-empirical model for dynamic stall publication-title: Journal of the American Helicopter Society contributor: fullname: Beddoes – year: 1960 ident: bib23 article-title: Incompressible Aerodynamics contributor: fullname: Thwaites – volume: 5 start-page: 35 year: 1981 end-page: 53 ident: bib24 article-title: Semi-empirical model for the dynamic stall of airfoils in view of the application to the calculation of responses of a helicopter blade in forward flight publication-title: Vertica contributor: fullname: Petot – volume: 34 start-page: 982 year: 1996 end-page: 989 ident: bib26 article-title: Experimental and numerical investigations of dynamic stall on a pitching airfoil publication-title: AIAA Journal contributor: fullname: Kompenhans – year: 1996 ident: bib5 article-title: Aeroelasticity contributor: fullname: Bisplinghoff – volume: 7 start-page: 595 year: 2003 end-page: 602 ident: bib21 article-title: Lift coefficient prediction at high angle of attack using recurrent neural network publication-title: Aerospace Science and Technology contributor: fullname: Prakash – volume: 7 start-page: 855 year: 2003 end-page: 874 ident: bib2 article-title: Simulation of dynamic stall for a NACA 0012 airfoil using a vortex method publication-title: Journal of Fluids and Structures contributor: fullname: Price – start-page: 9 year: 1998 end-page: 19 ident: bib6 article-title: A 3-D stall-delay model for horizontal axis wind turbine performance prediction publication-title: AIAA-98-0021 contributor: fullname: Selig – volume: 24 start-page: 833 year: 1995 end-page: 861 ident: bib20 article-title: Evaluation of turbulence models for unsteady flows of an oscillating airfoil publication-title: Computers and Structures contributor: fullname: McCroskey – volume: 20 start-page: 167 year: 2000 end-page: 181 ident: bib7 article-title: The effect of rotation on the boundary layer of a wind turbine blade publication-title: Renewable Energy contributor: fullname: Selig – year: 1959 ident: bib1 article-title: Theory of Wing Sections contributor: fullname: von Doenhoff – volume: 2 start-page: 195 year: 1999 end-page: 210 ident: bib3 article-title: Observations and hypothesis of double stall publication-title: Wind Energy contributor: fullname: Rasmussen – volume: 25 start-page: 917 year: 1988 end-page: 922 ident: bib14 article-title: Validation of approximate indicial aerodynamic functions for two-dimensional subsonic flow publication-title: Journal of Aircraft contributor: fullname: Leishman – volume: 6 start-page: 46 year: 1969 end-page: 51 ident: bib18 article-title: Unsteady aerodynamic and stall effects on helicopter rotor blade airfoil sections publication-title: Journal of Aircraft contributor: fullname: Liiva – ident: 10.1016/j.jfluidstructs.2007.02.005_bib25 – ident: 10.1016/j.jfluidstructs.2007.02.005_bib4 – ident: 10.1016/j.jfluidstructs.2007.02.005_bib19 – year: 1996 ident: 10.1016/j.jfluidstructs.2007.02.005_bib5 contributor: fullname: Bisplinghoff – start-page: 9 year: 1998 ident: 10.1016/j.jfluidstructs.2007.02.005_bib6 article-title: A 3-D stall-delay model for horizontal axis wind turbine performance prediction contributor: fullname: Du – volume: 34 start-page: 3 year: 1986 ident: 10.1016/j.jfluidstructs.2007.02.005_bib16 article-title: A semi-empirical model for dynamic stall publication-title: Journal of the American Helicopter Society doi: 10.4050/JAHS.34.3 contributor: fullname: Leishman – ident: 10.1016/j.jfluidstructs.2007.02.005_bib13 – ident: 10.1016/j.jfluidstructs.2007.02.005_bib11 – year: 2000 ident: 10.1016/j.jfluidstructs.2007.02.005_bib15 contributor: fullname: Leishman – ident: 10.1016/j.jfluidstructs.2007.02.005_bib17 – volume: 34 start-page: 982 year: 1996 ident: 10.1016/j.jfluidstructs.2007.02.005_bib26 article-title: Experimental and numerical investigations of dynamic stall on a pitching airfoil publication-title: AIAA Journal doi: 10.2514/3.13177 contributor: fullname: Wernert – volume: 24 start-page: 833 year: 1995 ident: 10.1016/j.jfluidstructs.2007.02.005_bib20 article-title: Evaluation of turbulence models for unsteady flows of an oscillating airfoil publication-title: Computers and Structures contributor: fullname: Srinivasan – volume: 7 start-page: 855 year: 2003 ident: 10.1016/j.jfluidstructs.2007.02.005_bib2 article-title: Simulation of dynamic stall for a NACA 0012 airfoil using a vortex method publication-title: Journal of Fluids and Structures doi: 10.1016/S0889-9746(03)00018-5 contributor: fullname: Akbari – volume: 5 start-page: 35 year: 1981 ident: 10.1016/j.jfluidstructs.2007.02.005_bib24 article-title: Semi-empirical model for the dynamic stall of airfoils in view of the application to the calculation of responses of a helicopter blade in forward flight publication-title: Vertica contributor: fullname: Tran – year: 1993 ident: 10.1016/j.jfluidstructs.2007.02.005_bib8 contributor: fullname: Fung – start-page: 319 year: 1992 ident: 10.1016/j.jfluidstructs.2007.02.005_bib9 article-title: Measurements of the dynamic stall vortex convection speed publication-title: Aeronautical Journal doi: 10.1017/S0001924000025744 contributor: fullname: Green – volume: 7 start-page: 595 year: 2003 ident: 10.1016/j.jfluidstructs.2007.02.005_bib21 article-title: Lift coefficient prediction at high angle of attack using recurrent neural network publication-title: Aerospace Science and Technology doi: 10.1016/S1270-9638(03)00053-1 contributor: fullname: Suresh – ident: 10.1016/j.jfluidstructs.2007.02.005_bib12 – year: 1959 ident: 10.1016/j.jfluidstructs.2007.02.005_bib1 contributor: fullname: Abbott – volume: 2 start-page: 195 year: 1999 ident: 10.1016/j.jfluidstructs.2007.02.005_bib3 article-title: Observations and hypothesis of double stall publication-title: Wind Energy doi: 10.1002/1099-1824(199910/12)2:4<195::AID-WE27>3.0.CO;2-7 contributor: fullname: Bak – volume: 25 start-page: 917 year: 1988 ident: 10.1016/j.jfluidstructs.2007.02.005_bib14 article-title: Validation of approximate indicial aerodynamic functions for two-dimensional subsonic flow publication-title: Journal of Aircraft doi: 10.2514/3.45680 contributor: fullname: Leishman – volume: 6 start-page: 46 year: 1969 ident: 10.1016/j.jfluidstructs.2007.02.005_bib18 article-title: Unsteady aerodynamic and stall effects on helicopter rotor blade airfoil sections publication-title: Journal of Aircraft doi: 10.2514/3.44000 contributor: fullname: Liiva – ident: 10.1016/j.jfluidstructs.2007.02.005_bib10 – volume: 17 start-page: 33 year: 1972 ident: 10.1016/j.jfluidstructs.2007.02.005_bib22 article-title: Prediction of control loads publication-title: Journal of the American Helicopter Society doi: 10.4050/JAHS.17.33 contributor: fullname: Tarzanin – volume: 20 start-page: 167 year: 2000 ident: 10.1016/j.jfluidstructs.2007.02.005_bib7 article-title: The effect of rotation on the boundary layer of a wind turbine blade publication-title: Renewable Energy doi: 10.1016/S0960-1481(99)00109-3 contributor: fullname: Du – year: 1960 ident: 10.1016/j.jfluidstructs.2007.02.005_bib23 contributor: fullname: Thwaites |
SSID | ssj0009431 |
Score | 2.309528 |
Snippet | A model is presented for aerodynamic lift of wind turbine profiles under dynamic stall. The model combines memory delay effects under attached flow with... |
SourceID | proquest crossref pascalfrancis elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 959 |
SubjectTerms | Airfoil flow Airfoils Boundary layer and shear turbulence Delay Dynamic stall Dynamics Exact sciences and technology Fluid dynamics Fundamental areas of phenomenology (including applications) General theory Lift Mathematical models Physics Separation Solid mechanics Stall Structural and continuum mechanics Turbulent flows, convection, and heat transfer Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...) Wind turbines Wing sections |
Title | Dynamic stall model for wind turbine airfoils |
URI | https://dx.doi.org/10.1016/j.jfluidstructs.2007.02.005 https://search.proquest.com/docview/1082203529 https://search.proquest.com/docview/1642217898 https://search.proquest.com/docview/30945969 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5qC6KI-MT6qBG9xja7m2T3IpRqqYq9aKG3sNlNICW0xbZ487c7mwe1SEWQ3MLmNbOZ-b5k9huAG6L9WCJNtpWmGUGRtnAjZTMhfeZprbln1g6_9L3egD0N3WEFOuVaGFNWWcT-PKZn0brY0yys2ZwmSfPVFOggGvZw0pp_S0iBapiOCK9Crf343OsvtXdZ3pbQFPSYAzbhelnmNYrTRaJzsdZZIWloNDzddYlqZypnaL4473vxI4Rneam7B7sFoLTa-T3vQyUaH8D2N5nBQ7Dv87bzFiLBNLWy5jcWglXrAwm5hTkH2XFkyeQ9niTp7AgG3Ye3Ts8u2iTYCtnN3OaK-kL7mLiVE0ncYpcSxYVZmsQJjRx0A6WOq2IPyY3UMtScIYwJQ_QSeogeQ3U8GUcnYLViIiSToeNxh6mQSD-mGcpSiiNQadWBlTYJprkaRlCWiY2CFVOa_pZ-0CIBmrIOd6X9ghXnBhi3_3aCxorVlxcXDjPfrupwVbohwPfD_PSQ42iymBkBVEKM6Kv4ZQySMKRmXPA6XK4ZQ3EaucITp_99ljPYyr4PZwWB51DFEdEFApt52ICN20-nUUzfLwe5-hk |
link.rule.ids | 315,783,787,4509,24128,27936,27937,45597,45691 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB6Kgg9EfGJ9tBG9xjbZTbJ7EaRaqra92EJvy2Y3gZTSFtvizd_ubB7UIhVBcgtDHjOTme_bzM4A3Lo6iCXSZFtpkhIUaXMvUjblMqC-1pr5Zu9wp-u3-vRl4A1K0Cj2wpiyyjz2ZzE9jdb5mVquzdo0SWpvpkAH0bCPTmv-LSEF2qQGH6NT330u6zw4zYYSmnIeI74FN8sir2E8WiQ6a9U6yxsamg6e3ro0tTeVM1RenE29-BHA06zUPID9HE5aD9kTH0IpGh_B7rcmg8dgP2ZD5y3EgaORlY6-sRCqWh9Ixy3MOMiNI0sm7_EkGc1OoN986jVadj4kwVbIbeY2UyTgOsC0rZxI4hF7xFWMm41JzCWRg0YgxPFU7CO1kVqGmlEEMWGINkL7kFPYGE_G0RlY9djlksrQ8ZlDVejKICYpxlKKIUypl4EWOhHTrBeGKIrEhmJFlWa6ZSDqrkBVluG-0J9YMa3AqP23C1RWtL68OXeoWbkqw3VhBoFfh_nlIcfRZDEz7U9d17R85b_IIAVDYsY4K0N1jQxBN_K4z8__-y5V2G71Om3Rfu6-XsBOulKclgZewgZKR1cIceZhJXXhL1Em-vI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+stall+model+for+wind+turbine+airfoils&rft.jtitle=Journal+of+fluids+and+structures&rft.au=Larsen%2C+J+W&rft.au=Nielsen%2C+SRK&rft.au=Krenk%2C+S&rft.date=2007-10-01&rft.issn=0889-9746&rft.eissn=1095-8622&rft.volume=23&rft.issue=7&rft.spage=959&rft.epage=982&rft_id=info:doi/10.1016%2Fj.jfluidstructs.2007.02.005&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0889-9746&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0889-9746&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0889-9746&client=summon |