Infodemiology and Infoveillance: Scoping Review
Web-based sources are increasingly employed in the analysis, detection, and forecasting of diseases and epidemics, and in predicting human behavior toward several health topics. This use of the internet has come to be known as infodemiology, a concept introduced by Gunther Eysenbach. Infodemiology a...
Saved in:
Published in | Journal of medical Internet research Vol. 22; no. 4; p. e16206 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Canada
JMIR Publications
28.04.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 1438-8871 1439-4456 1438-8871 |
DOI | 10.2196/16206 |
Cover
Loading…
Abstract | Web-based sources are increasingly employed in the analysis, detection, and forecasting of diseases and epidemics, and in predicting human behavior toward several health topics. This use of the internet has come to be known as infodemiology, a concept introduced by Gunther Eysenbach. Infodemiology and infoveillance studies use web-based data and have become an integral part of health informatics research over the past decade.
The aim of this paper is to provide a scoping review of the state-of-the-art in infodemiology along with the background and history of the concept, to identify sources and health categories and topics, to elaborate on the validity of the employed methods, and to discuss the gaps identified in current research.
The PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines were followed to extract the publications that fall under the umbrella of infodemiology and infoveillance from the JMIR, PubMed, and Scopus databases. A total of 338 documents were extracted for assessment.
Of the 338 studies, the vast majority (n=282, 83.4%) were published with JMIR Publications. The Journal of Medical Internet Research features almost half of the publications (n=168, 49.7%), and JMIR Public Health and Surveillance has more than one-fifth of the examined studies (n=74, 21.9%). The interest in the subject has been increasing every year, with 2018 featuring more than one-fourth of the total publications (n=89, 26.3%), and the publications in 2017 and 2018 combined accounted for more than half (n=171, 50.6%) of the total number of publications in the last decade. The most popular source was Twitter with 45.0% (n=152), followed by Google with 24.6% (n=83), websites and platforms with 13.9% (n=47), blogs and forums with 10.1% (n=34), Facebook with 8.9% (n=30), and other search engines with 5.6% (n=19). As for the subjects examined, conditions and diseases with 17.2% (n=58) and epidemics and outbreaks with 15.7% (n=53) were the most popular categories identified in this review, followed by health care (n=39, 11.5%), drugs (n=40, 10.4%), and smoking and alcohol (n=29, 8.6%).
The field of infodemiology is becoming increasingly popular, employing innovative methods and approaches for health assessment. The use of web-based sources, which provide us with information that would not be accessible otherwise and tackles the issues arising from the time-consuming traditional methods, shows that infodemiology plays an important role in health informatics research. |
---|---|
AbstractList | BackgroundWeb-based sources are increasingly employed in the analysis, detection, and forecasting of diseases and epidemics, and in predicting human behavior toward several health topics. This use of the internet has come to be known as infodemiology, a concept introduced by Gunther Eysenbach. Infodemiology and infoveillance studies use web-based data and have become an integral part of health informatics research over the past decade. ObjectiveThe aim of this paper is to provide a scoping review of the state-of-the-art in infodemiology along with the background and history of the concept, to identify sources and health categories and topics, to elaborate on the validity of the employed methods, and to discuss the gaps identified in current research. MethodsThe PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines were followed to extract the publications that fall under the umbrella of infodemiology and infoveillance from the JMIR, PubMed, and Scopus databases. A total of 338 documents were extracted for assessment. ResultsOf the 338 studies, the vast majority (n=282, 83.4%) were published with JMIR Publications. The Journal of Medical Internet Research features almost half of the publications (n=168, 49.7%), and JMIR Public Health and Surveillance has more than one-fifth of the examined studies (n=74, 21.9%). The interest in the subject has been increasing every year, with 2018 featuring more than one-fourth of the total publications (n=89, 26.3%), and the publications in 2017 and 2018 combined accounted for more than half (n=171, 50.6%) of the total number of publications in the last decade. The most popular source was Twitter with 45.0% (n=152), followed by Google with 24.6% (n=83), websites and platforms with 13.9% (n=47), blogs and forums with 10.1% (n=34), Facebook with 8.9% (n=30), and other search engines with 5.6% (n=19). As for the subjects examined, conditions and diseases with 17.2% (n=58) and epidemics and outbreaks with 15.7% (n=53) were the most popular categories identified in this review, followed by health care (n=39, 11.5%), drugs (n=40, 10.4%), and smoking and alcohol (n=29, 8.6%). ConclusionsThe field of infodemiology is becoming increasingly popular, employing innovative methods and approaches for health assessment. The use of web-based sources, which provide us with information that would not be accessible otherwise and tackles the issues arising from the time-consuming traditional methods, shows that infodemiology plays an important role in health informatics research. Web-based sources are increasingly employed in the analysis, detection, and forecasting of diseases and epidemics, and in predicting human behavior toward several health topics. This use of the internet has come to be known as infodemiology, a concept introduced by Gunther Eysenbach. Infodemiology and infoveillance studies use web-based data and have become an integral part of health informatics research over the past decade. The aim of this paper is to provide a scoping review of the state-of-the-art in infodemiology along with the background and history of the concept, to identify sources and health categories and topics, to elaborate on the validity of the employed methods, and to discuss the gaps identified in current research. The PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines were followed to extract the publications that fall under the umbrella of infodemiology and infoveillance from the JMIR, PubMed, and Scopus databases. A total of 338 documents were extracted for assessment. Of the 338 studies, the vast majority (n=282, 83.4%) were published with JMIR Publications. The Journal of Medical Internet Research features almost half of the publications (n=168, 49.7%), and JMIR Public Health and Surveillance has more than one-fifth of the examined studies (n=74, 21.9%). The interest in the subject has been increasing every year, with 2018 featuring more than one-fourth of the total publications (n=89, 26.3%), and the publications in 2017 and 2018 combined accounted for more than half (n=171, 50.6%) of the total number of publications in the last decade. The most popular source was Twitter with 45.0% (n=152), followed by Google with 24.6% (n=83), websites and platforms with 13.9% (n=47), blogs and forums with 10.1% (n=34), Facebook with 8.9% (n=30), and other search engines with 5.6% (n=19). As for the subjects examined, conditions and diseases with 17.2% (n=58) and epidemics and outbreaks with 15.7% (n=53) were the most popular categories identified in this review, followed by health care (n=39, 11.5%), drugs (n=40, 10.4%), and smoking and alcohol (n=29, 8.6%). The field of infodemiology is becoming increasingly popular, employing innovative methods and approaches for health assessment. The use of web-based sources, which provide us with information that would not be accessible otherwise and tackles the issues arising from the time-consuming traditional methods, shows that infodemiology plays an important role in health informatics research. Web-based sources are increasingly employed in the analysis, detection, and forecasting of diseases and epidemics, and in predicting human behavior toward several health topics. This use of the internet has come to be known as infodemiology, a concept introduced by Gunther Eysenbach. Infodemiology and infoveillance studies use web-based data and have become an integral part of health informatics research over the past decade.BACKGROUNDWeb-based sources are increasingly employed in the analysis, detection, and forecasting of diseases and epidemics, and in predicting human behavior toward several health topics. This use of the internet has come to be known as infodemiology, a concept introduced by Gunther Eysenbach. Infodemiology and infoveillance studies use web-based data and have become an integral part of health informatics research over the past decade.The aim of this paper is to provide a scoping review of the state-of-the-art in infodemiology along with the background and history of the concept, to identify sources and health categories and topics, to elaborate on the validity of the employed methods, and to discuss the gaps identified in current research.OBJECTIVEThe aim of this paper is to provide a scoping review of the state-of-the-art in infodemiology along with the background and history of the concept, to identify sources and health categories and topics, to elaborate on the validity of the employed methods, and to discuss the gaps identified in current research.The PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines were followed to extract the publications that fall under the umbrella of infodemiology and infoveillance from the JMIR, PubMed, and Scopus databases. A total of 338 documents were extracted for assessment.METHODSThe PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines were followed to extract the publications that fall under the umbrella of infodemiology and infoveillance from the JMIR, PubMed, and Scopus databases. A total of 338 documents were extracted for assessment.Of the 338 studies, the vast majority (n=282, 83.4%) were published with JMIR Publications. The Journal of Medical Internet Research features almost half of the publications (n=168, 49.7%), and JMIR Public Health and Surveillance has more than one-fifth of the examined studies (n=74, 21.9%). The interest in the subject has been increasing every year, with 2018 featuring more than one-fourth of the total publications (n=89, 26.3%), and the publications in 2017 and 2018 combined accounted for more than half (n=171, 50.6%) of the total number of publications in the last decade. The most popular source was Twitter with 45.0% (n=152), followed by Google with 24.6% (n=83), websites and platforms with 13.9% (n=47), blogs and forums with 10.1% (n=34), Facebook with 8.9% (n=30), and other search engines with 5.6% (n=19). As for the subjects examined, conditions and diseases with 17.2% (n=58) and epidemics and outbreaks with 15.7% (n=53) were the most popular categories identified in this review, followed by health care (n=39, 11.5%), drugs (n=40, 10.4%), and smoking and alcohol (n=29, 8.6%).RESULTSOf the 338 studies, the vast majority (n=282, 83.4%) were published with JMIR Publications. The Journal of Medical Internet Research features almost half of the publications (n=168, 49.7%), and JMIR Public Health and Surveillance has more than one-fifth of the examined studies (n=74, 21.9%). The interest in the subject has been increasing every year, with 2018 featuring more than one-fourth of the total publications (n=89, 26.3%), and the publications in 2017 and 2018 combined accounted for more than half (n=171, 50.6%) of the total number of publications in the last decade. The most popular source was Twitter with 45.0% (n=152), followed by Google with 24.6% (n=83), websites and platforms with 13.9% (n=47), blogs and forums with 10.1% (n=34), Facebook with 8.9% (n=30), and other search engines with 5.6% (n=19). As for the subjects examined, conditions and diseases with 17.2% (n=58) and epidemics and outbreaks with 15.7% (n=53) were the most popular categories identified in this review, followed by health care (n=39, 11.5%), drugs (n=40, 10.4%), and smoking and alcohol (n=29, 8.6%).The field of infodemiology is becoming increasingly popular, employing innovative methods and approaches for health assessment. The use of web-based sources, which provide us with information that would not be accessible otherwise and tackles the issues arising from the time-consuming traditional methods, shows that infodemiology plays an important role in health informatics research.CONCLUSIONSThe field of infodemiology is becoming increasingly popular, employing innovative methods and approaches for health assessment. The use of web-based sources, which provide us with information that would not be accessible otherwise and tackles the issues arising from the time-consuming traditional methods, shows that infodemiology plays an important role in health informatics research. |
Author | Mavragani, Amaryllis |
AuthorAffiliation | 1 Department of Computing Science and Mathematics Faculty of Natural Sciences University of Stirling Stirling United Kingdom |
AuthorAffiliation_xml | – name: 1 Department of Computing Science and Mathematics Faculty of Natural Sciences University of Stirling Stirling United Kingdom |
Author_xml | – sequence: 1 givenname: Amaryllis orcidid: 0000-0001-6106-0873 surname: Mavragani fullname: Mavragani, Amaryllis |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32310818$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkdtKw0AQQBdRrFV_QfIiCFLda5L1QZDipSAIXp6XvczGLWm2Jmmlf2_aqrR9mmHmcGaY6aP9KlaA0CnBV5TI9JqkFKd76Ihwlg_yPCP7G3kP9ZtmjDHFXJJD1GOUEZyT_AhdjyofHUxCLGOxSHTlkmVlDqEsdWXhJnmzcRqqInmFeYDvE3TgddnA6W88Rh8P9-_Dp8Hzy-NoePc8sFyKdpA6zjl1xghGUi85WGOopJZb8KClFYAx6G4ZnGVAKRNCc5rl3mZYYOI8O0ajtddFPVbTOkx0vVBRB7UqxLpQum6DLUF1Yi-ZB4czwzFLpaFCewdSypwak3au27VrOjMTcBaqttbllnS7U4VPVcS5ykguM0k6wcWvoI5fM2haNQmNheWFIM4aRZlkWAiZ0g4925z1P-Tv4h1wvgZsHZumBv-PEKyWn1SrT3bc5Q5nQ6vbEJcrhnKH_gH11Jzn |
CitedBy_id | crossref_primary_10_2196_60079 crossref_primary_10_3390_ijerph18147475 crossref_primary_10_1016_j_jadr_2021_100181 crossref_primary_10_2196_22639 crossref_primary_10_1097_RTI_0000000000000785 crossref_primary_10_2196_54874 crossref_primary_10_1186_s12883_021_02258_w crossref_primary_10_1007_s10552_021_01409_1 crossref_primary_10_2196_36525 crossref_primary_10_4236_psych_2024_158079 crossref_primary_10_2196_27805 crossref_primary_10_3390_bs12070223 crossref_primary_10_1111_jep_13656 crossref_primary_10_1097_CIN_0000000000001138 crossref_primary_10_2196_28975 crossref_primary_10_3390_nu15173773 crossref_primary_10_2196_21820 crossref_primary_10_1080_23800992_2021_1956777 crossref_primary_10_2196_36771 crossref_primary_10_3390_world5040061 crossref_primary_10_2196_52287 crossref_primary_10_1016_j_artmed_2024_102900 crossref_primary_10_2196_19611 crossref_primary_10_1007_s00405_022_07814_9 crossref_primary_10_2196_22189 crossref_primary_10_1016_j_mayocpiqo_2021_02_010 crossref_primary_10_2196_21656 crossref_primary_10_2196_47826 crossref_primary_10_1186_s12890_021_01602_7 crossref_primary_10_3389_fdata_2023_1132764 crossref_primary_10_2196_25977 crossref_primary_10_1016_j_vacune_2024_04_002 crossref_primary_10_35608_ruraled_v38i1_234 crossref_primary_10_1016_j_chiabu_2022_105868 crossref_primary_10_1515_jom_2021_0281 crossref_primary_10_2196_32386 crossref_primary_10_1080_10810730_2021_1987590 crossref_primary_10_1136_bmjopen_2020_040671 crossref_primary_10_1038_s41598_022_13663_7 crossref_primary_10_2196_31732 crossref_primary_10_2196_24554 crossref_primary_10_2196_40160 crossref_primary_10_1071_SH21222 crossref_primary_10_1109_ACCESS_2021_3110972 crossref_primary_10_25259_IJDVL_845_2021 crossref_primary_10_18332_tid_145941 crossref_primary_10_2196_29600 crossref_primary_10_2147_JMDH_S346930 crossref_primary_10_3145_epi_2021_ene_19 crossref_primary_10_2196_21963 crossref_primary_10_2196_42623 crossref_primary_10_3389_fimmu_2022_884211 crossref_primary_10_17269_s41997_021_00575_8 crossref_primary_10_2196_37840 crossref_primary_10_3390_brainsci13111503 crossref_primary_10_2196_39105 crossref_primary_10_1111_phn_12903 crossref_primary_10_1038_s41746_021_00407_6 crossref_primary_10_2196_60282 crossref_primary_10_3390_epidemiologia5030034 crossref_primary_10_7717_peerj_cs_1518 crossref_primary_10_2196_22880 crossref_primary_10_2196_23970 crossref_primary_10_2196_28749 crossref_primary_10_1016_j_vacun_2024_02_004 crossref_primary_10_3389_fpubh_2022_834926 crossref_primary_10_1188_21_ONF_131_145 crossref_primary_10_5812_archcid_127022 crossref_primary_10_1080_14764172_2024_2367456 crossref_primary_10_2196_27052 crossref_primary_10_1007_s11023_022_09610_0 crossref_primary_10_17269_s41997_025_01015_7 crossref_primary_10_2196_19788 crossref_primary_10_1002_smi_3385 crossref_primary_10_1136_ip_2023_045014 crossref_primary_10_1186_s12913_023_10357_2 crossref_primary_10_3390_ijerph182312833 crossref_primary_10_2196_33577 crossref_primary_10_2196_23366 crossref_primary_10_2196_18581 crossref_primary_10_2196_25422 crossref_primary_10_2196_40380 crossref_primary_10_2196_44586 crossref_primary_10_11144_Javeriana_rgps20_drsr crossref_primary_10_2196_25703 crossref_primary_10_2196_48789 crossref_primary_10_2196_20775 crossref_primary_10_2196_42721 crossref_primary_10_1016_j_health_2023_100158 crossref_primary_10_1186_s12889_023_17617_0 crossref_primary_10_2196_20803 crossref_primary_10_1016_j_ijid_2021_07_031 crossref_primary_10_1016_j_yebeh_2021_108377 crossref_primary_10_2196_31961 crossref_primary_10_3389_fpsyg_2022_908213 crossref_primary_10_1016_j_health_2023_100272 crossref_primary_10_2196_33587 crossref_primary_10_1371_journal_pone_0299092 crossref_primary_10_2196_25651 crossref_primary_10_2196_47582 crossref_primary_10_2196_37790 crossref_primary_10_2196_27310 crossref_primary_10_26633_RPSP_2021_43 crossref_primary_10_2196_44356 crossref_primary_10_2196_27314 crossref_primary_10_1007_s00132_022_04238_5 crossref_primary_10_1186_s12874_022_01610_z crossref_primary_10_3389_fdata_2024_1365417 crossref_primary_10_2196_37115 crossref_primary_10_1007_s10389_023_01940_2 crossref_primary_10_1038_s41598_021_84091_2 crossref_primary_10_2196_49185 crossref_primary_10_1016_j_imu_2022_100942 crossref_primary_10_2196_37518 crossref_primary_10_2139_ssrn_4105828 crossref_primary_10_2196_53328 crossref_primary_10_1590_1807_3107bor_2023_vol37_0103 crossref_primary_10_1093_jamiaopen_ooae104 crossref_primary_10_1111_hir_12421 crossref_primary_10_1016_j_hlpt_2022_100605 crossref_primary_10_1038_s41598_020_77275_9 crossref_primary_10_2196_40814 crossref_primary_10_3389_fdgth_2024_1399992 crossref_primary_10_3390_vaccines9040315 crossref_primary_10_14412_2074_2711_2021_6_73_84 crossref_primary_10_2196_27183 crossref_primary_10_1136_bmjopen_2022_066897 crossref_primary_10_2196_19556 crossref_primary_10_1186_s12906_022_03586_1 crossref_primary_10_1515_jom_2024_0015 crossref_primary_10_3389_fpubh_2022_890469 crossref_primary_10_2196_45392 crossref_primary_10_2196_24742 crossref_primary_10_1590_0102_311x00270720 crossref_primary_10_1016_j_onehlt_2023_100657 crossref_primary_10_34104_ejmhs_021_01470160 crossref_primary_10_3390_su13158528 |
Cites_doi | 10.2196/jmir.7022 10.2196/publichealth.7314 10.2196/publichealth.4488 10.2196/jmir.7486 10.2196/jmir.4981 10.2196/jmir.9413 10.2196/jmir.4955 10.2196/publichealth.8198 10.2196/publichealth.8641 10.1007/s00038-014-0581-7 10.2196/jmir.9267 10.2196/10262 10.2196/12206 10.2196/jmir.5585 10.2196/publichealth.8950 10.2196/publichealth.4777 10.2196/10911 10.2196/publichealth.8078 10.2196/jmir.2846 10.2196/publichealth.7217 10.2196/publichealth.4472 10.2196/11361 10.2196/jmir.8221 10.2196/jmir.7452 10.2196/mental.8141 10.2196/10057 10.2196/jmir.3680 10.2196/mental.9120 10.2196/jmir.3247 10.1186/s40537-018-0166-z 10.1016/j.ijmedinf.2017.09.002 10.2196/jmir.4308 10.2196/jmir.7393 10.1016/j.techfore.2016.04.028 10.2196/jmir.7137 10.2196/jmir.3970 10.2196/jmir.5780 10.1186/s40537-018-0126-7 10.2196/jmir.9222 10.2196/jmir.2181 10.2196/jmir.6670 10.2196/11177 10.2196/jmir.2102 10.2196/publichealth.8015 10.2196/jmir.5409 10.1186/s40537-018-0140-9 10.2196/jmir.3430 10.2196/jmir.4392 10.1186/1742-4682-11-S1-S6 10.2196/publichealth.7794 10.2196/medinform.9162 10.2196/jmir.2270 10.2196/jmir.3532 10.2196/jmir.5144 10.2196/jmir.9717 10.2196/publichealth.8391 10.3390/bdcc2010002 10.2196/publichealth.5059 10.2196/publichealth.8627 10.2196/jmir.3622 10.1016/j.amepre.2011.02.006 10.7326/M18-0850 10.2196/jmir.2838 10.2196/publichealth.7157 10.2196/publichealth.5814 10.2196/jmir.2534 10.2196/jmir.3099 10.2196/publichealth.7004 10.2196/jmir.4969 10.2196/jmir.4466 10.2196/publichealth.8133 10.2196/10834 10.2196/jmir.7276 10.2196/publichealth.6551 10.2196/jmir.5327 10.2196/publichealth.3310 10.2196/mhealth.7177 10.2196/publichealth.5304 10.2196/jmir.8871 10.2196/mental.9533 10.2196/jmir.3768 10.2196/publichealth.8060 10.2196/10327 10.2196/jmir.5802 10.2196/publichealth.4831 10.2196/10720 10.2196/10827 10.2196/publichealth.5789 10.2196/11817 10.2196/jmir.9373 10.2196/jmir.3646 10.2196/mental.4822 10.2196/publichealth.8507 10.2196/jmir.3863 10.2196/10244 10.2196/jmir.9266 10.2196/publichealth.8186 10.2196/jmir.4516 10.2196/jmir.9366 10.1016/s0002-9343(02)01473-0 10.2196/publichealth.8726 10.2196/jmir.1722 10.2196/jmir.2968 10.2196/11483 10.2196/mhealth.7623 10.2196/jmir.9355 10.2196/ijmr.9065 10.2196/publichealth.5205 10.2196/publichealth.4809 10.2196/jmir.2741 10.2196/diabetes.8966 10.2196/publichealth.6577 10.2196/jmir.8184 10.2196/jmir.7508 10.2196/jmir.7819 10.1177/0961203317691372 10.2196/jmir.7467 10.2196/jmir.3203 10.2196/jmir.2653 10.2196/10150 10.2196/publichealth.7304 10.2196/13439 10.2196/jmir.6815 10.2196/jmir.1157 10.2196/jmir.4103 10.2196/publichealth.6925 10.2196/publichealth.5901 10.2196/jmir.6486 10.2196/publichealth.8144 10.2196/mental.7797 10.2196/jmir.2911 10.2196/jmir.6.2.e20 10.2196/jmir.8870 10.2196/10513 10.2196/jmir.4517 10.2196/11669 10.2196/diabetes.6468 10.2196/publichealth.7015 10.2196/jmir.2614 10.2196/jmir.3763 10.2196/medinform.7779 10.2196/jmir.5694 10.2196/diabetes.6256 10.2196/jmir.4343 10.2196/jmir.7215 10.2196/jmir.6045 10.2196/10180 10.2196/jmir.6240 10.2196/jmir.2936 10.2196/publichealth.7359 10.2196/mental.9152 10.2196/jmir.2740 |
ContentType | Journal Article |
Copyright | Amaryllis Mavragani. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 28.04.2020. Amaryllis Mavragani. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 28.04.2020. 2020 |
Copyright_xml | – notice: Amaryllis Mavragani. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 28.04.2020. – notice: Amaryllis Mavragani. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 28.04.2020. 2020 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM DOA |
DOI | 10.2196/16206 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Open Access Full Text |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Library & Information Science |
EISSN | 1438-8871 |
ExternalDocumentID | oai_doaj_org_article_b29f93fed07b40369b25afde99982bb6 PMC7189791 32310818 10_2196_16206 |
Genre | Journal Article Scoping Review |
GroupedDBID | --- .4I .DC 29L 2WC 36B 53G 5GY 5VS 77K 7RV 7X7 8FI 8FJ AAFWJ AAKPC AAWTL AAYXX ABDBF ABIVO ABUWG ACGFO ADBBV AEGXH AENEX AFKRA AFPKN AIAGR ALIPV ALMA_UNASSIGNED_HOLDINGS ALSLI AOIJS BAWUL BCNDV BENPR CCPQU CITATION CNYFK CS3 DIK DU5 DWQXO E3Z EAP EBD EBS EJD ELW EMB EMOBN ESX F5P FRP FYUFA GROUPED_DOAJ GX1 HMCUK HYE KQ8 M1O M48 NAPCQ OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PQQKQ RNS RPM SJN SV3 TR2 UKHRP XSB ACUHS CGR CUY CVF ECM EIF NPM PPXIY PRQQA 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c495t-6d4442dbb5316f94ecbb292c4cefea9c5e00ea491077e22355a4278fc70501df3 |
IEDL.DBID | M48 |
ISSN | 1438-8871 1439-4456 |
IngestDate | Wed Aug 27 01:16:49 EDT 2025 Thu Aug 21 13:29:18 EDT 2025 Mon Jul 21 10:15:00 EDT 2025 Mon Jul 21 05:27:06 EDT 2025 Tue Jul 01 02:05:48 EDT 2025 Thu Apr 24 23:10:37 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | big data web-based data infodemiology review infoveillance internet |
Language | English |
License | Amaryllis Mavragani. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 28.04.2020. This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in the Journal of Medical Internet Research, is properly cited. The complete bibliographic information, a link to the original publication on http://www.jmir.org/, as well as this copyright and license information must be included. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c495t-6d4442dbb5316f94ecbb292c4cefea9c5e00ea491077e22355a4278fc70501df3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0001-6106-0873 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.2196/16206 |
PMID | 32310818 |
PQID | 2393055962 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_b29f93fed07b40369b25afde99982bb6 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7189791 proquest_miscellaneous_2393055962 pubmed_primary_32310818 crossref_primary_10_2196_16206 crossref_citationtrail_10_2196_16206 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-04-28 |
PublicationDateYYYYMMDD | 2020-04-28 |
PublicationDate_xml | – month: 04 year: 2020 text: 2020-04-28 day: 28 |
PublicationDecade | 2020 |
PublicationPlace | Canada |
PublicationPlace_xml | – name: Canada – name: Toronto, Canada |
PublicationTitle | Journal of medical Internet research |
PublicationTitleAlternate | J Med Internet Res |
PublicationYear | 2020 |
Publisher | JMIR Publications |
Publisher_xml | – name: JMIR Publications |
References | ref57 ref56 ref59 ref58 ref53 ref52 ref55 ref54 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref100 ref101 ref40 ref35 ref34 ref37 ref36 ref31 ref148 ref30 ref149 ref33 ref146 ref32 ref147 ref39 ref38 ref155 ref156 ref153 ref154 ref151 ref152 ref150 ref24 ref23 ref26 ref25 ref20 ref22 ref157 ref21 ref158 ref28 ref27 ref29 ref13 ref12 ref15 ref128 ref14 ref129 ref97 ref126 ref96 ref127 ref11 ref99 ref124 ref10 ref98 ref125 ref17 ref16 ref19 ref18 ref93 ref133 ref92 ref134 ref95 ref131 ref94 ref132 ref130 ref91 ref90 ref89 ref139 ref86 ref137 ref85 ref138 ref88 ref135 ref87 ref136 Eysenbach, G (ref5) 2006 ref82 ref144 ref81 ref145 ref84 ref142 ref83 ref143 ref140 ref141 ref80 ref79 ref108 ref78 ref109 ref106 ref107 ref75 ref104 ref74 ref105 ref77 ref102 ref76 ref103 ref2 ref1 ref71 ref111 ref70 ref112 ref73 ref72 ref110 ref68 ref119 ref67 ref117 ref69 ref118 ref64 ref115 ref63 ref116 ref66 ref113 ref65 ref114 ref60 ref122 ref123 ref62 ref120 ref61 ref121 |
References_xml | – ident: ref115 doi: 10.2196/jmir.7022 – ident: ref146 doi: 10.2196/publichealth.7314 – ident: ref77 doi: 10.2196/publichealth.4488 – ident: ref69 doi: 10.2196/jmir.7486 – ident: ref108 doi: 10.2196/jmir.4981 – ident: ref82 doi: 10.2196/jmir.9413 – ident: ref41 doi: 10.2196/jmir.4955 – ident: ref65 doi: 10.2196/publichealth.8198 – ident: ref118 doi: 10.2196/publichealth.8641 – ident: ref35 doi: 10.1007/s00038-014-0581-7 – ident: ref99 doi: 10.2196/jmir.9267 – ident: ref14 doi: 10.2196/10262 – ident: ref52 doi: 10.2196/12206 – ident: ref70 doi: 10.2196/jmir.5585 – ident: ref71 doi: 10.2196/publichealth.8950 – ident: ref120 doi: 10.2196/publichealth.4777 – ident: ref144 doi: 10.2196/10911 – ident: ref37 doi: 10.2196/publichealth.8078 – ident: ref154 doi: 10.2196/jmir.2846 – ident: ref22 doi: 10.2196/publichealth.7217 – ident: ref64 doi: 10.2196/publichealth.4472 – ident: ref74 doi: 10.2196/11361 – ident: ref12 doi: 10.2196/jmir.8221 – ident: ref102 doi: 10.2196/jmir.7452 – ident: ref103 doi: 10.2196/mental.8141 – ident: ref54 doi: 10.2196/10057 – ident: ref40 doi: 10.2196/jmir.3680 – ident: ref104 doi: 10.2196/mental.9120 – ident: ref97 doi: 10.2196/jmir.3247 – ident: ref8 doi: 10.1186/s40537-018-0166-z – ident: ref58 doi: 10.1016/j.ijmedinf.2017.09.002 – ident: ref44 doi: 10.2196/jmir.4308 – ident: ref68 doi: 10.2196/jmir.7393 – ident: ref9 doi: 10.1016/j.techfore.2016.04.028 – ident: ref95 doi: 10.2196/jmir.7137 – ident: ref20 doi: 10.2196/jmir.3970 – ident: ref117 doi: 10.2196/jmir.5780 – ident: ref79 doi: 10.1186/s40537-018-0126-7 – ident: ref48 doi: 10.2196/jmir.9222 – ident: ref105 doi: 10.2196/jmir.2181 – ident: ref153 doi: 10.2196/jmir.6670 – ident: ref134 doi: 10.2196/11177 – ident: ref73 doi: 10.2196/jmir.2102 – ident: ref75 doi: 10.2196/publichealth.8015 – ident: ref138 doi: 10.2196/jmir.5409 – ident: ref30 doi: 10.1186/s40537-018-0140-9 – ident: ref112 doi: 10.2196/jmir.3430 – ident: ref122 doi: 10.2196/jmir.4392 – ident: ref76 doi: 10.1186/1742-4682-11-S1-S6 – ident: ref145 doi: 10.2196/publichealth.7794 – ident: ref142 doi: 10.2196/medinform.9162 – ident: ref33 doi: 10.2196/jmir.2270 – ident: ref62 doi: 10.2196/jmir.3532 – ident: ref94 doi: 10.2196/jmir.5144 – ident: ref38 doi: 10.2196/jmir.9717 – ident: ref96 doi: 10.2196/publichealth.8391 – ident: ref83 doi: 10.3390/bdcc2010002 – ident: ref81 doi: 10.2196/publichealth.5059 – ident: ref16 doi: 10.2196/publichealth.8627 – ident: ref123 doi: 10.2196/jmir.3622 – ident: ref3 doi: 10.1016/j.amepre.2011.02.006 – ident: ref156 doi: 10.7326/M18-0850 – ident: ref51 doi: 10.2196/jmir.2838 – ident: ref86 doi: 10.2196/publichealth.7157 – ident: ref85 doi: 10.2196/publichealth.5814 – ident: ref113 doi: 10.2196/jmir.2534 – start-page: 244 year: 2006 ident: ref5 publication-title: AMIA Annu Symp Proc – ident: ref60 doi: 10.2196/jmir.3099 – ident: ref56 doi: 10.2196/publichealth.7004 – ident: ref121 doi: 10.2196/jmir.4969 – ident: ref124 doi: 10.2196/jmir.4466 – ident: ref127 doi: 10.2196/publichealth.8133 – ident: ref17 doi: 10.2196/10834 – ident: ref107 doi: 10.2196/jmir.7276 – ident: ref126 doi: 10.2196/publichealth.6551 – ident: ref45 doi: 10.2196/jmir.5327 – ident: ref158 – ident: ref152 doi: 10.2196/publichealth.3310 – ident: ref53 doi: 10.2196/mhealth.7177 – ident: ref110 doi: 10.2196/publichealth.5304 – ident: ref88 doi: 10.2196/jmir.8871 – ident: ref101 doi: 10.2196/mental.9533 – ident: ref114 doi: 10.2196/jmir.3768 – ident: ref125 doi: 10.2196/publichealth.8060 – ident: ref27 doi: 10.2196/10327 – ident: ref32 doi: 10.2196/jmir.5802 – ident: ref147 doi: 10.2196/publichealth.4831 – ident: ref135 doi: 10.2196/10720 – ident: ref15 doi: 10.2196/10827 – ident: ref91 doi: 10.2196/publichealth.5789 – ident: ref98 doi: 10.2196/11817 – ident: ref43 doi: 10.2196/jmir.9373 – ident: ref50 doi: 10.2196/jmir.3646 – ident: ref106 doi: 10.2196/mental.4822 – ident: ref143 doi: 10.2196/publichealth.8507 – ident: ref80 doi: 10.2196/jmir.3863 – ident: ref151 doi: 10.2196/10244 – ident: ref11 doi: 10.2196/jmir.9266 – ident: ref84 doi: 10.2196/publichealth.8186 – ident: ref28 doi: 10.2196/jmir.4516 – ident: ref92 doi: 10.2196/jmir.9366 – ident: ref155 – ident: ref2 doi: 10.1016/s0002-9343(02)01473-0 – ident: ref31 doi: 10.2196/publichealth.8726 – ident: ref67 doi: 10.2196/jmir.1722 – ident: ref136 doi: 10.2196/jmir.2968 – ident: ref13 doi: 10.2196/11483 – ident: ref42 doi: 10.2196/mhealth.7623 – ident: ref55 doi: 10.2196/jmir.9355 – ident: ref57 doi: 10.2196/ijmr.9065 – ident: ref148 doi: 10.2196/publichealth.5205 – ident: ref128 doi: 10.2196/publichealth.4809 – ident: ref93 doi: 10.2196/jmir.2741 – ident: ref133 doi: 10.2196/diabetes.8966 – ident: ref47 doi: 10.2196/publichealth.6577 – ident: ref61 doi: 10.2196/jmir.8184 – ident: ref141 doi: 10.2196/jmir.7508 – ident: ref49 doi: 10.2196/jmir.7819 – ident: ref7 – ident: ref26 doi: 10.1177/0961203317691372 – ident: ref21 doi: 10.2196/jmir.7467 – ident: ref34 doi: 10.2196/jmir.3203 – ident: ref111 doi: 10.2196/jmir.2653 – ident: ref24 doi: 10.2196/10150 – ident: ref63 doi: 10.2196/publichealth.7304 – ident: ref10 doi: 10.2196/13439 – ident: ref18 doi: 10.2196/jmir.6815 – ident: ref1 doi: 10.2196/jmir.1157 – ident: ref90 doi: 10.2196/10057 – ident: ref137 doi: 10.2196/jmir.4103 – ident: ref87 doi: 10.2196/publichealth.6925 – ident: ref59 doi: 10.2196/publichealth.5901 – ident: ref19 doi: 10.2196/jmir.6486 – ident: ref23 doi: 10.2196/publichealth.8144 – ident: ref46 doi: 10.2196/mental.7797 – ident: ref66 doi: 10.2196/jmir.2911 – ident: ref4 doi: 10.2196/jmir.6.2.e20 – ident: ref25 doi: 10.2196/jmir.8870 – ident: ref129 doi: 10.2196/10513 – ident: ref119 doi: 10.2196/jmir.4517 – ident: ref130 doi: 10.2196/11669 – ident: ref132 doi: 10.2196/diabetes.6468 – ident: ref140 doi: 10.2196/publichealth.7015 – ident: ref39 doi: 10.2196/jmir.2614 – ident: ref72 doi: 10.2196/jmir.3763 – ident: ref157 – ident: ref139 doi: 10.2196/medinform.7779 – ident: ref109 doi: 10.2196/jmir.5694 – ident: ref131 doi: 10.2196/diabetes.6256 – ident: ref150 doi: 10.2196/jmir.4343 – ident: ref89 doi: 10.2196/jmir.7215 – ident: ref149 doi: 10.2196/jmir.6045 – ident: ref29 doi: 10.2196/10180 – ident: ref36 doi: 10.2196/jmir.6240 – ident: ref78 doi: 10.2196/jmir.2936 – ident: ref116 doi: 10.2196/publichealth.7359 – ident: ref100 doi: 10.2196/mental.9152 – ident: ref6 doi: 10.2196/jmir.2740 |
SSID | ssj0020491 |
Score | 2.608704 |
SecondaryResourceType | review_article |
Snippet | Web-based sources are increasingly employed in the analysis, detection, and forecasting of diseases and epidemics, and in predicting human behavior toward... BackgroundWeb-based sources are increasingly employed in the analysis, detection, and forecasting of diseases and epidemics, and in predicting human behavior... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e16206 |
SubjectTerms | Humans Internet Medical Informatics - methods Review Search Engine - trends |
SummonAdditionalLinks | – databaseName: DOAJ Open Access Full Text dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fS-QwEB7Eh0WQ49T70fMHFY57K5t2k6bxTUURQZ8U9q0k6QQPju6hu8L99zeTZpddObgXX5tJG2aS5hsm-T6A774R6BVrhMnGF7IUtmic7Qrsaq0d_zNj9fzuvr55lLdTNV2T-uIzYQM98OC4satMMJOAndBOcldXKRs6JGDTVM5Fsm3a85bJVEq1CPeWI9jlg840xcZlXbGk0drOEwn6_4Uq3x6OXNttrj_ChwQT8_NheHuwhf0-HKdLBvmPPN0iYq_maXnuw-guFcoPYMwGS-nXP7ntu9jlFVlkiIzPqFe8KpUPxYFP8Hh99XB5UyRthMJTSjMv6k5KWXXO0Rqqg5HoHXmq8tJjQGu8QiHQkheE1kgQQCnLohrBa6FE2YXJZ9juZz1-hbzU6I119DJDv00jm0CgRmIwpWc2fZVRRJPfWp-Iw1m_4ldLCQS7t43uzeBkZfZ7YMp4a3DBTl81MrF1fEDhblO42_-FO4PTZchaWghc3bA9zhYvLXO5CcViQhl8GUK4-tSEUSxBkwz0RnA3xrLZ0v98imTbtHcbbcpv7zH4Q9ipOF0XsqiaI9iePy_wmDDN3J3E6fsXYfT1xw priority: 102 providerName: Directory of Open Access Journals |
Title | Infodemiology and Infoveillance: Scoping Review |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32310818 https://www.proquest.com/docview/2393055962 https://pubmed.ncbi.nlm.nih.gov/PMC7189791 https://doaj.org/article/b29f93fed07b40369b25afde99982bb6 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1RSxwxEB5aBSmUYm1rr-qyhdK3rdlcstkURFQUKZwV6YFvS5JNWkH29DxL_fedycXDFcGXfdhNspuZTPLNTjIfwBdXM-8kcYSJ2hWiZKaorWkL31ZKWZozY_R8dFIdj8WPc_lgN2ES4M2Trh3xSY2nl9_-Xd_tosHv0DZmHEDbZcUp6fYyLkaK2BtGYhFI4AiAo88l0K7RnsoVeN2r1luOYtb-p6Dm4x2TD5ago1V4k7BjvjdX9lt44bs12EonD_KveTpaRKLOk82uwcooRc_fwTYVuOeDvctN18Yqfz0xD2Hh71grnp_K5xGD9zA-Ovx1cFwkwoTCoZ8zK6pWCMFba9GwqqCFd9ZyzZ1wPnijnfSMeYMSYUp5xAVSGmLaCE4xyco2DD_AUjfp_EfIS-WdNhYb0ziXalEHRDrCB106SrEvB6jmJLfGpWziRGpx2aBXQeJtongHkC2KXc3TZzwusE9CXzykbNfxxmT6u0nG02Angh4G3zJlBQ0fy6UJrUdwW3NrsZHP9ypr0Doo5GE6P7m9aSjBG5PEMDSA9bkKF68aErRFvDIA1VNu71v6T7qLPzEDNy7oWuny03O924BXnPxzJgpeb8LSbHrrtxDEzGwGL9W5ymB5__Dk9CyLvwLwOip_ZnEA_wfWrPOp |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Infodemiology+and+Infoveillance%3A+Scoping+Review&rft.jtitle=Journal+of+medical+Internet+research&rft.au=Mavragani%2C+Amaryllis&rft.date=2020-04-28&rft.issn=1438-8871&rft.eissn=1438-8871&rft.volume=22&rft.issue=4&rft.spage=e16206&rft_id=info:doi/10.2196%2F16206&rft.externalDBID=n%2Fa&rft.externalDocID=10_2196_16206 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1438-8871&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1438-8871&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1438-8871&client=summon |