Infodemiology and Infoveillance: Scoping Review

Web-based sources are increasingly employed in the analysis, detection, and forecasting of diseases and epidemics, and in predicting human behavior toward several health topics. This use of the internet has come to be known as infodemiology, a concept introduced by Gunther Eysenbach. Infodemiology a...

Full description

Saved in:
Bibliographic Details
Published inJournal of medical Internet research Vol. 22; no. 4; p. e16206
Main Author Mavragani, Amaryllis
Format Journal Article
LanguageEnglish
Published Canada JMIR Publications 28.04.2020
Subjects
Online AccessGet full text
ISSN1438-8871
1439-4456
1438-8871
DOI10.2196/16206

Cover

Loading…
Abstract Web-based sources are increasingly employed in the analysis, detection, and forecasting of diseases and epidemics, and in predicting human behavior toward several health topics. This use of the internet has come to be known as infodemiology, a concept introduced by Gunther Eysenbach. Infodemiology and infoveillance studies use web-based data and have become an integral part of health informatics research over the past decade. The aim of this paper is to provide a scoping review of the state-of-the-art in infodemiology along with the background and history of the concept, to identify sources and health categories and topics, to elaborate on the validity of the employed methods, and to discuss the gaps identified in current research. The PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines were followed to extract the publications that fall under the umbrella of infodemiology and infoveillance from the JMIR, PubMed, and Scopus databases. A total of 338 documents were extracted for assessment. Of the 338 studies, the vast majority (n=282, 83.4%) were published with JMIR Publications. The Journal of Medical Internet Research features almost half of the publications (n=168, 49.7%), and JMIR Public Health and Surveillance has more than one-fifth of the examined studies (n=74, 21.9%). The interest in the subject has been increasing every year, with 2018 featuring more than one-fourth of the total publications (n=89, 26.3%), and the publications in 2017 and 2018 combined accounted for more than half (n=171, 50.6%) of the total number of publications in the last decade. The most popular source was Twitter with 45.0% (n=152), followed by Google with 24.6% (n=83), websites and platforms with 13.9% (n=47), blogs and forums with 10.1% (n=34), Facebook with 8.9% (n=30), and other search engines with 5.6% (n=19). As for the subjects examined, conditions and diseases with 17.2% (n=58) and epidemics and outbreaks with 15.7% (n=53) were the most popular categories identified in this review, followed by health care (n=39, 11.5%), drugs (n=40, 10.4%), and smoking and alcohol (n=29, 8.6%). The field of infodemiology is becoming increasingly popular, employing innovative methods and approaches for health assessment. The use of web-based sources, which provide us with information that would not be accessible otherwise and tackles the issues arising from the time-consuming traditional methods, shows that infodemiology plays an important role in health informatics research.
AbstractList BackgroundWeb-based sources are increasingly employed in the analysis, detection, and forecasting of diseases and epidemics, and in predicting human behavior toward several health topics. This use of the internet has come to be known as infodemiology, a concept introduced by Gunther Eysenbach. Infodemiology and infoveillance studies use web-based data and have become an integral part of health informatics research over the past decade. ObjectiveThe aim of this paper is to provide a scoping review of the state-of-the-art in infodemiology along with the background and history of the concept, to identify sources and health categories and topics, to elaborate on the validity of the employed methods, and to discuss the gaps identified in current research. MethodsThe PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines were followed to extract the publications that fall under the umbrella of infodemiology and infoveillance from the JMIR, PubMed, and Scopus databases. A total of 338 documents were extracted for assessment. ResultsOf the 338 studies, the vast majority (n=282, 83.4%) were published with JMIR Publications. The Journal of Medical Internet Research features almost half of the publications (n=168, 49.7%), and JMIR Public Health and Surveillance has more than one-fifth of the examined studies (n=74, 21.9%). The interest in the subject has been increasing every year, with 2018 featuring more than one-fourth of the total publications (n=89, 26.3%), and the publications in 2017 and 2018 combined accounted for more than half (n=171, 50.6%) of the total number of publications in the last decade. The most popular source was Twitter with 45.0% (n=152), followed by Google with 24.6% (n=83), websites and platforms with 13.9% (n=47), blogs and forums with 10.1% (n=34), Facebook with 8.9% (n=30), and other search engines with 5.6% (n=19). As for the subjects examined, conditions and diseases with 17.2% (n=58) and epidemics and outbreaks with 15.7% (n=53) were the most popular categories identified in this review, followed by health care (n=39, 11.5%), drugs (n=40, 10.4%), and smoking and alcohol (n=29, 8.6%). ConclusionsThe field of infodemiology is becoming increasingly popular, employing innovative methods and approaches for health assessment. The use of web-based sources, which provide us with information that would not be accessible otherwise and tackles the issues arising from the time-consuming traditional methods, shows that infodemiology plays an important role in health informatics research.
Web-based sources are increasingly employed in the analysis, detection, and forecasting of diseases and epidemics, and in predicting human behavior toward several health topics. This use of the internet has come to be known as infodemiology, a concept introduced by Gunther Eysenbach. Infodemiology and infoveillance studies use web-based data and have become an integral part of health informatics research over the past decade. The aim of this paper is to provide a scoping review of the state-of-the-art in infodemiology along with the background and history of the concept, to identify sources and health categories and topics, to elaborate on the validity of the employed methods, and to discuss the gaps identified in current research. The PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines were followed to extract the publications that fall under the umbrella of infodemiology and infoveillance from the JMIR, PubMed, and Scopus databases. A total of 338 documents were extracted for assessment. Of the 338 studies, the vast majority (n=282, 83.4%) were published with JMIR Publications. The Journal of Medical Internet Research features almost half of the publications (n=168, 49.7%), and JMIR Public Health and Surveillance has more than one-fifth of the examined studies (n=74, 21.9%). The interest in the subject has been increasing every year, with 2018 featuring more than one-fourth of the total publications (n=89, 26.3%), and the publications in 2017 and 2018 combined accounted for more than half (n=171, 50.6%) of the total number of publications in the last decade. The most popular source was Twitter with 45.0% (n=152), followed by Google with 24.6% (n=83), websites and platforms with 13.9% (n=47), blogs and forums with 10.1% (n=34), Facebook with 8.9% (n=30), and other search engines with 5.6% (n=19). As for the subjects examined, conditions and diseases with 17.2% (n=58) and epidemics and outbreaks with 15.7% (n=53) were the most popular categories identified in this review, followed by health care (n=39, 11.5%), drugs (n=40, 10.4%), and smoking and alcohol (n=29, 8.6%). The field of infodemiology is becoming increasingly popular, employing innovative methods and approaches for health assessment. The use of web-based sources, which provide us with information that would not be accessible otherwise and tackles the issues arising from the time-consuming traditional methods, shows that infodemiology plays an important role in health informatics research.
Web-based sources are increasingly employed in the analysis, detection, and forecasting of diseases and epidemics, and in predicting human behavior toward several health topics. This use of the internet has come to be known as infodemiology, a concept introduced by Gunther Eysenbach. Infodemiology and infoveillance studies use web-based data and have become an integral part of health informatics research over the past decade.BACKGROUNDWeb-based sources are increasingly employed in the analysis, detection, and forecasting of diseases and epidemics, and in predicting human behavior toward several health topics. This use of the internet has come to be known as infodemiology, a concept introduced by Gunther Eysenbach. Infodemiology and infoveillance studies use web-based data and have become an integral part of health informatics research over the past decade.The aim of this paper is to provide a scoping review of the state-of-the-art in infodemiology along with the background and history of the concept, to identify sources and health categories and topics, to elaborate on the validity of the employed methods, and to discuss the gaps identified in current research.OBJECTIVEThe aim of this paper is to provide a scoping review of the state-of-the-art in infodemiology along with the background and history of the concept, to identify sources and health categories and topics, to elaborate on the validity of the employed methods, and to discuss the gaps identified in current research.The PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines were followed to extract the publications that fall under the umbrella of infodemiology and infoveillance from the JMIR, PubMed, and Scopus databases. A total of 338 documents were extracted for assessment.METHODSThe PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines were followed to extract the publications that fall under the umbrella of infodemiology and infoveillance from the JMIR, PubMed, and Scopus databases. A total of 338 documents were extracted for assessment.Of the 338 studies, the vast majority (n=282, 83.4%) were published with JMIR Publications. The Journal of Medical Internet Research features almost half of the publications (n=168, 49.7%), and JMIR Public Health and Surveillance has more than one-fifth of the examined studies (n=74, 21.9%). The interest in the subject has been increasing every year, with 2018 featuring more than one-fourth of the total publications (n=89, 26.3%), and the publications in 2017 and 2018 combined accounted for more than half (n=171, 50.6%) of the total number of publications in the last decade. The most popular source was Twitter with 45.0% (n=152), followed by Google with 24.6% (n=83), websites and platforms with 13.9% (n=47), blogs and forums with 10.1% (n=34), Facebook with 8.9% (n=30), and other search engines with 5.6% (n=19). As for the subjects examined, conditions and diseases with 17.2% (n=58) and epidemics and outbreaks with 15.7% (n=53) were the most popular categories identified in this review, followed by health care (n=39, 11.5%), drugs (n=40, 10.4%), and smoking and alcohol (n=29, 8.6%).RESULTSOf the 338 studies, the vast majority (n=282, 83.4%) were published with JMIR Publications. The Journal of Medical Internet Research features almost half of the publications (n=168, 49.7%), and JMIR Public Health and Surveillance has more than one-fifth of the examined studies (n=74, 21.9%). The interest in the subject has been increasing every year, with 2018 featuring more than one-fourth of the total publications (n=89, 26.3%), and the publications in 2017 and 2018 combined accounted for more than half (n=171, 50.6%) of the total number of publications in the last decade. The most popular source was Twitter with 45.0% (n=152), followed by Google with 24.6% (n=83), websites and platforms with 13.9% (n=47), blogs and forums with 10.1% (n=34), Facebook with 8.9% (n=30), and other search engines with 5.6% (n=19). As for the subjects examined, conditions and diseases with 17.2% (n=58) and epidemics and outbreaks with 15.7% (n=53) were the most popular categories identified in this review, followed by health care (n=39, 11.5%), drugs (n=40, 10.4%), and smoking and alcohol (n=29, 8.6%).The field of infodemiology is becoming increasingly popular, employing innovative methods and approaches for health assessment. The use of web-based sources, which provide us with information that would not be accessible otherwise and tackles the issues arising from the time-consuming traditional methods, shows that infodemiology plays an important role in health informatics research.CONCLUSIONSThe field of infodemiology is becoming increasingly popular, employing innovative methods and approaches for health assessment. The use of web-based sources, which provide us with information that would not be accessible otherwise and tackles the issues arising from the time-consuming traditional methods, shows that infodemiology plays an important role in health informatics research.
Author Mavragani, Amaryllis
AuthorAffiliation 1 Department of Computing Science and Mathematics Faculty of Natural Sciences University of Stirling Stirling United Kingdom
AuthorAffiliation_xml – name: 1 Department of Computing Science and Mathematics Faculty of Natural Sciences University of Stirling Stirling United Kingdom
Author_xml – sequence: 1
  givenname: Amaryllis
  orcidid: 0000-0001-6106-0873
  surname: Mavragani
  fullname: Mavragani, Amaryllis
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32310818$$D View this record in MEDLINE/PubMed
BookMark eNpdkdtKw0AQQBdRrFV_QfIiCFLda5L1QZDipSAIXp6XvczGLWm2Jmmlf2_aqrR9mmHmcGaY6aP9KlaA0CnBV5TI9JqkFKd76Ihwlg_yPCP7G3kP9ZtmjDHFXJJD1GOUEZyT_AhdjyofHUxCLGOxSHTlkmVlDqEsdWXhJnmzcRqqInmFeYDvE3TgddnA6W88Rh8P9-_Dp8Hzy-NoePc8sFyKdpA6zjl1xghGUi85WGOopJZb8KClFYAx6G4ZnGVAKRNCc5rl3mZYYOI8O0ajtddFPVbTOkx0vVBRB7UqxLpQum6DLUF1Yi-ZB4czwzFLpaFCewdSypwak3au27VrOjMTcBaqttbllnS7U4VPVcS5ykguM0k6wcWvoI5fM2haNQmNheWFIM4aRZlkWAiZ0g4925z1P-Tv4h1wvgZsHZumBv-PEKyWn1SrT3bc5Q5nQ6vbEJcrhnKH_gH11Jzn
CitedBy_id crossref_primary_10_2196_60079
crossref_primary_10_3390_ijerph18147475
crossref_primary_10_1016_j_jadr_2021_100181
crossref_primary_10_2196_22639
crossref_primary_10_1097_RTI_0000000000000785
crossref_primary_10_2196_54874
crossref_primary_10_1186_s12883_021_02258_w
crossref_primary_10_1007_s10552_021_01409_1
crossref_primary_10_2196_36525
crossref_primary_10_4236_psych_2024_158079
crossref_primary_10_2196_27805
crossref_primary_10_3390_bs12070223
crossref_primary_10_1111_jep_13656
crossref_primary_10_1097_CIN_0000000000001138
crossref_primary_10_2196_28975
crossref_primary_10_3390_nu15173773
crossref_primary_10_2196_21820
crossref_primary_10_1080_23800992_2021_1956777
crossref_primary_10_2196_36771
crossref_primary_10_3390_world5040061
crossref_primary_10_2196_52287
crossref_primary_10_1016_j_artmed_2024_102900
crossref_primary_10_2196_19611
crossref_primary_10_1007_s00405_022_07814_9
crossref_primary_10_2196_22189
crossref_primary_10_1016_j_mayocpiqo_2021_02_010
crossref_primary_10_2196_21656
crossref_primary_10_2196_47826
crossref_primary_10_1186_s12890_021_01602_7
crossref_primary_10_3389_fdata_2023_1132764
crossref_primary_10_2196_25977
crossref_primary_10_1016_j_vacune_2024_04_002
crossref_primary_10_35608_ruraled_v38i1_234
crossref_primary_10_1016_j_chiabu_2022_105868
crossref_primary_10_1515_jom_2021_0281
crossref_primary_10_2196_32386
crossref_primary_10_1080_10810730_2021_1987590
crossref_primary_10_1136_bmjopen_2020_040671
crossref_primary_10_1038_s41598_022_13663_7
crossref_primary_10_2196_31732
crossref_primary_10_2196_24554
crossref_primary_10_2196_40160
crossref_primary_10_1071_SH21222
crossref_primary_10_1109_ACCESS_2021_3110972
crossref_primary_10_25259_IJDVL_845_2021
crossref_primary_10_18332_tid_145941
crossref_primary_10_2196_29600
crossref_primary_10_2147_JMDH_S346930
crossref_primary_10_3145_epi_2021_ene_19
crossref_primary_10_2196_21963
crossref_primary_10_2196_42623
crossref_primary_10_3389_fimmu_2022_884211
crossref_primary_10_17269_s41997_021_00575_8
crossref_primary_10_2196_37840
crossref_primary_10_3390_brainsci13111503
crossref_primary_10_2196_39105
crossref_primary_10_1111_phn_12903
crossref_primary_10_1038_s41746_021_00407_6
crossref_primary_10_2196_60282
crossref_primary_10_3390_epidemiologia5030034
crossref_primary_10_7717_peerj_cs_1518
crossref_primary_10_2196_22880
crossref_primary_10_2196_23970
crossref_primary_10_2196_28749
crossref_primary_10_1016_j_vacun_2024_02_004
crossref_primary_10_3389_fpubh_2022_834926
crossref_primary_10_1188_21_ONF_131_145
crossref_primary_10_5812_archcid_127022
crossref_primary_10_1080_14764172_2024_2367456
crossref_primary_10_2196_27052
crossref_primary_10_1007_s11023_022_09610_0
crossref_primary_10_17269_s41997_025_01015_7
crossref_primary_10_2196_19788
crossref_primary_10_1002_smi_3385
crossref_primary_10_1136_ip_2023_045014
crossref_primary_10_1186_s12913_023_10357_2
crossref_primary_10_3390_ijerph182312833
crossref_primary_10_2196_33577
crossref_primary_10_2196_23366
crossref_primary_10_2196_18581
crossref_primary_10_2196_25422
crossref_primary_10_2196_40380
crossref_primary_10_2196_44586
crossref_primary_10_11144_Javeriana_rgps20_drsr
crossref_primary_10_2196_25703
crossref_primary_10_2196_48789
crossref_primary_10_2196_20775
crossref_primary_10_2196_42721
crossref_primary_10_1016_j_health_2023_100158
crossref_primary_10_1186_s12889_023_17617_0
crossref_primary_10_2196_20803
crossref_primary_10_1016_j_ijid_2021_07_031
crossref_primary_10_1016_j_yebeh_2021_108377
crossref_primary_10_2196_31961
crossref_primary_10_3389_fpsyg_2022_908213
crossref_primary_10_1016_j_health_2023_100272
crossref_primary_10_2196_33587
crossref_primary_10_1371_journal_pone_0299092
crossref_primary_10_2196_25651
crossref_primary_10_2196_47582
crossref_primary_10_2196_37790
crossref_primary_10_2196_27310
crossref_primary_10_26633_RPSP_2021_43
crossref_primary_10_2196_44356
crossref_primary_10_2196_27314
crossref_primary_10_1007_s00132_022_04238_5
crossref_primary_10_1186_s12874_022_01610_z
crossref_primary_10_3389_fdata_2024_1365417
crossref_primary_10_2196_37115
crossref_primary_10_1007_s10389_023_01940_2
crossref_primary_10_1038_s41598_021_84091_2
crossref_primary_10_2196_49185
crossref_primary_10_1016_j_imu_2022_100942
crossref_primary_10_2196_37518
crossref_primary_10_2139_ssrn_4105828
crossref_primary_10_2196_53328
crossref_primary_10_1590_1807_3107bor_2023_vol37_0103
crossref_primary_10_1093_jamiaopen_ooae104
crossref_primary_10_1111_hir_12421
crossref_primary_10_1016_j_hlpt_2022_100605
crossref_primary_10_1038_s41598_020_77275_9
crossref_primary_10_2196_40814
crossref_primary_10_3389_fdgth_2024_1399992
crossref_primary_10_3390_vaccines9040315
crossref_primary_10_14412_2074_2711_2021_6_73_84
crossref_primary_10_2196_27183
crossref_primary_10_1136_bmjopen_2022_066897
crossref_primary_10_2196_19556
crossref_primary_10_1186_s12906_022_03586_1
crossref_primary_10_1515_jom_2024_0015
crossref_primary_10_3389_fpubh_2022_890469
crossref_primary_10_2196_45392
crossref_primary_10_2196_24742
crossref_primary_10_1590_0102_311x00270720
crossref_primary_10_1016_j_onehlt_2023_100657
crossref_primary_10_34104_ejmhs_021_01470160
crossref_primary_10_3390_su13158528
Cites_doi 10.2196/jmir.7022
10.2196/publichealth.7314
10.2196/publichealth.4488
10.2196/jmir.7486
10.2196/jmir.4981
10.2196/jmir.9413
10.2196/jmir.4955
10.2196/publichealth.8198
10.2196/publichealth.8641
10.1007/s00038-014-0581-7
10.2196/jmir.9267
10.2196/10262
10.2196/12206
10.2196/jmir.5585
10.2196/publichealth.8950
10.2196/publichealth.4777
10.2196/10911
10.2196/publichealth.8078
10.2196/jmir.2846
10.2196/publichealth.7217
10.2196/publichealth.4472
10.2196/11361
10.2196/jmir.8221
10.2196/jmir.7452
10.2196/mental.8141
10.2196/10057
10.2196/jmir.3680
10.2196/mental.9120
10.2196/jmir.3247
10.1186/s40537-018-0166-z
10.1016/j.ijmedinf.2017.09.002
10.2196/jmir.4308
10.2196/jmir.7393
10.1016/j.techfore.2016.04.028
10.2196/jmir.7137
10.2196/jmir.3970
10.2196/jmir.5780
10.1186/s40537-018-0126-7
10.2196/jmir.9222
10.2196/jmir.2181
10.2196/jmir.6670
10.2196/11177
10.2196/jmir.2102
10.2196/publichealth.8015
10.2196/jmir.5409
10.1186/s40537-018-0140-9
10.2196/jmir.3430
10.2196/jmir.4392
10.1186/1742-4682-11-S1-S6
10.2196/publichealth.7794
10.2196/medinform.9162
10.2196/jmir.2270
10.2196/jmir.3532
10.2196/jmir.5144
10.2196/jmir.9717
10.2196/publichealth.8391
10.3390/bdcc2010002
10.2196/publichealth.5059
10.2196/publichealth.8627
10.2196/jmir.3622
10.1016/j.amepre.2011.02.006
10.7326/M18-0850
10.2196/jmir.2838
10.2196/publichealth.7157
10.2196/publichealth.5814
10.2196/jmir.2534
10.2196/jmir.3099
10.2196/publichealth.7004
10.2196/jmir.4969
10.2196/jmir.4466
10.2196/publichealth.8133
10.2196/10834
10.2196/jmir.7276
10.2196/publichealth.6551
10.2196/jmir.5327
10.2196/publichealth.3310
10.2196/mhealth.7177
10.2196/publichealth.5304
10.2196/jmir.8871
10.2196/mental.9533
10.2196/jmir.3768
10.2196/publichealth.8060
10.2196/10327
10.2196/jmir.5802
10.2196/publichealth.4831
10.2196/10720
10.2196/10827
10.2196/publichealth.5789
10.2196/11817
10.2196/jmir.9373
10.2196/jmir.3646
10.2196/mental.4822
10.2196/publichealth.8507
10.2196/jmir.3863
10.2196/10244
10.2196/jmir.9266
10.2196/publichealth.8186
10.2196/jmir.4516
10.2196/jmir.9366
10.1016/s0002-9343(02)01473-0
10.2196/publichealth.8726
10.2196/jmir.1722
10.2196/jmir.2968
10.2196/11483
10.2196/mhealth.7623
10.2196/jmir.9355
10.2196/ijmr.9065
10.2196/publichealth.5205
10.2196/publichealth.4809
10.2196/jmir.2741
10.2196/diabetes.8966
10.2196/publichealth.6577
10.2196/jmir.8184
10.2196/jmir.7508
10.2196/jmir.7819
10.1177/0961203317691372
10.2196/jmir.7467
10.2196/jmir.3203
10.2196/jmir.2653
10.2196/10150
10.2196/publichealth.7304
10.2196/13439
10.2196/jmir.6815
10.2196/jmir.1157
10.2196/jmir.4103
10.2196/publichealth.6925
10.2196/publichealth.5901
10.2196/jmir.6486
10.2196/publichealth.8144
10.2196/mental.7797
10.2196/jmir.2911
10.2196/jmir.6.2.e20
10.2196/jmir.8870
10.2196/10513
10.2196/jmir.4517
10.2196/11669
10.2196/diabetes.6468
10.2196/publichealth.7015
10.2196/jmir.2614
10.2196/jmir.3763
10.2196/medinform.7779
10.2196/jmir.5694
10.2196/diabetes.6256
10.2196/jmir.4343
10.2196/jmir.7215
10.2196/jmir.6045
10.2196/10180
10.2196/jmir.6240
10.2196/jmir.2936
10.2196/publichealth.7359
10.2196/mental.9152
10.2196/jmir.2740
ContentType Journal Article
Copyright Amaryllis Mavragani. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 28.04.2020.
Amaryllis Mavragani. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 28.04.2020. 2020
Copyright_xml – notice: Amaryllis Mavragani. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 28.04.2020.
– notice: Amaryllis Mavragani. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 28.04.2020. 2020
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.2196/16206
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Open Access Full Text
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Library & Information Science
EISSN 1438-8871
ExternalDocumentID oai_doaj_org_article_b29f93fed07b40369b25afde99982bb6
PMC7189791
32310818
10_2196_16206
Genre Journal Article
Scoping Review
GroupedDBID ---
.4I
.DC
29L
2WC
36B
53G
5GY
5VS
77K
7RV
7X7
8FI
8FJ
AAFWJ
AAKPC
AAWTL
AAYXX
ABDBF
ABIVO
ABUWG
ACGFO
ADBBV
AEGXH
AENEX
AFKRA
AFPKN
AIAGR
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALSLI
AOIJS
BAWUL
BCNDV
BENPR
CCPQU
CITATION
CNYFK
CS3
DIK
DU5
DWQXO
E3Z
EAP
EBD
EBS
EJD
ELW
EMB
EMOBN
ESX
F5P
FRP
FYUFA
GROUPED_DOAJ
GX1
HMCUK
HYE
KQ8
M1O
M48
NAPCQ
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
RNS
RPM
SJN
SV3
TR2
UKHRP
XSB
ACUHS
CGR
CUY
CVF
ECM
EIF
NPM
PPXIY
PRQQA
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c495t-6d4442dbb5316f94ecbb292c4cefea9c5e00ea491077e22355a4278fc70501df3
IEDL.DBID M48
ISSN 1438-8871
1439-4456
IngestDate Wed Aug 27 01:16:49 EDT 2025
Thu Aug 21 13:29:18 EDT 2025
Mon Jul 21 10:15:00 EDT 2025
Mon Jul 21 05:27:06 EDT 2025
Tue Jul 01 02:05:48 EDT 2025
Thu Apr 24 23:10:37 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords big data
web-based data
infodemiology
review
infoveillance
internet
Language English
License Amaryllis Mavragani. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 28.04.2020.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in the Journal of Medical Internet Research, is properly cited. The complete bibliographic information, a link to the original publication on http://www.jmir.org/, as well as this copyright and license information must be included.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c495t-6d4442dbb5316f94ecbb292c4cefea9c5e00ea491077e22355a4278fc70501df3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0001-6106-0873
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.2196/16206
PMID 32310818
PQID 2393055962
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_b29f93fed07b40369b25afde99982bb6
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7189791
proquest_miscellaneous_2393055962
pubmed_primary_32310818
crossref_primary_10_2196_16206
crossref_citationtrail_10_2196_16206
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-04-28
PublicationDateYYYYMMDD 2020-04-28
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-28
  day: 28
PublicationDecade 2020
PublicationPlace Canada
PublicationPlace_xml – name: Canada
– name: Toronto, Canada
PublicationTitle Journal of medical Internet research
PublicationTitleAlternate J Med Internet Res
PublicationYear 2020
Publisher JMIR Publications
Publisher_xml – name: JMIR Publications
References ref57
ref56
ref59
ref58
ref53
ref52
ref55
ref54
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref100
ref101
ref40
ref35
ref34
ref37
ref36
ref31
ref148
ref30
ref149
ref33
ref146
ref32
ref147
ref39
ref38
ref155
ref156
ref153
ref154
ref151
ref152
ref150
ref24
ref23
ref26
ref25
ref20
ref22
ref157
ref21
ref158
ref28
ref27
ref29
ref13
ref12
ref15
ref128
ref14
ref129
ref97
ref126
ref96
ref127
ref11
ref99
ref124
ref10
ref98
ref125
ref17
ref16
ref19
ref18
ref93
ref133
ref92
ref134
ref95
ref131
ref94
ref132
ref130
ref91
ref90
ref89
ref139
ref86
ref137
ref85
ref138
ref88
ref135
ref87
ref136
Eysenbach, G (ref5) 2006
ref82
ref144
ref81
ref145
ref84
ref142
ref83
ref143
ref140
ref141
ref80
ref79
ref108
ref78
ref109
ref106
ref107
ref75
ref104
ref74
ref105
ref77
ref102
ref76
ref103
ref2
ref1
ref71
ref111
ref70
ref112
ref73
ref72
ref110
ref68
ref119
ref67
ref117
ref69
ref118
ref64
ref115
ref63
ref116
ref66
ref113
ref65
ref114
ref60
ref122
ref123
ref62
ref120
ref61
ref121
References_xml – ident: ref115
  doi: 10.2196/jmir.7022
– ident: ref146
  doi: 10.2196/publichealth.7314
– ident: ref77
  doi: 10.2196/publichealth.4488
– ident: ref69
  doi: 10.2196/jmir.7486
– ident: ref108
  doi: 10.2196/jmir.4981
– ident: ref82
  doi: 10.2196/jmir.9413
– ident: ref41
  doi: 10.2196/jmir.4955
– ident: ref65
  doi: 10.2196/publichealth.8198
– ident: ref118
  doi: 10.2196/publichealth.8641
– ident: ref35
  doi: 10.1007/s00038-014-0581-7
– ident: ref99
  doi: 10.2196/jmir.9267
– ident: ref14
  doi: 10.2196/10262
– ident: ref52
  doi: 10.2196/12206
– ident: ref70
  doi: 10.2196/jmir.5585
– ident: ref71
  doi: 10.2196/publichealth.8950
– ident: ref120
  doi: 10.2196/publichealth.4777
– ident: ref144
  doi: 10.2196/10911
– ident: ref37
  doi: 10.2196/publichealth.8078
– ident: ref154
  doi: 10.2196/jmir.2846
– ident: ref22
  doi: 10.2196/publichealth.7217
– ident: ref64
  doi: 10.2196/publichealth.4472
– ident: ref74
  doi: 10.2196/11361
– ident: ref12
  doi: 10.2196/jmir.8221
– ident: ref102
  doi: 10.2196/jmir.7452
– ident: ref103
  doi: 10.2196/mental.8141
– ident: ref54
  doi: 10.2196/10057
– ident: ref40
  doi: 10.2196/jmir.3680
– ident: ref104
  doi: 10.2196/mental.9120
– ident: ref97
  doi: 10.2196/jmir.3247
– ident: ref8
  doi: 10.1186/s40537-018-0166-z
– ident: ref58
  doi: 10.1016/j.ijmedinf.2017.09.002
– ident: ref44
  doi: 10.2196/jmir.4308
– ident: ref68
  doi: 10.2196/jmir.7393
– ident: ref9
  doi: 10.1016/j.techfore.2016.04.028
– ident: ref95
  doi: 10.2196/jmir.7137
– ident: ref20
  doi: 10.2196/jmir.3970
– ident: ref117
  doi: 10.2196/jmir.5780
– ident: ref79
  doi: 10.1186/s40537-018-0126-7
– ident: ref48
  doi: 10.2196/jmir.9222
– ident: ref105
  doi: 10.2196/jmir.2181
– ident: ref153
  doi: 10.2196/jmir.6670
– ident: ref134
  doi: 10.2196/11177
– ident: ref73
  doi: 10.2196/jmir.2102
– ident: ref75
  doi: 10.2196/publichealth.8015
– ident: ref138
  doi: 10.2196/jmir.5409
– ident: ref30
  doi: 10.1186/s40537-018-0140-9
– ident: ref112
  doi: 10.2196/jmir.3430
– ident: ref122
  doi: 10.2196/jmir.4392
– ident: ref76
  doi: 10.1186/1742-4682-11-S1-S6
– ident: ref145
  doi: 10.2196/publichealth.7794
– ident: ref142
  doi: 10.2196/medinform.9162
– ident: ref33
  doi: 10.2196/jmir.2270
– ident: ref62
  doi: 10.2196/jmir.3532
– ident: ref94
  doi: 10.2196/jmir.5144
– ident: ref38
  doi: 10.2196/jmir.9717
– ident: ref96
  doi: 10.2196/publichealth.8391
– ident: ref83
  doi: 10.3390/bdcc2010002
– ident: ref81
  doi: 10.2196/publichealth.5059
– ident: ref16
  doi: 10.2196/publichealth.8627
– ident: ref123
  doi: 10.2196/jmir.3622
– ident: ref3
  doi: 10.1016/j.amepre.2011.02.006
– ident: ref156
  doi: 10.7326/M18-0850
– ident: ref51
  doi: 10.2196/jmir.2838
– ident: ref86
  doi: 10.2196/publichealth.7157
– ident: ref85
  doi: 10.2196/publichealth.5814
– ident: ref113
  doi: 10.2196/jmir.2534
– start-page: 244
  year: 2006
  ident: ref5
  publication-title: AMIA Annu Symp Proc
– ident: ref60
  doi: 10.2196/jmir.3099
– ident: ref56
  doi: 10.2196/publichealth.7004
– ident: ref121
  doi: 10.2196/jmir.4969
– ident: ref124
  doi: 10.2196/jmir.4466
– ident: ref127
  doi: 10.2196/publichealth.8133
– ident: ref17
  doi: 10.2196/10834
– ident: ref107
  doi: 10.2196/jmir.7276
– ident: ref126
  doi: 10.2196/publichealth.6551
– ident: ref45
  doi: 10.2196/jmir.5327
– ident: ref158
– ident: ref152
  doi: 10.2196/publichealth.3310
– ident: ref53
  doi: 10.2196/mhealth.7177
– ident: ref110
  doi: 10.2196/publichealth.5304
– ident: ref88
  doi: 10.2196/jmir.8871
– ident: ref101
  doi: 10.2196/mental.9533
– ident: ref114
  doi: 10.2196/jmir.3768
– ident: ref125
  doi: 10.2196/publichealth.8060
– ident: ref27
  doi: 10.2196/10327
– ident: ref32
  doi: 10.2196/jmir.5802
– ident: ref147
  doi: 10.2196/publichealth.4831
– ident: ref135
  doi: 10.2196/10720
– ident: ref15
  doi: 10.2196/10827
– ident: ref91
  doi: 10.2196/publichealth.5789
– ident: ref98
  doi: 10.2196/11817
– ident: ref43
  doi: 10.2196/jmir.9373
– ident: ref50
  doi: 10.2196/jmir.3646
– ident: ref106
  doi: 10.2196/mental.4822
– ident: ref143
  doi: 10.2196/publichealth.8507
– ident: ref80
  doi: 10.2196/jmir.3863
– ident: ref151
  doi: 10.2196/10244
– ident: ref11
  doi: 10.2196/jmir.9266
– ident: ref84
  doi: 10.2196/publichealth.8186
– ident: ref28
  doi: 10.2196/jmir.4516
– ident: ref92
  doi: 10.2196/jmir.9366
– ident: ref155
– ident: ref2
  doi: 10.1016/s0002-9343(02)01473-0
– ident: ref31
  doi: 10.2196/publichealth.8726
– ident: ref67
  doi: 10.2196/jmir.1722
– ident: ref136
  doi: 10.2196/jmir.2968
– ident: ref13
  doi: 10.2196/11483
– ident: ref42
  doi: 10.2196/mhealth.7623
– ident: ref55
  doi: 10.2196/jmir.9355
– ident: ref57
  doi: 10.2196/ijmr.9065
– ident: ref148
  doi: 10.2196/publichealth.5205
– ident: ref128
  doi: 10.2196/publichealth.4809
– ident: ref93
  doi: 10.2196/jmir.2741
– ident: ref133
  doi: 10.2196/diabetes.8966
– ident: ref47
  doi: 10.2196/publichealth.6577
– ident: ref61
  doi: 10.2196/jmir.8184
– ident: ref141
  doi: 10.2196/jmir.7508
– ident: ref49
  doi: 10.2196/jmir.7819
– ident: ref7
– ident: ref26
  doi: 10.1177/0961203317691372
– ident: ref21
  doi: 10.2196/jmir.7467
– ident: ref34
  doi: 10.2196/jmir.3203
– ident: ref111
  doi: 10.2196/jmir.2653
– ident: ref24
  doi: 10.2196/10150
– ident: ref63
  doi: 10.2196/publichealth.7304
– ident: ref10
  doi: 10.2196/13439
– ident: ref18
  doi: 10.2196/jmir.6815
– ident: ref1
  doi: 10.2196/jmir.1157
– ident: ref90
  doi: 10.2196/10057
– ident: ref137
  doi: 10.2196/jmir.4103
– ident: ref87
  doi: 10.2196/publichealth.6925
– ident: ref59
  doi: 10.2196/publichealth.5901
– ident: ref19
  doi: 10.2196/jmir.6486
– ident: ref23
  doi: 10.2196/publichealth.8144
– ident: ref46
  doi: 10.2196/mental.7797
– ident: ref66
  doi: 10.2196/jmir.2911
– ident: ref4
  doi: 10.2196/jmir.6.2.e20
– ident: ref25
  doi: 10.2196/jmir.8870
– ident: ref129
  doi: 10.2196/10513
– ident: ref119
  doi: 10.2196/jmir.4517
– ident: ref130
  doi: 10.2196/11669
– ident: ref132
  doi: 10.2196/diabetes.6468
– ident: ref140
  doi: 10.2196/publichealth.7015
– ident: ref39
  doi: 10.2196/jmir.2614
– ident: ref72
  doi: 10.2196/jmir.3763
– ident: ref157
– ident: ref139
  doi: 10.2196/medinform.7779
– ident: ref109
  doi: 10.2196/jmir.5694
– ident: ref131
  doi: 10.2196/diabetes.6256
– ident: ref150
  doi: 10.2196/jmir.4343
– ident: ref89
  doi: 10.2196/jmir.7215
– ident: ref149
  doi: 10.2196/jmir.6045
– ident: ref29
  doi: 10.2196/10180
– ident: ref36
  doi: 10.2196/jmir.6240
– ident: ref78
  doi: 10.2196/jmir.2936
– ident: ref116
  doi: 10.2196/publichealth.7359
– ident: ref100
  doi: 10.2196/mental.9152
– ident: ref6
  doi: 10.2196/jmir.2740
SSID ssj0020491
Score 2.608704
SecondaryResourceType review_article
Snippet Web-based sources are increasingly employed in the analysis, detection, and forecasting of diseases and epidemics, and in predicting human behavior toward...
BackgroundWeb-based sources are increasingly employed in the analysis, detection, and forecasting of diseases and epidemics, and in predicting human behavior...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e16206
SubjectTerms Humans
Internet
Medical Informatics - methods
Review
Search Engine - trends
SummonAdditionalLinks – databaseName: DOAJ Open Access Full Text
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fS-QwEB7Eh0WQ49T70fMHFY57K5t2k6bxTUURQZ8U9q0k6QQPju6hu8L99zeTZpddObgXX5tJG2aS5hsm-T6A774R6BVrhMnGF7IUtmic7Qrsaq0d_zNj9fzuvr55lLdTNV2T-uIzYQM98OC4satMMJOAndBOcldXKRs6JGDTVM5Fsm3a85bJVEq1CPeWI9jlg840xcZlXbGk0drOEwn6_4Uq3x6OXNttrj_ChwQT8_NheHuwhf0-HKdLBvmPPN0iYq_maXnuw-guFcoPYMwGS-nXP7ntu9jlFVlkiIzPqFe8KpUPxYFP8Hh99XB5UyRthMJTSjMv6k5KWXXO0Rqqg5HoHXmq8tJjQGu8QiHQkheE1kgQQCnLohrBa6FE2YXJZ9juZz1-hbzU6I119DJDv00jm0CgRmIwpWc2fZVRRJPfWp-Iw1m_4ldLCQS7t43uzeBkZfZ7YMp4a3DBTl81MrF1fEDhblO42_-FO4PTZchaWghc3bA9zhYvLXO5CcViQhl8GUK4-tSEUSxBkwz0RnA3xrLZ0v98imTbtHcbbcpv7zH4Q9ipOF0XsqiaI9iePy_wmDDN3J3E6fsXYfT1xw
  priority: 102
  providerName: Directory of Open Access Journals
Title Infodemiology and Infoveillance: Scoping Review
URI https://www.ncbi.nlm.nih.gov/pubmed/32310818
https://www.proquest.com/docview/2393055962
https://pubmed.ncbi.nlm.nih.gov/PMC7189791
https://doaj.org/article/b29f93fed07b40369b25afde99982bb6
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1RSxwxEB5aBSmUYm1rr-qyhdK3rdlcstkURFQUKZwV6YFvS5JNWkH29DxL_fedycXDFcGXfdhNspuZTPLNTjIfwBdXM-8kcYSJ2hWiZKaorWkL31ZKWZozY_R8dFIdj8WPc_lgN2ES4M2Trh3xSY2nl9_-Xd_tosHv0DZmHEDbZcUp6fYyLkaK2BtGYhFI4AiAo88l0K7RnsoVeN2r1luOYtb-p6Dm4x2TD5ago1V4k7BjvjdX9lt44bs12EonD_KveTpaRKLOk82uwcooRc_fwTYVuOeDvctN18Yqfz0xD2Hh71grnp_K5xGD9zA-Ovx1cFwkwoTCoZ8zK6pWCMFba9GwqqCFd9ZyzZ1wPnijnfSMeYMSYUp5xAVSGmLaCE4xyco2DD_AUjfp_EfIS-WdNhYb0ziXalEHRDrCB106SrEvB6jmJLfGpWziRGpx2aBXQeJtongHkC2KXc3TZzwusE9CXzykbNfxxmT6u0nG02Angh4G3zJlBQ0fy6UJrUdwW3NrsZHP9ypr0Doo5GE6P7m9aSjBG5PEMDSA9bkKF68aErRFvDIA1VNu71v6T7qLPzEDNy7oWuny03O924BXnPxzJgpeb8LSbHrrtxDEzGwGL9W5ymB5__Dk9CyLvwLwOip_ZnEA_wfWrPOp
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Infodemiology+and+Infoveillance%3A+Scoping+Review&rft.jtitle=Journal+of+medical+Internet+research&rft.au=Mavragani%2C+Amaryllis&rft.date=2020-04-28&rft.issn=1438-8871&rft.eissn=1438-8871&rft.volume=22&rft.issue=4&rft.spage=e16206&rft_id=info:doi/10.2196%2F16206&rft.externalDBID=n%2Fa&rft.externalDocID=10_2196_16206
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1438-8871&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1438-8871&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1438-8871&client=summon