Involvement of Silicon Influx Transporter OsNIP2;1 in Selenite Uptake in Rice

Rice (Oryza sativa) as a staple food, provides a major source of dietary selenium (Se) for humans, which essentially requires Se, however, the molecular mechanism for Se uptake is still poorly understood. Herein, we show evidence that the uptake of selenite, a main bioavailable form of Se in paddy s...

Full description

Saved in:
Bibliographic Details
Published inPlant physiology (Bethesda) Vol. 153; no. 4; pp. 1871 - 1877
Main Authors Zhao, Xue Qiang, Mitani, Namiki, Yamaji, Naoki, Shen, Ren Fang, Ma, Jian Feng
Format Journal Article
LanguageEnglish
Published Rockville, MD American Society of Plant Biologists 01.08.2010
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Rice (Oryza sativa) as a staple food, provides a major source of dietary selenium (Se) for humans, which essentially requires Se, however, the molecular mechanism for Se uptake is still poorly understood. Herein, we show evidence that the uptake of selenite, a main bioavailable form of Se in paddy soils, is mediated by a silicon (Si) influx transporter Lsi1 (OsNIP2;1) in rice. Defect of OsNIP2;1 resulted in a significant decrease in the Se concentration of the shoots and xylem sap when selenite was given. However, there was no difference in the Se concentration between the wild-type rice and mutant of OsNIP2;1 when selenate was supplied. A short-term uptake experiment showed that selenite uptake greatly increased with decreasing pH in the external solution. Si as silicic acid did not inhibit the Se uptake from selenite in both rice and yeast (Saccharomyces cerevisiae) at low pHs. Expression of OsNIP2;1 in yeast enhanced the selenite uptake at pH 3.5 and 5.5 but not at pH 7.5. On the other hand, defect of Si efflux transporter Lsi2 did not affect the uptake of Se either from selenite or selenate. Taken together, our results indicate that Si influx transporter OsNIP2;1 is permeable to selenite.
AbstractList Rice (Oryza sativa) as a staple food, provides a major source of dietary selenium (Se) for humans, which essentially requires Se, however, the molecular mechanism for Se uptake is still poorly understood. Herein, we show evidence that the uptake of selenite, a main bioavailable form of Se in paddy soils, is mediated by a silicon (Si) influx transporter Lsi1 (OsNIP2;1) in rice. Defect of OsNIP2;1 resulted in a significant decrease in the Se concentration of the shoots and xylem sap when selenite was given. However, there was no difference in the Se concentration between the wild-type rice and mutant of OsNIP2;1 when selenate was supplied. A short-term uptake experiment showed that selenite uptake greatly increased with decreasing pH in the external solution. Si as silicic acid did not inhibit the Se uptake from selenite in both rice and yeast (Saccharomyces cerevisiae) at low pHs. Expression of OsNIP2;1 in yeast enhanced the selenite uptake at pH 3.5 and 5.5 but not at pH 7.5. On the other hand, defect of Si efflux transporter Lsi2 did not affect the uptake of Se either from selenite or selenate. Taken together, our results indicate that Si influx transporter OsNIP2;1 is permeable to selenite.
Rice (Oryza sativa) as a staple food, provides a major source of dietary selenium (Se) for humans, which essentially requires Se, however, the molecular mechanism for Se uptake is still poorly understood. Herein, we show evidence that the uptake of selenite, a main bioavailable form of Se in paddy soils, is mediated by a silicon (Si) influx transporter Lsi1 (OsNIP2;1) in rice. Defect of OsNIP2;1 resulted in a significant decrease in the Se concentration of the shoots and xylem sap when selenite was given. However, there was no difference in the Se concentration between the wild-type rice and mutant of OsNIP2;1 when selenate was supplied. A short-term uptake experiment showed that selenite uptake greatly increased with decreasing pH in the external solution. Si as silicic acid did not inhibit the Se uptake from selenite in both rice and yeast (Saccharomyces cerevisiae) at low pHs. Expression of OsNIP2;1 in yeast enhanced the selenite uptake at pH 3.5 and 5.5 but not at pH 7.5. On the other hand, defect of Si efflux transporter Lsi2 did not affect the uptake of Se either from selenite or selenate. Taken together, our results indicate that Si influx transporter OsNIP2;1 is permeable to selenite.Rice (Oryza sativa) as a staple food, provides a major source of dietary selenium (Se) for humans, which essentially requires Se, however, the molecular mechanism for Se uptake is still poorly understood. Herein, we show evidence that the uptake of selenite, a main bioavailable form of Se in paddy soils, is mediated by a silicon (Si) influx transporter Lsi1 (OsNIP2;1) in rice. Defect of OsNIP2;1 resulted in a significant decrease in the Se concentration of the shoots and xylem sap when selenite was given. However, there was no difference in the Se concentration between the wild-type rice and mutant of OsNIP2;1 when selenate was supplied. A short-term uptake experiment showed that selenite uptake greatly increased with decreasing pH in the external solution. Si as silicic acid did not inhibit the Se uptake from selenite in both rice and yeast (Saccharomyces cerevisiae) at low pHs. Expression of OsNIP2;1 in yeast enhanced the selenite uptake at pH 3.5 and 5.5 but not at pH 7.5. On the other hand, defect of Si efflux transporter Lsi2 did not affect the uptake of Se either from selenite or selenate. Taken together, our results indicate that Si influx transporter OsNIP2;1 is permeable to selenite.
Rice ( Oryza sativa ) as a staple food, provides a major source of dietary selenium (Se) for humans, which essentially requires Se, however, the molecular mechanism for Se uptake is still poorly understood. Herein, we show evidence that the uptake of selenite, a main bioavailable form of Se in paddy soils, is mediated by a silicon (Si) influx transporter Lsi1 (OsNIP2;1) in rice. Defect of OsNIP2;1 resulted in a significant decrease in the Se concentration of the shoots and xylem sap when selenite was given. However, there was no difference in the Se concentration between the wild-type rice and mutant of OsNIP2;1 when selenate was supplied. A short-term uptake experiment showed that selenite uptake greatly increased with decreasing pH in the external solution. Si as silicic acid did not inhibit the Se uptake from selenite in both rice and yeast ( Saccharomyces cerevisiae ) at low pHs. Expression of OsNIP2 ; 1 in yeast enhanced the selenite uptake at pH 3.5 and 5.5 but not at pH 7.5. On the other hand, defect of Si efflux transporter Lsi2 did not affect the uptake of Se either from selenite or selenate. Taken together, our results indicate that Si influx transporter OsNIP2;1 is permeable to selenite.
Author Shen, Ren Fang
Ma, Jian Feng
Yamaji, Naoki
Mitani, Namiki
Zhao, Xue Qiang
AuthorAffiliation State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 210008 Nanjing, China (X.Q.Z., R.F.S.); Institute of Plant Science and Resources, Okayama University, Kurashiki 710–0046, Japan (N.M., N.Y., J.F.M.)
AuthorAffiliation_xml – name: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 210008 Nanjing, China (X.Q.Z., R.F.S.); Institute of Plant Science and Resources, Okayama University, Kurashiki 710–0046, Japan (N.M., N.Y., J.F.M.)
Author_xml – sequence: 1
  fullname: Zhao, Xue Qiang
– sequence: 2
  fullname: Mitani, Namiki
– sequence: 3
  fullname: Yamaji, Naoki
– sequence: 4
  fullname: Shen, Ren Fang
– sequence: 5
  fullname: Ma, Jian Feng
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23109244$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/20498338$$D View this record in MEDLINE/PubMed
BookMark eNp9kk1vEzEQhi1URNPCkSOwlwouW8Zfu7aQkFDFR6RCEWnOluN4i4tjL_YmKv8erza0gAQXj-V55vXrGR-hgxCDRegxhlOMgb3s-zGeYt6Kpr2HZphTUhPOxAGaAZQ9CCEP0VHO1wCAKWYP0CEBJgWlYoY-zsMu-p3d2DBUsasWzjsTQzUPnd_eVJdJh9zHNNhUXeRP88_kFa5cqBbW2-AGWy37QX-z49EXZ-xDdL_TPttH-3iMlu_eXp59qM8v3s_P3pzXhkk-1A1nsLLErk2HjSwraVarhhthJG3WwBljDRccG8btegVUM6KlEIaI1tC10fQYvZ50--1qU2SK-aS96pPb6PRDRe3Un5ngvqqruFNEEiokLgLP9wIpft_aPKiNy8Z6r4ON26xaJiQTjLJCvvgviVnpKpaSQkGf_u7q1s6vbhfgZA_obLTvSnONy3ccxSAJG--sJ86kmHOy3S2CQY1TV30_RjVNvfD0L964QQ8ujo93_p9VT6aq6zzEdOeCt8ABxvyzKd_pqPRVKk6XC1K-EGDRck4b-hMVhMHL
CODEN PPHYA5
CitedBy_id crossref_primary_10_1002_jsfa_11511
crossref_primary_10_1007_s11356_023_28631_5
crossref_primary_10_3390_foods12244442
crossref_primary_10_1016_j_jhazmat_2020_124178
crossref_primary_10_1021_acs_est_5b04169
crossref_primary_10_1007_s00299_014_1712_6
crossref_primary_10_1007_s00344_022_10840_w
crossref_primary_10_3390_antiox10060882
crossref_primary_10_1360_TB_2022_1110
crossref_primary_10_1111_pce_15404
crossref_primary_10_1021_acs_est_9b06837
crossref_primary_10_1080_15592324_2021_1991686
crossref_primary_10_1016_j_chemosphere_2022_136590
crossref_primary_10_1111_ppl_13275
crossref_primary_10_1186_s12870_019_2163_6
crossref_primary_10_1007_s42976_024_00538_y
crossref_primary_10_1016_j_ecoenv_2018_02_074
crossref_primary_10_1016_j_plantsci_2015_06_002
crossref_primary_10_1016_j_plgene_2019_100171
crossref_primary_10_3389_fpls_2023_1135080
crossref_primary_10_1016_j_scitotenv_2023_168300
crossref_primary_10_1007_s10311_015_0535_1
crossref_primary_10_1007_s00299_021_02685_6
crossref_primary_10_1016_j_bbamem_2013_08_011
crossref_primary_10_1111_ppl_13843
crossref_primary_10_1007_s10725_022_00843_8
crossref_primary_10_3390_plants13030380
crossref_primary_10_1093_pcp_pcr070
crossref_primary_10_1016_j_plaphy_2024_109456
crossref_primary_10_1016_j_ecoenv_2017_11_064
crossref_primary_10_1016_j_jhazmat_2020_124751
crossref_primary_10_1016_j_envpol_2020_116407
crossref_primary_10_3390_jof6020059
crossref_primary_10_1016_j_molp_2021_05_020
crossref_primary_10_1093_jxb_err158
crossref_primary_10_3390_agriculture13081632
crossref_primary_10_1007_s42729_019_00147_3
crossref_primary_10_1016_j_jfca_2019_103382
crossref_primary_10_1007_s11356_013_2321_6
crossref_primary_10_1080_10643389_2019_1598240
crossref_primary_10_3390_cells7120267
crossref_primary_10_1042_BST20200716
crossref_primary_10_1080_01904167_2014_939287
crossref_primary_10_1007_s11104_018_3589_6
crossref_primary_10_1016_j_scitotenv_2022_155967
crossref_primary_10_1186_s12870_024_05419_4
crossref_primary_10_1111_nph_18762
crossref_primary_10_1186_s12951_020_00659_6
crossref_primary_10_1080_00103624_2018_1474903
crossref_primary_10_1017_S0007485313000369
crossref_primary_10_1007_s42729_020_00197_y
crossref_primary_10_1007_s10646_014_1257_z
crossref_primary_10_1016_j_jhazmat_2021_126606
crossref_primary_10_1271_kagakutoseibutsu_62_39
crossref_primary_10_1016_j_heliyon_2024_e26023
crossref_primary_10_2478_fhort_2022_0017
crossref_primary_10_3390_ijms19020521
crossref_primary_10_1007_s42729_023_01324_1
crossref_primary_10_3390_plants14030423
crossref_primary_10_1093_jxb_erw060
crossref_primary_10_1016_j_envexpbot_2020_104367
crossref_primary_10_5327_Z2176_94781744
crossref_primary_10_1093_plphys_kiae289
crossref_primary_10_1007_s11104_017_3512_6
crossref_primary_10_3389_fpls_2022_894479
crossref_primary_10_1016_j_scitotenv_2020_143848
crossref_primary_10_1007_s10343_022_00826_9
crossref_primary_10_1016_j_jtemin_2024_100123
crossref_primary_10_1016_j_envexpbot_2017_02_011
crossref_primary_10_1016_j_scitotenv_2014_10_080
crossref_primary_10_1007_s10534_016_9958_9
crossref_primary_10_1007_s10725_023_00988_0
crossref_primary_10_1016_j_scitotenv_2022_158673
crossref_primary_10_1016_j_envpol_2024_124725
crossref_primary_10_1016_j_bbagen_2018_03_028
crossref_primary_10_3389_fpls_2021_642101
crossref_primary_10_1016_j_jhazmat_2020_123570
crossref_primary_10_1080_00380768_2016_1172023
crossref_primary_10_3389_fpls_2022_848349
crossref_primary_10_1093_jxb_erae261
crossref_primary_10_1016_j_chemosphere_2019_124712
crossref_primary_10_1093_plcell_koad073
crossref_primary_10_3390_soilsystems7010024
crossref_primary_10_1007_s11104_022_05826_2
crossref_primary_10_7717_peerj_1993
crossref_primary_10_3389_fpls_2020_586421
crossref_primary_10_3390_ijms21020663
crossref_primary_10_1016_j_tplants_2015_04_007
crossref_primary_10_1093_plphys_kiac534
crossref_primary_10_1016_j_envpol_2022_119038
crossref_primary_10_1021_acsfoodscitech_0c00026
crossref_primary_10_1134_S1021443723602033
crossref_primary_10_1104_pp_111_173088
crossref_primary_10_2134_jeq2016_09_0342
crossref_primary_10_3724_SP_J_1206_2010_00528
crossref_primary_10_1002_pld3_272
crossref_primary_10_1007_s11104_019_04346_w
crossref_primary_10_1111_nph_12596
crossref_primary_10_1109_TNB_2021_3105281
crossref_primary_10_3390_ijms25137007
crossref_primary_10_1155_2020_2895795
crossref_primary_10_3389_fpls_2021_697592
crossref_primary_10_1016_j_ecoenv_2016_11_015
crossref_primary_10_1016_j_scitotenv_2024_175033
crossref_primary_10_3389_fpls_2024_1488210
crossref_primary_10_1111_pce_15278
crossref_primary_10_1152_physrev_00008_2015
crossref_primary_10_1371_journal_pone_0226752
crossref_primary_10_3390_plants9111480
crossref_primary_10_3389_fpls_2022_970480
crossref_primary_10_1093_jxb_erv254
crossref_primary_10_1007_s00344_023_11141_6
crossref_primary_10_1016_j_envpol_2020_115935
crossref_primary_10_1007_s12551_017_0313_3
crossref_primary_10_1016_j_jhazmat_2023_131272
crossref_primary_10_1016_j_plaphy_2020_02_044
crossref_primary_10_3390_ijms26052178
crossref_primary_10_1093_hr_uhac270
crossref_primary_10_3390_app11178090
crossref_primary_10_1016_j_ijbiomac_2024_138746
crossref_primary_10_3390_ijpb16010028
crossref_primary_10_1007_s44246_023_00073_1
crossref_primary_10_3390_nu7064199
crossref_primary_10_1007_s11104_020_04635_9
crossref_primary_10_3390_molecules28031398
crossref_primary_10_7717_peerj_10053
crossref_primary_10_1111_pbi_13037
crossref_primary_10_1371_journal_pone_0217516
crossref_primary_10_3390_f14040696
crossref_primary_10_1016_j_chemosphere_2017_11_149
crossref_primary_10_1007_s12011_016_0906_x
crossref_primary_10_1016_j_foodres_2023_112880
crossref_primary_10_3390_plants12010044
crossref_primary_10_1093_aob_mcv180
crossref_primary_10_1016_j_envexpbot_2023_105454
crossref_primary_10_1016_j_foodchem_2021_129699
crossref_primary_10_1016_S2095_3119_21_63748_6
crossref_primary_10_1002_jsfa_11816
crossref_primary_10_1016_j_plaphy_2016_11_004
crossref_primary_10_1016_j_plaphy_2021_04_026
crossref_primary_10_1093_jxb_eraa294
crossref_primary_10_1186_s12284_022_00572_6
crossref_primary_10_1021_acs_jafc_7b03316
crossref_primary_10_1007_s00709_021_01643_z
crossref_primary_10_1134_S102144371505009X
crossref_primary_10_1007_s11356_019_04717_x
crossref_primary_10_1021_acs_est_2c07028
crossref_primary_10_1016_j_bbagen_2013_09_017
crossref_primary_10_1016_j_chemosphere_2021_130593
crossref_primary_10_3389_fpls_2021_641678
crossref_primary_10_1080_19336950_2016_1139250
crossref_primary_10_1111_jipb_13827
crossref_primary_10_1016_j_plaphy_2018_04_001
crossref_primary_10_3390_molecules22040558
crossref_primary_10_1016_j_chemosphere_2020_128417
crossref_primary_10_1016_j_ecoenv_2013_01_027
crossref_primary_10_3390_antiox10071031
crossref_primary_10_1039_d0mt00043d
crossref_primary_10_1016_j_scitotenv_2024_175193
crossref_primary_10_1016_j_cj_2024_04_005
crossref_primary_10_1016_j_envpol_2022_120039
crossref_primary_10_1186_s12870_019_2110_6
crossref_primary_10_3389_fpls_2023_1268537
crossref_primary_10_1093_mtomcs_mfab054
crossref_primary_10_3389_fpls_2024_1387460
crossref_primary_10_1007_s00122_019_03527_6
crossref_primary_10_1016_j_molp_2020_05_007
crossref_primary_10_1016_j_jhazmat_2020_124495
crossref_primary_10_3390_app10155368
crossref_primary_10_1016_j_jbiotec_2024_09_006
crossref_primary_10_1007_s40362_017_0045_6
crossref_primary_10_1007_s40828_021_00137_y
crossref_primary_10_3724_SP_J_1259_2011_00233
crossref_primary_10_1016_j_ecoenv_2020_111544
crossref_primary_10_3390_jdb4010009
crossref_primary_10_1007_s11356_019_04182_6
crossref_primary_10_1016_j_envexpbot_2015_07_001
crossref_primary_10_1016_j_plaphy_2020_02_009
crossref_primary_10_1139_gen_2019_0061
crossref_primary_10_1093_pcp_pct166
crossref_primary_10_1016_j_ecoenv_2023_115450
crossref_primary_10_1002_jpln_201700013
crossref_primary_10_1016_j_ecoenv_2019_01_090
crossref_primary_10_3390_ijms17081229
crossref_primary_10_1016_j_jes_2023_07_024
crossref_primary_10_3390_ijms20163984
crossref_primary_10_3390_plants12040789
crossref_primary_10_1007_s12633_021_01133_0
crossref_primary_10_1080_15226514_2024_2431096
crossref_primary_10_3389_fpls_2024_1355518
crossref_primary_10_1371_journal_pone_0152081
crossref_primary_10_3390_agronomy14071380
crossref_primary_10_3389_fpls_2016_01815
crossref_primary_10_1021_acs_jafc_9b05359
crossref_primary_10_1016_j_ecoenv_2016_07_001
crossref_primary_10_3390_agronomy8090185
crossref_primary_10_1016_j_scienta_2021_110441
crossref_primary_10_1371_journal_pone_0197506
crossref_primary_10_1007_s00128_021_03386_2
crossref_primary_10_1111_nph_14378
crossref_primary_10_15864_ajabtr_222
crossref_primary_10_3389_fpls_2015_00166
crossref_primary_10_1016_j_ecoenv_2020_110471
crossref_primary_10_3390_plants11202712
crossref_primary_10_1093_jxb_erv040
crossref_primary_10_1016_j_envexpbot_2021_104730
crossref_primary_10_3390_agronomy7040067
crossref_primary_10_3390_horticulturae9030330
crossref_primary_10_5483_BMBRep_2012_45_2_96
crossref_primary_10_1007_s11104_015_2699_7
crossref_primary_10_7717_peerj_8768
crossref_primary_10_1016_j_bbagen_2018_05_006
crossref_primary_10_1016_j_jhazmat_2023_130812
Cites_doi 10.1104/pp.44.6.893
10.1104/pp.106.091462
10.1007/s00424-007-0408-y
10.1074/jbc.M700982200
10.1146/annurev.arplant.59.032607.092734
10.1073/pnas.0802361105
10.1105/tpc.106.041640
10.1079/BJN20031015
10.1016/j.str.2005.05.005
10.1017/S0007114508939830
10.1186/1741-7007-6-26
10.1104/pp.010348
10.1038/nature04590
10.1146/annurev.arplant.51.1.401
10.1021/bi982110c
10.1007/s10142-007-0049-4
10.1093/jxb/44.6.1083
10.1038/nature05964
10.1007/s11104-005-5706-6
10.1021/bi0511888
10.1093/pcp/pci018
10.1016/j.bbrc.2007.12.079
10.1111/j.1469-8137.2007.02343.x
10.1016/S0140-6736(00)02490-9
10.1016/j.tplants.2009.06.006
10.1023/A:1004639906245
10.1046/j.0960-7412.2001.01232.x
10.1111/j.1365-313X.2008.03728.x
10.1104/pp.109.140350
10.1007/BF01373514
10.1079/BJN2000280
10.1079/PNS2002153
10.1007/s11120-005-5222-9
10.1104/pp.31.3.222
ContentType Journal Article
Copyright 2010 American Society of Plant Biologists
2015 INIST-CNRS
2010 American Society of Plant Biologists 2010
Copyright_xml – notice: 2010 American Society of Plant Biologists
– notice: 2015 INIST-CNRS
– notice: 2010 American Society of Plant Biologists 2010
DBID FBQ
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7S9
L.6
7X8
5PM
DOI 10.1104/pp.110.157867
DatabaseName AGRIS
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList CrossRef

MEDLINE - Academic
AGRICOLA

MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1532-2548
EndPage 1877
ExternalDocumentID PMC2923891
20498338
23109244
10_1104_pp_110_157867
25705007
US201301875536
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
0R~
123
29O
2AX
2WC
2~F
4.4
53G
5VS
5WD
7X2
7X7
85S
88E
88I
8AF
8AO
8CJ
8FE
8FH
8FI
8FJ
8FW
8G5
8R4
8R5
AAHBH
AAHKG
AAPXW
AARHZ
AAUAY
AAVAP
AAWDT
AAXTN
AAYJJ
ABBHK
ABDFA
ABEJV
ABGNP
ABIME
ABJNI
ABMNT
ABPIB
ABPLY
ABPPZ
ABPTD
ABTLG
ABUWG
ABVGC
ABXSQ
ABXVV
ABXZS
ABZEO
ACBTR
ACFRR
ACGOD
ACHIC
ACIPB
ACNCT
ACPRK
ACUFI
ACUTJ
ACVCV
ACZBC
ADBBV
ADGKP
ADIPN
ADIYS
ADQBN
ADULT
ADVEK
ADYHW
ADYWZ
AEEJZ
AENEX
AEUPB
AEUYN
AFAZZ
AFFDN
AFFZL
AFGWE
AFKRA
AFRAH
AFYAG
AGMDO
AGUYK
AHMBA
AHXOZ
AICQM
AIDAL
AIDBO
AJDVS
AJEEA
AJNCP
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALXQX
ANFBD
APJGH
AQDSO
AQVQM
AS~
ATCPS
ATGXG
AZQEC
BAWUL
BBNVY
BCRHZ
BENPR
BEYMZ
BHPHI
BPHCQ
BTFSW
BVXVI
C1A
CBGCD
CCPQU
CS3
D1J
DATOO
DIK
DU5
DWQXO
E3Z
EBS
ECGQY
EJD
F5P
FBQ
FLUFQ
FOEOM
FYUFA
GNUQQ
GTFYD
GUQSH
H13
HCIFZ
HMCUK
HTVGU
IPSME
JAAYA
JBMMH
JBS
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JST
JXSIZ
KOP
KQ8
KSI
KSN
LK8
LU7
M0K
M1P
M2O
M2P
M2Q
M7P
MV1
MVM
NOMLY
NU-
OBOKY
OJZSN
OK1
OWPYF
P0-
P2P
PHGZT
PQQKQ
PROAC
PSQYO
Q2X
QZG
RHI
ROX
RPB
RWL
RXW
S0X
SA0
TAE
TCN
TN5
TR2
UBC
UKHRP
UKR
W8F
WH7
WHG
WOQ
XOL
XSW
Y6R
YBU
YKV
YNT
YSK
YZZ
ZCA
ZCG
ZCN
~02
~KM
ADXHL
AGORE
AJBYB
PHGZM
AAYXX
CITATION
AHGBF
IQODW
PJZUB
PPXIY
PQGLB
3V.
88A
CGR
CUY
CVF
DOOOF
ECM
EIF
ISR
JSODD
M0L
NPM
RHF
RPM
VQA
VXZ
7S9
L.6
7X8
5PM
ID FETCH-LOGICAL-c495t-6540be2edcf1c9dcf26bb65c8c936d0544465851c45edb03a42a988c287c3dca3
ISSN 0032-0889
1532-2548
IngestDate Thu Aug 21 18:28:04 EDT 2025
Mon Jul 21 09:18:18 EDT 2025
Fri Jul 11 04:59:25 EDT 2025
Wed Feb 19 01:47:18 EST 2025
Mon Jul 21 09:15:10 EDT 2025
Tue Jul 01 03:07:46 EDT 2025
Thu Apr 24 23:02:43 EDT 2025
Fri Jun 20 02:19:09 EDT 2025
Thu Apr 03 09:45:28 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Monocotyledones
Absorption
Oryza
Plant physiology
Gramineae
Angiospermae
Herbaceous plant
Spermatophyta
Silicon
Selenites
Language English
License https://creativecommons.org/licenses/by/4.0
CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c495t-6540be2edcf1c9dcf26bb65c8c936d0544465851c45edb03a42a988c287c3dca3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
The online version of this article contains Web-only data.
The author responsible for distribution of materials integral to the findings presented in this article in accordance with the policy described in the Instructions for Authors (www.plantphysiol.org) is: Ren Fang Shen (rfshen@issas.ac.cn).
www.plantphysiol.org/cgi/doi/10.1104/pp.110.157867
Open Access articles can be viewed online without a subscription.
This work was supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (grant no. KSCX2–YW–N–002 to R.F.S.), the Institute of Soil Science, Chinese Academy of Sciences Innovation Program (grant no. ISSASIP0706 to X.Q.Z.), a grant from the Ministry of Agriculture, Forestry and Fisheries of Japan (Genomics for Agricultural Innovation grant no. IPG–0006 to J.F.M.), and a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan (grant no. 21248009 to J.F.M.).
OpenAccessLink https://academic.oup.com/plphys/article-pdf/153/4/1871/38107727/plphys_v153_4_1871.pdf
PMID 20498338
PQID 1400119930
PQPubID 24069
PageCount 7
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_2923891
proquest_miscellaneous_748948434
proquest_miscellaneous_1400119930
pubmed_primary_20498338
pascalfrancis_primary_23109244
crossref_primary_10_1104_pp_110_157867
crossref_citationtrail_10_1104_pp_110_157867
jstor_primary_25705007
fao_agris_US201301875536
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-08-01
PublicationDateYYYYMMDD 2010-08-01
PublicationDate_xml – month: 08
  year: 2010
  text: 2010-08-01
  day: 01
PublicationDecade 2010
PublicationPlace Rockville, MD
PublicationPlace_xml – name: Rockville, MD
– name: United States
PublicationTitle Plant physiology (Bethesda)
PublicationTitleAlternate Plant Physiol
PublicationYear 2010
Publisher American Society of Plant Biologists
Publisher_xml – name: American Society of Plant Biologists
References Ma (2021052608222588300_b14) 2002; 130
Shrift (2021052608222588300_b26) 1969; 44
Zhang (2021052608222588300_b33) 2006; 282
Rayman (2021052608222588300_b22) 2002; 61
Whanger (2021052608222588300_b32) 2004; 91
Wang (2021052608222588300_b31) 2005; 13
Kassis (2021052608222588300_b10) 2007; 143
Mitani (2021052608222588300_b20) 2008; 456
Ma (2021052608222588300_b15) 2006; 440
Terry (2021052608222588300_b29) 2000; 51
Forrest (2021052608222588300_b8) 2007; 7
Rouge (2021052608222588300_b24) 2008; 367
Takano (2021052608222588300_b28) 2006; 18
Wallace (2021052608222588300_b30) 2005; 44
Mitani (2021052608222588300_b19) 2005; 46
Chiba (2021052608222588300_b4) 2009; 57
Ma (2021052608222588300_b17) 2008; 105
Li (2021052608222588300_b13) 2009; 150
Leggett (2021052608222588300_b11) 1956; 31
Rayman (2021052608222588300_b23) 2008; 100
Bienert (2021052608222588300_b2) 2008; 6
Sors (2021052608222588300_b27) 2005; 86
Rayman (2021052608222588300_b21) 2000; 356
Dean (2021052608222588300_b7) 1999; 38
Li (2021052608222588300_b12) 2008; 178
Combs (2021052608222588300_b6) 2001; 85
Shibagaki (2021052608222588300_b25) 2002; 29
Arvy (2021052608222588300_b1) 1993; 44
Broyer (2021052608222588300_b3) 1972; 36
Maurel (2021052608222588300_b18) 2008; 59
Zhu (2021052608222588300_b34) 2009; 14
Choi (2021052608222588300_b5) 2007; 282
Ma (2021052608222588300_b16) 2007; 448
Hopper (2021052608222588300_b9) 1999; 210
18155659 - Biochem Biophys Res Commun. 2008 Feb 29;367(1):60-6
18626020 - Proc Natl Acad Sci U S A. 2008 Jul 22;105(29):9931-5
12481095 - Plant Physiol. 2002 Dec;130(4):2111-7
16084383 - Structure. 2005 Aug;13(8):1107-18
17625566 - Nature. 2007 Jul 12;448(7150):209-12
9890916 - Biochemistry. 1999 Jan 5;38(1):347-53
10963212 - Lancet. 2000 Jul 15;356(9225):233-41
18444909 - Annu Rev Plant Biol. 2008;59:595-624
16654867 - Plant Physiol. 1956 May;31(3):222-6
18179602 - New Phytol. 2008;178(1):92-102
19665422 - Trends Plant Sci. 2009 Aug;14(8):436-42
17584741 - J Biol Chem. 2007 Aug 17;282(33):24209-18
18346308 - Br J Nutr. 2008 Aug;100(2):254-68
11846880 - Plant J. 2002 Feb;29(4):475-86
15695469 - Plant Cell Physiol. 2005 Feb;46(2):279-83
11348568 - Br J Nutr. 2001 May;85(5):517-47
16679457 - Plant Cell. 2006 Jun;18(6):1498-509
14748935 - Br J Nutr. 2004 Jan;91(1):11-28
17208959 - Plant Physiol. 2007 Mar;143(3):1231-41
5799050 - Plant Physiol. 1969 Jun;44(6):893-6
15012198 - Annu Rev Plant Physiol Plant Mol Biol. 2000 Jun;51:401-432
18980663 - Plant J. 2009 Mar;57(5):810-8
18544156 - BMC Biol. 2008;6:26
16572174 - Nature. 2006 Mar 30;440(7084):688-91
19542298 - Plant Physiol. 2009 Aug;150(4):2071-80
12133202 - Proc Nutr Soc. 2002 May;61(2):203-15
16363796 - Biochemistry. 2005 Dec 27;44(51):16826-34
17562090 - Funct Integr Genomics. 2007 Oct;7(4):263-89
18214526 - Pflugers Arch. 2008 Jul;456(4):679-86
16307305 - Photosynth Res. 2005 Dec;86(3):373-89
References_xml – volume: 44
  start-page: 893
  year: 1969
  ident: 2021052608222588300_b26
  article-title: Transport of selenate and selenite into Astragalus roots
  publication-title: Plant Physiol
  doi: 10.1104/pp.44.6.893
– volume: 143
  start-page: 1231
  year: 2007
  ident: 2021052608222588300_b10
  article-title: Characterization of a selenate-resistant Arabidopsis mutant: root growth as a potential target for selenate toxicity
  publication-title: Plant Physiol
  doi: 10.1104/pp.106.091462
– volume: 456
  start-page: 679
  year: 2008
  ident: 2021052608222588300_b20
  article-title: Characterization of substrate specificity of a rice silicon transporter, Lsi1
  publication-title: Pflugers Arch
  doi: 10.1007/s00424-007-0408-y
– volume: 282
  start-page: 24209
  year: 2007
  ident: 2021052608222588300_b5
  article-title: Arabidopsis NIP2;1, a major intrinsic protein transporter of lactic acid induced by anoxic stress
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M700982200
– volume: 59
  start-page: 595
  year: 2008
  ident: 2021052608222588300_b18
  article-title: Plant aquaporins: membrane channels with multiple integrated functions
  publication-title: Annu Rev Plant Biol
  doi: 10.1146/annurev.arplant.59.032607.092734
– volume: 105
  start-page: 9931
  year: 2008
  ident: 2021052608222588300_b17
  article-title: Transporters of arsenite in rice and their role in arsenic accumulation in rice grain
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0802361105
– volume: 18
  start-page: 1498
  year: 2006
  ident: 2021052608222588300_b28
  article-title: The Arabidopsis major intrinsic protein NIP5;1 is essential for efficient boron uptake and plant development under boron limitation
  publication-title: Plant Cell
  doi: 10.1105/tpc.106.041640
– volume: 91
  start-page: 11
  year: 2004
  ident: 2021052608222588300_b32
  article-title: Selenium and its relationship to cancer: an update
  publication-title: Br J Nutr
  doi: 10.1079/BJN20031015
– volume: 13
  start-page: 1107
  year: 2005
  ident: 2021052608222588300_b31
  article-title: What makes an aquaporin a glycerol channel? A comparative study of AqpZ and GlpF
  publication-title: Structure
  doi: 10.1016/j.str.2005.05.005
– volume: 100
  start-page: 254
  year: 2008
  ident: 2021052608222588300_b23
  article-title: Food-chain selenium and human health: emphasis on intake
  publication-title: Br J Nutr
  doi: 10.1017/S0007114508939830
– volume: 6
  start-page: 26
  year: 2008
  ident: 2021052608222588300_b2
  article-title: A subgroup of plant aquaporins facilitate the bi-directional diffusion of As(OH)3 and Sb(OH)3 across membranes
  publication-title: BMC Biol
  doi: 10.1186/1741-7007-6-26
– volume: 130
  start-page: 2111
  year: 2002
  ident: 2021052608222588300_b14
  article-title: A rice mutant defective in Si uptake
  publication-title: Plant Physiol
  doi: 10.1104/pp.010348
– volume: 440
  start-page: 688
  year: 2006
  ident: 2021052608222588300_b15
  article-title: A silicon transporter in rice
  publication-title: Nature
  doi: 10.1038/nature04590
– volume: 51
  start-page: 401
  year: 2000
  ident: 2021052608222588300_b29
  article-title: Selenium in higher plants
  publication-title: Annu Rev Plant Physiol Plant Mol Biol
  doi: 10.1146/annurev.arplant.51.1.401
– volume: 38
  start-page: 347
  year: 1999
  ident: 2021052608222588300_b7
  article-title: Purification and functional reconstitution of soybean nodulin 26: an aquaporin with water and glycerol transport properties
  publication-title: Biochemistry
  doi: 10.1021/bi982110c
– volume: 7
  start-page: 263
  year: 2007
  ident: 2021052608222588300_b8
  article-title: Major intrinsic proteins (MIPs) in plants: a complex gene family with major impacts on plant phenotype
  publication-title: Funct Integr Genomics
  doi: 10.1007/s10142-007-0049-4
– volume: 44
  start-page: 1083
  year: 1993
  ident: 2021052608222588300_b1
  article-title: Selenate and selenite uptake and translocation in bean plants (Phaseolus vulgaris)
  publication-title: J Exp Bot
  doi: 10.1093/jxb/44.6.1083
– volume: 448
  start-page: 209
  year: 2007
  ident: 2021052608222588300_b16
  article-title: An efflux transporter of silicon in rice
  publication-title: Nature
  doi: 10.1038/nature05964
– volume: 282
  start-page: 183
  year: 2006
  ident: 2021052608222588300_b33
  article-title: Difference in selenite absorption between high- and low-selenium rice cultivars and its mechanism
  publication-title: Plant Soil
  doi: 10.1007/s11104-005-5706-6
– volume: 44
  start-page: 16826
  year: 2005
  ident: 2021052608222588300_b30
  article-title: Distinct transport selectivity of two structural subclasses of the nodulin-like intrinsic protein family of plant aquaglyceroporin channels
  publication-title: Biochemistry
  doi: 10.1021/bi0511888
– volume: 46
  start-page: 279
  year: 2005
  ident: 2021052608222588300_b19
  article-title: Identification of the silicon form in xylem sap of rice (Oryza sativa L.)
  publication-title: Plant Cell Physiol
  doi: 10.1093/pcp/pci018
– volume: 367
  start-page: 60
  year: 2008
  ident: 2021052608222588300_b24
  article-title: A molecular modeling approach defines a new group of Nodulin 26-like aquaporins in plants
  publication-title: Biochem Biophys Res Commun
  doi: 10.1016/j.bbrc.2007.12.079
– volume: 178
  start-page: 92
  year: 2008
  ident: 2021052608222588300_b12
  article-title: Selenium uptake, translocation and speciation in wheat supplied with selenate or selenite
  publication-title: New Phytol
  doi: 10.1111/j.1469-8137.2007.02343.x
– volume: 356
  start-page: 233
  year: 2000
  ident: 2021052608222588300_b21
  article-title: The importance of selenium to human health
  publication-title: Lancet
  doi: 10.1016/S0140-6736(00)02490-9
– volume: 14
  start-page: 436
  year: 2009
  ident: 2021052608222588300_b34
  article-title: Selenium in higher plants: understanding mechanisms for biofortification and phytoremediation
  publication-title: Trends Plant Sci
  doi: 10.1016/j.tplants.2009.06.006
– volume: 210
  start-page: 199
  year: 1999
  ident: 2021052608222588300_b9
  article-title: Plant availability of selenite and selenate as influenced by the competing ions phosphate and sulfate
  publication-title: Plant Soil
  doi: 10.1023/A:1004639906245
– volume: 29
  start-page: 475
  year: 2002
  ident: 2021052608222588300_b25
  article-title: Selenate-resistant mutants of Arabidopsis thaliana identify Sultr1;2, a sulfate transporter required for efficient transport of sulfate into roots
  publication-title: Plant J
  doi: 10.1046/j.0960-7412.2001.01232.x
– volume: 57
  start-page: 810
  year: 2009
  ident: 2021052608222588300_b4
  article-title: HvLsi1 is a silicon influx transporter in barley
  publication-title: Plant J
  doi: 10.1111/j.1365-313X.2008.03728.x
– volume: 150
  start-page: 2071
  year: 2009
  ident: 2021052608222588300_b13
  article-title: The rice aquaporin Lsi1 mediates uptake of methylated arsenic species
  publication-title: Plant Physiol
  doi: 10.1104/pp.109.140350
– volume: 36
  start-page: 651
  year: 1972
  ident: 2021052608222588300_b3
  article-title: Selenium and nutrition of Astragalus II: ionic sorption interactions among selenium, phosphate, and the macro- and micronutrient cations
  publication-title: Plant Soil
  doi: 10.1007/BF01373514
– volume: 85
  start-page: 517
  year: 2001
  ident: 2021052608222588300_b6
  article-title: Selenium in global food systems
  publication-title: Br J Nutr
  doi: 10.1079/BJN2000280
– volume: 61
  start-page: 203
  year: 2002
  ident: 2021052608222588300_b22
  article-title: The argument for increasing selenium intake
  publication-title: Proc Nutr Soc
  doi: 10.1079/PNS2002153
– volume: 86
  start-page: 373
  year: 2005
  ident: 2021052608222588300_b27
  article-title: Selenium uptake, translocation, assimilation and metabolic fate in plants
  publication-title: Photosynth Res
  doi: 10.1007/s11120-005-5222-9
– volume: 31
  start-page: 222
  year: 1956
  ident: 2021052608222588300_b11
  article-title: Kinetics of sulfate absorption by barley roots
  publication-title: Plant Physiol
  doi: 10.1104/pp.31.3.222
– reference: 16654867 - Plant Physiol. 1956 May;31(3):222-6
– reference: 17584741 - J Biol Chem. 2007 Aug 17;282(33):24209-18
– reference: 17208959 - Plant Physiol. 2007 Mar;143(3):1231-41
– reference: 10963212 - Lancet. 2000 Jul 15;356(9225):233-41
– reference: 16572174 - Nature. 2006 Mar 30;440(7084):688-91
– reference: 16363796 - Biochemistry. 2005 Dec 27;44(51):16826-34
– reference: 15012198 - Annu Rev Plant Physiol Plant Mol Biol. 2000 Jun;51:401-432
– reference: 5799050 - Plant Physiol. 1969 Jun;44(6):893-6
– reference: 18179602 - New Phytol. 2008;178(1):92-102
– reference: 9890916 - Biochemistry. 1999 Jan 5;38(1):347-53
– reference: 18980663 - Plant J. 2009 Mar;57(5):810-8
– reference: 12133202 - Proc Nutr Soc. 2002 May;61(2):203-15
– reference: 18346308 - Br J Nutr. 2008 Aug;100(2):254-68
– reference: 18155659 - Biochem Biophys Res Commun. 2008 Feb 29;367(1):60-6
– reference: 18544156 - BMC Biol. 2008;6:26
– reference: 19542298 - Plant Physiol. 2009 Aug;150(4):2071-80
– reference: 16084383 - Structure. 2005 Aug;13(8):1107-18
– reference: 17562090 - Funct Integr Genomics. 2007 Oct;7(4):263-89
– reference: 12481095 - Plant Physiol. 2002 Dec;130(4):2111-7
– reference: 16307305 - Photosynth Res. 2005 Dec;86(3):373-89
– reference: 15695469 - Plant Cell Physiol. 2005 Feb;46(2):279-83
– reference: 18214526 - Pflugers Arch. 2008 Jul;456(4):679-86
– reference: 16679457 - Plant Cell. 2006 Jun;18(6):1498-509
– reference: 18444909 - Annu Rev Plant Biol. 2008;59:595-624
– reference: 11846880 - Plant J. 2002 Feb;29(4):475-86
– reference: 17625566 - Nature. 2007 Jul 12;448(7150):209-12
– reference: 11348568 - Br J Nutr. 2001 May;85(5):517-47
– reference: 18626020 - Proc Natl Acad Sci U S A. 2008 Jul 22;105(29):9931-5
– reference: 14748935 - Br J Nutr. 2004 Jan;91(1):11-28
– reference: 19665422 - Trends Plant Sci. 2009 Aug;14(8):436-42
SSID ssj0001314
Score 2.471633
Snippet Rice (Oryza sativa) as a staple food, provides a major source of dietary selenium (Se) for humans, which essentially requires Se, however, the molecular...
Rice ( Oryza sativa ) as a staple food, provides a major source of dietary selenium (Se) for humans, which essentially requires Se, however, the molecular...
SourceID pubmedcentral
proquest
pubmed
pascalfrancis
crossref
jstor
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1871
SubjectTerms Aquaporins
Aquaporins - genetics
Aquaporins - metabolism
Arsenites
Biological and medical sciences
ENVIRONMENTAL STRESS AND ADAPTATION TO STRESS
Fundamental and applied biological sciences. Psychology
genetics
humans
Hydrogen-Ion Concentration
metabolism
mutants
Mutation
Nutrient solutions
Oryza
Oryza - genetics
Oryza - metabolism
Oryza sativa
paddy soils
Plant physiology and development
Plant Proteins
Plant Proteins - genetics
Plant Proteins - metabolism
Plants
Rice
Saccharomyces cerevisiae
sap
Seedlings
Selenic Acid
Selenium
Selenium Compounds
Selenium Compounds - metabolism
shoots
silicic acid
Silicic Acid - metabolism
silicon
Sodium Selenite
Sodium Selenite - metabolism
staple foods
transporters
uptake mechanisms
Xylem
Yeasts
Title Involvement of Silicon Influx Transporter OsNIP2;1 in Selenite Uptake in Rice
URI https://www.jstor.org/stable/25705007
https://www.ncbi.nlm.nih.gov/pubmed/20498338
https://www.proquest.com/docview/1400119930
https://www.proquest.com/docview/748948434
https://pubmed.ncbi.nlm.nih.gov/PMC2923891
Volume 153
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtNAEF2lLQ-8IG6l5hIZCXgJLr6sb-KJVK0aUENIGinixVp77dY0saPGkYB_4h-Z8a4du0olqBQ5zmazTnKOZ2fW4zOEvOHMZMxOTI0aMQQowCENvWrNpVx3Oac4K2K2xdA5ndLPM3vW6fxpZC2ti_Aw-r31vpK7oAptgCveJfsfyNaDQgPsA76wBYRh-08YDzIwLqXgd3k9f5LOAVdc5Uvm658N3fLr3tfVcDAy31p9Axc4JjjXgK_Zmy4LdlXKhoxlDlzlqGIxo0KsewiVJvBE-3hz8IqzxurB90tWrrXO1nHvGzDtogYwLUS1KLDfi_Qqra0LW7Afsj3fNE_kTSLjOOudVMPIxYhGKlzRyP9HwyRTTjGPr_y-orImMLe5BKlbpoZpVmIuqgywqUHQ6rUstNATllSkDXtreKKAi5y74aW7fV7QKRYzXuLeoQFWymn1A1iXi5IkJkRMniUEZ24IcY_Ojkxwhz3UStgzISopI_jBl3riNywhJV_9rFrSlX5oHRkFqOVhWt7QTsLyKi0Wc3TZCk7TRNRX2RYA3czjbThG5w_JAxnRqJ8EPR-RTpw9Jvf6OeD_6wk5a3BUzRNVclQVHFUbHFUFRz8aapqpFUNVwVBsQoY-JdOT4_OjU02W8NAiiLwLzYGAIIxN-IqJEfmwNZ0wdOzIi3zL4RAuoF4fOP0RtWMe6hajJvM9L4I4PrJ4xKx9spvlWXxAVCf0aeJzi_vgdYJfzDg8Ytf3Yjvhvu8q5H31VwaR1LfHMivzoIxzdRosl_gcCBAU8q7uvhTCLrd1PABcAnYBk24wnZh4qR94ZtuWo5D9Eqx6ACwJaYPXrZBuC71NBxTiBY9aIa8rOAOw53iRjmVxvl5BKF7KMPqWrhD1lj6oGEU9asEwzwQDNgeQxFKI2-JG3QHl5NvvZOllKSsvyf38zp98Qe5vbMJLsltcr-NX4LIXYZfsuDO3S_b6x8PRuFueNn8BnO3qRQ
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Involvement+of+Silicon+Influx+Transporter+OsNIP2%3B1+in+Selenite+Uptake+in+Rice&rft.jtitle=Plant+physiology+%28Bethesda%29&rft.au=Zhao%2C+Xue+Qiang&rft.au=Mitani%2C+Namiki&rft.au=Yamaji%2C+Naoki&rft.au=Shen%2C+Ren+Fang&rft.date=2010-08-01&rft.pub=American+Society+of+Plant+Biologists&rft.issn=0032-0889&rft.eissn=1532-2548&rft.volume=153&rft.issue=4&rft.spage=1871&rft.epage=1877&rft_id=info:doi/10.1104%2Fpp.110.157867&rft_id=info%3Apmid%2F20498338&rft.externalDocID=PMC2923891
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-0889&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-0889&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-0889&client=summon