Involvement of Silicon Influx Transporter OsNIP2;1 in Selenite Uptake in Rice
Rice (Oryza sativa) as a staple food, provides a major source of dietary selenium (Se) for humans, which essentially requires Se, however, the molecular mechanism for Se uptake is still poorly understood. Herein, we show evidence that the uptake of selenite, a main bioavailable form of Se in paddy s...
Saved in:
Published in | Plant physiology (Bethesda) Vol. 153; no. 4; pp. 1871 - 1877 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Rockville, MD
American Society of Plant Biologists
01.08.2010
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Rice (Oryza sativa) as a staple food, provides a major source of dietary selenium (Se) for humans, which essentially requires Se, however, the molecular mechanism for Se uptake is still poorly understood. Herein, we show evidence that the uptake of selenite, a main bioavailable form of Se in paddy soils, is mediated by a silicon (Si) influx transporter Lsi1 (OsNIP2;1) in rice. Defect of OsNIP2;1 resulted in a significant decrease in the Se concentration of the shoots and xylem sap when selenite was given. However, there was no difference in the Se concentration between the wild-type rice and mutant of OsNIP2;1 when selenate was supplied. A short-term uptake experiment showed that selenite uptake greatly increased with decreasing pH in the external solution. Si as silicic acid did not inhibit the Se uptake from selenite in both rice and yeast (Saccharomyces cerevisiae) at low pHs. Expression of OsNIP2;1 in yeast enhanced the selenite uptake at pH 3.5 and 5.5 but not at pH 7.5. On the other hand, defect of Si efflux transporter Lsi2 did not affect the uptake of Se either from selenite or selenate. Taken together, our results indicate that Si influx transporter OsNIP2;1 is permeable to selenite. |
---|---|
AbstractList | Rice (Oryza sativa) as a staple food, provides a major source of dietary selenium (Se) for humans, which essentially requires Se, however, the molecular mechanism for Se uptake is still poorly understood. Herein, we show evidence that the uptake of selenite, a main bioavailable form of Se in paddy soils, is mediated by a silicon (Si) influx transporter Lsi1 (OsNIP2;1) in rice. Defect of OsNIP2;1 resulted in a significant decrease in the Se concentration of the shoots and xylem sap when selenite was given. However, there was no difference in the Se concentration between the wild-type rice and mutant of OsNIP2;1 when selenate was supplied. A short-term uptake experiment showed that selenite uptake greatly increased with decreasing pH in the external solution. Si as silicic acid did not inhibit the Se uptake from selenite in both rice and yeast (Saccharomyces cerevisiae) at low pHs. Expression of OsNIP2;1 in yeast enhanced the selenite uptake at pH 3.5 and 5.5 but not at pH 7.5. On the other hand, defect of Si efflux transporter Lsi2 did not affect the uptake of Se either from selenite or selenate. Taken together, our results indicate that Si influx transporter OsNIP2;1 is permeable to selenite. Rice (Oryza sativa) as a staple food, provides a major source of dietary selenium (Se) for humans, which essentially requires Se, however, the molecular mechanism for Se uptake is still poorly understood. Herein, we show evidence that the uptake of selenite, a main bioavailable form of Se in paddy soils, is mediated by a silicon (Si) influx transporter Lsi1 (OsNIP2;1) in rice. Defect of OsNIP2;1 resulted in a significant decrease in the Se concentration of the shoots and xylem sap when selenite was given. However, there was no difference in the Se concentration between the wild-type rice and mutant of OsNIP2;1 when selenate was supplied. A short-term uptake experiment showed that selenite uptake greatly increased with decreasing pH in the external solution. Si as silicic acid did not inhibit the Se uptake from selenite in both rice and yeast (Saccharomyces cerevisiae) at low pHs. Expression of OsNIP2;1 in yeast enhanced the selenite uptake at pH 3.5 and 5.5 but not at pH 7.5. On the other hand, defect of Si efflux transporter Lsi2 did not affect the uptake of Se either from selenite or selenate. Taken together, our results indicate that Si influx transporter OsNIP2;1 is permeable to selenite.Rice (Oryza sativa) as a staple food, provides a major source of dietary selenium (Se) for humans, which essentially requires Se, however, the molecular mechanism for Se uptake is still poorly understood. Herein, we show evidence that the uptake of selenite, a main bioavailable form of Se in paddy soils, is mediated by a silicon (Si) influx transporter Lsi1 (OsNIP2;1) in rice. Defect of OsNIP2;1 resulted in a significant decrease in the Se concentration of the shoots and xylem sap when selenite was given. However, there was no difference in the Se concentration between the wild-type rice and mutant of OsNIP2;1 when selenate was supplied. A short-term uptake experiment showed that selenite uptake greatly increased with decreasing pH in the external solution. Si as silicic acid did not inhibit the Se uptake from selenite in both rice and yeast (Saccharomyces cerevisiae) at low pHs. Expression of OsNIP2;1 in yeast enhanced the selenite uptake at pH 3.5 and 5.5 but not at pH 7.5. On the other hand, defect of Si efflux transporter Lsi2 did not affect the uptake of Se either from selenite or selenate. Taken together, our results indicate that Si influx transporter OsNIP2;1 is permeable to selenite. Rice ( Oryza sativa ) as a staple food, provides a major source of dietary selenium (Se) for humans, which essentially requires Se, however, the molecular mechanism for Se uptake is still poorly understood. Herein, we show evidence that the uptake of selenite, a main bioavailable form of Se in paddy soils, is mediated by a silicon (Si) influx transporter Lsi1 (OsNIP2;1) in rice. Defect of OsNIP2;1 resulted in a significant decrease in the Se concentration of the shoots and xylem sap when selenite was given. However, there was no difference in the Se concentration between the wild-type rice and mutant of OsNIP2;1 when selenate was supplied. A short-term uptake experiment showed that selenite uptake greatly increased with decreasing pH in the external solution. Si as silicic acid did not inhibit the Se uptake from selenite in both rice and yeast ( Saccharomyces cerevisiae ) at low pHs. Expression of OsNIP2 ; 1 in yeast enhanced the selenite uptake at pH 3.5 and 5.5 but not at pH 7.5. On the other hand, defect of Si efflux transporter Lsi2 did not affect the uptake of Se either from selenite or selenate. Taken together, our results indicate that Si influx transporter OsNIP2;1 is permeable to selenite. |
Author | Shen, Ren Fang Ma, Jian Feng Yamaji, Naoki Mitani, Namiki Zhao, Xue Qiang |
AuthorAffiliation | State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 210008 Nanjing, China (X.Q.Z., R.F.S.); Institute of Plant Science and Resources, Okayama University, Kurashiki 710–0046, Japan (N.M., N.Y., J.F.M.) |
AuthorAffiliation_xml | – name: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 210008 Nanjing, China (X.Q.Z., R.F.S.); Institute of Plant Science and Resources, Okayama University, Kurashiki 710–0046, Japan (N.M., N.Y., J.F.M.) |
Author_xml | – sequence: 1 fullname: Zhao, Xue Qiang – sequence: 2 fullname: Mitani, Namiki – sequence: 3 fullname: Yamaji, Naoki – sequence: 4 fullname: Shen, Ren Fang – sequence: 5 fullname: Ma, Jian Feng |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23109244$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/20498338$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kk1vEzEQhi1URNPCkSOwlwouW8Zfu7aQkFDFR6RCEWnOluN4i4tjL_YmKv8erza0gAQXj-V55vXrGR-hgxCDRegxhlOMgb3s-zGeYt6Kpr2HZphTUhPOxAGaAZQ9CCEP0VHO1wCAKWYP0CEBJgWlYoY-zsMu-p3d2DBUsasWzjsTQzUPnd_eVJdJh9zHNNhUXeRP88_kFa5cqBbW2-AGWy37QX-z49EXZ-xDdL_TPttH-3iMlu_eXp59qM8v3s_P3pzXhkk-1A1nsLLErk2HjSwraVarhhthJG3WwBljDRccG8btegVUM6KlEIaI1tC10fQYvZ50--1qU2SK-aS96pPb6PRDRe3Un5ngvqqruFNEEiokLgLP9wIpft_aPKiNy8Z6r4ON26xaJiQTjLJCvvgviVnpKpaSQkGf_u7q1s6vbhfgZA_obLTvSnONy3ccxSAJG--sJ86kmHOy3S2CQY1TV30_RjVNvfD0L964QQ8ujo93_p9VT6aq6zzEdOeCt8ABxvyzKd_pqPRVKk6XC1K-EGDRck4b-hMVhMHL |
CODEN | PPHYA5 |
CitedBy_id | crossref_primary_10_1002_jsfa_11511 crossref_primary_10_1007_s11356_023_28631_5 crossref_primary_10_3390_foods12244442 crossref_primary_10_1016_j_jhazmat_2020_124178 crossref_primary_10_1021_acs_est_5b04169 crossref_primary_10_1007_s00299_014_1712_6 crossref_primary_10_1007_s00344_022_10840_w crossref_primary_10_3390_antiox10060882 crossref_primary_10_1360_TB_2022_1110 crossref_primary_10_1111_pce_15404 crossref_primary_10_1021_acs_est_9b06837 crossref_primary_10_1080_15592324_2021_1991686 crossref_primary_10_1016_j_chemosphere_2022_136590 crossref_primary_10_1111_ppl_13275 crossref_primary_10_1186_s12870_019_2163_6 crossref_primary_10_1007_s42976_024_00538_y crossref_primary_10_1016_j_ecoenv_2018_02_074 crossref_primary_10_1016_j_plantsci_2015_06_002 crossref_primary_10_1016_j_plgene_2019_100171 crossref_primary_10_3389_fpls_2023_1135080 crossref_primary_10_1016_j_scitotenv_2023_168300 crossref_primary_10_1007_s10311_015_0535_1 crossref_primary_10_1007_s00299_021_02685_6 crossref_primary_10_1016_j_bbamem_2013_08_011 crossref_primary_10_1111_ppl_13843 crossref_primary_10_1007_s10725_022_00843_8 crossref_primary_10_3390_plants13030380 crossref_primary_10_1093_pcp_pcr070 crossref_primary_10_1016_j_plaphy_2024_109456 crossref_primary_10_1016_j_ecoenv_2017_11_064 crossref_primary_10_1016_j_jhazmat_2020_124751 crossref_primary_10_1016_j_envpol_2020_116407 crossref_primary_10_3390_jof6020059 crossref_primary_10_1016_j_molp_2021_05_020 crossref_primary_10_1093_jxb_err158 crossref_primary_10_3390_agriculture13081632 crossref_primary_10_1007_s42729_019_00147_3 crossref_primary_10_1016_j_jfca_2019_103382 crossref_primary_10_1007_s11356_013_2321_6 crossref_primary_10_1080_10643389_2019_1598240 crossref_primary_10_3390_cells7120267 crossref_primary_10_1042_BST20200716 crossref_primary_10_1080_01904167_2014_939287 crossref_primary_10_1007_s11104_018_3589_6 crossref_primary_10_1016_j_scitotenv_2022_155967 crossref_primary_10_1186_s12870_024_05419_4 crossref_primary_10_1111_nph_18762 crossref_primary_10_1186_s12951_020_00659_6 crossref_primary_10_1080_00103624_2018_1474903 crossref_primary_10_1017_S0007485313000369 crossref_primary_10_1007_s42729_020_00197_y crossref_primary_10_1007_s10646_014_1257_z crossref_primary_10_1016_j_jhazmat_2021_126606 crossref_primary_10_1271_kagakutoseibutsu_62_39 crossref_primary_10_1016_j_heliyon_2024_e26023 crossref_primary_10_2478_fhort_2022_0017 crossref_primary_10_3390_ijms19020521 crossref_primary_10_1007_s42729_023_01324_1 crossref_primary_10_3390_plants14030423 crossref_primary_10_1093_jxb_erw060 crossref_primary_10_1016_j_envexpbot_2020_104367 crossref_primary_10_5327_Z2176_94781744 crossref_primary_10_1093_plphys_kiae289 crossref_primary_10_1007_s11104_017_3512_6 crossref_primary_10_3389_fpls_2022_894479 crossref_primary_10_1016_j_scitotenv_2020_143848 crossref_primary_10_1007_s10343_022_00826_9 crossref_primary_10_1016_j_jtemin_2024_100123 crossref_primary_10_1016_j_envexpbot_2017_02_011 crossref_primary_10_1016_j_scitotenv_2014_10_080 crossref_primary_10_1007_s10534_016_9958_9 crossref_primary_10_1007_s10725_023_00988_0 crossref_primary_10_1016_j_scitotenv_2022_158673 crossref_primary_10_1016_j_envpol_2024_124725 crossref_primary_10_1016_j_bbagen_2018_03_028 crossref_primary_10_3389_fpls_2021_642101 crossref_primary_10_1016_j_jhazmat_2020_123570 crossref_primary_10_1080_00380768_2016_1172023 crossref_primary_10_3389_fpls_2022_848349 crossref_primary_10_1093_jxb_erae261 crossref_primary_10_1016_j_chemosphere_2019_124712 crossref_primary_10_1093_plcell_koad073 crossref_primary_10_3390_soilsystems7010024 crossref_primary_10_1007_s11104_022_05826_2 crossref_primary_10_7717_peerj_1993 crossref_primary_10_3389_fpls_2020_586421 crossref_primary_10_3390_ijms21020663 crossref_primary_10_1016_j_tplants_2015_04_007 crossref_primary_10_1093_plphys_kiac534 crossref_primary_10_1016_j_envpol_2022_119038 crossref_primary_10_1021_acsfoodscitech_0c00026 crossref_primary_10_1134_S1021443723602033 crossref_primary_10_1104_pp_111_173088 crossref_primary_10_2134_jeq2016_09_0342 crossref_primary_10_3724_SP_J_1206_2010_00528 crossref_primary_10_1002_pld3_272 crossref_primary_10_1007_s11104_019_04346_w crossref_primary_10_1111_nph_12596 crossref_primary_10_1109_TNB_2021_3105281 crossref_primary_10_3390_ijms25137007 crossref_primary_10_1155_2020_2895795 crossref_primary_10_3389_fpls_2021_697592 crossref_primary_10_1016_j_ecoenv_2016_11_015 crossref_primary_10_1016_j_scitotenv_2024_175033 crossref_primary_10_3389_fpls_2024_1488210 crossref_primary_10_1111_pce_15278 crossref_primary_10_1152_physrev_00008_2015 crossref_primary_10_1371_journal_pone_0226752 crossref_primary_10_3390_plants9111480 crossref_primary_10_3389_fpls_2022_970480 crossref_primary_10_1093_jxb_erv254 crossref_primary_10_1007_s00344_023_11141_6 crossref_primary_10_1016_j_envpol_2020_115935 crossref_primary_10_1007_s12551_017_0313_3 crossref_primary_10_1016_j_jhazmat_2023_131272 crossref_primary_10_1016_j_plaphy_2020_02_044 crossref_primary_10_3390_ijms26052178 crossref_primary_10_1093_hr_uhac270 crossref_primary_10_3390_app11178090 crossref_primary_10_1016_j_ijbiomac_2024_138746 crossref_primary_10_3390_ijpb16010028 crossref_primary_10_1007_s44246_023_00073_1 crossref_primary_10_3390_nu7064199 crossref_primary_10_1007_s11104_020_04635_9 crossref_primary_10_3390_molecules28031398 crossref_primary_10_7717_peerj_10053 crossref_primary_10_1111_pbi_13037 crossref_primary_10_1371_journal_pone_0217516 crossref_primary_10_3390_f14040696 crossref_primary_10_1016_j_chemosphere_2017_11_149 crossref_primary_10_1007_s12011_016_0906_x crossref_primary_10_1016_j_foodres_2023_112880 crossref_primary_10_3390_plants12010044 crossref_primary_10_1093_aob_mcv180 crossref_primary_10_1016_j_envexpbot_2023_105454 crossref_primary_10_1016_j_foodchem_2021_129699 crossref_primary_10_1016_S2095_3119_21_63748_6 crossref_primary_10_1002_jsfa_11816 crossref_primary_10_1016_j_plaphy_2016_11_004 crossref_primary_10_1016_j_plaphy_2021_04_026 crossref_primary_10_1093_jxb_eraa294 crossref_primary_10_1186_s12284_022_00572_6 crossref_primary_10_1021_acs_jafc_7b03316 crossref_primary_10_1007_s00709_021_01643_z crossref_primary_10_1134_S102144371505009X crossref_primary_10_1007_s11356_019_04717_x crossref_primary_10_1021_acs_est_2c07028 crossref_primary_10_1016_j_bbagen_2013_09_017 crossref_primary_10_1016_j_chemosphere_2021_130593 crossref_primary_10_3389_fpls_2021_641678 crossref_primary_10_1080_19336950_2016_1139250 crossref_primary_10_1111_jipb_13827 crossref_primary_10_1016_j_plaphy_2018_04_001 crossref_primary_10_3390_molecules22040558 crossref_primary_10_1016_j_chemosphere_2020_128417 crossref_primary_10_1016_j_ecoenv_2013_01_027 crossref_primary_10_3390_antiox10071031 crossref_primary_10_1039_d0mt00043d crossref_primary_10_1016_j_scitotenv_2024_175193 crossref_primary_10_1016_j_cj_2024_04_005 crossref_primary_10_1016_j_envpol_2022_120039 crossref_primary_10_1186_s12870_019_2110_6 crossref_primary_10_3389_fpls_2023_1268537 crossref_primary_10_1093_mtomcs_mfab054 crossref_primary_10_3389_fpls_2024_1387460 crossref_primary_10_1007_s00122_019_03527_6 crossref_primary_10_1016_j_molp_2020_05_007 crossref_primary_10_1016_j_jhazmat_2020_124495 crossref_primary_10_3390_app10155368 crossref_primary_10_1016_j_jbiotec_2024_09_006 crossref_primary_10_1007_s40362_017_0045_6 crossref_primary_10_1007_s40828_021_00137_y crossref_primary_10_3724_SP_J_1259_2011_00233 crossref_primary_10_1016_j_ecoenv_2020_111544 crossref_primary_10_3390_jdb4010009 crossref_primary_10_1007_s11356_019_04182_6 crossref_primary_10_1016_j_envexpbot_2015_07_001 crossref_primary_10_1016_j_plaphy_2020_02_009 crossref_primary_10_1139_gen_2019_0061 crossref_primary_10_1093_pcp_pct166 crossref_primary_10_1016_j_ecoenv_2023_115450 crossref_primary_10_1002_jpln_201700013 crossref_primary_10_1016_j_ecoenv_2019_01_090 crossref_primary_10_3390_ijms17081229 crossref_primary_10_1016_j_jes_2023_07_024 crossref_primary_10_3390_ijms20163984 crossref_primary_10_3390_plants12040789 crossref_primary_10_1007_s12633_021_01133_0 crossref_primary_10_1080_15226514_2024_2431096 crossref_primary_10_3389_fpls_2024_1355518 crossref_primary_10_1371_journal_pone_0152081 crossref_primary_10_3390_agronomy14071380 crossref_primary_10_3389_fpls_2016_01815 crossref_primary_10_1021_acs_jafc_9b05359 crossref_primary_10_1016_j_ecoenv_2016_07_001 crossref_primary_10_3390_agronomy8090185 crossref_primary_10_1016_j_scienta_2021_110441 crossref_primary_10_1371_journal_pone_0197506 crossref_primary_10_1007_s00128_021_03386_2 crossref_primary_10_1111_nph_14378 crossref_primary_10_15864_ajabtr_222 crossref_primary_10_3389_fpls_2015_00166 crossref_primary_10_1016_j_ecoenv_2020_110471 crossref_primary_10_3390_plants11202712 crossref_primary_10_1093_jxb_erv040 crossref_primary_10_1016_j_envexpbot_2021_104730 crossref_primary_10_3390_agronomy7040067 crossref_primary_10_3390_horticulturae9030330 crossref_primary_10_5483_BMBRep_2012_45_2_96 crossref_primary_10_1007_s11104_015_2699_7 crossref_primary_10_7717_peerj_8768 crossref_primary_10_1016_j_bbagen_2018_05_006 crossref_primary_10_1016_j_jhazmat_2023_130812 |
Cites_doi | 10.1104/pp.44.6.893 10.1104/pp.106.091462 10.1007/s00424-007-0408-y 10.1074/jbc.M700982200 10.1146/annurev.arplant.59.032607.092734 10.1073/pnas.0802361105 10.1105/tpc.106.041640 10.1079/BJN20031015 10.1016/j.str.2005.05.005 10.1017/S0007114508939830 10.1186/1741-7007-6-26 10.1104/pp.010348 10.1038/nature04590 10.1146/annurev.arplant.51.1.401 10.1021/bi982110c 10.1007/s10142-007-0049-4 10.1093/jxb/44.6.1083 10.1038/nature05964 10.1007/s11104-005-5706-6 10.1021/bi0511888 10.1093/pcp/pci018 10.1016/j.bbrc.2007.12.079 10.1111/j.1469-8137.2007.02343.x 10.1016/S0140-6736(00)02490-9 10.1016/j.tplants.2009.06.006 10.1023/A:1004639906245 10.1046/j.0960-7412.2001.01232.x 10.1111/j.1365-313X.2008.03728.x 10.1104/pp.109.140350 10.1007/BF01373514 10.1079/BJN2000280 10.1079/PNS2002153 10.1007/s11120-005-5222-9 10.1104/pp.31.3.222 |
ContentType | Journal Article |
Copyright | 2010 American Society of Plant Biologists 2015 INIST-CNRS 2010 American Society of Plant Biologists 2010 |
Copyright_xml | – notice: 2010 American Society of Plant Biologists – notice: 2015 INIST-CNRS – notice: 2010 American Society of Plant Biologists 2010 |
DBID | FBQ AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7S9 L.6 7X8 5PM |
DOI | 10.1104/pp.110.157867 |
DatabaseName | AGRIS CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed AGRICOLA AGRICOLA - Academic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic AGRICOLA MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1532-2548 |
EndPage | 1877 |
ExternalDocumentID | PMC2923891 20498338 23109244 10_1104_pp_110_157867 25705007 US201301875536 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -DZ -~X 0R~ 123 29O 2AX 2WC 2~F 4.4 53G 5VS 5WD 7X2 7X7 85S 88E 88I 8AF 8AO 8CJ 8FE 8FH 8FI 8FJ 8FW 8G5 8R4 8R5 AAHBH AAHKG AAPXW AARHZ AAUAY AAVAP AAWDT AAXTN AAYJJ ABBHK ABDFA ABEJV ABGNP ABIME ABJNI ABMNT ABPIB ABPLY ABPPZ ABPTD ABTLG ABUWG ABVGC ABXSQ ABXVV ABXZS ABZEO ACBTR ACFRR ACGOD ACHIC ACIPB ACNCT ACPRK ACUFI ACUTJ ACVCV ACZBC ADBBV ADGKP ADIPN ADIYS ADQBN ADULT ADVEK ADYHW ADYWZ AEEJZ AENEX AEUPB AEUYN AFAZZ AFFDN AFFZL AFGWE AFKRA AFRAH AFYAG AGMDO AGUYK AHMBA AHXOZ AICQM AIDAL AIDBO AJDVS AJEEA AJNCP ALIPV ALMA_UNASSIGNED_HOLDINGS ALXQX ANFBD APJGH AQDSO AQVQM AS~ ATCPS ATGXG AZQEC BAWUL BBNVY BCRHZ BENPR BEYMZ BHPHI BPHCQ BTFSW BVXVI C1A CBGCD CCPQU CS3 D1J DATOO DIK DU5 DWQXO E3Z EBS ECGQY EJD F5P FBQ FLUFQ FOEOM FYUFA GNUQQ GTFYD GUQSH H13 HCIFZ HMCUK HTVGU IPSME JAAYA JBMMH JBS JENOY JHFFW JKQEH JLS JLXEF JPM JST JXSIZ KOP KQ8 KSI KSN LK8 LU7 M0K M1P M2O M2P M2Q M7P MV1 MVM NOMLY NU- OBOKY OJZSN OK1 OWPYF P0- P2P PHGZT PQQKQ PROAC PSQYO Q2X QZG RHI ROX RPB RWL RXW S0X SA0 TAE TCN TN5 TR2 UBC UKHRP UKR W8F WH7 WHG WOQ XOL XSW Y6R YBU YKV YNT YSK YZZ ZCA ZCG ZCN ~02 ~KM ADXHL AGORE AJBYB PHGZM AAYXX CITATION AHGBF IQODW PJZUB PPXIY PQGLB 3V. 88A CGR CUY CVF DOOOF ECM EIF ISR JSODD M0L NPM RHF RPM VQA VXZ 7S9 L.6 7X8 5PM |
ID | FETCH-LOGICAL-c495t-6540be2edcf1c9dcf26bb65c8c936d0544465851c45edb03a42a988c287c3dca3 |
ISSN | 0032-0889 1532-2548 |
IngestDate | Thu Aug 21 18:28:04 EDT 2025 Mon Jul 21 09:18:18 EDT 2025 Fri Jul 11 04:59:25 EDT 2025 Wed Feb 19 01:47:18 EST 2025 Mon Jul 21 09:15:10 EDT 2025 Tue Jul 01 03:07:46 EDT 2025 Thu Apr 24 23:02:43 EDT 2025 Fri Jun 20 02:19:09 EDT 2025 Thu Apr 03 09:45:28 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Monocotyledones Absorption Oryza Plant physiology Gramineae Angiospermae Herbaceous plant Spermatophyta Silicon Selenites |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c495t-6540be2edcf1c9dcf26bb65c8c936d0544465851c45edb03a42a988c287c3dca3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 The online version of this article contains Web-only data. The author responsible for distribution of materials integral to the findings presented in this article in accordance with the policy described in the Instructions for Authors (www.plantphysiol.org) is: Ren Fang Shen (rfshen@issas.ac.cn). www.plantphysiol.org/cgi/doi/10.1104/pp.110.157867 Open Access articles can be viewed online without a subscription. This work was supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (grant no. KSCX2–YW–N–002 to R.F.S.), the Institute of Soil Science, Chinese Academy of Sciences Innovation Program (grant no. ISSASIP0706 to X.Q.Z.), a grant from the Ministry of Agriculture, Forestry and Fisheries of Japan (Genomics for Agricultural Innovation grant no. IPG–0006 to J.F.M.), and a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan (grant no. 21248009 to J.F.M.). |
OpenAccessLink | https://academic.oup.com/plphys/article-pdf/153/4/1871/38107727/plphys_v153_4_1871.pdf |
PMID | 20498338 |
PQID | 1400119930 |
PQPubID | 24069 |
PageCount | 7 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_2923891 proquest_miscellaneous_748948434 proquest_miscellaneous_1400119930 pubmed_primary_20498338 pascalfrancis_primary_23109244 crossref_primary_10_1104_pp_110_157867 crossref_citationtrail_10_1104_pp_110_157867 jstor_primary_25705007 fao_agris_US201301875536 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2010-08-01 |
PublicationDateYYYYMMDD | 2010-08-01 |
PublicationDate_xml | – month: 08 year: 2010 text: 2010-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Rockville, MD |
PublicationPlace_xml | – name: Rockville, MD – name: United States |
PublicationTitle | Plant physiology (Bethesda) |
PublicationTitleAlternate | Plant Physiol |
PublicationYear | 2010 |
Publisher | American Society of Plant Biologists |
Publisher_xml | – name: American Society of Plant Biologists |
References | Ma (2021052608222588300_b14) 2002; 130 Shrift (2021052608222588300_b26) 1969; 44 Zhang (2021052608222588300_b33) 2006; 282 Rayman (2021052608222588300_b22) 2002; 61 Whanger (2021052608222588300_b32) 2004; 91 Wang (2021052608222588300_b31) 2005; 13 Kassis (2021052608222588300_b10) 2007; 143 Mitani (2021052608222588300_b20) 2008; 456 Ma (2021052608222588300_b15) 2006; 440 Terry (2021052608222588300_b29) 2000; 51 Forrest (2021052608222588300_b8) 2007; 7 Rouge (2021052608222588300_b24) 2008; 367 Takano (2021052608222588300_b28) 2006; 18 Wallace (2021052608222588300_b30) 2005; 44 Mitani (2021052608222588300_b19) 2005; 46 Chiba (2021052608222588300_b4) 2009; 57 Ma (2021052608222588300_b17) 2008; 105 Li (2021052608222588300_b13) 2009; 150 Leggett (2021052608222588300_b11) 1956; 31 Rayman (2021052608222588300_b23) 2008; 100 Bienert (2021052608222588300_b2) 2008; 6 Sors (2021052608222588300_b27) 2005; 86 Rayman (2021052608222588300_b21) 2000; 356 Dean (2021052608222588300_b7) 1999; 38 Li (2021052608222588300_b12) 2008; 178 Combs (2021052608222588300_b6) 2001; 85 Shibagaki (2021052608222588300_b25) 2002; 29 Arvy (2021052608222588300_b1) 1993; 44 Broyer (2021052608222588300_b3) 1972; 36 Maurel (2021052608222588300_b18) 2008; 59 Zhu (2021052608222588300_b34) 2009; 14 Choi (2021052608222588300_b5) 2007; 282 Ma (2021052608222588300_b16) 2007; 448 Hopper (2021052608222588300_b9) 1999; 210 18155659 - Biochem Biophys Res Commun. 2008 Feb 29;367(1):60-6 18626020 - Proc Natl Acad Sci U S A. 2008 Jul 22;105(29):9931-5 12481095 - Plant Physiol. 2002 Dec;130(4):2111-7 16084383 - Structure. 2005 Aug;13(8):1107-18 17625566 - Nature. 2007 Jul 12;448(7150):209-12 9890916 - Biochemistry. 1999 Jan 5;38(1):347-53 10963212 - Lancet. 2000 Jul 15;356(9225):233-41 18444909 - Annu Rev Plant Biol. 2008;59:595-624 16654867 - Plant Physiol. 1956 May;31(3):222-6 18179602 - New Phytol. 2008;178(1):92-102 19665422 - Trends Plant Sci. 2009 Aug;14(8):436-42 17584741 - J Biol Chem. 2007 Aug 17;282(33):24209-18 18346308 - Br J Nutr. 2008 Aug;100(2):254-68 11846880 - Plant J. 2002 Feb;29(4):475-86 15695469 - Plant Cell Physiol. 2005 Feb;46(2):279-83 11348568 - Br J Nutr. 2001 May;85(5):517-47 16679457 - Plant Cell. 2006 Jun;18(6):1498-509 14748935 - Br J Nutr. 2004 Jan;91(1):11-28 17208959 - Plant Physiol. 2007 Mar;143(3):1231-41 5799050 - Plant Physiol. 1969 Jun;44(6):893-6 15012198 - Annu Rev Plant Physiol Plant Mol Biol. 2000 Jun;51:401-432 18980663 - Plant J. 2009 Mar;57(5):810-8 18544156 - BMC Biol. 2008;6:26 16572174 - Nature. 2006 Mar 30;440(7084):688-91 19542298 - Plant Physiol. 2009 Aug;150(4):2071-80 12133202 - Proc Nutr Soc. 2002 May;61(2):203-15 16363796 - Biochemistry. 2005 Dec 27;44(51):16826-34 17562090 - Funct Integr Genomics. 2007 Oct;7(4):263-89 18214526 - Pflugers Arch. 2008 Jul;456(4):679-86 16307305 - Photosynth Res. 2005 Dec;86(3):373-89 |
References_xml | – volume: 44 start-page: 893 year: 1969 ident: 2021052608222588300_b26 article-title: Transport of selenate and selenite into Astragalus roots publication-title: Plant Physiol doi: 10.1104/pp.44.6.893 – volume: 143 start-page: 1231 year: 2007 ident: 2021052608222588300_b10 article-title: Characterization of a selenate-resistant Arabidopsis mutant: root growth as a potential target for selenate toxicity publication-title: Plant Physiol doi: 10.1104/pp.106.091462 – volume: 456 start-page: 679 year: 2008 ident: 2021052608222588300_b20 article-title: Characterization of substrate specificity of a rice silicon transporter, Lsi1 publication-title: Pflugers Arch doi: 10.1007/s00424-007-0408-y – volume: 282 start-page: 24209 year: 2007 ident: 2021052608222588300_b5 article-title: Arabidopsis NIP2;1, a major intrinsic protein transporter of lactic acid induced by anoxic stress publication-title: J Biol Chem doi: 10.1074/jbc.M700982200 – volume: 59 start-page: 595 year: 2008 ident: 2021052608222588300_b18 article-title: Plant aquaporins: membrane channels with multiple integrated functions publication-title: Annu Rev Plant Biol doi: 10.1146/annurev.arplant.59.032607.092734 – volume: 105 start-page: 9931 year: 2008 ident: 2021052608222588300_b17 article-title: Transporters of arsenite in rice and their role in arsenic accumulation in rice grain publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0802361105 – volume: 18 start-page: 1498 year: 2006 ident: 2021052608222588300_b28 article-title: The Arabidopsis major intrinsic protein NIP5;1 is essential for efficient boron uptake and plant development under boron limitation publication-title: Plant Cell doi: 10.1105/tpc.106.041640 – volume: 91 start-page: 11 year: 2004 ident: 2021052608222588300_b32 article-title: Selenium and its relationship to cancer: an update publication-title: Br J Nutr doi: 10.1079/BJN20031015 – volume: 13 start-page: 1107 year: 2005 ident: 2021052608222588300_b31 article-title: What makes an aquaporin a glycerol channel? A comparative study of AqpZ and GlpF publication-title: Structure doi: 10.1016/j.str.2005.05.005 – volume: 100 start-page: 254 year: 2008 ident: 2021052608222588300_b23 article-title: Food-chain selenium and human health: emphasis on intake publication-title: Br J Nutr doi: 10.1017/S0007114508939830 – volume: 6 start-page: 26 year: 2008 ident: 2021052608222588300_b2 article-title: A subgroup of plant aquaporins facilitate the bi-directional diffusion of As(OH)3 and Sb(OH)3 across membranes publication-title: BMC Biol doi: 10.1186/1741-7007-6-26 – volume: 130 start-page: 2111 year: 2002 ident: 2021052608222588300_b14 article-title: A rice mutant defective in Si uptake publication-title: Plant Physiol doi: 10.1104/pp.010348 – volume: 440 start-page: 688 year: 2006 ident: 2021052608222588300_b15 article-title: A silicon transporter in rice publication-title: Nature doi: 10.1038/nature04590 – volume: 51 start-page: 401 year: 2000 ident: 2021052608222588300_b29 article-title: Selenium in higher plants publication-title: Annu Rev Plant Physiol Plant Mol Biol doi: 10.1146/annurev.arplant.51.1.401 – volume: 38 start-page: 347 year: 1999 ident: 2021052608222588300_b7 article-title: Purification and functional reconstitution of soybean nodulin 26: an aquaporin with water and glycerol transport properties publication-title: Biochemistry doi: 10.1021/bi982110c – volume: 7 start-page: 263 year: 2007 ident: 2021052608222588300_b8 article-title: Major intrinsic proteins (MIPs) in plants: a complex gene family with major impacts on plant phenotype publication-title: Funct Integr Genomics doi: 10.1007/s10142-007-0049-4 – volume: 44 start-page: 1083 year: 1993 ident: 2021052608222588300_b1 article-title: Selenate and selenite uptake and translocation in bean plants (Phaseolus vulgaris) publication-title: J Exp Bot doi: 10.1093/jxb/44.6.1083 – volume: 448 start-page: 209 year: 2007 ident: 2021052608222588300_b16 article-title: An efflux transporter of silicon in rice publication-title: Nature doi: 10.1038/nature05964 – volume: 282 start-page: 183 year: 2006 ident: 2021052608222588300_b33 article-title: Difference in selenite absorption between high- and low-selenium rice cultivars and its mechanism publication-title: Plant Soil doi: 10.1007/s11104-005-5706-6 – volume: 44 start-page: 16826 year: 2005 ident: 2021052608222588300_b30 article-title: Distinct transport selectivity of two structural subclasses of the nodulin-like intrinsic protein family of plant aquaglyceroporin channels publication-title: Biochemistry doi: 10.1021/bi0511888 – volume: 46 start-page: 279 year: 2005 ident: 2021052608222588300_b19 article-title: Identification of the silicon form in xylem sap of rice (Oryza sativa L.) publication-title: Plant Cell Physiol doi: 10.1093/pcp/pci018 – volume: 367 start-page: 60 year: 2008 ident: 2021052608222588300_b24 article-title: A molecular modeling approach defines a new group of Nodulin 26-like aquaporins in plants publication-title: Biochem Biophys Res Commun doi: 10.1016/j.bbrc.2007.12.079 – volume: 178 start-page: 92 year: 2008 ident: 2021052608222588300_b12 article-title: Selenium uptake, translocation and speciation in wheat supplied with selenate or selenite publication-title: New Phytol doi: 10.1111/j.1469-8137.2007.02343.x – volume: 356 start-page: 233 year: 2000 ident: 2021052608222588300_b21 article-title: The importance of selenium to human health publication-title: Lancet doi: 10.1016/S0140-6736(00)02490-9 – volume: 14 start-page: 436 year: 2009 ident: 2021052608222588300_b34 article-title: Selenium in higher plants: understanding mechanisms for biofortification and phytoremediation publication-title: Trends Plant Sci doi: 10.1016/j.tplants.2009.06.006 – volume: 210 start-page: 199 year: 1999 ident: 2021052608222588300_b9 article-title: Plant availability of selenite and selenate as influenced by the competing ions phosphate and sulfate publication-title: Plant Soil doi: 10.1023/A:1004639906245 – volume: 29 start-page: 475 year: 2002 ident: 2021052608222588300_b25 article-title: Selenate-resistant mutants of Arabidopsis thaliana identify Sultr1;2, a sulfate transporter required for efficient transport of sulfate into roots publication-title: Plant J doi: 10.1046/j.0960-7412.2001.01232.x – volume: 57 start-page: 810 year: 2009 ident: 2021052608222588300_b4 article-title: HvLsi1 is a silicon influx transporter in barley publication-title: Plant J doi: 10.1111/j.1365-313X.2008.03728.x – volume: 150 start-page: 2071 year: 2009 ident: 2021052608222588300_b13 article-title: The rice aquaporin Lsi1 mediates uptake of methylated arsenic species publication-title: Plant Physiol doi: 10.1104/pp.109.140350 – volume: 36 start-page: 651 year: 1972 ident: 2021052608222588300_b3 article-title: Selenium and nutrition of Astragalus II: ionic sorption interactions among selenium, phosphate, and the macro- and micronutrient cations publication-title: Plant Soil doi: 10.1007/BF01373514 – volume: 85 start-page: 517 year: 2001 ident: 2021052608222588300_b6 article-title: Selenium in global food systems publication-title: Br J Nutr doi: 10.1079/BJN2000280 – volume: 61 start-page: 203 year: 2002 ident: 2021052608222588300_b22 article-title: The argument for increasing selenium intake publication-title: Proc Nutr Soc doi: 10.1079/PNS2002153 – volume: 86 start-page: 373 year: 2005 ident: 2021052608222588300_b27 article-title: Selenium uptake, translocation, assimilation and metabolic fate in plants publication-title: Photosynth Res doi: 10.1007/s11120-005-5222-9 – volume: 31 start-page: 222 year: 1956 ident: 2021052608222588300_b11 article-title: Kinetics of sulfate absorption by barley roots publication-title: Plant Physiol doi: 10.1104/pp.31.3.222 – reference: 16654867 - Plant Physiol. 1956 May;31(3):222-6 – reference: 17584741 - J Biol Chem. 2007 Aug 17;282(33):24209-18 – reference: 17208959 - Plant Physiol. 2007 Mar;143(3):1231-41 – reference: 10963212 - Lancet. 2000 Jul 15;356(9225):233-41 – reference: 16572174 - Nature. 2006 Mar 30;440(7084):688-91 – reference: 16363796 - Biochemistry. 2005 Dec 27;44(51):16826-34 – reference: 15012198 - Annu Rev Plant Physiol Plant Mol Biol. 2000 Jun;51:401-432 – reference: 5799050 - Plant Physiol. 1969 Jun;44(6):893-6 – reference: 18179602 - New Phytol. 2008;178(1):92-102 – reference: 9890916 - Biochemistry. 1999 Jan 5;38(1):347-53 – reference: 18980663 - Plant J. 2009 Mar;57(5):810-8 – reference: 12133202 - Proc Nutr Soc. 2002 May;61(2):203-15 – reference: 18346308 - Br J Nutr. 2008 Aug;100(2):254-68 – reference: 18155659 - Biochem Biophys Res Commun. 2008 Feb 29;367(1):60-6 – reference: 18544156 - BMC Biol. 2008;6:26 – reference: 19542298 - Plant Physiol. 2009 Aug;150(4):2071-80 – reference: 16084383 - Structure. 2005 Aug;13(8):1107-18 – reference: 17562090 - Funct Integr Genomics. 2007 Oct;7(4):263-89 – reference: 12481095 - Plant Physiol. 2002 Dec;130(4):2111-7 – reference: 16307305 - Photosynth Res. 2005 Dec;86(3):373-89 – reference: 15695469 - Plant Cell Physiol. 2005 Feb;46(2):279-83 – reference: 18214526 - Pflugers Arch. 2008 Jul;456(4):679-86 – reference: 16679457 - Plant Cell. 2006 Jun;18(6):1498-509 – reference: 18444909 - Annu Rev Plant Biol. 2008;59:595-624 – reference: 11846880 - Plant J. 2002 Feb;29(4):475-86 – reference: 17625566 - Nature. 2007 Jul 12;448(7150):209-12 – reference: 11348568 - Br J Nutr. 2001 May;85(5):517-47 – reference: 18626020 - Proc Natl Acad Sci U S A. 2008 Jul 22;105(29):9931-5 – reference: 14748935 - Br J Nutr. 2004 Jan;91(1):11-28 – reference: 19665422 - Trends Plant Sci. 2009 Aug;14(8):436-42 |
SSID | ssj0001314 |
Score | 2.471633 |
Snippet | Rice (Oryza sativa) as a staple food, provides a major source of dietary selenium (Se) for humans, which essentially requires Se, however, the molecular... Rice ( Oryza sativa ) as a staple food, provides a major source of dietary selenium (Se) for humans, which essentially requires Se, however, the molecular... |
SourceID | pubmedcentral proquest pubmed pascalfrancis crossref jstor fao |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1871 |
SubjectTerms | Aquaporins Aquaporins - genetics Aquaporins - metabolism Arsenites Biological and medical sciences ENVIRONMENTAL STRESS AND ADAPTATION TO STRESS Fundamental and applied biological sciences. Psychology genetics humans Hydrogen-Ion Concentration metabolism mutants Mutation Nutrient solutions Oryza Oryza - genetics Oryza - metabolism Oryza sativa paddy soils Plant physiology and development Plant Proteins Plant Proteins - genetics Plant Proteins - metabolism Plants Rice Saccharomyces cerevisiae sap Seedlings Selenic Acid Selenium Selenium Compounds Selenium Compounds - metabolism shoots silicic acid Silicic Acid - metabolism silicon Sodium Selenite Sodium Selenite - metabolism staple foods transporters uptake mechanisms Xylem Yeasts |
Title | Involvement of Silicon Influx Transporter OsNIP2;1 in Selenite Uptake in Rice |
URI | https://www.jstor.org/stable/25705007 https://www.ncbi.nlm.nih.gov/pubmed/20498338 https://www.proquest.com/docview/1400119930 https://www.proquest.com/docview/748948434 https://pubmed.ncbi.nlm.nih.gov/PMC2923891 |
Volume | 153 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtNAEF2lLQ-8IG6l5hIZCXgJLr6sb-KJVK0aUENIGinixVp77dY0saPGkYB_4h-Z8a4du0olqBQ5zmazTnKOZ2fW4zOEvOHMZMxOTI0aMQQowCENvWrNpVx3Oac4K2K2xdA5ndLPM3vW6fxpZC2ti_Aw-r31vpK7oAptgCveJfsfyNaDQgPsA76wBYRh-08YDzIwLqXgd3k9f5LOAVdc5Uvm658N3fLr3tfVcDAy31p9Axc4JjjXgK_Zmy4LdlXKhoxlDlzlqGIxo0KsewiVJvBE-3hz8IqzxurB90tWrrXO1nHvGzDtogYwLUS1KLDfi_Qqra0LW7Afsj3fNE_kTSLjOOudVMPIxYhGKlzRyP9HwyRTTjGPr_y-orImMLe5BKlbpoZpVmIuqgywqUHQ6rUstNATllSkDXtreKKAi5y74aW7fV7QKRYzXuLeoQFWymn1A1iXi5IkJkRMniUEZ24IcY_Ojkxwhz3UStgzISopI_jBl3riNywhJV_9rFrSlX5oHRkFqOVhWt7QTsLyKi0Wc3TZCk7TRNRX2RYA3czjbThG5w_JAxnRqJ8EPR-RTpw9Jvf6OeD_6wk5a3BUzRNVclQVHFUbHFUFRz8aapqpFUNVwVBsQoY-JdOT4_OjU02W8NAiiLwLzYGAIIxN-IqJEfmwNZ0wdOzIi3zL4RAuoF4fOP0RtWMe6hajJvM9L4I4PrJ4xKx9spvlWXxAVCf0aeJzi_vgdYJfzDg8Ytf3Yjvhvu8q5H31VwaR1LfHMivzoIxzdRosl_gcCBAU8q7uvhTCLrd1PABcAnYBk24wnZh4qR94ZtuWo5D9Eqx6ACwJaYPXrZBuC71NBxTiBY9aIa8rOAOw53iRjmVxvl5BKF7KMPqWrhD1lj6oGEU9asEwzwQDNgeQxFKI2-JG3QHl5NvvZOllKSsvyf38zp98Qe5vbMJLsltcr-NX4LIXYZfsuDO3S_b6x8PRuFueNn8BnO3qRQ |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Involvement+of+Silicon+Influx+Transporter+OsNIP2%3B1+in+Selenite+Uptake+in+Rice&rft.jtitle=Plant+physiology+%28Bethesda%29&rft.au=Zhao%2C+Xue+Qiang&rft.au=Mitani%2C+Namiki&rft.au=Yamaji%2C+Naoki&rft.au=Shen%2C+Ren+Fang&rft.date=2010-08-01&rft.pub=American+Society+of+Plant+Biologists&rft.issn=0032-0889&rft.eissn=1532-2548&rft.volume=153&rft.issue=4&rft.spage=1871&rft.epage=1877&rft_id=info:doi/10.1104%2Fpp.110.157867&rft_id=info%3Apmid%2F20498338&rft.externalDocID=PMC2923891 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-0889&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-0889&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-0889&client=summon |