Improving Soil Resource Uptake by Plants Through Capitalizing on Synergies Between Root Architecture and Anatomy and Root-Associated Microorganisms

Root architectural and anatomical phenotypes are highly diverse. Specific root phenotypes can be associated with better plant growth under low nutrient and water availability. Therefore, root ideotypes have been proposed as breeding targets for more stress-resilient and resource-efficient crops. For...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in plant science Vol. 13; p. 827369
Main Authors Galindo-Castañeda, Tania, Lynch, Jonathan P., Six, Johan, Hartmann, Martin
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 09.03.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Root architectural and anatomical phenotypes are highly diverse. Specific root phenotypes can be associated with better plant growth under low nutrient and water availability. Therefore, root ideotypes have been proposed as breeding targets for more stress-resilient and resource-efficient crops. For example, root phenotypes that correspond to the Topsoil Foraging ideotype are associated with better plant growth under suboptimal phosphorus availability, and root phenotypes that correspond to the Steep, Cheap and Deep ideotype are linked to better performance under suboptimal availability of nitrogen and water. We propose that natural variation in root phenotypes translates into a diversity of different niches for microbial associations in the rhizosphere, rhizoplane and root cortex, and that microbial traits could have synergistic effects with the beneficial effect of specific root phenotypes. Oxygen and water content, carbon rhizodeposition, nutrient availability, and root surface area are all factors that are modified by root anatomy and architecture and determine the structure and function of the associated microbial communities. Recent research results indicate that root characteristics that may modify microbial communities associated with maize include aerenchyma, rooting angle, root hairs, and lateral root branching density. Therefore, the selection of root phenotypes linked to better plant growth under specific edaphic conditions should be accompanied by investigating and selecting microbial partners better adapted to each set of conditions created by the corresponding root phenotype. Microbial traits such as nitrogen transformation, phosphorus solubilization, and water retention could have synergistic effects when correctly matched with promising plant root ideotypes for improved nutrient and water capture. We propose that elucidation of the interactive effects of root phenotypes and microbial functions on plant nutrient and water uptake offers new opportunities to increase crop yields and agroecosystem sustainability.
AbstractList Root architectural and anatomical phenotypes are highly diverse. Specific root phenotypes can be associated with better plant growth under low nutrient and water availability. Therefore, root ideotypes have been proposed as breeding targets for more stress-resilient and resource-efficient crops. For example, root phenotypes that correspond to the Topsoil Foraging ideotype are associated with better plant growth under suboptimal phosphorus availability, and root phenotypes that correspond to the Steep, Cheap and Deep ideotype are linked to better performance under suboptimal availability of nitrogen and water. We propose that natural variation in root phenotypes translates into a diversity of different niches for microbial associations in the rhizosphere, rhizoplane and root cortex, and that microbial traits could have synergistic effects with the beneficial effect of specific root phenotypes. Oxygen and water content, carbon rhizodeposition, nutrient availability, and root surface area are all factors that are modified by root anatomy and architecture and determine the structure and function of the associated microbial communities. Recent research results indicate that root characteristics that may modify microbial communities associated with maize include aerenchyma, rooting angle, root hairs, and lateral root branching density. Therefore, the selection of root phenotypes linked to better plant growth under specific edaphic conditions should be accompanied by investigating and selecting microbial partners better adapted to each set of conditions created by the corresponding root phenotype. Microbial traits such as nitrogen transformation, phosphorus solubilization, and water retention could have synergistic effects when correctly matched with promising plant root ideotypes for improved nutrient and water capture. We propose that elucidation of the interactive effects of root phenotypes and microbial functions on plant nutrient and water uptake offers new opportunities to increase crop yields and agroecosystem sustainability.
Root architectural and anatomical phenotypes are highly diverse. Specific root phenotypes can be associated with better plant growth under low nutrient and water availability. Therefore, root ideotypes have been proposed as breeding targets for more stress-resilient and resource-efficient crops. For example, root phenotypes that correspond to the Topsoil Foraging ideotype are associated with better plant growth under suboptimal phosphorus availability, and root phenotypes that correspond to the Steep, Cheap and Deep ideotype are linked to better performance under suboptimal availability of nitrogen and water. We propose that natural variation in root phenotypes translates into a diversity of different niches for microbial associations in the rhizosphere, rhizoplane and root cortex, and that microbial traits could have synergistic effects with the beneficial effect of specific root phenotypes. Oxygen and water content, carbon rhizodeposition, nutrient availability, and root surface area are all factors that are modified by root anatomy and architecture and determine the structure and function of the associated microbial communities. Recent research results indicate that root characteristics that may modify microbial communities associated with maize include aerenchyma, rooting angle, root hairs, and lateral root branching density. Therefore, the selection of root phenotypes linked to better plant growth under specific edaphic conditions should be accompanied by investigating and selecting microbial partners better adapted to each set of conditions created by the corresponding root phenotype. Microbial traits such as nitrogen transformation, phosphorus solubilization, and water retention could have synergistic effects when correctly matched with promising plant root ideotypes for improved nutrient and water capture. We propose that elucidation of the interactive effects of root phenotypes and microbial functions on plant nutrient and water uptake offers new opportunities to increase crop yields and agroecosystem sustainability.
Root architectural and anatomical phenotypes are highly diverse. Specific root phenotypes can be associated with better plant growth under low nutrient and water availability. Therefore, root ideotypes have been proposed as breeding targets for more stress-resilient and resource-efficient crops. For example, root phenotypes that correspond to the Topsoil Foraging ideotype are associated with better plant growth under suboptimal phosphorus availability, and root phenotypes that correspond to the Steep, Cheap and Deep ideotype are linked to better performance under suboptimal availability of nitrogen and water. We propose that natural variation in root phenotypes translates into a diversity of different niches for microbial associations in the rhizosphere, rhizoplane and root cortex, and that microbial traits could have synergistic effects with the beneficial effect of specific root phenotypes. Oxygen and water content, carbon rhizodeposition, nutrient availability, and root surface area are all factors that are modified by root anatomy and architecture and determine the structure and function of the associated microbial communities. Recent research results indicate that root characteristics that may modify microbial communities associated with maize include aerenchyma, rooting angle, root hairs, and lateral root branching density. Therefore, the selection of root phenotypes linked to better plant growth under specific edaphic conditions should be accompanied by investigating and selecting microbial partners better adapted to each set of conditions created by the corresponding root phenotype. Microbial traits such as nitrogen transformation, phosphorus solubilization, and water retention could have synergistic effects when correctly matched with promising plant root ideotypes for improved nutrient and water capture. We propose that elucidation of the interactive effects of root phenotypes and microbial functions on plant nutrient and water uptake offers new opportunities to increase crop yields and agroecosystem sustainability.Root architectural and anatomical phenotypes are highly diverse. Specific root phenotypes can be associated with better plant growth under low nutrient and water availability. Therefore, root ideotypes have been proposed as breeding targets for more stress-resilient and resource-efficient crops. For example, root phenotypes that correspond to the Topsoil Foraging ideotype are associated with better plant growth under suboptimal phosphorus availability, and root phenotypes that correspond to the Steep, Cheap and Deep ideotype are linked to better performance under suboptimal availability of nitrogen and water. We propose that natural variation in root phenotypes translates into a diversity of different niches for microbial associations in the rhizosphere, rhizoplane and root cortex, and that microbial traits could have synergistic effects with the beneficial effect of specific root phenotypes. Oxygen and water content, carbon rhizodeposition, nutrient availability, and root surface area are all factors that are modified by root anatomy and architecture and determine the structure and function of the associated microbial communities. Recent research results indicate that root characteristics that may modify microbial communities associated with maize include aerenchyma, rooting angle, root hairs, and lateral root branching density. Therefore, the selection of root phenotypes linked to better plant growth under specific edaphic conditions should be accompanied by investigating and selecting microbial partners better adapted to each set of conditions created by the corresponding root phenotype. Microbial traits such as nitrogen transformation, phosphorus solubilization, and water retention could have synergistic effects when correctly matched with promising plant root ideotypes for improved nutrient and water capture. We propose that elucidation of the interactive effects of root phenotypes and microbial functions on plant nutrient and water uptake offers new opportunities to increase crop yields and agroecosystem sustainability.
Root architectural and anatomical phenotypes are highly diverse. Specific root phenotypes can be associated with better plant growth under low nutrient and water availability. Therefore, root ideotypes have been proposed as breeding targets for more stress-resilient and resource-efficient crops. For example, root phenotypes that correspond to the ideotype are associated with better plant growth under suboptimal phosphorus availability, and root phenotypes that correspond to the ideotype are linked to better performance under suboptimal availability of nitrogen and water. We propose that natural variation in root phenotypes translates into a diversity of different niches for microbial associations in the rhizosphere, rhizoplane and root cortex, and that microbial traits could have synergistic effects with the beneficial effect of specific root phenotypes. Oxygen and water content, carbon rhizodeposition, nutrient availability, and root surface area are all factors that are modified by root anatomy and architecture and determine the structure and function of the associated microbial communities. Recent research results indicate that root characteristics that may modify microbial communities associated with maize include aerenchyma, rooting angle, root hairs, and lateral root branching density. Therefore, the selection of root phenotypes linked to better plant growth under specific edaphic conditions should be accompanied by investigating and selecting microbial partners better adapted to each set of conditions created by the corresponding root phenotype. Microbial traits such as nitrogen transformation, phosphorus solubilization, and water retention could have synergistic effects when correctly matched with promising plant root ideotypes for improved nutrient and water capture. We propose that elucidation of the interactive effects of root phenotypes and microbial functions on plant nutrient and water uptake offers new opportunities to increase crop yields and agroecosystem sustainability.
Author Six, Johan
Galindo-Castañeda, Tania
Hartmann, Martin
Lynch, Jonathan P.
AuthorAffiliation 1 Sustainable Agroecosystems, Institute of Agricultural Sciences, Department of Environmental System Science, ETH Zürich , Zurich , Switzerland
2 Department of Plant Science, The Pennsylvania State University , University Park, PA , United States
AuthorAffiliation_xml – name: 1 Sustainable Agroecosystems, Institute of Agricultural Sciences, Department of Environmental System Science, ETH Zürich , Zurich , Switzerland
– name: 2 Department of Plant Science, The Pennsylvania State University , University Park, PA , United States
Author_xml – sequence: 1
  givenname: Tania
  surname: Galindo-Castañeda
  fullname: Galindo-Castañeda, Tania
– sequence: 2
  givenname: Jonathan P.
  surname: Lynch
  fullname: Lynch, Jonathan P.
– sequence: 3
  givenname: Johan
  surname: Six
  fullname: Six, Johan
– sequence: 4
  givenname: Martin
  surname: Hartmann
  fullname: Hartmann, Martin
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35356114$$D View this record in MEDLINE/PubMed
BookMark eNqFkktv1DAUhSNUREvpnhXykk0Gx6_EG6RhxGOkIlAfEjvLcW5mXBI7tZ2i4W_wh0k6pWqREN746vqcT9f2eZ4dOO8gy14WeEFpJd-0QxcXBBOyqEhJhXySHRVCsJwJ8u3gQX2YncR4hafFMZayfJYdUk65KAp2lP1a90PwN9Zt0Lm3HTqD6MdgAF0OSX8HVO_Q1067FNHFNvhxs0UrPdikO_tz9niHzncOwsZCRO8g_QBw6Mz7hJbBbG0Ck8YASLsGLZ1Ovt_d1rMiX8bojdUJGvTZmuB92GhnYx9fZE9b3UU4uduPs8sP7y9Wn_LTLx_Xq-VpbpjkKRfYAKVFLYRoagKMclM1pajKogKQNVSGmxJI2TDRUloDtDWva9m2lLW8hYIeZ-s9t_H6Sg3B9jrslNdW3TameZQOyZoOFJOSYC2qtqkpk4LLkpZcN7KmTcFINbPe7lnDWPfQGHAp6O4R9PGJs1u18TeqkhOsFBPg9R0g-OsRYlK9jQa66fHBj1FRgjHFRcnYf6VEMF5xgQWZpK8ejnU_z58ATAK8F0wfEGOA9l5SYDXHTM0xU3PM1D5mk0X8ZTFTIJL188Vs92_jb4sP20g
CitedBy_id crossref_primary_10_1016_j_scitotenv_2023_167380
crossref_primary_10_1093_jxb_erad421
crossref_primary_10_1016_j_envres_2024_119523
crossref_primary_10_3389_fsufs_2024_1469474
crossref_primary_10_1021_acs_est_4c05291
crossref_primary_10_1016_j_geoderma_2024_117061
crossref_primary_10_1080_17429145_2024_2323991
crossref_primary_10_1016_j_soilbio_2022_108856
crossref_primary_10_1007_s11104_024_06576_z
crossref_primary_10_1016_j_agee_2024_109370
crossref_primary_10_3390_horticulturae10121254
crossref_primary_10_1080_15592324_2025_2453562
crossref_primary_10_3390_agronomy14091896
crossref_primary_10_1016_j_eja_2024_127294
crossref_primary_10_3389_fpls_2022_903318
crossref_primary_10_1111_pbr_13248
crossref_primary_10_3390_molecules27154671
crossref_primary_10_1007_s11104_024_06611_z
crossref_primary_10_1016_j_micres_2024_127698
crossref_primary_10_1111_pce_14552
crossref_primary_10_1016_j_scienta_2024_113905
crossref_primary_10_1093_insilicoplants_diad009
crossref_primary_10_1016_j_catena_2024_107953
crossref_primary_10_20935_AcadBiol6075
crossref_primary_10_1016_j_ijbiomac_2023_128379
crossref_primary_10_1007_s11104_023_05870_6
crossref_primary_10_1016_j_apsoil_2024_105773
crossref_primary_10_1038_s43017_022_00366_w
crossref_primary_10_1007_s40626_024_00323_6
crossref_primary_10_1093_jxb_erad353
crossref_primary_10_1016_j_still_2024_106276
crossref_primary_10_3390_plants12102007
crossref_primary_10_34133_2022_9858049
crossref_primary_10_1111_pce_14403
crossref_primary_10_1016_j_bidere_2025_100007
crossref_primary_10_1007_s10658_023_02647_6
crossref_primary_10_1016_j_soilbio_2024_109317
crossref_primary_10_1016_j_flora_2025_152674
crossref_primary_10_3390_plants12132404
crossref_primary_10_1007_s00425_024_04412_3
crossref_primary_10_1007_s11104_024_07181_w
crossref_primary_10_1093_aobpla_plac050
crossref_primary_10_1007_s11104_023_06301_2
Cites_doi 10.1073/pnas.2005911117
10.1111/j.1365-3040.2007.01737.x
10.1093/jxb/ery048
10.1016/b978-0-08-025507-1.50014-4
10.1007/s11104-015-2379-7
10.1038/ng.2725
10.1016/j.chom.2020.11.014
10.3389/fpls.2016.01335
10.1007/s004250100642
10.1128/aem.53.4.889-891.1987
10.1038/nature21417
10.3390/plants4020334
10.1007/s11104-021-05010-y
10.1111/nph.14893
10.1016/j.fcr.2014.10.009
10.3389/fpls.2019.00157
10.1038/s41587-019-0104-4
10.1002/csc2.20241
10.1007/s00344-003-0002-2
10.1111/pce.13615
10.1104/pp.20.00211
10.1073/pnas.2012087118
10.1007/s00248-015-0672-x
10.3389/fpls.2017.01617
10.1111/tpj.15560
10.2307/2656994
10.1093/aob/mcab104
10.1016/j.fcr.2014.03.017
10.1016/j.fcr.2019.107612
10.1073/pnas.1302837110
10.1007/978-3-540-68027-7_5
10.1146/annurev-micro-022620-014327
10.1038/s43705-021-00046-8
10.1016/B978-0-12-384905-2.00014-5
10.1016/j.jare.2019.03.004
10.3389/fpls.2017.00786
10.1073/pnas.1809349115
10.1038/s41598-018-37208-z
10.1139/B09-105
10.1093/aob/mcaa068
10.1016/S0038-0717(00)00084-5
10.1038/nature06275
10.1038/s42003-021-01988-4
10.1093/jxb/erw061
10.4319/lo.1997.42.3.0529
10.1111/j.1365-3040.2009.02099.x
10.1104/pp.15.00145
10.1007/s11104-021-04921-0
10.1007/s11104-009-9925-0
10.1007/s11104-017-3449-9
10.1038/s41396-021-00993-z
10.1104/pp.17.01583
10.1007/s003749900190
10.1007/s00248-020-01678-4
10.1016/j.tplants.2017.09.003
10.3389/fpls.2021.621276
10.1093/jxb/erv560
10.1111/1365-2664.13489
10.3389/fmicb.2021.616828
10.3389/fevo.2020.00061
10.1111/nph.15738
10.2135/cropsci2014.11.0805
10.1093/jxb/ers150
10.1016/j.micres.2018.01.005
10.1016/j.fcr.2016.04.008
10.1104/pp.17.00648
10.1093/jxb/50.337.1267
10.1071/FP20351
10.1104/pp.114.241711
10.1270/jsbbs.65.111
10.1073/pnas.1618584114
10.3389/fpls.2013.00355
10.3389/fpls.2020.00546
10.1016/S0065-2113(05)87003-8
10.3389/fmicb.2021.614501
10.1111/pce.14135
10.1007/s11104-010-0623-8
10.1016/j.rhisph.2021.100318
10.1007/s00284-005-0162-3
10.1146/annurev.arplant.59.032607.092839
10.1002/tpg2.20003
10.1016/j.rhisph.2020.100249
10.1016/j.soilbio.2004.04.006
10.1071/FP03046
10.1104/pp.114.249037
10.1371/journal.pone.0164533
10.1104/pp.17.00357
10.1093/aob/mcy092
10.1093/jxb/eru508
10.1038/s41477-021-00897-y
10.1016/0038-0717(94)00161-S
10.1093/jxb/eru404
10.1111/pce.13197
10.1111/pce.14284
10.1111/nph.17622
10.1126/science.abd0695
10.1111/j.1365-3040.2009.01926.x
10.1111/pce.13875
10.1111/1365-3040.ep11580516
10.2135/cropsci2004.0544
10.1093/jxb/eraa165
10.1093/jxb/erv121
10.1111/nph.12235
10.1016/j.tim.2015.07.009
10.1029/2018GB006077
10.1104/pp.114.250449
10.1007/s00572-009-0266-x
10.1111/pce.12451
10.1038/ismej.2017.85
ContentType Journal Article
Copyright Copyright © 2022 Galindo-Castañeda, Lynch, Six and Hartmann.
Copyright © 2022 Galindo-Castañeda, Lynch, Six and Hartmann. 2022 Galindo-Castañeda, Lynch, Six and Hartmann
Copyright_xml – notice: Copyright © 2022 Galindo-Castañeda, Lynch, Six and Hartmann.
– notice: Copyright © 2022 Galindo-Castañeda, Lynch, Six and Hartmann. 2022 Galindo-Castañeda, Lynch, Six and Hartmann
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
5PM
DOA
DOI 10.3389/fpls.2022.827369
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef

AGRICOLA

MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
Agriculture
EISSN 1664-462X
ExternalDocumentID oai_doaj_org_article_49920a68fdb3496597375ad9b3d14281
PMC8959776
35356114
10_3389_fpls_2022_827369
Genre Journal Article
GroupedDBID 5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
CITATION
EBD
ECGQY
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
OK1
PGMZT
RNS
RPM
IAO
IEA
IGS
IPNFZ
ISR
NPM
RIG
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c495t-60ce331b666db2e435c8d768718ee9be8c5c7e27d46f33beefb5bb9ff34f5fe13
IEDL.DBID M48
ISSN 1664-462X
IngestDate Wed Aug 27 01:18:06 EDT 2025
Thu Aug 21 14:05:18 EDT 2025
Wed May 21 16:43:24 EDT 2025
Fri Jul 11 16:29:49 EDT 2025
Thu Jan 02 22:55:27 EST 2025
Tue Jul 01 03:49:08 EDT 2025
Thu Apr 24 23:04:44 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords agriculture
soil resource acquisition
root anatomy and architecture
endosphere and rhizosphere
microbial habitat
Language English
License Copyright © 2022 Galindo-Castañeda, Lynch, Six and Hartmann.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c495t-60ce331b666db2e435c8d768718ee9be8c5c7e27d46f33beefb5bb9ff34f5fe13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Reviewed by: Andrea Leptin, University of California, Davis, United States; Peng Yu, University of Bonn, Germany
Edited by: Tino Colombi, Swedish University of Agricultural Sciences, Sweden
This article was submitted to Plant Abiotic Stress, a section of the journal Frontiers in Plant Science
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fpls.2022.827369
PMID 35356114
PQID 2645856062
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_49920a68fdb3496597375ad9b3d14281
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8959776
proquest_miscellaneous_3200301744
proquest_miscellaneous_2645856062
pubmed_primary_35356114
crossref_primary_10_3389_fpls_2022_827369
crossref_citationtrail_10_3389_fpls_2022_827369
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-03-09
PublicationDateYYYYMMDD 2022-03-09
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-09
  day: 09
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in plant science
PublicationTitleAlternate Front Plant Sci
PublicationYear 2022
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Ladha (B50) 2005; 87
Paszkowski (B71) 2002; 214
Abalos (B1) 2019; 56
Castrillo (B13) 2017; 543
Garrett (B34) 1981
Connor (B21) 2020; 74
Fatichi (B27) 2019; 33
Paez-Garcia (B69) 2015; 4
Schneider (B85) 2020; 11
Marshall-Colon (B60) 2017; 8
Schreiber (B90) 1999; 50
Colombi (B19) 2017; 174
Fröschel (B29) 2021; 29
Galindo-Castañeda (B31) 2018; 41
Ajmera (B2) 2022
Massalha (B61) 2017; 114
Chimungu (B17); 171
Fontaine (B28) 2007; 450
Colombi (B18) 2015; 388
Kitomi (B45) 2020; 117
Zhang (B112) 2019; 37
Ganther (B33) 2021
Chimungu (B15); 166
Rangarajan (B75) 2018; 122
Compant (B20) 2019; 19
Burridge (B10) 2020; 6
Bergelson (B8) 2019; 9
Vanhees (B102) 2020; 71
Schneider (B86) 2020; 13
Uga (B99) 2015; 65
Saengwilai (B79) 2014; 166
Strock (B95) 2018; 176
Klein (B46) 2020; 183
Chimungu (B14); 166
Wortmann (B107) 1998
Bengough (B7) 2016; 67
Sprent (B92) 1980; 3
Vadez (B101) 2014; 165
Salas-González (B82) 2021; 371
Lynch (B54) 2015; 38
Saengwilai (B80) 2021; 128
Schneider (B87)
Kawasaki (B42) 2016; 11
Saikkonen (B81) 2020; 8
Pervaiz (B74) 2020; 16
Mueller (B64) 2015; 23
Dreyer (B24) 2010; 20
Kuzyakov (B49) 2000; 32
Canarini (B12) 2019; 10
Arth (B3) 2000; 31
De Cuyper (B22) 2014; 66
Lynch (B58) 2015; 66
Galindo-Castañeda (B32) 2019; 42
Pang (B70) 2021; 12
Saleem (B83) 2016; 71
King (B44) 2021; 4
Miguel (B63) 2015; 167
Kennedy (B43) 2004; 36
Chimungu (B16); 66
Enstone (B25) 2002; 21
Sharda (B91) 2010; 88
Schneider (B89) 2017; 174
Wang (B105) 2017; 421
Neumann (B66) 2012
Zai (B111) 2021; 82
Barber (B5) 1995
Koevoets (B47) 2016; 7
Jacoby (B39) 2017; 8
Hagerty (B37) 2015; 55
Sasse (B84) 2018; 23
Bates (B6) 2000; 87
Lynch (B56) 2019; 223
Oldroyd (B67) 2008; 59
Strock (B94) 2021; 44
Swinnen (B96) 1995; 27
Henry (B38) 2012; 63
Peiffer (B72) 2013; 110
Deng (B23) 2021; 15
Galindo-Castañeda (B30) 2018
Lynch (B55) 2018; 69
Uga (B100) 2013; 45
McPhee (B62) 2005; 45
Kawasaki (B41) 2021; 48
Risgaard-Petersen (B77) 1997; 42
Kuzyakov (B48) 2013; 198
Badri (B4) 2009; 32
Reinhold (B76) 1987; 53
Yu (B110) 2018; 217
Wissuwa (B106) 2016; 67
Lynch (B59) 2021; 466
Pérez-Jaramillo (B73) 2017; 11
Syers (B97) 2008
Fan (B26) 2003; 30
Li (B51) 2008; 31
Lynch (B57) 2021; 109
York (B108) 2013; 4
Trachsel (B98) 2011; 341
Yu (B109) 2021; 7
Jones (B40) 2009; 321
Burridge (B9) 2019; 244
Gould (B36) 2018; 115
Neumann (B65) 2007
Vescio (B103) 2021; 17
Burridge (B11) 2016; 192
Zhu (B113) 2010; 33
Orozco-Mosqueda (B68) 2018; 208
Longepierre (B53) 2021; 1
Strock (B93) 2020; 126
Rüger (B78) 2021; 12
Gebauer (B35) 2021; 12
Wagner (B104) 2021; 232
Liu (B52) 2006; 52
Schneider (B88); 118
References_xml – volume: 117
  start-page: 21242
  year: 2020
  ident: B45
  article-title: Root angle modifications by the DRO1 homolog improve rice yields in saline paddy fields.
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.2005911117
– volume: 31
  start-page: 73
  year: 2008
  ident: B51
  article-title: The relationship between rhizosphere nitrification and nitrogen-use efficiency in rice plants.
  publication-title: Plant Cell Environ
  doi: 10.1111/j.1365-3040.2007.01737.x
– volume: 69
  start-page: 3279
  year: 2018
  ident: B55
  article-title: Rightsizing root phenotypes for drought resistance.
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/ery048
– start-page: 124
  year: 1981
  ident: B34
  article-title: Root-infecting fungi
  publication-title: Soil Fungi and Soil Fertility.
  doi: 10.1016/b978-0-08-025507-1.50014-4
– year: 2018
  ident: B30
  publication-title: Microbial Tradeoffs of Root Cortical Aerenchyma in Maize.
– volume: 388
  start-page: 1
  year: 2015
  ident: B18
  article-title: Next generation shovelomics: set up a tent and REST.
  publication-title: Plant Soil
  doi: 10.1007/s11104-015-2379-7
– volume: 45
  start-page: 1097
  year: 2013
  ident: B100
  article-title: Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions.
  publication-title: Nat. Genet.
  doi: 10.1038/ng.2725
– volume: 29
  start-page: 299.e
  year: 2021
  ident: B29
  article-title: Plant roots employ cell-layer-specific programs to respond to pathogenic and beneficial microbes.
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2020.11.014
– volume: 7
  year: 2016
  ident: B47
  article-title: Roots withstanding their environment: exploiting root system architecture responses to abiotic stress to improve crop tolerance.
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2016.01335
– volume: 214
  start-page: 584
  year: 2002
  ident: B71
  article-title: The growth defect of lrt1, a maize mutant lacking lateral roots, can be complemented by symbiotic fungi or high phosphate nutrition.
  publication-title: Planta
  doi: 10.1007/s004250100642
– volume: 53
  start-page: 889
  year: 1987
  ident: B76
  article-title: Cross-Reaction of Predominant Nitrogen-Fixing Bacteria with Enveloped, Round Bodies in the Root Interior of Kallar Grass.
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/aem.53.4.889-891.1987
– volume: 543
  start-page: 513
  year: 2017
  ident: B13
  article-title: Root microbiota drive direct integration of phosphate stress and immunity.
  publication-title: Nature
  doi: 10.1038/nature21417
– volume: 4
  start-page: 334
  year: 2015
  ident: B69
  article-title: Root traits and penotyping strategies for plant improvement.
  publication-title: Plants
  doi: 10.3390/plants4020334
– volume: 466
  start-page: 21
  year: 2021
  ident: B59
  article-title: Root anatomy and soil resource capture.
  publication-title: Plant Soil
  doi: 10.1007/s11104-021-05010-y
– volume: 217
  start-page: 1240
  year: 2018
  ident: B110
  article-title: Root type and soil phosphate determine the taxonomic landscape of colonizing fungi and the transcriptome of field-grown maize roots.
  publication-title: New Phytol.
  doi: 10.1111/nph.14893
– volume: 171
  start-page: 86
  ident: B17
  article-title: Utility of root cortical aerenchyma under water limited conditions in tropical maize (Zea mays L.).
  publication-title: Field Crops Res.
  doi: 10.1016/j.fcr.2014.10.009
– volume: 10
  year: 2019
  ident: B12
  article-title: Root exudation of primary metabolites: mechanisms and their roles in plant responses to environmental stimuli.
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2019.00157
– volume: 37
  start-page: 676
  year: 2019
  ident: B112
  article-title: NRT1.1B is associated with root microbiota composition and nitrogen use in field-grown rice.
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-019-0104-4
– volume: 6
  start-page: 2574
  year: 2020
  ident: B10
  article-title: Comparative phenomics of annual grain legume root architecture.
  publication-title: Crop Sci.
  doi: 10.1002/csc2.20241
– volume: 21
  start-page: 335
  year: 2002
  ident: B25
  article-title: Root endodermis and exodermis: structure, function, and responses to the environment.
  publication-title: J. Plant Growth Regul.
  doi: 10.1007/s00344-003-0002-2
– volume: 42
  start-page: 2999
  year: 2019
  ident: B32
  article-title: Root cortical anatomy is associated with differential pathogenic and symbiotic fungal colonization in maize.
  publication-title: Plant Cell Environ
  doi: 10.1111/pce.13615
– volume: 183
  start-page: 1011
  year: 2020
  ident: B46
  article-title: Multiple integrated root phenotypes are associated with improved drought tolerance.
  publication-title: Plant Physiol.
  doi: 10.1104/pp.20.00211
– volume: 118
  ident: B88
  article-title: Multiseriate cortical sclerenchyma enhance root penetration in compacted soils.
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.2012087118
– volume: 71
  start-page: 469
  year: 2016
  ident: B83
  article-title: Nicotiana roots recruit rare rhizosphere taxa as major root-inhabiting microbes.
  publication-title: Microb. Ecol.
  doi: 10.1007/s00248-015-0672-x
– volume: 8
  year: 2017
  ident: B39
  article-title: The role of soil microorganisms in plant mineral nutrition—current knowledge and future directions.
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2017.01617
– volume: 109
  start-page: 415
  year: 2021
  ident: B57
  article-title: Harnessing root architecture to address global challenges.
  publication-title: Plant J.
  doi: 10.1111/tpj.15560
– volume: 87
  start-page: 958
  year: 2000
  ident: B6
  article-title: Plant growth and phosphorus accumulation of wild type and two root hair mutants of Arabidopsis thaliana (Brassicaceae).
  publication-title: Am. J. Bot.
  doi: 10.2307/2656994
– volume: 128
  start-page: 849
  year: 2021
  ident: B80
  article-title: Root hair phenotypes influence nitrogen acquisition in maize.
  publication-title: Ann. Bot.
  doi: 10.1093/aob/mcab104
– volume: 165
  start-page: 15
  year: 2014
  ident: B101
  article-title: Root hydraulics: The forgotten side of roots in drought adaptation.
  publication-title: Field Crops Res.
  doi: 10.1016/j.fcr.2014.03.017
– volume: 244
  year: 2019
  ident: B9
  article-title: A case study on the efficacy of root phenotypic selection for edaphic stress tolerance in low-input agriculture: common bean breeding in Mozambique.
  publication-title: Field Crops Res.
  doi: 10.1016/j.fcr.2019.107612
– volume: 110
  start-page: 6548
  year: 2013
  ident: B72
  article-title: Diversity and heritability of the maize rhizosphere microbiome under field conditions.
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1302837110
– start-page: 123
  year: 2007
  ident: B65
  article-title: Root exudates and nutrient cycling
  publication-title: Nutrient Cycling in Terrestrial Ecosystems.
  doi: 10.1007/978-3-540-68027-7_5
– year: 2008
  ident: B97
  article-title: Efficiency of soil and fertilizer phosphorus use
  publication-title: FAO Fertilizer and Plant Nutrition Bulletin.
– volume: 74
  start-page: 81
  year: 2020
  ident: B21
  article-title: The plant microbiome: from ecology to reductionism and beyond.
  publication-title: Annu. Rev. Microbiol.
  doi: 10.1146/annurev-micro-022620-014327
– volume: 1
  year: 2021
  ident: B53
  article-title: Limited resilience of the soil microbiome to mechanical compaction within four growing seasons of agricultural management.
  publication-title: ISME Commun.
  doi: 10.1038/s43705-021-00046-8
– start-page: 347
  year: 2012
  ident: B66
  article-title: Rhizosphere chemistry in relation to plant nutrition
  publication-title: Marschner’s Mineral Nutrition of Higher Plants.
  doi: 10.1016/B978-0-12-384905-2.00014-5
– volume: 19
  start-page: 29
  year: 2019
  ident: B20
  article-title: A review on the plant microbiome: ecology, functions, and emerging trends in microbial application.
  publication-title: J. Adv. Res.
  doi: 10.1016/j.jare.2019.03.004
– volume: 8
  year: 2017
  ident: B60
  article-title: Crops in silico: generating virtual crops using an integrative and multi-scale modeling platform.
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2017.00786
– volume: 115
  start-page: E11951
  year: 2018
  ident: B36
  article-title: Microbiome interactions shape host fitness.
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1809349115
– start-page: 131
  year: 1998
  ident: B107
  publication-title: Atlas of Common Bean (Phaseolus vulgaris L.) Production in Africa.
– volume: 9
  year: 2019
  ident: B8
  article-title: Characterizing both bacteria and fungi improves understanding of the Arabidopsis root microbiome.
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-37208-z
– volume: 88
  start-page: 165
  year: 2010
  ident: B91
  article-title: Exploring the role of root anatomy in P-mediated control of colonization by arbuscular mycorrhizal fungi
  publication-title: Botany
  doi: 10.1139/B09-105
– volume: 126
  start-page: 205
  year: 2020
  ident: B93
  article-title: Root secondary growth: an unexplored component of soil resource acquisition.
  publication-title: Ann. Bot.
  doi: 10.1093/aob/mcaa068
– volume: 32
  start-page: 1485
  year: 2000
  ident: B49
  article-title: Review of mechanisms and quantification of priming effects.
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/S0038-0717(00)00084-5
– volume: 450
  start-page: 277
  year: 2007
  ident: B28
  article-title: Stability of organic carbon in deep soil layers controlled by fresh carbon supply.
  publication-title: Nature
  doi: 10.1038/nature06275
– volume: 4
  year: 2021
  ident: B44
  article-title: The hierarchy of root branching order determines bacterial composition, microbial carrying capacity and microbial filtering.
  publication-title: Commun. Biol.
  doi: 10.1038/s42003-021-01988-4
– volume: 67
  start-page: 3605
  year: 2016
  ident: B106
  article-title: From promise to application: root traits for enhanced nutrient capture in rice breeding.
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erw061
– volume: 42
  start-page: 529
  year: 1997
  ident: B77
  article-title: Nitrification and denitrification in the rhizosphere of the aquatic macrophyte Lobelia dortmanna L.
  publication-title: Limnol. Oceanogr.
  doi: 10.4319/lo.1997.42.3.0529
– volume: 33
  start-page: 740
  year: 2010
  ident: B113
  article-title: Root cortical aerenchyma improves the drought tolerance of maize (Zea mays L.).
  publication-title: Plant Cell Environ.
  doi: 10.1111/j.1365-3040.2009.02099.x
– volume: 167
  start-page: 1430
  year: 2015
  ident: B63
  article-title: Phene synergism between root hair length and basal root growth angle for phosphorus acquisition.
  publication-title: Plant Physiol.
  doi: 10.1104/pp.15.00145
– year: 2021
  ident: B33
  publication-title: Transcriptome Sequencing Analysis of Maize roots Reveals the Effects of Substrate and Root Hair Formation in a Spatial Context.
  doi: 10.1007/s11104-021-04921-0
– volume: 321
  start-page: 5
  year: 2009
  ident: B40
  article-title: Carbon flow in the rhizosphere: carbon trading at the soil–root interface.
  publication-title: Plant Soil
  doi: 10.1007/s11104-009-9925-0
– volume: 421
  start-page: 123
  year: 2017
  ident: B105
  article-title: Differences in root-associated bacterial communities among fine root branching orders of poplar (Populus × euramericana (Dode) Guinier.).
  publication-title: Plant Soil
  doi: 10.1007/s11104-017-3449-9
– volume: 15
  start-page: 3181
  year: 2021
  ident: B23
  article-title: Genome wide association study reveals plant loci controlling heritability of the rhizosphere microbiome.
  publication-title: ISME J.
  doi: 10.1038/s41396-021-00993-z
– volume: 176
  start-page: 691
  year: 2018
  ident: B95
  article-title: Reduction in Root Secondary Growth as a Strategy for Phosphorus Acquisition.
  publication-title: Plant Physiol.
  doi: 10.1104/pp.17.01583
– volume: 31
  start-page: 427
  year: 2000
  ident: B3
  article-title: Nitrification and denitrification in the rhizosphere of rice: the detection of processes by a new multi-channel electrode.
  publication-title: Biol. Fertil. Soils.
  doi: 10.1007/s003749900190
– volume: 82
  start-page: 391
  year: 2021
  ident: B111
  article-title: Effect of root diameter on the selection and network interactions of root-associated bacterial microbiomes in Robinia pseudoacacia L.
  publication-title: Microb. Ecol.
  doi: 10.1007/s00248-020-01678-4
– volume: 23
  start-page: 25
  year: 2018
  ident: B84
  article-title: Feed your friends: do plant exudates shape the root microbiome?
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2017.09.003
– volume: 12
  year: 2021
  ident: B70
  article-title: Linking plant secondary metabolites and plant microbiomes: a review.
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2021.621276
– volume: 67
  start-page: 1071
  year: 2016
  ident: B7
  article-title: Root hairs aid soil penetration by anchoring the root surface to pore walls.
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erv560
– volume: 56
  start-page: 2454
  year: 2019
  ident: B1
  article-title: Plant trait-based approaches to improve nitrogen cycling in agroecosystems.
  publication-title: J. Appl. Ecol.
  doi: 10.1111/1365-2664.13489
– volume: 12
  year: 2021
  ident: B35
  article-title: Soil texture, sampling depth and root hairs shape the structure of ACC deaminase bacterial community composition in maize rhizosphere.
  publication-title: Front. Microbiol
  doi: 10.3389/fmicb.2021.616828
– volume: 8
  year: 2020
  ident: B81
  article-title: Toward comprehensive plant microbiome research.
  publication-title: Front. Ecol. Evol.
  doi: 10.3389/fevo.2020.00061
– volume: 223
  start-page: 548
  year: 2019
  ident: B56
  article-title: Root phenotypes for improved nutrient capture: an underexploited opportunity for global agriculture.
  publication-title: New Phytol.
  doi: 10.1111/nph.15738
– volume: 55
  start-page: 1969
  year: 2015
  ident: B37
  article-title: Mapping Fusarium solani and Aphanomyces euteiches root rot resistance and root architecture quantitative trait loci in common bean.
  publication-title: Crop Sci.
  doi: 10.2135/cropsci2014.11.0805
– volume: 63
  start-page: 4751
  year: 2012
  ident: B38
  article-title: Root attributes affecting water uptake of rice (Oryza sativa) under drought.
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/ers150
– volume: 208
  start-page: 25
  year: 2018
  ident: B68
  article-title: Microbiome engineering to improve biocontrol and plant growth-promoting mechanisms.
  publication-title: Microbiol. Res.
  doi: 10.1016/j.micres.2018.01.005
– volume: 192
  start-page: 21
  year: 2016
  ident: B11
  article-title: Legume shovelomics: high—Throughput phenotyping of common bean (Phaseolus vulgaris L.) and cowpea (Vigna unguiculata subsp, unguiculata) root architecture in the field.
  publication-title: Field Crops Res.
  doi: 10.1016/j.fcr.2016.04.008
– volume: 174
  start-page: 2333
  year: 2017
  ident: B89
  article-title: Root Cortical Senescence Improves Growth under Suboptimal Availability of N, P, and K.
  publication-title: Plant Physiol.
  doi: 10.1104/pp.17.00648
– volume: 50
  start-page: 1267
  year: 1999
  ident: B90
  article-title: Apoplastic barriers in roots: chemical composition of endodermal and hypodermal cell walls.
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/50.337.1267
– volume: 48
  start-page: 871
  year: 2021
  ident: B41
  article-title: The microbiomes on the roots of wheat (Triticum aestivum L.) and rice (Oryza sativa L.) exhibit significant differences in structure between root types and along root axes.
  publication-title: Funct. Plant Biol.
  doi: 10.1071/FP20351
– volume: 166
  start-page: 726
  year: 2014
  ident: B79
  article-title: Root cortical aerenchyma enhances nitrogen acquisition from low-nitrogen soils in maize.
  publication-title: Plant Physiol.
  doi: 10.1104/pp.114.241711
– volume: 65
  start-page: 111
  year: 2015
  ident: B99
  article-title: Genetic improvement for root growth angle to enhance crop production.
  publication-title: Breed. Sci.
  doi: 10.1270/jsbbs.65.111
– volume: 114
  start-page: 4549
  year: 2017
  ident: B61
  article-title: Live imaging of root–bacteria interactions in a microfluidics setup.
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1618584114
– volume: 4
  year: 2013
  ident: B108
  article-title: Integration of root phenes for soil resource acquisition.
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2013.00355
– volume: 11
  year: 2020
  ident: B85
  article-title: Should root plasticity be a crop breeding target?
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2020.00546
– volume: 87
  start-page: 85
  year: 2005
  ident: B50
  article-title: Efficiency of fertilizer nitrogen in cereal production: retrospects and prospects.
  publication-title: Adv. Agron.
  doi: 10.1016/S0065-2113(05)87003-8
– volume: 12
  year: 2021
  ident: B78
  article-title: Assembly patterns of the rhizosphere microbiome along the longitudinal root axis of maize (Zea mays L.).
  publication-title: Front. Microbiol
  doi: 10.3389/fmicb.2021.614501
– ident: B87
  article-title: Root angle in maize influences nitrogen capture and is regulated by calcineurin B-like protein (CBL)-interacting serine/threonine-protein kinase 15 (ZmCIPK15).
  publication-title: Plant Cell Environ.
  doi: 10.1111/pce.14135
– volume: 341
  start-page: 75
  year: 2011
  ident: B98
  article-title: Shovelomics: high throughput phenotyping of maize (Zea mays L.) root architecture in the field.
  publication-title: Plant Soil
  doi: 10.1007/s11104-010-0623-8
– volume: 17
  year: 2021
  ident: B103
  article-title: Single and combined abiotic stressors affect maize rhizosphere bacterial microbiota.
  publication-title: Rhizosphere
  doi: 10.1016/j.rhisph.2021.100318
– volume: 52
  start-page: 186
  year: 2006
  ident: B52
  article-title: Colonization of maize and rice plants by strain Bacillus megaterium C4.
  publication-title: Curr. Microbiol.
  doi: 10.1007/s00284-005-0162-3
– volume: 59
  start-page: 519
  year: 2008
  ident: B67
  article-title: Coordinating Nodule Morphogenesis with Rhizobial Infection in Legumes.
  publication-title: Annu. Rev. Plant Biol.
  doi: 10.1146/annurev.arplant.59.032607.092839
– volume: 13
  year: 2020
  ident: B86
  article-title: Genetic control of root anatomical plasticity in maize.
  publication-title: Plant Genome
  doi: 10.1002/tpg2.20003
– volume: 16
  year: 2020
  ident: B74
  article-title: Root microbiome changes with root branching order and root chemistry in peach rhizosphere soil.
  publication-title: Rhizosphere
  doi: 10.1016/j.rhisph.2020.100249
– volume: 36
  start-page: 1229
  year: 2004
  ident: B43
  article-title: Non-symbiotic bacterial diazotrophs in crop-farming systems: can their potential for plant growth promotion be better exploited?
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2004.04.006
– volume: 30
  start-page: 493
  year: 2003
  ident: B26
  article-title: Physiological roles for aerenchyma in phosphorus-stressed roots.
  publication-title: Funct. Plant Biol.
  doi: 10.1071/FP03046
– volume: 166
  start-page: 1943
  ident: B15
  article-title: Reduced root cortical cell file number improves drought tolerance in maize.
  publication-title: Plant Physiol.
  doi: 10.1104/pp.114.249037
– volume: 11
  year: 2016
  ident: B42
  article-title: Microbiome and exudates of the root and rhizosphere of Brachypodium distachyon, a model for wheat.
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0164533
– volume: 174
  start-page: 2289
  year: 2017
  ident: B19
  article-title: Root Tip Shape Governs Root Elongation Rate under Increased Soil Strength.
  publication-title: Plant Physiol.
  doi: 10.1104/pp.17.00357
– volume: 122
  start-page: 485
  year: 2018
  ident: B75
  article-title: Co-optimization of axial root phenotypes for nitrogen and phosphorus acquisition in common bean.
  publication-title: Ann. Bot.
  doi: 10.1093/aob/mcy092
– volume: 66
  start-page: 2199
  year: 2015
  ident: B58
  article-title: Opportunities and challenges in the subsoil: pathways to deeper rooted crops.
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/eru508
– volume: 7
  start-page: 481
  year: 2021
  ident: B109
  article-title: Plant flavones enrich rhizosphere Oxalobacteraceae to improve maize performance under nitrogen deprivation.
  publication-title: Nat. Plants
  doi: 10.1038/s41477-021-00897-y
– volume: 27
  start-page: 211
  year: 1995
  ident: B96
  article-title: Root decay and turnover of rhizodeposits in field-grown winter wheat and spring barley estimated by 14C pulse-labelling.
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/0038-0717(94)00161-S
– volume: 66
  start-page: 137
  year: 2014
  ident: B22
  article-title: From lateral root density to nodule number, the strigolactone analogue GR24 shapes the root architecture of Medicago truncatula.
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/eru404
– year: 1995
  ident: B5
  publication-title: Soil Nutrient Bioavailability: a Mechanistic Approach.
– volume: 41
  start-page: 1579
  year: 2018
  ident: B31
  article-title: Reduced root cortical burden improves adaptation to low phosphorus availability in maize.
  publication-title: Plant Cell Environ.
  doi: 10.1111/pce.13197
– year: 2022
  ident: B2
  article-title: Integrated root phenotypes for improved rice performance under low nitrogen availability
  publication-title: Plant Cell Environ.
  doi: 10.1111/pce.14284
– volume: 232
  start-page: 502
  year: 2021
  ident: B104
  article-title: Prioritizing host phenotype to understand microbiome heritability in plants.
  publication-title: New Phytol.
  doi: 10.1111/nph.17622
– volume: 371
  year: 2021
  ident: B82
  article-title: Coordination between microbiota and root endodermis supports plant mineral nutrient homeostasis.
  publication-title: Science
  doi: 10.1126/science.abd0695
– volume: 32
  start-page: 666
  year: 2009
  ident: B4
  article-title: Regulation and function of root exudates.
  publication-title: Plant Cell Environ.
  doi: 10.1111/j.1365-3040.2009.01926.x
– volume: 44
  start-page: 49
  year: 2021
  ident: B94
  article-title: Root metaxylem and architecture phenotypes integrate to regulate water use under drought stress.
  publication-title: Plant Cell Environ.
  doi: 10.1111/pce.13875
– volume: 3
  start-page: 35
  year: 1980
  ident: B92
  article-title: Root nodule anatomy, type of export product and evolutionary origin in some Leguminosae.
  publication-title: Plant Cell Environ.
  doi: 10.1111/1365-3040.ep11580516
– volume: 45
  start-page: 1758
  year: 2005
  ident: B62
  article-title: Variation for Seedling Root Architecture in the Core Collection of Pea Germplasm.
  publication-title: Crop Sci.
  doi: 10.2135/cropsci2004.0544
– volume: 71
  start-page: 4243
  year: 2020
  ident: B102
  article-title: Root anatomical traits contribute to deeper rooting of maize under compacted field conditions.
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/eraa165
– volume: 66
  start-page: 3151
  ident: B16
  article-title: Root anatomical phenes predict root penetration ability and biomechanical properties in maize (Zea Mays).
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erv121
– volume: 198
  start-page: 656
  year: 2013
  ident: B48
  article-title: Competition between roots and microorganisms for nitrogen: mechanisms and ecological relevance.
  publication-title: New Phytol.
  doi: 10.1111/nph.12235
– volume: 23
  start-page: 606
  year: 2015
  ident: B64
  article-title: Engineering Microbiomes to Improve Plant and Animal Health.
  publication-title: Trends Microbiol.
  doi: 10.1016/j.tim.2015.07.009
– volume: 33
  start-page: 620
  year: 2019
  ident: B27
  article-title: A mechanistic model of microbially mediated soil biogeochemical processes: a reality check.
  publication-title: Global Biogeochem Cycles.
  doi: 10.1029/2018GB006077
– volume: 166
  start-page: 2166
  ident: B14
  article-title: Large root cortical cell size improves drought tolerance in maize.
  publication-title: Plant Physiol.
  doi: 10.1104/pp.114.250449
– volume: 20
  start-page: 103
  year: 2010
  ident: B24
  article-title: Comparative study of mycorrhizal susceptibility and anatomy of four palm species.
  publication-title: Mycorrhiza
  doi: 10.1007/s00572-009-0266-x
– volume: 38
  start-page: 1775
  year: 2015
  ident: B54
  article-title: Root phenes that reduce the metabolic costs of soil exploration: opportunities for 21st century agriculture.
  publication-title: Plant Cell Environ.
  doi: 10.1111/pce.12451
– volume: 11
  start-page: 2244
  year: 2017
  ident: B73
  article-title: Linking rhizosphere microbiome composition of wild and domesticated Phaseolus vulgaris to genotypic and root phenotypic traits.
  publication-title: ISME J.
  doi: 10.1038/ismej.2017.85
SSID ssj0000500997
Score 2.5099368
Snippet Root architectural and anatomical phenotypes are highly diverse. Specific root phenotypes can be associated with better plant growth under low nutrient and...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 827369
SubjectTerms aerenchyma
agriculture
agroecosystems
carbon
corn
cortex
endosphere and rhizosphere
ideotypes
lateral roots
microbial habitat
nitrogen
nutrient availability
oxygen
phenotype
phosphorus
plant growth
Plant Science
rhizodeposition
rhizoplane
root anatomy
root anatomy and architecture
soil resource acquisition
solubilization
surface area
topsoil
water content
water uptake
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pb9MwFLbQxAEOCMavbmwyEhcOoW3sxM6xnTZNSOPAVmm3KLafoaJLqjU7lH9j_zDv2WmVIhgXblXjqI6_l77vi1--x9iHynkLWvjEe2USZOAS_wftKHHSY_ZxmGQzesH54kt-PpOfr7PrXqsvqgmL9sBx4YbIyNNRlWvvTPQ2V0JllSuMcGQWFoQP5ryemIqu3kR9VNyXRBVWDP1yQe7cafpJY8am-uZeHgp2_X_imL-XSvZyz9lz9qwjjXwSJ_uCPYJ6nz2dfLvtjDNgnz2eNkjz1i_Z_fYxAb9s5gu-eT7PZ8u2-gHcrDk1KmpX_Cq26OEnVegcMv9J5zQ1v1zT-4CooPk0FnHxr03T8klvy4FXteOTGgX7zTp8phHJBmpw_ILq_GLHqNXN6hWbnZ1enZwnXeeFxCJcbZKPLAgxNqhtnEkBKZXVDoUJJjKAwoC2mVWQKidzL4QB8CYzpvBeSJ95GIvXbK9uanjLuLQw9g7x8DqX1hVV7pUaOe1QemuvqwEbbnAobWdLTt0xFiXKE0KuJORKQq6MyA3Yx-0Zy2jJ8cDYKUG7HUdm2uELXIGyC7HyXyE2YO83gVHizUc7KlUNzR3-Ui5RbqEGTP8-RqRBdiopB-xNDKbtdEQmkL-O8YjaCbOd-e4eqeffgwm4Lsg5MD_4Hxd4yJ7QmoXSuuId22tv7-AIuVZrjsNt9Qv5Liq7
  priority: 102
  providerName: Directory of Open Access Journals
Title Improving Soil Resource Uptake by Plants Through Capitalizing on Synergies Between Root Architecture and Anatomy and Root-Associated Microorganisms
URI https://www.ncbi.nlm.nih.gov/pubmed/35356114
https://www.proquest.com/docview/2645856062
https://www.proquest.com/docview/3200301744
https://pubmed.ncbi.nlm.nih.gov/PMC8959776
https://doaj.org/article/49920a68fdb3496597375ad9b3d14281
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwGLVg8MAL4k65TEbihYdsTezYzgNC7cSYkMoDW6W-RfFNVHRJWTNp2d_gD_N9dlpWVJB4qdLGSSN_dr5zfDmHkLeV9cYp5hPvpU4AgXN4D5phYrmH7GMhyea4wXnyRZxM-edZPvu9PbqvwNVOaod-UtOLxcHVj-4DdPj3yDgh3x765QKFt7PsQEEyFsVtcgfykkQ_g0kP9qPSN8Kh4LYiBE-4yGZx3nLnTbbyVJDz34VB_1xKeSM3HT8g93tQSUexFTwkt1z9iNwdNwD8usfk52bggJ428wVdj9jT6bKtvjuqO4rWRe2KnkXTHnpUBS-R-TVe09T0tMMdgsCp6Tgu66Jfm6aloxuTELSqLR3VQOHPu3CMJZJ18J2lE1z5Fz2kVuerJ2R6_PHs6CTpvRgSAwFsEzE0jrFUA9uxOnMAsoyyQFUgtTlXaKdMbqTLpOXCM6ad8zrXuvCecZ97l7KnZK9uavecUG5c6i1EwyvBjS0q4aUcWmWBjCuvqgE5XNd8aXqhcvTLWJRAWDBWJcaqxFiVMVYD8m5zxTKKdPyj7BiDuSmH8trhB6iBsu-tJdDAbFgJ5a2OgvqSybyyhWYWFerSAXmzbgoldEecY6lq11zCPwkOBAxYYfb3MiwLRFRyPiDPYvPZPA7LGSDaFM7IrYa19bzbZ-r5tyALrgrUEhQv_qMyXpJ7-C2sqStekb324tK9BpDV6v0wOAGfn2bpfuhHvwBe8Soz
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+Soil+Resource+Uptake+by+Plants+Through+Capitalizing+on+Synergies+Between+Root+Architecture+and+Anatomy+and+Root-Associated+Microorganisms&rft.jtitle=Frontiers+in+plant+science&rft.au=Galindo-Casta%C3%B1eda%2C+Tania&rft.au=Lynch%2C+Jonathan+P.&rft.au=Six%2C+Johan&rft.au=Hartmann%2C+Martin&rft.date=2022-03-09&rft.issn=1664-462X&rft.eissn=1664-462X&rft.volume=13&rft_id=info:doi/10.3389%2Ffpls.2022.827369&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fpls_2022_827369
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-462X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-462X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-462X&client=summon