The Arabidopsis bZIP transcription factor family—an update
•bZIPs are evolutionarily conserved eukaryotic transcription factors.•The Arabidopsis bZIP family consists of 78 members classified into 13 groups.•bZIPs perform a plethora of functions in developmental, environmental and stress signalling.•bZIP activity is controlled by a multitude of post-transcri...
Saved in:
Published in | Current opinion in plant biology Vol. 45; no. Pt A; pp. 36 - 49 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.10.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •bZIPs are evolutionarily conserved eukaryotic transcription factors.•The Arabidopsis bZIP family consists of 78 members classified into 13 groups.•bZIPs perform a plethora of functions in developmental, environmental and stress signalling.•bZIP activity is controlled by a multitude of post-transcriptional and post-translational mechanisms.•bZIP heterodimerisation within and between groups provides a huge combinatorial potential for gene expression control and signal integration.
The basic (region) leucine zippers (bZIPs) are evolutionarily conserved transcription factors in eukaryotic organisms. Here, we have updated the classification of the Arabidopsis thaliana bZIP-family, comprising 78 members, which have been assorted into 13 groups. Arabidopsis bZIPs are involved in a plethora of functions related to plant development, environmental signalling and stress response. Based on the classification, we have highlighted functional and regulatory aspects of selected well-studied bZIPs, which may serve as prototypic examples for the particular groups. |
---|---|
AbstractList | The basic (region) leucine zippers (bZIPs) are evolutionarily conserved transcription factors in eukaryotic organisms. Here, we have updated the classification of the Arabidopsis thaliana bZIP-family, comprising 78 members, which have been assorted into 13 groups. Arabidopsis bZIPs are involved in a plethora of functions related to plant development, environmental signalling and stress response. Based on the classification, we have highlighted functional and regulatory aspects of selected well-studied bZIPs, which may serve as prototypic examples for the particular groups.The basic (region) leucine zippers (bZIPs) are evolutionarily conserved transcription factors in eukaryotic organisms. Here, we have updated the classification of the Arabidopsis thaliana bZIP-family, comprising 78 members, which have been assorted into 13 groups. Arabidopsis bZIPs are involved in a plethora of functions related to plant development, environmental signalling and stress response. Based on the classification, we have highlighted functional and regulatory aspects of selected well-studied bZIPs, which may serve as prototypic examples for the particular groups. •bZIPs are evolutionarily conserved eukaryotic transcription factors.•The Arabidopsis bZIP family consists of 78 members classified into 13 groups.•bZIPs perform a plethora of functions in developmental, environmental and stress signalling.•bZIP activity is controlled by a multitude of post-transcriptional and post-translational mechanisms.•bZIP heterodimerisation within and between groups provides a huge combinatorial potential for gene expression control and signal integration. The basic (region) leucine zippers (bZIPs) are evolutionarily conserved transcription factors in eukaryotic organisms. Here, we have updated the classification of the Arabidopsis thaliana bZIP-family, comprising 78 members, which have been assorted into 13 groups. Arabidopsis bZIPs are involved in a plethora of functions related to plant development, environmental signalling and stress response. Based on the classification, we have highlighted functional and regulatory aspects of selected well-studied bZIPs, which may serve as prototypic examples for the particular groups. The basic (region) leucine zippers (bZIPs) are evolutionarily conserved transcription factors in eukaryotic organisms. Here, we have updated the classification of the Arabidopsis thaliana bZIP-family, comprising 78 members, which have been assorted into 13 groups. Arabidopsis bZIPs are involved in a plethora of functions related to plant development, environmental signalling and stress response. Based on the classification, we have highlighted functional and regulatory aspects of selected well-studied bZIPs, which may serve as prototypic examples for the particular groups. |
Author | Snoek, Basten L Dröge-Laser, Wolfgang Snel, Berend Weiste, Christoph |
Author_xml | – sequence: 1 givenname: Wolfgang surname: Dröge-Laser fullname: Dröge-Laser, Wolfgang email: wolfgang.droege-laser@uni-wuerzburg.de organization: Department of Pharmaceutical Biology, Julius-von-Sachs-Institute, Biocenter, Julius-Maximilians-Universität Würzburg, Würzburg 97082, Germany – sequence: 2 givenname: Basten L orcidid: 0000-0001-5321-2996 surname: Snoek fullname: Snoek, Basten L organization: Theoretical Biology and Bioinformatics, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, Utrecht 3584 CH, The Netherlands – sequence: 3 givenname: Berend orcidid: 0000-0002-5804-8547 surname: Snel fullname: Snel, Berend organization: Theoretical Biology and Bioinformatics, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, Utrecht 3584 CH, The Netherlands – sequence: 4 givenname: Christoph surname: Weiste fullname: Weiste, Christoph email: christoph.weiste@uni-wuerzburg.de organization: Department of Pharmaceutical Biology, Julius-von-Sachs-Institute, Biocenter, Julius-Maximilians-Universität Würzburg, Würzburg 97082, Germany |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29860175$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkbtOwzAUhi0EgrbwACwoI0vCsWMnsWBBiJtUCYaysFiOL8JVmgQ7RWLjIXhCngRXbReGCulI5wzff4bvH6P9tmsNQqcYMgy4uJhnfe0yArjKgGUAeA-NcFXyFHJW7Mc7L3jKSFEcoXEIcwBgpMwP0RHhVQG4ZCN0NXszybWXtdNdH1xI6tfH52Twsg3Ku35wXZtYqYbOx7VwzefP17dsk2Wv5WCO0YGVTTAnmz1BL3e3s5uHdPp0_3hzPU0V5WxIWSU1zVeDNZGgCwo510AZNqRktlTMYmu50kxrWxCpOFjKtKSq5piWLJ-g8_Xf3nfvSxMGsXBBmaaRremWQRBccZbjiv4DBcp5TqKkiJ5t0GW9MFr03i2k_xRbOREo14DyXQjeWKHcIFdKoh_XCAxiVYOYi1iDWNUggIlYQ0ziP8nt812Zy3XGRJMfzngRlDOtMtp5owahO7cj_Qs1VZ85 |
CitedBy_id | crossref_primary_10_2174_0113892037261763230925034348 crossref_primary_10_1093_plphys_kiad270 crossref_primary_10_3389_fpls_2024_1352040 crossref_primary_10_1093_jxb_erz339 crossref_primary_10_1093_plphys_kiae366 crossref_primary_10_3389_fpls_2021_637343 crossref_primary_10_1016_j_scitotenv_2024_177665 crossref_primary_10_3389_fpls_2023_1189499 crossref_primary_10_1186_s12864_023_09793_5 crossref_primary_10_3390_plants13081160 crossref_primary_10_1016_j_tplants_2022_11_007 crossref_primary_10_1093_plphys_kiab539 crossref_primary_10_1111_plb_13599 crossref_primary_10_1007_s12374_022_09373_2 crossref_primary_10_3389_fpls_2022_914363 crossref_primary_10_3390_ijms23084463 crossref_primary_10_1186_s12864_024_10277_3 crossref_primary_10_3390_ijms23052733 crossref_primary_10_1016_j_scienta_2023_112719 crossref_primary_10_1038_s42003_024_06075_y crossref_primary_10_1111_ppl_14366 crossref_primary_10_1111_tpj_16890 crossref_primary_10_1093_jxb_erae466 crossref_primary_10_1016_j_scienta_2024_113302 crossref_primary_10_1016_j_indcrop_2025_120492 crossref_primary_10_1134_S1021443723602884 crossref_primary_10_1094_PHYTO_12_21_0520_R crossref_primary_10_1111_pbi_14521 crossref_primary_10_1073_pnas_2106961118 crossref_primary_10_3390_ijms252313062 crossref_primary_10_1111_tpj_16899 crossref_primary_10_1016_j_hpj_2023_03_001 crossref_primary_10_1016_j_ijbiomac_2024_138463 crossref_primary_10_1186_s12870_023_04425_2 crossref_primary_10_3389_fpls_2021_802802 crossref_primary_10_3390_ijms26072991 crossref_primary_10_1016_j_plantsci_2022_111568 crossref_primary_10_1016_j_plaphy_2024_108925 crossref_primary_10_1186_s12864_022_08309_x crossref_primary_10_1111_tpj_14596 crossref_primary_10_1038_s41597_023_02395_6 crossref_primary_10_1111_nph_16800 crossref_primary_10_3390_ijms23147677 crossref_primary_10_1016_j_scienta_2024_113436 crossref_primary_10_3389_fpls_2023_1229811 crossref_primary_10_1016_j_sajb_2024_12_035 crossref_primary_10_3390_ijms26020843 crossref_primary_10_3390_plants11162088 crossref_primary_10_3390_ijms21249700 crossref_primary_10_1038_s41588_024_02026_9 crossref_primary_10_3390_biom14080958 crossref_primary_10_1007_s13580_023_00551_w crossref_primary_10_3390_genes14061151 crossref_primary_10_3390_agronomy13071921 crossref_primary_10_3389_fgene_2021_754237 crossref_primary_10_3390_ijms251810207 crossref_primary_10_3389_fmolb_2024_1345585 crossref_primary_10_3389_fgeed_2024_1488024 crossref_primary_10_1016_j_scienta_2021_110634 crossref_primary_10_1016_j_plaphy_2025_109708 crossref_primary_10_1186_s12870_020_02620_z crossref_primary_10_1093_plphys_kiae105 crossref_primary_10_1038_s41467_024_49377_9 crossref_primary_10_1016_j_cj_2024_07_014 crossref_primary_10_1016_j_plaphy_2024_108934 crossref_primary_10_1080_13102818_2021_1938674 crossref_primary_10_1016_j_ijbiomac_2024_131817 crossref_primary_10_1111_jipb_13310 crossref_primary_10_1007_s00299_020_02512_4 crossref_primary_10_3389_fpls_2022_1128007 crossref_primary_10_3389_fpls_2023_1133912 crossref_primary_10_1007_s40415_022_00841_0 crossref_primary_10_1093_plcell_koac164 crossref_primary_10_1016_j_plantsci_2022_111304 crossref_primary_10_3389_fpls_2023_1150363 crossref_primary_10_1016_j_ygeno_2024_110948 crossref_primary_10_1016_j_ijbiomac_2025_139826 crossref_primary_10_1016_j_molp_2022_06_003 crossref_primary_10_1016_j_heliyon_2024_e34311 crossref_primary_10_1016_j_plaphy_2023_107676 crossref_primary_10_1111_pbi_13462 crossref_primary_10_1080_13102818_2021_1901609 crossref_primary_10_3390_ijms20092360 crossref_primary_10_7717_peerj_7878 crossref_primary_10_1038_s41586_024_07607_6 crossref_primary_10_1080_07352689_2023_2253404 crossref_primary_10_3390_ijms20246334 crossref_primary_10_3390_ijms21061993 crossref_primary_10_1016_j_molp_2019_09_005 crossref_primary_10_1016_j_plaphy_2025_109761 crossref_primary_10_3389_fpls_2022_903793 crossref_primary_10_1007_s00425_023_04141_z crossref_primary_10_1186_s12870_024_05904_w crossref_primary_10_3390_ijms25073783 crossref_primary_10_1093_jxb_eraa115 crossref_primary_10_3390_ijms22010253 crossref_primary_10_1186_s12870_020_02810_9 crossref_primary_10_1186_s43897_023_00059_y crossref_primary_10_1242_dev_186130 crossref_primary_10_1093_pcp_pcab150 crossref_primary_10_3390_biology12101309 crossref_primary_10_3390_ijms25010488 crossref_primary_10_3389_fgene_2024_1430589 crossref_primary_10_3389_fgene_2022_847612 crossref_primary_10_1016_j_celrep_2020_107717 crossref_primary_10_1016_j_envexpbot_2024_106051 crossref_primary_10_3389_fpls_2022_967546 crossref_primary_10_1016_j_indcrop_2022_116123 crossref_primary_10_32604_phyton_2024_056548 crossref_primary_10_3390_toxins13100693 crossref_primary_10_1007_s11240_019_01571_0 crossref_primary_10_3390_ijms23052651 crossref_primary_10_1007_s00425_023_04174_4 crossref_primary_10_1093_plphys_kiac098 crossref_primary_10_1093_plphys_kiae036 crossref_primary_10_1016_j_ijbiomac_2022_10_151 crossref_primary_10_1016_j_scienta_2024_113187 crossref_primary_10_1007_s11103_019_00895_x crossref_primary_10_1016_j_scienta_2025_113962 crossref_primary_10_3389_fpls_2022_935819 crossref_primary_10_3389_fpls_2024_1397289 crossref_primary_10_1021_acs_jafc_3c05662 crossref_primary_10_1111_tpj_15767 crossref_primary_10_1186_s42483_022_00137_x crossref_primary_10_1007_s00344_024_11493_7 crossref_primary_10_1007_s11105_020_01261_8 crossref_primary_10_1111_tpj_70080 crossref_primary_10_1016_j_plantsci_2024_112212 crossref_primary_10_3390_ijms222212220 crossref_primary_10_1016_j_gene_2022_146867 crossref_primary_10_1016_j_ijbiomac_2023_128880 crossref_primary_10_1016_j_jbiotec_2020_10_001 crossref_primary_10_1080_07352689_2020_1813922 crossref_primary_10_1186_s40538_022_00359_3 crossref_primary_10_1111_tpj_15296 crossref_primary_10_1111_tpj_17232 crossref_primary_10_1007_s00425_022_04059_y crossref_primary_10_1016_j_plaphy_2023_107760 crossref_primary_10_1038_s41598_020_72390_z crossref_primary_10_1186_s12870_023_04580_6 crossref_primary_10_1016_j_ijbiomac_2022_10_283 crossref_primary_10_1016_j_plaphy_2024_108571 crossref_primary_10_3390_ijms241612888 crossref_primary_10_1111_tpj_17115 crossref_primary_10_3390_ijms232113072 crossref_primary_10_3389_fpls_2022_1093589 crossref_primary_10_3389_fpls_2023_1243323 crossref_primary_10_3390_genes12071055 crossref_primary_10_1016_j_sajb_2024_04_036 crossref_primary_10_1111_pce_14299 crossref_primary_10_3390_ijms22041661 crossref_primary_10_1186_s12870_024_05492_9 crossref_primary_10_1186_s12870_022_03560_6 crossref_primary_10_1111_nph_16834 crossref_primary_10_3390_plants13020219 crossref_primary_10_1016_j_pbi_2020_03_002 crossref_primary_10_3390_ijms24097893 crossref_primary_10_3390_genes14122203 crossref_primary_10_1016_j_plaphy_2024_109432 crossref_primary_10_1007_s12298_020_00771_9 crossref_primary_10_1007_s44154_022_00048_z crossref_primary_10_1016_j_sajb_2024_10_013 crossref_primary_10_1016_j_hpj_2023_02_016 crossref_primary_10_1016_j_scienta_2024_113762 crossref_primary_10_1007_s11427_021_2036_5 crossref_primary_10_3390_ijms25126355 crossref_primary_10_3390_plants12173041 crossref_primary_10_3390_horticulturae10121327 crossref_primary_10_3390_ijms242015202 crossref_primary_10_1016_j_heliyon_2024_e27277 crossref_primary_10_1089_can_2021_0153 crossref_primary_10_1371_journal_pone_0278159 crossref_primary_10_1016_j_envexpbot_2024_105896 crossref_primary_10_1007_s11816_023_00851_8 crossref_primary_10_3390_foods12122357 crossref_primary_10_3390_ijms25074097 crossref_primary_10_3390_plants9040480 crossref_primary_10_1007_s11816_021_00688_z crossref_primary_10_1017_qpb_2024_5 crossref_primary_10_3390_ijms24098433 crossref_primary_10_3390_agriculture13071404 crossref_primary_10_3389_fpls_2023_1171564 crossref_primary_10_1016_j_plaphy_2025_109562 crossref_primary_10_1016_j_virusres_2023_199263 crossref_primary_10_3390_horticulturae10020134 crossref_primary_10_1007_s00425_022_04019_6 crossref_primary_10_1093_plphys_kiae082 crossref_primary_10_3390_plants9111406 crossref_primary_10_3389_fpls_2022_859386 crossref_primary_10_3390_ijms22179344 crossref_primary_10_7717_peerj_17371 crossref_primary_10_1016_j_plantsci_2023_111675 crossref_primary_10_32604_phyton_2024_048151 crossref_primary_10_3390_plants11233197 crossref_primary_10_1016_j_plaphy_2022_05_017 crossref_primary_10_1080_17429145_2023_2268627 crossref_primary_10_1016_j_ijbiomac_2023_127345 crossref_primary_10_1111_jipb_13804 crossref_primary_10_1111_nph_17177 crossref_primary_10_7717_peerj_13689 crossref_primary_10_15252_embj_2022110682 crossref_primary_10_3390_plants11223037 crossref_primary_10_1007_s11295_023_01622_w crossref_primary_10_1093_jxb_eraf034 crossref_primary_10_3390_horticulturae8121153 crossref_primary_10_1016_j_tplants_2021_07_009 crossref_primary_10_1111_nph_19472 crossref_primary_10_3390_genes10100771 crossref_primary_10_48130_MPB_2023_0007 crossref_primary_10_3390_plants12213663 crossref_primary_10_1093_jxb_eraa383 crossref_primary_10_1111_pce_13744 crossref_primary_10_1186_s12870_022_03651_4 crossref_primary_10_1186_s12870_024_05296_x crossref_primary_10_3390_ijms22020530 crossref_primary_10_1016_j_indcrop_2021_113560 crossref_primary_10_1111_mpp_70042 crossref_primary_10_1016_j_ijbiomac_2020_01_013 crossref_primary_10_1016_j_jssas_2024_06_004 crossref_primary_10_1016_j_cell_2025_01_036 crossref_primary_10_1007_s11738_022_03369_8 crossref_primary_10_1016_j_ijbiomac_2022_09_292 crossref_primary_10_1016_j_scienta_2023_112429 crossref_primary_10_1038_s41598_022_22654_7 crossref_primary_10_5423_PPJ_OA_07_2024_0107 crossref_primary_10_1007_s00344_023_11082_0 crossref_primary_10_1080_14620316_2024_2360439 crossref_primary_10_3390_ijms25105369 crossref_primary_10_3390_life12070938 crossref_primary_10_3389_fgene_2022_901838 crossref_primary_10_1111_nph_20457 crossref_primary_10_1016_j_scienta_2023_111933 crossref_primary_10_3389_fgene_2024_1466486 crossref_primary_10_1186_s12864_020_06890_7 crossref_primary_10_1186_s12870_024_05535_1 crossref_primary_10_3390_ijms231911573 crossref_primary_10_3390_plants10071380 crossref_primary_10_1093_jxb_eraa295 crossref_primary_10_3390_ijms23063215 crossref_primary_10_3390_ijms23126448 crossref_primary_10_1016_j_indcrop_2025_120758 crossref_primary_10_1038_s41598_020_67957_9 crossref_primary_10_3390_agronomy11010148 crossref_primary_10_1093_plphys_kiae500 crossref_primary_10_1111_pce_14491 crossref_primary_10_1016_j_rsci_2021_05_006 crossref_primary_10_1016_j_xplc_2023_100774 crossref_primary_10_1186_s12870_021_03356_0 crossref_primary_10_3390_ijms21020670 crossref_primary_10_3390_plants12183284 crossref_primary_10_1080_07352689_2021_1951491 crossref_primary_10_1016_j_plaphy_2024_108784 crossref_primary_10_1016_j_envexpbot_2022_104953 crossref_primary_10_1016_j_rsci_2023_12_002 crossref_primary_10_1111_nph_17399 crossref_primary_10_1186_s12870_025_06175_9 crossref_primary_10_1016_j_scienta_2024_113840 crossref_primary_10_1186_s12870_023_04636_7 crossref_primary_10_3389_fpls_2022_1014396 crossref_primary_10_3390_f14050979 crossref_primary_10_1016_j_scienta_2022_111185 crossref_primary_10_1016_j_ijbiomac_2022_06_099 crossref_primary_10_3390_ijms232314894 crossref_primary_10_1021_acs_jafc_4c06725 crossref_primary_10_3390_ijms241814238 crossref_primary_10_1093_jxb_erz298 crossref_primary_10_1016_j_hpj_2021_06_003 crossref_primary_10_1016_j_ijbiomac_2022_09_154 crossref_primary_10_1007_s10725_024_01163_9 crossref_primary_10_1093_g3journal_jkad285 crossref_primary_10_1093_plcell_koac137 crossref_primary_10_1111_pbi_13103 crossref_primary_10_1186_s13059_020_02146_5 crossref_primary_10_3389_fpls_2019_00340 crossref_primary_10_1093_plcell_koac015 crossref_primary_10_1093_plphys_kiae564 crossref_primary_10_3390_genes14101918 crossref_primary_10_1016_j_bbrc_2024_150151 crossref_primary_10_3389_fpls_2021_763843 crossref_primary_10_1038_s41598_021_02839_2 crossref_primary_10_1002_pld3_330 crossref_primary_10_1016_j_ijbiomac_2024_138269 crossref_primary_10_1038_s41576_024_00710_4 crossref_primary_10_1371_journal_pgen_1010766 crossref_primary_10_48130_frures_0024_0001 crossref_primary_10_1007_s00344_021_10497_x crossref_primary_10_1016_j_indcrop_2022_114582 crossref_primary_10_1016_j_freeradbiomed_2023_11_027 crossref_primary_10_1007_s00709_021_01666_6 crossref_primary_10_1016_j_scienta_2019_108640 crossref_primary_10_3390_jof9040472 crossref_primary_10_1002_tpg2_20468 crossref_primary_10_3389_fpls_2024_1365686 crossref_primary_10_1186_s12870_021_02879_w crossref_primary_10_1016_j_jia_2023_12_032 crossref_primary_10_1016_j_cryobiol_2024_104947 crossref_primary_10_1016_j_molp_2021_11_006 crossref_primary_10_1093_jxb_erab396 crossref_primary_10_3390_biology12040517 crossref_primary_10_1038_s41598_019_47316_z crossref_primary_10_1016_j_ijbiomac_2020_06_032 crossref_primary_10_3390_plants12142613 crossref_primary_10_1093_jxb_erz309 crossref_primary_10_1093_plcell_koab293 crossref_primary_10_1186_s12870_024_05809_8 crossref_primary_10_1016_j_postharvbio_2022_111850 crossref_primary_10_3389_fpls_2025_1530242 crossref_primary_10_3390_plants13081088 crossref_primary_10_1016_j_hpj_2021_01_009 crossref_primary_10_1016_j_plantsci_2025_112399 crossref_primary_10_3389_fpls_2022_883876 crossref_primary_10_1038_s41598_022_11801_9 crossref_primary_10_3389_fmicb_2023_1241076 crossref_primary_10_3389_fpls_2024_1461922 crossref_primary_10_1016_j_rsci_2022_12_001 crossref_primary_10_1093_jxb_erae429 crossref_primary_10_1186_s42397_023_00148_9 crossref_primary_10_1007_s12298_023_01338_0 crossref_primary_10_1016_j_rsci_2019_12_003 crossref_primary_10_1186_s12864_022_08978_8 crossref_primary_10_1016_j_plantsci_2024_112293 crossref_primary_10_1038_s41467_023_38096_2 crossref_primary_10_1016_j_plantsci_2021_110927 crossref_primary_10_1186_s12863_024_01270_6 crossref_primary_10_3390_plants13131803 crossref_primary_10_3390_plants13152064 crossref_primary_10_1016_j_foodres_2022_111304 crossref_primary_10_1016_j_jplph_2021_153375 crossref_primary_10_1073_pnas_2313343121 crossref_primary_10_3390_ijms25105163 crossref_primary_10_1016_j_plantsci_2020_110603 crossref_primary_10_1371_journal_pone_0288481 crossref_primary_10_3390_ijms21031123 crossref_primary_10_3390_ijms26020769 crossref_primary_10_3390_ijms242316646 crossref_primary_10_1007_s11104_024_07133_4 crossref_primary_10_1016_j_ijbiomac_2024_132273 crossref_primary_10_3390_f14010155 crossref_primary_10_3390_plants13010024 crossref_primary_10_1111_ppl_14501 crossref_primary_10_3389_fevo_2022_938981 crossref_primary_10_1016_j_devcel_2024_10_014 crossref_primary_10_3389_fpls_2024_1474589 crossref_primary_10_1016_j_indcrop_2022_115098 crossref_primary_10_3390_plants13152058 crossref_primary_10_7717_peerj_12939 crossref_primary_10_1111_nph_19706 crossref_primary_10_3389_fpls_2021_749108 crossref_primary_10_3390_ijms22115662 crossref_primary_10_1093_jxb_eraa401 crossref_primary_10_3390_ijms21249755 crossref_primary_10_1016_j_ijbiomac_2024_135889 crossref_primary_10_3390_ijms232213795 crossref_primary_10_1016_j_jplph_2023_153965 crossref_primary_10_3390_ijms23042351 crossref_primary_10_3389_fpls_2022_1036764 crossref_primary_10_1007_s42976_024_00540_4 crossref_primary_10_1093_jxb_erad473 crossref_primary_10_3389_fgene_2023_1137634 crossref_primary_10_1186_s12864_019_6092_4 crossref_primary_10_1016_j_plantsci_2022_111189 crossref_primary_10_1371_journal_pbio_3002283 crossref_primary_10_1016_j_stress_2023_100204 crossref_primary_10_3389_fpls_2021_749581 crossref_primary_10_1186_s12870_022_03999_7 crossref_primary_10_1093_pcp_pcab107 crossref_primary_10_1016_j_postharvbio_2023_112421 crossref_primary_10_1016_j_indcrop_2021_114279 |
Cites_doi | 10.7554/eLife.05828 10.1105/tpc.15.00163 10.1126/science.2683088 10.1111/j.1469-8137.2011.03735.x 10.1111/tpj.13264 10.1371/journal.pgen.1004025 10.1105/tpc.106.047688 10.1038/srep00029 10.1007/s00299-013-1418-1 10.1038/ncomms4883 10.1111/tpj.13656 10.1007/s00709-015-0920-4 10.1111/nph.14780 10.1111/tpj.13768 10.1126/science.1148110 10.1038/sj.emboj.7601206 10.1104/pp.17.01414 10.1105/tpc.109.072173 10.1104/pp.110.165563 10.1111/tpj.12596 10.5511/plantbiotechnology.23.497 10.1016/j.bbagrm.2016.11.001 10.1093/pcp/pcp083 10.1016/j.chom.2015.07.005 10.1371/journal.pone.0077378 10.7554/eLife.19272 10.1111/tpj.12996 10.1093/jxb/erv459 10.1016/j.molp.2016.07.002 10.3390/plants4030691 10.1093/jxb/erq161 10.1083/jcb.201007077 10.1038/nature08599 10.1111/j.1365-313X.2009.04044.x 10.1105/tpc.108.058974 10.1016/j.devcel.2010.07.011 10.1016/j.pbi.2017.03.015 10.1371/journal.pgen.1004416 10.1074/jbc.M403159200 10.1104/pp.003566 10.1126/science.aag1550 10.1105/tpc.110.075390 10.1186/s12870-016-0886-1 10.1371/journal.pgen.1006607 10.1016/j.bbrc.2007.08.026 10.1016/S1360-1385(01)02223-3 10.1104/pp.109.136036 10.1074/jbc.M112.361394 10.1073/pnas.1004788107 10.1126/science.1115983 10.1093/emboj/20.13.3596 10.1074/jbc.M611465200 10.1093/pcp/pcy007 10.3389/fpls.2015.00170 10.1371/journal.pone.0103930 10.1016/j.cell.2016.04.038 10.1094/MPMI-04-12-0078-IA 10.1105/tpc.17.00414 10.1105/tpc.12.4.599 10.1104/pp.113.221549 10.1126/science.1215106 10.1111/j.1365-313X.2007.03039.x 10.1038/s41598-017-03903-6 10.1007/s00497-016-0295-5 10.1016/j.febslet.2014.09.018 10.1007/s11103-009-9493-y 10.3390/genes8100288 10.1038/sj.emboj.7601312 10.1093/mp/sst143 10.1111/nph.13436 10.1371/journal.pone.0139884 10.1093/jxb/eri050 10.1105/tpc.107.054809 10.1038/srep02440 10.1016/j.molp.2016.06.006 10.1016/j.celrep.2014.06.033 10.1016/j.cub.2015.12.066 10.1104/pp.110.157180 10.3389/fpls.2011.00079 10.1007/s00709-014-0726-9 10.1016/j.molcel.2016.05.024 10.1094/MPMI-09-11-0256 10.1093/pcp/pcv060 10.1111/tpj.13627 10.1093/pcp/pcq156 10.1038/s41477-017-0095-4 10.1038/s41477-017-0099-0 10.1073/pnas.0505667103 10.1002/1873-3468.12634 10.1105/tpc.114.130716 10.1073/pnas.1609844114 10.1016/j.gene.2008.07.017 10.1105/tpc.17.00771 10.1111/j.1365-313X.2006.02731.x 10.1073/pnas.0905599106 10.1073/pnas.1404657111 10.1111/j.1365-3040.2008.01873.x 10.1093/pcp/pcy021 10.1111/tpj.12618 10.1038/srep30444 10.1371/journal.pgen.0020202 10.1093/jxb/erw347 10.1016/j.gene.2009.02.010 10.1111/j.1365-313X.2010.04426.x 10.1093/nar/gkh653 10.1105/tpc.108.062968 10.1111/tpj.12899 10.1104/pp.17.01086 10.1105/tpc.108.061002 10.1073/pnas.0408941102 10.1038/340568a0 10.1080/15592324.2016.1187358 10.1038/nature06069 10.1073/pnas.1102117108 10.1074/jbc.M111.333906 10.1371/journal.pone.0002944 10.1371/journal.ppat.1005707 10.1093/mp/ssp115 10.1111/tpj.13608 10.1146/annurev-arplant-050312-120053 10.1146/annurev-arplant-042811-105606 10.1104/pp.112.197020 10.1146/annurev-arplant-042809-112122 10.1016/j.molp.2015.08.014 10.1016/j.tplants.2018.02.003 10.1105/tpc.106.050021 10.1093/mp/sst140 10.1104/pp.114.243360 |
ContentType | Journal Article |
Copyright | 2018 Elsevier Ltd Copyright © 2018 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2018 Elsevier Ltd – notice: Copyright © 2018 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.pbi.2018.05.001 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1879-0356 |
EndPage | 49 |
ExternalDocumentID | 29860175 10_1016_j_pbi_2018_05_001 S1369526617302157 |
Genre | Journal Article Review |
GroupedDBID | --- --K --M -DZ .~1 0R~ 1B1 1RT 1~. 1~5 29F 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABFRF ABGRD ABGSF ABJNI ABMAC ABUDA ABXDB ABYKQ ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADEZE ADMUD ADQTV ADUVX AEBSH AEFWE AEHWI AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CBWCG CS3 DOVZS DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W KOM M41 MO0 N9A NCXOZ O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SCC SDF SDG SDP SES SEW SPCBC SSA SSU SSZ T5K Y6R ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH NPM 7X8 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c495t-58ad43d43d1d2a0d64039d0451e275f7c5f1ff9cd5ddf62ac90f45da4cb914753 |
IEDL.DBID | .~1 |
ISSN | 1369-5266 1879-0356 |
IngestDate | Mon Jul 21 11:06:04 EDT 2025 Fri Jul 11 11:14:19 EDT 2025 Wed Feb 19 02:36:17 EST 2025 Tue Jul 01 03:25:39 EDT 2025 Thu Apr 24 23:10:58 EDT 2025 Fri Feb 23 02:30:58 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | Pt A |
Language | English |
License | Copyright © 2018 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c495t-58ad43d43d1d2a0d64039d0451e275f7c5f1ff9cd5ddf62ac90f45da4cb914753 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0001-5321-2996 0000-0002-5804-8547 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1369526617302157 |
PMID | 29860175 |
PQID | 2049932879 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_2189531845 proquest_miscellaneous_2049932879 pubmed_primary_29860175 crossref_citationtrail_10_1016_j_pbi_2018_05_001 crossref_primary_10_1016_j_pbi_2018_05_001 elsevier_sciencedirect_doi_10_1016_j_pbi_2018_05_001 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2018 2018-10-00 20181001 |
PublicationDateYYYYMMDD | 2018-10-01 |
PublicationDate_xml | – month: 10 year: 2018 text: October 2018 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Current opinion in plant biology |
PublicationTitleAlternate | Curr Opin Plant Biol |
PublicationYear | 2018 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Fu, Dong (bib0045) 2013; 64 Alvarez, Riveras, Vidal, Gras, Contreras-López, Tamayo, Aceituno, Gómez, Ruffel, Lejay (bib0130) 2014; 80 Kim, Yamaguchi-Shinozaki, Shinozaki (bib0465) 2018; 176 Xu, Cao, Zhang, Wang, Xin, Xu, Zhang, Yu, Yu, Hu (bib0415) 2018; 4 Rodríguez-Martínez, Reinke, Bhimsaria, Keating, Ansari (bib0020) 2017; 6 Yang, Popova, Süthoff, Lüking, Dietz, Golldack (bib0530) 2009; 436 Zaret, Lerner, Iwafuchi-Doi (bib0650) 2016; 62 Zhou, Xu, Jia, Huang, Ma, Wang, Zhu, Zhang, Guan, Lu (bib0030) 2017; 8 Dröge-Laser, Weiste (bib0155) 2018; 23 Pitzschke, Djamei, Teige, Hirt (bib0375) 2009; 106 Saleh, Withers, Mohan, Marqués, Gu, Yan, Zavaliev, Nomoto, Tada, Dong (bib0055) 2015; 18 Baena-González, Rolland, Thevelein, Sheen (bib0175) 2007; 448 Hoecker (bib0270) 2017; 37 Djamei, Pitzschke, Nakagami, Rajh, Hirt (bib0365) 2007; 318 Abe, Kobayashi, Yamamoto, Ichinoki, Notaguchi, Goto (bib0625) 2005; 309 Ehlert, Weltmeier, Wang, Mayer, Smeekens, Vicente-Carbajosa, Dröge-Laser (bib0150) 2006; 46 Yu, Wang, Zhang, Quan, Zhang, Deng, Ma, Huang (bib0260) 2013; 9 Kouzarides, Ziff (bib0010) 1989; 340 Kim (bib0580) 2002; 130 Iwata, Fedoroff, Koizumi (bib0475) 2008; 20 Shearer, Cheng, Wang, Liu, Boyle, Després, Zhang, Li, Fobert (bib0115) 2012; 25 Nakashima, Yamaguchi-Shinozaki (bib0575) 2013; 32 Zhang, He, Wang, Wang, Yang, Li, Deng (bib0280) 2011; 65 Van Leene, Blomme, Kulkarni, Cannoot, De Winne, Eeckhout, Persiau, Van De Slijke, Vercruysse, Vanden Bossche (bib0410) 2016; 67 Fujii, Chinnusamy, Rodrigues, Rubio, Antoni, Park, Cutler, Sheen, Rodriguez, Zhu (bib0560) 2009; 462 Fode, Siemsen, Thurow, Weigel, Gatz (bib0095) 2008; 20 Peviani, Lastdrager, Hanson, Snel (bib0165) 2016; 6 Yamashita, Takamatsu, Glasbrenner, Becker, Naito, Beckmann (bib0160) 2017; 591 Skubacz, Daszkowska-Golec, Szarejko (bib0585) 2016 Popova, Yang, Dietz, Golldack (bib0525) 2008; 423 Shu, Chen, Wu, Liu, Zhang, Wang, Tang, Yang, Xie (bib0615) 2016; 67 Tsugama, Liu, Takano (bib0395) 2012; 159 LIU, SRIVASTAVA, HOWELL (bib0470) 2008; 31 Ma, Hanssen, Lundgren, Hernández, Delatte, Ehlert, Liu, Schluepmann, Dröge-Laser, Moritz (bib0195) 2011; 191 Chen, Yao, Gao, Jiang, Harberd, Fu (bib0305) 2016; 26 Finkelstein, Lynch (bib0600) 2000; 12 Fang, Liu, Long, Liang, Jin, Zhang, Liu, Li, Zhai, Pei (bib0110) 2017; 91 Maier, Stehling-sun, Offenburger, Lohmann (bib0140) 2011; 2 Inaba, Kurata, Kobayashi, Yamagishi, Mori, Ogata, Fukao (bib0515) 2015; 84 Shaikhali, Norén, de Dios Barajas-López, Srivastava, König, Sauer, Wingsle, Dietz, Strand (bib0340) 2012; 287 Choi, Huh, Kojima, Sakakibara, Paek, Hwang (bib0105) 2010; 19 Toledo-Ortiz, Johansson, Lee, Bou-Torrent, Stewart, Steel, Rodríguez-Concepción, Halliday (bib0285) 2014; 10 Shu, Luo, Meng, Yang (bib0620) 2018; 59 Tsugama, Liu, Takano (bib0390) 2016; 11 Binkert, Kozma-Bognar, Terecskei, De Veylder, Nagy, Ulm (bib0300) 2014; 26 Pape, Thurow, Gatz (bib0060) 2010; 154 Kang, Price, Lin, Hong, Jang (bib0200) 2010; 3 Kaneko-Suzuki, Kurihara-Ishikawa, Okushita-Terakawa, Kojima, Nagano-Fujiwara, Ohki, Tsuji, Shimamoto, Taoka (bib0630) 2018; 59 Canales, Contreras-López, Álvarez, Gutiérrez (bib0135) 2017; 92 Gangappa, Srivastava, Maurya, Ram, Chattopadhyay (bib0310) 2013; 6 Nagashima, Mishiba, Suzuki, Shimada, Iwata, Koizumi (bib0495) 2011; 1 Gao, Gao, Zhu, Song, Li, Ren, Zhou, Kuai (bib0610) 2016; 9 Rahmani, Hummel, Schuurmans, Wiese-Klinkenberg, Smeekens, Hanson (bib0170) 2009; 150 Ndamukong, Abdallat, Thurow, Fode, Zander, Weigel, Gatz (bib0080) 2007; 50 Sibout, Sukumar, Hettiarachchi, Holm, Muday, Hardtke (bib0250) 2006; 2 Banerjee, Roychoudhury (bib0535) 2017; 254 Howell (bib0445) 2013; 64 Mair, Pedrotti, Wurzinger, Anrather, Simeunovic, Weiste, Valerio, Dietrich, Kirchler, Nägele (bib0180) 2015; 4 Zhou, Sun, Valdés, Engström, Song, Lu, Liu (bib0460) 2015; 208 Caarls, Pieterse, Van Wees (bib0075) 2015; 6 Withers, Dong (bib0050) 2016; 12 Nakashima, Fujita, Kanamori, Katagiri, Umezawa, Kidokoro, Maruyama, Yoshida, Ishiyama, Kobayashi (bib0595) 2009; 50 Yoshida, Mogami, Yamaguchi-Shinozaki (bib0545) 2015; 56 Liu, Srivastava, Che, Howell (bib0450) 2007; 19 Zander, La Camera, Lamotte, Metraux, Gatz (bib0065) 2010; 61 Singh, Ram, Abbas, Chattopadhyay (bib0315) 2012; 287 Smykowski, Fischer, Zentgraf (bib0350) 2015; 4 Corrêa, Riaño-Pachón, Schrago, Vicentini dos Santos, Mueller-Roeber, Vincentz (bib0025) 2008; 3 Gatz (bib0040) 2013; 26 Uhrig, Huang, Barghahn, Willmer, Thurow, Gatz (bib0085) 2017; 1860 Para, Li, Marshall-Colón, Varala, Francoeur, Moran, Edwards, Hackley, Bargmann, Birnbaum (bib0205) 2014; 111 Pruneda-Paz, Breton, Nagel, Kang, Bonaldi, Doherty, Ravelo, Galli, Ecker, Kay (bib0005) 2014; 8 Llorca, Berendzen, Malik, Mahn, Piepho, Zentgraf (bib0295) 2015; 10 Maurya, Sethi, Gangappa, Gupta, Chattopadhyay (bib0325) 2015; 83 Pedrotti, Weiste, Nägele, Wolf, Lorenzin, Dietrich, Mair, Weckwerth, Teige, Baena-González (bib0185) 2018; 30 Tsugama, Liu, Takano (bib0400) 2014; 9 Gibalová, Steinbachová, Hafidh, Bláhová, Gadiou, Michailidis, Műller, Pleskot, Dupľáková, Honys (bib0420) 2017; 30 Song, Huang, Wise, Castanon, Nery, Chen, Watanabe, Thomas, Bar-Joseph, Ecker (bib0635) 2016; 354 Nawkar, Kang, Maibam, Park, Jung, Chae, Chi, Jung, Kim, Yun (bib0505) 2017; 114 Deng, Humbert, Liu, Srivastava, Rothstein, Howell (bib0485) 2011; 108 Castro, Lilay, Muñoz-Mérida, Schjoerring, Azevedo, Assunção (bib0520) 2017; 7 Jakoby, Weisshaar, Dröge-Laser, Vicente-Carbajosa, Tiedemann, Kroj, Parcy (bib0035) 2002; 7 Shi, Lee, Gelvin (bib0370) 2014 Liu, Howell (bib0455) 2010; 22 Alonso, Onate-Sanchez, Weltmeier, Ehlert, Diaz, Dietrich, Vicente-Carbajosa, Dröge-Laser (bib0215) 2009; 21 Tzfira, Vaidya, Citovsky (bib0355) 2001; 20 Wu, Zhao, Gao, Yu, Fang, Oliver, Xiang (bib0385) 2010; 61 Ram, Priya, Jain, Chattopadhyay (bib0320) 2014; 7 Sirichandra, Davanture, Turk, Zivy, Valot, Leung, Merlot (bib0540) 2010 Sun, Busta, Zhang, Ding, Jetter, Zhang Y (bib0125) 2018; 217 O’Malley, Huang, Song, Lewsey, Bartlett, Nery, Galli, Gallavotti, Ecker (bib0405) 2016; 165 Shen, Cao, Wang (bib0440) 2007; 362 van Gelderen, Kang, Paalman, Keuskamp, Hayes, Pierik (bib0245) 2018; 30 Zander, Thurow, Gatz (bib0070) 2014; 165 Weltmeier, Ehlert, Mayer, Dietrich, Wang, Schutze, Alonso, Harter, Vicente-Carbajosa, Dröge-Laser (bib0145) 2006; 25 Citovsky, Kapelnikov, Olie, Zakai, Rojas, Gilbertson, Tzfira, Loyter (bib0360) 2004; 279 Yang, Liang, Zhang, Shao, Gu, Shang, Shi, Li, Zhang, Liu (bib0240) 2018; 4 Cutler, Rodriguez, Finkelstein, Abrams (bib0565) 2010; 61 Lozano-Sotomayor, Chávez Montes, Silvestre-Vañó, Herrera-Ubaldo, Greco, Pablo-Villa, Galliani, Diaz-Ramirez, Weemen, Boutilier (bib0425) 2016; 88 Shaikhali (bib0345) 2015; 252 Lacroix, Citovsky (bib0380) 2013; 3 Kaminaka, Nake, Epple, Dittgen, Schutze, Chaban, Holt, Merkle, Schafer, Harter (bib0225) 2006; 25 Furihata, Maruyama, Fujita, Umezawa, Yoshida, Shinozaki, Yamaguchi-Shinozaki (bib0570) 2006; 103 Ciolfi, Sessa, Sassi, Possenti, Salvucci, Carabelli, Morelli, Ruberti (bib0265) 2013; 163 Lee, He, Stolc, Lee, Figueroa, Gao, Tongprasit, Zhao, Lee, Deng (bib0275) 2007; 19 Smykowski, Zimmermann, Zentgraf (bib0330) 2010; 153 Li, He (bib0255) 2016; 9 Vinson, Sigler, McKnight (bib0015) 1989; 246 Bensmihen, Giraudat, Parcy (bib0590) 2005; 56 Yoon, Kim, Choi, Lee, Choi (bib0290) 2007; 282 Wang, Fobert (bib0120) 2013; 8 Gangappa, Botto (bib0235) 2016; 9 Iwata, Koizumi (bib0480) 2005; 102 Ezer, Shepherd, Brestovitsky, Dickinson, Cortijo, Charoensawan, Box, Biswas, Jaeger, Wigge (bib0640) 2017; 175 Huang, Li, Thurow, Wirtz, Hell, Gatz (bib0100) 2016; 16 Deppmann, Acharya, Rishi, Wobbes, Smeekens, Taparowsky, Vinson (bib0645) 2004; 32 Rubio, Pincus, Korennykh, Schuck, El-Samad, Walter (bib0490) 2011; 193 Pyo, Demura, Fukuda (bib0430) 2006; 23 Weiste, Pedrotti, Selvanayagam, Muralidhara, Fröschel, Novák, Ljung, Hanson, Dröge-Laser (bib0210) 2017; 13 Ruberti, Lai, Brandizzi (bib0500) 2018; 93 Gibalová, Reňák, Matczuk, Dupl’Áková, Cháb, Twell, Honys (bib0435) 2009; 70 Hartmann, Pedrotti, Weiste, Fekete, Schierstaedt, Göttler, Kempa, Krischke, Dietrich, Mueller (bib0220) 2015; 27 Sakuraba, Kim, Kim, Hörtensteiner, Paek (bib0605) 2014; 588 Giri, Singh, Banday, Singh, Ram, Singh, Chattopadhyay, Nandi (bib0335) 2017; 91 Umezawa, Nakashima, Miyakawa, Kuromori, Tanokura, Shinozaki, Yamaguchi-Shinozaki (bib0555) 2010; 51 Soon, Ng, Zhou, West, Kovach, Tan, Suino-Powell, He, Xu, Chalmers (bib0550) 2012; 335 Weiste, Dröge-Laser (bib0190) 2014; 5 Assunção, Herrero, Lin, Huettel, Talukdar, Smaczniak, Immink, van Eldik, Fiers, Schat (bib0510) 2010; 107 Dietrich, Weltmeier, Ehlert, Weiste, Stahl, Harter, Dröge-Laser (bib0230) 2011; 23 Müller, Hilbert, Dueckershoff, Roitsch, Krischke, Müller, Berger (bib0090) 2008; 20 Tsugama (10.1016/j.pbi.2018.05.001_bib0400) 2014; 9 Rahmani (10.1016/j.pbi.2018.05.001_bib0170) 2009; 150 Gao (10.1016/j.pbi.2018.05.001_bib0610) 2016; 9 Yoon (10.1016/j.pbi.2018.05.001_bib0290) 2007; 282 Weltmeier (10.1016/j.pbi.2018.05.001_bib0145) 2006; 25 Shi (10.1016/j.pbi.2018.05.001_bib0370) 2014 Skubacz (10.1016/j.pbi.2018.05.001_bib0585) 2016 Gibalová (10.1016/j.pbi.2018.05.001_bib0420) 2017; 30 Song (10.1016/j.pbi.2018.05.001_bib0635) 2016; 354 Withers (10.1016/j.pbi.2018.05.001_bib0050) 2016; 12 Singh (10.1016/j.pbi.2018.05.001_bib0315) 2012; 287 Llorca (10.1016/j.pbi.2018.05.001_bib0295) 2015; 10 Umezawa (10.1016/j.pbi.2018.05.001_bib0555) 2010; 51 Dröge-Laser (10.1016/j.pbi.2018.05.001_bib0155) 2018; 23 Ezer (10.1016/j.pbi.2018.05.001_bib0640) 2017; 175 Rodríguez-Martínez (10.1016/j.pbi.2018.05.001_sbref0020) 2017; 6 Howell (10.1016/j.pbi.2018.05.001_bib0445) 2013; 64 Corrêa (10.1016/j.pbi.2018.05.001_bib0025) 2008; 3 Shu (10.1016/j.pbi.2018.05.001_bib0620) 2018; 59 Fode (10.1016/j.pbi.2018.05.001_bib0095) 2008; 20 Shaikhali (10.1016/j.pbi.2018.05.001_bib0345) 2015; 252 Bensmihen (10.1016/j.pbi.2018.05.001_bib0590) 2005; 56 Popova (10.1016/j.pbi.2018.05.001_bib0525) 2008; 423 Giri (10.1016/j.pbi.2018.05.001_bib0335) 2017; 91 Castro (10.1016/j.pbi.2018.05.001_bib0520) 2017; 7 Smykowski (10.1016/j.pbi.2018.05.001_bib0350) 2015; 4 Deppmann (10.1016/j.pbi.2018.05.001_bib0645) 2004; 32 Shearer (10.1016/j.pbi.2018.05.001_bib0115) 2012; 25 Xu (10.1016/j.pbi.2018.05.001_bib0415) 2018; 4 Nagashima (10.1016/j.pbi.2018.05.001_bib0495) 2011; 1 Shaikhali (10.1016/j.pbi.2018.05.001_bib0340) 2012; 287 Ehlert (10.1016/j.pbi.2018.05.001_bib0150) 2006; 46 Alvarez (10.1016/j.pbi.2018.05.001_bib0130) 2014; 80 Caarls (10.1016/j.pbi.2018.05.001_bib0075) 2015; 6 Shu (10.1016/j.pbi.2018.05.001_bib0615) 2016; 67 Kaminaka (10.1016/j.pbi.2018.05.001_sbref0225) 2006; 25 Nakashima (10.1016/j.pbi.2018.05.001_bib0575) 2013; 32 Sun (10.1016/j.pbi.2018.05.001_bib0125) 2018; 217 Pitzschke (10.1016/j.pbi.2018.05.001_bib0375) 2009; 106 Choi (10.1016/j.pbi.2018.05.001_bib0105) 2010; 19 Yang (10.1016/j.pbi.2018.05.001_bib0240) 2018; 4 Finkelstein (10.1016/j.pbi.2018.05.001_bib0600) 2000; 12 Gangappa (10.1016/j.pbi.2018.05.001_bib0310) 2013; 6 Van Leene (10.1016/j.pbi.2018.05.001_bib0410) 2016; 67 Kang (10.1016/j.pbi.2018.05.001_bib0200) 2010; 3 Smykowski (10.1016/j.pbi.2018.05.001_sbref0330) 2010; 153 Vinson (10.1016/j.pbi.2018.05.001_bib0015) 1989; 246 Kaneko-Suzuki (10.1016/j.pbi.2018.05.001_bib0630) 2018; 59 Maurya (10.1016/j.pbi.2018.05.001_bib0325) 2015; 83 Ndamukong (10.1016/j.pbi.2018.05.001_bib0080) 2007; 50 Yoshida (10.1016/j.pbi.2018.05.001_bib0545) 2015; 56 Ram (10.1016/j.pbi.2018.05.001_bib0320) 2014; 7 Citovsky (10.1016/j.pbi.2018.05.001_bib0360) 2004; 279 Lozano-Sotomayor (10.1016/j.pbi.2018.05.001_bib0425) 2016; 88 Assunção (10.1016/j.pbi.2018.05.001_sbref0510) 2010; 107 Hoecker (10.1016/j.pbi.2018.05.001_bib0270) 2017; 37 Zhou (10.1016/j.pbi.2018.05.001_bib0460) 2015; 208 Rubio (10.1016/j.pbi.2018.05.001_bib0490) 2011; 193 Yang (10.1016/j.pbi.2018.05.001_bib0530) 2009; 436 Ciolfi (10.1016/j.pbi.2018.05.001_bib0265) 2013; 163 Cutler (10.1016/j.pbi.2018.05.001_bib0565) 2010; 61 Fu (10.1016/j.pbi.2018.05.001_bib0045) 2013; 64 Kim (10.1016/j.pbi.2018.05.001_bib0465) 2018; 176 Alonso (10.1016/j.pbi.2018.05.001_bib0215) 2009; 21 Pyo (10.1016/j.pbi.2018.05.001_bib0430) 2006; 23 Wang (10.1016/j.pbi.2018.05.001_bib0120) 2013; 8 Kim (10.1016/j.pbi.2018.05.001_bib0580) 2002; 130 Abe (10.1016/j.pbi.2018.05.001_sbref0625) 2005; 309 Zander (10.1016/j.pbi.2018.05.001_sbref0065) 2010; 61 van Gelderen (10.1016/j.pbi.2018.05.001_sbref0245) 2018; 30 Ma (10.1016/j.pbi.2018.05.001_bib0195) 2011; 191 Tzfira (10.1016/j.pbi.2018.05.001_bib0355) 2001; 20 Saleh (10.1016/j.pbi.2018.05.001_sbref0055) 2015; 18 Huang (10.1016/j.pbi.2018.05.001_bib0100) 2016; 16 Tsugama (10.1016/j.pbi.2018.05.001_bib0395) 2012; 159 Jakoby (10.1016/j.pbi.2018.05.001_bib0035) 2002; 7 Peviani (10.1016/j.pbi.2018.05.001_bib0165) 2016; 6 Lee (10.1016/j.pbi.2018.05.001_bib0275) 2007; 19 Pruneda-Paz (10.1016/j.pbi.2018.05.001_sbref0005) 2014; 8 Liu (10.1016/j.pbi.2018.05.001_bib0455) 2010; 22 Sibout (10.1016/j.pbi.2018.05.001_bib0250) 2006; 2 Zander (10.1016/j.pbi.2018.05.001_bib0070) 2014; 165 Weiste (10.1016/j.pbi.2018.05.001_sbref0210) 2017; 13 O’Malley (10.1016/j.pbi.2018.05.001_sbref0405) 2016; 165 Banerjee (10.1016/j.pbi.2018.05.001_bib0535) 2017; 254 Fang (10.1016/j.pbi.2018.05.001_bib0110) 2017; 91 Djamei (10.1016/j.pbi.2018.05.001_sbref0365) 2007; 318 LIU (10.1016/j.pbi.2018.05.001_bib0470) 2008; 31 Canales (10.1016/j.pbi.2018.05.001_bib0135) 2017; 92 Chen (10.1016/j.pbi.2018.05.001_sbref0305) 2016; 26 Kouzarides (10.1016/j.pbi.2018.05.001_bib0010) 1989; 340 Para (10.1016/j.pbi.2018.05.001_sbref0205) 2014; 111 Binkert (10.1016/j.pbi.2018.05.001_bib0300) 2014; 26 Zaret (10.1016/j.pbi.2018.05.001_bib0650) 2016; 62 Gibalová (10.1016/j.pbi.2018.05.001_bib0435) 2009; 70 Toledo-Ortiz (10.1016/j.pbi.2018.05.001_bib0285) 2014; 10 Maier (10.1016/j.pbi.2018.05.001_bib0140) 2011; 2 Uhrig (10.1016/j.pbi.2018.05.001_bib0085) 2017; 1860 Zhou (10.1016/j.pbi.2018.05.001_bib0030) 2017; 8 Nawkar (10.1016/j.pbi.2018.05.001_bib0505) 2017; 114 Li (10.1016/j.pbi.2018.05.001_bib0255) 2016; 9 Shen (10.1016/j.pbi.2018.05.001_bib0440) 2007; 362 Inaba (10.1016/j.pbi.2018.05.001_bib0515) 2015; 84 Lacroix (10.1016/j.pbi.2018.05.001_bib0380) 2013; 3 Mair (10.1016/j.pbi.2018.05.001_sbref0180) 2015; 4 Tsugama (10.1016/j.pbi.2018.05.001_bib0390) 2016; 11 Hartmann (10.1016/j.pbi.2018.05.001_bib0220) 2015; 27 Pape (10.1016/j.pbi.2018.05.001_bib0060) 2010; 154 Müller (10.1016/j.pbi.2018.05.001_bib0090) 2008; 20 Ruberti (10.1016/j.pbi.2018.05.001_bib0500) 2018; 93 Fujii (10.1016/j.pbi.2018.05.001_sbref0560) 2009; 462 Liu (10.1016/j.pbi.2018.05.001_bib0450) 2007; 19 Pedrotti (10.1016/j.pbi.2018.05.001_sbref0185) 2018; 30 Iwata (10.1016/j.pbi.2018.05.001_bib0480) 2005; 102 Furihata (10.1016/j.pbi.2018.05.001_bib0570) 2006; 103 Zhang (10.1016/j.pbi.2018.05.001_bib0280) 2011; 65 Dietrich (10.1016/j.pbi.2018.05.001_bib0230) 2011; 23 Sirichandra (10.1016/j.pbi.2018.05.001_bib0540) 2010 Deng (10.1016/j.pbi.2018.05.001_sbref0485) 2011; 108 Soon (10.1016/j.pbi.2018.05.001_sbref0550) 2012; 335 Gatz (10.1016/j.pbi.2018.05.001_bib0040) 2013; 26 Weiste (10.1016/j.pbi.2018.05.001_bib0190) 2014; 5 Nakashima (10.1016/j.pbi.2018.05.001_bib0595) 2009; 50 Baena-González (10.1016/j.pbi.2018.05.001_sbref0175) 2007; 448 Iwata (10.1016/j.pbi.2018.05.001_bib0475) 2008; 20 Sakuraba (10.1016/j.pbi.2018.05.001_bib0605) 2014; 588 Yamashita (10.1016/j.pbi.2018.05.001_bib0160) 2017; 591 Gangappa (10.1016/j.pbi.2018.05.001_bib0235) 2016; 9 Yu (10.1016/j.pbi.2018.05.001_bib0260) 2013; 9 Wu (10.1016/j.pbi.2018.05.001_bib0385) 2010; 61 |
References_xml | – volume: 318 start-page: 453 year: 2007 end-page: 456 ident: bib0365 article-title: Trojan horse strategy in Agrobacterium transformation: abusing MAPK defense signaling publication-title: Science – volume: 62 start-page: 665 year: 2016 end-page: 667 ident: bib0650 article-title: Chromatin scanning by dynamic binding of pioneer factors publication-title: Mol Cell – volume: 32 start-page: 959 year: 2013 end-page: 970 ident: bib0575 article-title: ABA signaling in stress-response and seed development publication-title: Plant Cell Rep – volume: 3 start-page: 2440 year: 2013 ident: bib0380 article-title: Characterization of VIP1 activity as a transcriptional regulator publication-title: Sci Rep – volume: 9 start-page: 1353 year: 2016 end-page: 1365 ident: bib0235 article-title: The multifaceted roles of HY5 in plant growth and development publication-title: Mol Plant – volume: 2 start-page: 1 year: 2011 end-page: 17 ident: bib0140 article-title: The bZIP transcription factor PERIANTHIA: a multifunctional hub for meristem control publication-title: Front Plant Sci – volume: 27 start-page: 2244 year: 2015 end-page: 2260 ident: bib0220 article-title: Crosstalk between two bZIP signaling pathways orchestrates salt-induced metabolic reprogramming in Arabidopsis roots publication-title: Plant Cell – volume: 91 start-page: 802 year: 2017 end-page: 815 ident: bib0335 article-title: GBF1 differentially regulates CAT2 and PAD4 transcription to promote pathogen defense in publication-title: Plant J – volume: 106 start-page: 18414 year: 2009 end-page: 18419 ident: bib0375 article-title: VIP1 response elements mediate mitogen-activated protein kinase 3-induced stress gene expression publication-title: Proc Natl Acad Sci U S A – volume: 23 start-page: 497 year: 2006 end-page: 501 ident: bib0430 article-title: Vascular cell expression patterns of Arabidopsis bZIP group I genes publication-title: Plant Biotechnol – volume: 59 start-page: 458 year: 2018 end-page: 468 ident: bib0630 article-title: TFL1-like proteins in rice antagonize rice FT-like protein in inflorescence development by competition for complex formation with 14-3-3 and FD publication-title: Plant Cell Physiol – volume: 18 start-page: 169 year: 2015 end-page: 182 ident: bib0055 article-title: Posttranslational modifications of the master transcriptional regulator NPR1 enable dynamic but tight control of plant immune responses publication-title: Cell Host Microbe – volume: 20 start-page: 768 year: 2008 end-page: 785 ident: bib0090 article-title: General detoxification and stress responses are mediated by oxidized lipids through TGA transcription factors in Arabidopsis publication-title: Plant Cell – volume: 5 start-page: 3883 year: 2014 ident: bib0190 article-title: The Arabidopsis transcription factor bZIP11 activates auxin-mediated transcription by recruiting the histone acetylation machinery publication-title: Nat Commun – volume: 61 start-page: 651 year: 2010 end-page: 679 ident: bib0565 article-title: Abscisic acid: emergence of a core signaling network publication-title: Annu Rev Plant Biol – volume: 6 start-page: 1 year: 2017 end-page: 29 ident: bib0020 article-title: Combinatorial bZIP dimers display complex DNA-binding specificity landscapes publication-title: Elife – volume: 165 start-page: 1280 year: 2016 end-page: 1292 ident: bib0405 article-title: Cistrome and epicistrome features shape the regulatory DNA landscape publication-title: Cell – volume: 114 start-page: 2084 year: 2017 end-page: 2089 ident: bib0505 article-title: HY5, a positive regulator of light signaling, negatively controls the unfolded protein response in publication-title: Proc Natl Acad Sci U S A – volume: 37 start-page: 63 year: 2017 end-page: 69 ident: bib0270 article-title: The activities of the E3 ubiquitin ligase COP1/SPA, a key repressor in light signaling publication-title: Curr Opin Plant Biol – volume: 9 start-page: 113 year: 2016 end-page: 125 ident: bib0255 article-title: BZR1 interacts with HY5 to mediate brassinosteroid- and light-regulated cotyledon opening in arabidopsis in darkness publication-title: Mol Plant – start-page: 7 year: 2016 ident: bib0585 article-title: The role and regulation of ABI5 (ABA-insensitive 5) in plant development, abiotic stress responses and phytohormone crosstalk publication-title: Front Plant Sci – volume: 176 start-page: 2221 year: 2018 end-page: 2230 ident: bib0465 article-title: ER-anchored transcription factors bZIP17 and bZIP28 regulate root elongation publication-title: Plant Physiol – volume: 46 start-page: 890 year: 2006 end-page: 900 ident: bib0150 article-title: Two-hybrid protein–protein interaction analysis in Arabidopsis protoplasts: establishment of a heterodimerization map of group C and group S bZIP transcription factors publication-title: Plant J – year: 2014 ident: bib0370 article-title: Is VIP1 important for Agrobacterium-mediated transformation publication-title: Plant J – volume: 103 start-page: 1988 year: 2006 end-page: 1993 ident: bib0570 article-title: Abscisic acid-dependent multisite phosphorylation regulates the activity of a transcription activator AREB1 publication-title: Proc Natl Acad Sci U S A – volume: 61 start-page: 3407 year: 2010 end-page: 3422 ident: bib0385 article-title: Isolation and characterization of low-sulphur-tolerant mutants of Arabidopsis publication-title: J Exp Bot – volume: 282 start-page: 12989 year: 2007 end-page: 13002 ident: bib0290 article-title: Structural basis for the conformational integrity of the publication-title: J Biol Chem – volume: 9 start-page: 1272 year: 2016 end-page: 1285 ident: bib0610 article-title: ABF2, ABF3 and ABF4 promote ABA-mediated chlorophyll degradation and leaf senescence by transcriptional activation of chlorophyll catabolic genes and senescence-associated genes in Arabidopsis publication-title: Mol Plant – volume: 6 start-page: 1758 year: 2013 end-page: 1768 ident: bib0310 article-title: Z-box binding transcription factors (ZBFs): a new class of transcription factors in Arabidopsis seedling development publication-title: Mol Plant – volume: 165 start-page: 1671 year: 2014 end-page: 1683 ident: bib0070 article-title: TGA transcription factors activate the salicylic acid-suppressible branch of the ethylene-induced defense program by regulating ORA59 expression publication-title: Plant Physiol – volume: 20 start-page: 3596 year: 2001 end-page: 3607 ident: bib0355 article-title: VIP1, an Arabidopsis protein that interacts with Agrobacterium VirE2, is involved in VirE2 nuclear import and Agrobacterium infectivity publication-title: EMBO J – volume: 26 start-page: 640 year: 2016 end-page: 646 ident: bib0305 article-title: Shoot-to-root mobile transcription factor HY5 coordinates plant carbon and nitrogen acquisition publication-title: Curr Biol – volume: 279 start-page: 29528 year: 2004 end-page: 29533 ident: bib0360 article-title: Protein interactions involved in nuclear import of the Agrobacterium VirE2 protein in vivo and in vitro publication-title: J Biol Chem – volume: 13 start-page: e1006607 year: 2017 ident: bib0210 article-title: The Arabidopsis bZIP11 transcription factor links low-energy signalling to auxin-mediated control of primary root growth publication-title: PLOS Genet – volume: 26 start-page: 4200 year: 2014 end-page: 4213 ident: bib0300 article-title: UV-B-responsive association of the arabidopsis bZIP transcription factor ELONGATED HYPOCOTYL5 with target genes, including its own promoter publication-title: Plant Cell – volume: 362 start-page: 425 year: 2007 end-page: 430 ident: bib0440 article-title: A conserved proline residue in the leucine zipper region of AtbZIP34 and AtbZIP61 in publication-title: Biochem Biophys Res Commun – volume: 25 start-page: 1459 year: 2012 end-page: 1468 ident: bib0115 article-title: Arabidopsis clade I TGA transcription factors regulate plant defenses in an NPR1-independent fashion publication-title: Mol Plant Microbe Interact – volume: 92 start-page: 305 year: 2017 end-page: 316 ident: bib0135 article-title: Nitrate induction of root hair density is mediated by TGA1/TGA4 and CPC transcription factors in publication-title: Plant J – volume: 8 start-page: 622 year: 2014 end-page: 632 ident: bib0005 article-title: A genome-scale resource for the functional characterization of Arabidopsis transcription factors publication-title: Cell Rep – volume: 88 start-page: 437 year: 2016 end-page: 451 ident: bib0425 article-title: Altered expression of the bZIP transcription factor DRINK ME affects growth and reproductive development in publication-title: Plant J – volume: 150 start-page: 1356 year: 2009 end-page: 1367 ident: bib0170 article-title: Sucrose control of translation mediated by an upstream open reading frame-encoded peptide publication-title: Plant Physiol – volume: 287 start-page: 27510 year: 2012 end-page: 27525 ident: bib0340 article-title: Redox-mediated mechanisms regulate DNA binding activity of the G-group of basic region leucine zipper (bZIP) transcription factors in Arabidopsis publication-title: J Biol Chem – volume: 84 start-page: 323 year: 2015 end-page: 334 ident: bib0515 article-title: Identification of putative target genes of bZIP19, a transcription factor essential for Arabidopsis adaptation to Zn deficiency in roots publication-title: Plant J – volume: 10 start-page: e0139884 year: 2015 ident: bib0295 article-title: The elucidation of the interactome of 16 Arabidopsis bZIP factors reveals three independent functional networks publication-title: PLOS ONE – volume: 12 start-page: 599 year: 2000 end-page: 609 ident: bib0600 article-title: The Arabidopsis abscisic acid response gene ABI5 encodes a basic leucine zipper transcription factor publication-title: Plant Cell – volume: 3 start-page: 361 year: 2010 end-page: 373 ident: bib0200 article-title: The Arabidopsis bZIP1 transcription factor is involved in sugar signaling, protein networking, and DNA binding publication-title: Mol Plant – volume: 175 start-page: 628 year: 2017 end-page: 640 ident: bib0640 article-title: The G-box transcriptional regulatory code in Arabidopsis publication-title: Plant Physiol – volume: 23 start-page: 381 year: 2011 end-page: 395 ident: bib0230 article-title: Heterodimers of the Arabidopsis transcription factors bZIP1 and bZIP53 reprogram amino acid metabolism during low energy stress publication-title: Plant Cell – volume: 30 start-page: 101 year: 2018 end-page: 116 ident: bib0245 article-title: Far-red light detection in the shoot regulates lateral root development through the HY5 transcription factor publication-title: Plant Cell – volume: 11 start-page: 1 year: 2016 end-page: 3 ident: bib0390 article-title: VIP1 is very important/interesting protein 1 regulating touch responses of Arabidopsis publication-title: Plant Signal Behav – volume: 154 start-page: 1805 year: 2010 end-page: 1818 ident: bib0060 article-title: The Arabidopsis PR-1 promoter contains multiple integration sites for the coactivator NPR1 and the repressor SNI1 publication-title: Plant Physiol – volume: 23 start-page: 422 year: 2018 end-page: 433 ident: bib0155 article-title: The C/S publication-title: Trends Plant Sci – volume: 83 start-page: 439 year: 2015 end-page: 450 ident: bib0325 article-title: Interaction of MYC2 and GBF1 results in functional antagonism in blue light-mediated Arabidopsis seedling development publication-title: Plant J – volume: 191 start-page: 733 year: 2011 end-page: 745 ident: bib0195 article-title: The sucrose-regulated Arabidopsis transcription factor bZIP11 reprograms metabolism and regulates trehalose metabolism publication-title: New Phytol – volume: 3 start-page: e2944 year: 2008 ident: bib0025 article-title: The role of bZIP transcription factors in green plant evolution: adaptive features emerging from four founder genes publication-title: PLoS ONE – volume: 159 start-page: 144 year: 2012 end-page: 155 ident: bib0395 article-title: A bZIP protein, VIP1, is a regulator of osmosensory signaling in Arabidopsis publication-title: Plant Physiol – volume: 19 start-page: 284 year: 2010 end-page: 295 ident: bib0105 article-title: The cytokinin-activated transcription factor ARR2 promotes plant immunity via TGA3/NPR1-dependent salicylic acid signaling in arabidopsis publication-title: Dev Cell – start-page: 5 year: 2010 ident: bib0540 article-title: The arabidopsis ABA-activated kinase OST1 phosphorylates the bZIP transcription factor ABF3 and creates a 14-3-3 binding site involved in its turnover publication-title: PLoS ONE – volume: 111 start-page: 10371 year: 2014 end-page: 10376 ident: bib0205 article-title: Hit-and-run transcriptional control by bZIP1 mediates rapid nutrient signaling in Arabidopsis publication-title: Proc Natl Acad Sci U S A – volume: 8 start-page: e77378 year: 2013 ident: bib0120 article-title: Arabidopsis clade I TGA factors regulate apoplastic defences against the bacterial pathogen publication-title: PLOS ONE – volume: 12 start-page: e1005707 year: 2016 ident: bib0050 article-title: Posttranslational modifications of NPR1: a single protein playing multiple roles in plant immunity and physiology publication-title: PLOS Pathog – volume: 67 start-page: 5825 year: 2016 end-page: 5840 ident: bib0410 article-title: Functional characterization of the Arabidopsis transcription factor bZIP29 reveals its role in leaf and root development publication-title: J Exp Bot – volume: 423 start-page: 142 year: 2008 end-page: 148 ident: bib0525 article-title: Differential transcript regulation in publication-title: Gene – volume: 193 start-page: 171 year: 2011 end-page: 184 ident: bib0490 article-title: Homeostatic adaptation to endoplasmic reticulum stress depends on Ire1 kinase activity publication-title: J Cell Biol – volume: 30 start-page: 495 year: 2018 end-page: 509 ident: bib0185 article-title: Snf1-related kinase1-controlled C/S1-bZIP signaling activates alternative mitochondrial metabolic pathways to ensure plant survival under low energy stress provoked by extended darkness publication-title: Plant Cell – volume: 19 start-page: 4111 year: 2007 end-page: 4119 ident: bib0450 article-title: An endoplasmic reticulum stress response in arabidopsis is mediated by proteolytic processing and nuclear relocation of a membrane-associated transcription factor, bZIP28 publication-title: Plant Cell – volume: 7 start-page: 106 year: 2002 end-page: 111 ident: bib0035 article-title: bZIP transcription factors in Arabidopsis publication-title: Trends Plant Sci – volume: 31 start-page: 1735 year: 2008 end-page: 1743 ident: bib0470 article-title: Stress-induced expression of an activated form of AtbZIP17 provides protection from salt stress in Arabidopsis publication-title: Plant Cell Environ – volume: 64 start-page: 477 year: 2013 end-page: 499 ident: bib0445 article-title: Endoplasmic reticulum stress responses in plants publication-title: Annu Rev Plant Biol – volume: 80 start-page: 1 year: 2014 end-page: 13 ident: bib0130 article-title: Systems approach identifies TGA1 and TGA4 transcription factors as important regulatory components of the nitrate response of publication-title: Plant J – volume: 20 start-page: 3107 year: 2008 end-page: 3121 ident: bib0475 article-title: Arabidopsis bZIP60 is a proteolysis-activated transcription factor involved in the endoplasmic reticulum stress response publication-title: Plant Cell – volume: 26 start-page: 151 year: 2013 end-page: 159 ident: bib0040 article-title: From pioneers to team players: TGA transcription factors provide a molecular link publication-title: Mol Plant Microbe Interact – volume: 107 start-page: 10296 year: 2010 end-page: 10301 ident: bib0510 article-title: transcription factors bZIP19 and bZIP23 regulate the adaptation to zinc deficiency publication-title: Proc Natl Acad Sci U S A – volume: 1860 start-page: 218 year: 2017 end-page: 226 ident: bib0085 article-title: CC-type glutaredoxins recruit the transcriptional co-repressor TOPLESS to TGA-dependent target promoters in publication-title: Biochim Biophys Acta Gene Regul Mech – volume: 21 start-page: 1747 year: 2009 end-page: 1761 ident: bib0215 article-title: A pivotal role of the basic leucine zipper transcription factor bZIP53 in the regulation of Arabidopsis seed maturation gene expression based on heterodimerization and protein complex formation publication-title: Plant Cell – volume: 354 start-page: 558 year: 2016 end-page: 566 ident: bib0635 article-title: A transcription factor hierarchy defines an environmental stress response network publication-title: Science – volume: 436 start-page: 45 year: 2009 end-page: 55 ident: bib0530 article-title: The Arabidopsis basic leucine zipper transcription factor AtbZIP24 regulates complex transcriptional networks involved in abiotic stress resistance publication-title: Gene – volume: 30 start-page: 1 year: 2017 end-page: 17 ident: bib0420 article-title: Characterization of pollen-expressed bZIP protein interactions and the role of ATbZIP18 in the male gametophyte publication-title: Plant Reprod – volume: 254 start-page: 3 year: 2017 end-page: 16 ident: bib0535 article-title: Abscisic-acid-dependent basic leucine zipper (bZIP) transcription factors in plant abiotic stress publication-title: Protoplasma – volume: 25 start-page: 3133 year: 2006 end-page: 3143 ident: bib0145 article-title: Combinatorial control of Arabidopsis proline dehydrogenase transcription by specific heterodimerisation of bZIP transcription factors publication-title: EMBO J – volume: 93 start-page: 155 year: 2018 end-page: 165 ident: bib0500 article-title: Recovery from temporary endoplasmic reticulum stress in plants relies on the tissue-specific and largely independent roles of bZIP28 and bZIP60, as well as an antagonizing function of BAX-Inhibitor 1 upon the pro-adaptive signaling mediated by bZIP28 publication-title: Plant J – volume: 32 start-page: 3435 year: 2004 end-page: 3445 ident: bib0645 article-title: Dimerization specificity of all 67 B-ZIP motifs in publication-title: Nucleic Acids Res – volume: 9 start-page: e103930 year: 2014 ident: bib0400 article-title: Analysis of functions of VIP1 and its close homologs in osmosensory responses of publication-title: PLoS ONE – volume: 217 start-page: 344 year: 2018 end-page: 354 ident: bib0125 article-title: GACG-binding factor 1 (TGA1) and TGA4 regulate salicylic acid and pipecolic acid biosynthesis by modulating the expression of systemic acquired resistance deficient 1 (SARD1) and calmodulin-binding protein 60 publication-title: New Phytol – volume: 16 start-page: 200 year: 2016 ident: bib0100 article-title: Ectopically expressed glutaredoxin ROXY19 negatively regulates the detoxification pathway in publication-title: BMC Plant Biol – volume: 56 start-page: 597 year: 2005 end-page: 603 ident: bib0590 article-title: Characterization of three homologous basic leucine zipper transcription factors (bZIP) of the ABI5 family during publication-title: J Exp Bot – volume: 10 start-page: e1004416 year: 2014 ident: bib0285 article-title: The HY5-PIF regulatory module coordinates light and temperature control of photosynthetic gene transcription publication-title: PLoS Genet – volume: 2 start-page: 1898 year: 2006 end-page: 1911 ident: bib0250 article-title: Opposite root growth phenotypes of hy5 versus hy5 hyh mutants correlate with increased constitutive auxin signaling publication-title: PLoS Genet – volume: 56 start-page: 1043 year: 2015 end-page: 1052 ident: bib0545 article-title: Omics approaches toward defining the comprehensive abscisic acid signaling network in plants publication-title: Plant Cell Physiol – volume: 19 start-page: 731 year: 2007 end-page: 749 ident: bib0275 article-title: Analysis of transcription factor HY5 genomic binding sites revealed its hierarchical role in light regulation of development publication-title: Plant Cell – volume: 208 start-page: 188 year: 2015 end-page: 197 ident: bib0460 article-title: Membrane-associated transcription factor peptidase, site-2 protease, antagonizes ABA signaling in Arabidopsis publication-title: New Phytol – volume: 309 start-page: 1052 year: 2005 end-page: 1057 ident: bib0625 article-title: FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex publication-title: Science – volume: 448 start-page: 938 year: 2007 end-page: 942 ident: bib0175 article-title: A central integrator of transcription networks in plant stress and energy signalling publication-title: Nature – volume: 252 start-page: 867 year: 2015 end-page: 883 ident: bib0345 article-title: GIP1 protein is a novel cofactor that regulates DNA-binding affinity of redox-regulated members of bZIP transcription factors involved in the early stages of Arabidopsis development publication-title: Protoplasma – volume: 25 start-page: 4400 year: 2006 end-page: 4411 ident: bib0225 article-title: bZIP10-LSD1 antagonism modulates basal defense and cell death in Arabidopsis following infection publication-title: EMBO J – volume: 59 start-page: 215 year: 2018 end-page: 221 ident: bib0620 article-title: Toward a molecular understanding of abscisic acid actions in floral transition publication-title: Plant Cell Physiol – volume: 4 start-page: e05828 year: 2015 ident: bib0180 article-title: SnRK1-triggered switch of bZIP63 dimerization mediates the low-energy response in plants publication-title: Elife – volume: 50 start-page: 1345 year: 2009 end-page: 1363 ident: bib0595 article-title: Three arabidopsis SnRK2 protein kinases, SRK2D/SnRK2.2, SRK2E/SnRK2.6/OST1 and SRK2I/SnRK2.3, involved in ABA signaling are essential for the control of seed development and dormancy publication-title: Plant Cell Physiol – volume: 6 start-page: 30444 year: 2016 ident: bib0165 article-title: The phylogeny of C/S1 bZIP transcription factors reveals a shared algal ancestry and the pre-angiosperm translational regulation of S1 transcripts publication-title: Sci Rep – volume: 4 start-page: 98 year: 2018 end-page: 107 ident: bib0240 article-title: UVR8 interacts with WRKY36 to regulate HY5 transcription and hypocotyl elongation in Arabidopsis publication-title: Nat Plants – volume: 64 start-page: 839 year: 2013 end-page: 863 ident: bib0045 article-title: Systemic acquired resistance: turning local infection into global defense publication-title: Annu Rev Plant Biol – volume: 591 start-page: 1266 year: 2017 end-page: 1277 ident: bib0160 article-title: Sucrose sensing through nascent peptide-meditated ribosome stalling at the stop codon of Arabidopsis bZIP11 publication-title: FEBS Lett – volume: 108 start-page: 7247 year: 2011 end-page: 7252 ident: bib0485 article-title: Heat induces the splicing by IRE1 of a mRNA encoding a transcription factor involved in the unfolded protein response in Arabidopsis publication-title: Proc Natl Acad Sci U S A – volume: 335 start-page: 85 year: 2012 end-page: 88 ident: bib0550 article-title: Molecular mimicry regulates ABA signaling by SnRK2 kinases and PP2C phosphatases publication-title: Science – volume: 1 start-page: 29 year: 2011 ident: bib0495 article-title: Arabidopsis IRE1 catalyses unconventional splicing of bZIP60 mRNA to produce the active transcription factor publication-title: Sci Rep – volume: 130 start-page: 688 year: 2002 end-page: 697 ident: bib0580 article-title: Arabidopsis ABI5 subfamily members have distinct DNA-binding and transcriptional activities publication-title: Plant Physiol – volume: 588 start-page: 3830 year: 2014 end-page: 3837 ident: bib0605 article-title: Arabidopsis STAYGREEN-LIKE (SGRL) promotes abiotic stress-induced leaf yellowing during vegetative growth publication-title: FEBS Lett – volume: 67 start-page: 195 year: 2016 end-page: 205 ident: bib0615 article-title: Abscisic acid-insensitive 4 negatively regulates flowering through directly promoting Arabidopsis flowering locus C transcription publication-title: J Exp Bot – volume: 50 start-page: 128 year: 2007 end-page: 139 ident: bib0080 article-title: SA-inducible Arabidopsis glutaredoxin interacts with TGA factors and suppresses JA-responsive PDF1.2 transcription publication-title: Plant J – volume: 4 start-page: 108 year: 2018 end-page: 115 ident: bib0415 article-title: Control of auxin-induced callus formation by bZIP59–LBD complex in Arabidopsis regeneration publication-title: Nat Plants – volume: 8 start-page: 288 year: 2017 ident: bib0030 article-title: Genome-wide identification and structural analysis of bZIP transcription factor genes in publication-title: Genes – volume: 91 start-page: 1038 year: 2017 end-page: 1050 ident: bib0110 article-title: The Ca publication-title: Plant J – volume: 20 start-page: 3122 year: 2008 end-page: 3135 ident: bib0095 article-title: The Arabidopsis GRAS protein SCL14 interacts with class II TGA transcription factors and is essential for the activation of stress-inducible promoters publication-title: Plant Cell – volume: 7 start-page: 3806 year: 2017 ident: bib0520 article-title: Phylogenetic analysis of F-bZIP transcription factors indicates conservation of the zinc deficiency response across land plants publication-title: Sci Rep – volume: 4 start-page: 691 year: 2015 end-page: 709 ident: bib0350 article-title: Phosphorylation Affects DNA-binding of the senescence-regulating bZIP transcription factor GBF1 publication-title: Plants – volume: 462 start-page: 660 year: 2009 end-page: 664 ident: bib0560 article-title: In vitro reconstitution of an abscisic acid signalling pathway publication-title: Nature – volume: 340 start-page: 568 year: 1989 end-page: 571 ident: bib0010 article-title: Leucine zippers of fos, jun and GCN4 dictate dimerization specificity and thereby control DNA binding publication-title: Nature – volume: 246 start-page: 911 year: 1989 end-page: 916 ident: bib0015 article-title: Scissors-grip model for DNA recognition by a family of leucine zipper proteins publication-title: Science – volume: 22 start-page: 782 year: 2010 end-page: 796 ident: bib0455 article-title: bZIP28 and NF-Y transcription factors are activated by ER stress and assemble into a transcriptional complex to regulate stress response genes in Arabidopsis publication-title: Plant Cell – volume: 287 start-page: 25995 year: 2012 end-page: 26009 ident: bib0315 article-title: Molecular interactions of GBF1 with HY5 and HYH proteins during light-mediated seedling development in publication-title: J Biol Chem – volume: 6 start-page: 1 year: 2015 end-page: 11 ident: bib0075 article-title: How salicylic acid takes transcriptional control over jasmonic acid signaling publication-title: Front Plant Sci – volume: 9 start-page: e1004025 year: 2013 ident: bib0260 article-title: Ethylene promotes hypocotyl growth and HY5 degradation by enhancing the movement of COP1 to the nucleus in the light publication-title: PLoS Genet – volume: 65 start-page: 346 year: 2011 end-page: 358 ident: bib0280 article-title: Genome-wide mapping of the HY5-mediated gene networks in Arabidopsis that involve both transcriptional and post-transcriptional regulation publication-title: Plant J – volume: 7 start-page: 448 year: 2014 end-page: 451 ident: bib0320 article-title: Genome-wide DNA binding of GBF1 is modulated by its heterodimerizing protein partners, HY5 and HYH publication-title: Mol Plant – volume: 163 start-page: 331 year: 2013 end-page: 353 ident: bib0265 article-title: Dynamics of the shade-avoidance response in Arabidopsis publication-title: Plant Physiol – volume: 102 start-page: 5280 year: 2005 end-page: 5285 ident: bib0480 article-title: An Arabidopsis transcription factor, AtbZIP60, regulates the endoplasmic reticulum stress response in a manner unique to plants publication-title: Proc Natl Acad Sci U S A – volume: 61 start-page: 200 year: 2010 end-page: 210 ident: bib0065 article-title: class-II TGA transcription factors are essential activators of jasmonic acid/ethylene-induced defense responses publication-title: Plant J – volume: 70 start-page: 581 year: 2009 end-page: 601 ident: bib0435 article-title: AtbZIP34 is required for Arabidopsis pollen wall patterning and the control of several metabolic pathways in developing pollen publication-title: Plant Mol Biol – volume: 153 start-page: 1321 year: 2010 end-page: 1331 ident: bib0330 article-title: G-box binding factor1 reduces CATALASE2 expression and regulates the onset of leaf senescence in arabidopsis publication-title: Plant Physiol – volume: 51 start-page: 1821 year: 2010 end-page: 1839 ident: bib0555 article-title: Molecular basis of the core regulatory network in ABA responses: sensing, signaling and transport publication-title: Plant Cell Physiol – volume: 4 start-page: e05828 year: 2015 ident: 10.1016/j.pbi.2018.05.001_sbref0180 article-title: SnRK1-triggered switch of bZIP63 dimerization mediates the low-energy response in plants publication-title: Elife doi: 10.7554/eLife.05828 – volume: 27 start-page: 2244 year: 2015 ident: 10.1016/j.pbi.2018.05.001_bib0220 article-title: Crosstalk between two bZIP signaling pathways orchestrates salt-induced metabolic reprogramming in Arabidopsis roots publication-title: Plant Cell doi: 10.1105/tpc.15.00163 – volume: 246 start-page: 911 year: 1989 ident: 10.1016/j.pbi.2018.05.001_bib0015 article-title: Scissors-grip model for DNA recognition by a family of leucine zipper proteins publication-title: Science doi: 10.1126/science.2683088 – volume: 191 start-page: 733 year: 2011 ident: 10.1016/j.pbi.2018.05.001_bib0195 article-title: The sucrose-regulated Arabidopsis transcription factor bZIP11 reprograms metabolism and regulates trehalose metabolism publication-title: New Phytol doi: 10.1111/j.1469-8137.2011.03735.x – volume: 88 start-page: 437 year: 2016 ident: 10.1016/j.pbi.2018.05.001_bib0425 article-title: Altered expression of the bZIP transcription factor DRINK ME affects growth and reproductive development in Arabidopsis thaliana publication-title: Plant J doi: 10.1111/tpj.13264 – volume: 9 start-page: e1004025 year: 2013 ident: 10.1016/j.pbi.2018.05.001_bib0260 article-title: Ethylene promotes hypocotyl growth and HY5 degradation by enhancing the movement of COP1 to the nucleus in the light publication-title: PLoS Genet doi: 10.1371/journal.pgen.1004025 – volume: 19 start-page: 731 year: 2007 ident: 10.1016/j.pbi.2018.05.001_bib0275 article-title: Analysis of transcription factor HY5 genomic binding sites revealed its hierarchical role in light regulation of development publication-title: Plant Cell doi: 10.1105/tpc.106.047688 – volume: 1 start-page: 29 year: 2011 ident: 10.1016/j.pbi.2018.05.001_bib0495 article-title: Arabidopsis IRE1 catalyses unconventional splicing of bZIP60 mRNA to produce the active transcription factor publication-title: Sci Rep doi: 10.1038/srep00029 – volume: 32 start-page: 959 year: 2013 ident: 10.1016/j.pbi.2018.05.001_bib0575 article-title: ABA signaling in stress-response and seed development publication-title: Plant Cell Rep doi: 10.1007/s00299-013-1418-1 – volume: 5 start-page: 3883 year: 2014 ident: 10.1016/j.pbi.2018.05.001_bib0190 article-title: The Arabidopsis transcription factor bZIP11 activates auxin-mediated transcription by recruiting the histone acetylation machinery publication-title: Nat Commun doi: 10.1038/ncomms4883 – volume: 92 start-page: 305 year: 2017 ident: 10.1016/j.pbi.2018.05.001_bib0135 article-title: Nitrate induction of root hair density is mediated by TGA1/TGA4 and CPC transcription factors in Arabidopsis thaliana publication-title: Plant J doi: 10.1111/tpj.13656 – volume: 254 start-page: 3 year: 2017 ident: 10.1016/j.pbi.2018.05.001_bib0535 article-title: Abscisic-acid-dependent basic leucine zipper (bZIP) transcription factors in plant abiotic stress publication-title: Protoplasma doi: 10.1007/s00709-015-0920-4 – volume: 217 start-page: 344 year: 2018 ident: 10.1016/j.pbi.2018.05.001_bib0125 article-title: GACG-binding factor 1 (TGA1) and TGA4 regulate salicylic acid and pipecolic acid biosynthesis by modulating the expression of systemic acquired resistance deficient 1 (SARD1) and calmodulin-binding protein 60g (CBP60g) publication-title: New Phytol doi: 10.1111/nph.14780 – volume: 93 start-page: 155 year: 2018 ident: 10.1016/j.pbi.2018.05.001_bib0500 article-title: Recovery from temporary endoplasmic reticulum stress in plants relies on the tissue-specific and largely independent roles of bZIP28 and bZIP60, as well as an antagonizing function of BAX-Inhibitor 1 upon the pro-adaptive signaling mediated by bZIP28 publication-title: Plant J doi: 10.1111/tpj.13768 – volume: 318 start-page: 453 year: 2007 ident: 10.1016/j.pbi.2018.05.001_sbref0365 article-title: Trojan horse strategy in Agrobacterium transformation: abusing MAPK defense signaling publication-title: Science doi: 10.1126/science.1148110 – volume: 25 start-page: 3133 year: 2006 ident: 10.1016/j.pbi.2018.05.001_bib0145 article-title: Combinatorial control of Arabidopsis proline dehydrogenase transcription by specific heterodimerisation of bZIP transcription factors publication-title: EMBO J doi: 10.1038/sj.emboj.7601206 – volume: 176 start-page: 2221 year: 2018 ident: 10.1016/j.pbi.2018.05.001_bib0465 article-title: ER-anchored transcription factors bZIP17 and bZIP28 regulate root elongation publication-title: Plant Physiol doi: 10.1104/pp.17.01414 – volume: 22 start-page: 782 year: 2010 ident: 10.1016/j.pbi.2018.05.001_bib0455 article-title: bZIP28 and NF-Y transcription factors are activated by ER stress and assemble into a transcriptional complex to regulate stress response genes in Arabidopsis publication-title: Plant Cell doi: 10.1105/tpc.109.072173 – volume: 154 start-page: 1805 year: 2010 ident: 10.1016/j.pbi.2018.05.001_bib0060 article-title: The Arabidopsis PR-1 promoter contains multiple integration sites for the coactivator NPR1 and the repressor SNI1 publication-title: Plant Physiol doi: 10.1104/pp.110.165563 – year: 2014 ident: 10.1016/j.pbi.2018.05.001_bib0370 article-title: Is VIP1 important for Agrobacterium-mediated transformation publication-title: Plant J doi: 10.1111/tpj.12596 – volume: 23 start-page: 497 year: 2006 ident: 10.1016/j.pbi.2018.05.001_bib0430 article-title: Vascular cell expression patterns of Arabidopsis bZIP group I genes publication-title: Plant Biotechnol doi: 10.5511/plantbiotechnology.23.497 – volume: 1860 start-page: 218 year: 2017 ident: 10.1016/j.pbi.2018.05.001_bib0085 article-title: CC-type glutaredoxins recruit the transcriptional co-repressor TOPLESS to TGA-dependent target promoters in Arabidopsis thaliana publication-title: Biochim Biophys Acta Gene Regul Mech doi: 10.1016/j.bbagrm.2016.11.001 – volume: 50 start-page: 1345 year: 2009 ident: 10.1016/j.pbi.2018.05.001_bib0595 article-title: Three arabidopsis SnRK2 protein kinases, SRK2D/SnRK2.2, SRK2E/SnRK2.6/OST1 and SRK2I/SnRK2.3, involved in ABA signaling are essential for the control of seed development and dormancy publication-title: Plant Cell Physiol doi: 10.1093/pcp/pcp083 – volume: 18 start-page: 169 year: 2015 ident: 10.1016/j.pbi.2018.05.001_sbref0055 article-title: Posttranslational modifications of the master transcriptional regulator NPR1 enable dynamic but tight control of plant immune responses publication-title: Cell Host Microbe doi: 10.1016/j.chom.2015.07.005 – volume: 8 start-page: e77378 year: 2013 ident: 10.1016/j.pbi.2018.05.001_bib0120 article-title: Arabidopsis clade I TGA factors regulate apoplastic defences against the bacterial pathogen Pseudomonas syringae through endoplasmic reticulum-based processes publication-title: PLOS ONE doi: 10.1371/journal.pone.0077378 – volume: 6 start-page: 1 year: 2017 ident: 10.1016/j.pbi.2018.05.001_sbref0020 article-title: Combinatorial bZIP dimers display complex DNA-binding specificity landscapes publication-title: Elife doi: 10.7554/eLife.19272 – volume: 84 start-page: 323 year: 2015 ident: 10.1016/j.pbi.2018.05.001_bib0515 article-title: Identification of putative target genes of bZIP19, a transcription factor essential for Arabidopsis adaptation to Zn deficiency in roots publication-title: Plant J doi: 10.1111/tpj.12996 – volume: 67 start-page: 195 year: 2016 ident: 10.1016/j.pbi.2018.05.001_bib0615 article-title: Abscisic acid-insensitive 4 negatively regulates flowering through directly promoting Arabidopsis flowering locus C transcription publication-title: J Exp Bot doi: 10.1093/jxb/erv459 – volume: 9 start-page: 1353 year: 2016 ident: 10.1016/j.pbi.2018.05.001_bib0235 article-title: The multifaceted roles of HY5 in plant growth and development publication-title: Mol Plant doi: 10.1016/j.molp.2016.07.002 – volume: 4 start-page: 691 year: 2015 ident: 10.1016/j.pbi.2018.05.001_bib0350 article-title: Phosphorylation Affects DNA-binding of the senescence-regulating bZIP transcription factor GBF1 publication-title: Plants doi: 10.3390/plants4030691 – volume: 61 start-page: 3407 year: 2010 ident: 10.1016/j.pbi.2018.05.001_bib0385 article-title: Isolation and characterization of low-sulphur-tolerant mutants of Arabidopsis publication-title: J Exp Bot doi: 10.1093/jxb/erq161 – volume: 193 start-page: 171 year: 2011 ident: 10.1016/j.pbi.2018.05.001_bib0490 article-title: Homeostatic adaptation to endoplasmic reticulum stress depends on Ire1 kinase activity publication-title: J Cell Biol doi: 10.1083/jcb.201007077 – volume: 462 start-page: 660 year: 2009 ident: 10.1016/j.pbi.2018.05.001_sbref0560 article-title: In vitro reconstitution of an abscisic acid signalling pathway publication-title: Nature doi: 10.1038/nature08599 – volume: 61 start-page: 200 year: 2010 ident: 10.1016/j.pbi.2018.05.001_sbref0065 article-title: Arabidopsis thaliana class-II TGA transcription factors are essential activators of jasmonic acid/ethylene-induced defense responses publication-title: Plant J doi: 10.1111/j.1365-313X.2009.04044.x – volume: 20 start-page: 3122 year: 2008 ident: 10.1016/j.pbi.2018.05.001_bib0095 article-title: The Arabidopsis GRAS protein SCL14 interacts with class II TGA transcription factors and is essential for the activation of stress-inducible promoters publication-title: Plant Cell doi: 10.1105/tpc.108.058974 – volume: 19 start-page: 284 year: 2010 ident: 10.1016/j.pbi.2018.05.001_bib0105 article-title: The cytokinin-activated transcription factor ARR2 promotes plant immunity via TGA3/NPR1-dependent salicylic acid signaling in arabidopsis publication-title: Dev Cell doi: 10.1016/j.devcel.2010.07.011 – volume: 37 start-page: 63 year: 2017 ident: 10.1016/j.pbi.2018.05.001_bib0270 article-title: The activities of the E3 ubiquitin ligase COP1/SPA, a key repressor in light signaling publication-title: Curr Opin Plant Biol doi: 10.1016/j.pbi.2017.03.015 – volume: 10 start-page: e1004416 year: 2014 ident: 10.1016/j.pbi.2018.05.001_bib0285 article-title: The HY5-PIF regulatory module coordinates light and temperature control of photosynthetic gene transcription publication-title: PLoS Genet doi: 10.1371/journal.pgen.1004416 – volume: 279 start-page: 29528 year: 2004 ident: 10.1016/j.pbi.2018.05.001_bib0360 article-title: Protein interactions involved in nuclear import of the Agrobacterium VirE2 protein in vivo and in vitro publication-title: J Biol Chem doi: 10.1074/jbc.M403159200 – volume: 130 start-page: 688 year: 2002 ident: 10.1016/j.pbi.2018.05.001_bib0580 article-title: Arabidopsis ABI5 subfamily members have distinct DNA-binding and transcriptional activities publication-title: Plant Physiol doi: 10.1104/pp.003566 – volume: 354 start-page: 558 year: 2016 ident: 10.1016/j.pbi.2018.05.001_bib0635 article-title: A transcription factor hierarchy defines an environmental stress response network publication-title: Science doi: 10.1126/science.aag1550 – volume: 23 start-page: 381 year: 2011 ident: 10.1016/j.pbi.2018.05.001_bib0230 article-title: Heterodimers of the Arabidopsis transcription factors bZIP1 and bZIP53 reprogram amino acid metabolism during low energy stress publication-title: Plant Cell doi: 10.1105/tpc.110.075390 – volume: 16 start-page: 200 year: 2016 ident: 10.1016/j.pbi.2018.05.001_bib0100 article-title: Ectopically expressed glutaredoxin ROXY19 negatively regulates the detoxification pathway in Arabidopsis thaliana publication-title: BMC Plant Biol doi: 10.1186/s12870-016-0886-1 – volume: 13 start-page: e1006607 year: 2017 ident: 10.1016/j.pbi.2018.05.001_sbref0210 article-title: The Arabidopsis bZIP11 transcription factor links low-energy signalling to auxin-mediated control of primary root growth publication-title: PLOS Genet doi: 10.1371/journal.pgen.1006607 – volume: 362 start-page: 425 year: 2007 ident: 10.1016/j.pbi.2018.05.001_bib0440 article-title: A conserved proline residue in the leucine zipper region of AtbZIP34 and AtbZIP61 in Arabidopsis thaliana interferes with the formation of homodimer publication-title: Biochem Biophys Res Commun doi: 10.1016/j.bbrc.2007.08.026 – volume: 7 start-page: 106 year: 2002 ident: 10.1016/j.pbi.2018.05.001_bib0035 article-title: bZIP transcription factors in Arabidopsis publication-title: Trends Plant Sci doi: 10.1016/S1360-1385(01)02223-3 – volume: 150 start-page: 1356 year: 2009 ident: 10.1016/j.pbi.2018.05.001_bib0170 article-title: Sucrose control of translation mediated by an upstream open reading frame-encoded peptide publication-title: Plant Physiol doi: 10.1104/pp.109.136036 – volume: 287 start-page: 27510 year: 2012 ident: 10.1016/j.pbi.2018.05.001_bib0340 article-title: Redox-mediated mechanisms regulate DNA binding activity of the G-group of basic region leucine zipper (bZIP) transcription factors in Arabidopsis publication-title: J Biol Chem doi: 10.1074/jbc.M112.361394 – volume: 107 start-page: 10296 year: 2010 ident: 10.1016/j.pbi.2018.05.001_sbref0510 article-title: Arabidopsis thaliana transcription factors bZIP19 and bZIP23 regulate the adaptation to zinc deficiency publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1004788107 – volume: 309 start-page: 1052 year: 2005 ident: 10.1016/j.pbi.2018.05.001_sbref0625 article-title: FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex publication-title: Science doi: 10.1126/science.1115983 – volume: 20 start-page: 3596 year: 2001 ident: 10.1016/j.pbi.2018.05.001_bib0355 article-title: VIP1, an Arabidopsis protein that interacts with Agrobacterium VirE2, is involved in VirE2 nuclear import and Agrobacterium infectivity publication-title: EMBO J doi: 10.1093/emboj/20.13.3596 – volume: 282 start-page: 12989 year: 2007 ident: 10.1016/j.pbi.2018.05.001_bib0290 article-title: Structural basis for the conformational integrity of the Arabidopsis thaliana HY5 leucine zipper homodimer publication-title: J Biol Chem doi: 10.1074/jbc.M611465200 – volume: 59 start-page: 215 year: 2018 ident: 10.1016/j.pbi.2018.05.001_bib0620 article-title: Toward a molecular understanding of abscisic acid actions in floral transition publication-title: Plant Cell Physiol doi: 10.1093/pcp/pcy007 – volume: 6 start-page: 1 year: 2015 ident: 10.1016/j.pbi.2018.05.001_bib0075 article-title: How salicylic acid takes transcriptional control over jasmonic acid signaling publication-title: Front Plant Sci doi: 10.3389/fpls.2015.00170 – volume: 9 start-page: e103930 year: 2014 ident: 10.1016/j.pbi.2018.05.001_bib0400 article-title: Analysis of functions of VIP1 and its close homologs in osmosensory responses of Arabidopsis thaliana publication-title: PLoS ONE doi: 10.1371/journal.pone.0103930 – volume: 165 start-page: 1280 year: 2016 ident: 10.1016/j.pbi.2018.05.001_sbref0405 article-title: Cistrome and epicistrome features shape the regulatory DNA landscape publication-title: Cell doi: 10.1016/j.cell.2016.04.038 – volume: 26 start-page: 151 year: 2013 ident: 10.1016/j.pbi.2018.05.001_bib0040 article-title: From pioneers to team players: TGA transcription factors provide a molecular link publication-title: Mol Plant Microbe Interact doi: 10.1094/MPMI-04-12-0078-IA – volume: 30 start-page: 495 year: 2018 ident: 10.1016/j.pbi.2018.05.001_sbref0185 article-title: Snf1-related kinase1-controlled C/S1-bZIP signaling activates alternative mitochondrial metabolic pathways to ensure plant survival under low energy stress provoked by extended darkness publication-title: Plant Cell doi: 10.1105/tpc.17.00414 – volume: 12 start-page: 599 year: 2000 ident: 10.1016/j.pbi.2018.05.001_bib0600 article-title: The Arabidopsis abscisic acid response gene ABI5 encodes a basic leucine zipper transcription factor publication-title: Plant Cell doi: 10.1105/tpc.12.4.599 – volume: 163 start-page: 331 year: 2013 ident: 10.1016/j.pbi.2018.05.001_bib0265 article-title: Dynamics of the shade-avoidance response in Arabidopsis publication-title: Plant Physiol doi: 10.1104/pp.113.221549 – volume: 335 start-page: 85 year: 2012 ident: 10.1016/j.pbi.2018.05.001_sbref0550 article-title: Molecular mimicry regulates ABA signaling by SnRK2 kinases and PP2C phosphatases publication-title: Science doi: 10.1126/science.1215106 – volume: 50 start-page: 128 year: 2007 ident: 10.1016/j.pbi.2018.05.001_bib0080 article-title: SA-inducible Arabidopsis glutaredoxin interacts with TGA factors and suppresses JA-responsive PDF1.2 transcription publication-title: Plant J doi: 10.1111/j.1365-313X.2007.03039.x – volume: 7 start-page: 3806 year: 2017 ident: 10.1016/j.pbi.2018.05.001_bib0520 article-title: Phylogenetic analysis of F-bZIP transcription factors indicates conservation of the zinc deficiency response across land plants publication-title: Sci Rep doi: 10.1038/s41598-017-03903-6 – volume: 30 start-page: 1 year: 2017 ident: 10.1016/j.pbi.2018.05.001_bib0420 article-title: Characterization of pollen-expressed bZIP protein interactions and the role of ATbZIP18 in the male gametophyte publication-title: Plant Reprod doi: 10.1007/s00497-016-0295-5 – volume: 588 start-page: 3830 year: 2014 ident: 10.1016/j.pbi.2018.05.001_bib0605 article-title: Arabidopsis STAYGREEN-LIKE (SGRL) promotes abiotic stress-induced leaf yellowing during vegetative growth publication-title: FEBS Lett doi: 10.1016/j.febslet.2014.09.018 – volume: 70 start-page: 581 year: 2009 ident: 10.1016/j.pbi.2018.05.001_bib0435 article-title: AtbZIP34 is required for Arabidopsis pollen wall patterning and the control of several metabolic pathways in developing pollen publication-title: Plant Mol Biol doi: 10.1007/s11103-009-9493-y – volume: 8 start-page: 288 year: 2017 ident: 10.1016/j.pbi.2018.05.001_bib0030 article-title: Genome-wide identification and structural analysis of bZIP transcription factor genes in Brassica napus publication-title: Genes doi: 10.3390/genes8100288 – volume: 25 start-page: 4400 year: 2006 ident: 10.1016/j.pbi.2018.05.001_sbref0225 article-title: bZIP10-LSD1 antagonism modulates basal defense and cell death in Arabidopsis following infection publication-title: EMBO J doi: 10.1038/sj.emboj.7601312 – volume: 7 start-page: 448 year: 2014 ident: 10.1016/j.pbi.2018.05.001_bib0320 article-title: Genome-wide DNA binding of GBF1 is modulated by its heterodimerizing protein partners, HY5 and HYH publication-title: Mol Plant doi: 10.1093/mp/sst143 – volume: 208 start-page: 188 year: 2015 ident: 10.1016/j.pbi.2018.05.001_bib0460 article-title: Membrane-associated transcription factor peptidase, site-2 protease, antagonizes ABA signaling in Arabidopsis publication-title: New Phytol doi: 10.1111/nph.13436 – volume: 10 start-page: e0139884 year: 2015 ident: 10.1016/j.pbi.2018.05.001_bib0295 article-title: The elucidation of the interactome of 16 Arabidopsis bZIP factors reveals three independent functional networks publication-title: PLOS ONE doi: 10.1371/journal.pone.0139884 – volume: 56 start-page: 597 year: 2005 ident: 10.1016/j.pbi.2018.05.001_bib0590 article-title: Characterization of three homologous basic leucine zipper transcription factors (bZIP) of the ABI5 family during Arabidopsis thaliana embryo maturation publication-title: J Exp Bot doi: 10.1093/jxb/eri050 – volume: 20 start-page: 768 year: 2008 ident: 10.1016/j.pbi.2018.05.001_bib0090 article-title: General detoxification and stress responses are mediated by oxidized lipids through TGA transcription factors in Arabidopsis publication-title: Plant Cell doi: 10.1105/tpc.107.054809 – volume: 3 start-page: 2440 year: 2013 ident: 10.1016/j.pbi.2018.05.001_bib0380 article-title: Characterization of VIP1 activity as a transcriptional regulator in vitro and in planta publication-title: Sci Rep doi: 10.1038/srep02440 – volume: 9 start-page: 1272 year: 2016 ident: 10.1016/j.pbi.2018.05.001_bib0610 article-title: ABF2, ABF3 and ABF4 promote ABA-mediated chlorophyll degradation and leaf senescence by transcriptional activation of chlorophyll catabolic genes and senescence-associated genes in Arabidopsis publication-title: Mol Plant doi: 10.1016/j.molp.2016.06.006 – volume: 8 start-page: 622 year: 2014 ident: 10.1016/j.pbi.2018.05.001_sbref0005 article-title: A genome-scale resource for the functional characterization of Arabidopsis transcription factors publication-title: Cell Rep doi: 10.1016/j.celrep.2014.06.033 – volume: 26 start-page: 640 year: 2016 ident: 10.1016/j.pbi.2018.05.001_sbref0305 article-title: Shoot-to-root mobile transcription factor HY5 coordinates plant carbon and nitrogen acquisition publication-title: Curr Biol doi: 10.1016/j.cub.2015.12.066 – volume: 153 start-page: 1321 year: 2010 ident: 10.1016/j.pbi.2018.05.001_sbref0330 article-title: G-box binding factor1 reduces CATALASE2 expression and regulates the onset of leaf senescence in arabidopsis publication-title: Plant Physiol doi: 10.1104/pp.110.157180 – volume: 2 start-page: 1 year: 2011 ident: 10.1016/j.pbi.2018.05.001_bib0140 article-title: The bZIP transcription factor PERIANTHIA: a multifunctional hub for meristem control publication-title: Front Plant Sci doi: 10.3389/fpls.2011.00079 – volume: 252 start-page: 867 year: 2015 ident: 10.1016/j.pbi.2018.05.001_bib0345 article-title: GIP1 protein is a novel cofactor that regulates DNA-binding affinity of redox-regulated members of bZIP transcription factors involved in the early stages of Arabidopsis development publication-title: Protoplasma doi: 10.1007/s00709-014-0726-9 – volume: 62 start-page: 665 year: 2016 ident: 10.1016/j.pbi.2018.05.001_bib0650 article-title: Chromatin scanning by dynamic binding of pioneer factors publication-title: Mol Cell doi: 10.1016/j.molcel.2016.05.024 – volume: 25 start-page: 1459 year: 2012 ident: 10.1016/j.pbi.2018.05.001_bib0115 article-title: Arabidopsis clade I TGA transcription factors regulate plant defenses in an NPR1-independent fashion publication-title: Mol Plant Microbe Interact doi: 10.1094/MPMI-09-11-0256 – volume: 56 start-page: 1043 year: 2015 ident: 10.1016/j.pbi.2018.05.001_bib0545 article-title: Omics approaches toward defining the comprehensive abscisic acid signaling network in plants publication-title: Plant Cell Physiol doi: 10.1093/pcp/pcv060 – volume: 91 start-page: 1038 year: 2017 ident: 10.1016/j.pbi.2018.05.001_bib0110 article-title: The Ca2+/calmodulin2-binding transcription factor TGA3 elevates LCD expression and H2S production to bolster Cr6+ tolerance in Arabidopsis publication-title: Plant J doi: 10.1111/tpj.13627 – volume: 51 start-page: 1821 year: 2010 ident: 10.1016/j.pbi.2018.05.001_bib0555 article-title: Molecular basis of the core regulatory network in ABA responses: sensing, signaling and transport publication-title: Plant Cell Physiol doi: 10.1093/pcp/pcq156 – volume: 4 start-page: 108 year: 2018 ident: 10.1016/j.pbi.2018.05.001_bib0415 article-title: Control of auxin-induced callus formation by bZIP59–LBD complex in Arabidopsis regeneration publication-title: Nat Plants doi: 10.1038/s41477-017-0095-4 – volume: 4 start-page: 98 year: 2018 ident: 10.1016/j.pbi.2018.05.001_bib0240 article-title: UVR8 interacts with WRKY36 to regulate HY5 transcription and hypocotyl elongation in Arabidopsis publication-title: Nat Plants doi: 10.1038/s41477-017-0099-0 – volume: 103 start-page: 1988 year: 2006 ident: 10.1016/j.pbi.2018.05.001_bib0570 article-title: Abscisic acid-dependent multisite phosphorylation regulates the activity of a transcription activator AREB1 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0505667103 – volume: 591 start-page: 1266 year: 2017 ident: 10.1016/j.pbi.2018.05.001_bib0160 article-title: Sucrose sensing through nascent peptide-meditated ribosome stalling at the stop codon of Arabidopsis bZIP11 publication-title: FEBS Lett doi: 10.1002/1873-3468.12634 – volume: 26 start-page: 4200 year: 2014 ident: 10.1016/j.pbi.2018.05.001_bib0300 article-title: UV-B-responsive association of the arabidopsis bZIP transcription factor ELONGATED HYPOCOTYL5 with target genes, including its own promoter publication-title: Plant Cell doi: 10.1105/tpc.114.130716 – volume: 114 start-page: 2084 year: 2017 ident: 10.1016/j.pbi.2018.05.001_bib0505 article-title: HY5, a positive regulator of light signaling, negatively controls the unfolded protein response in Arabidopsis publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1609844114 – volume: 423 start-page: 142 year: 2008 ident: 10.1016/j.pbi.2018.05.001_bib0525 article-title: Differential transcript regulation in Arabidopsis thaliana and the halotolerant Lobularia maritima indicates genes with potential function in plant salt adaptation publication-title: Gene doi: 10.1016/j.gene.2008.07.017 – volume: 30 start-page: 101 year: 2018 ident: 10.1016/j.pbi.2018.05.001_sbref0245 article-title: Far-red light detection in the shoot regulates lateral root development through the HY5 transcription factor publication-title: Plant Cell doi: 10.1105/tpc.17.00771 – volume: 46 start-page: 890 year: 2006 ident: 10.1016/j.pbi.2018.05.001_bib0150 article-title: Two-hybrid protein–protein interaction analysis in Arabidopsis protoplasts: establishment of a heterodimerization map of group C and group S bZIP transcription factors publication-title: Plant J doi: 10.1111/j.1365-313X.2006.02731.x – volume: 106 start-page: 18414 year: 2009 ident: 10.1016/j.pbi.2018.05.001_bib0375 article-title: VIP1 response elements mediate mitogen-activated protein kinase 3-induced stress gene expression publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0905599106 – volume: 111 start-page: 10371 year: 2014 ident: 10.1016/j.pbi.2018.05.001_sbref0205 article-title: Hit-and-run transcriptional control by bZIP1 mediates rapid nutrient signaling in Arabidopsis publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1404657111 – volume: 31 start-page: 1735 year: 2008 ident: 10.1016/j.pbi.2018.05.001_bib0470 article-title: Stress-induced expression of an activated form of AtbZIP17 provides protection from salt stress in Arabidopsis publication-title: Plant Cell Environ doi: 10.1111/j.1365-3040.2008.01873.x – volume: 59 start-page: 458 year: 2018 ident: 10.1016/j.pbi.2018.05.001_bib0630 article-title: TFL1-like proteins in rice antagonize rice FT-like protein in inflorescence development by competition for complex formation with 14-3-3 and FD publication-title: Plant Cell Physiol doi: 10.1093/pcp/pcy021 – volume: 80 start-page: 1 year: 2014 ident: 10.1016/j.pbi.2018.05.001_bib0130 article-title: Systems approach identifies TGA1 and TGA4 transcription factors as important regulatory components of the nitrate response of Arabidopsis thaliana roots publication-title: Plant J doi: 10.1111/tpj.12618 – volume: 6 start-page: 30444 year: 2016 ident: 10.1016/j.pbi.2018.05.001_bib0165 article-title: The phylogeny of C/S1 bZIP transcription factors reveals a shared algal ancestry and the pre-angiosperm translational regulation of S1 transcripts publication-title: Sci Rep doi: 10.1038/srep30444 – volume: 2 start-page: 1898 year: 2006 ident: 10.1016/j.pbi.2018.05.001_bib0250 article-title: Opposite root growth phenotypes of hy5 versus hy5 hyh mutants correlate with increased constitutive auxin signaling publication-title: PLoS Genet doi: 10.1371/journal.pgen.0020202 – volume: 67 start-page: 5825 year: 2016 ident: 10.1016/j.pbi.2018.05.001_bib0410 article-title: Functional characterization of the Arabidopsis transcription factor bZIP29 reveals its role in leaf and root development publication-title: J Exp Bot doi: 10.1093/jxb/erw347 – start-page: 5 year: 2010 ident: 10.1016/j.pbi.2018.05.001_bib0540 article-title: The arabidopsis ABA-activated kinase OST1 phosphorylates the bZIP transcription factor ABF3 and creates a 14-3-3 binding site involved in its turnover publication-title: PLoS ONE – volume: 436 start-page: 45 year: 2009 ident: 10.1016/j.pbi.2018.05.001_bib0530 article-title: The Arabidopsis basic leucine zipper transcription factor AtbZIP24 regulates complex transcriptional networks involved in abiotic stress resistance publication-title: Gene doi: 10.1016/j.gene.2009.02.010 – volume: 65 start-page: 346 year: 2011 ident: 10.1016/j.pbi.2018.05.001_bib0280 article-title: Genome-wide mapping of the HY5-mediated gene networks in Arabidopsis that involve both transcriptional and post-transcriptional regulation publication-title: Plant J doi: 10.1111/j.1365-313X.2010.04426.x – volume: 32 start-page: 3435 year: 2004 ident: 10.1016/j.pbi.2018.05.001_bib0645 article-title: Dimerization specificity of all 67 B-ZIP motifs in Arabidopsis thaliana: a comparison to Homo sapiens B-ZIP motifs publication-title: Nucleic Acids Res doi: 10.1093/nar/gkh653 – volume: 21 start-page: 1747 year: 2009 ident: 10.1016/j.pbi.2018.05.001_bib0215 article-title: A pivotal role of the basic leucine zipper transcription factor bZIP53 in the regulation of Arabidopsis seed maturation gene expression based on heterodimerization and protein complex formation publication-title: Plant Cell doi: 10.1105/tpc.108.062968 – volume: 83 start-page: 439 year: 2015 ident: 10.1016/j.pbi.2018.05.001_bib0325 article-title: Interaction of MYC2 and GBF1 results in functional antagonism in blue light-mediated Arabidopsis seedling development publication-title: Plant J doi: 10.1111/tpj.12899 – volume: 175 start-page: 628 year: 2017 ident: 10.1016/j.pbi.2018.05.001_bib0640 article-title: The G-box transcriptional regulatory code in Arabidopsis publication-title: Plant Physiol doi: 10.1104/pp.17.01086 – volume: 20 start-page: 3107 year: 2008 ident: 10.1016/j.pbi.2018.05.001_bib0475 article-title: Arabidopsis bZIP60 is a proteolysis-activated transcription factor involved in the endoplasmic reticulum stress response publication-title: Plant Cell doi: 10.1105/tpc.108.061002 – volume: 102 start-page: 5280 year: 2005 ident: 10.1016/j.pbi.2018.05.001_bib0480 article-title: An Arabidopsis transcription factor, AtbZIP60, regulates the endoplasmic reticulum stress response in a manner unique to plants publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0408941102 – volume: 340 start-page: 568 year: 1989 ident: 10.1016/j.pbi.2018.05.001_bib0010 article-title: Leucine zippers of fos, jun and GCN4 dictate dimerization specificity and thereby control DNA binding publication-title: Nature doi: 10.1038/340568a0 – volume: 11 start-page: 1 year: 2016 ident: 10.1016/j.pbi.2018.05.001_bib0390 article-title: VIP1 is very important/interesting protein 1 regulating touch responses of Arabidopsis publication-title: Plant Signal Behav doi: 10.1080/15592324.2016.1187358 – volume: 448 start-page: 938 year: 2007 ident: 10.1016/j.pbi.2018.05.001_sbref0175 article-title: A central integrator of transcription networks in plant stress and energy signalling publication-title: Nature doi: 10.1038/nature06069 – volume: 108 start-page: 7247 year: 2011 ident: 10.1016/j.pbi.2018.05.001_sbref0485 article-title: Heat induces the splicing by IRE1 of a mRNA encoding a transcription factor involved in the unfolded protein response in Arabidopsis publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1102117108 – volume: 287 start-page: 25995 year: 2012 ident: 10.1016/j.pbi.2018.05.001_bib0315 article-title: Molecular interactions of GBF1 with HY5 and HYH proteins during light-mediated seedling development in Arabidopsis thaliana publication-title: J Biol Chem doi: 10.1074/jbc.M111.333906 – volume: 3 start-page: e2944 year: 2008 ident: 10.1016/j.pbi.2018.05.001_bib0025 article-title: The role of bZIP transcription factors in green plant evolution: adaptive features emerging from four founder genes publication-title: PLoS ONE doi: 10.1371/journal.pone.0002944 – volume: 12 start-page: e1005707 year: 2016 ident: 10.1016/j.pbi.2018.05.001_bib0050 article-title: Posttranslational modifications of NPR1: a single protein playing multiple roles in plant immunity and physiology publication-title: PLOS Pathog doi: 10.1371/journal.ppat.1005707 – volume: 3 start-page: 361 year: 2010 ident: 10.1016/j.pbi.2018.05.001_bib0200 article-title: The Arabidopsis bZIP1 transcription factor is involved in sugar signaling, protein networking, and DNA binding publication-title: Mol Plant doi: 10.1093/mp/ssp115 – volume: 91 start-page: 802 year: 2017 ident: 10.1016/j.pbi.2018.05.001_bib0335 article-title: GBF1 differentially regulates CAT2 and PAD4 transcription to promote pathogen defense in Arabidopsis thaliana publication-title: Plant J doi: 10.1111/tpj.13608 – volume: 64 start-page: 477 year: 2013 ident: 10.1016/j.pbi.2018.05.001_bib0445 article-title: Endoplasmic reticulum stress responses in plants publication-title: Annu Rev Plant Biol doi: 10.1146/annurev-arplant-050312-120053 – volume: 64 start-page: 839 year: 2013 ident: 10.1016/j.pbi.2018.05.001_bib0045 article-title: Systemic acquired resistance: turning local infection into global defense publication-title: Annu Rev Plant Biol doi: 10.1146/annurev-arplant-042811-105606 – start-page: 7 year: 2016 ident: 10.1016/j.pbi.2018.05.001_bib0585 article-title: The role and regulation of ABI5 (ABA-insensitive 5) in plant development, abiotic stress responses and phytohormone crosstalk publication-title: Front Plant Sci – volume: 159 start-page: 144 year: 2012 ident: 10.1016/j.pbi.2018.05.001_bib0395 article-title: A bZIP protein, VIP1, is a regulator of osmosensory signaling in Arabidopsis publication-title: Plant Physiol doi: 10.1104/pp.112.197020 – volume: 61 start-page: 651 year: 2010 ident: 10.1016/j.pbi.2018.05.001_bib0565 article-title: Abscisic acid: emergence of a core signaling network publication-title: Annu Rev Plant Biol doi: 10.1146/annurev-arplant-042809-112122 – volume: 9 start-page: 113 year: 2016 ident: 10.1016/j.pbi.2018.05.001_bib0255 article-title: BZR1 interacts with HY5 to mediate brassinosteroid- and light-regulated cotyledon opening in arabidopsis in darkness publication-title: Mol Plant doi: 10.1016/j.molp.2015.08.014 – volume: 23 start-page: 422 year: 2018 ident: 10.1016/j.pbi.2018.05.001_bib0155 article-title: The C/S1-bZIP-network: a regulatory hub orchestrating plant energy homeostasis publication-title: Trends Plant Sci doi: 10.1016/j.tplants.2018.02.003 – volume: 19 start-page: 4111 year: 2007 ident: 10.1016/j.pbi.2018.05.001_bib0450 article-title: An endoplasmic reticulum stress response in arabidopsis is mediated by proteolytic processing and nuclear relocation of a membrane-associated transcription factor, bZIP28 publication-title: Plant Cell doi: 10.1105/tpc.106.050021 – volume: 6 start-page: 1758 year: 2013 ident: 10.1016/j.pbi.2018.05.001_bib0310 article-title: Z-box binding transcription factors (ZBFs): a new class of transcription factors in Arabidopsis seedling development publication-title: Mol Plant doi: 10.1093/mp/sst140 – volume: 165 start-page: 1671 year: 2014 ident: 10.1016/j.pbi.2018.05.001_bib0070 article-title: TGA transcription factors activate the salicylic acid-suppressible branch of the ethylene-induced defense program by regulating ORA59 expression publication-title: Plant Physiol doi: 10.1104/pp.114.243360 |
SSID | ssj0005273 |
Score | 2.6769648 |
SecondaryResourceType | review_article |
Snippet | •bZIPs are evolutionarily conserved eukaryotic transcription factors.•The Arabidopsis bZIP family consists of 78 members classified into 13 groups.•bZIPs... The basic (region) leucine zippers (bZIPs) are evolutionarily conserved transcription factors in eukaryotic organisms. Here, we have updated the classification... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 36 |
SubjectTerms | Arabidopsis thaliana plant development stress response transcription factors |
Title | The Arabidopsis bZIP transcription factor family—an update |
URI | https://dx.doi.org/10.1016/j.pbi.2018.05.001 https://www.ncbi.nlm.nih.gov/pubmed/29860175 https://www.proquest.com/docview/2049932879 https://www.proquest.com/docview/2189531845 |
Volume | 45 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5EPXgR39YXETwJsXnsbrLgRYul9VGKWhAvYTebhYikwbYHL-KP8Bf6S5zJoyhoD0IgJJkNy8xmZr7M7AwhRzQ2kgvl2lwHgU2NYXaojLSVdCQNNFd-0abzpsc7A3r5wB7mSKveC4NplZXuL3V6oa2rO82Km808TZt3rs8FQ_sCixQMF-4opzTAVX7y9j3No4gyI7GN1HVks8jxylWK2V1hUbyz6gvzi236y_csbFB7hSxXzqN1Vs5vlcwl2RpZPB-Cg_e6Tk5B5PBMqlQP81E6stRjt2-N0RjVqsEq2-tY5W-Nz_cPmVmTHEH_Bhm0L-5bHbtqjmDHgGnGNgulpj4ervakozl1fKGxWkziBcwEMTOuMSLWTGvDPRkLx1CmJY2VcCmAlE0ynw2zZJtYCjCXUvAmHfqUASWgPo8DkNKub0KeNIhTsyWKq8rh2MDiOapTxJ4i4GSEnIwchmlyDXI8HZKXZTNmEdOa19EP2Ueg1mcNO6zlEsE3gYEOmSXDyQiIAMf5gAXFDBo3FKB_QsoaZKsU6nSmnggBpwZs538T2yVLeFWm_O2R-fHLJNkH12WsDoq1eUAWzlq31308d686vS_7AO30 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LSyQxEC7EFfQirro66moLehHa6UeS7sB68MmML4RVEC8x6XSgl6WncWZYvIg_wn-y_8hfYqUforA7B0HoU6fSFJVKPZKvqwA2SGIk48p3mY4ilxhD3VgZ6SrpSRJppsKyTefZOetckeNrej0Gf5t_YSyssrb9lU0vrXX9pl1Ls11kWfunHzJOrX9BJUXHFdXIypP0_g_mbf2d7gEu8mYQHB1e7nfcurWAm2BGMHBpLDUJ7ePrQHqaES_k2tZaSYOImiihxjeGJ5pqbVggE-4ZQrUkieI-iWyrCLT7XwiaC9s2YfvhLa6kvNa23LmWveYqtQSVFSqzcLK4rBZaN6L5hzP8X7BbOr2jGZiuo1VntxLIVxhL81mY2OthRHk_Bz9Qx3BMqkz3in7Wd9RN98IZWO_X2CKn6ufjVOcoz49PMneGhT1lmIerTxHZNxjPe3m6CI7CJE8p_JKOQ0KREtPMgGHmpv3QxCxtgdeIRSR1qXLbMeO3aDBpvwRKUlhJCo9aXF4Ltl6nFFWdjlHEpJG1eKdsAv3IqGnrzboI3IT2ZkXmaW_YRyJMHENMPvkIGj_maPBiQluwUC3qK6cBjzExjujSxxhbg8nO5dmpOO2enyzDlB2p8IYrMD64G6bfMW4aqNVSTx24_eyN8QLKxSia |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Arabidopsis+bZIP+transcription+factor+family%E2%80%94an+update&rft.jtitle=Current+opinion+in+plant+biology&rft.au=Dr%C3%B6ge-Laser%2C+Wolfgang&rft.au=Snoek%2C+Basten+L&rft.au=Snel%2C+Berend&rft.au=Weiste%2C+Christoph&rft.date=2018-10-01&rft.pub=Elsevier+Ltd&rft.issn=1369-5266&rft.eissn=1879-0356&rft.volume=45&rft.spage=36&rft.epage=49&rft_id=info:doi/10.1016%2Fj.pbi.2018.05.001&rft.externalDocID=S1369526617302157 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1369-5266&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1369-5266&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1369-5266&client=summon |