Speed of Rapid Serial Visual Presentation of Pictures, Numbers and Words Affects Event-Related Potential-Based Detection Accuracy
Rapid serial visual presentation (RSVP) based brain-computer interfaces (BCIs) can detect target images among a continuous stream of rapidly presented images, by classifying a viewer's event related potentials (ERPs) associated with the target and non-targets images. Whilst the majority of RSVP...
Saved in:
Published in | IEEE transactions on neural systems and rehabilitation engineering Vol. 28; no. 1; pp. 113 - 122 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.01.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) IEEE Institute of Electrical and Electronics Engineers |
Subjects | |
Online Access | Get full text |
ISSN | 1534-4320 1558-0210 1558-0210 |
DOI | 10.1109/TNSRE.2019.2953975 |
Cover
Loading…
Abstract | Rapid serial visual presentation (RSVP) based brain-computer interfaces (BCIs) can detect target images among a continuous stream of rapidly presented images, by classifying a viewer's event related potentials (ERPs) associated with the target and non-targets images. Whilst the majority of RSVP-BCI studies to date have concentrated on the identification of a single type of image, namely pictures, here we study the capability of RSVP-BCI to detect three different target image types: pictures, numbers and words. The impact of presentation duration (speed) i.e., 100-200ms (5-10Hz), 200-300ms (3.3-5Hz) or 300-400ms (2.5-3.3Hz), is also investigated. 2-way repeated measure ANOVA on accuracies of detecting targets from non-target stimuli (ratio 1:9) measured via area under the receiver operator characteristics curve (AUC) for {N}={15} subjects revealed a significant effect of factor Stimulus-Type (pictures, numbers, words) (F (2,28) = 7.243, {p} = {0.003} ) and for Stimulus-Duration (F (2,28) = 5.591, p = 0.011). Furthermore, there is an interaction between stimulus type and duration: F (4,56) = 4.419, {p} = {0.004} ). The results indicate that when designing RSVP-BCI paradigms, the content of the images and the rate at which images are presented impact on the accuracy of detection and hence these parameters are key experimental variables in protocol design and applications, which apply RSVP for multimodal image datasets. |
---|---|
AbstractList | Rapid serial visual presentation (RSVP) based brain-computer interfaces (BCIs) can detect target images among a continuous stream of rapidly presented images, by classifying a viewer's event related potentials (ERPs) associated with the target and non-targets images. Whilst the majority of RSVP-BCI studies to date have concentrated on the identification of a single type of image, namely pictures, here we study the capability of RSVP-BCI to detect three different target image types: pictures, numbers and words. The impact of presentation duration (speed) i.e., 100-200ms (5-10Hz), 200-300ms (3.3-5Hz) or 300-400ms (2.5-3.3Hz), is also investigated. 2-way repeated measure ANOVA on accuracies of detecting targets from non-target stimuli (ratio 1:9) measured via area under the receiver operator characteristics curve (AUC) for {N}={15} subjects revealed a significant effect of factor Stimulus-Type (pictures, numbers, words) (F (2,28) = 7.243, {p} = {0.003} ) and for Stimulus-Duration (F (2,28) = 5.591, p = 0.011). Furthermore, there is an interaction between stimulus type and duration: F (4,56) = 4.419, {p} = {0.004} ). The results indicate that when designing RSVP-BCI paradigms, the content of the images and the rate at which images are presented impact on the accuracy of detection and hence these parameters are key experimental variables in protocol design and applications, which apply RSVP for multimodal image datasets. Rapid serial visual presentation (RSVP) based brain-computer interfaces (BCIs) can detect target images among a continuous stream of rapidly presented images, by classifying a viewer’s event related potentials (ERPs) associated with the target and non-targets images. Whilst the majority of RSVP-BCI studies to date have concentrated on the identification of a single type of image, namely pictures , here we study the capability of RSVP-BCI to detect three different target image types: pictures, numbers and words . The impact of presentation duration (speed) i.e., 100–200ms (5–10Hz), 200–300ms (3.3–5Hz) or 300–400ms (2.5–3.3Hz), is also investigated. 2-way repeated measure ANOVA on accuracies of detecting targets from non-target stimuli (ratio 1:9) measured via area under the receiver operator characteristics curve (AUC) for [Formula Omitted] subjects revealed a significant effect of factor Stimulus-Type ( pictures, numbers, words ) (F (2,28) = 7.243, [Formula Omitted]) and for Stimulus-Duration (F (2,28) = 5.591, p = 0.011). Furthermore, there is an interaction between stimulus type and duration: F (4,56) = 4.419, [Formula Omitted]). The results indicate that when designing RSVP-BCI paradigms, the content of the images and the rate at which images are presented impact on the accuracy of detection and hence these parameters are key experimental variables in protocol design and applications, which apply RSVP for multimodal image datasets. Rapid serial visual presentation (RSVP) based brain-computer interfaces (BCIs) can detect target images among a continuous stream of rapidly presented images, by classifying a viewer's event related potentials (ERPs) associated with the target and non-targets images. Whilst the majority of RSVP-BCI studies to date have concentrated on the identification of a single type of image, namely pictures, here we study the capability of RSVP-BCI to detect three different target image types: pictures, numbers and words. The impact of presentation duration (speed) i.e., 100-200ms (5-10Hz), 200-300ms (3.3-5Hz) or 300-400ms (2.5-3.3Hz), is also investigated. 2-way repeated measure ANOVA on accuracies of detecting targets from non-target stimuli (ratio 1:9) measured via area under the receiver operator characteristics curve (AUC) for N=15 subjects revealed a significant effect of factor Stimulus-Type (pictures, numbers, words) (F (2,28) = 7.243, p = 0.003 ) and for Stimulus-Duration (F (2,28) = 5.591, p = 0.011). Furthermore, there is an interaction between stimulus type and duration: F (4,56) = 4.419, p = 0.004 ). The results indicate that when designing RSVP-BCI paradigms, the content of the images and the rate at which images are presented impact on the accuracy of detection and hence these parameters are key experimental variables in protocol design and applications, which apply RSVP for multimodal image datasets.Rapid serial visual presentation (RSVP) based brain-computer interfaces (BCIs) can detect target images among a continuous stream of rapidly presented images, by classifying a viewer's event related potentials (ERPs) associated with the target and non-targets images. Whilst the majority of RSVP-BCI studies to date have concentrated on the identification of a single type of image, namely pictures, here we study the capability of RSVP-BCI to detect three different target image types: pictures, numbers and words. The impact of presentation duration (speed) i.e., 100-200ms (5-10Hz), 200-300ms (3.3-5Hz) or 300-400ms (2.5-3.3Hz), is also investigated. 2-way repeated measure ANOVA on accuracies of detecting targets from non-target stimuli (ratio 1:9) measured via area under the receiver operator characteristics curve (AUC) for N=15 subjects revealed a significant effect of factor Stimulus-Type (pictures, numbers, words) (F (2,28) = 7.243, p = 0.003 ) and for Stimulus-Duration (F (2,28) = 5.591, p = 0.011). Furthermore, there is an interaction between stimulus type and duration: F (4,56) = 4.419, p = 0.004 ). The results indicate that when designing RSVP-BCI paradigms, the content of the images and the rate at which images are presented impact on the accuracy of detection and hence these parameters are key experimental variables in protocol design and applications, which apply RSVP for multimodal image datasets. |
Author | Payne, Phillippa Coyle, Damien Maguire, Liam Lees, Stephanie Lotte, Fabien McCullagh, Paul |
Author_xml | – sequence: 1 givenname: Stephanie orcidid: 0000-0003-1036-5639 surname: Lees fullname: Lees, Stephanie email: Lees-s2@email.ulster.ac.uk organization: Intelligent Systems Research Centre, Faculty of Computing, Engineering and the Built Environment, Ulster University, Londonderry, U.K – sequence: 2 givenname: Paul orcidid: 0000-0002-9060-6262 surname: McCullagh fullname: McCullagh, Paul organization: Intelligent Systems Research Centre, Faculty of Computing, Engineering and the Built Environment, Ulster University, Londonderry, U.K – sequence: 3 givenname: Phillippa surname: Payne fullname: Payne, Phillippa organization: Cranfield University, Bedford, U.K – sequence: 4 givenname: Liam surname: Maguire fullname: Maguire, Liam organization: Intelligent Systems Research Centre, Faculty of Computing, Engineering and the Built Environment, Ulster University, Londonderry, U.K – sequence: 5 givenname: Fabien orcidid: 0000-0002-6888-9198 surname: Lotte fullname: Lotte, Fabien organization: Inria Bordeaux Sud-Quest/LaBRI (CNRS/Bordeaux INP/Universite de Bordeaux), Talence, France – sequence: 6 givenname: Damien orcidid: 0000-0002-4739-1040 surname: Coyle fullname: Coyle, Damien organization: Intelligent Systems Research Centre, Faculty of Computing, Engineering and the Built Environment, Ulster University, Londonderry, U.K |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31751279$$D View this record in MEDLINE/PubMed https://inria.hal.science/hal-02375401$$DView record in HAL |
BookMark | eNp9kUtv1DAUhS1URB_wB0BCkdiARAY_4rG9HNqBIo3KaKbA0nKcG-EqEw-2U6nL_nMcMu2iCxbW9b3-zrHsc4qOet8DQq8JnhGC1afrq-1mOaOYqBlVnCnBn6ETwrksMSX4aNyzqqwYxcfoNMYbjImYc_ECHTMiOKFCnaD77R6gKXxbbMzeNcUWgjNd8dPFIZd1gAh9Msn5fmTWzqYhzz4WV8OuhhAL0zfFLx-aWCzaFmyKxfI2K8oNdCZl47VPuc2W5WcTc38BKVOj3cLaIRh79xI9b00X4dWhnqEfX5bX55fl6vvXb-eLVWkrxVNZWcBzSysBArBRtZWyrUFxQ0AyO4e6ysdABa5wzdtWqpYYQ1XdWFubRkh2hj5Mvr9Np_fB7Uy40944fblY6XGGKRO8wuSWZPb9xO6D_zNATHrnooWuMz34IWo6fqBkcj7avnuC3vgh9PklmWKK5SVZpt4eqKHeQfN4_0MQGZATYIOPMUCrrZv-PQXjOk2wHjPX_zLXY-b6kHmW0ifSB_f_it5MIgcAjwKpMKuEYH8BBzG3rQ |
CODEN | ITNSB3 |
CitedBy_id | crossref_primary_10_1088_1741_2552_ad5d17 crossref_primary_10_1109_TCE_2024_3368569 crossref_primary_10_3389_fnins_2020_579469 crossref_primary_10_3389_fpsyg_2022_894366 crossref_primary_10_3390_s22239505 crossref_primary_10_3389_fnins_2020_568000 crossref_primary_10_26599_TST_2023_9010029 crossref_primary_10_1038_s41598_023_30748_z crossref_primary_10_11834_jig_230031 crossref_primary_10_3390_s24113315 crossref_primary_10_1109_TBME_2024_3439820 crossref_primary_10_1016_j_compbiomed_2021_104685 crossref_primary_10_1109_JIOT_2023_3273163 crossref_primary_10_1109_RBME_2024_3449790 crossref_primary_10_1109_TNSRE_2023_3263502 crossref_primary_10_34133_cbsystems_0121 crossref_primary_10_1088_1741_2552_ad658e |
Cites_doi | 10.1016/j.neuroimage.2008.03.031 10.1007/978-1-4471-5085-5 10.3758/s13414-013-0605-z 10.1109/IWW-BCI.2017.7858152 10.1109/EMBC.2012.6346281 10.1016/S0926-6410(03)00092-2 10.1088/1741-2560/13/2/026019 10.1145/1631272.1631463 10.1109/TNSRE.2008.2003381 10.1098/rstb.2009.0019 10.1109/CEEC.2014.6958567 10.3389/fpsyg.2011.00042 10.1155/2017/2049094 10.1126/science.7444452 10.3758/BF03194084 10.7150/ijms.2.147 10.1088/1741-2560/9/2/026018 10.1016/j.clinph.2005.12.008 10.1109/JSTSP.2014.2313022 10.1016/j.biopsycho.2009.09.003 10.1109/NER.2013.6695878 10.1016/S0166-4115(08)62386-9 10.3758/BF03196680 10.1088/1741-2560/4/2/R01 10.3758/BF03211867 10.1016/j.clinph.2007.04.019 10.1037/0096-1523.18.3.849 10.21236/ADA565057 10.1109/JPROC.2009.2038406 10.1037/0096-1523.21.1.109 10.1109/TNNLS.2014.2302898 10.1016/S1364-6613(00)01545-X 10.1016/j.bspc.2010.08.001 10.1088/1741-2552/aa9817 10.1109/CNE.2003.1196297 10.1016/S0166-2236(00)01657-X 10.1109/IEMBS.2011.6091575 10.1093/acprof:oso/9780195388855.001.0001 10.1007/s12021-012-9171-0 10.1016/j.neuroimage.2005.06.026 10.3758/s13414-016-1096-5 10.3758/BF03210208 10.1037/0096-1523.30.3.478 10.1364/JOSAA.12.002286 10.1016/0013-4694(88)90192-7 10.1016/j.neucom.2010.12.025 10.1145/1358628.1358849 10.1109/CNE.2007.369712 10.1523/JNEUROSCI.4558-12.2013 10.3389/fnins.2015.00270 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | 97E RIA RIE AAYXX CITATION NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 1XC VOOES |
DOI | 10.1109/TNSRE.2019.2953975 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef PubMed Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Neurosciences Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | PubMed Materials Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Occupational Therapy & Rehabilitation Computer Science |
EISSN | 1558-0210 |
EndPage | 122 |
ExternalDocumentID | oai_HAL_hal_02375401v1 31751279 10_1109_TNSRE_2019_2953975 8903477 |
Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: U.K. Government through the Anglo-French Ph.D. Programme |
GroupedDBID | --- -~X 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAFWJ AAJGR AASAJ AAWTH ABAZT ABVLG ACGFO ACGFS ACIWK ACPRK AENEX AETIX AFPKN AFRAH AGSQL AIBXA ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD ESBDL F5P GROUPED_DOAJ HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL OK1 P2P RIA RIE RNS AAYXX CITATION RIG NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 1XC VOOES |
ID | FETCH-LOGICAL-c495t-4ce06c247e7e0a9bc88fbe95a1e83c6eb406ce27040b5ff89f1aa29bdccbad783 |
IEDL.DBID | RIE |
ISSN | 1534-4320 1558-0210 |
IngestDate | Thu Sep 04 07:24:14 EDT 2025 Fri Jul 11 11:52:17 EDT 2025 Thu Jul 10 08:19:02 EDT 2025 Wed Feb 19 02:31:11 EST 2025 Thu Apr 24 23:12:01 EDT 2025 Tue Jul 01 00:43:20 EDT 2025 Wed Aug 27 02:51:13 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | BCI Electroencephalography Event Related Potentials Brain- Computer Interface Rapid Serial Visual Presentation EEG |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c495t-4ce06c247e7e0a9bc88fbe95a1e83c6eb406ce27040b5ff89f1aa29bdccbad783 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-9060-6262 0000-0002-6888-9198 0000-0003-1036-5639 0000-0002-4739-1040 |
OpenAccessLink | https://inria.hal.science/hal-02375401 |
PMID | 31751279 |
PQID | 2339333983 |
PQPubID | 85423 |
PageCount | 10 |
ParticipantIDs | hal_primary_oai_HAL_hal_02375401v1 proquest_journals_2339333983 proquest_miscellaneous_2317583868 ieee_primary_8903477 crossref_citationtrail_10_1109_TNSRE_2019_2953975 pubmed_primary_31751279 crossref_primary_10_1109_TNSRE_2019_2953975 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-01-01 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – month: 01 year: 2020 text: 2020-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on neural systems and rehabilitation engineering |
PublicationTitleAbbrev | TNSRE |
PublicationTitleAlternate | IEEE Trans Neural Syst Rehabil Eng |
PublicationYear | 2020 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) IEEE Institute of Electrical and Electronics Engineers |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) – name: IEEE Institute of Electrical and Electronics Engineers |
References | ref13 ref56 ref12 ref15 ref14 ref53 ref52 ref55 ref11 ref54 ref10 ref17 ref16 ref19 ref18 ref51 ref45 ref48 ref47 ref42 ref41 ref44 ref43 swezller (ref46) 1994; 4 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref33 ref2 ref1 ref39 ref38 öquist (ref32) 2001 hart (ref49) 1988; 52 mühl (ref50) 2014; 8 ref24 ref23 houcque (ref26) 2005 ref20 hutton (ref25) 2000 ref22 ref21 ref28 ref29 (ref27) 2018 geoffrey (ref30) 2010; 72 |
References_xml | – ident: ref20 doi: 10.1016/j.neuroimage.2008.03.031 – ident: ref3 doi: 10.1007/978-1-4471-5085-5 – ident: ref37 doi: 10.3758/s13414-013-0605-z – ident: ref24 doi: 10.1109/IWW-BCI.2017.7858152 – ident: ref7 doi: 10.1109/EMBC.2012.6346281 – ident: ref39 doi: 10.1016/S0926-6410(03)00092-2 – ident: ref48 doi: 10.1088/1741-2560/13/2/026019 – ident: ref28 doi: 10.1145/1631272.1631463 – ident: ref5 doi: 10.1109/TNSRE.2008.2003381 – ident: ref29 doi: 10.1098/rstb.2009.0019 – ident: ref15 doi: 10.1109/CEEC.2014.6958567 – ident: ref42 doi: 10.3389/fpsyg.2011.00042 – ident: ref54 doi: 10.1155/2017/2049094 – ident: ref40 doi: 10.1126/science.7444452 – ident: ref6 doi: 10.3758/BF03194084 – ident: ref53 doi: 10.7150/ijms.2.147 – ident: ref11 doi: 10.1088/1741-2560/9/2/026018 – ident: ref47 doi: 10.1016/j.clinph.2005.12.008 – ident: ref16 doi: 10.1109/JSTSP.2014.2313022 – volume: 4 start-page: 295 year: 1994 ident: ref46 article-title: Cognitive load theory, learning difficulty, and instructional design – ident: ref13 doi: 10.1016/j.biopsycho.2009.09.003 – ident: ref43 doi: 10.1109/NER.2013.6695878 – volume: 52 start-page: 139 year: 1988 ident: ref49 article-title: Development of NASA-TLX (Task Load Index): Results of empirical and theoretical research publication-title: Advances in Psychology doi: 10.1016/S0166-4115(08)62386-9 – volume: 72 start-page: 2031 year: 2010 ident: ref30 article-title: A brief introduction to the use of event-related potentials in studies of perception and attention publication-title: Atten Percept Psychophys doi: 10.3758/BF03196680 – ident: ref31 doi: 10.1088/1741-2560/4/2/R01 – ident: ref45 doi: 10.3758/BF03211867 – ident: ref55 doi: 10.1016/j.clinph.2007.04.019 – ident: ref38 doi: 10.1037/0096-1523.18.3.849 – year: 2001 ident: ref32 publication-title: Adaptive rapid serial visual presentation – year: 2005 ident: ref26 publication-title: Introduction to Matlab for Engineering Students – ident: ref56 doi: 10.21236/ADA565057 – ident: ref19 doi: 10.1109/JPROC.2009.2038406 – ident: ref33 doi: 10.1037/0096-1523.21.1.109 – ident: ref8 doi: 10.1109/TNNLS.2014.2302898 – ident: ref41 doi: 10.1016/S1364-6613(00)01545-X – start-page: 1 year: 2000 ident: ref25 article-title: Cogent 2000 v125 user manual-14/04/03 publication-title: Interface – ident: ref12 doi: 10.1016/j.bspc.2010.08.001 – ident: ref17 doi: 10.1088/1741-2552/aa9817 – ident: ref14 doi: 10.1109/CNE.2003.1196297 – ident: ref35 doi: 10.1016/S0166-2236(00)01657-X – ident: ref23 doi: 10.1109/IEMBS.2011.6091575 – ident: ref1 doi: 10.1093/acprof:oso/9780195388855.001.0001 – ident: ref4 doi: 10.1007/s12021-012-9171-0 – ident: ref18 doi: 10.1016/j.neuroimage.2005.06.026 – ident: ref36 doi: 10.3758/s13414-016-1096-5 – ident: ref34 doi: 10.3758/BF03210208 – ident: ref51 doi: 10.1037/0096-1523.30.3.478 – ident: ref44 doi: 10.1364/JOSAA.12.002286 – year: 2018 ident: ref27 publication-title: Morguefile – ident: ref10 doi: 10.1016/0013-4694(88)90192-7 – ident: ref9 doi: 10.1016/j.neucom.2010.12.025 – ident: ref2 doi: 10.1145/1358628.1358849 – ident: ref21 doi: 10.1109/CNE.2007.369712 – ident: ref52 doi: 10.1523/JNEUROSCI.4558-12.2013 – ident: ref22 doi: 10.3389/fnins.2015.00270 – volume: 8 start-page: 1 year: 2014 ident: ref50 article-title: EEG-based workload estimation across affective contexts publication-title: Frontiers Neurosci |
SSID | ssj0017657 |
Score | 2.4052064 |
Snippet | Rapid serial visual presentation (RSVP) based brain-computer interfaces (BCIs) can detect target images among a continuous stream of rapidly presented images,... |
SourceID | hal proquest pubmed crossref ieee |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 113 |
SubjectTerms | Accuracy Artificial Intelligence BCI Biotechnology brain-computer interface Cognitive science Computer Science EEG Electrodes Electroencephalography Emerging Technologies Event-related potentials Feature extraction Human-Computer Interaction Human-computer interface Image classification Image detection Interfaces Machine Learning Operators (mathematics) Pictures Rapid serial visual presentation Target detection Target recognition Testing Training Variance analysis Visualization |
Title | Speed of Rapid Serial Visual Presentation of Pictures, Numbers and Words Affects Event-Related Potential-Based Detection Accuracy |
URI | https://ieeexplore.ieee.org/document/8903477 https://www.ncbi.nlm.nih.gov/pubmed/31751279 https://www.proquest.com/docview/2339333983 https://www.proquest.com/docview/2317583868 https://inria.hal.science/hal-02375401 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELa6PXHhVR6BggwCLjRbx3YS-7jAVisEq9V2C71Fjj0RK6pk1SRIcOOfYzsPCgLEIUqUTJyHP3vGns8zCD0jYM0GauIQWExCDiYJlYlNyGQsNSNSEeVZvstkccbfnsfne-hoXAsDAJ58BlN36H35ptKtmyo7FpIwnqYTNLEDt26t1ugxSBMf1dM2YB5yRsmwQIbI483ydD13LC45pTK2Ctilq3F6M6KOwXVFH00-OTakT7Pyd4vTa56TG-j98M4d4eTztG3yqf72WzjH__2om-h6b4LiWYeZW2gPytvo-dVww3jTxRrAL_D6l0jeB-j76c7qO1wVeK12W4O72TX8YVu3drf6uZipdDKrrfdQ1Ed46TOP1FiVBn-0A94azzomCZ47xmXoSXm24FXVOP6SughfWf1q8BtoPFmsxDP7gpdKf72Dzk7mm9eLsE_jEGo7-mpCroEkmvIUUiBK5lqIIgcZqwgE0wnk1qbQQFPbneRxUQhZREpRmRutc2VSwe6i_bIq4T7CJCqARJorKnIegZTAKONGS8Gl0DIPUDRUZqb7P-NSbVxkfqxDZOaxkDksZD0WAvRyvGfXRfj4p_RTi5FR0AXnXszeZe6ctX5Sa_9GX6IAHbh6HqX6Kg7Q4QCprO8p6owyJpndBAvQk_GybePOcaNKqFonY8EqmEhEgO51UBzLHnD84M_PfIiuUTdD4CeNDtF-c9nCI2tGNflj335-AHHtF24 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbacoALr_IIFDAIuNBsHdtJ7OMCWy2wXa2229Jb5NgTsaLKrroJEtz459jOg4IAcYgSJRPn4c-esefzDELPCVizgZo4BBaTkINJQmViEzIZS82IVER5lu80GZ_w92fx2Rba79fCAIAnn8HAHXpfvlnp2k2VHQhJGE_TbXTF6n0um9Vavc8gTXxcT9uEecgZJd0SGSIPFtPj-cjxuOSAytiqYJewxmnOiDoO1yWNtP3J8SF9opW_25xe9xzeQEfdWzeUk8-DusoH-ttvAR3_97NuouutEYqHDWpuoS0ob6MXlwMO40UTbQC_xPNfYnnvou_Ha6vx8KrAc7VeGtzMr-HT5aa2u9nP5Uylk5ktvY9is4-nPvfIBqvS4I92yLvBw4ZLgkeOcxl6Wp4teLaqHINJnYevrYY1-C1Uni5W4qF9wQulv95BJ4ejxZtx2CZyCLUdf1Uh10ASTXkKKRAlcy1EkYOMVQSC6QRya1VooKntUPK4KIQsIqWozI3WuTKpYHfRTrkq4T7CJCqARJorKnIegZTAKONGS8Gl0DIPUNRVZqbbP-OSbZxnfrRDZOaxkDksZC0WAvSqv2fdxPj4p_Qzi5Fe0IXnHg8nmTtn7Z_UWsDRlyhAu66ee6m2igO010Eqa_uKTUYZk8xuggXoaX_ZtnLnulElrGonY8EqmEhEgO41UOzL7nD84M_PfIKujhdHk2zybvrhIbpG3XyBn0LaQzvVRQ2PrFFV5Y99W_oBOJ4avg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Speed+of+Rapid+Serial+Visual+Presentation+of+Pictures%2C+Numbers+and+Words+Affects+Event-Related+Potential-Based+Detection+Accuracy&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Lees%2C+Stephanie&rft.au=McCullagh%2C+Paul&rft.au=Payne%2C+Phillippa&rft.au=Maguire%2C+Liam&rft.date=2020-01-01&rft.pub=IEEE&rft.issn=1534-4320&rft.volume=28&rft.issue=1&rft.spage=113&rft.epage=122&rft_id=info:doi/10.1109%2FTNSRE.2019.2953975&rft_id=info%3Apmid%2F31751279&rft.externalDocID=8903477 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon |