Machine Learning to Predict Outcomes and Cost by Phase of Care After Coronary Artery Bypass Grafting

Machine learning may enhance prediction of outcomes after coronary artery bypass grafting (CABG). We sought to develop and validate a dynamic machine learning model to predict CABG outcomes at clinically relevant pre- and postoperative time points. The Society of Thoracic Surgeons (STS) registry dat...

Full description

Saved in:
Bibliographic Details
Published inThe Annals of thoracic surgery Vol. 114; no. 3; pp. 711 - 719
Main Authors Zea-Vera, Rodrigo, Ryan, Christopher T., Havelka, Jim, Corr, Stuart J., Nguyen, Tom C., Chatterjee, Subhasis, Wall, Matthew J., Coselli, Joseph S., Rosengart, Todd K., Ghanta, Ravi K.
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier Inc 01.09.2022
Online AccessGet full text

Cover

Loading…
Abstract Machine learning may enhance prediction of outcomes after coronary artery bypass grafting (CABG). We sought to develop and validate a dynamic machine learning model to predict CABG outcomes at clinically relevant pre- and postoperative time points. The Society of Thoracic Surgeons (STS) registry data elements from 2086 isolated CABG patients were divided into training and testing datasets and input into Extreme Gradient Boosting decision-tree machine learning algorithms. Two prediction models were developed based on data from preoperative (80 parameters) and postoperative (125 parameters) phases of care. Outcomes included operative mortality, major morbidity or mortality, high cost, and 30-day readmission. Machine learning and STS model performance were assessed using accuracy and the area under the precision-recall curve (AUC-PR). Preoperative machine learning models predicted mortality (accuracy, 98%; AUC-PR = 0.16; F1 = 0.24), major morbidity or mortality (accuracy, 75%; AUC-PR = 0.33; F1 = 0.42), high cost (accuracy, 83%; AUC-PR = 0.51; F1 = 0.52), and 30-day readmission (accuracy, 70%; AUC-PR = 0.47; F1 = 0.49) with high accuracy. Preoperative machine learning models performed similarly to the STS for prediction of mortality (STS AUC-PR = 0.11; P = .409) and outperformed STS for prediction of mortality or major morbidity (STS AUC-PR = 0.28; P < .001). Addition of intraoperative parameters further improved machine learning model performance for major morbidity or mortality (AUC-PR = 0.39; P < .01) and high cost (AUC-PR = 0.64; P < .01), with cross-clamp and bypass times emerging as important additive predictive parameters. Machine learning can predict mortality, major morbidity, high cost, and readmission after isolated CABG. Prediction based on the phase of care allows for dynamic risk assessment through the hospital course, which may benefit quality assessment and clinical decision-making. [Display omitted]
AbstractList Machine learning may enhance prediction of outcomes after coronary artery bypass grafting (CABG). We sought to develop and validate a dynamic machine learning model to predict CABG outcomes at clinically relevant pre- and postoperative time points. The Society of Thoracic Surgeons (STS) registry data elements from 2086 isolated CABG patients were divided into training and testing datasets and input into Extreme Gradient Boosting decision-tree machine learning algorithms. Two prediction models were developed based on data from preoperative (80 parameters) and postoperative (125 parameters) phases of care. Outcomes included operative mortality, major morbidity or mortality, high cost, and 30-day readmission. Machine learning and STS model performance were assessed using accuracy and the area under the precision-recall curve (AUC-PR). Preoperative machine learning models predicted mortality (accuracy, 98%; AUC-PR = 0.16; F1 = 0.24), major morbidity or mortality (accuracy, 75%; AUC-PR = 0.33; F1 = 0.42), high cost (accuracy, 83%; AUC-PR = 0.51; F1 = 0.52), and 30-day readmission (accuracy, 70%; AUC-PR = 0.47; F1 = 0.49) with high accuracy. Preoperative machine learning models performed similarly to the STS for prediction of mortality (STS AUC-PR = 0.11; P = .409) and outperformed STS for prediction of mortality or major morbidity (STS AUC-PR = 0.28; P < .001). Addition of intraoperative parameters further improved machine learning model performance for major morbidity or mortality (AUC-PR = 0.39; P < .01) and high cost (AUC-PR = 0.64; P < .01), with cross-clamp and bypass times emerging as important additive predictive parameters. Machine learning can predict mortality, major morbidity, high cost, and readmission after isolated CABG. Prediction based on the phase of care allows for dynamic risk assessment through the hospital course, which may benefit quality assessment and clinical decision-making. [Display omitted]
BACKGROUNDMachine learning may enhance prediction of outcomes after coronary artery bypass grafting (CABG). We sought to develop and validate a dynamic machine learning model to predict CABG outcomes at clinically relevant pre- and postoperative time points. METHODSThe Society of Thoracic Surgeons (STS) registry data elements from 2086 isolated CABG patients were divided into training and testing datasets and input into Extreme Gradient Boosting decision-tree machine learning algorithms. Two prediction models were developed based on data from preoperative (80 parameters) and postoperative (125 parameters) phases of care. Outcomes included operative mortality, major morbidity or mortality, high cost, and 30-day readmission. Machine learning and STS model performance were assessed using accuracy and the area under the precision-recall curve (AUC-PR). RESULTSPreoperative machine learning models predicted mortality (accuracy, 98%; AUC-PR = 0.16; F1 = 0.24), major morbidity or mortality (accuracy, 75%; AUC-PR = 0.33; F1 = 0.42), high cost (accuracy, 83%; AUC-PR = 0.51; F1 = 0.52), and 30-day readmission (accuracy, 70%; AUC-PR = 0.47; F1 = 0.49) with high accuracy. Preoperative machine learning models performed similarly to the STS for prediction of mortality (STS AUC-PR = 0.11; P = .409) and outperformed STS for prediction of mortality or major morbidity (STS AUC-PR = 0.28; P < .001). Addition of intraoperative parameters further improved machine learning model performance for major morbidity or mortality (AUC-PR = 0.39; P < .01) and high cost (AUC-PR = 0.64; P < .01), with cross-clamp and bypass times emerging as important additive predictive parameters. CONCLUSIONSMachine learning can predict mortality, major morbidity, high cost, and readmission after isolated CABG. Prediction based on the phase of care allows for dynamic risk assessment through the hospital course, which may benefit quality assessment and clinical decision-making.
Machine learning may enhance prediction of outcomes after coronary artery bypass grafting (CABG). We sought to develop and validate a dynamic machine learning model to predict CABG outcomes at clinically relevant pre- and postoperative time points. The Society of Thoracic Surgeons (STS) registry data elements from 2086 isolated CABG patients were divided into training and testing datasets and input into Extreme Gradient Boosting decision-tree machine learning algorithms. Two prediction models were developed based on data from preoperative (80 parameters) and postoperative (125 parameters) phases of care. Outcomes included operative mortality, major morbidity or mortality, high cost, and 30-day readmission. Machine learning and STS model performance were assessed using accuracy and the area under the precision-recall curve (AUC-PR). Preoperative machine learning models predicted mortality (accuracy, 98%; AUC-PR = 0.16; F1 = 0.24), major morbidity or mortality (accuracy, 75%; AUC-PR = 0.33; F1 = 0.42), high cost (accuracy, 83%; AUC-PR = 0.51; F1 = 0.52), and 30-day readmission (accuracy, 70%; AUC-PR = 0.47; F1 = 0.49) with high accuracy. Preoperative machine learning models performed similarly to the STS for prediction of mortality (STS AUC-PR = 0.11; P = .409) and outperformed STS for prediction of mortality or major morbidity (STS AUC-PR = 0.28; P < .001). Addition of intraoperative parameters further improved machine learning model performance for major morbidity or mortality (AUC-PR = 0.39; P < .01) and high cost (AUC-PR = 0.64; P < .01), with cross-clamp and bypass times emerging as important additive predictive parameters. Machine learning can predict mortality, major morbidity, high cost, and readmission after isolated CABG. Prediction based on the phase of care allows for dynamic risk assessment through the hospital course, which may benefit quality assessment and clinical decision-making.
Author Rosengart, Todd K.
Ryan, Christopher T.
Chatterjee, Subhasis
Ghanta, Ravi K.
Havelka, Jim
Coselli, Joseph S.
Nguyen, Tom C.
Wall, Matthew J.
Corr, Stuart J.
Zea-Vera, Rodrigo
AuthorAffiliation 4 Division of Adult Cardiothoracic Surgery, University of California San Francisco, San Francisco, California
1 Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas
5 Department of Cardiovascular Surgery, Texas Heart Institute, Houston, Texas
2 InformAI, Houston, Texas
3 DeBakey Heart and Vascular Center, Houston Methodist Hospital, Houston, Texas
AuthorAffiliation_xml – name: 4 Division of Adult Cardiothoracic Surgery, University of California San Francisco, San Francisco, California
– name: 2 InformAI, Houston, Texas
– name: 1 Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas
– name: 5 Department of Cardiovascular Surgery, Texas Heart Institute, Houston, Texas
– name: 3 DeBakey Heart and Vascular Center, Houston Methodist Hospital, Houston, Texas
Author_xml – sequence: 1
  givenname: Rodrigo
  orcidid: 0000-0002-8549-0656
  surname: Zea-Vera
  fullname: Zea-Vera, Rodrigo
  organization: Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas
– sequence: 2
  givenname: Christopher T.
  surname: Ryan
  fullname: Ryan, Christopher T.
  organization: Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas
– sequence: 3
  givenname: Jim
  surname: Havelka
  fullname: Havelka, Jim
  organization: InformAI, Houston, Texas
– sequence: 4
  givenname: Stuart J.
  surname: Corr
  fullname: Corr, Stuart J.
  organization: DeBakey Heart and Vascular Center, Houston Methodist Hospital, Houston, Texas
– sequence: 5
  givenname: Tom C.
  surname: Nguyen
  fullname: Nguyen, Tom C.
  organization: Division of Adult Cardiothoracic Surgery, University of California at San Francisco, San Francisco, California
– sequence: 6
  givenname: Subhasis
  surname: Chatterjee
  fullname: Chatterjee, Subhasis
  organization: Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas
– sequence: 7
  givenname: Matthew J.
  surname: Wall
  fullname: Wall, Matthew J.
  organization: Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas
– sequence: 8
  givenname: Joseph S.
  surname: Coselli
  fullname: Coselli, Joseph S.
  organization: Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas
– sequence: 9
  givenname: Todd K.
  surname: Rosengart
  fullname: Rosengart, Todd K.
  organization: Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas
– sequence: 10
  givenname: Ravi K.
  surname: Ghanta
  fullname: Ghanta, Ravi K.
  email: ravi.ghanta@bcm.edu
  organization: Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34582751$$D View this record in MEDLINE/PubMed
BookMark eNqFkUFPGzEQha2KqgTav4B87GUX22uvdy9IIQKKlAoO7dny2rPEUWKnthcp_x5HoRROPY1G782b0Xxn6MQHDwhhSmpKaHu5rnVehahNmmLNCKM16WrCySc0o0KwqmWiP0EzQkhT8V6KU3SW0rq0rMhf0GnDRcekoDNkf2qzch7wEnT0zj_hHPBjBOtMxg9TNmELCWtv8SKkjIc9flzpBDiMeKEj4PmYIRYtBq_jHs9jaff4er_TKeG7qMdcMr-iz6PeJPj2Ws_R79ubX4sf1fLh7n4xX1aG9yJXnNOWMjtKxhnVfcf7kTUt6wU0VnLOe0qtGExjJAxjBxIkkYJxADu0nA2yOUdXx9zdNGzBGvA56o3aRbctx6mgnfqoeLdST-FZ9ZI0LTkEfH8NiOHPBCmrrUsGNhvtIUxJMSGlbCjjvFi7o9XEkFKE8W0NJeoASa3VP0jqAEmRThVIZfTi_Zlvg3-pFMP10QDlWc8OokrGgTeFSgSTlQ3u_1teABVrqu0
CitedBy_id crossref_primary_10_3390_s23041811
crossref_primary_10_3390_app12052737
crossref_primary_10_1002_clc_23963
crossref_primary_10_1111_bcp_15846
crossref_primary_10_1007_s10157_024_02472_z
crossref_primary_10_1016_j_athoracsur_2022_06_055
crossref_primary_10_1016_j_surg_2024_03_051
crossref_primary_10_3389_fcvm_2022_977747
Cites_doi 10.1097/CRD.0000000000000294
10.21037/jtd-20-2736
10.1016/j.jtcvs.2019.07.017
10.1016/j.athoracsur.2019.09.042
10.1016/j.athoracsur.2016.01.105
10.1093/ehjqcco/qcy027
10.1016/j.athoracsur.2020.04.142
10.1016/j.jtcvs.2020.07.105
10.1016/S2589-7500(20)30018-2
10.1093/ejcts/ezs043
10.1016/j.athoracsur.2019.11.003
10.1016/j.athoracsur.2018.10.077
10.1016/j.jtcvs.2020.08.091
10.1186/2193-1801-2-222
10.1053/j.jvca.2008.08.004
10.1016/S0003-4975(97)00225-7
10.1016/j.athoracsur.2019.09.049
10.1016/j.jtcvs.2020.09.076
10.1016/j.athoracsur.2018.03.003
10.1093/icvts/ivu102
10.1080/09537104.2018.1466389
ContentType Journal Article
Copyright 2022 The Society of Thoracic Surgeons
Copyright © 2021 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2022 The Society of Thoracic Surgeons
– notice: Copyright © 2021 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.
DBID NPM
AAYXX
CITATION
7X8
5PM
DOI 10.1016/j.athoracsur.2021.08.040
DatabaseName PubMed
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
EISSN 1552-6259
EndPage 719
ExternalDocumentID 10_1016_j_athoracsur_2021_08_040
34582751
S0003497521016490
Genre Journal Article
GroupedDBID ---
--K
.1-
.55
.FO
.GJ
0R~
1B1
1P~
1~5
23M
3O-
4.4
457
4G.
53G
5GY
5RE
5VS
6J9
7-5
71M
AAEDT
AAEDW
AAEJM
AAIAV
AALRI
AAQFI
AAQQT
AAQXK
AAXUO
ABJNI
ABLJU
ABMAC
ABOCM
ACGFO
ACGFS
ACIUM
ACRZS
ADBBV
ADMUD
ADPAM
AENEX
AEVXI
AFCTW
AFFNX
AFRHN
AFTJW
AGHFR
AGZHU
AHPSJ
AI.
AITUG
AJJEV
AJUYK
ALMA_UNASSIGNED_HOLDINGS
ALXNB
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
BELOY
C5W
CS3
DIK
E3Z
EBS
EFJIC
EJD
F5P
FDB
FEDTE
FGOYB
GBLVA
GX1
HVGLF
HZ~
IH2
IHE
J1W
J5H
K-O
KOM
L7B
M41
MO0
N9A
NQ-
O9-
OA-
OK1
OL.
OVD
P2P
P6G
PC.
R2-
RIG
ROL
RPZ
SES
SSZ
TEORI
TR2
UDS
UNMZH
UV1
VH1
W8F
X7M
XH2
XPP
Z5R
ZA5
ZGI
ZXP
AKRWK
NPM
AAYXX
ACRPL
ADNMO
CITATION
7X8
5PM
ID FETCH-LOGICAL-c495t-441612df72421a9849f236295e3d7444911d5bc3c7ebf8e7e707524eedb642b73
ISSN 0003-4975
IngestDate Tue Sep 17 21:29:47 EDT 2024
Wed Dec 04 04:50:09 EST 2024
Fri Dec 06 01:13:44 EST 2024
Sat Sep 28 08:22:44 EDT 2024
Fri Feb 23 02:38:57 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License Copyright © 2021 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c495t-441612df72421a9849f236295e3d7444911d5bc3c7ebf8e7e707524eedb642b73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-8549-0656
PMID 34582751
PQID 2577731244
PQPubID 23479
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9703607
proquest_miscellaneous_2577731244
crossref_primary_10_1016_j_athoracsur_2021_08_040
pubmed_primary_34582751
elsevier_sciencedirect_doi_10_1016_j_athoracsur_2021_08_040
PublicationCentury 2000
PublicationDate 2022-09-01
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle The Annals of thoracic surgery
PublicationTitleAlternate Ann Thorac Surg
PublicationYear 2022
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References O’Brien, Feng, He (bib1) 2018; 105
Salgado, Azevedo, Proença, Vieira (bib9) 2016
Nammas, Dalén, Rosato (bib17) 2019; 30
Fernandez (bib6) 2020; 109
Salis, Mazzanti, Merli (bib13) 2008; 22
Ishwaran, Blackstone (bib22) 2022; 163
Blackstone, Swain, McCardle, Adams (bib7) 2019; 158
Kilic, Goyal, Miller (bib5) 2019; 109
Nashef, Roques, Sharples (bib2) 2012; 41
Shah, Zhang, Chatterjee (bib20) 2019; 107
Kilic (bib10) 2020; 109
Lippmann, Shahian (bib12) 1997; 63
Zea-Vera, Zhang, Amin (bib21) 2021; 111
Thorsen-Meyer, Nielsen, Nielsen (bib19) 2020; 2
Benedetto, Dimagli, Sinha (bib4) 2022; 163
Dong, Peng (bib8) 2013; 2
Chalmers, Pullan, Mediratta, Poullis (bib14) 2014; 19
Biancari, Mariscalco, Gherli (bib16) 2018; 4
Ge, Wang, Chen (bib18) 2021; 13
Manyam R, Zhang Y, Carter S, Binongo JN, Rosenblum JM, Keeling WB. Unraveling the impact of time-dependent perioperative variables on 30-day readmission after coronary artery bypass surgery.
Miller (bib11) 2020; 28
Ad, Holmes, Patel, Pritchard, Shuman, Halpin (bib3) 2016; 102
Published online September 29, 2020.
O’Brien (10.1016/j.athoracsur.2021.08.040_bib1) 2018; 105
Nashef (10.1016/j.athoracsur.2021.08.040_bib2) 2012; 41
10.1016/j.athoracsur.2021.08.040_bib15
Lippmann (10.1016/j.athoracsur.2021.08.040_bib12) 1997; 63
Biancari (10.1016/j.athoracsur.2021.08.040_bib16) 2018; 4
Miller (10.1016/j.athoracsur.2021.08.040_bib11) 2020; 28
Chalmers (10.1016/j.athoracsur.2021.08.040_bib14) 2014; 19
Kilic (10.1016/j.athoracsur.2021.08.040_bib10) 2020; 109
Ishwaran (10.1016/j.athoracsur.2021.08.040_bib22) 2022; 163
Fernandez (10.1016/j.athoracsur.2021.08.040_bib6) 2020; 109
Ad (10.1016/j.athoracsur.2021.08.040_bib3) 2016; 102
Nammas (10.1016/j.athoracsur.2021.08.040_bib17) 2019; 30
Salis (10.1016/j.athoracsur.2021.08.040_bib13) 2008; 22
Benedetto (10.1016/j.athoracsur.2021.08.040_bib4) 2022; 163
Zea-Vera (10.1016/j.athoracsur.2021.08.040_bib21) 2021; 111
Blackstone (10.1016/j.athoracsur.2021.08.040_bib7) 2019; 158
Kilic (10.1016/j.athoracsur.2021.08.040_bib5) 2019; 109
Ge (10.1016/j.athoracsur.2021.08.040_bib18) 2021; 13
Thorsen-Meyer (10.1016/j.athoracsur.2021.08.040_bib19) 2020; 2
Salgado (10.1016/j.athoracsur.2021.08.040_bib9) 2016
Shah (10.1016/j.athoracsur.2021.08.040_bib20) 2019; 107
Dong (10.1016/j.athoracsur.2021.08.040_bib8) 2013; 2
References_xml – start-page: 143
  year: 2016
  end-page: 162
  ident: bib9
  article-title: Missing data
  publication-title: MIT Critical Data, ed. Secondary Analysis of Electronic Health Records
  contributor:
    fullname: Vieira
– volume: 28
  start-page: 53
  year: 2020
  end-page: 64
  ident: bib11
  article-title: Machine intelligence in cardiovascular medicine
  publication-title: Cardiol Rev
  contributor:
    fullname: Miller
– volume: 163
  start-page: 2075
  year: 2022
  end-page: 2087.e9
  ident: bib4
  article-title: Machine learning improves mortality risk prediction after cardiac surgery: systematic review and meta-analysis
  publication-title: J Thorac Cardiovasc Surg
  contributor:
    fullname: Sinha
– volume: 102
  start-page: 573
  year: 2016
  end-page: 579
  ident: bib3
  article-title: Comparison of EuroSCORE II, original EuroSCORE, and The Society of Thoracic Surgeons risk score in cardiac surgery patients
  publication-title: Ann Thorac Surg
  contributor:
    fullname: Halpin
– volume: 109
  start-page: 1811
  year: 2019
  end-page: 1819
  ident: bib5
  article-title: Predictive utility of a machine learning algorithm in estimating mortality risk in cardiac surgery
  publication-title: Ann Thorac Surg
  contributor:
    fullname: Miller
– volume: 13
  start-page: 735
  year: 2021
  end-page: 742
  ident: bib18
  article-title: Risk factors for and outcomes of prolonged mechanical ventilation in patients received DeBakey type I aortic dissection repair
  publication-title: J Thorac Dis
  contributor:
    fullname: Chen
– volume: 22
  start-page: 814
  year: 2008
  end-page: 822
  ident: bib13
  article-title: Cardiopulmonary bypass duration is an independent predictor of morbidity and mortality after cardiac surgery
  publication-title: J Cardiothorac Vasc Anesth
  contributor:
    fullname: Merli
– volume: 4
  start-page: 246
  year: 2018
  end-page: 257
  ident: bib16
  article-title: Variation in preoperative antithrombotic strategy, severe bleeding, and use of blood products in coronary artery bypass grafting: results from the multicentre E-CABG registry
  publication-title: Eur Heart J Qual Care Clin Outcomes
  contributor:
    fullname: Gherli
– volume: 19
  start-page: 21
  year: 2014
  end-page: 26
  ident: bib14
  article-title: A need for speed? Bypass time and outcomes after isolated aortic valve replacement surgery
  publication-title: Interact Cardiovasc Thorac Surg
  contributor:
    fullname: Poullis
– volume: 63
  start-page: 1635
  year: 1997
  end-page: 1643
  ident: bib12
  article-title: Coronary artery bypass risk prediction using neural networks
  publication-title: Ann Thorac Surg
  contributor:
    fullname: Shahian
– volume: 105
  start-page: 1419
  year: 2018
  end-page: 1428
  ident: bib1
  article-title: The Society of Thoracic Surgeons 2018 adult cardiac surgery risk models: part 2—statistical methods and results
  publication-title: Ann Thorac Surg
  contributor:
    fullname: He
– volume: 2
  start-page: e179
  year: 2020
  end-page: e191
  ident: bib19
  article-title: Dynamic and explainable machine learning prediction of mortality in patients in the intensive care unit: a retrospective study of high-frequency data in electronic patient records
  publication-title: Lancet Digit Health
  contributor:
    fullname: Nielsen
– volume: 111
  start-page: 488
  year: 2021
  end-page: 494
  ident: bib21
  article-title: Development of a risk score to predict 90-day readmission after coronary artery bypass graft
  publication-title: Ann Thorac Surg
  contributor:
    fullname: Amin
– volume: 41
  start-page: 734
  year: 2012
  end-page: 744
  ident: bib2
  article-title: EuroSCORE II
  publication-title: Eur J Cardiothorac Surg
  contributor:
    fullname: Sharples
– volume: 158
  start-page: 1120
  year: 2019
  end-page: 1126
  ident: bib7
  article-title: Governance Committee, American Association for Thoracic Surgery Quality Assessment Program. A comprehensive AATS quality program for the 21st century
  publication-title: J Thorac Cardiovasc Surg
  contributor:
    fullname: Adams
– volume: 109
  start-page: 1323
  year: 2020
  end-page: 1329
  ident: bib10
  article-title: Artificial intelligence and machine learning in cardiovascular health care
  publication-title: Ann Thorac Surg
  contributor:
    fullname: Kilic
– volume: 163
  start-page: 2088
  year: 2022
  end-page: 2090
  ident: bib22
  article-title: Commentary: dabblers: beware of hidden dangers in machine-learning comparisons
  publication-title: J Thorac Cardiovasc Surg
  contributor:
    fullname: Blackstone
– volume: 107
  start-page: 1782
  year: 2019
  end-page: 1789
  ident: bib20
  article-title: Incidence, cost, and risk factors for readmission after coronary artery bypass grafting
  publication-title: Ann Thorac Surg
  contributor:
    fullname: Chatterjee
– volume: 2
  start-page: 222
  year: 2013
  ident: bib8
  article-title: Principled missing data methods for researchers
  publication-title: SpringerPlus
  contributor:
    fullname: Peng
– volume: 109
  start-page: 10
  year: 2020
  end-page: 13
  ident: bib6
  article-title: The future is now: the 2020 evolution of The Society of Thoracic Surgeons national database
  publication-title: Ann Thorac Surg
  contributor:
    fullname: Fernandez
– volume: 30
  start-page: 480
  year: 2019
  end-page: 486
  ident: bib17
  article-title: Impact of preoperative thrombocytopenia on the outcome after coronary artery bypass grafting
  publication-title: Platelets
  contributor:
    fullname: Rosato
– start-page: 143
  year: 2016
  ident: 10.1016/j.athoracsur.2021.08.040_bib9
  article-title: Missing data
  contributor:
    fullname: Salgado
– volume: 28
  start-page: 53
  year: 2020
  ident: 10.1016/j.athoracsur.2021.08.040_bib11
  article-title: Machine intelligence in cardiovascular medicine
  publication-title: Cardiol Rev
  doi: 10.1097/CRD.0000000000000294
  contributor:
    fullname: Miller
– volume: 13
  start-page: 735
  year: 2021
  ident: 10.1016/j.athoracsur.2021.08.040_bib18
  article-title: Risk factors for and outcomes of prolonged mechanical ventilation in patients received DeBakey type I aortic dissection repair
  publication-title: J Thorac Dis
  doi: 10.21037/jtd-20-2736
  contributor:
    fullname: Ge
– volume: 158
  start-page: 1120
  year: 2019
  ident: 10.1016/j.athoracsur.2021.08.040_bib7
  article-title: Governance Committee, American Association for Thoracic Surgery Quality Assessment Program. A comprehensive AATS quality program for the 21st century
  publication-title: J Thorac Cardiovasc Surg
  doi: 10.1016/j.jtcvs.2019.07.017
  contributor:
    fullname: Blackstone
– volume: 109
  start-page: 1323
  year: 2020
  ident: 10.1016/j.athoracsur.2021.08.040_bib10
  article-title: Artificial intelligence and machine learning in cardiovascular health care
  publication-title: Ann Thorac Surg
  doi: 10.1016/j.athoracsur.2019.09.042
  contributor:
    fullname: Kilic
– volume: 102
  start-page: 573
  year: 2016
  ident: 10.1016/j.athoracsur.2021.08.040_bib3
  article-title: Comparison of EuroSCORE II, original EuroSCORE, and The Society of Thoracic Surgeons risk score in cardiac surgery patients
  publication-title: Ann Thorac Surg
  doi: 10.1016/j.athoracsur.2016.01.105
  contributor:
    fullname: Ad
– volume: 4
  start-page: 246
  year: 2018
  ident: 10.1016/j.athoracsur.2021.08.040_bib16
  article-title: Variation in preoperative antithrombotic strategy, severe bleeding, and use of blood products in coronary artery bypass grafting: results from the multicentre E-CABG registry
  publication-title: Eur Heart J Qual Care Clin Outcomes
  doi: 10.1093/ehjqcco/qcy027
  contributor:
    fullname: Biancari
– volume: 111
  start-page: 488
  year: 2021
  ident: 10.1016/j.athoracsur.2021.08.040_bib21
  article-title: Development of a risk score to predict 90-day readmission after coronary artery bypass graft
  publication-title: Ann Thorac Surg
  doi: 10.1016/j.athoracsur.2020.04.142
  contributor:
    fullname: Zea-Vera
– volume: 163
  start-page: 2075
  year: 2022
  ident: 10.1016/j.athoracsur.2021.08.040_bib4
  article-title: Machine learning improves mortality risk prediction after cardiac surgery: systematic review and meta-analysis
  publication-title: J Thorac Cardiovasc Surg
  doi: 10.1016/j.jtcvs.2020.07.105
  contributor:
    fullname: Benedetto
– volume: 2
  start-page: e179
  year: 2020
  ident: 10.1016/j.athoracsur.2021.08.040_bib19
  article-title: Dynamic and explainable machine learning prediction of mortality in patients in the intensive care unit: a retrospective study of high-frequency data in electronic patient records
  publication-title: Lancet Digit Health
  doi: 10.1016/S2589-7500(20)30018-2
  contributor:
    fullname: Thorsen-Meyer
– volume: 41
  start-page: 734
  year: 2012
  ident: 10.1016/j.athoracsur.2021.08.040_bib2
  article-title: EuroSCORE II
  publication-title: Eur J Cardiothorac Surg
  doi: 10.1093/ejcts/ezs043
  contributor:
    fullname: Nashef
– volume: 109
  start-page: 10
  year: 2020
  ident: 10.1016/j.athoracsur.2021.08.040_bib6
  article-title: The future is now: the 2020 evolution of The Society of Thoracic Surgeons national database
  publication-title: Ann Thorac Surg
  doi: 10.1016/j.athoracsur.2019.11.003
  contributor:
    fullname: Fernandez
– volume: 107
  start-page: 1782
  year: 2019
  ident: 10.1016/j.athoracsur.2021.08.040_bib20
  article-title: Incidence, cost, and risk factors for readmission after coronary artery bypass grafting
  publication-title: Ann Thorac Surg
  doi: 10.1016/j.athoracsur.2018.10.077
  contributor:
    fullname: Shah
– volume: 163
  start-page: 2088
  year: 2022
  ident: 10.1016/j.athoracsur.2021.08.040_bib22
  article-title: Commentary: dabblers: beware of hidden dangers in machine-learning comparisons
  publication-title: J Thorac Cardiovasc Surg
  doi: 10.1016/j.jtcvs.2020.08.091
  contributor:
    fullname: Ishwaran
– volume: 2
  start-page: 222
  year: 2013
  ident: 10.1016/j.athoracsur.2021.08.040_bib8
  article-title: Principled missing data methods for researchers
  publication-title: SpringerPlus
  doi: 10.1186/2193-1801-2-222
  contributor:
    fullname: Dong
– volume: 22
  start-page: 814
  year: 2008
  ident: 10.1016/j.athoracsur.2021.08.040_bib13
  article-title: Cardiopulmonary bypass duration is an independent predictor of morbidity and mortality after cardiac surgery
  publication-title: J Cardiothorac Vasc Anesth
  doi: 10.1053/j.jvca.2008.08.004
  contributor:
    fullname: Salis
– volume: 63
  start-page: 1635
  year: 1997
  ident: 10.1016/j.athoracsur.2021.08.040_bib12
  article-title: Coronary artery bypass risk prediction using neural networks
  publication-title: Ann Thorac Surg
  doi: 10.1016/S0003-4975(97)00225-7
  contributor:
    fullname: Lippmann
– volume: 109
  start-page: 1811
  year: 2019
  ident: 10.1016/j.athoracsur.2021.08.040_bib5
  article-title: Predictive utility of a machine learning algorithm in estimating mortality risk in cardiac surgery
  publication-title: Ann Thorac Surg
  doi: 10.1016/j.athoracsur.2019.09.049
  contributor:
    fullname: Kilic
– ident: 10.1016/j.athoracsur.2021.08.040_bib15
  doi: 10.1016/j.jtcvs.2020.09.076
– volume: 105
  start-page: 1419
  year: 2018
  ident: 10.1016/j.athoracsur.2021.08.040_bib1
  article-title: The Society of Thoracic Surgeons 2018 adult cardiac surgery risk models: part 2—statistical methods and results
  publication-title: Ann Thorac Surg
  doi: 10.1016/j.athoracsur.2018.03.003
  contributor:
    fullname: O’Brien
– volume: 19
  start-page: 21
  year: 2014
  ident: 10.1016/j.athoracsur.2021.08.040_bib14
  article-title: A need for speed? Bypass time and outcomes after isolated aortic valve replacement surgery
  publication-title: Interact Cardiovasc Thorac Surg
  doi: 10.1093/icvts/ivu102
  contributor:
    fullname: Chalmers
– volume: 30
  start-page: 480
  year: 2019
  ident: 10.1016/j.athoracsur.2021.08.040_bib17
  article-title: Impact of preoperative thrombocytopenia on the outcome after coronary artery bypass grafting
  publication-title: Platelets
  doi: 10.1080/09537104.2018.1466389
  contributor:
    fullname: Nammas
SSID ssj0002155
Score 2.511889
Snippet Machine learning may enhance prediction of outcomes after coronary artery bypass grafting (CABG). We sought to develop and validate a dynamic machine learning...
BACKGROUNDMachine learning may enhance prediction of outcomes after coronary artery bypass grafting (CABG). We sought to develop and validate a dynamic machine...
SourceID pubmedcentral
proquest
crossref
pubmed
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 711
Title Machine Learning to Predict Outcomes and Cost by Phase of Care After Coronary Artery Bypass Grafting
URI https://dx.doi.org/10.1016/j.athoracsur.2021.08.040
https://www.ncbi.nlm.nih.gov/pubmed/34582751
https://search.proquest.com/docview/2577731244
https://pubmed.ncbi.nlm.nih.gov/PMC9703607
Volume 114
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELZK98ILGuJXGSAj8RalahNnTsRTqYBp02BCndhbFMc2bYFkal2k8tfwp3IXx0lbihh7idq0deLc1_N39t1nQl4JHQjOhPCBzIc-k1z5AsZFX0vJdSx1Fg2xGvn8w_HJJTu9iq46nV8bWUsrI_r5z711JbexKpwDu2KV7H9YtmkUTsBrsC8cwcJwvJGNz6tMSOVEUr8gkbxY4NKL8T6uDFxSWQnmcbk0SDQvppmdu8eyI29U7Q8-Rg0DzJ0bYXbn2nuzvgZC7b1fZNq4cW3eYqpVXDZTgE8-y73lRmk1zkGrDKcJLSstJYT_ZbOss86KHUkDb9JvveAP9e2rTd6dfW9WR8qF3RvMYP6pd9rfnKiAGNdlYrXON8QN7aIt52tLSGuUhRuulNdOWNXvkr0O3849zOG5V32GDkPMH1hZVqsDta2xvTP2NRmJLtltnrYtpdhSirt0ssEdcoBSi6xLDkZnnz6fNaM9UKbI7cqInauzxWwO4f67-hsF-jPE2c3U3aA-k0Nyr45Z6MgC8D7pqOIBkTX4qAMfNSWtwUcd-CiAjyL4qFjTCny01BTBRyvwUQc-asFHLfioA99Dcvnu7WR84tdbdvg5RNrGZxgvB1JzzDTIkpglOgCKlEQqlJwxBkOrjEQe5lwJHSuuOFDWgAFRExAICx4-It2iLNQTQgMRDwehymOdMKZlkHEusag1lzo-jnjeI0P3FNNrq8yS_suKPfLaPe60ZpiWOaaApxv8-qWzUApOGFfWskKVq2UK4x7nIVLlHnlsLdbcU4gr0zwa9gjfsmXzBRR43_6kmE0rofcE1fEG_OktenpE7rb_wWekaxYr9RzosxEvagT_Br_0yys
link.rule.ids 230,314,780,784,885,27924,27925
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+Learning+to+Predict+Outcomes+and+Cost+by+Phase+of+Care+After+Coronary+Artery+Bypass+Grafting&rft.jtitle=The+Annals+of+thoracic+surgery&rft.au=Zea-Vera%2C+Rodrigo&rft.au=Ryan%2C+Christopher+T.&rft.au=Havelka%2C+Jim&rft.au=Corr%2C+Stuart+J.&rft.date=2022-09-01&rft.issn=0003-4975&rft.volume=114&rft.issue=3&rft.spage=711&rft.epage=719&rft_id=info:doi/10.1016%2Fj.athoracsur.2021.08.040&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_athoracsur_2021_08_040
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-4975&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-4975&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-4975&client=summon