Van der Waals force-induced intralayer ferroelectric-to-antiferroelectric transition via interlayer sliding in bilayer group-IV monochalcogenides

Two-dimensional materials with ferroelectric properties break the size effect of conventional ferroelectric materials and unlock unprecedented potentials of ferroelectric-related application at small length scales. Using first-principles calculations, a sliding-induced ferroelectric-to-antiferroelec...

Full description

Saved in:
Bibliographic Details
Published innpj computational materials Vol. 8; no. 1; pp. 1 - 9
Main Authors Xu, Bo, Deng, Junkai, Ding, Xiangdong, Sun, Jun, Liu, Jefferson Zhe
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 22.03.2022
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2057-3960
2057-3960
DOI10.1038/s41524-022-00724-8

Cover

Loading…
Abstract Two-dimensional materials with ferroelectric properties break the size effect of conventional ferroelectric materials and unlock unprecedented potentials of ferroelectric-related application at small length scales. Using first-principles calculations, a sliding-induced ferroelectric-to-antiferroelectric behavior in bilayer group-IV monochalcogenides ( MX , with M = Ge, Sn and X = S, Se) is discovered. Upon this mechanism, the top layer exhibits a reversible intralayer ferroelectric switching, leading to a reversible transition between the ferroelectric and antiferroelectric states in the bilayer MX s. Further results show that the interlayer van der Waals interaction, which is usually considered to be weak, can actually generate an in-plane lattice distortion and thus cause the breaking/forming of intralayer covalent bonds in the top layer, leading to the observed anomalous phenomenon. This unique property has advantages for energy harvesting over existing piezoelectric and triboelectric nanogenerators. The interlayer sliding-induced big polarization change (40  μ C cm −2 ) and ultrahigh polarization changing rate generate an open-circuit voltage two orders of magnitude higher than that of MoS 2 -based nanogenerators. The theoretical prediction of power output for this bilayer MX s at a moderate sliding speed 1 m s −1 is four orders of magnitude higher than the MoS 2 nanogenerator, indicating great potentials in energy harvesting applications.
AbstractList Two-dimensional materials with ferroelectric properties break the size effect of conventional ferroelectric materials and unlock unprecedented potentials of ferroelectric-related application at small length scales. Using first-principles calculations, a sliding-induced ferroelectric-to-antiferroelectric behavior in bilayer group-IV monochalcogenides ( MX , with M = Ge, Sn and X = S, Se) is discovered. Upon this mechanism, the top layer exhibits a reversible intralayer ferroelectric switching, leading to a reversible transition between the ferroelectric and antiferroelectric states in the bilayer MX s. Further results show that the interlayer van der Waals interaction, which is usually considered to be weak, can actually generate an in-plane lattice distortion and thus cause the breaking/forming of intralayer covalent bonds in the top layer, leading to the observed anomalous phenomenon. This unique property has advantages for energy harvesting over existing piezoelectric and triboelectric nanogenerators. The interlayer sliding-induced big polarization change (40  μ C cm −2 ) and ultrahigh polarization changing rate generate an open-circuit voltage two orders of magnitude higher than that of MoS 2 -based nanogenerators. The theoretical prediction of power output for this bilayer MX s at a moderate sliding speed 1 m s −1 is four orders of magnitude higher than the MoS 2 nanogenerator, indicating great potentials in energy harvesting applications.
Two-dimensional materials with ferroelectric properties break the size effect of conventional ferroelectric materials and unlock unprecedented potentials of ferroelectric-related application at small length scales. Using first-principles calculations, a sliding-induced ferroelectric-to-antiferroelectric behavior in bilayer group-IV monochalcogenides (MX, with M = Ge, Sn and X = S, Se) is discovered. Upon this mechanism, the top layer exhibits a reversible intralayer ferroelectric switching, leading to a reversible transition between the ferroelectric and antiferroelectric states in the bilayer MXs. Further results show that the interlayer van der Waals interaction, which is usually considered to be weak, can actually generate an in-plane lattice distortion and thus cause the breaking/forming of intralayer covalent bonds in the top layer, leading to the observed anomalous phenomenon. This unique property has advantages for energy harvesting over existing piezoelectric and triboelectric nanogenerators. The interlayer sliding-induced big polarization change (40 μC cm−2) and ultrahigh polarization changing rate generate an open-circuit voltage two orders of magnitude higher than that of MoS2-based nanogenerators. The theoretical prediction of power output for this bilayer MXs at a moderate sliding speed 1 m s−1 is four orders of magnitude higher than the MoS2 nanogenerator, indicating great potentials in energy harvesting applications.
Abstract Two-dimensional materials with ferroelectric properties break the size effect of conventional ferroelectric materials and unlock unprecedented potentials of ferroelectric-related application at small length scales. Using first-principles calculations, a sliding-induced ferroelectric-to-antiferroelectric behavior in bilayer group-IV monochalcogenides (MX, with M = Ge, Sn and X = S, Se) is discovered. Upon this mechanism, the top layer exhibits a reversible intralayer ferroelectric switching, leading to a reversible transition between the ferroelectric and antiferroelectric states in the bilayer MXs. Further results show that the interlayer van der Waals interaction, which is usually considered to be weak, can actually generate an in-plane lattice distortion and thus cause the breaking/forming of intralayer covalent bonds in the top layer, leading to the observed anomalous phenomenon. This unique property has advantages for energy harvesting over existing piezoelectric and triboelectric nanogenerators. The interlayer sliding-induced big polarization change (40 μC cm−2) and ultrahigh polarization changing rate generate an open-circuit voltage two orders of magnitude higher than that of MoS2-based nanogenerators. The theoretical prediction of power output for this bilayer MXs at a moderate sliding speed 1 m s−1 is four orders of magnitude higher than the MoS2 nanogenerator, indicating great potentials in energy harvesting applications.
ArticleNumber 47
Author Sun, Jun
Xu, Bo
Deng, Junkai
Liu, Jefferson Zhe
Ding, Xiangdong
Author_xml – sequence: 1
  givenname: Bo
  surname: Xu
  fullname: Xu, Bo
  organization: State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University
– sequence: 2
  givenname: Junkai
  orcidid: 0000-0001-6288-4241
  surname: Deng
  fullname: Deng, Junkai
  email: junkai.deng@mail.xjtu.edu.cn
  organization: State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University
– sequence: 3
  givenname: Xiangdong
  orcidid: 0000-0002-1220-3097
  surname: Ding
  fullname: Ding, Xiangdong
  organization: State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University
– sequence: 4
  givenname: Jun
  surname: Sun
  fullname: Sun, Jun
  organization: State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University
– sequence: 5
  givenname: Jefferson Zhe
  orcidid: 0000-0002-5282-7945
  surname: Liu
  fullname: Liu, Jefferson Zhe
  email: zhe.liu@unimelb.edu.au
  organization: Department of Mechanical Engineering, The University of Melbourne
BookMark eNp9kctuFDEQRS2USAlJfiCrllgb_Kh-eIkiICNFYgNhadXY1Y1HHXuwe5DyGfwxnjSIxyIrl67vKV3VfclOYorE2LUUr6XQw5sCslXAhVJciL5Owwt2rkTbc206cfLXfMauStkJIaRRgwJxzn7cY2w85eYL4lyaMWVHPER_cOSbEJeMMz7W75FyTjSTW3JwfEkc4xL-EZvqjSUsIcXme8AjTHmFyxx8iFOVmm1YpSmnw55v7puHFJP7irNLE8XgqVyy07FGoatf7wX7_P7dp5tbfvfxw-bm7R13YNqF654G6XtPGgQYNKCNADDK96pXcjRtaySOgGMHCjRuBxg9Dq1wKLBSQl-wzbrXJ9zZfQ4PmB9twmCfhJQni3kJbiYLmgh74zyhAugIt9rAAMq32I4gu7rr1bprn9O3A5XF7tIhxxrfqg5kr3uhdXUNq8vlVEqm0bqw4PFg9XRhtlLYY5927dPWPu1Tn3aoqPoP_R34WUivUKnmOFH-k-oZ6iezH7dO
CitedBy_id crossref_primary_10_1039_D5CP00375J
crossref_primary_10_1007_s40843_022_2221_y
crossref_primary_10_1038_s41467_022_33917_2
crossref_primary_10_1038_s41467_023_44617_w
crossref_primary_10_1038_s41467_025_57138_5
crossref_primary_10_1038_s41524_024_01288_5
crossref_primary_10_1002_smll_202406129
crossref_primary_10_1016_j_apsusc_2024_161785
crossref_primary_10_1088_2053_1583_acab74
crossref_primary_10_1103_PhysRevB_109_195429
crossref_primary_10_1016_j_apsusc_2022_153739
crossref_primary_10_1093_mam_ozae044_782
crossref_primary_10_1016_j_mser_2024_100873
crossref_primary_10_1002_adfm_202410240
crossref_primary_10_1016_j_mser_2025_100971
crossref_primary_10_1103_PhysRevB_105_195406
crossref_primary_10_1002_adfm_202304139
crossref_primary_10_1002_adma_202301172
crossref_primary_10_1016_j_surfin_2024_104330
crossref_primary_10_1002_wcms_1682
crossref_primary_10_1016_j_matt_2022_05_021
crossref_primary_10_1021_jacs_4c11558
crossref_primary_10_1038_s41467_022_35490_0
crossref_primary_10_1038_s41467_024_49907_5
crossref_primary_10_1103_PhysRevB_111_104110
crossref_primary_10_1016_j_molstruc_2023_136967
crossref_primary_10_1021_acs_jpclett_3c00376
crossref_primary_10_1063_5_0242551
crossref_primary_10_1016_j_mser_2025_100927
crossref_primary_10_1039_D4NR04020A
crossref_primary_10_1007_s11249_024_01850_8
crossref_primary_10_1016_j_cej_2024_158239
crossref_primary_10_1039_D4TC01133C
crossref_primary_10_3390_nano15020109
crossref_primary_10_1038_s41467_024_48218_z
crossref_primary_10_1038_s41467_023_42947_3
crossref_primary_10_1021_acs_jpclett_2c03628
crossref_primary_10_1038_s41467_024_45003_w
crossref_primary_10_1038_s41524_023_01127_z
crossref_primary_10_1002_aelm_202201031
crossref_primary_10_1021_acsami_4c01488
crossref_primary_10_1002_adfm_202406140
crossref_primary_10_1002_adma_202210894
crossref_primary_10_1002_adom_202400355
Cites_doi 10.1103/PhysRevLett.117.097601
10.1103/PhysRevB.98.184104
10.1063/1.3684549
10.1016/j.nanoen.2014.11.034
10.1126/science.aad8609
10.1126/science.1103218
10.1063/1.3382344
10.1021/jacs.8b09247
10.1126/science.aae0509
10.1002/adma.201804428
10.1002/wcms.1409
10.1021/jacs.9b03201
10.1103/PhysRevB.13.5188
10.1021/acs.jpclett.8b03654
10.1038/s41586-018-0336-3
10.1021/acs.nanolett.0c02357
10.1038/s41467-019-09669-x
10.1103/PhysRevLett.77.3865
10.1103/PhysRevLett.103.096102
10.1126/science.abd3230
10.1021/acsnano.7b09046
10.1039/D1MH00446H
10.1103/PhysRevLett.110.255504
10.1126/science.abe8177
10.1103/PhysRevA.38.3098
10.1002/aelm.201900818
10.1021/acs.nanolett.6b00726
10.1021/jz500409m
10.1103/PhysRevLett.108.205503
10.1103/PhysRevLett.117.246802
10.1073/pnas.1922681117
10.1103/PhysRevB.28.1809
10.1038/ncomms14956
10.1021/jacs.5b13274
10.1088/2053-1583/4/1/015042
10.1103/PhysRevB.99.134108
10.1016/j.mattod.2016.12.001
10.1016/j.progsurf.2019.100561
10.1103/PhysRevB.83.195131
10.1016/0927-0256(96)00008-0
10.1103/PhysRevLett.92.246401
10.1103/PhysRevLett.112.157601
10.1038/nature13792
10.1103/PhysRevB.47.1651
10.1021/acs.nanolett.5b00491
10.1002/adma.201606667
10.1038/s41563-019-0529-7
10.1021/nl403328s
10.1016/j.mattod.2018.12.002
10.1039/C8SC01274A
10.1021/acs.nanolett.7b03020
10.1021/acsnano.7b02756
10.1021/acs.nanolett.7b02198
10.1103/PhysRevLett.125.247601
10.1038/s41567-020-0947-0
10.1103/PhysRevLett.108.236402
10.1103/PhysRev.140.A1133
10.1126/science.aav1937
10.1063/1.4865104
10.1021/jacs.8b11459
10.1038/s41467-020-16291-9
10.1039/C7NR09006D
10.1021/jp309617f
10.1103/PhysRevB.47.558
10.1063/1.1329672
10.1038/s41586-018-0704-z
10.1103/PhysRevB.83.020104
10.1002/adfm.201707383
10.1103/PhysRev.136.B864
10.1021/nn1004974
10.1038/s41467-020-20667-2
10.1021/acs.jpcc.8b05349
10.1021/acs.nanolett.9b01419
10.1007/s12274-015-0959-8
ContentType Journal Article
Copyright The Author(s) 2022
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
3V.
7X7
7XB
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
KB.
LK8
M0S
M7P
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOA
DOI 10.1038/s41524-022-00724-8
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
Biological Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
Materials Science Database
ProQuest Central (New)
ProQuest Materials Science Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList
CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2057-3960
EndPage 9
ExternalDocumentID oai_doaj_org_article_43eea79cdea2446eab394842d5a5f416
10_1038_s41524_022_00724_8
GrantInformation_xml – fundername: Program of Introducing Talents of Discipline to Universities, 111 project 2.0 (Grant No. BP2018008) National Key R\&D Program of China (Grant No. 2018YFB1900104)
– fundername: Australian Research Council Discovery Projects (DP180101744)
– fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 51728203; 11974269
  funderid: https://doi.org/10.13039/501100001809
GroupedDBID 0R~
3V.
5VS
7X7
8FE
8FG
8FH
8FI
8FJ
AAJSJ
ABJCF
ABUWG
ACGFS
ACSMW
ADBBV
ADMLS
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ARCSS
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
D1I
EBLON
EBS
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
KB.
KQ8
LK8
M7P
M~E
NAO
NO~
OK1
PDBOC
PIMPY
PQQKQ
PROAC
RNT
SNYQT
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
7XB
8FK
AARCD
AZQEC
DWQXO
GNUQQ
K9.
PKEHL
PQEST
PQGLB
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c495t-37e81d7de34049a943904492d72721f95591af4af64243ab84fda850ca0a7de03
IEDL.DBID 7X7
ISSN 2057-3960
IngestDate Wed Aug 27 01:24:46 EDT 2025
Wed Aug 13 10:54:07 EDT 2025
Thu Apr 24 23:07:18 EDT 2025
Tue Jul 01 01:41:28 EDT 2025
Fri Feb 21 02:40:24 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c495t-37e81d7de34049a943904492d72721f95591af4af64243ab84fda850ca0a7de03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6288-4241
0000-0002-1220-3097
0000-0002-5282-7945
OpenAccessLink https://www.proquest.com/docview/2641737033?pq-origsite=%requestingapplication%
PQID 2641737033
PQPubID 2041924
PageCount 9
ParticipantIDs doaj_primary_oai_doaj_org_article_43eea79cdea2446eab394842d5a5f416
proquest_journals_2641737033
crossref_citationtrail_10_1038_s41524_022_00724_8
crossref_primary_10_1038_s41524_022_00724_8
springer_journals_10_1038_s41524_022_00724_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-03-22
PublicationDateYYYYMMDD 2022-03-22
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-22
  day: 22
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle npj computational materials
PublicationTitleAbbrev npj Comput Mater
PublicationYear 2022
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Ding (CR9) 2017; 8
Su (CR50) 2019; 94
Mehboudi (CR39) 2016; 117
Perdew, Burke, Ernzerhof (CR65) 1996; 77
Yang, Wu, Li (CR23) 2018; 9
Yasuda, Wang, Watanabe, Taniguchi, Jarillo-Herrero (CR20) 2021; 372
Zhang, Ma, Erdemir, Li (CR42) 2019; 26
Ambrosetti, Ferri, DiStasio, Tkatchenko (CR67) 2016; 351
Hu, Kan (CR27) 2019; 9
Kresse, Hafner (CR61) 1993; 47
Wang (CR13) 2010; 4
Kaloni (CR41) 2019; 99
Chen (CR12) 2019; 366
Klimeš, Bowler, Michaelides (CR73) 2011; 83
Niu, Wang (CR54) 2015; 14
Zhou (CR4) 2017; 17
Wu, Rabe, Vanderbilt (CR47) 2011; 83
Su (CR51) 2019; 141
Woods (CR18) 2021; 12
Liang, Shen, Huang, Dai, Ma (CR22) 2021; 8
Higashitarumizu (CR31) 2020; 11
Kim (CR14) 2013; 13
Ambrosetti, Ancilotto, Silvestrelli (CR58) 2013; 117
Chang (CR30) 2020; 20
Shirodkar, Waghmare (CR7) 2014; 112
Langreth, Mehl (CR64) 1983; 28
Tkatchenko, DiStasio, Car, Scheffler (CR69) 2012; 108
Chang (CR2) 2016; 353
Fei (CR5) 2018; 560
Zhang, Guan, Dong, Yakobson (CR38) 2019; 141
Yang (CR56) 2013; 110
Berman, Erdemir, Sumant (CR43) 2018; 12
Sheppard, Xiao, Chemelewski, Johnson, Henkelman (CR45) 2012; 136
Kong (CR36) 2018; 98
Chang (CR40) 2019; 31
Zhou (CR55) 2016; 9
Reimers, Tawfik, Ford (CR48) 2018; 9
Xiao (CR10) 2018; 28
King-Smith, Vanderbilt (CR74) 1993; 47
Dion, Rydberg, Schröder, Langreth, Lundqvist (CR71) 2004; 92
Belianinov (CR3) 2015; 15
Yuan (CR6) 2019; 10
Liu (CR33) 2012; 108
Dai, Zeng (CR15) 2014; 5
Monkhorst, Pack (CR66) 1976; 13
Guan (CR1) 2020; 6
Vizner Stern (CR19) 2021; 372
Xiao (CR21) 2020; 16
Wu, Zeng (CR28) 2016; 16
Bao (CR29) 2019; 19
Hohenberg, Kohn (CR59) 1964; 136
Wang, Qian (CR11) 2017; 4
Peng (CR57) 2020; 117
Hod, Meyer, Zheng, Urbakh (CR34) 2018; 563
Grimme, Antony, Ehrlich, Krieg (CR68) 2010; 132
Ambrosetti, Reilly, DiStasio, Tkatchenko (CR70) 2014; 140
Tawfik, Reimers, Stampfl, Ford (CR49) 2018; 122
Li, Wu (CR17) 2017; 11
Liu, Wan, Ma, Guo, Yao (CR24) 2018; 10
Wu, Zeng (CR25) 2017; 17
Román-Pérez, Soler (CR72) 2009; 103
Kohn, Sham (CR60) 1965; 140
Chen (CR8) 2018; 140
Choi (CR46) 2004; 306
Deng (CR37) 2016; 138
Wang (CR52) 2017; 20
Han (CR35) 2020; 19
Henkelman, Uberuaga, Jónsson (CR44) 2000; 113
Fei, Kang, Yang (CR26) 2016; 117
Lee (CR53) 2017; 29
Kresse, Furthmüller (CR62) 1996; 6
Wu (CR32) 2014; 514
Liu, Pyatakov, Ren (CR16) 2020; 125
Becke (CR63) 1988; 38
M Wu (724_CR28) 2016; 16
T Hu (724_CR27) 2019; 9
J Yang (724_CR56) 2013; 110
G Kresse (724_CR62) 1996; 6
Z Guan (724_CR1) 2020; 6
P Hohenberg (724_CR59) 1964; 136
X Kong (724_CR36) 2018; 98
O Hod (724_CR34) 2018; 563
K Chang (724_CR40) 2019; 31
Z Fei (724_CR5) 2018; 560
S Niu (724_CR54) 2015; 14
L Li (724_CR17) 2017; 11
C Liu (724_CR24) 2018; 10
X Wu (724_CR47) 2011; 83
G Henkelman (724_CR44) 2000; 113
S Zhang (724_CR42) 2019; 26
J Xiao (724_CR21) 2020; 16
J Dai (724_CR15) 2014; 5
W Wu (724_CR32) 2014; 514
TP Kaloni (724_CR41) 2019; 99
JP Perdew (724_CR65) 1996; 77
J-J Zhang (724_CR38) 2019; 141
M Wu (724_CR25) 2017; 17
A Ambrosetti (724_CR70) 2014; 140
SN Shirodkar (724_CR7) 2014; 112
Y Bao (724_CR29) 2019; 19
W Chen (724_CR12) 2019; 366
W Ding (724_CR9) 2017; 8
Y Wang (724_CR13) 2010; 4
H Wang (724_CR11) 2017; 4
E Han (724_CR35) 2020; 19
G Kresse (724_CR61) 1993; 47
Q Yang (724_CR23) 2018; 9
HJ Monkhorst (724_CR66) 1976; 13
JR Reimers (724_CR48) 2018; 9
CR Woods (724_CR18) 2021; 12
N Higashitarumizu (724_CR31) 2020; 11
D Berman (724_CR43) 2018; 12
AD Becke (724_CR63) 1988; 38
S Grimme (724_CR68) 2010; 132
S Yuan (724_CR6) 2019; 10
J-H Lee (724_CR53) 2017; 29
M Dion (724_CR71) 2004; 92
D Sheppard (724_CR45) 2012; 136
ZL Wang (724_CR52) 2017; 20
A Tkatchenko (724_CR69) 2012; 108
K Chang (724_CR2) 2016; 353
K Chen (724_CR8) 2018; 140
D Peng (724_CR57) 2020; 117
G Su (724_CR51) 2019; 141
Y Zhou (724_CR4) 2017; 17
Z Liu (724_CR33) 2012; 108
G Su (724_CR50) 2019; 94
Y Zhou (724_CR55) 2016; 9
A Ambrosetti (724_CR58) 2013; 117
RD King-Smith (724_CR74) 1993; 47
A Ambrosetti (724_CR67) 2016; 351
DC Langreth (724_CR64) 1983; 28
K Chang (724_CR30) 2020; 20
X Liu (724_CR16) 2020; 125
M Mehboudi (724_CR39) 2016; 117
Y Liang (724_CR22) 2021; 8
R Fei (724_CR26) 2016; 117
W Kohn (724_CR60) 1965; 140
K Yasuda (724_CR20) 2021; 372
J Klimeš (724_CR73) 2011; 83
C-J Kim (724_CR14) 2013; 13
J Deng (724_CR37) 2016; 138
A Belianinov (724_CR3) 2015; 15
G Román-Pérez (724_CR72) 2009; 103
M Vizner Stern (724_CR19) 2021; 372
C Xiao (724_CR10) 2018; 28
KJ Choi (724_CR46) 2004; 306
SA Tawfik (724_CR49) 2018; 122
References_xml – volume: 117
  start-page: 097601
  year: 2016
  ident: CR26
  article-title: Ferroelectricity and phase transitions in monolayer Group-IV monochalcogenides
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.117.097601
– volume: 98
  start-page: 184104
  year: 2018
  ident: CR36
  article-title: Tunable auxetic properties in group-IV monochalcogenide monolayers
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.98.184104
– volume: 136
  start-page: 074103
  year: 2012
  ident: CR45
  article-title: A generalized solid-state nudged elastic band method
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3684549
– volume: 14
  start-page: 161
  year: 2015
  end-page: 192
  ident: CR54
  article-title: Theoretical systems of triboelectric nanogenerators
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2014.11.034
– volume: 353
  start-page: 274
  year: 2016
  end-page: 278
  ident: CR2
  article-title: Discovery of robust in-plane ferroelectricity in atomic-thick SnTe
  publication-title: Science
  doi: 10.1126/science.aad8609
– volume: 306
  start-page: 1005
  year: 2004
  end-page: 1009
  ident: CR46
  article-title: Enhancement of ferroelectricity in strained BaTiO thin films
  publication-title: Science
  doi: 10.1126/science.1103218
– volume: 132
  start-page: 154104
  year: 2010
  ident: CR68
  article-title: A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3382344
– volume: 140
  start-page: 16206
  year: 2018
  end-page: 16212
  ident: CR8
  article-title: Ferromagnetism of 1T’-MoS nanoribbons stabilized by edge reconstruction and its periodic variation on nanoribbons width
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b09247
– volume: 351
  start-page: 1171
  year: 2016
  end-page: 1176
  ident: CR67
  article-title: Wavelike charge density fluctuations and van der Waals interactions at the nanoscale
  publication-title: Science
  doi: 10.1126/science.aae0509
– volume: 31
  start-page: 1804428
  year: 2019
  ident: CR40
  article-title: Enhanced spontaneous polarization in ultrathin SnTe films with layered antipolar structure
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201804428
– volume: 9
  start-page: e1409
  year: 2019
  ident: CR27
  article-title: Progress and prospects in low-dimensional multiferroic materials
  publication-title: WIREs Comput. Mol. Sci.
  doi: 10.1002/wcms.1409
– volume: 141
  start-page: 15040
  year: 2019
  end-page: 15045
  ident: CR38
  article-title: Room-temperature ferroelectricity in group-IV metal chalcogenide nanowires
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b03201
– volume: 13
  start-page: 5188
  year: 1976
  end-page: 5192
  ident: CR66
  article-title: Special points for Brillouin-zone integrations
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.13.5188
– volume: 9
  start-page: 7160
  year: 2018
  end-page: 7164
  ident: CR23
  article-title: Origin of two-dimensional vertical ferroelectricity in WTe bilayer and multilayer
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.8b03654
– volume: 560
  start-page: 336
  year: 2018
  end-page: 339
  ident: CR5
  article-title: Ferroelectric switching of a two-dimensional metal
  publication-title: Nature
  doi: 10.1038/s41586-018-0336-3
– volume: 20
  start-page: 6590
  year: 2020
  end-page: 6597
  ident: CR30
  article-title: Microscopic manipulation of ferroelectric domains in SnSe monolayers at room temperature
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.0c02357
– volume: 10
  year: 2019
  ident: CR6
  article-title: Room-temperature ferroelectricity in MoTe down to the atomic monolayer limit
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09669-x
– volume: 77
  start-page: 3865
  year: 1996
  end-page: 3868
  ident: CR65
  article-title: Generalized gradient approximation made simple
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 103
  start-page: 096102
  year: 2009
  ident: CR72
  article-title: Efficient implementation of a van der Waals density functional: application to double-wall carbon nanotubes
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.103.096102
– volume: 372
  start-page: 1458
  year: 2021
  end-page: 1462
  ident: CR20
  article-title: Stacking-engineered ferroelectricity in bilayer boron nitride
  publication-title: Science
  doi: 10.1126/science.abd3230
– volume: 12
  start-page: 2122
  year: 2018
  end-page: 2137
  ident: CR43
  article-title: Approaches for achieving superlubricity in two-dimensional materials
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b09046
– volume: 8
  start-page: 1683
  year: 2021
  end-page: 1689
  ident: CR22
  article-title: Intercorrelated ferroelectrics in 2D van der Waals materials
  publication-title: Mater. Horiz.
  doi: 10.1039/D1MH00446H
– volume: 110
  start-page: 255504
  year: 2013
  ident: CR56
  article-title: Observation of High-Speed Microscale Superlubricity in Graphite
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.110.255504
– volume: 372
  start-page: 1462
  year: 2021
  end-page: 1466
  ident: CR19
  article-title: Interfacial ferroelectricity by van der Waals sliding
  publication-title: Science
  doi: 10.1126/science.abe8177
– volume: 38
  start-page: 3098
  year: 1988
  end-page: 3100
  ident: CR63
  article-title: Density-functional exchange-energy approximation with correct asymptotic behavior
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.38.3098
– volume: 6
  start-page: 1900818
  year: 2020
  ident: CR1
  article-title: Recent progress in two-dimensional ferroelectric materials
  publication-title: Adv. Electron. Mater.
  doi: 10.1002/aelm.201900818
– volume: 16
  start-page: 3236
  year: 2016
  end-page: 3241
  ident: CR28
  article-title: Intrinsic ferroelasticity and/or multiferroicity in two-dimensional phosphorene and phosphorene analogues
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b00726
– volume: 5
  start-page: 1289
  year: 2014
  end-page: 1293
  ident: CR15
  article-title: Bilayer phosphorene: effect of stacking order on bandgap and its potential applications in thin-film solar cells
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz500409m
– volume: 108
  start-page: 205503
  year: 2012
  ident: CR33
  article-title: Observation of microscale superlubricity in graphite
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.108.205503
– volume: 117
  start-page: 246802
  year: 2016
  ident: CR39
  article-title: Structural phase transition and material properties of few-layer monochalcogenides
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.117.246802
– volume: 117
  start-page: 12618
  year: 2020
  end-page: 12623
  ident: CR57
  article-title: Load-induced dynamical transitions at graphene interfaces
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1922681117
– volume: 28
  start-page: 1809
  year: 1983
  end-page: 1834
  ident: CR64
  article-title: Beyond the local-density approximation in calculations of ground-state electronic properties
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.28.1809
– volume: 8
  year: 2017
  ident: CR9
  article-title: Prediction of intrinsic two-dimensional ferroelectrics in In Se and other III -VI van der Waals materials
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms14956
– volume: 138
  start-page: 4772
  year: 2016
  end-page: 4778
  ident: CR37
  article-title: Electric field induced reversible phase transition in Li doped phosphorene: shape memory effect and superelasticity
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b13274
– volume: 4
  start-page: 015042
  year: 2017
  ident: CR11
  article-title: Two-dimensional multiferroics in monolayer group IV monochalcogenides
  publication-title: 2D Mater.
  doi: 10.1088/2053-1583/4/1/015042
– volume: 99
  start-page: 134108
  year: 2019
  ident: CR41
  article-title: From an atomic layer to the bulk: low-temperature atomistic structure and ferroelectric and electronic properties of SnTe films
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.99.134108
– volume: 20
  start-page: 74
  year: 2017
  end-page: 82
  ident: CR52
  article-title: On Maxwell’s displacement current for energy and sensors: the origin of nanogenerators
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2016.12.001
– volume: 94
  start-page: 100561
  year: 2019
  ident: CR50
  article-title: Modeling chemical reactions on surfaces: the roles of chemical bonding and van der Waals interactions
  publication-title: Prog. Surf. Sci.
  doi: 10.1016/j.progsurf.2019.100561
– volume: 83
  start-page: 195131
  year: 2011
  ident: CR73
  article-title: Van der Waals density functionals applied to solids
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.83.195131
– volume: 6
  start-page: 15
  year: 1996
  end-page: 50
  ident: CR62
  article-title: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
  publication-title: Comp. Mater. Sci.
  doi: 10.1016/0927-0256(96)00008-0
– volume: 92
  start-page: 246401
  year: 2004
  ident: CR71
  article-title: Van der Waals density functional for general geometries
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.92.246401
– volume: 112
  start-page: 157601
  year: 2014
  ident: CR7
  article-title: Emergence of ferroelectricity at a metal-semiconductor transition in a 1T monolayer of MoS
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.112.157601
– volume: 514
  start-page: 470
  year: 2014
  end-page: 474
  ident: CR32
  article-title: Piezoelectricity of single-atomic-layer MoS for energy conversion and piezotronics
  publication-title: Nature
  doi: 10.1038/nature13792
– volume: 47
  start-page: 1651
  year: 1993
  end-page: 1654
  ident: CR74
  article-title: Theory of polarization of crystalline solids
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.47.1651
– volume: 15
  start-page: 3808
  year: 2015
  end-page: 3814
  ident: CR3
  article-title: CuInP S room temperature layered ferroelectric
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b00491
– volume: 29
  start-page: 1606667
  year: 2017
  ident: CR53
  article-title: Reliable piezoelectricity in bilayer WSe for piezoelectric nanogenerators
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201606667
– volume: 19
  start-page: 305
  year: 2020
  end-page: 309
  ident: CR35
  article-title: Ultrasoft slip-mediated bending in few-layer graphene
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-019-0529-7
– volume: 13
  start-page: 5660
  year: 2013
  end-page: 5665
  ident: CR14
  article-title: Stacking order dependent second harmonic generation and topological defects in -BN Bilayers
  publication-title: Nano Lett.
  doi: 10.1021/nl403328s
– volume: 26
  start-page: 67
  year: 2019
  end-page: 86
  ident: CR42
  article-title: Tribology of two-dimensional materials: from mechanisms to modulating strategies
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2018.12.002
– volume: 9
  start-page: 7620
  year: 2018
  end-page: 7627
  ident: CR48
  article-title: van der Waals forces control ferroelectric-antiferroelectric ordering in CuInP S and CuBiP Se laminar materials
  publication-title: Chem. Sci.
  doi: 10.1039/C8SC01274A
– volume: 17
  start-page: 6309
  year: 2017
  end-page: 6314
  ident: CR25
  article-title: Bismuth oxychalcogenides: a new class of ferroelectric/ferroelastic materials with ultra high mobility
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b03020
– volume: 11
  start-page: 6382
  year: 2017
  end-page: 6388
  ident: CR17
  article-title: Binary compound bilayer and multilayer with vertical polarizations: two-dimensional ferroelectrics, multiferroics, and nanogenerators
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b02756
– volume: 17
  start-page: 5508
  year: 2017
  end-page: 5513
  ident: CR4
  article-title: Out-of-plane piezoelectricity and ferroelectricity in layered -In Se nanoflakes
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b02198
– volume: 125
  start-page: 247601
  year: 2020
  ident: CR16
  article-title: Magnetoelectric coupling in multiferroic bilayer VS
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.125.247601
– volume: 16
  start-page: 1028
  year: 2020
  end-page: 1034
  ident: CR21
  article-title: Berry curvature memory through electrically driven stacking transitions
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-020-0947-0
– volume: 108
  start-page: 236402
  year: 2012
  ident: CR69
  article-title: Accurate and efficient method for many-body van der Waals Interactions
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.108.236402
– volume: 140
  start-page: A1133
  year: 1965
  end-page: A1138
  ident: CR60
  article-title: Self-consistent equations including exchange and correlation effects
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.140.A1133
– volume: 366
  start-page: 983
  year: 2019
  end-page: 987
  ident: CR12
  article-title: Direct observation of van der Waals stacking-dependent interlayer magnetism
  publication-title: Science
  doi: 10.1126/science.aav1937
– volume: 140
  start-page: 18A508
  year: 2014
  ident: CR70
  article-title: Long-range correlation energy calculated from coupled atomic response functions
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4865104
– volume: 141
  start-page: 1628
  year: 2019
  end-page: 1635
  ident: CR51
  article-title: Switchable Schottky contacts: simultaneously enhanced output current and reduced leakage current
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b11459
– volume: 11
  year: 2020
  ident: CR31
  article-title: Purely in-plane ferroelectricity in monolayer SnS at room temperature
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-16291-9
– volume: 10
  start-page: 7984
  year: 2018
  end-page: 7990
  ident: CR24
  article-title: Robust ferroelectricity in two-dimensional SbN and BiP
  publication-title: Nanoscale
  doi: 10.1039/C7NR09006D
– volume: 117
  start-page: 321
  year: 2013
  end-page: 325
  ident: CR58
  article-title: van der Waals-corrected ab initio study of water ice-graphite interaction
  publication-title: J. Phys. Chem. C.
  doi: 10.1021/jp309617f
– volume: 47
  start-page: 558
  year: 1993
  end-page: 561
  ident: CR61
  article-title: Ab initio molecular dynamics for liquid metals
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.47.558
– volume: 113
  start-page: 9901
  year: 2000
  end-page: 9904
  ident: CR44
  article-title: A climbing image nudged elastic band method for finding saddle points and minimum energy paths
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1329672
– volume: 563
  start-page: 485
  year: 2018
  end-page: 492
  ident: CR34
  article-title: Structural superlubricity and ultralow friction across the length scales
  publication-title: Nature
  doi: 10.1038/s41586-018-0704-z
– volume: 83
  start-page: 020104
  year: 2011
  ident: CR47
  article-title: Interfacial enhancement of ferroelectricity in CaTiO /BaTiO superlattices
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.83.020104
– volume: 28
  start-page: 1707383
  year: 2018
  ident: CR10
  article-title: Elemental ferroelectricity and antiferroelectricity in group-V monolayer
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201707383
– volume: 136
  start-page: B864
  year: 1964
  end-page: B871
  ident: CR59
  article-title: Inhomogeneous electron gas
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.136.B864
– volume: 4
  start-page: 4074
  year: 2010
  end-page: 4080
  ident: CR13
  article-title: Stacking-dependent optical conductivity of bilayer graphene
  publication-title: ACS Nano
  doi: 10.1021/nn1004974
– volume: 12
  year: 2021
  ident: CR18
  article-title: Charge-polarized interfacial superlattices in marginally twisted hexagonal boron nitride
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-20667-2
– volume: 122
  start-page: 22675
  year: 2018
  end-page: 22687
  ident: CR49
  article-title: van der Waals forces control the internal chemical structure of monolayers within the lamellar materials CuInP S and CuBiP Se
  publication-title: J. Phys. Chem. C.
  doi: 10.1021/acs.jpcc.8b05349
– volume: 19
  start-page: 5109
  year: 2019
  end-page: 5117
  ident: CR29
  article-title: Gate-tunable in-plane ferroelectricity in few-layer SnS
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.9b01419
– volume: 9
  start-page: 800
  year: 2016
  end-page: 807
  ident: CR55
  article-title: Theoretical study on two-dimensional MoS piezoelectric nanogenerators
  publication-title: Nano Res.
  doi: 10.1007/s12274-015-0959-8
– volume: 16
  start-page: 3236
  year: 2016
  ident: 724_CR28
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b00726
– volume: 117
  start-page: 12618
  year: 2020
  ident: 724_CR57
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1922681117
– volume: 28
  start-page: 1809
  year: 1983
  ident: 724_CR64
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.28.1809
– volume: 15
  start-page: 3808
  year: 2015
  ident: 724_CR3
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b00491
– volume: 9
  start-page: 800
  year: 2016
  ident: 724_CR55
  publication-title: Nano Res.
  doi: 10.1007/s12274-015-0959-8
– volume: 103
  start-page: 096102
  year: 2009
  ident: 724_CR72
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.103.096102
– volume: 28
  start-page: 1707383
  year: 2018
  ident: 724_CR10
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201707383
– volume: 38
  start-page: 3098
  year: 1988
  ident: 724_CR63
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.38.3098
– volume: 13
  start-page: 5660
  year: 2013
  ident: 724_CR14
  publication-title: Nano Lett.
  doi: 10.1021/nl403328s
– volume: 372
  start-page: 1462
  year: 2021
  ident: 724_CR19
  publication-title: Science
  doi: 10.1126/science.abe8177
– volume: 122
  start-page: 22675
  year: 2018
  ident: 724_CR49
  publication-title: J. Phys. Chem. C.
  doi: 10.1021/acs.jpcc.8b05349
– volume: 108
  start-page: 236402
  year: 2012
  ident: 724_CR69
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.108.236402
– volume: 112
  start-page: 157601
  year: 2014
  ident: 724_CR7
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.112.157601
– volume: 10
  start-page: 7984
  year: 2018
  ident: 724_CR24
  publication-title: Nanoscale
  doi: 10.1039/C7NR09006D
– volume: 98
  start-page: 184104
  year: 2018
  ident: 724_CR36
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.98.184104
– volume: 5
  start-page: 1289
  year: 2014
  ident: 724_CR15
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz500409m
– volume: 132
  start-page: 154104
  year: 2010
  ident: 724_CR68
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3382344
– volume: 140
  start-page: 18A508
  year: 2014
  ident: 724_CR70
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4865104
– volume: 19
  start-page: 305
  year: 2020
  ident: 724_CR35
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-019-0529-7
– volume: 8
  year: 2017
  ident: 724_CR9
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms14956
– volume: 9
  start-page: 7620
  year: 2018
  ident: 724_CR48
  publication-title: Chem. Sci.
  doi: 10.1039/C8SC01274A
– volume: 31
  start-page: 1804428
  year: 2019
  ident: 724_CR40
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201804428
– volume: 99
  start-page: 134108
  year: 2019
  ident: 724_CR41
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.99.134108
– volume: 17
  start-page: 5508
  year: 2017
  ident: 724_CR4
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b02198
– volume: 12
  year: 2021
  ident: 724_CR18
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-20667-2
– volume: 20
  start-page: 6590
  year: 2020
  ident: 724_CR30
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.0c02357
– volume: 141
  start-page: 1628
  year: 2019
  ident: 724_CR51
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b11459
– volume: 17
  start-page: 6309
  year: 2017
  ident: 724_CR25
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b03020
– volume: 20
  start-page: 74
  year: 2017
  ident: 724_CR52
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2016.12.001
– volume: 117
  start-page: 246802
  year: 2016
  ident: 724_CR39
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.117.246802
– volume: 29
  start-page: 1606667
  year: 2017
  ident: 724_CR53
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201606667
– volume: 117
  start-page: 097601
  year: 2016
  ident: 724_CR26
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.117.097601
– volume: 47
  start-page: 558
  year: 1993
  ident: 724_CR61
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.47.558
– volume: 563
  start-page: 485
  year: 2018
  ident: 724_CR34
  publication-title: Nature
  doi: 10.1038/s41586-018-0704-z
– volume: 12
  start-page: 2122
  year: 2018
  ident: 724_CR43
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b09046
– volume: 26
  start-page: 67
  year: 2019
  ident: 724_CR42
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2018.12.002
– volume: 77
  start-page: 3865
  year: 1996
  ident: 724_CR65
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 13
  start-page: 5188
  year: 1976
  ident: 724_CR66
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.13.5188
– volume: 136
  start-page: B864
  year: 1964
  ident: 724_CR59
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.136.B864
– volume: 366
  start-page: 983
  year: 2019
  ident: 724_CR12
  publication-title: Science
  doi: 10.1126/science.aav1937
– volume: 4
  start-page: 015042
  year: 2017
  ident: 724_CR11
  publication-title: 2D Mater.
  doi: 10.1088/2053-1583/4/1/015042
– volume: 92
  start-page: 246401
  year: 2004
  ident: 724_CR71
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.92.246401
– volume: 351
  start-page: 1171
  year: 2016
  ident: 724_CR67
  publication-title: Science
  doi: 10.1126/science.aae0509
– volume: 136
  start-page: 074103
  year: 2012
  ident: 724_CR45
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3684549
– volume: 125
  start-page: 247601
  year: 2020
  ident: 724_CR16
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.125.247601
– volume: 16
  start-page: 1028
  year: 2020
  ident: 724_CR21
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-020-0947-0
– volume: 4
  start-page: 4074
  year: 2010
  ident: 724_CR13
  publication-title: ACS Nano
  doi: 10.1021/nn1004974
– volume: 138
  start-page: 4772
  year: 2016
  ident: 724_CR37
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b13274
– volume: 560
  start-page: 336
  year: 2018
  ident: 724_CR5
  publication-title: Nature
  doi: 10.1038/s41586-018-0336-3
– volume: 8
  start-page: 1683
  year: 2021
  ident: 724_CR22
  publication-title: Mater. Horiz.
  doi: 10.1039/D1MH00446H
– volume: 108
  start-page: 205503
  year: 2012
  ident: 724_CR33
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.108.205503
– volume: 6
  start-page: 1900818
  year: 2020
  ident: 724_CR1
  publication-title: Adv. Electron. Mater.
  doi: 10.1002/aelm.201900818
– volume: 306
  start-page: 1005
  year: 2004
  ident: 724_CR46
  publication-title: Science
  doi: 10.1126/science.1103218
– volume: 117
  start-page: 321
  year: 2013
  ident: 724_CR58
  publication-title: J. Phys. Chem. C.
  doi: 10.1021/jp309617f
– volume: 9
  start-page: 7160
  year: 2018
  ident: 724_CR23
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.8b03654
– volume: 83
  start-page: 195131
  year: 2011
  ident: 724_CR73
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.83.195131
– volume: 9
  start-page: e1409
  year: 2019
  ident: 724_CR27
  publication-title: WIREs Comput. Mol. Sci.
  doi: 10.1002/wcms.1409
– volume: 10
  year: 2019
  ident: 724_CR6
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09669-x
– volume: 14
  start-page: 161
  year: 2015
  ident: 724_CR54
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2014.11.034
– volume: 94
  start-page: 100561
  year: 2019
  ident: 724_CR50
  publication-title: Prog. Surf. Sci.
  doi: 10.1016/j.progsurf.2019.100561
– volume: 47
  start-page: 1651
  year: 1993
  ident: 724_CR74
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.47.1651
– volume: 514
  start-page: 470
  year: 2014
  ident: 724_CR32
  publication-title: Nature
  doi: 10.1038/nature13792
– volume: 110
  start-page: 255504
  year: 2013
  ident: 724_CR56
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.110.255504
– volume: 19
  start-page: 5109
  year: 2019
  ident: 724_CR29
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.9b01419
– volume: 11
  year: 2020
  ident: 724_CR31
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-16291-9
– volume: 83
  start-page: 020104
  year: 2011
  ident: 724_CR47
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.83.020104
– volume: 6
  start-page: 15
  year: 1996
  ident: 724_CR62
  publication-title: Comp. Mater. Sci.
  doi: 10.1016/0927-0256(96)00008-0
– volume: 140
  start-page: 16206
  year: 2018
  ident: 724_CR8
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b09247
– volume: 372
  start-page: 1458
  year: 2021
  ident: 724_CR20
  publication-title: Science
  doi: 10.1126/science.abd3230
– volume: 113
  start-page: 9901
  year: 2000
  ident: 724_CR44
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1329672
– volume: 353
  start-page: 274
  year: 2016
  ident: 724_CR2
  publication-title: Science
  doi: 10.1126/science.aad8609
– volume: 141
  start-page: 15040
  year: 2019
  ident: 724_CR38
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b03201
– volume: 11
  start-page: 6382
  year: 2017
  ident: 724_CR17
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b02756
– volume: 140
  start-page: A1133
  year: 1965
  ident: 724_CR60
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.140.A1133
SSID ssj0001928240
Score 2.4220707
Snippet Two-dimensional materials with ferroelectric properties break the size effect of conventional ferroelectric materials and unlock unprecedented potentials of...
Abstract Two-dimensional materials with ferroelectric properties break the size effect of conventional ferroelectric materials and unlock unprecedented...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms 639/301/119/996
639/925/357/1018
639/925/927/1007
Antiferroelectricity
Bilayers
Characterization and Evaluation of Materials
Chemical bonds
Chemistry and Materials Science
Computational Intelligence
Covalent bonds
Crystal structure
Energy harvesting
Ferroelectric materials
Ferroelectrics
First principles
Germanium
Interlayers
Materials Science
Mathematical and Computational Engineering
Mathematical and Computational Physics
Mathematical Modeling and Industrial Mathematics
Molybdenum disulfide
Nanogenerators
Open circuit voltage
Piezoelectricity
Polarization
Size effects
Sliding
Theoretical
Tin
Two dimensional materials
Van der Waals forces
SummonAdditionalLinks – databaseName: Directory of Open Access Journals (DOAJ)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LTtwwFLUQK1ig8qg65SEv2BWLxHbGnmWLQIDUrspjZ10_IlKhCZoJ_Y_-Mfc6GRiQaDfdOrZk-Z74nOvHMWOHsvIGaa4UZH0i9HgsBVjlRYjSpEoZGSPdHf7-Y3x-pS9vq9ulp77oTFhvD9wP3LFWKYGZhJgAmWicwKuJtlrGCqoa1QTNvsh5S8nUr163WOSq4ZZMoezxnJhKCzq8Tm7ZWthXTJQN-1-pzDcbo5lvzj6wjUEo8q99BzfZSppusfUl-8Bt9ucapjymGb8BBBFH-RmSwBwboxV5k1dtARU1r9Ns1vbv3TRBdK0AOiG0XMg7oqx8eov_boAa0zofNUYdSvSGRdw3fVG-CSIurjlCuA13cB9ahGET03yHXZ2d_jw5F8MTCyJgZtTh9JJQsJqYlMZUASYoTwqtJzLS_mxZkz1dCbWGGtMUrcBbXUewVRGgAGxVqI9sddpO0yfGjcck3UNU0UsNGKfaWASBLJU1oMp6xMrFcLsw-I_TMxj3Lu-DK-v6EDkMkcshcnbEvjy3eejdN_5a-xtF8bkmOWfnAsSTG_Dk_oWnEdtbYMANv_PcoWosjcLJUY3Y0QIXL5_f79Ln_9GlXbYmM26VkHKPrXazx7SPUqjzBxn1TxISBgo
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKucCh4im2tMgHbmCR2E7sHGHVqiDBiZberPEjEKnaVNnA_-AfM-MkfSBA4ur1SNbOF8839sxnxl7KyhsMc6Ug6ROh61oKsMqLEKVJlTIyRuod_vipPjnVH86r8x0ml16YXLSfJS3zNr1Uh73ZUqDRgmrPSexaC3uH3SXpdirjW9fr63OVBpMIXcz9MYWyfzC9FYOyVP8tfvnblWiONMcP2N5MEfnbaVEP2U7aPGL3bwgHPmY_z2DDYxr4F0D4cCSeIQnMrtFPkXf5vBaQS_M2DUM_vXTTBTH2Aqg26OYgHylY5bot_qMDMqYTPjJGBkqBDYe476ah3AMi3p9xBG8fvsFF6BGAXUzbJ-z0-Ojz-kTMjyuIgDnRiBtLQqpqYlIakwRokJgUWjcy0s1s2ZIwXQmthhYTFK3AW91GsFURoAC0KtRTtrvpN-kZ48Zjeu4hquilhgS-NRbdL0tlDaiyXbFy-btdmJXH6QGMC5dvwJV1k4scushlFzm7Yq-ubC4n3Y1_zn5HXryaSZrZeaAfvroZQ06rlMA0ISZATlPjOlWjrZaxgqpFXrpiBwsG3Pwhbx3yxdIo3BbVir1ecHH989-XtP9_05-zezIjVAkpD9juOHxPh0h3Rv8i4_sXGin6sQ
  priority: 102
  providerName: Springer Nature
Title Van der Waals force-induced intralayer ferroelectric-to-antiferroelectric transition via interlayer sliding in bilayer group-IV monochalcogenides
URI https://link.springer.com/article/10.1038/s41524-022-00724-8
https://www.proquest.com/docview/2641737033
https://doaj.org/article/43eea79cdea2446eab394842d5a5f416
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwELZge4EHxE9RGJUfeANrie3EzhPqqpVRiQkBG32zLrEDkaZmpIH_g_-YOyddNyT20krXuIpyX3zfne3vGHsts9JgmEsFSZ8InedSgFWlqLw0IVNGek9nhz-e5idnernKVmPBbTNuq9zOiXGi9m1FNfJDDNypUYhP9e7yp6CuUbS6OrbQuMv2SbqMki-zMrsaS4EJhU7GszKJsocbilda0BZ20szWwt6IR1G2_wbX_Gd5NEadxUP2YKSLfDb49xG7E9aP2f1rIoJP2J9zWHMfOv4NEEocSWgVBGba6DPPm1i7BeTVvA5d1w5db5pK9K0A2id03ch7ClxxDxf_3QANpmofDUY2SkEOTbxsBlM8DyI-nHN8Mm31Ay6qFsHY-LB5ys4Wx1_nJ2JstCAqzI96nGQC0lbjg9KYMECBJCXRupCeVmnTmkTqUqg11JisaAWl1bUHmyUVJICjEvWM7a3bdXjOuCkxVS_BK19KDQHK2liEgkyVNaDSesLS7eN21ahCTs0wLlxcDVfWDS5y6CIXXeTshL25GnM5aHDcevURefHqStLPjoa2--7G19FpFQKYovIBkN_keJ-q0FZLn0FWI0edsIMtBtz4Um_cDoIT9naLi93P_7-lF7f_20t2T0ZEKiHlAdvru1_hFVKdvpxGPOOnXbyfsv3ZbPllid9Hx6efPqN1ns-nsYjwF2HvAuA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQAHxFNdKOADnMBqYjsb54AQr2WXPk5t6c1MbAciVZuyG0D8DP4Iv5EZJ-m2SPTWq-OxrMxnzzf2eIaxpzIrczRzqaDUJ0KPx1KAUaVwXuYhU7n0nt4O7-6Npwf641F2tMb-DG9hKKxy2BPjRu0bR2fkW2i401whPtWrk2-CqkbR7epQQqODxXb49RNdtuXL2TvU7zMpJ-_3305FX1VAOHQGWlxRATla7oPSyI6hQIucaF1IT1eSaUUZ2VKoNFTIzLWC0ujKg8kSBwmgVKJw3CvsqlaqoBBCM_mwOtMp0IHRSf82J1Fma0n2UQsKmacc3VqYc_Yvlgk4x23_uY6NVm5yi93s6Sl_3eHpNlsL8zvsxpmkhXfZ70OYcx8W_BMgdDmSXhcEevaIEc_reFYMyON5FRaLpquyUzvRNgIoLulsI2_JUMaYMf6jBhKm00USRvZLRhWbeFl3TfH9iZgdctRE477CsWsQ_LUPy3vs4FJUcJ-tz5t52GA8L0MpS_DKl1JDgLLKDUJPpsrkoNJqxNLhd1vXZz2n4hvHNt6-K2M7FVlUkY0qsmbEnp_KnHQ5Py7s_Ya0eNqT8nXHhmbxxfbL32oVAuSF8wGQT41xnqrQRkufQVYhJx6xzQEDtt9ElnYF-RF7MeBi9fn_U3pw8WhP2LXp_u6O3ZntbT9k12VEpxJSbrL1dvE9PEKa1ZaPI7Y5-3zZi-kvVl84nA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELVKkRAcEJ_qQgEf4ATWJraz9h4QAsqqS6HiQMvezPgjEKnalGwA8TP4O_w6xk7SbZHorVcntqLMG79nezxDyGNeWIU0l7OY-oTJyYQz0MIy57kKhVDc-3h3-P3-ZPdAvl0Uiw3yZ7gLE8MqhzkxTdS-dnGPfIzEnSuB-BTjsg-L-LAze3H8jcUKUvGkdSin0UFkL_z6icu31fP5Dtr6CeezNx9f77K-wgBzuDBo0bsC6jXlg5ColGGK7JxJOeU-Hk_mZczOlkMpoUSVLgVYLUsPusgcZIC9MoHjXiKXlUDaRF9SC7Xe35niYkZm_T2dTOjxKnKlZDF8Pubrlkyf4cJUMuCMzv3naDYx3uwGud5LVfqyw9ZNshGWt8i1UwkMb5Pfh7CkPjT0EyCMKQpgFxiu8hEvnlZp3xhQ09MyNE3dVdypHGtrBjFG6XQjbSNppvgx-qOC2DnuNMbOqIQjwWITtVXXlO6isPkhRUvU7iscuRodofJhdYccXIgJ7pLNZb0MW4QqGyy34IW3XEIAWyqNMOS50ApEXo5IPvxu4_oM6LEQx5FJJ_FCm85EBk1kkomMHpGnJ32Ou_wf5779Klrx5M2Yuzs11M0X008FRooQQE2dD4DaaoLfKaZSS-4LKErUxyOyPWDA9BPKyqzhPyLPBlysH___k-6dP9ojcgXdyLyb7-_dJ1d5AqdgnG-Tzbb5Hh6g4mrtwwRtSj5ftC_9BbtgPMk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Van+der+Waals+force-induced+intralayer+ferroelectric-to-antiferroelectric+transition+via+interlayer+sliding+in+bilayer+group-IV+monochalcogenides&rft.jtitle=npj+computational+materials&rft.au=Xu%2C+Bo&rft.au=Deng+Junkai&rft.au=Ding+Xiangdong&rft.au=Sun%2C+Jun&rft.date=2022-03-22&rft.pub=Nature+Publishing+Group&rft.eissn=2057-3960&rft.volume=8&rft.issue=1&rft_id=info:doi/10.1038%2Fs41524-022-00724-8&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2057-3960&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2057-3960&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2057-3960&client=summon