Van der Waals force-induced intralayer ferroelectric-to-antiferroelectric transition via interlayer sliding in bilayer group-IV monochalcogenides
Two-dimensional materials with ferroelectric properties break the size effect of conventional ferroelectric materials and unlock unprecedented potentials of ferroelectric-related application at small length scales. Using first-principles calculations, a sliding-induced ferroelectric-to-antiferroelec...
Saved in:
Published in | npj computational materials Vol. 8; no. 1; pp. 1 - 9 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
22.03.2022
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
ISSN | 2057-3960 2057-3960 |
DOI | 10.1038/s41524-022-00724-8 |
Cover
Loading…
Abstract | Two-dimensional materials with ferroelectric properties break the size effect of conventional ferroelectric materials and unlock unprecedented potentials of ferroelectric-related application at small length scales. Using first-principles calculations, a sliding-induced ferroelectric-to-antiferroelectric behavior in bilayer group-IV monochalcogenides (
MX
, with
M
= Ge, Sn and
X
= S, Se) is discovered. Upon this mechanism, the top layer exhibits a reversible intralayer ferroelectric switching, leading to a reversible transition between the ferroelectric and antiferroelectric states in the bilayer
MX
s. Further results show that the interlayer van der Waals interaction, which is usually considered to be weak, can actually generate an in-plane lattice distortion and thus cause the breaking/forming of intralayer covalent bonds in the top layer, leading to the observed anomalous phenomenon. This unique property has advantages for energy harvesting over existing piezoelectric and triboelectric nanogenerators. The interlayer sliding-induced big polarization change (40
μ
C cm
−2
) and ultrahigh polarization changing rate generate an open-circuit voltage two orders of magnitude higher than that of MoS
2
-based nanogenerators. The theoretical prediction of power output for this bilayer
MX
s at a moderate sliding speed 1 m s
−1
is four orders of magnitude higher than the MoS
2
nanogenerator, indicating great potentials in energy harvesting applications. |
---|---|
AbstractList | Two-dimensional materials with ferroelectric properties break the size effect of conventional ferroelectric materials and unlock unprecedented potentials of ferroelectric-related application at small length scales. Using first-principles calculations, a sliding-induced ferroelectric-to-antiferroelectric behavior in bilayer group-IV monochalcogenides (
MX
, with
M
= Ge, Sn and
X
= S, Se) is discovered. Upon this mechanism, the top layer exhibits a reversible intralayer ferroelectric switching, leading to a reversible transition between the ferroelectric and antiferroelectric states in the bilayer
MX
s. Further results show that the interlayer van der Waals interaction, which is usually considered to be weak, can actually generate an in-plane lattice distortion and thus cause the breaking/forming of intralayer covalent bonds in the top layer, leading to the observed anomalous phenomenon. This unique property has advantages for energy harvesting over existing piezoelectric and triboelectric nanogenerators. The interlayer sliding-induced big polarization change (40
μ
C cm
−2
) and ultrahigh polarization changing rate generate an open-circuit voltage two orders of magnitude higher than that of MoS
2
-based nanogenerators. The theoretical prediction of power output for this bilayer
MX
s at a moderate sliding speed 1 m s
−1
is four orders of magnitude higher than the MoS
2
nanogenerator, indicating great potentials in energy harvesting applications. Two-dimensional materials with ferroelectric properties break the size effect of conventional ferroelectric materials and unlock unprecedented potentials of ferroelectric-related application at small length scales. Using first-principles calculations, a sliding-induced ferroelectric-to-antiferroelectric behavior in bilayer group-IV monochalcogenides (MX, with M = Ge, Sn and X = S, Se) is discovered. Upon this mechanism, the top layer exhibits a reversible intralayer ferroelectric switching, leading to a reversible transition between the ferroelectric and antiferroelectric states in the bilayer MXs. Further results show that the interlayer van der Waals interaction, which is usually considered to be weak, can actually generate an in-plane lattice distortion and thus cause the breaking/forming of intralayer covalent bonds in the top layer, leading to the observed anomalous phenomenon. This unique property has advantages for energy harvesting over existing piezoelectric and triboelectric nanogenerators. The interlayer sliding-induced big polarization change (40 μC cm−2) and ultrahigh polarization changing rate generate an open-circuit voltage two orders of magnitude higher than that of MoS2-based nanogenerators. The theoretical prediction of power output for this bilayer MXs at a moderate sliding speed 1 m s−1 is four orders of magnitude higher than the MoS2 nanogenerator, indicating great potentials in energy harvesting applications. Abstract Two-dimensional materials with ferroelectric properties break the size effect of conventional ferroelectric materials and unlock unprecedented potentials of ferroelectric-related application at small length scales. Using first-principles calculations, a sliding-induced ferroelectric-to-antiferroelectric behavior in bilayer group-IV monochalcogenides (MX, with M = Ge, Sn and X = S, Se) is discovered. Upon this mechanism, the top layer exhibits a reversible intralayer ferroelectric switching, leading to a reversible transition between the ferroelectric and antiferroelectric states in the bilayer MXs. Further results show that the interlayer van der Waals interaction, which is usually considered to be weak, can actually generate an in-plane lattice distortion and thus cause the breaking/forming of intralayer covalent bonds in the top layer, leading to the observed anomalous phenomenon. This unique property has advantages for energy harvesting over existing piezoelectric and triboelectric nanogenerators. The interlayer sliding-induced big polarization change (40 μC cm−2) and ultrahigh polarization changing rate generate an open-circuit voltage two orders of magnitude higher than that of MoS2-based nanogenerators. The theoretical prediction of power output for this bilayer MXs at a moderate sliding speed 1 m s−1 is four orders of magnitude higher than the MoS2 nanogenerator, indicating great potentials in energy harvesting applications. |
ArticleNumber | 47 |
Author | Sun, Jun Xu, Bo Deng, Junkai Liu, Jefferson Zhe Ding, Xiangdong |
Author_xml | – sequence: 1 givenname: Bo surname: Xu fullname: Xu, Bo organization: State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University – sequence: 2 givenname: Junkai orcidid: 0000-0001-6288-4241 surname: Deng fullname: Deng, Junkai email: junkai.deng@mail.xjtu.edu.cn organization: State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University – sequence: 3 givenname: Xiangdong orcidid: 0000-0002-1220-3097 surname: Ding fullname: Ding, Xiangdong organization: State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University – sequence: 4 givenname: Jun surname: Sun fullname: Sun, Jun organization: State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University – sequence: 5 givenname: Jefferson Zhe orcidid: 0000-0002-5282-7945 surname: Liu fullname: Liu, Jefferson Zhe email: zhe.liu@unimelb.edu.au organization: Department of Mechanical Engineering, The University of Melbourne |
BookMark | eNp9kctuFDEQRS2USAlJfiCrllgb_Kh-eIkiICNFYgNhadXY1Y1HHXuwe5DyGfwxnjSIxyIrl67vKV3VfclOYorE2LUUr6XQw5sCslXAhVJciL5Owwt2rkTbc206cfLXfMauStkJIaRRgwJxzn7cY2w85eYL4lyaMWVHPER_cOSbEJeMMz7W75FyTjSTW3JwfEkc4xL-EZvqjSUsIcXme8AjTHmFyxx8iFOVmm1YpSmnw55v7puHFJP7irNLE8XgqVyy07FGoatf7wX7_P7dp5tbfvfxw-bm7R13YNqF654G6XtPGgQYNKCNADDK96pXcjRtaySOgGMHCjRuBxg9Dq1wKLBSQl-wzbrXJ9zZfQ4PmB9twmCfhJQni3kJbiYLmgh74zyhAugIt9rAAMq32I4gu7rr1bprn9O3A5XF7tIhxxrfqg5kr3uhdXUNq8vlVEqm0bqw4PFg9XRhtlLYY5927dPWPu1Tn3aoqPoP_R34WUivUKnmOFH-k-oZ6iezH7dO |
CitedBy_id | crossref_primary_10_1039_D5CP00375J crossref_primary_10_1007_s40843_022_2221_y crossref_primary_10_1038_s41467_022_33917_2 crossref_primary_10_1038_s41467_023_44617_w crossref_primary_10_1038_s41467_025_57138_5 crossref_primary_10_1038_s41524_024_01288_5 crossref_primary_10_1002_smll_202406129 crossref_primary_10_1016_j_apsusc_2024_161785 crossref_primary_10_1088_2053_1583_acab74 crossref_primary_10_1103_PhysRevB_109_195429 crossref_primary_10_1016_j_apsusc_2022_153739 crossref_primary_10_1093_mam_ozae044_782 crossref_primary_10_1016_j_mser_2024_100873 crossref_primary_10_1002_adfm_202410240 crossref_primary_10_1016_j_mser_2025_100971 crossref_primary_10_1103_PhysRevB_105_195406 crossref_primary_10_1002_adfm_202304139 crossref_primary_10_1002_adma_202301172 crossref_primary_10_1016_j_surfin_2024_104330 crossref_primary_10_1002_wcms_1682 crossref_primary_10_1016_j_matt_2022_05_021 crossref_primary_10_1021_jacs_4c11558 crossref_primary_10_1038_s41467_022_35490_0 crossref_primary_10_1038_s41467_024_49907_5 crossref_primary_10_1103_PhysRevB_111_104110 crossref_primary_10_1016_j_molstruc_2023_136967 crossref_primary_10_1021_acs_jpclett_3c00376 crossref_primary_10_1063_5_0242551 crossref_primary_10_1016_j_mser_2025_100927 crossref_primary_10_1039_D4NR04020A crossref_primary_10_1007_s11249_024_01850_8 crossref_primary_10_1016_j_cej_2024_158239 crossref_primary_10_1039_D4TC01133C crossref_primary_10_3390_nano15020109 crossref_primary_10_1038_s41467_024_48218_z crossref_primary_10_1038_s41467_023_42947_3 crossref_primary_10_1021_acs_jpclett_2c03628 crossref_primary_10_1038_s41467_024_45003_w crossref_primary_10_1038_s41524_023_01127_z crossref_primary_10_1002_aelm_202201031 crossref_primary_10_1021_acsami_4c01488 crossref_primary_10_1002_adfm_202406140 crossref_primary_10_1002_adma_202210894 crossref_primary_10_1002_adom_202400355 |
Cites_doi | 10.1103/PhysRevLett.117.097601 10.1103/PhysRevB.98.184104 10.1063/1.3684549 10.1016/j.nanoen.2014.11.034 10.1126/science.aad8609 10.1126/science.1103218 10.1063/1.3382344 10.1021/jacs.8b09247 10.1126/science.aae0509 10.1002/adma.201804428 10.1002/wcms.1409 10.1021/jacs.9b03201 10.1103/PhysRevB.13.5188 10.1021/acs.jpclett.8b03654 10.1038/s41586-018-0336-3 10.1021/acs.nanolett.0c02357 10.1038/s41467-019-09669-x 10.1103/PhysRevLett.77.3865 10.1103/PhysRevLett.103.096102 10.1126/science.abd3230 10.1021/acsnano.7b09046 10.1039/D1MH00446H 10.1103/PhysRevLett.110.255504 10.1126/science.abe8177 10.1103/PhysRevA.38.3098 10.1002/aelm.201900818 10.1021/acs.nanolett.6b00726 10.1021/jz500409m 10.1103/PhysRevLett.108.205503 10.1103/PhysRevLett.117.246802 10.1073/pnas.1922681117 10.1103/PhysRevB.28.1809 10.1038/ncomms14956 10.1021/jacs.5b13274 10.1088/2053-1583/4/1/015042 10.1103/PhysRevB.99.134108 10.1016/j.mattod.2016.12.001 10.1016/j.progsurf.2019.100561 10.1103/PhysRevB.83.195131 10.1016/0927-0256(96)00008-0 10.1103/PhysRevLett.92.246401 10.1103/PhysRevLett.112.157601 10.1038/nature13792 10.1103/PhysRevB.47.1651 10.1021/acs.nanolett.5b00491 10.1002/adma.201606667 10.1038/s41563-019-0529-7 10.1021/nl403328s 10.1016/j.mattod.2018.12.002 10.1039/C8SC01274A 10.1021/acs.nanolett.7b03020 10.1021/acsnano.7b02756 10.1021/acs.nanolett.7b02198 10.1103/PhysRevLett.125.247601 10.1038/s41567-020-0947-0 10.1103/PhysRevLett.108.236402 10.1103/PhysRev.140.A1133 10.1126/science.aav1937 10.1063/1.4865104 10.1021/jacs.8b11459 10.1038/s41467-020-16291-9 10.1039/C7NR09006D 10.1021/jp309617f 10.1103/PhysRevB.47.558 10.1063/1.1329672 10.1038/s41586-018-0704-z 10.1103/PhysRevB.83.020104 10.1002/adfm.201707383 10.1103/PhysRev.136.B864 10.1021/nn1004974 10.1038/s41467-020-20667-2 10.1021/acs.jpcc.8b05349 10.1021/acs.nanolett.9b01419 10.1007/s12274-015-0959-8 |
ContentType | Journal Article |
Copyright | The Author(s) 2022 The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2022 – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 3V. 7X7 7XB 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU D1I DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. KB. LK8 M0S M7P PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS DOA |
DOI | 10.1038/s41524-022-00724-8 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) Biological Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Directory of Open Access Journals (DOAJ) |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection Materials Science Database ProQuest Central (New) ProQuest Materials Science Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2057-3960 |
EndPage | 9 |
ExternalDocumentID | oai_doaj_org_article_43eea79cdea2446eab394842d5a5f416 10_1038_s41524_022_00724_8 |
GrantInformation_xml | – fundername: Program of Introducing Talents of Discipline to Universities, 111 project 2.0 (Grant No. BP2018008) National Key R\&D Program of China (Grant No. 2018YFB1900104) – fundername: Australian Research Council Discovery Projects (DP180101744) – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 51728203; 11974269 funderid: https://doi.org/10.13039/501100001809 |
GroupedDBID | 0R~ 3V. 5VS 7X7 8FE 8FG 8FH 8FI 8FJ AAJSJ ABJCF ABUWG ACGFS ACSMW ADBBV ADMLS AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS ARCSS BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU D1I EBLON EBS FYUFA GROUPED_DOAJ HCIFZ HMCUK KB. KQ8 LK8 M7P M~E NAO NO~ OK1 PDBOC PIMPY PQQKQ PROAC RNT SNYQT UKHRP AASML AAYXX CITATION PHGZM PHGZT 7XB 8FK AARCD AZQEC DWQXO GNUQQ K9. PKEHL PQEST PQGLB PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c495t-37e81d7de34049a943904492d72721f95591af4af64243ab84fda850ca0a7de03 |
IEDL.DBID | 7X7 |
ISSN | 2057-3960 |
IngestDate | Wed Aug 27 01:24:46 EDT 2025 Wed Aug 13 10:54:07 EDT 2025 Thu Apr 24 23:07:18 EDT 2025 Tue Jul 01 01:41:28 EDT 2025 Fri Feb 21 02:40:24 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c495t-37e81d7de34049a943904492d72721f95591af4af64243ab84fda850ca0a7de03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-6288-4241 0000-0002-1220-3097 0000-0002-5282-7945 |
OpenAccessLink | https://www.proquest.com/docview/2641737033?pq-origsite=%requestingapplication% |
PQID | 2641737033 |
PQPubID | 2041924 |
PageCount | 9 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_43eea79cdea2446eab394842d5a5f416 proquest_journals_2641737033 crossref_citationtrail_10_1038_s41524_022_00724_8 crossref_primary_10_1038_s41524_022_00724_8 springer_journals_10_1038_s41524_022_00724_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-03-22 |
PublicationDateYYYYMMDD | 2022-03-22 |
PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-22 day: 22 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | npj computational materials |
PublicationTitleAbbrev | npj Comput Mater |
PublicationYear | 2022 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Ding (CR9) 2017; 8 Su (CR50) 2019; 94 Mehboudi (CR39) 2016; 117 Perdew, Burke, Ernzerhof (CR65) 1996; 77 Yang, Wu, Li (CR23) 2018; 9 Yasuda, Wang, Watanabe, Taniguchi, Jarillo-Herrero (CR20) 2021; 372 Zhang, Ma, Erdemir, Li (CR42) 2019; 26 Ambrosetti, Ferri, DiStasio, Tkatchenko (CR67) 2016; 351 Hu, Kan (CR27) 2019; 9 Kresse, Hafner (CR61) 1993; 47 Wang (CR13) 2010; 4 Kaloni (CR41) 2019; 99 Chen (CR12) 2019; 366 Klimeš, Bowler, Michaelides (CR73) 2011; 83 Niu, Wang (CR54) 2015; 14 Zhou (CR4) 2017; 17 Wu, Rabe, Vanderbilt (CR47) 2011; 83 Su (CR51) 2019; 141 Woods (CR18) 2021; 12 Liang, Shen, Huang, Dai, Ma (CR22) 2021; 8 Higashitarumizu (CR31) 2020; 11 Kim (CR14) 2013; 13 Ambrosetti, Ancilotto, Silvestrelli (CR58) 2013; 117 Chang (CR30) 2020; 20 Shirodkar, Waghmare (CR7) 2014; 112 Langreth, Mehl (CR64) 1983; 28 Tkatchenko, DiStasio, Car, Scheffler (CR69) 2012; 108 Chang (CR2) 2016; 353 Fei (CR5) 2018; 560 Zhang, Guan, Dong, Yakobson (CR38) 2019; 141 Yang (CR56) 2013; 110 Berman, Erdemir, Sumant (CR43) 2018; 12 Sheppard, Xiao, Chemelewski, Johnson, Henkelman (CR45) 2012; 136 Kong (CR36) 2018; 98 Chang (CR40) 2019; 31 Zhou (CR55) 2016; 9 Reimers, Tawfik, Ford (CR48) 2018; 9 Xiao (CR10) 2018; 28 King-Smith, Vanderbilt (CR74) 1993; 47 Dion, Rydberg, Schröder, Langreth, Lundqvist (CR71) 2004; 92 Belianinov (CR3) 2015; 15 Yuan (CR6) 2019; 10 Liu (CR33) 2012; 108 Dai, Zeng (CR15) 2014; 5 Monkhorst, Pack (CR66) 1976; 13 Guan (CR1) 2020; 6 Vizner Stern (CR19) 2021; 372 Xiao (CR21) 2020; 16 Wu, Zeng (CR28) 2016; 16 Bao (CR29) 2019; 19 Hohenberg, Kohn (CR59) 1964; 136 Wang, Qian (CR11) 2017; 4 Peng (CR57) 2020; 117 Hod, Meyer, Zheng, Urbakh (CR34) 2018; 563 Grimme, Antony, Ehrlich, Krieg (CR68) 2010; 132 Ambrosetti, Reilly, DiStasio, Tkatchenko (CR70) 2014; 140 Tawfik, Reimers, Stampfl, Ford (CR49) 2018; 122 Li, Wu (CR17) 2017; 11 Liu, Wan, Ma, Guo, Yao (CR24) 2018; 10 Wu, Zeng (CR25) 2017; 17 Román-Pérez, Soler (CR72) 2009; 103 Kohn, Sham (CR60) 1965; 140 Chen (CR8) 2018; 140 Choi (CR46) 2004; 306 Deng (CR37) 2016; 138 Wang (CR52) 2017; 20 Han (CR35) 2020; 19 Henkelman, Uberuaga, Jónsson (CR44) 2000; 113 Fei, Kang, Yang (CR26) 2016; 117 Lee (CR53) 2017; 29 Kresse, Furthmüller (CR62) 1996; 6 Wu (CR32) 2014; 514 Liu, Pyatakov, Ren (CR16) 2020; 125 Becke (CR63) 1988; 38 M Wu (724_CR28) 2016; 16 T Hu (724_CR27) 2019; 9 J Yang (724_CR56) 2013; 110 G Kresse (724_CR62) 1996; 6 Z Guan (724_CR1) 2020; 6 P Hohenberg (724_CR59) 1964; 136 X Kong (724_CR36) 2018; 98 O Hod (724_CR34) 2018; 563 K Chang (724_CR40) 2019; 31 Z Fei (724_CR5) 2018; 560 S Niu (724_CR54) 2015; 14 L Li (724_CR17) 2017; 11 C Liu (724_CR24) 2018; 10 X Wu (724_CR47) 2011; 83 G Henkelman (724_CR44) 2000; 113 S Zhang (724_CR42) 2019; 26 J Xiao (724_CR21) 2020; 16 J Dai (724_CR15) 2014; 5 W Wu (724_CR32) 2014; 514 TP Kaloni (724_CR41) 2019; 99 JP Perdew (724_CR65) 1996; 77 J-J Zhang (724_CR38) 2019; 141 M Wu (724_CR25) 2017; 17 A Ambrosetti (724_CR70) 2014; 140 SN Shirodkar (724_CR7) 2014; 112 Y Bao (724_CR29) 2019; 19 W Chen (724_CR12) 2019; 366 W Ding (724_CR9) 2017; 8 Y Wang (724_CR13) 2010; 4 H Wang (724_CR11) 2017; 4 E Han (724_CR35) 2020; 19 G Kresse (724_CR61) 1993; 47 Q Yang (724_CR23) 2018; 9 HJ Monkhorst (724_CR66) 1976; 13 JR Reimers (724_CR48) 2018; 9 CR Woods (724_CR18) 2021; 12 N Higashitarumizu (724_CR31) 2020; 11 D Berman (724_CR43) 2018; 12 AD Becke (724_CR63) 1988; 38 S Grimme (724_CR68) 2010; 132 S Yuan (724_CR6) 2019; 10 J-H Lee (724_CR53) 2017; 29 M Dion (724_CR71) 2004; 92 D Sheppard (724_CR45) 2012; 136 ZL Wang (724_CR52) 2017; 20 A Tkatchenko (724_CR69) 2012; 108 K Chang (724_CR2) 2016; 353 K Chen (724_CR8) 2018; 140 D Peng (724_CR57) 2020; 117 G Su (724_CR51) 2019; 141 Y Zhou (724_CR4) 2017; 17 Z Liu (724_CR33) 2012; 108 G Su (724_CR50) 2019; 94 Y Zhou (724_CR55) 2016; 9 A Ambrosetti (724_CR58) 2013; 117 RD King-Smith (724_CR74) 1993; 47 A Ambrosetti (724_CR67) 2016; 351 DC Langreth (724_CR64) 1983; 28 K Chang (724_CR30) 2020; 20 X Liu (724_CR16) 2020; 125 M Mehboudi (724_CR39) 2016; 117 Y Liang (724_CR22) 2021; 8 R Fei (724_CR26) 2016; 117 W Kohn (724_CR60) 1965; 140 K Yasuda (724_CR20) 2021; 372 J Klimeš (724_CR73) 2011; 83 C-J Kim (724_CR14) 2013; 13 J Deng (724_CR37) 2016; 138 A Belianinov (724_CR3) 2015; 15 G Román-Pérez (724_CR72) 2009; 103 M Vizner Stern (724_CR19) 2021; 372 C Xiao (724_CR10) 2018; 28 KJ Choi (724_CR46) 2004; 306 SA Tawfik (724_CR49) 2018; 122 |
References_xml | – volume: 117 start-page: 097601 year: 2016 ident: CR26 article-title: Ferroelectricity and phase transitions in monolayer Group-IV monochalcogenides publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.117.097601 – volume: 98 start-page: 184104 year: 2018 ident: CR36 article-title: Tunable auxetic properties in group-IV monochalcogenide monolayers publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.98.184104 – volume: 136 start-page: 074103 year: 2012 ident: CR45 article-title: A generalized solid-state nudged elastic band method publication-title: J. Chem. Phys. doi: 10.1063/1.3684549 – volume: 14 start-page: 161 year: 2015 end-page: 192 ident: CR54 article-title: Theoretical systems of triboelectric nanogenerators publication-title: Nano Energy doi: 10.1016/j.nanoen.2014.11.034 – volume: 353 start-page: 274 year: 2016 end-page: 278 ident: CR2 article-title: Discovery of robust in-plane ferroelectricity in atomic-thick SnTe publication-title: Science doi: 10.1126/science.aad8609 – volume: 306 start-page: 1005 year: 2004 end-page: 1009 ident: CR46 article-title: Enhancement of ferroelectricity in strained BaTiO thin films publication-title: Science doi: 10.1126/science.1103218 – volume: 132 start-page: 154104 year: 2010 ident: CR68 article-title: A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu publication-title: J. Chem. Phys. doi: 10.1063/1.3382344 – volume: 140 start-page: 16206 year: 2018 end-page: 16212 ident: CR8 article-title: Ferromagnetism of 1T’-MoS nanoribbons stabilized by edge reconstruction and its periodic variation on nanoribbons width publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b09247 – volume: 351 start-page: 1171 year: 2016 end-page: 1176 ident: CR67 article-title: Wavelike charge density fluctuations and van der Waals interactions at the nanoscale publication-title: Science doi: 10.1126/science.aae0509 – volume: 31 start-page: 1804428 year: 2019 ident: CR40 article-title: Enhanced spontaneous polarization in ultrathin SnTe films with layered antipolar structure publication-title: Adv. Mater. doi: 10.1002/adma.201804428 – volume: 9 start-page: e1409 year: 2019 ident: CR27 article-title: Progress and prospects in low-dimensional multiferroic materials publication-title: WIREs Comput. Mol. Sci. doi: 10.1002/wcms.1409 – volume: 141 start-page: 15040 year: 2019 end-page: 15045 ident: CR38 article-title: Room-temperature ferroelectricity in group-IV metal chalcogenide nanowires publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b03201 – volume: 13 start-page: 5188 year: 1976 end-page: 5192 ident: CR66 article-title: Special points for Brillouin-zone integrations publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.13.5188 – volume: 9 start-page: 7160 year: 2018 end-page: 7164 ident: CR23 article-title: Origin of two-dimensional vertical ferroelectricity in WTe bilayer and multilayer publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.8b03654 – volume: 560 start-page: 336 year: 2018 end-page: 339 ident: CR5 article-title: Ferroelectric switching of a two-dimensional metal publication-title: Nature doi: 10.1038/s41586-018-0336-3 – volume: 20 start-page: 6590 year: 2020 end-page: 6597 ident: CR30 article-title: Microscopic manipulation of ferroelectric domains in SnSe monolayers at room temperature publication-title: Nano Lett. doi: 10.1021/acs.nanolett.0c02357 – volume: 10 year: 2019 ident: CR6 article-title: Room-temperature ferroelectricity in MoTe down to the atomic monolayer limit publication-title: Nat. Commun. doi: 10.1038/s41467-019-09669-x – volume: 77 start-page: 3865 year: 1996 end-page: 3868 ident: CR65 article-title: Generalized gradient approximation made simple publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 103 start-page: 096102 year: 2009 ident: CR72 article-title: Efficient implementation of a van der Waals density functional: application to double-wall carbon nanotubes publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.103.096102 – volume: 372 start-page: 1458 year: 2021 end-page: 1462 ident: CR20 article-title: Stacking-engineered ferroelectricity in bilayer boron nitride publication-title: Science doi: 10.1126/science.abd3230 – volume: 12 start-page: 2122 year: 2018 end-page: 2137 ident: CR43 article-title: Approaches for achieving superlubricity in two-dimensional materials publication-title: ACS Nano doi: 10.1021/acsnano.7b09046 – volume: 8 start-page: 1683 year: 2021 end-page: 1689 ident: CR22 article-title: Intercorrelated ferroelectrics in 2D van der Waals materials publication-title: Mater. Horiz. doi: 10.1039/D1MH00446H – volume: 110 start-page: 255504 year: 2013 ident: CR56 article-title: Observation of High-Speed Microscale Superlubricity in Graphite publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.110.255504 – volume: 372 start-page: 1462 year: 2021 end-page: 1466 ident: CR19 article-title: Interfacial ferroelectricity by van der Waals sliding publication-title: Science doi: 10.1126/science.abe8177 – volume: 38 start-page: 3098 year: 1988 end-page: 3100 ident: CR63 article-title: Density-functional exchange-energy approximation with correct asymptotic behavior publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.38.3098 – volume: 6 start-page: 1900818 year: 2020 ident: CR1 article-title: Recent progress in two-dimensional ferroelectric materials publication-title: Adv. Electron. Mater. doi: 10.1002/aelm.201900818 – volume: 16 start-page: 3236 year: 2016 end-page: 3241 ident: CR28 article-title: Intrinsic ferroelasticity and/or multiferroicity in two-dimensional phosphorene and phosphorene analogues publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b00726 – volume: 5 start-page: 1289 year: 2014 end-page: 1293 ident: CR15 article-title: Bilayer phosphorene: effect of stacking order on bandgap and its potential applications in thin-film solar cells publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz500409m – volume: 108 start-page: 205503 year: 2012 ident: CR33 article-title: Observation of microscale superlubricity in graphite publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.108.205503 – volume: 117 start-page: 246802 year: 2016 ident: CR39 article-title: Structural phase transition and material properties of few-layer monochalcogenides publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.117.246802 – volume: 117 start-page: 12618 year: 2020 end-page: 12623 ident: CR57 article-title: Load-induced dynamical transitions at graphene interfaces publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1922681117 – volume: 28 start-page: 1809 year: 1983 end-page: 1834 ident: CR64 article-title: Beyond the local-density approximation in calculations of ground-state electronic properties publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.28.1809 – volume: 8 year: 2017 ident: CR9 article-title: Prediction of intrinsic two-dimensional ferroelectrics in In Se and other III -VI van der Waals materials publication-title: Nat. Commun. doi: 10.1038/ncomms14956 – volume: 138 start-page: 4772 year: 2016 end-page: 4778 ident: CR37 article-title: Electric field induced reversible phase transition in Li doped phosphorene: shape memory effect and superelasticity publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b13274 – volume: 4 start-page: 015042 year: 2017 ident: CR11 article-title: Two-dimensional multiferroics in monolayer group IV monochalcogenides publication-title: 2D Mater. doi: 10.1088/2053-1583/4/1/015042 – volume: 99 start-page: 134108 year: 2019 ident: CR41 article-title: From an atomic layer to the bulk: low-temperature atomistic structure and ferroelectric and electronic properties of SnTe films publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.99.134108 – volume: 20 start-page: 74 year: 2017 end-page: 82 ident: CR52 article-title: On Maxwell’s displacement current for energy and sensors: the origin of nanogenerators publication-title: Mater. Today doi: 10.1016/j.mattod.2016.12.001 – volume: 94 start-page: 100561 year: 2019 ident: CR50 article-title: Modeling chemical reactions on surfaces: the roles of chemical bonding and van der Waals interactions publication-title: Prog. Surf. Sci. doi: 10.1016/j.progsurf.2019.100561 – volume: 83 start-page: 195131 year: 2011 ident: CR73 article-title: Van der Waals density functionals applied to solids publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.83.195131 – volume: 6 start-page: 15 year: 1996 end-page: 50 ident: CR62 article-title: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set publication-title: Comp. Mater. Sci. doi: 10.1016/0927-0256(96)00008-0 – volume: 92 start-page: 246401 year: 2004 ident: CR71 article-title: Van der Waals density functional for general geometries publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.92.246401 – volume: 112 start-page: 157601 year: 2014 ident: CR7 article-title: Emergence of ferroelectricity at a metal-semiconductor transition in a 1T monolayer of MoS publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.112.157601 – volume: 514 start-page: 470 year: 2014 end-page: 474 ident: CR32 article-title: Piezoelectricity of single-atomic-layer MoS for energy conversion and piezotronics publication-title: Nature doi: 10.1038/nature13792 – volume: 47 start-page: 1651 year: 1993 end-page: 1654 ident: CR74 article-title: Theory of polarization of crystalline solids publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.47.1651 – volume: 15 start-page: 3808 year: 2015 end-page: 3814 ident: CR3 article-title: CuInP S room temperature layered ferroelectric publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b00491 – volume: 29 start-page: 1606667 year: 2017 ident: CR53 article-title: Reliable piezoelectricity in bilayer WSe for piezoelectric nanogenerators publication-title: Adv. Mater. doi: 10.1002/adma.201606667 – volume: 19 start-page: 305 year: 2020 end-page: 309 ident: CR35 article-title: Ultrasoft slip-mediated bending in few-layer graphene publication-title: Nat. Mater. doi: 10.1038/s41563-019-0529-7 – volume: 13 start-page: 5660 year: 2013 end-page: 5665 ident: CR14 article-title: Stacking order dependent second harmonic generation and topological defects in -BN Bilayers publication-title: Nano Lett. doi: 10.1021/nl403328s – volume: 26 start-page: 67 year: 2019 end-page: 86 ident: CR42 article-title: Tribology of two-dimensional materials: from mechanisms to modulating strategies publication-title: Mater. Today doi: 10.1016/j.mattod.2018.12.002 – volume: 9 start-page: 7620 year: 2018 end-page: 7627 ident: CR48 article-title: van der Waals forces control ferroelectric-antiferroelectric ordering in CuInP S and CuBiP Se laminar materials publication-title: Chem. Sci. doi: 10.1039/C8SC01274A – volume: 17 start-page: 6309 year: 2017 end-page: 6314 ident: CR25 article-title: Bismuth oxychalcogenides: a new class of ferroelectric/ferroelastic materials with ultra high mobility publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b03020 – volume: 11 start-page: 6382 year: 2017 end-page: 6388 ident: CR17 article-title: Binary compound bilayer and multilayer with vertical polarizations: two-dimensional ferroelectrics, multiferroics, and nanogenerators publication-title: ACS Nano doi: 10.1021/acsnano.7b02756 – volume: 17 start-page: 5508 year: 2017 end-page: 5513 ident: CR4 article-title: Out-of-plane piezoelectricity and ferroelectricity in layered -In Se nanoflakes publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b02198 – volume: 125 start-page: 247601 year: 2020 ident: CR16 article-title: Magnetoelectric coupling in multiferroic bilayer VS publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.125.247601 – volume: 16 start-page: 1028 year: 2020 end-page: 1034 ident: CR21 article-title: Berry curvature memory through electrically driven stacking transitions publication-title: Nat. Phys. doi: 10.1038/s41567-020-0947-0 – volume: 108 start-page: 236402 year: 2012 ident: CR69 article-title: Accurate and efficient method for many-body van der Waals Interactions publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.108.236402 – volume: 140 start-page: A1133 year: 1965 end-page: A1138 ident: CR60 article-title: Self-consistent equations including exchange and correlation effects publication-title: Phys. Rev. doi: 10.1103/PhysRev.140.A1133 – volume: 366 start-page: 983 year: 2019 end-page: 987 ident: CR12 article-title: Direct observation of van der Waals stacking-dependent interlayer magnetism publication-title: Science doi: 10.1126/science.aav1937 – volume: 140 start-page: 18A508 year: 2014 ident: CR70 article-title: Long-range correlation energy calculated from coupled atomic response functions publication-title: J. Chem. Phys. doi: 10.1063/1.4865104 – volume: 141 start-page: 1628 year: 2019 end-page: 1635 ident: CR51 article-title: Switchable Schottky contacts: simultaneously enhanced output current and reduced leakage current publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b11459 – volume: 11 year: 2020 ident: CR31 article-title: Purely in-plane ferroelectricity in monolayer SnS at room temperature publication-title: Nat. Commun. doi: 10.1038/s41467-020-16291-9 – volume: 10 start-page: 7984 year: 2018 end-page: 7990 ident: CR24 article-title: Robust ferroelectricity in two-dimensional SbN and BiP publication-title: Nanoscale doi: 10.1039/C7NR09006D – volume: 117 start-page: 321 year: 2013 end-page: 325 ident: CR58 article-title: van der Waals-corrected ab initio study of water ice-graphite interaction publication-title: J. Phys. Chem. C. doi: 10.1021/jp309617f – volume: 47 start-page: 558 year: 1993 end-page: 561 ident: CR61 article-title: Ab initio molecular dynamics for liquid metals publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.47.558 – volume: 113 start-page: 9901 year: 2000 end-page: 9904 ident: CR44 article-title: A climbing image nudged elastic band method for finding saddle points and minimum energy paths publication-title: J. Chem. Phys. doi: 10.1063/1.1329672 – volume: 563 start-page: 485 year: 2018 end-page: 492 ident: CR34 article-title: Structural superlubricity and ultralow friction across the length scales publication-title: Nature doi: 10.1038/s41586-018-0704-z – volume: 83 start-page: 020104 year: 2011 ident: CR47 article-title: Interfacial enhancement of ferroelectricity in CaTiO /BaTiO superlattices publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.83.020104 – volume: 28 start-page: 1707383 year: 2018 ident: CR10 article-title: Elemental ferroelectricity and antiferroelectricity in group-V monolayer publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201707383 – volume: 136 start-page: B864 year: 1964 end-page: B871 ident: CR59 article-title: Inhomogeneous electron gas publication-title: Phys. Rev. doi: 10.1103/PhysRev.136.B864 – volume: 4 start-page: 4074 year: 2010 end-page: 4080 ident: CR13 article-title: Stacking-dependent optical conductivity of bilayer graphene publication-title: ACS Nano doi: 10.1021/nn1004974 – volume: 12 year: 2021 ident: CR18 article-title: Charge-polarized interfacial superlattices in marginally twisted hexagonal boron nitride publication-title: Nat. Commun. doi: 10.1038/s41467-020-20667-2 – volume: 122 start-page: 22675 year: 2018 end-page: 22687 ident: CR49 article-title: van der Waals forces control the internal chemical structure of monolayers within the lamellar materials CuInP S and CuBiP Se publication-title: J. Phys. Chem. C. doi: 10.1021/acs.jpcc.8b05349 – volume: 19 start-page: 5109 year: 2019 end-page: 5117 ident: CR29 article-title: Gate-tunable in-plane ferroelectricity in few-layer SnS publication-title: Nano Lett. doi: 10.1021/acs.nanolett.9b01419 – volume: 9 start-page: 800 year: 2016 end-page: 807 ident: CR55 article-title: Theoretical study on two-dimensional MoS piezoelectric nanogenerators publication-title: Nano Res. doi: 10.1007/s12274-015-0959-8 – volume: 16 start-page: 3236 year: 2016 ident: 724_CR28 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b00726 – volume: 117 start-page: 12618 year: 2020 ident: 724_CR57 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1922681117 – volume: 28 start-page: 1809 year: 1983 ident: 724_CR64 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.28.1809 – volume: 15 start-page: 3808 year: 2015 ident: 724_CR3 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b00491 – volume: 9 start-page: 800 year: 2016 ident: 724_CR55 publication-title: Nano Res. doi: 10.1007/s12274-015-0959-8 – volume: 103 start-page: 096102 year: 2009 ident: 724_CR72 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.103.096102 – volume: 28 start-page: 1707383 year: 2018 ident: 724_CR10 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201707383 – volume: 38 start-page: 3098 year: 1988 ident: 724_CR63 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.38.3098 – volume: 13 start-page: 5660 year: 2013 ident: 724_CR14 publication-title: Nano Lett. doi: 10.1021/nl403328s – volume: 372 start-page: 1462 year: 2021 ident: 724_CR19 publication-title: Science doi: 10.1126/science.abe8177 – volume: 122 start-page: 22675 year: 2018 ident: 724_CR49 publication-title: J. Phys. Chem. C. doi: 10.1021/acs.jpcc.8b05349 – volume: 108 start-page: 236402 year: 2012 ident: 724_CR69 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.108.236402 – volume: 112 start-page: 157601 year: 2014 ident: 724_CR7 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.112.157601 – volume: 10 start-page: 7984 year: 2018 ident: 724_CR24 publication-title: Nanoscale doi: 10.1039/C7NR09006D – volume: 98 start-page: 184104 year: 2018 ident: 724_CR36 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.98.184104 – volume: 5 start-page: 1289 year: 2014 ident: 724_CR15 publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz500409m – volume: 132 start-page: 154104 year: 2010 ident: 724_CR68 publication-title: J. Chem. Phys. doi: 10.1063/1.3382344 – volume: 140 start-page: 18A508 year: 2014 ident: 724_CR70 publication-title: J. Chem. Phys. doi: 10.1063/1.4865104 – volume: 19 start-page: 305 year: 2020 ident: 724_CR35 publication-title: Nat. Mater. doi: 10.1038/s41563-019-0529-7 – volume: 8 year: 2017 ident: 724_CR9 publication-title: Nat. Commun. doi: 10.1038/ncomms14956 – volume: 9 start-page: 7620 year: 2018 ident: 724_CR48 publication-title: Chem. Sci. doi: 10.1039/C8SC01274A – volume: 31 start-page: 1804428 year: 2019 ident: 724_CR40 publication-title: Adv. Mater. doi: 10.1002/adma.201804428 – volume: 99 start-page: 134108 year: 2019 ident: 724_CR41 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.99.134108 – volume: 17 start-page: 5508 year: 2017 ident: 724_CR4 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b02198 – volume: 12 year: 2021 ident: 724_CR18 publication-title: Nat. Commun. doi: 10.1038/s41467-020-20667-2 – volume: 20 start-page: 6590 year: 2020 ident: 724_CR30 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.0c02357 – volume: 141 start-page: 1628 year: 2019 ident: 724_CR51 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b11459 – volume: 17 start-page: 6309 year: 2017 ident: 724_CR25 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b03020 – volume: 20 start-page: 74 year: 2017 ident: 724_CR52 publication-title: Mater. Today doi: 10.1016/j.mattod.2016.12.001 – volume: 117 start-page: 246802 year: 2016 ident: 724_CR39 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.117.246802 – volume: 29 start-page: 1606667 year: 2017 ident: 724_CR53 publication-title: Adv. Mater. doi: 10.1002/adma.201606667 – volume: 117 start-page: 097601 year: 2016 ident: 724_CR26 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.117.097601 – volume: 47 start-page: 558 year: 1993 ident: 724_CR61 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.47.558 – volume: 563 start-page: 485 year: 2018 ident: 724_CR34 publication-title: Nature doi: 10.1038/s41586-018-0704-z – volume: 12 start-page: 2122 year: 2018 ident: 724_CR43 publication-title: ACS Nano doi: 10.1021/acsnano.7b09046 – volume: 26 start-page: 67 year: 2019 ident: 724_CR42 publication-title: Mater. Today doi: 10.1016/j.mattod.2018.12.002 – volume: 77 start-page: 3865 year: 1996 ident: 724_CR65 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 13 start-page: 5188 year: 1976 ident: 724_CR66 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.13.5188 – volume: 136 start-page: B864 year: 1964 ident: 724_CR59 publication-title: Phys. Rev. doi: 10.1103/PhysRev.136.B864 – volume: 366 start-page: 983 year: 2019 ident: 724_CR12 publication-title: Science doi: 10.1126/science.aav1937 – volume: 4 start-page: 015042 year: 2017 ident: 724_CR11 publication-title: 2D Mater. doi: 10.1088/2053-1583/4/1/015042 – volume: 92 start-page: 246401 year: 2004 ident: 724_CR71 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.92.246401 – volume: 351 start-page: 1171 year: 2016 ident: 724_CR67 publication-title: Science doi: 10.1126/science.aae0509 – volume: 136 start-page: 074103 year: 2012 ident: 724_CR45 publication-title: J. Chem. Phys. doi: 10.1063/1.3684549 – volume: 125 start-page: 247601 year: 2020 ident: 724_CR16 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.125.247601 – volume: 16 start-page: 1028 year: 2020 ident: 724_CR21 publication-title: Nat. Phys. doi: 10.1038/s41567-020-0947-0 – volume: 4 start-page: 4074 year: 2010 ident: 724_CR13 publication-title: ACS Nano doi: 10.1021/nn1004974 – volume: 138 start-page: 4772 year: 2016 ident: 724_CR37 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b13274 – volume: 560 start-page: 336 year: 2018 ident: 724_CR5 publication-title: Nature doi: 10.1038/s41586-018-0336-3 – volume: 8 start-page: 1683 year: 2021 ident: 724_CR22 publication-title: Mater. Horiz. doi: 10.1039/D1MH00446H – volume: 108 start-page: 205503 year: 2012 ident: 724_CR33 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.108.205503 – volume: 6 start-page: 1900818 year: 2020 ident: 724_CR1 publication-title: Adv. Electron. Mater. doi: 10.1002/aelm.201900818 – volume: 306 start-page: 1005 year: 2004 ident: 724_CR46 publication-title: Science doi: 10.1126/science.1103218 – volume: 117 start-page: 321 year: 2013 ident: 724_CR58 publication-title: J. Phys. Chem. C. doi: 10.1021/jp309617f – volume: 9 start-page: 7160 year: 2018 ident: 724_CR23 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.8b03654 – volume: 83 start-page: 195131 year: 2011 ident: 724_CR73 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.83.195131 – volume: 9 start-page: e1409 year: 2019 ident: 724_CR27 publication-title: WIREs Comput. Mol. Sci. doi: 10.1002/wcms.1409 – volume: 10 year: 2019 ident: 724_CR6 publication-title: Nat. Commun. doi: 10.1038/s41467-019-09669-x – volume: 14 start-page: 161 year: 2015 ident: 724_CR54 publication-title: Nano Energy doi: 10.1016/j.nanoen.2014.11.034 – volume: 94 start-page: 100561 year: 2019 ident: 724_CR50 publication-title: Prog. Surf. Sci. doi: 10.1016/j.progsurf.2019.100561 – volume: 47 start-page: 1651 year: 1993 ident: 724_CR74 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.47.1651 – volume: 514 start-page: 470 year: 2014 ident: 724_CR32 publication-title: Nature doi: 10.1038/nature13792 – volume: 110 start-page: 255504 year: 2013 ident: 724_CR56 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.110.255504 – volume: 19 start-page: 5109 year: 2019 ident: 724_CR29 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.9b01419 – volume: 11 year: 2020 ident: 724_CR31 publication-title: Nat. Commun. doi: 10.1038/s41467-020-16291-9 – volume: 83 start-page: 020104 year: 2011 ident: 724_CR47 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.83.020104 – volume: 6 start-page: 15 year: 1996 ident: 724_CR62 publication-title: Comp. Mater. Sci. doi: 10.1016/0927-0256(96)00008-0 – volume: 140 start-page: 16206 year: 2018 ident: 724_CR8 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b09247 – volume: 372 start-page: 1458 year: 2021 ident: 724_CR20 publication-title: Science doi: 10.1126/science.abd3230 – volume: 113 start-page: 9901 year: 2000 ident: 724_CR44 publication-title: J. Chem. Phys. doi: 10.1063/1.1329672 – volume: 353 start-page: 274 year: 2016 ident: 724_CR2 publication-title: Science doi: 10.1126/science.aad8609 – volume: 141 start-page: 15040 year: 2019 ident: 724_CR38 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b03201 – volume: 11 start-page: 6382 year: 2017 ident: 724_CR17 publication-title: ACS Nano doi: 10.1021/acsnano.7b02756 – volume: 140 start-page: A1133 year: 1965 ident: 724_CR60 publication-title: Phys. Rev. doi: 10.1103/PhysRev.140.A1133 |
SSID | ssj0001928240 |
Score | 2.4220707 |
Snippet | Two-dimensional materials with ferroelectric properties break the size effect of conventional ferroelectric materials and unlock unprecedented potentials of... Abstract Two-dimensional materials with ferroelectric properties break the size effect of conventional ferroelectric materials and unlock unprecedented... |
SourceID | doaj proquest crossref springer |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | 639/301/119/996 639/925/357/1018 639/925/927/1007 Antiferroelectricity Bilayers Characterization and Evaluation of Materials Chemical bonds Chemistry and Materials Science Computational Intelligence Covalent bonds Crystal structure Energy harvesting Ferroelectric materials Ferroelectrics First principles Germanium Interlayers Materials Science Mathematical and Computational Engineering Mathematical and Computational Physics Mathematical Modeling and Industrial Mathematics Molybdenum disulfide Nanogenerators Open circuit voltage Piezoelectricity Polarization Size effects Sliding Theoretical Tin Two dimensional materials Van der Waals forces |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals (DOAJ) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LTtwwFLUQK1ig8qg65SEv2BWLxHbGnmWLQIDUrspjZ10_IlKhCZoJ_Y_-Mfc6GRiQaDfdOrZk-Z74nOvHMWOHsvIGaa4UZH0i9HgsBVjlRYjSpEoZGSPdHf7-Y3x-pS9vq9ulp77oTFhvD9wP3LFWKYGZhJgAmWicwKuJtlrGCqoa1QTNvsh5S8nUr163WOSq4ZZMoezxnJhKCzq8Tm7ZWthXTJQN-1-pzDcbo5lvzj6wjUEo8q99BzfZSppusfUl-8Bt9ucapjymGb8BBBFH-RmSwBwboxV5k1dtARU1r9Ns1vbv3TRBdK0AOiG0XMg7oqx8eov_boAa0zofNUYdSvSGRdw3fVG-CSIurjlCuA13cB9ahGET03yHXZ2d_jw5F8MTCyJgZtTh9JJQsJqYlMZUASYoTwqtJzLS_mxZkz1dCbWGGtMUrcBbXUewVRGgAGxVqI9sddpO0yfGjcck3UNU0UsNGKfaWASBLJU1oMp6xMrFcLsw-I_TMxj3Lu-DK-v6EDkMkcshcnbEvjy3eejdN_5a-xtF8bkmOWfnAsSTG_Dk_oWnEdtbYMANv_PcoWosjcLJUY3Y0QIXL5_f79Ln_9GlXbYmM26VkHKPrXazx7SPUqjzBxn1TxISBgo priority: 102 providerName: Directory of Open Access Journals – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKucCh4im2tMgHbmCR2E7sHGHVqiDBiZberPEjEKnaVNnA_-AfM-MkfSBA4ur1SNbOF8839sxnxl7KyhsMc6Ug6ROh61oKsMqLEKVJlTIyRuod_vipPjnVH86r8x0ml16YXLSfJS3zNr1Uh73ZUqDRgmrPSexaC3uH3SXpdirjW9fr63OVBpMIXcz9MYWyfzC9FYOyVP8tfvnblWiONMcP2N5MEfnbaVEP2U7aPGL3bwgHPmY_z2DDYxr4F0D4cCSeIQnMrtFPkXf5vBaQS_M2DUM_vXTTBTH2Aqg26OYgHylY5bot_qMDMqYTPjJGBkqBDYe476ah3AMi3p9xBG8fvsFF6BGAXUzbJ-z0-Ojz-kTMjyuIgDnRiBtLQqpqYlIakwRokJgUWjcy0s1s2ZIwXQmthhYTFK3AW91GsFURoAC0KtRTtrvpN-kZ48Zjeu4hquilhgS-NRbdL0tlDaiyXbFy-btdmJXH6QGMC5dvwJV1k4scushlFzm7Yq-ubC4n3Y1_zn5HXryaSZrZeaAfvroZQ06rlMA0ISZATlPjOlWjrZaxgqpFXrpiBwsG3Pwhbx3yxdIo3BbVir1ecHH989-XtP9_05-zezIjVAkpD9juOHxPh0h3Rv8i4_sXGin6sQ priority: 102 providerName: Springer Nature |
Title | Van der Waals force-induced intralayer ferroelectric-to-antiferroelectric transition via interlayer sliding in bilayer group-IV monochalcogenides |
URI | https://link.springer.com/article/10.1038/s41524-022-00724-8 https://www.proquest.com/docview/2641737033 https://doaj.org/article/43eea79cdea2446eab394842d5a5f416 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwELZge4EHxE9RGJUfeANrie3EzhPqqpVRiQkBG32zLrEDkaZmpIH_g_-YOyddNyT20krXuIpyX3zfne3vGHsts9JgmEsFSZ8InedSgFWlqLw0IVNGek9nhz-e5idnernKVmPBbTNuq9zOiXGi9m1FNfJDDNypUYhP9e7yp6CuUbS6OrbQuMv2SbqMki-zMrsaS4EJhU7GszKJsocbilda0BZ20szWwt6IR1G2_wbX_Gd5NEadxUP2YKSLfDb49xG7E9aP2f1rIoJP2J9zWHMfOv4NEEocSWgVBGba6DPPm1i7BeTVvA5d1w5db5pK9K0A2id03ch7ClxxDxf_3QANpmofDUY2SkEOTbxsBlM8DyI-nHN8Mm31Ay6qFsHY-LB5ys4Wx1_nJ2JstCAqzI96nGQC0lbjg9KYMECBJCXRupCeVmnTmkTqUqg11JisaAWl1bUHmyUVJICjEvWM7a3bdXjOuCkxVS_BK19KDQHK2liEgkyVNaDSesLS7eN21ahCTs0wLlxcDVfWDS5y6CIXXeTshL25GnM5aHDcevURefHqStLPjoa2--7G19FpFQKYovIBkN_keJ-q0FZLn0FWI0edsIMtBtz4Um_cDoIT9naLi93P_7-lF7f_20t2T0ZEKiHlAdvru1_hFVKdvpxGPOOnXbyfsv3ZbPllid9Hx6efPqN1ns-nsYjwF2HvAuA |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQAHxFNdKOADnMBqYjsb54AQr2WXPk5t6c1MbAciVZuyG0D8DP4Iv5EZJ-m2SPTWq-OxrMxnzzf2eIaxpzIrczRzqaDUJ0KPx1KAUaVwXuYhU7n0nt4O7-6Npwf641F2tMb-DG9hKKxy2BPjRu0bR2fkW2i401whPtWrk2-CqkbR7epQQqODxXb49RNdtuXL2TvU7zMpJ-_3305FX1VAOHQGWlxRATla7oPSyI6hQIucaF1IT1eSaUUZ2VKoNFTIzLWC0ujKg8kSBwmgVKJw3CvsqlaqoBBCM_mwOtMp0IHRSf82J1Fma0n2UQsKmacc3VqYc_Yvlgk4x23_uY6NVm5yi93s6Sl_3eHpNlsL8zvsxpmkhXfZ70OYcx8W_BMgdDmSXhcEevaIEc_reFYMyON5FRaLpquyUzvRNgIoLulsI2_JUMaYMf6jBhKm00USRvZLRhWbeFl3TfH9iZgdctRE477CsWsQ_LUPy3vs4FJUcJ-tz5t52GA8L0MpS_DKl1JDgLLKDUJPpsrkoNJqxNLhd1vXZz2n4hvHNt6-K2M7FVlUkY0qsmbEnp_KnHQ5Py7s_Ya0eNqT8nXHhmbxxfbL32oVAuSF8wGQT41xnqrQRkufQVYhJx6xzQEDtt9ElnYF-RF7MeBi9fn_U3pw8WhP2LXp_u6O3ZntbT9k12VEpxJSbrL1dvE9PEKa1ZaPI7Y5-3zZi-kvVl84nA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELVKkRAcEJ_qQgEf4ATWJraz9h4QAsqqS6HiQMvezPgjEKnalGwA8TP4O_w6xk7SbZHorVcntqLMG79nezxDyGNeWIU0l7OY-oTJyYQz0MIy57kKhVDc-3h3-P3-ZPdAvl0Uiw3yZ7gLE8MqhzkxTdS-dnGPfIzEnSuB-BTjsg-L-LAze3H8jcUKUvGkdSin0UFkL_z6icu31fP5Dtr6CeezNx9f77K-wgBzuDBo0bsC6jXlg5ColGGK7JxJOeU-Hk_mZczOlkMpoUSVLgVYLUsPusgcZIC9MoHjXiKXlUDaRF9SC7Xe35niYkZm_T2dTOjxKnKlZDF8Pubrlkyf4cJUMuCMzv3naDYx3uwGud5LVfqyw9ZNshGWt8i1UwkMb5Pfh7CkPjT0EyCMKQpgFxiu8hEvnlZp3xhQ09MyNE3dVdypHGtrBjFG6XQjbSNppvgx-qOC2DnuNMbOqIQjwWITtVXXlO6isPkhRUvU7iscuRodofJhdYccXIgJ7pLNZb0MW4QqGyy34IW3XEIAWyqNMOS50ApEXo5IPvxu4_oM6LEQx5FJJ_FCm85EBk1kkomMHpGnJ32Ou_wf5779Klrx5M2Yuzs11M0X008FRooQQE2dD4DaaoLfKaZSS-4LKErUxyOyPWDA9BPKyqzhPyLPBlysH___k-6dP9ojcgXdyLyb7-_dJ1d5AqdgnG-Tzbb5Hh6g4mrtwwRtSj5ftC_9BbtgPMk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Van+der+Waals+force-induced+intralayer+ferroelectric-to-antiferroelectric+transition+via+interlayer+sliding+in+bilayer+group-IV+monochalcogenides&rft.jtitle=npj+computational+materials&rft.au=Xu%2C+Bo&rft.au=Deng+Junkai&rft.au=Ding+Xiangdong&rft.au=Sun%2C+Jun&rft.date=2022-03-22&rft.pub=Nature+Publishing+Group&rft.eissn=2057-3960&rft.volume=8&rft.issue=1&rft_id=info:doi/10.1038%2Fs41524-022-00724-8&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2057-3960&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2057-3960&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2057-3960&client=summon |