Recent frontiers of climate changes in East Asia at global warming of 1.5°C and 2°C

East Asia is undergoing significant climate changes and these changes are likely to grow in the future. It is urgent to characterize both the mechanisms controlling climate and the response of the East Asian climate system at global warming of 1.5 and 2 °C above pre-industrial levels (GW1.5 and GW2...

Full description

Saved in:
Bibliographic Details
Published inNPJ climate and atmospheric science Vol. 5; no. 1; pp. 1 - 17
Main Authors You, Qinglong, Jiang, Zhihong, Yue, Xu, Guo, Weidong, Liu, Yonggang, Cao, Jian, Li, Wei, Wu, Fangying, Cai, Ziyi, Zhu, Huanhuan, Li, Tim, Liu, Zhengyu, He, Jinhai, Chen, Deliang, Pepin, Nick, Zhai, Panmao
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 20.10.2022
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract East Asia is undergoing significant climate changes and these changes are likely to grow in the future. It is urgent to characterize both the mechanisms controlling climate and the response of the East Asian climate system at global warming of 1.5 and 2 °C above pre-industrial levels (GW1.5 and GW2 hereafter). This study reviews recent studies on East Asian climate change at GW1.5 and GW2. The intensity and variability of the East Asian summer monsoon are expected to increase modestly, accompanied by an enhancement of water vapor transport. Other expected changes include the intensification of the Western Pacific Subtropical High and an intensified and southward shift of the East Asian jet, while the intensity of the East Asian winter monsoon is projected to reduce with high uncertainty. Meanwhile, the frequency of ENSO may increase in a warming world with great uncertainty. Significant warming and wetting occur in East Asia, with more pronounced intensity, frequency, and duration of climate extremes at GW2 than that at GW1.5. The fine structure of regional climate changes and the presence and location of various warming hotspots, however, show substantial divergence among different model simulations. Furthermore, the Asian climate responses can differ substantially between the transient and stabilized GW1.5 and GW2, which has important implications for emission policies. Thus, to better plan effective mitigation and adaptation activities, further research including an in-depth exploration of the divergent responses in transient versus stabilized scenarios, the quantification of future projection uncertainties, and improvements of the methods to reduce model uncertainties are required.
AbstractList Abstract East Asia is undergoing significant climate changes and these changes are likely to grow in the future. It is urgent to characterize both the mechanisms controlling climate and the response of the East Asian climate system at global warming of 1.5 and 2 °C above pre-industrial levels (GW1.5 and GW2 hereafter). This study reviews recent studies on East Asian climate change at GW1.5 and GW2. The intensity and variability of the East Asian summer monsoon are expected to increase modestly, accompanied by an enhancement of water vapor transport. Other expected changes include the intensification of the Western Pacific Subtropical High and an intensified and southward shift of the East Asian jet, while the intensity of the East Asian winter monsoon is projected to reduce with high uncertainty. Meanwhile, the frequency of ENSO may increase in a warming world with great uncertainty. Significant warming and wetting occur in East Asia, with more pronounced intensity, frequency, and duration of climate extremes at GW2 than that at GW1.5. The fine structure of regional climate changes and the presence and location of various warming hotspots, however, show substantial divergence among different model simulations. Furthermore, the Asian climate responses can differ substantially between the transient and stabilized GW1.5 and GW2, which has important implications for emission policies. Thus, to better plan effective mitigation and adaptation activities, further research including an in-depth exploration of the divergent responses in transient versus stabilized scenarios, the quantification of future projection uncertainties, and improvements of the methods to reduce model uncertainties are required.
East Asia is undergoing significant climate changes and these changes are likely to grow in the future. It is urgent to characterize both the mechanisms controlling climate and the response of the East Asian climate system at global warming of 1.5 and 2 °C above pre-industrial levels (GW1.5 and GW2 hereafter). This study reviews recent studies on East Asian climate change at GW1.5 and GW2. The intensity and variability of the East Asian summer monsoon are expected to increase modestly, accompanied by an enhancement of water vapor transport. Other expected changes include the intensification of the Western Pacific Subtropical High and an intensified and southward shift of the East Asian jet, while the intensity of the East Asian winter monsoon is projected to reduce with high uncertainty. Meanwhile, the frequency of ENSO may increase in a warming world with great uncertainty. Significant warming and wetting occur in East Asia, with more pronounced intensity, frequency, and duration of climate extremes at GW2 than that at GW1.5. The fine structure of regional climate changes and the presence and location of various warming hotspots, however, show substantial divergence among different model simulations. Furthermore, the Asian climate responses can differ substantially between the transient and stabilized GW1.5 and GW2, which has important implications for emission policies. Thus, to better plan effective mitigation and adaptation activities, further research including an in-depth exploration of the divergent responses in transient versus stabilized scenarios, the quantification of future projection uncertainties, and improvements of the methods to reduce model uncertainties are required.
ArticleNumber 80
Author Zhai, Panmao
Li, Tim
You, Qinglong
Li, Wei
Jiang, Zhihong
Liu, Yonggang
Zhu, Huanhuan
Yue, Xu
Liu, Zhengyu
Cai, Ziyi
Guo, Weidong
Wu, Fangying
He, Jinhai
Chen, Deliang
Cao, Jian
Pepin, Nick
Author_xml – sequence: 1
  givenname: Qinglong
  surname: You
  fullname: You, Qinglong
  email: qlyou@fudan.edu.cn
  organization: Department of Atmospheric and Oceanic Sciences & Institute of Atmospheric Sciences, Fudan University
– sequence: 2
  givenname: Zhihong
  surname: Jiang
  fullname: Jiang, Zhihong
  email: zhjiang@nuist.edu.cn
  organization: Key Laboratory of Meteorological Disaster of Ministry of Education, Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disaster, Nanjing University of Information Science & Technology (NUIST)
– sequence: 3
  givenname: Xu
  surname: Yue
  fullname: Yue, Xu
  organization: Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, NUIST
– sequence: 4
  givenname: Weidong
  orcidid: 0000-0003-0299-6393
  surname: Guo
  fullname: Guo, Weidong
  organization: Institute for Climate and Global Change Research, School of Atmospheric Sciences, Nanjing University
– sequence: 5
  givenname: Yonggang
  surname: Liu
  fullname: Liu, Yonggang
  organization: Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University
– sequence: 6
  givenname: Jian
  surname: Cao
  fullname: Cao, Jian
  organization: Key Laboratory of Meteorological Disaster of Ministry of Education, Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disaster, Nanjing University of Information Science & Technology (NUIST)
– sequence: 7
  givenname: Wei
  surname: Li
  fullname: Li, Wei
  organization: Key Laboratory of Meteorological Disaster of Ministry of Education, Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disaster, Nanjing University of Information Science & Technology (NUIST)
– sequence: 8
  givenname: Fangying
  surname: Wu
  fullname: Wu, Fangying
  organization: Department of Atmospheric and Oceanic Sciences & Institute of Atmospheric Sciences, Fudan University
– sequence: 9
  givenname: Ziyi
  surname: Cai
  fullname: Cai, Ziyi
  organization: Department of Atmospheric and Oceanic Sciences & Institute of Atmospheric Sciences, Fudan University
– sequence: 10
  givenname: Huanhuan
  surname: Zhu
  fullname: Zhu, Huanhuan
  organization: Key Laboratory of Meteorological Disaster of Ministry of Education, Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disaster, Nanjing University of Information Science & Technology (NUIST)
– sequence: 11
  givenname: Tim
  surname: Li
  fullname: Li, Tim
  organization: Department of Atmospheric and Oceanic Sciences & Institute of Atmospheric Sciences, Fudan University, International Pacific Research Center, Department of Atmospheric Sciences, University of Hawaii at Manoa
– sequence: 12
  givenname: Zhengyu
  surname: Liu
  fullname: Liu, Zhengyu
  organization: Atmospheric Science Program, Department of Geography, The Ohio State University
– sequence: 13
  givenname: Jinhai
  surname: He
  fullname: He, Jinhai
  organization: Key Laboratory of Meteorological Disaster of Ministry of Education, Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disaster, Nanjing University of Information Science & Technology (NUIST)
– sequence: 14
  givenname: Deliang
  orcidid: 0000-0003-0288-5618
  surname: Chen
  fullname: Chen, Deliang
  organization: Department of Earth Sciences, University of Gothenburg
– sequence: 15
  givenname: Nick
  surname: Pepin
  fullname: Pepin, Nick
  organization: School of Environment, Geography and Geosciences, University of Portsmouth
– sequence: 16
  givenname: Panmao
  surname: Zhai
  fullname: Zhai, Panmao
  organization: Chinese Academy of Meteorological Sciences
BookMark eNp9UcFKHTEUDcVCrfUHugq4HpubTJKZpTxsFQRB6jrcSTKveYyJTSLSv_Ib_DKjU1px4SLkcDnn3MM9n8leTNET8hXYMTAxfCs9KOAd4-0xwUTHPpB9LkbdCc353iv8iRyWsmOsURkftdon11fe-ljpnFOswedC00ztEm6wemp_Ydz6QkOkp1gqPSkBKVa6XdKEC73HfBPi9lkBx_LxYUMxOsob-EI-zrgUf_j3PyDX309_bs66i8sf55uTi872o6ydULPsNWjZqxk84OS9c0qMfGoIJz5I0L0VA_YDTGwC5UepYdRWTNJ7LsQBOV99XcKduc0tdv5jEgbzMkh5azDXYBdvnOXSi5k7jrbvRxg0cwIGsMI5OQE2r6PV6zan33e-VLNLdzm2-IZrrrQCxVRj8ZVlcyol-_nfVmDmuQ2ztmHaic1LG4Y10fBGZEPFGtrJM4blfalYpaXtaWXk_6neUT0B2gSewg
CitedBy_id crossref_primary_10_1029_2023EF003613
crossref_primary_10_1039_D3TA01800H
crossref_primary_10_1088_1748_9326_ac9e0b
crossref_primary_10_1016_j_eti_2023_103178
crossref_primary_10_1016_j_ejrh_2024_101692
crossref_primary_10_5467_JKESS_2024_45_1_1
crossref_primary_10_1038_s41612_023_00498_w
crossref_primary_10_1016_j_atmosres_2023_107115
crossref_primary_10_1016_j_solener_2023_112039
crossref_primary_10_1038_s41467_023_42891_2
crossref_primary_10_1038_s41612_023_00365_8
crossref_primary_10_1007_s00704_024_05164_6
crossref_primary_10_14246_irspsd_12_3_176
crossref_primary_10_1016_j_indcrop_2024_118222
crossref_primary_10_1016_j_agrformet_2024_110047
crossref_primary_10_1360_SSTe_2022_0381
crossref_primary_10_1371_journal_pone_0318170
crossref_primary_10_1360_N072022_0369
crossref_primary_10_3390_jmse12050722
crossref_primary_10_3354_cr01720
crossref_primary_10_1088_1748_9326_ac9c70
crossref_primary_10_1007_s00382_025_07620_z
crossref_primary_10_1038_s41612_024_00863_3
crossref_primary_10_1007_s00704_024_04891_0
crossref_primary_10_1016_j_atmosres_2022_106554
crossref_primary_10_3390_w17020219
crossref_primary_10_1007_s00704_023_04696_7
crossref_primary_10_1007_s11430_022_1168_0
crossref_primary_10_7256_2310_8673_2024_3_71098
crossref_primary_10_1016_j_wace_2024_100643
crossref_primary_10_1016_j_scs_2025_106201
crossref_primary_10_1016_j_scs_2024_105578
crossref_primary_10_1016_j_agrformet_2024_110355
crossref_primary_10_1016_j_cej_2024_156918
crossref_primary_10_1016_j_jobe_2023_106571
crossref_primary_10_1016_j_envexpbot_2024_105938
crossref_primary_10_1016_j_scitotenv_2023_162822
crossref_primary_10_1016_j_atmosres_2024_107896
crossref_primary_10_1016_j_jece_2024_114735
crossref_primary_10_1007_s00704_024_05005_6
crossref_primary_10_1016_j_jes_2024_03_050
crossref_primary_10_1007_s40808_024_02193_y
crossref_primary_10_1038_s41586_024_07887_y
crossref_primary_10_1007_s11430_022_1154_7
crossref_primary_10_1016_j_wace_2024_100694
crossref_primary_10_7780_kjrs_2024_40_6_1_32
crossref_primary_10_1038_s41598_025_91184_9
crossref_primary_10_1016_j_wace_2023_100570
crossref_primary_10_1080_23311886_2023_2235170
crossref_primary_10_1016_j_ecoinf_2025_103030
crossref_primary_10_3390_f15020235
crossref_primary_10_1038_s41612_023_00528_7
crossref_primary_10_3390_atmos14081318
crossref_primary_10_1016_j_ejrh_2024_101842
crossref_primary_10_1016_j_ejrh_2025_102239
crossref_primary_10_1126_sciadv_adh4195
crossref_primary_10_1088_1748_9326_ad2890
crossref_primary_10_1016_j_scitotenv_2024_172482
crossref_primary_10_1016_j_atmosres_2023_106911
crossref_primary_10_1016_j_quascirev_2024_108648
crossref_primary_10_1016_j_atmosres_2023_106675
crossref_primary_10_3390_f15030411
crossref_primary_10_1007_s00334_024_00988_8
crossref_primary_10_1007_s00704_023_04690_z
crossref_primary_10_1016_j_atmosres_2025_107919
Cites_doi 10.1175/JCLI-D-15-0099.1
10.1175/1520-0442(2002)015<1141:COAURA>2.0.CO;2
10.1175/BAMS-D-19-0131.1
10.1038/nclimate3345
10.1007/s00382-021-05673-4
10.1002/2016GL072281
10.1007/s10584-012-0570-x
10.2151/jmsj1965.70.1B_373
10.1038/ngeo1590
10.1007/s00382-019-04860-8
10.1002/joc.5882
10.1038/s41558-018-0387-3
10.1029/2019EF001337
10.1038/nclimate3296
10.1002/2017GL072739
10.1126/sciadv.aax4177
10.1007/s00376-009-9094-3
10.1002/joc.5399
10.5194/gmd-10-3805-2017
10.1016/j.scib.2021.07.026
10.1016/j.accre.2017.12.002
10.1175/JCLI-D-13-00494.1
10.1002/2016GL072012
10.1002/2017EF000734
10.1007/s10584-020-02841-z
10.1007/s00382-013-1929-z
10.1016/j.quaint.2017.05.005
10.2151/jmsj.2012-A23
10.5194/gmd-14-3079-2021
10.1002/joc.6485
10.1016/j.accre.2020.09.006
10.1016/j.accre.2018.02.003
10.1002/2017GL076753
10.1038/s41558-019-0658-7
10.1029/2020EF001832
10.1007/s00376-007-0972-2
10.2151/jmsj.2017-002
10.1007/s10584-012-0419-3
10.1002/joc.4480
10.5194/tc-6-1383-2012
10.1088/1748-9326/ac48b6
10.1088/1748-9326/ac27cc
10.1029/2020JD033016
10.1016/j.scib.2017.12.021
10.1007/s00382-017-3708-8
10.5194/esd-9-427-2018
10.1029/2019EF001276
10.1029/2020GL087492
10.1029/2021GL092792
10.1007/s11430-018-9261-5
10.1038/s41598-019-50036-z
10.1127/0941-2948/2012/0330
10.5194/esd-9-267-2018
10.1038/s41612-022-00235-9
10.1175/JCLI-D-16-0529.1
10.1007/s00376-018-8200-9
10.1007/s00382-019-04980-1
10.1038/nclimate2563
10.1360/N972016-01234
10.1002/joc.5340
10.1080/16742834.2020.1696649
10.1007/s00382-015-2856-y
10.1175/JCLI-D-19-0993.1
10.1007/s00382-016-3096-5
10.1038/srep16771
10.1088/1748-9326/ab751f
10.1038/nclimate3096
10.5194/gmd-10-3609-2017
10.1016/j.scitotenv.2018.05.324
10.1175/2009BAMS2607.1
10.1016/j.accre.2020.09.007
10.1002/joc.4406
10.1007/s00382-010-0810-6
10.1016/j.atmosres.2021.105838
10.1088/2515-7620/ab3971
10.1038/nclimate3275
10.1146/annurev-earth-071719-055228
10.1029/2020EF001640
10.1073/pnas.1802129115
10.1088/1748-9326/aac179
10.1175/JCLI-D-12-00005.1
10.1029/2018JD028835
10.1002/2017GL073480
10.1088/1748-9326/ab7d04
10.1029/2020EF001716
10.1175/JCLI-D-16-0654.1
10.1016/j.accre.2017.11.003
10.1016/j.scitotenv.2020.140807
10.1088/1748-9326/abe782
10.1007/s13351-014-3151-2
10.1088/1748-9326/ab072e
10.1175/2009JCLI3130.1
10.1029/2006GL025734
10.1080/16742834.2020.1715199
10.1175/JCLI-D-18-0426.1
10.1016/j.gloplacha.2020.103261
10.1080/16742834.2019.1569869
10.1007/s40641-015-0027-1
10.1038/nclimate2956
10.1002/2017GL074117
10.1016/j.earscirev.2020.103349
10.1029/2019EF001461
10.1007/s00382-021-05986-4
10.1038/s41467-020-16631-9
10.1007/s11434-012-5533-0
10.1175/JCLI-D-18-0427.1
10.1002/joc.6694
10.1016/j.accre.2017.12.001
10.1175/1520-0442(2002)015<0306:VOTEAJ>2.0.CO;2
10.1007/s00382-020-05150-4
10.1029/2012GL052258
10.1038/nature19772
10.1038/nclimate2100
10.1016/j.earscirev.2021.103625
10.1038/nclimate2939
10.1175/JCLI-D-17-0631.1
10.1093/nsr/nwab056
10.1038/nclimate1633
10.1007/s00704-017-2189-3
10.1002/2014JD022958
10.1007/s00704-018-2720-1
10.1175/JCLI-D-14-00439.1
10.1038/s41558-019-0436-6
10.1002/joc.7264
10.1016/j.scib.2019.12.002
10.1029/2021EF002027
10.1002/joc.5521
10.1007/s00382-019-04775-4
10.3354/cr01067
10.1175/2008JCLI2295.1
10.1038/nclimate3352
10.1038/nclimate2410
10.1088/1748-9326/ac1d0c
10.1007/s10584-020-02725-2
10.1175/BAMS-D-19-0182.1
10.1007/s00382-016-3023-9
10.1029/2006GL026377
10.1002/joc.6682
10.1029/2019EF001237
10.1002/2016JD025210
10.1029/2018EF000963
10.1038/s41612-020-00151-w
10.1038/nature15770
10.1175/JCLI-D-16-0377.1
10.1038/s41612-022-00253-7
10.1029/2008GL035075
10.1007/s10584-011-0090-0
10.1038/nclimate3055
10.1038/s41467-018-05633-3
10.1007/s00376-020-0182-8
10.1007/s11069-016-2553-0
10.1007/s00382-021-05691-2
10.2151/jmsj.82.155
ContentType Journal Article
Copyright The Author(s) 2022
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BHPHI
BKSAR
CCPQU
DWQXO
GNUQQ
HCIFZ
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PYCSY
DOA
DOI 10.1038/s41612-022-00303-0
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest SciTech Premium Collection Natural Science Collection Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Natural Science Collection
ProQuest SciTech Premium Collection‎ Natural Science Collection Earth, Atmospheric & Aquatic Science Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Environmental Science Collection
ProQuest One Sustainability
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Environmental Science Database
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList

CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
EISSN 2397-3722
EndPage 17
ExternalDocumentID oai_doaj_org_article_dc25e3f2d2ac4491870d3181c3dd5b1a
10_1038_s41612_022_00303_0
GeographicLocations East Asia
GeographicLocations_xml – name: East Asia
GrantInformation_xml – fundername: National Key Research and Development Program of China(2017YFA0603804)
GroupedDBID 0R~
AAJSJ
ACGFS
ACSMW
ADBBV
AEUYN
AFKRA
AFPKN
AJTQC
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BCNDV
BENPR
BHPHI
BKSAR
C6C
CCPQU
EBLON
EBS
EDH
GROUPED_DOAJ
HCIFZ
M~E
NAO
NO~
OK1
PATMY
PCBAR
PIMPY
PYCSY
RNT
SNYQT
AAFWJ
AASML
AAYXX
CITATION
PHGZM
PHGZT
ABUWG
AZQEC
DWQXO
GNUQQ
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c495t-36f54717546f1e1abeedd6392bbeeab285174c38a481b0b16e957197c3b5ee233
IEDL.DBID DOA
ISSN 2397-3722
IngestDate Wed Aug 27 01:30:41 EDT 2025
Sat Aug 23 14:16:08 EDT 2025
Tue Jul 01 02:32:22 EDT 2025
Thu Apr 24 23:06:54 EDT 2025
Fri Feb 21 02:39:47 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c495t-36f54717546f1e1abeedd6392bbeeab285174c38a481b0b16e957197c3b5ee233
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0299-6393
0000-0003-0288-5618
OpenAccessLink https://doaj.org/article/dc25e3f2d2ac4491870d3181c3dd5b1a
PQID 2726761606
PQPubID 4669727
PageCount 17
ParticipantIDs doaj_primary_oai_doaj_org_article_dc25e3f2d2ac4491870d3181c3dd5b1a
proquest_journals_2726761606
crossref_primary_10_1038_s41612_022_00303_0
crossref_citationtrail_10_1038_s41612_022_00303_0
springer_journals_10_1038_s41612_022_00303_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-10-20
PublicationDateYYYYMMDD 2022-10-20
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-20
  day: 20
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle NPJ climate and atmospheric science
PublicationTitleAbbrev npj Clim Atmos Sci
PublicationYear 2022
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References CaiWIncreasing frequency of extreme El Niño events due to greenhouse warmingNat. Clim. Change2014411111610.1038/nclimate2100
LiuYYLiWJZuoJQHuZZSimulation and projection of the Western Pacific Subtropical High in CMIP5 modelsJ. Meteorol. Res.20142832734010.1007/s13351-014-3151-2
HuTSunYZhangXTemperature and precipitation projection at 1.5 and 2 °C increase in global mean temperature (in Chinese)Chin. Sci. Bull.2017623098311110.1360/N972016-01234
DaiAGRasmussenRMIkedaKLiuCHA new approach to construct representative future forcing data for dynamic downscalingClim. Dyn.20205531532310.1007/s00382-017-3708-8
YouQLTemperature dataset of CMIP6 models over China: evaluation, trend and uncertaintyClim. Dyn.202157173510.1007/s00382-021-05691-2
RenGYGuanZYShaoXMGongDYChanges in climatic extremes over mainland ChinaClim. Res.20115010511110.3354/cr01067
HeCEnhanced or weakened Western North Pacific Subtropical High under Global Warming?Sci. Rep.2015510.1038/srep16771
WenzelSCoxPMEyringVFriedlingsteinPProjected land photosynthesis constrained by changes in the seasonal cycle of atmospheric CO2Nature201653849950110.1038/nature19772
WangTMiaoJ-PSunJ-QFuY-HIntensified East Asian summer monsoon and associated precipitation mode shift under the 1.5 °C global warming targetAdv. Clim. Change Res.2018910211110.1016/j.accre.2017.12.002
AghaKouchakAClimate Extremes and Compound Hazards in a Warming WorldAnnu. Rev. Earth Planet. Sci.20204851954810.1146/annurev-earth-071719-055228
XuZFHanYYangZLDynamical downscaling of regional climate: a review of methods and limitationsSci. China-Earth Sci.20196236537510.1007/s11430-018-9261-5
ZhouSJHuangGHuangPA bias-corrected projection for the changes in East Asian summer monsoon rainfall under global warmingClim. Dyn.20205411610.1007/s00382-019-04980-1
MoonSHaKJFuture changes in monsoon duration and precipitation using CMIP6Npj Clim. Atmos. Sci.202034510.1038/s41612-020-00151-w
ZhangWZhouTIncreasing impacts from extreme precipitation on population over China with global warmingSci. Bull.20206524325210.1016/j.scib.2019.12.002
ChiangJCHSwensonLMKongWRole of seasonal transitions and the westerlies in the interannual variability of the East Asian summer monsoon precipitationGeophys. Res. Lett.2017443788379510.1002/2017GL072739
LiWJiangZHXuJJLiLExtreme precipitation Indices over China in CMIP5 models. Part II: probabilistic projectionJ. Clim.2016298989900410.1175/JCLI-D-16-0377.1
XuZQFanKProjected changes in summer water vapor transport over East Asia under the 1.5 degrees C and 2.0 degrees C global warming targetsAtmos. Ocean. Sci. Lett.20191212413010.1080/16742834.2019.1569869
KingADLaneTPHenleyBJBrownJRGlobal and regional impacts differ between transient and equilibrium warmer worldsNat. Clim. Change202010424710.1038/s41558-019-0658-7
ZhangWZhouTThe effect of modeling strategies on assessments of differential warming impacts of 0.5 °CEarth’s Future20219e2020EF00164010.1029/2020EF001640
XuZFYangZLA new dynamical downscaling approach with GCM bias corrections and spectral nudgingJ. Geophys. Res.-Atmos.20151203063308410.1002/2014JD022958
HeCWuBZouLWZhouTJResponses of the summertime subtropical Anticyclones to global warmingJ. Clim.2017306465647910.1175/JCLI-D-16-0529.1
ZhangWZhouTZouLZhangLChenXReduced exposure to extreme precipitation from 0.5 °C less warming in global land monsoon regionsNat. Commun.2018910.1038/s41467-018-05633-3
LiZBSunYLiTDingYHHuTFuture changes in East Asian summer monsoon circulation and precipitation under 1.5 to 5 degrees C of warmingEarths Future201971391140610.1029/2019EF001276
ZhangYCKuangXYGuoWDZhouTJSeasonal evolution of the upper-tropospheric westerly jet core over East AsiaGeophys. Res. Lett.200633L1170810.1029/2006GL026377
WangHJExtreme climate in China: facts, simulation and projectionMeteorol. Z.20122127930410.1127/0941-2948/2012/0330
GuoLJiangZChenDLe TreutHLiLProjected precipitation changes over China for global warming levels at 1.5 °C and 2 °C in an ensemble of regional climate simulations: impact of bias correction methodsClim. Change202016262364310.1007/s10584-020-02841-z
LiDZouLZhouTExtreme climate event changes in China in the 1.5 and 2 °C warmer climates: results from statistical and dynamical downscalingJ. Geophys. Res.-Atmos.2018123102151023010.1029/2018JD028835
BoulangeJValidity of estimating flood and drought characteristics under equilibrium climates from transient simulationsEnviron. Res. Lett.20211610402810.1088/1748-9326/ac27cc
HawkinsESuttonRThe potential to narrow uncertainty in regional climate predictionsBull. Am. Meteorol. Soc.2009901095110810.1175/2009BAMS2607.1
WangLChenWHow well do existing indices measure the strength of the East Asian winter monsoon?Adv. Atmos. Sci.20102785587010.1007/s00376-009-9094-3
IPCC. Summary for policymakers. In: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds, Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J.B.R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R. & Zhou, B.) (IPCC, 2021).
IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, 2013).
MitchellDRealizing the impacts of a 1.5 °C warmer worldNat. Clim. Change2016673573710.1038/nclimate3055
YangSLauKMKimKMVariations of the East Asian jet stream and Asian–Pacific–American winter climate anomaliesJ. Clim.20021530632510.1175/1520-0442(2002)015<0306:VOTEAJ>2.0.CO;2
HulmeM1.5 °C and climate research after the Paris AgreementNat. Clim. Change2016622222410.1038/nclimate2939
LiTMachine learning to optimize climate projection over China with multi-model ensemble simulationsEnviron. Res. Lett.20211609402810.1088/1748-9326/ac1d0c
FuYHGuoDProjection of the East Asian westerly jet under six global warming targetsAtmos. Ocean. Sci. Lett.20201312913510.1080/16742834.2020.1715199
ZhaoSYZhouTJAre the observed changes in heat extremes associated with a half-degree warming increment analogues for future projections?Earths Future2019797899210.1029/2019EF001237
FanXWMiaoCYDuanQYShenCWWuYFuture climate change hotspots under different 21st century warming scenariosEarths Future20219e2021EF00202710.1029/2021EF002027
JulienBNaotaHTedVJacobSHideoSMagnitude and robustness associated with the climate change impacts on global hydrological variables for transient and stabilized climate statesEnviron. Res. Lett.20181306401710.1088/1748-9326/aac179
LuRYAssociations among the components of the east Asian summer monsoon system in the meridional directionJ. Meteorol. Soc. Jpn.20048215516510.2151/jmsj.82.155
JiangDBTianZPLangXMReliability of climate models for China through the IPCC Third to Fifth Assessment ReportsInt. J. Climatol.2016361114113310.1002/joc.4406
HallACoxPHuntingfordCKleinSProgressing emergent constraints on future climate changeNat. Clim. Change2019926927810.1038/s41558-019-0436-6
WeiKXuTDuZCGongHNXieBHHow well do the current state-of-the-art CMIP5 models characterise the climatology of the East Asian winter monsoon?Clim. Dyn.2014431241125510.1007/s00382-013-1929-z
JiangZExtreme climate events in China: IPCC-AR4 model evaluation and projectionClim. Change201211038540110.1007/s10584-011-0090-0
HeCZhouTJResponses of the Western North Pacific Subtropical High to Global Warming under RCP4.5 and RCP8.5 Scenarios projected by 33 CMIP5 models: the dominance of Tropical Indian Ocean–Tropical Western Pacific SST GradientJ. Clim.20152836538010.1175/JCLI-D-13-00494.1
MiaoLFuture Drought In The Dry Lands of Asia under the 1.5 and 2.0 °C warming scenariosEarth’s Future20208e2019EF00133710.1029/2019EF001337
HuangJPMaJRGuanXDLiYHeYLProgress in semi-arid climate change studies in ChinaAdv. Atmos. Sci.20193692293710.1007/s00376-018-8200-9
WangXJiangDLangXTemperature and precipitation changes over China under a 1.5 °C global warming scenario based on CMIP5 Models (in Chinese)Chin. J. Atmos. Sci.20194311581170
HawkinsESuttonRThe potential to narrow uncertainty in projections of regional precipitation changeClim. Dyn.20113740741810.1007/s00382-010-0810-6
YuRZhaiPMLuYYImplications of differential effects between 1.5 and 2 °C global warming on temperature and precipitation extremes in China’s urban agglomerationsInt. J. Climatol.2018382374238510.1002/joc.5340
CaoQYuDYGeorgescuMWuJGImpacts of urbanization on summer climate in China: an assessment with coupled land–atmospheric modelingJ. Geophys. Res.-Atmos.2016121105051052110.1002/2016JD025210
ChevuturiAKlingamanNPTurnerAGHannahSProjected changes in the Asian–Australian monsoon region in 1.5 degrees C and 2.0 degrees C global-warming scenariosEarths Future2018633935810.1002/2017EF000734
LiDWYuanJCKoppREEscalating global exposure to compound heat–humidity extremes with warmingEnviron. Res. Lett.20201506400310.1088/1748-9326/ab7d04
ChenSYuanXCMIP6 projects less frequent seasonal soil moisture droughts over China in response to different warming levelsEnviron. Res. Lett.20211604405310.1088/1748-9326/abe782
ChenHPSunJQProjected changes in climate extremes in China in a 1.5 degrees C warmer worldInt. J. Climatol.2018383607361710.1002/joc.5521
FuYLuRGuoDChanges in surface air temperature over China under the 1.5 and 2.0 °C global warming targetsAdv. Clim. Change Res.2018911211910.1016/j.accre.2017.12.001
WangLChenWZhouWHuangRHInterannual variations of East Asian Trough axis at 500 hPa and its association with the East Asian Winter Monsoon pathwayJ. Clim.20092260061410.1175/2008JCLI2295.1
HeCLiuZHuAThe transient response of atmospheric and oceanic heat transports to anthropogenic warmingNat. Clim. Change2019922222610.1038/s41558-018-0387-3
CookBITwenty‐First Century drought projections in the CMIP6 forcing scenariosEarth’s Future20208e2019EF00146110.1029/2019EF001461
SchleussnerC-FScience and policy characteristics of the Paris
A Aihaiti (303_CR2) 2021; 264
AG Dai (303_CR156) 2020; 55
T Hu (303_CR88) 2017; 62
I Rangwala (303_CR121) 2012; 114
AE Raftery (303_CR12) 2017; 7
HW Xu (303_CR141) 2022; 42
ZF Xu (303_CR153) 2015; 120
T Wang (303_CR28) 2018; 9
YY Huang (303_CR54) 2016; 47
R Wartenburger (303_CR18) 2017; 10
L Guo (303_CR113) 2019; 39
ZQ Xu (303_CR48) 2019; 12
SY Zhao (303_CR107) 2019; 7
Y Wei (303_CR136) 2019; 53
M Li (303_CR114) 2020; 54
H Zhu (303_CR3) 2021; 66
AM DeAngelis (303_CR161) 2015; 528
C He (303_CR51) 2015; 5
AD King (303_CR9) 2017; 7
Y Chen (303_CR21) 2017; 44
RY Lu (303_CR63) 2004; 82
LY Guo (303_CR127) 2018; 9
BI Cook (303_CR96) 2020; 8
YY Liu (303_CR56) 2014; 28
A Dai (303_CR97) 2013; 3
QL You (303_CR120) 2021; 217
ZF Xu (303_CR151) 2019; 62
T Jiang (303_CR27) 2020; 101
S Chen (303_CR101) 2021; 16
YH Fu (303_CR52) 2020; 13
B Julien (303_CR133) 2018; 13
J Miao (303_CR65) 2020; 40
G Wang (303_CR92) 2020; 746
W Cai (303_CR74) 2014; 4
W Li (303_CR91) 2018; 63
Q Guo (303_CR33) 1983; 38
J Ge (303_CR124) 2021; 48
HP Chen (303_CR95) 2020; 15
G Zhang (303_CR81) 2021; 38
YC Zhang (303_CR62) 2006; 33
DB Jiang (303_CR36) 2013; 58
H Yang (303_CR111) 2016; 47
DB Jiang (303_CR90) 2016; 36
JJ He (303_CR47) 2007; 24
KJ Ha (303_CR40) 2020; 47
D Li (303_CR49) 2019; 1
Z Xu (303_CR148) 2017; 10
SJ Zhou (303_CR41) 2020; 54
YH Fu (303_CR64) 2020; 13
QL You (303_CR110) 2019; 53
A AghaKouchak (303_CR6) 2020; 48
GY Ren (303_CR20) 2011; 50
L Guo (303_CR150) 2020; 162
F Liu (303_CR32) 2022; 5
C-F Schleussner (303_CR16) 2016; 6
MZ Zhang (303_CR142) 2021; 14
E Rocheta (303_CR155) 2017; 30
YL Liang (303_CR106) 2018; 133
ZF Xu (303_CR152) 2012; 25
DW Li (303_CR87) 2020; 15
B Su (303_CR98) 2018; 115
NS Diffenbaugh (303_CR117) 2012; 114
Y Sun (303_CR83) 2018; 6
E Hawkins (303_CR140) 2011; 37
303_CR24
L Miao (303_CR100) 2020; 8
HM Sun (303_CR104) 2017; 453
Y Sun (303_CR128) 2016; 6
L Chen (303_CR42) 2019; 137
H Li (303_CR93) 2018; 640-641
MM Xu (303_CR67) 2016; 36
W Zhang (303_CR119) 2020; 65
PM Caldwell (303_CR158) 2018; 31
F Giorgi (303_CR145) 2002; 15
W Zhang (303_CR46) 2018; 9
W Liu (303_CR89) 2018; 9
SA Klein (303_CR159) 2015; 1
T Horinouchi (303_CR60) 2019; 32
JY Hong (303_CR68) 2017; 48
J Liu (303_CR45) 2018; 9
J Cao (303_CR134) 2020; 11
J Huang (303_CR14) 2017; 7
C He (303_CR57) 2017; 30
303_CR11
A Colette (303_CR154) 2012; 39
T Tang (303_CR75) 2021; 8
QL You (303_CR109) 2020; 192
R Yu (303_CR129) 2018; 38
Y Sun (303_CR26) 2014; 4
303_CR1
F Wu (303_CR79) 2021; 41
C He (303_CR58) 2015; 28
303_CR7
C Shi (303_CR25) 2018; 9
RY Lu (303_CR61) 2010; 23
C He (303_CR135) 2019; 9
303_CR8
X Wang (303_CR80) 2019; 43
X Yue (303_CR99) 2021; 41
XL Chen (303_CR59) 2020; 11
S Yang (303_CR72) 2002; 15
JP Huang (303_CR123) 2019; 36
QL You (303_CR108) 2020; 210
CX Sun (303_CR85) 2019; 9
XW Fan (303_CR118) 2021; 9
Y Fu (303_CR22) 2018; 9
M Hulme (303_CR10) 2016; 6
W Li (303_CR146) 2016; 29
QL You (303_CR5) 2021; 57
JP Huang (303_CR105) 2017; 7
J Wang (303_CR130) 2020; 8
N Pepin (303_CR122) 2015; 5
YH Ding (303_CR30) 1992; 70
J Boulange (303_CR137) 2021; 16
T Li (303_CR163) 2021; 16
F Lehner (303_CR102) 2017; 44
AP Schurer (303_CR17) 2017; 7
F Giorgi (303_CR115) 2006; 33
F Massonnet (303_CR162) 2012; 6
E Hawkins (303_CR139) 2009; 90
WH Li (303_CR55) 2012; 5
S Wenzel (303_CR160) 2016; 538
Q Cao (303_CR131) 2016; 121
A Kitoh (303_CR29) 2017; 95
B Wang (303_CR37) 2020; 33
M Zhang (303_CR126) 2020; 162
303_CR78
R Knutti (303_CR147) 2017; 44
Z Jiang (303_CR23) 2015; 28
HJ Wang (303_CR19) 2012; 21
Z Jiang (303_CR138) 2021; 9
Y Sui (303_CR82) 2018; 38
L Wang (303_CR70) 2009; 22
C Shi (303_CR84) 2020; 11
D Mitchell (303_CR15) 2016; 6
S Moon (303_CR39) 2020; 3
NS Diffenbaugh (303_CR116) 2008; 35
X Guo (303_CR94) 2016; 84
Y Han (303_CR143) 2021; 58
D Li (303_CR112) 2018; 123
W Zhang (303_CR149) 2021; 9
L Dai (303_CR38) 2022; 5
XR Sun (303_CR86) 2022; 17
HP Chen (303_CR125) 2018; 38
BJ Henley (303_CR13) 2017; 44
AD King (303_CR132) 2020; 10
A Hall (303_CR157) 2019; 9
K Wei (303_CR71) 2014; 43
DB Williamson (303_CR144) 2019; 100
ZB Li (303_CR43) 2019; 7
L Chen (303_CR73) 2015; 28
HP Chen (303_CR103) 2019; 14
Z Jiang (303_CR4) 2012; 110
A Chevuturi (303_CR44) 2018; 6
SJ Zhou (303_CR53) 2020; 125
JCH Chiang (303_CR31) 2017; 44
K Oshima (303_CR69) 2012; 90A
P Liang (303_CR35) 2007; 23
C He (303_CR50) 2019; 32
L Wang (303_CR66) 2010; 27
G Beobide-Arsuaga (303_CR77) 2021; 56
N Shi (303_CR34) 1996; 19
ZX Yan (303_CR76) 2020; 6
References_xml – reference: HuangJPYuHPDaiAGWeiYKangLTDrylands face potential threat under 2 degrees C global warming targetNat. Clim. Change2017741742210.1038/nclimate3275
– reference: FuYHGuoDProjected changes in the western North Pacific subtropical high under six global warming targetsAtmos. Ocean. Sci. Lett.202013263310.1080/16742834.2020.1696649
– reference: YouQLTemperature dataset of CMIP6 models over China: evaluation, trend and uncertaintyClim. Dyn.202157173510.1007/s00382-021-05691-2
– reference: SunXRGeFFanYZhuSPChenQLWill population exposure to heat extremes intensify over Southeast Asia in a warmer world?Environ. Res. Lett.20221704400610.1088/1748-9326/ac48b6
– reference: ZhouSJHuangGHuangPInter-model spread of the changes in the East Asian Summer Monsoon System in CMIP5/6 ModelsJ. Geophys. Res.-Atmos.20201252020JD03301610.1029/2020JD033016
– reference: LiWJiangZHXuJJLiLExtreme precipitation Indices over China in CMIP5 models. Part II: probabilistic projectionJ. Clim.2016298989900410.1175/JCLI-D-16-0377.1
– reference: XuZFHanYYangZLDynamical downscaling of regional climate: a review of methods and limitationsSci. China-Earth Sci.20196236537510.1007/s11430-018-9261-5
– reference: KingADKarolyDJHenleyBJAustralian climate extremes at 1.5 °C and 2 °C of global warmingNat. Clim. Change2017741241610.1038/nclimate3296
– reference: ZhangMGreater probability of extreme precipitation under 1.5 degrees C and 2 degrees C warming limits over East-Central AsiaClim. Change202016260361910.1007/s10584-020-02725-2
– reference: FuYHGuoDProjection of the East Asian westerly jet under six global warming targetsAtmos. Ocean. Sci. Lett.20201312913510.1080/16742834.2020.1715199
– reference: WeiKXuTDuZCGongHNXieBHHow well do the current state-of-the-art CMIP5 models characterise the climatology of the East Asian winter monsoon?Clim. Dyn.2014431241125510.1007/s00382-013-1929-z
– reference: HenleyBJKingADTrajectories toward the 1.5 °C Paris target: modulation by the Interdecadal Pacific OscillationGeophys. Res. Lett.2017444256426210.1002/2017GL073480
– reference: Beobide-ArsuagaGBayrTReintgesALatifMUncertainty of ENSO-amplitude projections in CMIP5 and CMIP6 modelsClim. Dyn.2021563875388810.1007/s00382-021-05673-4
– reference: HeCLiuZHuAThe transient response of atmospheric and oceanic heat transports to anthropogenic warmingNat. Clim. Change2019922222610.1038/s41558-018-0387-3
– reference: LiDWYuanJCKoppREEscalating global exposure to compound heat–humidity extremes with warmingEnviron. Res. Lett.20201506400310.1088/1748-9326/ab7d04
– reference: HawkinsESuttonRThe potential to narrow uncertainty in projections of regional precipitation changeClim. Dyn.20113740741810.1007/s00382-010-0810-6
– reference: CaldwellPMZelinkaMDKleinSAEvaluating emergent constraints on equilibrium climate sensitivityJ. Clim.2018313921394210.1175/JCLI-D-17-0631.1
– reference: GuoLJiangZDingMChenWLiLDownscaling and projection of summer rainfall in Eastern China using a nonhomogeneous hidden Markov modelInt. J. Climatol.2019391319133010.1002/joc.5882
– reference: HuangJPMaJRGuanXDLiYHeYLProgress in semi-arid climate change studies in ChinaAdv. Atmos. Sci.20193692293710.1007/s00376-018-8200-9
– reference: HeCZhouTJResponses of the Western North Pacific Subtropical High to Global Warming under RCP4.5 and RCP8.5 Scenarios projected by 33 CMIP5 models: the dominance of Tropical Indian Ocean–Tropical Western Pacific SST GradientJ. Clim.20152836538010.1175/JCLI-D-13-00494.1
– reference: HallACoxPHuntingfordCKleinSProgressing emergent constraints on future climate changeNat. Clim. Change2019926927810.1038/s41558-019-0436-6
– reference: UNFCCC. Adoption of the Paris Agreement (United Nations Office at Geneva SU) (2015).
– reference: JiangZLiWXuJLiLExtreme precipitation indices over China in CMIP5 models. Part I: Model evaluationJ. Clim.2015288603861910.1175/JCLI-D-15-0099.1
– reference: SuiYLangXJiangDProjected signals in climate extremes over China associated with a 2 °C global warming under two RCP scenariosInt. J. Climatol.20183867869710.1002/joc.5399
– reference: LuRYFuYHIntensification of East Asian Summer Rainfall interannual variability in the twenty-first century simulated by 12 CMIP3 coupled modelsJ. Clim.2010233316333110.1175/2009JCLI3130.1
– reference: GiorgiFClimate change hot-spotsGeophys. Res. Lett.200633L0870710.1029/2006GL025734
– reference: YangSLauKMKimKMVariations of the East Asian jet stream and Asian–Pacific–American winter climate anomaliesJ. Clim.20021530632510.1175/1520-0442(2002)015<0306:VOTEAJ>2.0.CO;2
– reference: WenzelSCoxPMEyringVFriedlingsteinPProjected land photosynthesis constrained by changes in the seasonal cycle of atmospheric CO2Nature201653849950110.1038/nature19772
– reference: HulmeM1.5 °C and climate research after the Paris AgreementNat. Clim. Change2016622222410.1038/nclimate2939
– reference: ShiCJiangZ-HChenW-LLiLChanges in temperature extremes over China under 1.5 °C and 2 °C global warming targetsAdv. Clim. Change Res.2018912012910.1016/j.accre.2017.11.003
– reference: HeCWangZQZhouTJLiTEnhanced latent heating over the Tibetan Plateau as a key to the enhanced East Asian Summer Monsoon circulation under a warming climateJ. Clim.2019323373338810.1175/JCLI-D-18-0427.1
– reference: FanXWMiaoCYDuanQYShenCWWuYFuture climate change hotspots under different 21st century warming scenariosEarths Future20219e2021EF00202710.1029/2021EF002027
– reference: LiuFIntraseasonal variability of global land monsoon precipitation and its recent trendNpj Clim. Atmos. Sci.2022510.1038/s41612-022-00253-7
– reference: ChenHPSunJQIncreased population exposure to extreme droughts in China due to 0.5 degrees C of additional warmingEnviron. Res. Lett.20191406401110.1088/1748-9326/ab072e
– reference: XuZFYangZLA new dynamical downscaling approach with GCM bias corrections and spectral nudgingJ. Geophys. Res.-Atmos.20151203063308410.1002/2014JD022958
– reference: SuBDrought losses in China might double between the 1.5 °C and 2.0 °C warmingProc. Natl Acad. Sci. USA2018115106001060510.1073/pnas.1802129115
– reference: ShiNLuJZhuQEast Asian winter/summer monsoon intensity indices with their climatic change in 1873–1989J. Nanjing Inst. Meteorol.199619168177
– reference: XuHWChenHPWangHJFuture changes in precipitation extremes across China based on CMIP6 modelsInt. J. Climatol.20224263565110.1002/joc.7264
– reference: XuZFYangZLAn improved dynamical downscaling method with GCM bias corrections and its validation with 30 years of climate simulationsJ. Clim.2012256271628610.1175/JCLI-D-12-00005.1
– reference: GeJDoes dynamic downscaling modify the proiected impacts of stabilized 1.5 °C and 2 °C warming on hot extremes over China?Geophys. Res. Lett.202148e2021GL09279210.1029/2021GL092792
– reference: HawkinsESuttonRThe potential to narrow uncertainty in regional climate predictionsBull. Am. Meteorol. Soc.2009901095110810.1175/2009BAMS2607.1
– reference: CaoJZhaoH-KDistinct response of Northern Hemisphere land monsoon precipitation to transient and stablized warming scenariosAdv. Clim. Change Res.20201116117110.1016/j.accre.2020.09.007
– reference: WangBJinCHLiuJUnderstanding future change of global monsoons projected by CMIP6 modelsJ. Clim.2020336471648910.1175/JCLI-D-19-0993.1
– reference: ZhouSJHuangGHuangPA bias-corrected projection for the changes in East Asian summer monsoon rainfall under global warmingClim. Dyn.20205411610.1007/s00382-019-04980-1
– reference: LiuWGlobal drought and severe drought-affected populations in 1.5 and 2 °C warmer worldsEarth Syst. Dyn.2018926728310.5194/esd-9-267-2018
– reference: DiffenbaughNSGiorgiFClimate change hotspots in the CMIP5 global climate model ensembleClim. Change201211481382210.1007/s10584-012-0570-x
– reference: ZhaoSYZhouTJAre the observed changes in heat extremes associated with a half-degree warming increment analogues for future projections?Earths Future2019797899210.1029/2019EF001237
– reference: WeiYDrylands climate response to transient and stabilized 2 °C and 1.5 °C global warming targetsClim. Dyn.2019532375238910.1007/s00382-019-04860-8
– reference: GuoLJiangZChenDLe TreutHLiLProjected precipitation changes over China for global warming levels at 1.5 °C and 2 °C in an ensemble of regional climate simulations: impact of bias correction methodsClim. Change202016262364310.1007/s10584-020-02841-z
– reference: WangJFengJMYanZWChenYFuture risks of unprecedented compound heat waves over three vast urban agglomerations in ChinaEarths Future20208e2020EF00171610.1029/2020EF001716
– reference: XuMMXuHMMaJResponses of the East Asian winter monsoon to global warming in CMIP5 modelsInt. J. Climatol.2016362139215510.1002/joc.4480
– reference: HanYZhangMZXuZFGuoWDAssessing the performance of 33 CMIP6 models in simulating the large-scale environmental fields of tropical cyclonesClim. Dyn.2021581683169810.1007/s00382-021-05986-4
– reference: KnuttiRA climate model projection weighting scheme accounting for performance and interdependenceGeophys. Res. Lett.20174419091918
– reference: MitchellDRealizing the impacts of a 1.5 °C warmer worldNat. Clim. Change2016673573710.1038/nclimate3055
– reference: ZhangGZengGYangXJiangZFuture changes in extreme high temperature over China at 1.5 °C–5 °C global warming based on CMIP6 simulationsAdv. Atmos. Sci.20213825326710.1007/s00376-020-0182-8
– reference: ChenHPSunJQLiHXIncreased population exposure to precipitation extremes under future warmer climatesEnviron. Res. Lett.20201503404810.1088/1748-9326/ab751f
– reference: CaoQYuDYGeorgescuMWuJGImpacts of urbanization on summer climate in China: an assessment with coupled land–atmospheric modelingJ. Geophys. Res.-Atmos.2016121105051052110.1002/2016JD025210
– reference: LiangYLProjection of drought hazards in China during twenty-first centuryTheor. Appl. Climatol.201813333134110.1007/s00704-017-2189-3
– reference: LiuJXuHDengJProjections of East Asian summer monsoon change at global warming of 1.5 and 2 °CEarth Syst. Dyn.2018942743910.5194/esd-9-427-2018
– reference: YouQLZhangYQXieXYWuFYRobust elevation dependency warming over the Tibetan Plateau under global warming of 1.5 °C and 2 °CClim. Dyn.2019532047206010.1007/s00382-019-04775-4
– reference: JulienBNaotaHTedVJacobSHideoSMagnitude and robustness associated with the climate change impacts on global hydrological variables for transient and stabilized climate statesEnviron. Res. Lett.20181306401710.1088/1748-9326/aac179
– reference: ZhangYCKuangXYGuoWDZhouTJSeasonal evolution of the upper-tropospheric westerly jet core over East AsiaGeophys. Res. Lett.200633L1170810.1029/2006GL026377
– reference: LiTMachine learning to optimize climate projection over China with multi-model ensemble simulationsEnviron. Res. Lett.20211609402810.1088/1748-9326/ac1d0c
– reference: AihaitiAJiangZZhuLLiWYouQRisk changes of compound temperature and precipitation extremes in China under 1.5 °C and 2 °C global warmingAtmos. Res.202126410583810.1016/j.atmosres.2021.105838
– reference: LiDZhouTZhangWExtreme precipitation over East Asia under 1.5 °C and 2 °C global warming targets: a comparison of stabilized and overshoot projectionsEnviron. Res. Commun.2019108500210.1088/2515-7620/ab3971
– reference: ZhangMZXuZFHanYGuoWDAn improved multivariable integrated evaluation method and tool (MVIETool) v1.0 for multimodel intercomparisonGeosci. Model Dev.2021143079309410.5194/gmd-14-3079-2021
– reference: CaiWIncreasing frequency of extreme El Niño events due to greenhouse warmingNat. Clim. Change2014411111610.1038/nclimate2100
– reference: SunCXJiangZHLiWHouQYLiLChanges in extreme temperature over China when global warming stabilized at 1.5 degrees C and 2.0 degrees CSci. Rep.2019910.1038/s41598-019-50036-z
– reference: BoulangeJValidity of estimating flood and drought characteristics under equilibrium climates from transient simulationsEnviron. Res. Lett.20211610402810.1088/1748-9326/ac27cc
– reference: DaiAGRasmussenRMIkedaKLiuCHA new approach to construct representative future forcing data for dynamic downscalingClim. Dyn.20205531532310.1007/s00382-017-3708-8
– reference: MassonnetFConstraining projections of summer Arctic sea iceCryosphere201261383139410.5194/tc-6-1383-2012
– reference: SunYRapid increase in the risk of extreme summer heat in Eastern ChinaNat. Clim. Change201441082108510.1038/nclimate2410
– reference: GuoLYGaoQJiangZHLiLBias correction and projection of surface air temperature in LMDZ multiple simulation over central and eastern ChinaAdv. Clim. Change Res.20189819210.1016/j.accre.2018.02.003
– reference: RafteryAEZimmerAFriersonDMWStartzRLiuPLess than 2 °C warming by 2100 unlikelyNat. Clim. Change2017763764110.1038/nclimate3352
– reference: ShiCRisks of temperature extremes over China under 1.5 °C and 2 °C global warmingAdv. Clim. Change Res.20201117218410.1016/j.accre.2020.09.006
– reference: GuoQThe summer monsoon intensity index in East Asia and its variationActa Geogr. Sin.198338207217
– reference: JiangZExtreme climate events in China: IPCC-AR4 model evaluation and projectionClim. Change201211038540110.1007/s10584-011-0090-0
– reference: ColetteAVautardRVracMRegional climate downscaling with prior statistical correction of the global climate forcingGeophys. Res. Lett.201239L1370710.1029/2012GL052258
– reference: WangLChenWZhouWHuangRHInterannual variations of East Asian Trough axis at 500 hPa and its association with the East Asian Winter Monsoon pathwayJ. Clim.20092260061410.1175/2008JCLI2295.1
– reference: HuangJYuHDaiAWeiYKangLDrylands face potential threat under 2 °C global warming targetNat. Clim. Change2017741742210.1038/nclimate3275
– reference: WilliamsonDBSansomPGHow are emergent constraints quantifying uncertainty and what do they leave behind?Bull. Am. Meteorol. Soc.20191002571258810.1175/BAMS-D-19-0131.1
– reference: WangHJExtreme climate in China: facts, simulation and projectionMeteorol. Z.20122127930410.1127/0941-2948/2012/0330
– reference: ChenSYuanXCMIP6 projects less frequent seasonal soil moisture droughts over China in response to different warming levelsEnviron. Res. Lett.20211604405310.1088/1748-9326/abe782
– reference: IPCC. Summary for policymakers. In: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds, Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J.B.R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R. & Zhou, B.) (IPCC, 2021).
– reference: MoonSHaKJFuture changes in monsoon duration and precipitation using CMIP6Npj Clim. Atmos. Sci.202034510.1038/s41612-020-00151-w
– reference: HeCWuBZouLWZhouTJResponses of the summertime subtropical Anticyclones to global warmingJ. Clim.2017306465647910.1175/JCLI-D-16-0529.1
– reference: ChenXLZhouTJWuPLGuoZWangMHEmergent constraints on future projections of the western North Pacific Subtropical HighNat. Commun.20201110.1038/s41467-020-16631-9
– reference: MiaoJWangTChenDMore robust changes in the East Asian winter monsoon from 1.5 to 2.0 °C global warming targetsInt. J. Climatol.2020404731474910.1002/joc.6485
– reference: FuYLuRGuoDChanges in surface air temperature over China under the 1.5 and 2.0 °C global warming targetsAdv. Clim. Change Res.2018911211910.1016/j.accre.2017.12.001
– reference: ZhangWZhouTZouLZhangLChenXReduced exposure to extreme precipitation from 0.5 °C less warming in global land monsoon regionsNat. Commun.2018910.1038/s41467-018-05633-3
– reference: AghaKouchakAClimate Extremes and Compound Hazards in a Warming WorldAnnu. Rev. Earth Planet. Sci.20204851954810.1146/annurev-earth-071719-055228
– reference: DeAngelisAMQuXZelinkaMDHallAAn observational radiative constraint on hydrologic cycle intensificationNature201552824925310.1038/nature15770
– reference: HuTSunYZhangXTemperature and precipitation projection at 1.5 and 2 °C increase in global mean temperature (in Chinese)Chin. Sci. Bull.2017623098311110.1360/N972016-01234
– reference: YanZXEastward shift and extension of ENSO-induced tropical precipitation anomalies under global warmingSci. Adv.20206eaax417710.1126/sciadv.aax4177
– reference: LiDZouLZhouTExtreme climate event changes in China in the 1.5 and 2 °C warmer climates: results from statistical and dynamical downscalingJ. Geophys. Res.-Atmos.2018123102151023010.1029/2018JD028835
– reference: SchleussnerC-FScience and policy characteristics of the Paris Agreement temperature goalNat. Clim. Change2016682783510.1038/nclimate3096
– reference: HuangYYLiXFWangHJWill the western Pacific subtropical high constantly intensify in the future?Clim. Dyn.20164756757710.1007/s00382-015-2856-y
– reference: Li, D., Zhou, T., Zou, L., Zhang, W. & Zhang, L. Extreme high-temperature events over East Asia in 1.5 °C and 2 °C warmer futures: analysis of NCAR CESM low-warming experiments. Geophys. Res. Lett. 45, 1541–1550 (2018).
– reference: JiangDBTianZPLangXMReliability of climate models for China through the IPCC Third to Fifth Assessment ReportsInt. J. Climatol.2016361114113310.1002/joc.4406
– reference: LuRYAssociations among the components of the east Asian summer monsoon system in the meridional directionJ. Meteorol. Soc. Jpn.20048215516510.2151/jmsj.82.155
– reference: Wang, W. G. & Zheng, G. G. Annual Report on Actions to Address Climate Change: Climate Finance and Low CarbonDevelopment (Social Science Academic Press, 2012) (in Chinese).
– reference: PepinNElevation-dependent warming in mountain regions of the worldNat. Clim. Change2015542443010.1038/nclimate2563
– reference: ChiangJCHSwensonLMKongWRole of seasonal transitions and the westerlies in the interannual variability of the East Asian summer monsoon precipitationGeophys. Res. Lett.2017443788379510.1002/2017GL072739
– reference: LiWJiangZZhangXLiLSunYAdditional risk in extreme precipitation in China from 1.5 °C to 2.0 °C global warming levelsSci. Bull.20186322823410.1016/j.scib.2017.12.021
– reference: IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, 2013).
– reference: JiangTEach 0.5 °C of warming increases annual flood losses in China by more than US$60 billionBull. Am. Meteorol. Soc.2020101E1464E147410.1175/BAMS-D-19-0182.1
– reference: WangTMiaoJ-PSunJ-QFuY-HIntensified East Asian summer monsoon and associated precipitation mode shift under the 1.5 °C global warming targetAdv. Clim. Change Res.2018910211110.1016/j.accre.2017.12.002
– reference: SunHMExposure of population to droughts in the Haihe River Basin under global warming of 1.5 and 2.0 degrees C scenariosQuat. Int.2017453748410.1016/j.quaint.2017.05.005
– reference: HorinouchiTMatsumuraSOseTTakayabuYNJet-Precipitation relation and future change of the Mei-Yu-Baiu Rainband and Subtropical Jet in CMIP5 coupled GCM simulationsJ. Clim.2019322247225910.1175/JCLI-D-18-0426.1
– reference: RochetaEEvansJPSharmaACan bias correction of regional climate model lateral boundary conditions improve low-frequency rainfall variability?J. Clim.2017309785980610.1175/JCLI-D-16-0654.1
– reference: ZhangWZhouTThe effect of modeling strategies on assessments of differential warming impacts of 0.5 °CEarth’s Future20219e2020EF00164010.1029/2020EF001640
– reference: ChenLQuXHuangGGongYFProjections of East Asian summer monsoon under 1.5 degrees C and 2 degrees C warming goalsTheor. Appl. Climatol.20191372187220110.1007/s00704-018-2720-1
– reference: GuoXHuangJLuoYZhaoZXuYProjection of precipitation extremes for eight global warming targets by 17 CMIP5 modelsNat. Hazards2016842299231910.1007/s11069-016-2553-0
– reference: YouQLWarming amplification over the Arctic Pole and Third Pole: trends, mechanisms and consequencesEarth-Sci. Rev.202121710362510.1016/j.earscirev.2021.103625
– reference: SunYHuTZhangXSubstantial increase in heat wave risks in China in a future warmer worldEarth’s Future201861528153810.1029/2018EF000963
– reference: YouQLTibetan Plateau amplification of climate extremes under global warming of 1.5 °C, 2 °C and 3 °CGlob. Planet. Change202019210326110.1016/j.gloplacha.2020.103261
– reference: KitohAThe Asian Monsoon and its future change in climate models: a reviewJ. Meteorol. Soc. Jpn.20179573310.2151/jmsj.2017-002
– reference: LiangPTangXHeJChenLAn East Asian sub-tropic summer monsoon index defined by moisture transportJ. Trop. Meteorol.200723467473
– reference: LiZBSunYLiTDingYHHuTFuture changes in East Asian summer monsoon circulation and precipitation under 1.5 to 5 degrees C of warmingEarths Future201971391140610.1029/2019EF001276
– reference: WangLChenWHow well do existing indices measure the strength of the East Asian winter monsoon?Adv. Atmos. Sci.20102785587010.1007/s00376-009-9094-3
– reference: DingYHSummer monsoon rainfalls in ChinaJ. Meteorol. Soc. Jpn.19927037339610.2151/jmsj1965.70.1B_373
– reference: HeCEnhanced or weakened Western North Pacific Subtropical High under Global Warming?Sci. Rep.2015510.1038/srep16771
– reference: HeJJJuJHWenZPLuJMJinQHA review of recent advances in research on Asian Monsoon in ChinaAdv. Atmos. Sci.20072497299210.1007/s00376-007-0972-2
– reference: WuFYouQZhangZZhangLChanges and uncertainties of surface mean temperature over China under global warming of 1.5 and 2 °CInt. J. Climatol.202141E410E42710.1002/joc.6694
– reference: LiMJiangZZhouPLe TreutHLiLProjection and possible causes of summer precipitation in eastern China using self-organizing mapClim. Dyn.2020542815283010.1007/s00382-020-05150-4
– reference: DaiLChengTFLuMQAnthropogenic warming disrupts intraseasonal monsoon stages and brings dry-get-wetter climate in future East AsiaNpj Clim. Atmos. Sci.2022510.1038/s41612-022-00235-9
– reference: HaKJMoonSTimmermannAKimDFuture changes of summer monsoon characteristics and evaporative demand over Asia in CMIP6 simulationsGeophys. Res. Lett.202047e2020GL08749210.1029/2020GL087492
– reference: WangXJiangDLangXTemperature and precipitation changes over China under a 1.5 °C global warming scenario based on CMIP5 Models (in Chinese)Chin. J. Atmos. Sci.20194311581170
– reference: MiaoLFuture Drought In The Dry Lands of Asia under the 1.5 and 2.0 °C warming scenariosEarth’s Future20208e2019EF00133710.1029/2019EF001337
– reference: OshimaKTanimotoYXieSPRegional patterns of wintertime SLP change over the North Pacific and their uncertainty in CMIP3 multi-model projectionsJ. Meteorol. Soc. Jpn.201290A38539610.2151/jmsj.2012-A23
– reference: ChevuturiAKlingamanNPTurnerAGHannahSProjected changes in the Asian–Australian monsoon region in 1.5 degrees C and 2.0 degrees C global-warming scenariosEarths Future2018633935810.1002/2017EF000734
– reference: ZhangWZhouTIncreasing impacts from extreme precipitation on population over China with global warmingSci. Bull.20206524325210.1016/j.scib.2019.12.002
– reference: SchurerAPMannMEHawkinsETettSFBHegerlGCImportance of the pre-industrial baseline for likelihood of exceeding Paris goalsNat. Clim. Change2017756356710.1038/nclimate3345
– reference: GiorgiFMearnsLOCalculation of average, uncertainty range, and reliability of regional climate changes from AOGCM simulations via the “Reliability Ensemble Averaging” (REA) methodJ. Clim.2002151141115810.1175/1520-0442(2002)015<1141:COAURA>2.0.CO;2
– reference: ChenHPSunJQProjected changes in climate extremes in China in a 1.5 degrees C warmer worldInt. J. Climatol.2018383607361710.1002/joc.5521
– reference: JiangDBTianZPEast Asian monsoon change for the 21st century: results of CMIP3 and CMIP5 modelsChin. Sci. Bull.2013581427143510.1007/s11434-012-5533-0
– reference: RangwalaIMillerJRClimate change in mountains: a review of elevation-dependent warming and its possible causesClim. Change201211452754710.1007/s10584-012-0419-3
– reference: HongJYAhnJBJhunJGWinter climate changes over East Asian region under RCP scenarios using East Asian winter monsoon indicesClim. Dyn.20174857759510.1007/s00382-016-3096-5
– reference: CookBITwenty‐First Century drought projections in the CMIP6 forcing scenariosEarth’s Future20208e2019EF00146110.1029/2019EF001461
– reference: YueXTianCLeiYRelieved drought in China under a low emission pathway to 1.5 °C global warmingInt. J. Climatol.202141E259E27010.1002/joc.6682
– reference: DaiAIncreasing drought under global warming in observations and modelsNat. Clim. Change20133525810.1038/nclimate1633
– reference: XuZQFanKProjected changes in summer water vapor transport over East Asia under the 1.5 degrees C and 2.0 degrees C global warming targetsAtmos. Ocean. Sci. Lett.20191212413010.1080/16742834.2019.1569869
– reference: LiWHLiLFTingMFLiuYMIntensification of Northern Hemisphere subtropical highs in a warming climateNat. Geosci.2012583083410.1038/ngeo1590
– reference: YouQLElevation dependent warming over the Tibetan Plateau: patterns, mechanisms and perspectivesEarth-Sci. Rev.202021010334910.1016/j.earscirev.2020.103349
– reference: DiffenbaughNSGiorgiFPalJSClimate change hotspots in the United StatesGeophys. Res. Lett.200835L1670910.1029/2008GL035075
– reference: LiuYYLiWJZuoJQHuZZSimulation and projection of the Western Pacific Subtropical High in CMIP5 modelsJ. Meteorol. Res.20142832734010.1007/s13351-014-3151-2
– reference: TangTLuoJ-JPengKQiLTangSOver-projected Pacific warming and extreme El Niño frequency due to CMIP5 common biasesNatl Sci. Rev.20218nwab05610.1093/nsr/nwab056
– reference: KingADLaneTPHenleyBJBrownJRGlobal and regional impacts differ between transient and equilibrium warmer worldsNat. Clim. Change202010424710.1038/s41558-019-0658-7
– reference: ChenLLiTYuYCauses of strengthening and weakening of ENSO amplitude under global warming in four CMIP5 modelsJ. Clim.2015283250327410.1175/JCLI-D-14-00439.1
– reference: ZhuHJiangZLiLProjection of climate extremes in China, an incremental exercise from CMIP5 to CMIP6Sci. Bull.2021662528253710.1016/j.scib.2021.07.026
– reference: YangHJiangZLiLBiases and improvements in three dynamical downscaling climate simulations over ChinaClim. Dyn.2016473235325110.1007/s00382-016-3023-9
– reference: LehnerFProjected drought risk in 1.5 °C and 2 °C warmer climatesGeophys. Res. Lett.2017447419742810.1002/2017GL074117
– reference: IPCC. Global warming of 1.5 °C. An IPCC Special Report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty (eds, Masson-Delmotte, V., Zhai, P., Pörtner, H.-O., Roberts, D., Skea, J., Shukla, P. R., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., Connors, S., Matthews, J. B. R., Chen, Y., Zhou, X., Gomis, M. I., Lonnoy, E., Maycock, T., Tignor, M. & Waterfield, T.) (2018).
– reference: JiangZHouQLiTLiangYLiLDivergent responses of summer precipitation in China to 1.5 °C global warming in transient and stabilized scenariosEarth’s Future20219e2020EF00183210.1029/2020EF001832
– reference: WangGZhangQYuHShenZSunPDouble increase in precipitation extremes across China in a 1.5 °C/2.0 °C warmer climateSci. Total Environ.202074614080710.1016/j.scitotenv.2020.140807
– reference: XuZHanYFuCMultivariable integrated evaluation of model performance with the vector field evaluation diagramGeosci. Model Dev.2017103805382010.5194/gmd-10-3805-2017
– reference: KleinSAHallAEmergent constraints for cloud feedbacksCurr. Clim. Change Rep.2015127628710.1007/s40641-015-0027-1
– reference: YuRZhaiPMLuYYImplications of differential effects between 1.5 and 2 °C global warming on temperature and precipitation extremes in China’s urban agglomerationsInt. J. Climatol.2018382374238510.1002/joc.5340
– reference: WartenburgerRChanges in regional climate extremes as a function of global mean temperature: an interactive plotting frameworkGeosci. Model Dev.2017103609363410.5194/gmd-10-3609-2017
– reference: LiHChenHWangHYuEFuture precipitation changes over China under 1.5 °C and 2.0 °C global warming targets by using CORDEX regional climate modelsSci. Total Environ.2018640-64154355410.1016/j.scitotenv.2018.05.324
– reference: RenGYGuanZYShaoXMGongDYChanges in climatic extremes over mainland ChinaClim. Res.20115010511110.3354/cr01067
– reference: SunYZhangXBRenGYZwiersFWHuTContribution of urbanization to warming in ChinaNat. Clim. Change2016670670910.1038/nclimate2956
– reference: ChenYZhaiPRevisiting summertime hot extremes in China during 1961–2015: overlooked compound extremes and significant changesGeophys. Res. Lett.2017447130713910.1002/2016GL072281
– volume: 28
  start-page: 8603
  year: 2015
  ident: 303_CR23
  publication-title: J. Clim.
  doi: 10.1175/JCLI-D-15-0099.1
– volume: 15
  start-page: 1141
  year: 2002
  ident: 303_CR145
  publication-title: J. Clim.
  doi: 10.1175/1520-0442(2002)015<1141:COAURA>2.0.CO;2
– volume: 100
  start-page: 2571
  year: 2019
  ident: 303_CR144
  publication-title: Bull. Am. Meteorol. Soc.
  doi: 10.1175/BAMS-D-19-0131.1
– volume: 7
  start-page: 563
  year: 2017
  ident: 303_CR17
  publication-title: Nat. Clim. Change
  doi: 10.1038/nclimate3345
– volume: 56
  start-page: 3875
  year: 2021
  ident: 303_CR77
  publication-title: Clim. Dyn.
  doi: 10.1007/s00382-021-05673-4
– volume: 44
  start-page: 7130
  year: 2017
  ident: 303_CR21
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/2016GL072281
– volume: 114
  start-page: 813
  year: 2012
  ident: 303_CR117
  publication-title: Clim. Change
  doi: 10.1007/s10584-012-0570-x
– volume: 38
  start-page: 207
  year: 1983
  ident: 303_CR33
  publication-title: Acta Geogr. Sin.
– volume: 70
  start-page: 373
  year: 1992
  ident: 303_CR30
  publication-title: J. Meteorol. Soc. Jpn.
  doi: 10.2151/jmsj1965.70.1B_373
– volume: 5
  start-page: 830
  year: 2012
  ident: 303_CR55
  publication-title: Nat. Geosci.
  doi: 10.1038/ngeo1590
– volume: 53
  start-page: 2375
  year: 2019
  ident: 303_CR136
  publication-title: Clim. Dyn.
  doi: 10.1007/s00382-019-04860-8
– volume: 39
  start-page: 1319
  year: 2019
  ident: 303_CR113
  publication-title: Int. J. Climatol.
  doi: 10.1002/joc.5882
– volume: 9
  start-page: 222
  year: 2019
  ident: 303_CR135
  publication-title: Nat. Clim. Change
  doi: 10.1038/s41558-018-0387-3
– volume: 8
  start-page: e2019EF001337
  year: 2020
  ident: 303_CR100
  publication-title: Earth’s Future
  doi: 10.1029/2019EF001337
– volume: 7
  start-page: 412
  year: 2017
  ident: 303_CR9
  publication-title: Nat. Clim. Change
  doi: 10.1038/nclimate3296
– volume: 44
  start-page: 3788
  year: 2017
  ident: 303_CR31
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/2017GL072739
– volume: 6
  start-page: eaax4177
  year: 2020
  ident: 303_CR76
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aax4177
– volume: 27
  start-page: 855
  year: 2010
  ident: 303_CR66
  publication-title: Adv. Atmos. Sci.
  doi: 10.1007/s00376-009-9094-3
– volume: 38
  start-page: 678
  year: 2018
  ident: 303_CR82
  publication-title: Int. J. Climatol.
  doi: 10.1002/joc.5399
– volume: 10
  start-page: 3805
  year: 2017
  ident: 303_CR148
  publication-title: Geosci. Model Dev.
  doi: 10.5194/gmd-10-3805-2017
– volume: 66
  start-page: 2528
  year: 2021
  ident: 303_CR3
  publication-title: Sci. Bull.
  doi: 10.1016/j.scib.2021.07.026
– volume: 9
  start-page: 102
  year: 2018
  ident: 303_CR28
  publication-title: Adv. Clim. Change Res.
  doi: 10.1016/j.accre.2017.12.002
– volume: 23
  start-page: 467
  year: 2007
  ident: 303_CR35
  publication-title: J. Trop. Meteorol.
– volume: 28
  start-page: 365
  year: 2015
  ident: 303_CR58
  publication-title: J. Clim.
  doi: 10.1175/JCLI-D-13-00494.1
– volume: 44
  start-page: 1909
  year: 2017
  ident: 303_CR147
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/2016GL072012
– ident: 303_CR7
– volume: 6
  start-page: 339
  year: 2018
  ident: 303_CR44
  publication-title: Earths Future
  doi: 10.1002/2017EF000734
– volume: 162
  start-page: 623
  year: 2020
  ident: 303_CR150
  publication-title: Clim. Change
  doi: 10.1007/s10584-020-02841-z
– volume: 43
  start-page: 1241
  year: 2014
  ident: 303_CR71
  publication-title: Clim. Dyn.
  doi: 10.1007/s00382-013-1929-z
– volume: 453
  start-page: 74
  year: 2017
  ident: 303_CR104
  publication-title: Quat. Int.
  doi: 10.1016/j.quaint.2017.05.005
– volume: 90A
  start-page: 385
  year: 2012
  ident: 303_CR69
  publication-title: J. Meteorol. Soc. Jpn.
  doi: 10.2151/jmsj.2012-A23
– volume: 14
  start-page: 3079
  year: 2021
  ident: 303_CR142
  publication-title: Geosci. Model Dev.
  doi: 10.5194/gmd-14-3079-2021
– volume: 40
  start-page: 4731
  year: 2020
  ident: 303_CR65
  publication-title: Int. J. Climatol.
  doi: 10.1002/joc.6485
– volume: 11
  start-page: 172
  year: 2020
  ident: 303_CR84
  publication-title: Adv. Clim. Change Res.
  doi: 10.1016/j.accre.2020.09.006
– volume: 9
  start-page: 81
  year: 2018
  ident: 303_CR127
  publication-title: Adv. Clim. Change Res.
  doi: 10.1016/j.accre.2018.02.003
– ident: 303_CR78
  doi: 10.1002/2017GL076753
– volume: 10
  start-page: 42
  year: 2020
  ident: 303_CR132
  publication-title: Nat. Clim. Change
  doi: 10.1038/s41558-019-0658-7
– volume: 9
  start-page: e2020EF001832
  year: 2021
  ident: 303_CR138
  publication-title: Earth’s Future
  doi: 10.1029/2020EF001832
– volume: 24
  start-page: 972
  year: 2007
  ident: 303_CR47
  publication-title: Adv. Atmos. Sci.
  doi: 10.1007/s00376-007-0972-2
– volume: 95
  start-page: 7
  year: 2017
  ident: 303_CR29
  publication-title: J. Meteorol. Soc. Jpn.
  doi: 10.2151/jmsj.2017-002
– volume: 114
  start-page: 527
  year: 2012
  ident: 303_CR121
  publication-title: Clim. Change
  doi: 10.1007/s10584-012-0419-3
– volume: 36
  start-page: 2139
  year: 2016
  ident: 303_CR67
  publication-title: Int. J. Climatol.
  doi: 10.1002/joc.4480
– volume: 6
  start-page: 1383
  year: 2012
  ident: 303_CR162
  publication-title: Cryosphere
  doi: 10.5194/tc-6-1383-2012
– volume: 17
  start-page: 044006
  year: 2022
  ident: 303_CR86
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/ac48b6
– volume: 16
  start-page: 104028
  year: 2021
  ident: 303_CR137
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/ac27cc
– volume: 125
  start-page: 2020JD033016
  year: 2020
  ident: 303_CR53
  publication-title: J. Geophys. Res.-Atmos.
  doi: 10.1029/2020JD033016
– volume: 63
  start-page: 228
  year: 2018
  ident: 303_CR91
  publication-title: Sci. Bull.
  doi: 10.1016/j.scib.2017.12.021
– volume: 55
  start-page: 315
  year: 2020
  ident: 303_CR156
  publication-title: Clim. Dyn.
  doi: 10.1007/s00382-017-3708-8
– volume: 9
  start-page: 427
  year: 2018
  ident: 303_CR45
  publication-title: Earth Syst. Dyn.
  doi: 10.5194/esd-9-427-2018
– volume: 7
  start-page: 1391
  year: 2019
  ident: 303_CR43
  publication-title: Earths Future
  doi: 10.1029/2019EF001276
– volume: 47
  start-page: e2020GL087492
  year: 2020
  ident: 303_CR40
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2020GL087492
– volume: 48
  start-page: e2021GL092792
  year: 2021
  ident: 303_CR124
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2021GL092792
– volume: 62
  start-page: 365
  year: 2019
  ident: 303_CR151
  publication-title: Sci. China-Earth Sci.
  doi: 10.1007/s11430-018-9261-5
– volume: 9
  year: 2019
  ident: 303_CR85
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-50036-z
– volume: 21
  start-page: 279
  year: 2012
  ident: 303_CR19
  publication-title: Meteorol. Z.
  doi: 10.1127/0941-2948/2012/0330
– volume: 9
  start-page: 267
  year: 2018
  ident: 303_CR89
  publication-title: Earth Syst. Dyn.
  doi: 10.5194/esd-9-267-2018
– volume: 5
  year: 2022
  ident: 303_CR38
  publication-title: Npj Clim. Atmos. Sci.
  doi: 10.1038/s41612-022-00235-9
– volume: 30
  start-page: 6465
  year: 2017
  ident: 303_CR57
  publication-title: J. Clim.
  doi: 10.1175/JCLI-D-16-0529.1
– volume: 36
  start-page: 922
  year: 2019
  ident: 303_CR123
  publication-title: Adv. Atmos. Sci.
  doi: 10.1007/s00376-018-8200-9
– volume: 54
  start-page: 1
  year: 2020
  ident: 303_CR41
  publication-title: Clim. Dyn.
  doi: 10.1007/s00382-019-04980-1
– volume: 5
  start-page: 424
  year: 2015
  ident: 303_CR122
  publication-title: Nat. Clim. Change
  doi: 10.1038/nclimate2563
– volume: 62
  start-page: 3098
  year: 2017
  ident: 303_CR88
  publication-title: Chin. Sci. Bull.
  doi: 10.1360/N972016-01234
– volume: 38
  start-page: 2374
  year: 2018
  ident: 303_CR129
  publication-title: Int. J. Climatol.
  doi: 10.1002/joc.5340
– volume: 13
  start-page: 26
  year: 2020
  ident: 303_CR52
  publication-title: Atmos. Ocean. Sci. Lett.
  doi: 10.1080/16742834.2020.1696649
– volume: 47
  start-page: 567
  year: 2016
  ident: 303_CR54
  publication-title: Clim. Dyn.
  doi: 10.1007/s00382-015-2856-y
– volume: 33
  start-page: 6471
  year: 2020
  ident: 303_CR37
  publication-title: J. Clim.
  doi: 10.1175/JCLI-D-19-0993.1
– volume: 48
  start-page: 577
  year: 2017
  ident: 303_CR68
  publication-title: Clim. Dyn.
  doi: 10.1007/s00382-016-3096-5
– volume: 5
  year: 2015
  ident: 303_CR51
  publication-title: Sci. Rep.
  doi: 10.1038/srep16771
– volume: 15
  start-page: 034048
  year: 2020
  ident: 303_CR95
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/ab751f
– volume: 6
  start-page: 827
  year: 2016
  ident: 303_CR16
  publication-title: Nat. Clim. Change
  doi: 10.1038/nclimate3096
– volume: 19
  start-page: 168
  year: 1996
  ident: 303_CR34
  publication-title: J. Nanjing Inst. Meteorol.
– volume: 10
  start-page: 3609
  year: 2017
  ident: 303_CR18
  publication-title: Geosci. Model Dev.
  doi: 10.5194/gmd-10-3609-2017
– volume: 640-641
  start-page: 543
  year: 2018
  ident: 303_CR93
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.05.324
– ident: 303_CR11
– volume: 90
  start-page: 1095
  year: 2009
  ident: 303_CR139
  publication-title: Bull. Am. Meteorol. Soc.
  doi: 10.1175/2009BAMS2607.1
– volume: 11
  start-page: 161
  year: 2020
  ident: 303_CR134
  publication-title: Adv. Clim. Change Res.
  doi: 10.1016/j.accre.2020.09.007
– volume: 36
  start-page: 1114
  year: 2016
  ident: 303_CR90
  publication-title: Int. J. Climatol.
  doi: 10.1002/joc.4406
– volume: 37
  start-page: 407
  year: 2011
  ident: 303_CR140
  publication-title: Clim. Dyn.
  doi: 10.1007/s00382-010-0810-6
– volume: 264
  start-page: 105838
  year: 2021
  ident: 303_CR2
  publication-title: Atmos. Res.
  doi: 10.1016/j.atmosres.2021.105838
– ident: 303_CR24
– ident: 303_CR8
– volume: 1
  start-page: 085002
  year: 2019
  ident: 303_CR49
  publication-title: Environ. Res. Commun.
  doi: 10.1088/2515-7620/ab3971
– volume: 7
  start-page: 417
  year: 2017
  ident: 303_CR14
  publication-title: Nat. Clim. Change
  doi: 10.1038/nclimate3275
– volume: 48
  start-page: 519
  year: 2020
  ident: 303_CR6
  publication-title: Annu. Rev. Earth Planet. Sci.
  doi: 10.1146/annurev-earth-071719-055228
– volume: 9
  start-page: e2020EF001640
  year: 2021
  ident: 303_CR149
  publication-title: Earth’s Future
  doi: 10.1029/2020EF001640
– volume: 115
  start-page: 10600
  year: 2018
  ident: 303_CR98
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1802129115
– volume: 13
  start-page: 064017
  year: 2018
  ident: 303_CR133
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/aac179
– volume: 25
  start-page: 6271
  year: 2012
  ident: 303_CR152
  publication-title: J. Clim.
  doi: 10.1175/JCLI-D-12-00005.1
– volume: 7
  start-page: 417
  year: 2017
  ident: 303_CR105
  publication-title: Nat. Clim. Change
  doi: 10.1038/nclimate3275
– volume: 123
  start-page: 10215
  year: 2018
  ident: 303_CR112
  publication-title: J. Geophys. Res.-Atmos.
  doi: 10.1029/2018JD028835
– volume: 44
  start-page: 4256
  year: 2017
  ident: 303_CR13
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/2017GL073480
– volume: 15
  start-page: 064003
  year: 2020
  ident: 303_CR87
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/ab7d04
– volume: 8
  start-page: e2020EF001716
  year: 2020
  ident: 303_CR130
  publication-title: Earths Future
  doi: 10.1029/2020EF001716
– volume: 30
  start-page: 9785
  year: 2017
  ident: 303_CR155
  publication-title: J. Clim.
  doi: 10.1175/JCLI-D-16-0654.1
– volume: 9
  start-page: 120
  year: 2018
  ident: 303_CR25
  publication-title: Adv. Clim. Change Res.
  doi: 10.1016/j.accre.2017.11.003
– volume: 746
  start-page: 140807
  year: 2020
  ident: 303_CR92
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.140807
– volume: 16
  start-page: 044053
  year: 2021
  ident: 303_CR101
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/abe782
– volume: 28
  start-page: 327
  year: 2014
  ident: 303_CR56
  publication-title: J. Meteorol. Res.
  doi: 10.1007/s13351-014-3151-2
– volume: 14
  start-page: 064011
  year: 2019
  ident: 303_CR103
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/ab072e
– volume: 23
  start-page: 3316
  year: 2010
  ident: 303_CR61
  publication-title: J. Clim.
  doi: 10.1175/2009JCLI3130.1
– volume: 33
  start-page: L08707
  year: 2006
  ident: 303_CR115
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2006GL025734
– volume: 13
  start-page: 129
  year: 2020
  ident: 303_CR64
  publication-title: Atmos. Ocean. Sci. Lett.
  doi: 10.1080/16742834.2020.1715199
– volume: 32
  start-page: 2247
  year: 2019
  ident: 303_CR60
  publication-title: J. Clim.
  doi: 10.1175/JCLI-D-18-0426.1
– volume: 192
  start-page: 103261
  year: 2020
  ident: 303_CR109
  publication-title: Glob. Planet. Change
  doi: 10.1016/j.gloplacha.2020.103261
– volume: 12
  start-page: 124
  year: 2019
  ident: 303_CR48
  publication-title: Atmos. Ocean. Sci. Lett.
  doi: 10.1080/16742834.2019.1569869
– volume: 1
  start-page: 276
  year: 2015
  ident: 303_CR159
  publication-title: Curr. Clim. Change Rep.
  doi: 10.1007/s40641-015-0027-1
– volume: 6
  start-page: 706
  year: 2016
  ident: 303_CR128
  publication-title: Nat. Clim. Change
  doi: 10.1038/nclimate2956
– volume: 44
  start-page: 7419
  year: 2017
  ident: 303_CR102
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/2017GL074117
– volume: 210
  start-page: 103349
  year: 2020
  ident: 303_CR108
  publication-title: Earth-Sci. Rev.
  doi: 10.1016/j.earscirev.2020.103349
– volume: 8
  start-page: e2019EF001461
  year: 2020
  ident: 303_CR96
  publication-title: Earth’s Future
  doi: 10.1029/2019EF001461
– volume: 58
  start-page: 1683
  year: 2021
  ident: 303_CR143
  publication-title: Clim. Dyn.
  doi: 10.1007/s00382-021-05986-4
– volume: 11
  year: 2020
  ident: 303_CR59
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-16631-9
– volume: 58
  start-page: 1427
  year: 2013
  ident: 303_CR36
  publication-title: Chin. Sci. Bull.
  doi: 10.1007/s11434-012-5533-0
– volume: 32
  start-page: 3373
  year: 2019
  ident: 303_CR50
  publication-title: J. Clim.
  doi: 10.1175/JCLI-D-18-0427.1
– volume: 41
  start-page: E410
  year: 2021
  ident: 303_CR79
  publication-title: Int. J. Climatol.
  doi: 10.1002/joc.6694
– volume: 9
  start-page: 112
  year: 2018
  ident: 303_CR22
  publication-title: Adv. Clim. Change Res.
  doi: 10.1016/j.accre.2017.12.001
– volume: 15
  start-page: 306
  year: 2002
  ident: 303_CR72
  publication-title: J. Clim.
  doi: 10.1175/1520-0442(2002)015<0306:VOTEAJ>2.0.CO;2
– volume: 54
  start-page: 2815
  year: 2020
  ident: 303_CR114
  publication-title: Clim. Dyn.
  doi: 10.1007/s00382-020-05150-4
– volume: 39
  start-page: L13707
  year: 2012
  ident: 303_CR154
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2012GL052258
– volume: 538
  start-page: 499
  year: 2016
  ident: 303_CR160
  publication-title: Nature
  doi: 10.1038/nature19772
– volume: 4
  start-page: 111
  year: 2014
  ident: 303_CR74
  publication-title: Nat. Clim. Change
  doi: 10.1038/nclimate2100
– volume: 217
  start-page: 103625
  year: 2021
  ident: 303_CR120
  publication-title: Earth-Sci. Rev.
  doi: 10.1016/j.earscirev.2021.103625
– volume: 6
  start-page: 222
  year: 2016
  ident: 303_CR10
  publication-title: Nat. Clim. Change
  doi: 10.1038/nclimate2939
– volume: 31
  start-page: 3921
  year: 2018
  ident: 303_CR158
  publication-title: J. Clim.
  doi: 10.1175/JCLI-D-17-0631.1
– volume: 8
  start-page: nwab056
  year: 2021
  ident: 303_CR75
  publication-title: Natl Sci. Rev.
  doi: 10.1093/nsr/nwab056
– volume: 3
  start-page: 52
  year: 2013
  ident: 303_CR97
  publication-title: Nat. Clim. Change
  doi: 10.1038/nclimate1633
– volume: 133
  start-page: 331
  year: 2018
  ident: 303_CR106
  publication-title: Theor. Appl. Climatol.
  doi: 10.1007/s00704-017-2189-3
– volume: 120
  start-page: 3063
  year: 2015
  ident: 303_CR153
  publication-title: J. Geophys. Res.-Atmos.
  doi: 10.1002/2014JD022958
– volume: 137
  start-page: 2187
  year: 2019
  ident: 303_CR42
  publication-title: Theor. Appl. Climatol.
  doi: 10.1007/s00704-018-2720-1
– volume: 28
  start-page: 3250
  year: 2015
  ident: 303_CR73
  publication-title: J. Clim.
  doi: 10.1175/JCLI-D-14-00439.1
– volume: 9
  start-page: 269
  year: 2019
  ident: 303_CR157
  publication-title: Nat. Clim. Change
  doi: 10.1038/s41558-019-0436-6
– volume: 42
  start-page: 635
  year: 2022
  ident: 303_CR141
  publication-title: Int. J. Climatol.
  doi: 10.1002/joc.7264
– volume: 65
  start-page: 243
  year: 2020
  ident: 303_CR119
  publication-title: Sci. Bull.
  doi: 10.1016/j.scib.2019.12.002
– volume: 9
  start-page: e2021EF002027
  year: 2021
  ident: 303_CR118
  publication-title: Earths Future
  doi: 10.1029/2021EF002027
– volume: 38
  start-page: 3607
  year: 2018
  ident: 303_CR125
  publication-title: Int. J. Climatol.
  doi: 10.1002/joc.5521
– volume: 53
  start-page: 2047
  year: 2019
  ident: 303_CR110
  publication-title: Clim. Dyn.
  doi: 10.1007/s00382-019-04775-4
– volume: 50
  start-page: 105
  year: 2011
  ident: 303_CR20
  publication-title: Clim. Res.
  doi: 10.3354/cr01067
– volume: 22
  start-page: 600
  year: 2009
  ident: 303_CR70
  publication-title: J. Clim.
  doi: 10.1175/2008JCLI2295.1
– volume: 7
  start-page: 637
  year: 2017
  ident: 303_CR12
  publication-title: Nat. Clim. Change
  doi: 10.1038/nclimate3352
– volume: 4
  start-page: 1082
  year: 2014
  ident: 303_CR26
  publication-title: Nat. Clim. Change
  doi: 10.1038/nclimate2410
– volume: 16
  start-page: 094028
  year: 2021
  ident: 303_CR163
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/ac1d0c
– volume: 43
  start-page: 1158
  year: 2019
  ident: 303_CR80
  publication-title: Chin. J. Atmos. Sci.
– volume: 162
  start-page: 603
  year: 2020
  ident: 303_CR126
  publication-title: Clim. Change
  doi: 10.1007/s10584-020-02725-2
– ident: 303_CR1
– volume: 101
  start-page: E1464
  year: 2020
  ident: 303_CR27
  publication-title: Bull. Am. Meteorol. Soc.
  doi: 10.1175/BAMS-D-19-0182.1
– volume: 47
  start-page: 3235
  year: 2016
  ident: 303_CR111
  publication-title: Clim. Dyn.
  doi: 10.1007/s00382-016-3023-9
– volume: 33
  start-page: L11708
  year: 2006
  ident: 303_CR62
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2006GL026377
– volume: 41
  start-page: E259
  year: 2021
  ident: 303_CR99
  publication-title: Int. J. Climatol.
  doi: 10.1002/joc.6682
– volume: 7
  start-page: 978
  year: 2019
  ident: 303_CR107
  publication-title: Earths Future
  doi: 10.1029/2019EF001237
– volume: 121
  start-page: 10505
  year: 2016
  ident: 303_CR131
  publication-title: J. Geophys. Res.-Atmos.
  doi: 10.1002/2016JD025210
– volume: 6
  start-page: 1528
  year: 2018
  ident: 303_CR83
  publication-title: Earth’s Future
  doi: 10.1029/2018EF000963
– volume: 3
  start-page: 45
  year: 2020
  ident: 303_CR39
  publication-title: Npj Clim. Atmos. Sci.
  doi: 10.1038/s41612-020-00151-w
– volume: 528
  start-page: 249
  year: 2015
  ident: 303_CR161
  publication-title: Nature
  doi: 10.1038/nature15770
– volume: 29
  start-page: 8989
  year: 2016
  ident: 303_CR146
  publication-title: J. Clim.
  doi: 10.1175/JCLI-D-16-0377.1
– volume: 5
  year: 2022
  ident: 303_CR32
  publication-title: Npj Clim. Atmos. Sci.
  doi: 10.1038/s41612-022-00253-7
– volume: 35
  start-page: L16709
  year: 2008
  ident: 303_CR116
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2008GL035075
– volume: 110
  start-page: 385
  year: 2012
  ident: 303_CR4
  publication-title: Clim. Change
  doi: 10.1007/s10584-011-0090-0
– volume: 6
  start-page: 735
  year: 2016
  ident: 303_CR15
  publication-title: Nat. Clim. Change
  doi: 10.1038/nclimate3055
– volume: 9
  year: 2018
  ident: 303_CR46
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-05633-3
– volume: 38
  start-page: 253
  year: 2021
  ident: 303_CR81
  publication-title: Adv. Atmos. Sci.
  doi: 10.1007/s00376-020-0182-8
– volume: 84
  start-page: 2299
  year: 2016
  ident: 303_CR94
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-016-2553-0
– volume: 57
  start-page: 17
  year: 2021
  ident: 303_CR5
  publication-title: Clim. Dyn.
  doi: 10.1007/s00382-021-05691-2
– volume: 82
  start-page: 155
  year: 2004
  ident: 303_CR63
  publication-title: J. Meteorol. Soc. Jpn.
  doi: 10.2151/jmsj.82.155
SSID ssj0002202976
Score 2.5008063
SecondaryResourceType review_article
Snippet East Asia is undergoing significant climate changes and these changes are likely to grow in the future. It is urgent to characterize both the mechanisms...
Abstract East Asia is undergoing significant climate changes and these changes are likely to grow in the future. It is urgent to characterize both the...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms 704/106/694
706/648/453
Atmospheric Protection/Air Quality Control/Air Pollution
Atmospheric Sciences
Climate change
Climate Change/Climate Change Impacts
Climate system
Climatology
Divergence
Earth and Environmental Science
Earth Sciences
El Nino
Fine structure
Global warming
Monsoons
Review Article
Ultrastructure
Uncertainty
Water vapor
Wetting
Wind
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBZ5XHoJbdNSp2nRofTSurFefpxKsmwIhYQSspCbkPUIC8FO1g79W_0N_WWdkbUbUmhufkjGzIxmPo2kbwj5ZKoqlKZSuVHB5LKBMdd4PKirIFw0SgYbSZLOL8qzhfxxra5Twm1I2yrXPjE6atdbzJEf8YqXMOUGvP397j7HqlG4uppKaGyTXXDBNUy-dk_mFz8vN1kWzrE4U5lOyxSiPhoQ0fMcN7GjgYu8eBKRInH_E7T5zwJpjDunL8leAoz0eNLwK7Llu9ckOwes269iSpx-prPbJQDPeLdPFoAEIZLQgNQEWOia9oHa2MLT6ZzvQJcdnZthpMfD0lAz0okXhP4yuDXmBnuwb-rP7xk1naMcLt6Qxen8anaWp-IJuYU5z5iLMigIPJWSZWCemRaCoQM4wlu4Mi2vkaLaitpIAK5Fy0rfqIo1lRWt8p4L8ZbsdH3n3xEamCtQ8ty6SqrQNG2QtbJGBGlqaUJG2FqA2iZmcSxwcavjCreo9SR0DULXUei6yMiXTZ-7iVfj2dYnqJdNS-TEjg_61Y1OQ0w7y5UXgTturJQNA0_kwGMxK5xTLTMZOVxrVaeBOuhHs8rI17WmH1___5cOnv_ae_KCo41BlOPFIdkZVw_-A8CXsf2YbPQvspXqpg
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Lat0wEBUh3WRT-kiJ27RoUbpp3Vhve5mahFBIVrmQnZD1CBeCb7l26W_1G_plnZHtW1LaQHayPQJ5NNIcSaMzhLx3xiTtjCqdSq6UDYy5JuJFXQXuolEy-UySdHmlL1by64262SN8uQuTg_YzpWWeppfosJMBgTgvMfYc7VKUsEx_gtTtaNWtbnf7KpxjOiY934-pRP2Pqvd8UKbqv4cv_zoSzZ7m_Bl5OkNEejo16jnZi_0LUlwCut1s8yY4_UDbuzVAzfz0kqwA-4HvoAnJCDC1Nd0k6rNEpNPN3oGue3rmhpGeDmtH3UgnJhD6w2EwzC3WYJ_Vr58tdX2gHAqHZHV-dt1elHO6hNLDKmcshU4KXI1RUicWmevA_QUAILyDkut4jaTUXtROAlStOqZjowxrjBedipEL8Yrs95s-HhGaWAA_ryvug5EqNU2XZK28E0m6WrpUELYo0PqZSxxTWtzZfKYtajsp3YLSbVa6rQrycVfn28Sk8aD0F-yXnSSyYOcXm-2tna3CBs9VFIkH7ryUDYO5J8AcxbwIQXXMFeR46VU7D83BcsO1wZ_TBfm09PSfz_9v0uvHib8hBxxtDvwcr47J_rj9Ht8CgBm7d9lifwMhjubS
  priority: 102
  providerName: Springer Nature
Title Recent frontiers of climate changes in East Asia at global warming of 1.5°C and 2°C
URI https://link.springer.com/article/10.1038/s41612-022-00303-0
https://www.proquest.com/docview/2726761606
https://doaj.org/article/dc25e3f2d2ac4491870d3181c3dd5b1a
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LTtwwFLVauummooWqKXTkRcWmBOJ3shyiQWgkEKKMxM5y_KimQpmKBPFb_YZ-Wa-dDAUk2k1XcRJHcq5PdI5j-1yEPhulgjRK5EYEk_MKvrnKx426AuiiEjzYZJJ0eiZPFnx-Ja4epPqKa8IGe-AhcIfOUuFZoI4ay3lFAF8OcEgsc040JEkj4LwHg6nvydQlJmWS4y6ZgpWHXVTyNI-L1yOwWV48YqJk2P9IZT6ZGE18c7yJ3oxCEU-HBr5FL3z7DmWnoHFXN-lXON7D9fUSBGc620ILUIDAIDhES4KY4BqvAraphsfD_t4OL1s8M12Pp93SYNPjwQ8E35m4JOZbfIIciF8_a2xahykUttHieHZZn-Rj0oTcwlinz5kMAghHCS4D8cQ0QIIOZAhtoGQaWkZrastKw0GwFg2RvhKKVMqyRnhPGXuPNtpV6z8gHIgDtpcFtU5xEaqqCbwU1rDATclNyBBZB1Db0VE8Jra41mlmm5V6CLqGoOsUdF1k6Mv9Mz8GP42_1j6K_XJfM3phpwuAED0iRP8LIRnaXfeqHj_QTlNFpYovJzO0v-7pP7efb9LH_9GkHfSaRiQCB9JiF230N7f-E4ibvpmgV9Pp_Oscjkezs_OLCXpZy3qS0P0b6q_2GA
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaq7QEuiKdIKeADcIHQ-JXHAaF22WpLuyuEulJvxvGjWqlK2k2qij-F-A38MsZOslWR6K23POwomhnPfDP2zCD0RmWZS1UmYiWcinkBa66wPlFXgLkoBHc6FEmazdPpgn89EScb6NeQC-OPVQ46MShqU2sfI9-hGU3B5Qa8_fn8IvZdo_zu6tBCoxOLQ_vzCly25tPBF-DvW0r3J8fjadx3FYg1OANtzFInQCNngqeOWKJKsBIG7DQt4UqV1Der55rligOiS0qS2kJkpMg0K4W11AdAQeVvcgauzAht7k3m376vozqU-mZQaZ-dk7B8p_EeBI39oXm_oFic3LCAoVHADXT7z4ZssHP7D9GDHqDi3U6iHqENWz1G0Qywdb0KIXj8Do_PlgB0w90TtADkCZYLO18KwTfWxrXDOoywuMsrbvCywhPVtHi3WSqsWtzVIcFXyh_FOfUzyEfx5_cYq8pgChdP0eJOyPoMjaq6ss8RdsQkntNUm4wLVxSl47nQijmucq5chMhAQKn7Sua-ocaZDDvqLJcd0SUQXQaiyyRC79dzzrs6HreO3vN8WY_0NbjDg3p1KvslLY2mwjJHDVWa84KA5jOgIYlmxoiSqAhtD1yVvWJo5LUYR-jDwOnr1___pa3bv_Ya3Zsez47k0cH88AW6T728gYWlyTYatatL-xKgU1u-6uUVox93vUT-Ao8mJ2Y
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VIiEuiKdIW8AHxAVS4meSYwldlUcrDqzUm-X4Ua1UZatNUP8Wv4FfxthJFhUBEjcnGUvOeOz5bI-_AXhpyjIoU8rcyGByUeOYq328qCvRXdRSBJtIkk7P1MlSfDyX5zug5rswKWg_UVqmaXqODnvbRyDO8hh7Hu2S58XhlQu34Dbi7SIuuhrVbPdWGIspmdR0R6bg1R-q3_BDia7_Bsb87Vg0eZvFfbg3wURyNDbsAez47iFkp4hw15u0EU5ekeZyhXAzPT2CJeI_9B8kREKCmN6arAOxScKT8XZvT1YdOTb9QI76lSFmICMbCLk2MSDmItagh_LH94aYzhGGhcewXBx_bU7yKWVCbnGlM-RcBYnuppRCBeqpadEFOgQhrMWSaVkViaktr4xAuFq0VPlalrQuLW-l94zzJ7DbrTv_FEigDn29Kph1pZChrtsgKmkND8JUwoQM6KxAbSc-8ZjW4lKnc21e6VHpGpWuk9J1kcHrbZ2rkU3jn9LvYr9sJSMTdnqx3lzoyTK0s0x6HphjxgpRU5x_HM5T1HLnZEtNBgdzr-ppePaalUyV8edUBm_mnv71-e9N2vs_8Rdw58v7hf784ezTPtxl0fzQ7bHiAHaHzTf_DPHM0D5PxvsTjkTqyg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+frontiers+of+climate+changes+in+East+Asia+at+global+warming+of+1.5%C2%B0C+and+2%C2%B0C&rft.jtitle=NPJ+climate+and+atmospheric+science&rft.au=Qinglong+You&rft.au=Zhihong+Jiang&rft.au=Xu+Yue&rft.au=Weidong+Guo&rft.date=2022-10-20&rft.pub=Nature+Portfolio&rft.eissn=2397-3722&rft.volume=5&rft.issue=1&rft.spage=1&rft.epage=17&rft_id=info:doi/10.1038%2Fs41612-022-00303-0&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_dc25e3f2d2ac4491870d3181c3dd5b1a
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2397-3722&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2397-3722&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2397-3722&client=summon