Recent frontiers of climate changes in East Asia at global warming of 1.5°C and 2°C
East Asia is undergoing significant climate changes and these changes are likely to grow in the future. It is urgent to characterize both the mechanisms controlling climate and the response of the East Asian climate system at global warming of 1.5 and 2 °C above pre-industrial levels (GW1.5 and GW2...
Saved in:
Published in | NPJ climate and atmospheric science Vol. 5; no. 1; pp. 1 - 17 |
---|---|
Main Authors | , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
20.10.2022
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | East Asia is undergoing significant climate changes and these changes are likely to grow in the future. It is urgent to characterize both the mechanisms controlling climate and the response of the East Asian climate system at global warming of 1.5 and 2 °C above pre-industrial levels (GW1.5 and GW2 hereafter). This study reviews recent studies on East Asian climate change at GW1.5 and GW2. The intensity and variability of the East Asian summer monsoon are expected to increase modestly, accompanied by an enhancement of water vapor transport. Other expected changes include the intensification of the Western Pacific Subtropical High and an intensified and southward shift of the East Asian jet, while the intensity of the East Asian winter monsoon is projected to reduce with high uncertainty. Meanwhile, the frequency of ENSO may increase in a warming world with great uncertainty. Significant warming and wetting occur in East Asia, with more pronounced intensity, frequency, and duration of climate extremes at GW2 than that at GW1.5. The fine structure of regional climate changes and the presence and location of various warming hotspots, however, show substantial divergence among different model simulations. Furthermore, the Asian climate responses can differ substantially between the transient and stabilized GW1.5 and GW2, which has important implications for emission policies. Thus, to better plan effective mitigation and adaptation activities, further research including an in-depth exploration of the divergent responses in transient versus stabilized scenarios, the quantification of future projection uncertainties, and improvements of the methods to reduce model uncertainties are required. |
---|---|
AbstractList | Abstract East Asia is undergoing significant climate changes and these changes are likely to grow in the future. It is urgent to characterize both the mechanisms controlling climate and the response of the East Asian climate system at global warming of 1.5 and 2 °C above pre-industrial levels (GW1.5 and GW2 hereafter). This study reviews recent studies on East Asian climate change at GW1.5 and GW2. The intensity and variability of the East Asian summer monsoon are expected to increase modestly, accompanied by an enhancement of water vapor transport. Other expected changes include the intensification of the Western Pacific Subtropical High and an intensified and southward shift of the East Asian jet, while the intensity of the East Asian winter monsoon is projected to reduce with high uncertainty. Meanwhile, the frequency of ENSO may increase in a warming world with great uncertainty. Significant warming and wetting occur in East Asia, with more pronounced intensity, frequency, and duration of climate extremes at GW2 than that at GW1.5. The fine structure of regional climate changes and the presence and location of various warming hotspots, however, show substantial divergence among different model simulations. Furthermore, the Asian climate responses can differ substantially between the transient and stabilized GW1.5 and GW2, which has important implications for emission policies. Thus, to better plan effective mitigation and adaptation activities, further research including an in-depth exploration of the divergent responses in transient versus stabilized scenarios, the quantification of future projection uncertainties, and improvements of the methods to reduce model uncertainties are required. East Asia is undergoing significant climate changes and these changes are likely to grow in the future. It is urgent to characterize both the mechanisms controlling climate and the response of the East Asian climate system at global warming of 1.5 and 2 °C above pre-industrial levels (GW1.5 and GW2 hereafter). This study reviews recent studies on East Asian climate change at GW1.5 and GW2. The intensity and variability of the East Asian summer monsoon are expected to increase modestly, accompanied by an enhancement of water vapor transport. Other expected changes include the intensification of the Western Pacific Subtropical High and an intensified and southward shift of the East Asian jet, while the intensity of the East Asian winter monsoon is projected to reduce with high uncertainty. Meanwhile, the frequency of ENSO may increase in a warming world with great uncertainty. Significant warming and wetting occur in East Asia, with more pronounced intensity, frequency, and duration of climate extremes at GW2 than that at GW1.5. The fine structure of regional climate changes and the presence and location of various warming hotspots, however, show substantial divergence among different model simulations. Furthermore, the Asian climate responses can differ substantially between the transient and stabilized GW1.5 and GW2, which has important implications for emission policies. Thus, to better plan effective mitigation and adaptation activities, further research including an in-depth exploration of the divergent responses in transient versus stabilized scenarios, the quantification of future projection uncertainties, and improvements of the methods to reduce model uncertainties are required. |
ArticleNumber | 80 |
Author | Zhai, Panmao Li, Tim You, Qinglong Li, Wei Jiang, Zhihong Liu, Yonggang Zhu, Huanhuan Yue, Xu Liu, Zhengyu Cai, Ziyi Guo, Weidong Wu, Fangying He, Jinhai Chen, Deliang Cao, Jian Pepin, Nick |
Author_xml | – sequence: 1 givenname: Qinglong surname: You fullname: You, Qinglong email: qlyou@fudan.edu.cn organization: Department of Atmospheric and Oceanic Sciences & Institute of Atmospheric Sciences, Fudan University – sequence: 2 givenname: Zhihong surname: Jiang fullname: Jiang, Zhihong email: zhjiang@nuist.edu.cn organization: Key Laboratory of Meteorological Disaster of Ministry of Education, Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disaster, Nanjing University of Information Science & Technology (NUIST) – sequence: 3 givenname: Xu surname: Yue fullname: Yue, Xu organization: Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, NUIST – sequence: 4 givenname: Weidong orcidid: 0000-0003-0299-6393 surname: Guo fullname: Guo, Weidong organization: Institute for Climate and Global Change Research, School of Atmospheric Sciences, Nanjing University – sequence: 5 givenname: Yonggang surname: Liu fullname: Liu, Yonggang organization: Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University – sequence: 6 givenname: Jian surname: Cao fullname: Cao, Jian organization: Key Laboratory of Meteorological Disaster of Ministry of Education, Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disaster, Nanjing University of Information Science & Technology (NUIST) – sequence: 7 givenname: Wei surname: Li fullname: Li, Wei organization: Key Laboratory of Meteorological Disaster of Ministry of Education, Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disaster, Nanjing University of Information Science & Technology (NUIST) – sequence: 8 givenname: Fangying surname: Wu fullname: Wu, Fangying organization: Department of Atmospheric and Oceanic Sciences & Institute of Atmospheric Sciences, Fudan University – sequence: 9 givenname: Ziyi surname: Cai fullname: Cai, Ziyi organization: Department of Atmospheric and Oceanic Sciences & Institute of Atmospheric Sciences, Fudan University – sequence: 10 givenname: Huanhuan surname: Zhu fullname: Zhu, Huanhuan organization: Key Laboratory of Meteorological Disaster of Ministry of Education, Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disaster, Nanjing University of Information Science & Technology (NUIST) – sequence: 11 givenname: Tim surname: Li fullname: Li, Tim organization: Department of Atmospheric and Oceanic Sciences & Institute of Atmospheric Sciences, Fudan University, International Pacific Research Center, Department of Atmospheric Sciences, University of Hawaii at Manoa – sequence: 12 givenname: Zhengyu surname: Liu fullname: Liu, Zhengyu organization: Atmospheric Science Program, Department of Geography, The Ohio State University – sequence: 13 givenname: Jinhai surname: He fullname: He, Jinhai organization: Key Laboratory of Meteorological Disaster of Ministry of Education, Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disaster, Nanjing University of Information Science & Technology (NUIST) – sequence: 14 givenname: Deliang orcidid: 0000-0003-0288-5618 surname: Chen fullname: Chen, Deliang organization: Department of Earth Sciences, University of Gothenburg – sequence: 15 givenname: Nick surname: Pepin fullname: Pepin, Nick organization: School of Environment, Geography and Geosciences, University of Portsmouth – sequence: 16 givenname: Panmao surname: Zhai fullname: Zhai, Panmao organization: Chinese Academy of Meteorological Sciences |
BookMark | eNp9UcFKHTEUDcVCrfUHugq4HpubTJKZpTxsFQRB6jrcSTKveYyJTSLSv_Ib_DKjU1px4SLkcDnn3MM9n8leTNET8hXYMTAxfCs9KOAd4-0xwUTHPpB9LkbdCc353iv8iRyWsmOsURkftdon11fe-ljpnFOswedC00ztEm6wemp_Ydz6QkOkp1gqPSkBKVa6XdKEC73HfBPi9lkBx_LxYUMxOsob-EI-zrgUf_j3PyDX309_bs66i8sf55uTi872o6ydULPsNWjZqxk84OS9c0qMfGoIJz5I0L0VA_YDTGwC5UepYdRWTNJ7LsQBOV99XcKduc0tdv5jEgbzMkh5azDXYBdvnOXSi5k7jrbvRxg0cwIGsMI5OQE2r6PV6zan33e-VLNLdzm2-IZrrrQCxVRj8ZVlcyol-_nfVmDmuQ2ztmHaic1LG4Y10fBGZEPFGtrJM4blfalYpaXtaWXk_6neUT0B2gSewg |
CitedBy_id | crossref_primary_10_1029_2023EF003613 crossref_primary_10_1039_D3TA01800H crossref_primary_10_1088_1748_9326_ac9e0b crossref_primary_10_1016_j_eti_2023_103178 crossref_primary_10_1016_j_ejrh_2024_101692 crossref_primary_10_5467_JKESS_2024_45_1_1 crossref_primary_10_1038_s41612_023_00498_w crossref_primary_10_1016_j_atmosres_2023_107115 crossref_primary_10_1016_j_solener_2023_112039 crossref_primary_10_1038_s41467_023_42891_2 crossref_primary_10_1038_s41612_023_00365_8 crossref_primary_10_1007_s00704_024_05164_6 crossref_primary_10_14246_irspsd_12_3_176 crossref_primary_10_1016_j_indcrop_2024_118222 crossref_primary_10_1016_j_agrformet_2024_110047 crossref_primary_10_1360_SSTe_2022_0381 crossref_primary_10_1371_journal_pone_0318170 crossref_primary_10_1360_N072022_0369 crossref_primary_10_3390_jmse12050722 crossref_primary_10_3354_cr01720 crossref_primary_10_1088_1748_9326_ac9c70 crossref_primary_10_1007_s00382_025_07620_z crossref_primary_10_1038_s41612_024_00863_3 crossref_primary_10_1007_s00704_024_04891_0 crossref_primary_10_1016_j_atmosres_2022_106554 crossref_primary_10_3390_w17020219 crossref_primary_10_1007_s00704_023_04696_7 crossref_primary_10_1007_s11430_022_1168_0 crossref_primary_10_7256_2310_8673_2024_3_71098 crossref_primary_10_1016_j_wace_2024_100643 crossref_primary_10_1016_j_scs_2025_106201 crossref_primary_10_1016_j_scs_2024_105578 crossref_primary_10_1016_j_agrformet_2024_110355 crossref_primary_10_1016_j_cej_2024_156918 crossref_primary_10_1016_j_jobe_2023_106571 crossref_primary_10_1016_j_envexpbot_2024_105938 crossref_primary_10_1016_j_scitotenv_2023_162822 crossref_primary_10_1016_j_atmosres_2024_107896 crossref_primary_10_1016_j_jece_2024_114735 crossref_primary_10_1007_s00704_024_05005_6 crossref_primary_10_1016_j_jes_2024_03_050 crossref_primary_10_1007_s40808_024_02193_y crossref_primary_10_1038_s41586_024_07887_y crossref_primary_10_1007_s11430_022_1154_7 crossref_primary_10_1016_j_wace_2024_100694 crossref_primary_10_7780_kjrs_2024_40_6_1_32 crossref_primary_10_1038_s41598_025_91184_9 crossref_primary_10_1016_j_wace_2023_100570 crossref_primary_10_1080_23311886_2023_2235170 crossref_primary_10_1016_j_ecoinf_2025_103030 crossref_primary_10_3390_f15020235 crossref_primary_10_1038_s41612_023_00528_7 crossref_primary_10_3390_atmos14081318 crossref_primary_10_1016_j_ejrh_2024_101842 crossref_primary_10_1016_j_ejrh_2025_102239 crossref_primary_10_1126_sciadv_adh4195 crossref_primary_10_1088_1748_9326_ad2890 crossref_primary_10_1016_j_scitotenv_2024_172482 crossref_primary_10_1016_j_atmosres_2023_106911 crossref_primary_10_1016_j_quascirev_2024_108648 crossref_primary_10_1016_j_atmosres_2023_106675 crossref_primary_10_3390_f15030411 crossref_primary_10_1007_s00334_024_00988_8 crossref_primary_10_1007_s00704_023_04690_z crossref_primary_10_1016_j_atmosres_2025_107919 |
Cites_doi | 10.1175/JCLI-D-15-0099.1 10.1175/1520-0442(2002)015<1141:COAURA>2.0.CO;2 10.1175/BAMS-D-19-0131.1 10.1038/nclimate3345 10.1007/s00382-021-05673-4 10.1002/2016GL072281 10.1007/s10584-012-0570-x 10.2151/jmsj1965.70.1B_373 10.1038/ngeo1590 10.1007/s00382-019-04860-8 10.1002/joc.5882 10.1038/s41558-018-0387-3 10.1029/2019EF001337 10.1038/nclimate3296 10.1002/2017GL072739 10.1126/sciadv.aax4177 10.1007/s00376-009-9094-3 10.1002/joc.5399 10.5194/gmd-10-3805-2017 10.1016/j.scib.2021.07.026 10.1016/j.accre.2017.12.002 10.1175/JCLI-D-13-00494.1 10.1002/2016GL072012 10.1002/2017EF000734 10.1007/s10584-020-02841-z 10.1007/s00382-013-1929-z 10.1016/j.quaint.2017.05.005 10.2151/jmsj.2012-A23 10.5194/gmd-14-3079-2021 10.1002/joc.6485 10.1016/j.accre.2020.09.006 10.1016/j.accre.2018.02.003 10.1002/2017GL076753 10.1038/s41558-019-0658-7 10.1029/2020EF001832 10.1007/s00376-007-0972-2 10.2151/jmsj.2017-002 10.1007/s10584-012-0419-3 10.1002/joc.4480 10.5194/tc-6-1383-2012 10.1088/1748-9326/ac48b6 10.1088/1748-9326/ac27cc 10.1029/2020JD033016 10.1016/j.scib.2017.12.021 10.1007/s00382-017-3708-8 10.5194/esd-9-427-2018 10.1029/2019EF001276 10.1029/2020GL087492 10.1029/2021GL092792 10.1007/s11430-018-9261-5 10.1038/s41598-019-50036-z 10.1127/0941-2948/2012/0330 10.5194/esd-9-267-2018 10.1038/s41612-022-00235-9 10.1175/JCLI-D-16-0529.1 10.1007/s00376-018-8200-9 10.1007/s00382-019-04980-1 10.1038/nclimate2563 10.1360/N972016-01234 10.1002/joc.5340 10.1080/16742834.2020.1696649 10.1007/s00382-015-2856-y 10.1175/JCLI-D-19-0993.1 10.1007/s00382-016-3096-5 10.1038/srep16771 10.1088/1748-9326/ab751f 10.1038/nclimate3096 10.5194/gmd-10-3609-2017 10.1016/j.scitotenv.2018.05.324 10.1175/2009BAMS2607.1 10.1016/j.accre.2020.09.007 10.1002/joc.4406 10.1007/s00382-010-0810-6 10.1016/j.atmosres.2021.105838 10.1088/2515-7620/ab3971 10.1038/nclimate3275 10.1146/annurev-earth-071719-055228 10.1029/2020EF001640 10.1073/pnas.1802129115 10.1088/1748-9326/aac179 10.1175/JCLI-D-12-00005.1 10.1029/2018JD028835 10.1002/2017GL073480 10.1088/1748-9326/ab7d04 10.1029/2020EF001716 10.1175/JCLI-D-16-0654.1 10.1016/j.accre.2017.11.003 10.1016/j.scitotenv.2020.140807 10.1088/1748-9326/abe782 10.1007/s13351-014-3151-2 10.1088/1748-9326/ab072e 10.1175/2009JCLI3130.1 10.1029/2006GL025734 10.1080/16742834.2020.1715199 10.1175/JCLI-D-18-0426.1 10.1016/j.gloplacha.2020.103261 10.1080/16742834.2019.1569869 10.1007/s40641-015-0027-1 10.1038/nclimate2956 10.1002/2017GL074117 10.1016/j.earscirev.2020.103349 10.1029/2019EF001461 10.1007/s00382-021-05986-4 10.1038/s41467-020-16631-9 10.1007/s11434-012-5533-0 10.1175/JCLI-D-18-0427.1 10.1002/joc.6694 10.1016/j.accre.2017.12.001 10.1175/1520-0442(2002)015<0306:VOTEAJ>2.0.CO;2 10.1007/s00382-020-05150-4 10.1029/2012GL052258 10.1038/nature19772 10.1038/nclimate2100 10.1016/j.earscirev.2021.103625 10.1038/nclimate2939 10.1175/JCLI-D-17-0631.1 10.1093/nsr/nwab056 10.1038/nclimate1633 10.1007/s00704-017-2189-3 10.1002/2014JD022958 10.1007/s00704-018-2720-1 10.1175/JCLI-D-14-00439.1 10.1038/s41558-019-0436-6 10.1002/joc.7264 10.1016/j.scib.2019.12.002 10.1029/2021EF002027 10.1002/joc.5521 10.1007/s00382-019-04775-4 10.3354/cr01067 10.1175/2008JCLI2295.1 10.1038/nclimate3352 10.1038/nclimate2410 10.1088/1748-9326/ac1d0c 10.1007/s10584-020-02725-2 10.1175/BAMS-D-19-0182.1 10.1007/s00382-016-3023-9 10.1029/2006GL026377 10.1002/joc.6682 10.1029/2019EF001237 10.1002/2016JD025210 10.1029/2018EF000963 10.1038/s41612-020-00151-w 10.1038/nature15770 10.1175/JCLI-D-16-0377.1 10.1038/s41612-022-00253-7 10.1029/2008GL035075 10.1007/s10584-011-0090-0 10.1038/nclimate3055 10.1038/s41467-018-05633-3 10.1007/s00376-020-0182-8 10.1007/s11069-016-2553-0 10.1007/s00382-021-05691-2 10.2151/jmsj.82.155 |
ContentType | Journal Article |
Copyright | The Author(s) 2022 The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2022 – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BHPHI BKSAR CCPQU DWQXO GNUQQ HCIFZ PATMY PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS PYCSY DOA |
DOI | 10.1038/s41612-022-00303-0 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest SciTech Premium Collection Natural Science Collection Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Natural Science Collection ProQuest SciTech Premium Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One ProQuest Central Korea ProQuest Central Student SciTech Premium Collection Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Environmental Science Collection DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China Earth, Atmospheric & Aquatic Science Collection ProQuest Central Environmental Science Collection ProQuest One Sustainability ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Environmental Science Database ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology |
EISSN | 2397-3722 |
EndPage | 17 |
ExternalDocumentID | oai_doaj_org_article_dc25e3f2d2ac4491870d3181c3dd5b1a 10_1038_s41612_022_00303_0 |
GeographicLocations | East Asia |
GeographicLocations_xml | – name: East Asia |
GrantInformation_xml | – fundername: National Key Research and Development Program of China(2017YFA0603804) |
GroupedDBID | 0R~ AAJSJ ACGFS ACSMW ADBBV AEUYN AFKRA AFPKN AJTQC ALMA_UNASSIGNED_HOLDINGS ATCPS BCNDV BENPR BHPHI BKSAR C6C CCPQU EBLON EBS EDH GROUPED_DOAJ HCIFZ M~E NAO NO~ OK1 PATMY PCBAR PIMPY PYCSY RNT SNYQT AAFWJ AASML AAYXX CITATION PHGZM PHGZT ABUWG AZQEC DWQXO GNUQQ PKEHL PQEST PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c495t-36f54717546f1e1abeedd6392bbeeab285174c38a481b0b16e957197c3b5ee233 |
IEDL.DBID | DOA |
ISSN | 2397-3722 |
IngestDate | Wed Aug 27 01:30:41 EDT 2025 Sat Aug 23 14:16:08 EDT 2025 Tue Jul 01 02:32:22 EDT 2025 Thu Apr 24 23:06:54 EDT 2025 Fri Feb 21 02:39:47 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c495t-36f54717546f1e1abeedd6392bbeeab285174c38a481b0b16e957197c3b5ee233 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0299-6393 0000-0003-0288-5618 |
OpenAccessLink | https://doaj.org/article/dc25e3f2d2ac4491870d3181c3dd5b1a |
PQID | 2726761606 |
PQPubID | 4669727 |
PageCount | 17 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_dc25e3f2d2ac4491870d3181c3dd5b1a proquest_journals_2726761606 crossref_primary_10_1038_s41612_022_00303_0 crossref_citationtrail_10_1038_s41612_022_00303_0 springer_journals_10_1038_s41612_022_00303_0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-10-20 |
PublicationDateYYYYMMDD | 2022-10-20 |
PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-20 day: 20 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | NPJ climate and atmospheric science |
PublicationTitleAbbrev | npj Clim Atmos Sci |
PublicationYear | 2022 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | CaiWIncreasing frequency of extreme El Niño events due to greenhouse warmingNat. Clim. Change2014411111610.1038/nclimate2100 LiuYYLiWJZuoJQHuZZSimulation and projection of the Western Pacific Subtropical High in CMIP5 modelsJ. Meteorol. Res.20142832734010.1007/s13351-014-3151-2 HuTSunYZhangXTemperature and precipitation projection at 1.5 and 2 °C increase in global mean temperature (in Chinese)Chin. Sci. Bull.2017623098311110.1360/N972016-01234 DaiAGRasmussenRMIkedaKLiuCHA new approach to construct representative future forcing data for dynamic downscalingClim. Dyn.20205531532310.1007/s00382-017-3708-8 YouQLTemperature dataset of CMIP6 models over China: evaluation, trend and uncertaintyClim. Dyn.202157173510.1007/s00382-021-05691-2 RenGYGuanZYShaoXMGongDYChanges in climatic extremes over mainland ChinaClim. Res.20115010511110.3354/cr01067 HeCEnhanced or weakened Western North Pacific Subtropical High under Global Warming?Sci. Rep.2015510.1038/srep16771 WenzelSCoxPMEyringVFriedlingsteinPProjected land photosynthesis constrained by changes in the seasonal cycle of atmospheric CO2Nature201653849950110.1038/nature19772 WangTMiaoJ-PSunJ-QFuY-HIntensified East Asian summer monsoon and associated precipitation mode shift under the 1.5 °C global warming targetAdv. Clim. Change Res.2018910211110.1016/j.accre.2017.12.002 AghaKouchakAClimate Extremes and Compound Hazards in a Warming WorldAnnu. Rev. Earth Planet. Sci.20204851954810.1146/annurev-earth-071719-055228 XuZFHanYYangZLDynamical downscaling of regional climate: a review of methods and limitationsSci. China-Earth Sci.20196236537510.1007/s11430-018-9261-5 ZhouSJHuangGHuangPA bias-corrected projection for the changes in East Asian summer monsoon rainfall under global warmingClim. Dyn.20205411610.1007/s00382-019-04980-1 MoonSHaKJFuture changes in monsoon duration and precipitation using CMIP6Npj Clim. Atmos. Sci.202034510.1038/s41612-020-00151-w ZhangWZhouTIncreasing impacts from extreme precipitation on population over China with global warmingSci. Bull.20206524325210.1016/j.scib.2019.12.002 ChiangJCHSwensonLMKongWRole of seasonal transitions and the westerlies in the interannual variability of the East Asian summer monsoon precipitationGeophys. Res. Lett.2017443788379510.1002/2017GL072739 LiWJiangZHXuJJLiLExtreme precipitation Indices over China in CMIP5 models. Part II: probabilistic projectionJ. Clim.2016298989900410.1175/JCLI-D-16-0377.1 XuZQFanKProjected changes in summer water vapor transport over East Asia under the 1.5 degrees C and 2.0 degrees C global warming targetsAtmos. Ocean. Sci. Lett.20191212413010.1080/16742834.2019.1569869 KingADLaneTPHenleyBJBrownJRGlobal and regional impacts differ between transient and equilibrium warmer worldsNat. Clim. Change202010424710.1038/s41558-019-0658-7 ZhangWZhouTThe effect of modeling strategies on assessments of differential warming impacts of 0.5 °CEarth’s Future20219e2020EF00164010.1029/2020EF001640 XuZFYangZLA new dynamical downscaling approach with GCM bias corrections and spectral nudgingJ. Geophys. Res.-Atmos.20151203063308410.1002/2014JD022958 HeCWuBZouLWZhouTJResponses of the summertime subtropical Anticyclones to global warmingJ. Clim.2017306465647910.1175/JCLI-D-16-0529.1 ZhangWZhouTZouLZhangLChenXReduced exposure to extreme precipitation from 0.5 °C less warming in global land monsoon regionsNat. Commun.2018910.1038/s41467-018-05633-3 LiZBSunYLiTDingYHHuTFuture changes in East Asian summer monsoon circulation and precipitation under 1.5 to 5 degrees C of warmingEarths Future201971391140610.1029/2019EF001276 ZhangYCKuangXYGuoWDZhouTJSeasonal evolution of the upper-tropospheric westerly jet core over East AsiaGeophys. Res. Lett.200633L1170810.1029/2006GL026377 WangHJExtreme climate in China: facts, simulation and projectionMeteorol. Z.20122127930410.1127/0941-2948/2012/0330 GuoLJiangZChenDLe TreutHLiLProjected precipitation changes over China for global warming levels at 1.5 °C and 2 °C in an ensemble of regional climate simulations: impact of bias correction methodsClim. Change202016262364310.1007/s10584-020-02841-z LiDZouLZhouTExtreme climate event changes in China in the 1.5 and 2 °C warmer climates: results from statistical and dynamical downscalingJ. Geophys. Res.-Atmos.2018123102151023010.1029/2018JD028835 BoulangeJValidity of estimating flood and drought characteristics under equilibrium climates from transient simulationsEnviron. Res. Lett.20211610402810.1088/1748-9326/ac27cc HawkinsESuttonRThe potential to narrow uncertainty in regional climate predictionsBull. Am. Meteorol. Soc.2009901095110810.1175/2009BAMS2607.1 WangLChenWHow well do existing indices measure the strength of the East Asian winter monsoon?Adv. Atmos. Sci.20102785587010.1007/s00376-009-9094-3 IPCC. Summary for policymakers. In: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds, Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J.B.R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R. & Zhou, B.) (IPCC, 2021). IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, 2013). MitchellDRealizing the impacts of a 1.5 °C warmer worldNat. Clim. Change2016673573710.1038/nclimate3055 YangSLauKMKimKMVariations of the East Asian jet stream and Asian–Pacific–American winter climate anomaliesJ. Clim.20021530632510.1175/1520-0442(2002)015<0306:VOTEAJ>2.0.CO;2 HulmeM1.5 °C and climate research after the Paris AgreementNat. Clim. Change2016622222410.1038/nclimate2939 LiTMachine learning to optimize climate projection over China with multi-model ensemble simulationsEnviron. Res. Lett.20211609402810.1088/1748-9326/ac1d0c FuYHGuoDProjection of the East Asian westerly jet under six global warming targetsAtmos. Ocean. Sci. Lett.20201312913510.1080/16742834.2020.1715199 ZhaoSYZhouTJAre the observed changes in heat extremes associated with a half-degree warming increment analogues for future projections?Earths Future2019797899210.1029/2019EF001237 FanXWMiaoCYDuanQYShenCWWuYFuture climate change hotspots under different 21st century warming scenariosEarths Future20219e2021EF00202710.1029/2021EF002027 JulienBNaotaHTedVJacobSHideoSMagnitude and robustness associated with the climate change impacts on global hydrological variables for transient and stabilized climate statesEnviron. Res. Lett.20181306401710.1088/1748-9326/aac179 LuRYAssociations among the components of the east Asian summer monsoon system in the meridional directionJ. Meteorol. Soc. Jpn.20048215516510.2151/jmsj.82.155 JiangDBTianZPLangXMReliability of climate models for China through the IPCC Third to Fifth Assessment ReportsInt. J. Climatol.2016361114113310.1002/joc.4406 HallACoxPHuntingfordCKleinSProgressing emergent constraints on future climate changeNat. Clim. Change2019926927810.1038/s41558-019-0436-6 WeiKXuTDuZCGongHNXieBHHow well do the current state-of-the-art CMIP5 models characterise the climatology of the East Asian winter monsoon?Clim. Dyn.2014431241125510.1007/s00382-013-1929-z JiangZExtreme climate events in China: IPCC-AR4 model evaluation and projectionClim. Change201211038540110.1007/s10584-011-0090-0 HeCZhouTJResponses of the Western North Pacific Subtropical High to Global Warming under RCP4.5 and RCP8.5 Scenarios projected by 33 CMIP5 models: the dominance of Tropical Indian Ocean–Tropical Western Pacific SST GradientJ. Clim.20152836538010.1175/JCLI-D-13-00494.1 MiaoLFuture Drought In The Dry Lands of Asia under the 1.5 and 2.0 °C warming scenariosEarth’s Future20208e2019EF00133710.1029/2019EF001337 HuangJPMaJRGuanXDLiYHeYLProgress in semi-arid climate change studies in ChinaAdv. Atmos. Sci.20193692293710.1007/s00376-018-8200-9 WangXJiangDLangXTemperature and precipitation changes over China under a 1.5 °C global warming scenario based on CMIP5 Models (in Chinese)Chin. J. Atmos. Sci.20194311581170 HawkinsESuttonRThe potential to narrow uncertainty in projections of regional precipitation changeClim. Dyn.20113740741810.1007/s00382-010-0810-6 YuRZhaiPMLuYYImplications of differential effects between 1.5 and 2 °C global warming on temperature and precipitation extremes in China’s urban agglomerationsInt. J. Climatol.2018382374238510.1002/joc.5340 CaoQYuDYGeorgescuMWuJGImpacts of urbanization on summer climate in China: an assessment with coupled land–atmospheric modelingJ. Geophys. Res.-Atmos.2016121105051052110.1002/2016JD025210 ChevuturiAKlingamanNPTurnerAGHannahSProjected changes in the Asian–Australian monsoon region in 1.5 degrees C and 2.0 degrees C global-warming scenariosEarths Future2018633935810.1002/2017EF000734 LiDWYuanJCKoppREEscalating global exposure to compound heat–humidity extremes with warmingEnviron. Res. Lett.20201506400310.1088/1748-9326/ab7d04 ChenSYuanXCMIP6 projects less frequent seasonal soil moisture droughts over China in response to different warming levelsEnviron. Res. Lett.20211604405310.1088/1748-9326/abe782 ChenHPSunJQProjected changes in climate extremes in China in a 1.5 degrees C warmer worldInt. J. Climatol.2018383607361710.1002/joc.5521 FuYLuRGuoDChanges in surface air temperature over China under the 1.5 and 2.0 °C global warming targetsAdv. Clim. Change Res.2018911211910.1016/j.accre.2017.12.001 WangLChenWZhouWHuangRHInterannual variations of East Asian Trough axis at 500 hPa and its association with the East Asian Winter Monsoon pathwayJ. Clim.20092260061410.1175/2008JCLI2295.1 HeCLiuZHuAThe transient response of atmospheric and oceanic heat transports to anthropogenic warmingNat. Clim. Change2019922222610.1038/s41558-018-0387-3 CookBITwenty‐First Century drought projections in the CMIP6 forcing scenariosEarth’s Future20208e2019EF00146110.1029/2019EF001461 SchleussnerC-FScience and policy characteristics of the Paris A Aihaiti (303_CR2) 2021; 264 AG Dai (303_CR156) 2020; 55 T Hu (303_CR88) 2017; 62 I Rangwala (303_CR121) 2012; 114 AE Raftery (303_CR12) 2017; 7 HW Xu (303_CR141) 2022; 42 ZF Xu (303_CR153) 2015; 120 T Wang (303_CR28) 2018; 9 YY Huang (303_CR54) 2016; 47 R Wartenburger (303_CR18) 2017; 10 L Guo (303_CR113) 2019; 39 ZQ Xu (303_CR48) 2019; 12 SY Zhao (303_CR107) 2019; 7 Y Wei (303_CR136) 2019; 53 M Li (303_CR114) 2020; 54 H Zhu (303_CR3) 2021; 66 AM DeAngelis (303_CR161) 2015; 528 C He (303_CR51) 2015; 5 AD King (303_CR9) 2017; 7 Y Chen (303_CR21) 2017; 44 RY Lu (303_CR63) 2004; 82 LY Guo (303_CR127) 2018; 9 BI Cook (303_CR96) 2020; 8 YY Liu (303_CR56) 2014; 28 A Dai (303_CR97) 2013; 3 QL You (303_CR120) 2021; 217 ZF Xu (303_CR151) 2019; 62 T Jiang (303_CR27) 2020; 101 S Chen (303_CR101) 2021; 16 YH Fu (303_CR52) 2020; 13 B Julien (303_CR133) 2018; 13 J Miao (303_CR65) 2020; 40 G Wang (303_CR92) 2020; 746 W Cai (303_CR74) 2014; 4 W Li (303_CR91) 2018; 63 Q Guo (303_CR33) 1983; 38 J Ge (303_CR124) 2021; 48 HP Chen (303_CR95) 2020; 15 G Zhang (303_CR81) 2021; 38 YC Zhang (303_CR62) 2006; 33 DB Jiang (303_CR36) 2013; 58 H Yang (303_CR111) 2016; 47 DB Jiang (303_CR90) 2016; 36 JJ He (303_CR47) 2007; 24 KJ Ha (303_CR40) 2020; 47 D Li (303_CR49) 2019; 1 Z Xu (303_CR148) 2017; 10 SJ Zhou (303_CR41) 2020; 54 YH Fu (303_CR64) 2020; 13 QL You (303_CR110) 2019; 53 A AghaKouchak (303_CR6) 2020; 48 GY Ren (303_CR20) 2011; 50 L Guo (303_CR150) 2020; 162 F Liu (303_CR32) 2022; 5 C-F Schleussner (303_CR16) 2016; 6 MZ Zhang (303_CR142) 2021; 14 E Rocheta (303_CR155) 2017; 30 YL Liang (303_CR106) 2018; 133 ZF Xu (303_CR152) 2012; 25 DW Li (303_CR87) 2020; 15 B Su (303_CR98) 2018; 115 NS Diffenbaugh (303_CR117) 2012; 114 Y Sun (303_CR83) 2018; 6 E Hawkins (303_CR140) 2011; 37 303_CR24 L Miao (303_CR100) 2020; 8 HM Sun (303_CR104) 2017; 453 Y Sun (303_CR128) 2016; 6 L Chen (303_CR42) 2019; 137 H Li (303_CR93) 2018; 640-641 MM Xu (303_CR67) 2016; 36 W Zhang (303_CR119) 2020; 65 PM Caldwell (303_CR158) 2018; 31 F Giorgi (303_CR145) 2002; 15 W Zhang (303_CR46) 2018; 9 W Liu (303_CR89) 2018; 9 SA Klein (303_CR159) 2015; 1 T Horinouchi (303_CR60) 2019; 32 JY Hong (303_CR68) 2017; 48 J Liu (303_CR45) 2018; 9 J Cao (303_CR134) 2020; 11 J Huang (303_CR14) 2017; 7 C He (303_CR57) 2017; 30 303_CR11 A Colette (303_CR154) 2012; 39 T Tang (303_CR75) 2021; 8 QL You (303_CR109) 2020; 192 R Yu (303_CR129) 2018; 38 Y Sun (303_CR26) 2014; 4 303_CR1 F Wu (303_CR79) 2021; 41 C He (303_CR58) 2015; 28 303_CR7 C Shi (303_CR25) 2018; 9 RY Lu (303_CR61) 2010; 23 C He (303_CR135) 2019; 9 303_CR8 X Wang (303_CR80) 2019; 43 X Yue (303_CR99) 2021; 41 XL Chen (303_CR59) 2020; 11 S Yang (303_CR72) 2002; 15 JP Huang (303_CR123) 2019; 36 QL You (303_CR108) 2020; 210 CX Sun (303_CR85) 2019; 9 XW Fan (303_CR118) 2021; 9 Y Fu (303_CR22) 2018; 9 M Hulme (303_CR10) 2016; 6 W Li (303_CR146) 2016; 29 QL You (303_CR5) 2021; 57 JP Huang (303_CR105) 2017; 7 J Wang (303_CR130) 2020; 8 N Pepin (303_CR122) 2015; 5 YH Ding (303_CR30) 1992; 70 J Boulange (303_CR137) 2021; 16 T Li (303_CR163) 2021; 16 F Lehner (303_CR102) 2017; 44 AP Schurer (303_CR17) 2017; 7 F Giorgi (303_CR115) 2006; 33 F Massonnet (303_CR162) 2012; 6 E Hawkins (303_CR139) 2009; 90 WH Li (303_CR55) 2012; 5 S Wenzel (303_CR160) 2016; 538 Q Cao (303_CR131) 2016; 121 A Kitoh (303_CR29) 2017; 95 B Wang (303_CR37) 2020; 33 M Zhang (303_CR126) 2020; 162 303_CR78 R Knutti (303_CR147) 2017; 44 Z Jiang (303_CR23) 2015; 28 HJ Wang (303_CR19) 2012; 21 Z Jiang (303_CR138) 2021; 9 Y Sui (303_CR82) 2018; 38 L Wang (303_CR70) 2009; 22 C Shi (303_CR84) 2020; 11 D Mitchell (303_CR15) 2016; 6 S Moon (303_CR39) 2020; 3 NS Diffenbaugh (303_CR116) 2008; 35 X Guo (303_CR94) 2016; 84 Y Han (303_CR143) 2021; 58 D Li (303_CR112) 2018; 123 W Zhang (303_CR149) 2021; 9 L Dai (303_CR38) 2022; 5 XR Sun (303_CR86) 2022; 17 HP Chen (303_CR125) 2018; 38 BJ Henley (303_CR13) 2017; 44 AD King (303_CR132) 2020; 10 A Hall (303_CR157) 2019; 9 K Wei (303_CR71) 2014; 43 DB Williamson (303_CR144) 2019; 100 ZB Li (303_CR43) 2019; 7 L Chen (303_CR73) 2015; 28 HP Chen (303_CR103) 2019; 14 Z Jiang (303_CR4) 2012; 110 A Chevuturi (303_CR44) 2018; 6 SJ Zhou (303_CR53) 2020; 125 JCH Chiang (303_CR31) 2017; 44 K Oshima (303_CR69) 2012; 90A P Liang (303_CR35) 2007; 23 C He (303_CR50) 2019; 32 L Wang (303_CR66) 2010; 27 G Beobide-Arsuaga (303_CR77) 2021; 56 N Shi (303_CR34) 1996; 19 ZX Yan (303_CR76) 2020; 6 |
References_xml | – reference: HuangJPYuHPDaiAGWeiYKangLTDrylands face potential threat under 2 degrees C global warming targetNat. Clim. Change2017741742210.1038/nclimate3275 – reference: FuYHGuoDProjected changes in the western North Pacific subtropical high under six global warming targetsAtmos. Ocean. Sci. Lett.202013263310.1080/16742834.2020.1696649 – reference: YouQLTemperature dataset of CMIP6 models over China: evaluation, trend and uncertaintyClim. Dyn.202157173510.1007/s00382-021-05691-2 – reference: SunXRGeFFanYZhuSPChenQLWill population exposure to heat extremes intensify over Southeast Asia in a warmer world?Environ. Res. Lett.20221704400610.1088/1748-9326/ac48b6 – reference: ZhouSJHuangGHuangPInter-model spread of the changes in the East Asian Summer Monsoon System in CMIP5/6 ModelsJ. Geophys. Res.-Atmos.20201252020JD03301610.1029/2020JD033016 – reference: LiWJiangZHXuJJLiLExtreme precipitation Indices over China in CMIP5 models. Part II: probabilistic projectionJ. Clim.2016298989900410.1175/JCLI-D-16-0377.1 – reference: XuZFHanYYangZLDynamical downscaling of regional climate: a review of methods and limitationsSci. China-Earth Sci.20196236537510.1007/s11430-018-9261-5 – reference: KingADKarolyDJHenleyBJAustralian climate extremes at 1.5 °C and 2 °C of global warmingNat. Clim. Change2017741241610.1038/nclimate3296 – reference: ZhangMGreater probability of extreme precipitation under 1.5 degrees C and 2 degrees C warming limits over East-Central AsiaClim. Change202016260361910.1007/s10584-020-02725-2 – reference: FuYHGuoDProjection of the East Asian westerly jet under six global warming targetsAtmos. Ocean. Sci. Lett.20201312913510.1080/16742834.2020.1715199 – reference: WeiKXuTDuZCGongHNXieBHHow well do the current state-of-the-art CMIP5 models characterise the climatology of the East Asian winter monsoon?Clim. Dyn.2014431241125510.1007/s00382-013-1929-z – reference: HenleyBJKingADTrajectories toward the 1.5 °C Paris target: modulation by the Interdecadal Pacific OscillationGeophys. Res. Lett.2017444256426210.1002/2017GL073480 – reference: Beobide-ArsuagaGBayrTReintgesALatifMUncertainty of ENSO-amplitude projections in CMIP5 and CMIP6 modelsClim. Dyn.2021563875388810.1007/s00382-021-05673-4 – reference: HeCLiuZHuAThe transient response of atmospheric and oceanic heat transports to anthropogenic warmingNat. Clim. Change2019922222610.1038/s41558-018-0387-3 – reference: LiDWYuanJCKoppREEscalating global exposure to compound heat–humidity extremes with warmingEnviron. Res. Lett.20201506400310.1088/1748-9326/ab7d04 – reference: HawkinsESuttonRThe potential to narrow uncertainty in projections of regional precipitation changeClim. Dyn.20113740741810.1007/s00382-010-0810-6 – reference: CaldwellPMZelinkaMDKleinSAEvaluating emergent constraints on equilibrium climate sensitivityJ. Clim.2018313921394210.1175/JCLI-D-17-0631.1 – reference: GuoLJiangZDingMChenWLiLDownscaling and projection of summer rainfall in Eastern China using a nonhomogeneous hidden Markov modelInt. J. Climatol.2019391319133010.1002/joc.5882 – reference: HuangJPMaJRGuanXDLiYHeYLProgress in semi-arid climate change studies in ChinaAdv. Atmos. Sci.20193692293710.1007/s00376-018-8200-9 – reference: HeCZhouTJResponses of the Western North Pacific Subtropical High to Global Warming under RCP4.5 and RCP8.5 Scenarios projected by 33 CMIP5 models: the dominance of Tropical Indian Ocean–Tropical Western Pacific SST GradientJ. Clim.20152836538010.1175/JCLI-D-13-00494.1 – reference: HallACoxPHuntingfordCKleinSProgressing emergent constraints on future climate changeNat. Clim. Change2019926927810.1038/s41558-019-0436-6 – reference: UNFCCC. Adoption of the Paris Agreement (United Nations Office at Geneva SU) (2015). – reference: JiangZLiWXuJLiLExtreme precipitation indices over China in CMIP5 models. Part I: Model evaluationJ. Clim.2015288603861910.1175/JCLI-D-15-0099.1 – reference: SuiYLangXJiangDProjected signals in climate extremes over China associated with a 2 °C global warming under two RCP scenariosInt. J. Climatol.20183867869710.1002/joc.5399 – reference: LuRYFuYHIntensification of East Asian Summer Rainfall interannual variability in the twenty-first century simulated by 12 CMIP3 coupled modelsJ. Clim.2010233316333110.1175/2009JCLI3130.1 – reference: GiorgiFClimate change hot-spotsGeophys. Res. Lett.200633L0870710.1029/2006GL025734 – reference: YangSLauKMKimKMVariations of the East Asian jet stream and Asian–Pacific–American winter climate anomaliesJ. Clim.20021530632510.1175/1520-0442(2002)015<0306:VOTEAJ>2.0.CO;2 – reference: WenzelSCoxPMEyringVFriedlingsteinPProjected land photosynthesis constrained by changes in the seasonal cycle of atmospheric CO2Nature201653849950110.1038/nature19772 – reference: HulmeM1.5 °C and climate research after the Paris AgreementNat. Clim. Change2016622222410.1038/nclimate2939 – reference: ShiCJiangZ-HChenW-LLiLChanges in temperature extremes over China under 1.5 °C and 2 °C global warming targetsAdv. Clim. Change Res.2018912012910.1016/j.accre.2017.11.003 – reference: HeCWangZQZhouTJLiTEnhanced latent heating over the Tibetan Plateau as a key to the enhanced East Asian Summer Monsoon circulation under a warming climateJ. Clim.2019323373338810.1175/JCLI-D-18-0427.1 – reference: FanXWMiaoCYDuanQYShenCWWuYFuture climate change hotspots under different 21st century warming scenariosEarths Future20219e2021EF00202710.1029/2021EF002027 – reference: LiuFIntraseasonal variability of global land monsoon precipitation and its recent trendNpj Clim. Atmos. Sci.2022510.1038/s41612-022-00253-7 – reference: ChenHPSunJQIncreased population exposure to extreme droughts in China due to 0.5 degrees C of additional warmingEnviron. Res. Lett.20191406401110.1088/1748-9326/ab072e – reference: XuZFYangZLA new dynamical downscaling approach with GCM bias corrections and spectral nudgingJ. Geophys. Res.-Atmos.20151203063308410.1002/2014JD022958 – reference: SuBDrought losses in China might double between the 1.5 °C and 2.0 °C warmingProc. Natl Acad. Sci. USA2018115106001060510.1073/pnas.1802129115 – reference: ShiNLuJZhuQEast Asian winter/summer monsoon intensity indices with their climatic change in 1873–1989J. Nanjing Inst. Meteorol.199619168177 – reference: XuHWChenHPWangHJFuture changes in precipitation extremes across China based on CMIP6 modelsInt. J. Climatol.20224263565110.1002/joc.7264 – reference: XuZFYangZLAn improved dynamical downscaling method with GCM bias corrections and its validation with 30 years of climate simulationsJ. Clim.2012256271628610.1175/JCLI-D-12-00005.1 – reference: GeJDoes dynamic downscaling modify the proiected impacts of stabilized 1.5 °C and 2 °C warming on hot extremes over China?Geophys. Res. Lett.202148e2021GL09279210.1029/2021GL092792 – reference: HawkinsESuttonRThe potential to narrow uncertainty in regional climate predictionsBull. Am. Meteorol. Soc.2009901095110810.1175/2009BAMS2607.1 – reference: CaoJZhaoH-KDistinct response of Northern Hemisphere land monsoon precipitation to transient and stablized warming scenariosAdv. Clim. Change Res.20201116117110.1016/j.accre.2020.09.007 – reference: WangBJinCHLiuJUnderstanding future change of global monsoons projected by CMIP6 modelsJ. Clim.2020336471648910.1175/JCLI-D-19-0993.1 – reference: ZhouSJHuangGHuangPA bias-corrected projection for the changes in East Asian summer monsoon rainfall under global warmingClim. Dyn.20205411610.1007/s00382-019-04980-1 – reference: LiuWGlobal drought and severe drought-affected populations in 1.5 and 2 °C warmer worldsEarth Syst. Dyn.2018926728310.5194/esd-9-267-2018 – reference: DiffenbaughNSGiorgiFClimate change hotspots in the CMIP5 global climate model ensembleClim. Change201211481382210.1007/s10584-012-0570-x – reference: ZhaoSYZhouTJAre the observed changes in heat extremes associated with a half-degree warming increment analogues for future projections?Earths Future2019797899210.1029/2019EF001237 – reference: WeiYDrylands climate response to transient and stabilized 2 °C and 1.5 °C global warming targetsClim. Dyn.2019532375238910.1007/s00382-019-04860-8 – reference: GuoLJiangZChenDLe TreutHLiLProjected precipitation changes over China for global warming levels at 1.5 °C and 2 °C in an ensemble of regional climate simulations: impact of bias correction methodsClim. Change202016262364310.1007/s10584-020-02841-z – reference: WangJFengJMYanZWChenYFuture risks of unprecedented compound heat waves over three vast urban agglomerations in ChinaEarths Future20208e2020EF00171610.1029/2020EF001716 – reference: XuMMXuHMMaJResponses of the East Asian winter monsoon to global warming in CMIP5 modelsInt. J. Climatol.2016362139215510.1002/joc.4480 – reference: HanYZhangMZXuZFGuoWDAssessing the performance of 33 CMIP6 models in simulating the large-scale environmental fields of tropical cyclonesClim. Dyn.2021581683169810.1007/s00382-021-05986-4 – reference: KnuttiRA climate model projection weighting scheme accounting for performance and interdependenceGeophys. Res. Lett.20174419091918 – reference: MitchellDRealizing the impacts of a 1.5 °C warmer worldNat. Clim. Change2016673573710.1038/nclimate3055 – reference: ZhangGZengGYangXJiangZFuture changes in extreme high temperature over China at 1.5 °C–5 °C global warming based on CMIP6 simulationsAdv. Atmos. Sci.20213825326710.1007/s00376-020-0182-8 – reference: ChenHPSunJQLiHXIncreased population exposure to precipitation extremes under future warmer climatesEnviron. Res. Lett.20201503404810.1088/1748-9326/ab751f – reference: CaoQYuDYGeorgescuMWuJGImpacts of urbanization on summer climate in China: an assessment with coupled land–atmospheric modelingJ. Geophys. Res.-Atmos.2016121105051052110.1002/2016JD025210 – reference: LiangYLProjection of drought hazards in China during twenty-first centuryTheor. Appl. Climatol.201813333134110.1007/s00704-017-2189-3 – reference: LiuJXuHDengJProjections of East Asian summer monsoon change at global warming of 1.5 and 2 °CEarth Syst. Dyn.2018942743910.5194/esd-9-427-2018 – reference: YouQLZhangYQXieXYWuFYRobust elevation dependency warming over the Tibetan Plateau under global warming of 1.5 °C and 2 °CClim. Dyn.2019532047206010.1007/s00382-019-04775-4 – reference: JulienBNaotaHTedVJacobSHideoSMagnitude and robustness associated with the climate change impacts on global hydrological variables for transient and stabilized climate statesEnviron. Res. Lett.20181306401710.1088/1748-9326/aac179 – reference: ZhangYCKuangXYGuoWDZhouTJSeasonal evolution of the upper-tropospheric westerly jet core over East AsiaGeophys. Res. Lett.200633L1170810.1029/2006GL026377 – reference: LiTMachine learning to optimize climate projection over China with multi-model ensemble simulationsEnviron. Res. Lett.20211609402810.1088/1748-9326/ac1d0c – reference: AihaitiAJiangZZhuLLiWYouQRisk changes of compound temperature and precipitation extremes in China under 1.5 °C and 2 °C global warmingAtmos. Res.202126410583810.1016/j.atmosres.2021.105838 – reference: LiDZhouTZhangWExtreme precipitation over East Asia under 1.5 °C and 2 °C global warming targets: a comparison of stabilized and overshoot projectionsEnviron. Res. Commun.2019108500210.1088/2515-7620/ab3971 – reference: ZhangMZXuZFHanYGuoWDAn improved multivariable integrated evaluation method and tool (MVIETool) v1.0 for multimodel intercomparisonGeosci. Model Dev.2021143079309410.5194/gmd-14-3079-2021 – reference: CaiWIncreasing frequency of extreme El Niño events due to greenhouse warmingNat. Clim. Change2014411111610.1038/nclimate2100 – reference: SunCXJiangZHLiWHouQYLiLChanges in extreme temperature over China when global warming stabilized at 1.5 degrees C and 2.0 degrees CSci. Rep.2019910.1038/s41598-019-50036-z – reference: BoulangeJValidity of estimating flood and drought characteristics under equilibrium climates from transient simulationsEnviron. Res. Lett.20211610402810.1088/1748-9326/ac27cc – reference: DaiAGRasmussenRMIkedaKLiuCHA new approach to construct representative future forcing data for dynamic downscalingClim. Dyn.20205531532310.1007/s00382-017-3708-8 – reference: MassonnetFConstraining projections of summer Arctic sea iceCryosphere201261383139410.5194/tc-6-1383-2012 – reference: SunYRapid increase in the risk of extreme summer heat in Eastern ChinaNat. Clim. Change201441082108510.1038/nclimate2410 – reference: GuoLYGaoQJiangZHLiLBias correction and projection of surface air temperature in LMDZ multiple simulation over central and eastern ChinaAdv. Clim. Change Res.20189819210.1016/j.accre.2018.02.003 – reference: RafteryAEZimmerAFriersonDMWStartzRLiuPLess than 2 °C warming by 2100 unlikelyNat. Clim. Change2017763764110.1038/nclimate3352 – reference: ShiCRisks of temperature extremes over China under 1.5 °C and 2 °C global warmingAdv. Clim. Change Res.20201117218410.1016/j.accre.2020.09.006 – reference: GuoQThe summer monsoon intensity index in East Asia and its variationActa Geogr. Sin.198338207217 – reference: JiangZExtreme climate events in China: IPCC-AR4 model evaluation and projectionClim. Change201211038540110.1007/s10584-011-0090-0 – reference: ColetteAVautardRVracMRegional climate downscaling with prior statistical correction of the global climate forcingGeophys. Res. Lett.201239L1370710.1029/2012GL052258 – reference: WangLChenWZhouWHuangRHInterannual variations of East Asian Trough axis at 500 hPa and its association with the East Asian Winter Monsoon pathwayJ. Clim.20092260061410.1175/2008JCLI2295.1 – reference: HuangJYuHDaiAWeiYKangLDrylands face potential threat under 2 °C global warming targetNat. Clim. Change2017741742210.1038/nclimate3275 – reference: WilliamsonDBSansomPGHow are emergent constraints quantifying uncertainty and what do they leave behind?Bull. Am. Meteorol. Soc.20191002571258810.1175/BAMS-D-19-0131.1 – reference: WangHJExtreme climate in China: facts, simulation and projectionMeteorol. Z.20122127930410.1127/0941-2948/2012/0330 – reference: ChenSYuanXCMIP6 projects less frequent seasonal soil moisture droughts over China in response to different warming levelsEnviron. Res. Lett.20211604405310.1088/1748-9326/abe782 – reference: IPCC. Summary for policymakers. In: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds, Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J.B.R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R. & Zhou, B.) (IPCC, 2021). – reference: MoonSHaKJFuture changes in monsoon duration and precipitation using CMIP6Npj Clim. Atmos. Sci.202034510.1038/s41612-020-00151-w – reference: HeCWuBZouLWZhouTJResponses of the summertime subtropical Anticyclones to global warmingJ. Clim.2017306465647910.1175/JCLI-D-16-0529.1 – reference: ChenXLZhouTJWuPLGuoZWangMHEmergent constraints on future projections of the western North Pacific Subtropical HighNat. Commun.20201110.1038/s41467-020-16631-9 – reference: MiaoJWangTChenDMore robust changes in the East Asian winter monsoon from 1.5 to 2.0 °C global warming targetsInt. J. Climatol.2020404731474910.1002/joc.6485 – reference: FuYLuRGuoDChanges in surface air temperature over China under the 1.5 and 2.0 °C global warming targetsAdv. Clim. Change Res.2018911211910.1016/j.accre.2017.12.001 – reference: ZhangWZhouTZouLZhangLChenXReduced exposure to extreme precipitation from 0.5 °C less warming in global land monsoon regionsNat. Commun.2018910.1038/s41467-018-05633-3 – reference: AghaKouchakAClimate Extremes and Compound Hazards in a Warming WorldAnnu. Rev. Earth Planet. Sci.20204851954810.1146/annurev-earth-071719-055228 – reference: DeAngelisAMQuXZelinkaMDHallAAn observational radiative constraint on hydrologic cycle intensificationNature201552824925310.1038/nature15770 – reference: HuTSunYZhangXTemperature and precipitation projection at 1.5 and 2 °C increase in global mean temperature (in Chinese)Chin. Sci. Bull.2017623098311110.1360/N972016-01234 – reference: YanZXEastward shift and extension of ENSO-induced tropical precipitation anomalies under global warmingSci. Adv.20206eaax417710.1126/sciadv.aax4177 – reference: LiDZouLZhouTExtreme climate event changes in China in the 1.5 and 2 °C warmer climates: results from statistical and dynamical downscalingJ. Geophys. Res.-Atmos.2018123102151023010.1029/2018JD028835 – reference: SchleussnerC-FScience and policy characteristics of the Paris Agreement temperature goalNat. Clim. Change2016682783510.1038/nclimate3096 – reference: HuangYYLiXFWangHJWill the western Pacific subtropical high constantly intensify in the future?Clim. Dyn.20164756757710.1007/s00382-015-2856-y – reference: Li, D., Zhou, T., Zou, L., Zhang, W. & Zhang, L. Extreme high-temperature events over East Asia in 1.5 °C and 2 °C warmer futures: analysis of NCAR CESM low-warming experiments. Geophys. Res. Lett. 45, 1541–1550 (2018). – reference: JiangDBTianZPLangXMReliability of climate models for China through the IPCC Third to Fifth Assessment ReportsInt. J. Climatol.2016361114113310.1002/joc.4406 – reference: LuRYAssociations among the components of the east Asian summer monsoon system in the meridional directionJ. Meteorol. Soc. Jpn.20048215516510.2151/jmsj.82.155 – reference: Wang, W. G. & Zheng, G. G. Annual Report on Actions to Address Climate Change: Climate Finance and Low CarbonDevelopment (Social Science Academic Press, 2012) (in Chinese). – reference: PepinNElevation-dependent warming in mountain regions of the worldNat. Clim. Change2015542443010.1038/nclimate2563 – reference: ChiangJCHSwensonLMKongWRole of seasonal transitions and the westerlies in the interannual variability of the East Asian summer monsoon precipitationGeophys. Res. Lett.2017443788379510.1002/2017GL072739 – reference: LiWJiangZZhangXLiLSunYAdditional risk in extreme precipitation in China from 1.5 °C to 2.0 °C global warming levelsSci. Bull.20186322823410.1016/j.scib.2017.12.021 – reference: IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, 2013). – reference: JiangTEach 0.5 °C of warming increases annual flood losses in China by more than US$60 billionBull. Am. Meteorol. Soc.2020101E1464E147410.1175/BAMS-D-19-0182.1 – reference: WangTMiaoJ-PSunJ-QFuY-HIntensified East Asian summer monsoon and associated precipitation mode shift under the 1.5 °C global warming targetAdv. Clim. Change Res.2018910211110.1016/j.accre.2017.12.002 – reference: SunHMExposure of population to droughts in the Haihe River Basin under global warming of 1.5 and 2.0 degrees C scenariosQuat. Int.2017453748410.1016/j.quaint.2017.05.005 – reference: HorinouchiTMatsumuraSOseTTakayabuYNJet-Precipitation relation and future change of the Mei-Yu-Baiu Rainband and Subtropical Jet in CMIP5 coupled GCM simulationsJ. Clim.2019322247225910.1175/JCLI-D-18-0426.1 – reference: RochetaEEvansJPSharmaACan bias correction of regional climate model lateral boundary conditions improve low-frequency rainfall variability?J. Clim.2017309785980610.1175/JCLI-D-16-0654.1 – reference: ZhangWZhouTThe effect of modeling strategies on assessments of differential warming impacts of 0.5 °CEarth’s Future20219e2020EF00164010.1029/2020EF001640 – reference: ChenLQuXHuangGGongYFProjections of East Asian summer monsoon under 1.5 degrees C and 2 degrees C warming goalsTheor. Appl. Climatol.20191372187220110.1007/s00704-018-2720-1 – reference: GuoXHuangJLuoYZhaoZXuYProjection of precipitation extremes for eight global warming targets by 17 CMIP5 modelsNat. Hazards2016842299231910.1007/s11069-016-2553-0 – reference: YouQLWarming amplification over the Arctic Pole and Third Pole: trends, mechanisms and consequencesEarth-Sci. Rev.202121710362510.1016/j.earscirev.2021.103625 – reference: SunYHuTZhangXSubstantial increase in heat wave risks in China in a future warmer worldEarth’s Future201861528153810.1029/2018EF000963 – reference: YouQLTibetan Plateau amplification of climate extremes under global warming of 1.5 °C, 2 °C and 3 °CGlob. Planet. Change202019210326110.1016/j.gloplacha.2020.103261 – reference: KitohAThe Asian Monsoon and its future change in climate models: a reviewJ. Meteorol. Soc. Jpn.20179573310.2151/jmsj.2017-002 – reference: LiangPTangXHeJChenLAn East Asian sub-tropic summer monsoon index defined by moisture transportJ. Trop. Meteorol.200723467473 – reference: LiZBSunYLiTDingYHHuTFuture changes in East Asian summer monsoon circulation and precipitation under 1.5 to 5 degrees C of warmingEarths Future201971391140610.1029/2019EF001276 – reference: WangLChenWHow well do existing indices measure the strength of the East Asian winter monsoon?Adv. Atmos. Sci.20102785587010.1007/s00376-009-9094-3 – reference: DingYHSummer monsoon rainfalls in ChinaJ. Meteorol. Soc. Jpn.19927037339610.2151/jmsj1965.70.1B_373 – reference: HeCEnhanced or weakened Western North Pacific Subtropical High under Global Warming?Sci. Rep.2015510.1038/srep16771 – reference: HeJJJuJHWenZPLuJMJinQHA review of recent advances in research on Asian Monsoon in ChinaAdv. Atmos. Sci.20072497299210.1007/s00376-007-0972-2 – reference: WuFYouQZhangZZhangLChanges and uncertainties of surface mean temperature over China under global warming of 1.5 and 2 °CInt. J. Climatol.202141E410E42710.1002/joc.6694 – reference: LiMJiangZZhouPLe TreutHLiLProjection and possible causes of summer precipitation in eastern China using self-organizing mapClim. Dyn.2020542815283010.1007/s00382-020-05150-4 – reference: DaiLChengTFLuMQAnthropogenic warming disrupts intraseasonal monsoon stages and brings dry-get-wetter climate in future East AsiaNpj Clim. Atmos. Sci.2022510.1038/s41612-022-00235-9 – reference: HaKJMoonSTimmermannAKimDFuture changes of summer monsoon characteristics and evaporative demand over Asia in CMIP6 simulationsGeophys. Res. Lett.202047e2020GL08749210.1029/2020GL087492 – reference: WangXJiangDLangXTemperature and precipitation changes over China under a 1.5 °C global warming scenario based on CMIP5 Models (in Chinese)Chin. J. Atmos. Sci.20194311581170 – reference: MiaoLFuture Drought In The Dry Lands of Asia under the 1.5 and 2.0 °C warming scenariosEarth’s Future20208e2019EF00133710.1029/2019EF001337 – reference: OshimaKTanimotoYXieSPRegional patterns of wintertime SLP change over the North Pacific and their uncertainty in CMIP3 multi-model projectionsJ. Meteorol. Soc. Jpn.201290A38539610.2151/jmsj.2012-A23 – reference: ChevuturiAKlingamanNPTurnerAGHannahSProjected changes in the Asian–Australian monsoon region in 1.5 degrees C and 2.0 degrees C global-warming scenariosEarths Future2018633935810.1002/2017EF000734 – reference: ZhangWZhouTIncreasing impacts from extreme precipitation on population over China with global warmingSci. Bull.20206524325210.1016/j.scib.2019.12.002 – reference: SchurerAPMannMEHawkinsETettSFBHegerlGCImportance of the pre-industrial baseline for likelihood of exceeding Paris goalsNat. Clim. Change2017756356710.1038/nclimate3345 – reference: GiorgiFMearnsLOCalculation of average, uncertainty range, and reliability of regional climate changes from AOGCM simulations via the “Reliability Ensemble Averaging” (REA) methodJ. Clim.2002151141115810.1175/1520-0442(2002)015<1141:COAURA>2.0.CO;2 – reference: ChenHPSunJQProjected changes in climate extremes in China in a 1.5 degrees C warmer worldInt. J. Climatol.2018383607361710.1002/joc.5521 – reference: JiangDBTianZPEast Asian monsoon change for the 21st century: results of CMIP3 and CMIP5 modelsChin. Sci. Bull.2013581427143510.1007/s11434-012-5533-0 – reference: RangwalaIMillerJRClimate change in mountains: a review of elevation-dependent warming and its possible causesClim. Change201211452754710.1007/s10584-012-0419-3 – reference: HongJYAhnJBJhunJGWinter climate changes over East Asian region under RCP scenarios using East Asian winter monsoon indicesClim. Dyn.20174857759510.1007/s00382-016-3096-5 – reference: CookBITwenty‐First Century drought projections in the CMIP6 forcing scenariosEarth’s Future20208e2019EF00146110.1029/2019EF001461 – reference: YueXTianCLeiYRelieved drought in China under a low emission pathway to 1.5 °C global warmingInt. J. Climatol.202141E259E27010.1002/joc.6682 – reference: DaiAIncreasing drought under global warming in observations and modelsNat. Clim. Change20133525810.1038/nclimate1633 – reference: XuZQFanKProjected changes in summer water vapor transport over East Asia under the 1.5 degrees C and 2.0 degrees C global warming targetsAtmos. Ocean. Sci. Lett.20191212413010.1080/16742834.2019.1569869 – reference: LiWHLiLFTingMFLiuYMIntensification of Northern Hemisphere subtropical highs in a warming climateNat. Geosci.2012583083410.1038/ngeo1590 – reference: YouQLElevation dependent warming over the Tibetan Plateau: patterns, mechanisms and perspectivesEarth-Sci. Rev.202021010334910.1016/j.earscirev.2020.103349 – reference: DiffenbaughNSGiorgiFPalJSClimate change hotspots in the United StatesGeophys. Res. Lett.200835L1670910.1029/2008GL035075 – reference: LiuYYLiWJZuoJQHuZZSimulation and projection of the Western Pacific Subtropical High in CMIP5 modelsJ. Meteorol. Res.20142832734010.1007/s13351-014-3151-2 – reference: TangTLuoJ-JPengKQiLTangSOver-projected Pacific warming and extreme El Niño frequency due to CMIP5 common biasesNatl Sci. Rev.20218nwab05610.1093/nsr/nwab056 – reference: KingADLaneTPHenleyBJBrownJRGlobal and regional impacts differ between transient and equilibrium warmer worldsNat. Clim. Change202010424710.1038/s41558-019-0658-7 – reference: ChenLLiTYuYCauses of strengthening and weakening of ENSO amplitude under global warming in four CMIP5 modelsJ. Clim.2015283250327410.1175/JCLI-D-14-00439.1 – reference: ZhuHJiangZLiLProjection of climate extremes in China, an incremental exercise from CMIP5 to CMIP6Sci. Bull.2021662528253710.1016/j.scib.2021.07.026 – reference: YangHJiangZLiLBiases and improvements in three dynamical downscaling climate simulations over ChinaClim. Dyn.2016473235325110.1007/s00382-016-3023-9 – reference: LehnerFProjected drought risk in 1.5 °C and 2 °C warmer climatesGeophys. Res. Lett.2017447419742810.1002/2017GL074117 – reference: IPCC. Global warming of 1.5 °C. An IPCC Special Report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty (eds, Masson-Delmotte, V., Zhai, P., Pörtner, H.-O., Roberts, D., Skea, J., Shukla, P. R., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., Connors, S., Matthews, J. B. R., Chen, Y., Zhou, X., Gomis, M. I., Lonnoy, E., Maycock, T., Tignor, M. & Waterfield, T.) (2018). – reference: JiangZHouQLiTLiangYLiLDivergent responses of summer precipitation in China to 1.5 °C global warming in transient and stabilized scenariosEarth’s Future20219e2020EF00183210.1029/2020EF001832 – reference: WangGZhangQYuHShenZSunPDouble increase in precipitation extremes across China in a 1.5 °C/2.0 °C warmer climateSci. Total Environ.202074614080710.1016/j.scitotenv.2020.140807 – reference: XuZHanYFuCMultivariable integrated evaluation of model performance with the vector field evaluation diagramGeosci. Model Dev.2017103805382010.5194/gmd-10-3805-2017 – reference: KleinSAHallAEmergent constraints for cloud feedbacksCurr. Clim. Change Rep.2015127628710.1007/s40641-015-0027-1 – reference: YuRZhaiPMLuYYImplications of differential effects between 1.5 and 2 °C global warming on temperature and precipitation extremes in China’s urban agglomerationsInt. J. Climatol.2018382374238510.1002/joc.5340 – reference: WartenburgerRChanges in regional climate extremes as a function of global mean temperature: an interactive plotting frameworkGeosci. Model Dev.2017103609363410.5194/gmd-10-3609-2017 – reference: LiHChenHWangHYuEFuture precipitation changes over China under 1.5 °C and 2.0 °C global warming targets by using CORDEX regional climate modelsSci. Total Environ.2018640-64154355410.1016/j.scitotenv.2018.05.324 – reference: RenGYGuanZYShaoXMGongDYChanges in climatic extremes over mainland ChinaClim. Res.20115010511110.3354/cr01067 – reference: SunYZhangXBRenGYZwiersFWHuTContribution of urbanization to warming in ChinaNat. Clim. Change2016670670910.1038/nclimate2956 – reference: ChenYZhaiPRevisiting summertime hot extremes in China during 1961–2015: overlooked compound extremes and significant changesGeophys. Res. Lett.2017447130713910.1002/2016GL072281 – volume: 28 start-page: 8603 year: 2015 ident: 303_CR23 publication-title: J. Clim. doi: 10.1175/JCLI-D-15-0099.1 – volume: 15 start-page: 1141 year: 2002 ident: 303_CR145 publication-title: J. Clim. doi: 10.1175/1520-0442(2002)015<1141:COAURA>2.0.CO;2 – volume: 100 start-page: 2571 year: 2019 ident: 303_CR144 publication-title: Bull. Am. Meteorol. Soc. doi: 10.1175/BAMS-D-19-0131.1 – volume: 7 start-page: 563 year: 2017 ident: 303_CR17 publication-title: Nat. Clim. Change doi: 10.1038/nclimate3345 – volume: 56 start-page: 3875 year: 2021 ident: 303_CR77 publication-title: Clim. Dyn. doi: 10.1007/s00382-021-05673-4 – volume: 44 start-page: 7130 year: 2017 ident: 303_CR21 publication-title: Geophys. Res. Lett. doi: 10.1002/2016GL072281 – volume: 114 start-page: 813 year: 2012 ident: 303_CR117 publication-title: Clim. Change doi: 10.1007/s10584-012-0570-x – volume: 38 start-page: 207 year: 1983 ident: 303_CR33 publication-title: Acta Geogr. Sin. – volume: 70 start-page: 373 year: 1992 ident: 303_CR30 publication-title: J. Meteorol. Soc. Jpn. doi: 10.2151/jmsj1965.70.1B_373 – volume: 5 start-page: 830 year: 2012 ident: 303_CR55 publication-title: Nat. Geosci. doi: 10.1038/ngeo1590 – volume: 53 start-page: 2375 year: 2019 ident: 303_CR136 publication-title: Clim. Dyn. doi: 10.1007/s00382-019-04860-8 – volume: 39 start-page: 1319 year: 2019 ident: 303_CR113 publication-title: Int. J. Climatol. doi: 10.1002/joc.5882 – volume: 9 start-page: 222 year: 2019 ident: 303_CR135 publication-title: Nat. Clim. Change doi: 10.1038/s41558-018-0387-3 – volume: 8 start-page: e2019EF001337 year: 2020 ident: 303_CR100 publication-title: Earth’s Future doi: 10.1029/2019EF001337 – volume: 7 start-page: 412 year: 2017 ident: 303_CR9 publication-title: Nat. Clim. Change doi: 10.1038/nclimate3296 – volume: 44 start-page: 3788 year: 2017 ident: 303_CR31 publication-title: Geophys. Res. Lett. doi: 10.1002/2017GL072739 – volume: 6 start-page: eaax4177 year: 2020 ident: 303_CR76 publication-title: Sci. Adv. doi: 10.1126/sciadv.aax4177 – volume: 27 start-page: 855 year: 2010 ident: 303_CR66 publication-title: Adv. Atmos. Sci. doi: 10.1007/s00376-009-9094-3 – volume: 38 start-page: 678 year: 2018 ident: 303_CR82 publication-title: Int. J. Climatol. doi: 10.1002/joc.5399 – volume: 10 start-page: 3805 year: 2017 ident: 303_CR148 publication-title: Geosci. Model Dev. doi: 10.5194/gmd-10-3805-2017 – volume: 66 start-page: 2528 year: 2021 ident: 303_CR3 publication-title: Sci. Bull. doi: 10.1016/j.scib.2021.07.026 – volume: 9 start-page: 102 year: 2018 ident: 303_CR28 publication-title: Adv. Clim. Change Res. doi: 10.1016/j.accre.2017.12.002 – volume: 23 start-page: 467 year: 2007 ident: 303_CR35 publication-title: J. Trop. Meteorol. – volume: 28 start-page: 365 year: 2015 ident: 303_CR58 publication-title: J. Clim. doi: 10.1175/JCLI-D-13-00494.1 – volume: 44 start-page: 1909 year: 2017 ident: 303_CR147 publication-title: Geophys. Res. Lett. doi: 10.1002/2016GL072012 – ident: 303_CR7 – volume: 6 start-page: 339 year: 2018 ident: 303_CR44 publication-title: Earths Future doi: 10.1002/2017EF000734 – volume: 162 start-page: 623 year: 2020 ident: 303_CR150 publication-title: Clim. Change doi: 10.1007/s10584-020-02841-z – volume: 43 start-page: 1241 year: 2014 ident: 303_CR71 publication-title: Clim. Dyn. doi: 10.1007/s00382-013-1929-z – volume: 453 start-page: 74 year: 2017 ident: 303_CR104 publication-title: Quat. Int. doi: 10.1016/j.quaint.2017.05.005 – volume: 90A start-page: 385 year: 2012 ident: 303_CR69 publication-title: J. Meteorol. Soc. Jpn. doi: 10.2151/jmsj.2012-A23 – volume: 14 start-page: 3079 year: 2021 ident: 303_CR142 publication-title: Geosci. Model Dev. doi: 10.5194/gmd-14-3079-2021 – volume: 40 start-page: 4731 year: 2020 ident: 303_CR65 publication-title: Int. J. Climatol. doi: 10.1002/joc.6485 – volume: 11 start-page: 172 year: 2020 ident: 303_CR84 publication-title: Adv. Clim. Change Res. doi: 10.1016/j.accre.2020.09.006 – volume: 9 start-page: 81 year: 2018 ident: 303_CR127 publication-title: Adv. Clim. Change Res. doi: 10.1016/j.accre.2018.02.003 – ident: 303_CR78 doi: 10.1002/2017GL076753 – volume: 10 start-page: 42 year: 2020 ident: 303_CR132 publication-title: Nat. Clim. Change doi: 10.1038/s41558-019-0658-7 – volume: 9 start-page: e2020EF001832 year: 2021 ident: 303_CR138 publication-title: Earth’s Future doi: 10.1029/2020EF001832 – volume: 24 start-page: 972 year: 2007 ident: 303_CR47 publication-title: Adv. Atmos. Sci. doi: 10.1007/s00376-007-0972-2 – volume: 95 start-page: 7 year: 2017 ident: 303_CR29 publication-title: J. Meteorol. Soc. Jpn. doi: 10.2151/jmsj.2017-002 – volume: 114 start-page: 527 year: 2012 ident: 303_CR121 publication-title: Clim. Change doi: 10.1007/s10584-012-0419-3 – volume: 36 start-page: 2139 year: 2016 ident: 303_CR67 publication-title: Int. J. Climatol. doi: 10.1002/joc.4480 – volume: 6 start-page: 1383 year: 2012 ident: 303_CR162 publication-title: Cryosphere doi: 10.5194/tc-6-1383-2012 – volume: 17 start-page: 044006 year: 2022 ident: 303_CR86 publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/ac48b6 – volume: 16 start-page: 104028 year: 2021 ident: 303_CR137 publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/ac27cc – volume: 125 start-page: 2020JD033016 year: 2020 ident: 303_CR53 publication-title: J. Geophys. Res.-Atmos. doi: 10.1029/2020JD033016 – volume: 63 start-page: 228 year: 2018 ident: 303_CR91 publication-title: Sci. Bull. doi: 10.1016/j.scib.2017.12.021 – volume: 55 start-page: 315 year: 2020 ident: 303_CR156 publication-title: Clim. Dyn. doi: 10.1007/s00382-017-3708-8 – volume: 9 start-page: 427 year: 2018 ident: 303_CR45 publication-title: Earth Syst. Dyn. doi: 10.5194/esd-9-427-2018 – volume: 7 start-page: 1391 year: 2019 ident: 303_CR43 publication-title: Earths Future doi: 10.1029/2019EF001276 – volume: 47 start-page: e2020GL087492 year: 2020 ident: 303_CR40 publication-title: Geophys. Res. Lett. doi: 10.1029/2020GL087492 – volume: 48 start-page: e2021GL092792 year: 2021 ident: 303_CR124 publication-title: Geophys. Res. Lett. doi: 10.1029/2021GL092792 – volume: 62 start-page: 365 year: 2019 ident: 303_CR151 publication-title: Sci. China-Earth Sci. doi: 10.1007/s11430-018-9261-5 – volume: 9 year: 2019 ident: 303_CR85 publication-title: Sci. Rep. doi: 10.1038/s41598-019-50036-z – volume: 21 start-page: 279 year: 2012 ident: 303_CR19 publication-title: Meteorol. Z. doi: 10.1127/0941-2948/2012/0330 – volume: 9 start-page: 267 year: 2018 ident: 303_CR89 publication-title: Earth Syst. Dyn. doi: 10.5194/esd-9-267-2018 – volume: 5 year: 2022 ident: 303_CR38 publication-title: Npj Clim. Atmos. Sci. doi: 10.1038/s41612-022-00235-9 – volume: 30 start-page: 6465 year: 2017 ident: 303_CR57 publication-title: J. Clim. doi: 10.1175/JCLI-D-16-0529.1 – volume: 36 start-page: 922 year: 2019 ident: 303_CR123 publication-title: Adv. Atmos. Sci. doi: 10.1007/s00376-018-8200-9 – volume: 54 start-page: 1 year: 2020 ident: 303_CR41 publication-title: Clim. Dyn. doi: 10.1007/s00382-019-04980-1 – volume: 5 start-page: 424 year: 2015 ident: 303_CR122 publication-title: Nat. Clim. Change doi: 10.1038/nclimate2563 – volume: 62 start-page: 3098 year: 2017 ident: 303_CR88 publication-title: Chin. Sci. Bull. doi: 10.1360/N972016-01234 – volume: 38 start-page: 2374 year: 2018 ident: 303_CR129 publication-title: Int. J. Climatol. doi: 10.1002/joc.5340 – volume: 13 start-page: 26 year: 2020 ident: 303_CR52 publication-title: Atmos. Ocean. Sci. Lett. doi: 10.1080/16742834.2020.1696649 – volume: 47 start-page: 567 year: 2016 ident: 303_CR54 publication-title: Clim. Dyn. doi: 10.1007/s00382-015-2856-y – volume: 33 start-page: 6471 year: 2020 ident: 303_CR37 publication-title: J. Clim. doi: 10.1175/JCLI-D-19-0993.1 – volume: 48 start-page: 577 year: 2017 ident: 303_CR68 publication-title: Clim. Dyn. doi: 10.1007/s00382-016-3096-5 – volume: 5 year: 2015 ident: 303_CR51 publication-title: Sci. Rep. doi: 10.1038/srep16771 – volume: 15 start-page: 034048 year: 2020 ident: 303_CR95 publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/ab751f – volume: 6 start-page: 827 year: 2016 ident: 303_CR16 publication-title: Nat. Clim. Change doi: 10.1038/nclimate3096 – volume: 19 start-page: 168 year: 1996 ident: 303_CR34 publication-title: J. Nanjing Inst. Meteorol. – volume: 10 start-page: 3609 year: 2017 ident: 303_CR18 publication-title: Geosci. Model Dev. doi: 10.5194/gmd-10-3609-2017 – volume: 640-641 start-page: 543 year: 2018 ident: 303_CR93 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.05.324 – ident: 303_CR11 – volume: 90 start-page: 1095 year: 2009 ident: 303_CR139 publication-title: Bull. Am. Meteorol. Soc. doi: 10.1175/2009BAMS2607.1 – volume: 11 start-page: 161 year: 2020 ident: 303_CR134 publication-title: Adv. Clim. Change Res. doi: 10.1016/j.accre.2020.09.007 – volume: 36 start-page: 1114 year: 2016 ident: 303_CR90 publication-title: Int. J. Climatol. doi: 10.1002/joc.4406 – volume: 37 start-page: 407 year: 2011 ident: 303_CR140 publication-title: Clim. Dyn. doi: 10.1007/s00382-010-0810-6 – volume: 264 start-page: 105838 year: 2021 ident: 303_CR2 publication-title: Atmos. Res. doi: 10.1016/j.atmosres.2021.105838 – ident: 303_CR24 – ident: 303_CR8 – volume: 1 start-page: 085002 year: 2019 ident: 303_CR49 publication-title: Environ. Res. Commun. doi: 10.1088/2515-7620/ab3971 – volume: 7 start-page: 417 year: 2017 ident: 303_CR14 publication-title: Nat. Clim. Change doi: 10.1038/nclimate3275 – volume: 48 start-page: 519 year: 2020 ident: 303_CR6 publication-title: Annu. Rev. Earth Planet. Sci. doi: 10.1146/annurev-earth-071719-055228 – volume: 9 start-page: e2020EF001640 year: 2021 ident: 303_CR149 publication-title: Earth’s Future doi: 10.1029/2020EF001640 – volume: 115 start-page: 10600 year: 2018 ident: 303_CR98 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1802129115 – volume: 13 start-page: 064017 year: 2018 ident: 303_CR133 publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/aac179 – volume: 25 start-page: 6271 year: 2012 ident: 303_CR152 publication-title: J. Clim. doi: 10.1175/JCLI-D-12-00005.1 – volume: 7 start-page: 417 year: 2017 ident: 303_CR105 publication-title: Nat. Clim. Change doi: 10.1038/nclimate3275 – volume: 123 start-page: 10215 year: 2018 ident: 303_CR112 publication-title: J. Geophys. Res.-Atmos. doi: 10.1029/2018JD028835 – volume: 44 start-page: 4256 year: 2017 ident: 303_CR13 publication-title: Geophys. Res. Lett. doi: 10.1002/2017GL073480 – volume: 15 start-page: 064003 year: 2020 ident: 303_CR87 publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/ab7d04 – volume: 8 start-page: e2020EF001716 year: 2020 ident: 303_CR130 publication-title: Earths Future doi: 10.1029/2020EF001716 – volume: 30 start-page: 9785 year: 2017 ident: 303_CR155 publication-title: J. Clim. doi: 10.1175/JCLI-D-16-0654.1 – volume: 9 start-page: 120 year: 2018 ident: 303_CR25 publication-title: Adv. Clim. Change Res. doi: 10.1016/j.accre.2017.11.003 – volume: 746 start-page: 140807 year: 2020 ident: 303_CR92 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.140807 – volume: 16 start-page: 044053 year: 2021 ident: 303_CR101 publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/abe782 – volume: 28 start-page: 327 year: 2014 ident: 303_CR56 publication-title: J. Meteorol. Res. doi: 10.1007/s13351-014-3151-2 – volume: 14 start-page: 064011 year: 2019 ident: 303_CR103 publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/ab072e – volume: 23 start-page: 3316 year: 2010 ident: 303_CR61 publication-title: J. Clim. doi: 10.1175/2009JCLI3130.1 – volume: 33 start-page: L08707 year: 2006 ident: 303_CR115 publication-title: Geophys. Res. Lett. doi: 10.1029/2006GL025734 – volume: 13 start-page: 129 year: 2020 ident: 303_CR64 publication-title: Atmos. Ocean. Sci. Lett. doi: 10.1080/16742834.2020.1715199 – volume: 32 start-page: 2247 year: 2019 ident: 303_CR60 publication-title: J. Clim. doi: 10.1175/JCLI-D-18-0426.1 – volume: 192 start-page: 103261 year: 2020 ident: 303_CR109 publication-title: Glob. Planet. Change doi: 10.1016/j.gloplacha.2020.103261 – volume: 12 start-page: 124 year: 2019 ident: 303_CR48 publication-title: Atmos. Ocean. Sci. Lett. doi: 10.1080/16742834.2019.1569869 – volume: 1 start-page: 276 year: 2015 ident: 303_CR159 publication-title: Curr. Clim. Change Rep. doi: 10.1007/s40641-015-0027-1 – volume: 6 start-page: 706 year: 2016 ident: 303_CR128 publication-title: Nat. Clim. Change doi: 10.1038/nclimate2956 – volume: 44 start-page: 7419 year: 2017 ident: 303_CR102 publication-title: Geophys. Res. Lett. doi: 10.1002/2017GL074117 – volume: 210 start-page: 103349 year: 2020 ident: 303_CR108 publication-title: Earth-Sci. Rev. doi: 10.1016/j.earscirev.2020.103349 – volume: 8 start-page: e2019EF001461 year: 2020 ident: 303_CR96 publication-title: Earth’s Future doi: 10.1029/2019EF001461 – volume: 58 start-page: 1683 year: 2021 ident: 303_CR143 publication-title: Clim. Dyn. doi: 10.1007/s00382-021-05986-4 – volume: 11 year: 2020 ident: 303_CR59 publication-title: Nat. Commun. doi: 10.1038/s41467-020-16631-9 – volume: 58 start-page: 1427 year: 2013 ident: 303_CR36 publication-title: Chin. Sci. Bull. doi: 10.1007/s11434-012-5533-0 – volume: 32 start-page: 3373 year: 2019 ident: 303_CR50 publication-title: J. Clim. doi: 10.1175/JCLI-D-18-0427.1 – volume: 41 start-page: E410 year: 2021 ident: 303_CR79 publication-title: Int. J. Climatol. doi: 10.1002/joc.6694 – volume: 9 start-page: 112 year: 2018 ident: 303_CR22 publication-title: Adv. Clim. Change Res. doi: 10.1016/j.accre.2017.12.001 – volume: 15 start-page: 306 year: 2002 ident: 303_CR72 publication-title: J. Clim. doi: 10.1175/1520-0442(2002)015<0306:VOTEAJ>2.0.CO;2 – volume: 54 start-page: 2815 year: 2020 ident: 303_CR114 publication-title: Clim. Dyn. doi: 10.1007/s00382-020-05150-4 – volume: 39 start-page: L13707 year: 2012 ident: 303_CR154 publication-title: Geophys. Res. Lett. doi: 10.1029/2012GL052258 – volume: 538 start-page: 499 year: 2016 ident: 303_CR160 publication-title: Nature doi: 10.1038/nature19772 – volume: 4 start-page: 111 year: 2014 ident: 303_CR74 publication-title: Nat. Clim. Change doi: 10.1038/nclimate2100 – volume: 217 start-page: 103625 year: 2021 ident: 303_CR120 publication-title: Earth-Sci. Rev. doi: 10.1016/j.earscirev.2021.103625 – volume: 6 start-page: 222 year: 2016 ident: 303_CR10 publication-title: Nat. Clim. Change doi: 10.1038/nclimate2939 – volume: 31 start-page: 3921 year: 2018 ident: 303_CR158 publication-title: J. Clim. doi: 10.1175/JCLI-D-17-0631.1 – volume: 8 start-page: nwab056 year: 2021 ident: 303_CR75 publication-title: Natl Sci. Rev. doi: 10.1093/nsr/nwab056 – volume: 3 start-page: 52 year: 2013 ident: 303_CR97 publication-title: Nat. Clim. Change doi: 10.1038/nclimate1633 – volume: 133 start-page: 331 year: 2018 ident: 303_CR106 publication-title: Theor. Appl. Climatol. doi: 10.1007/s00704-017-2189-3 – volume: 120 start-page: 3063 year: 2015 ident: 303_CR153 publication-title: J. Geophys. Res.-Atmos. doi: 10.1002/2014JD022958 – volume: 137 start-page: 2187 year: 2019 ident: 303_CR42 publication-title: Theor. Appl. Climatol. doi: 10.1007/s00704-018-2720-1 – volume: 28 start-page: 3250 year: 2015 ident: 303_CR73 publication-title: J. Clim. doi: 10.1175/JCLI-D-14-00439.1 – volume: 9 start-page: 269 year: 2019 ident: 303_CR157 publication-title: Nat. Clim. Change doi: 10.1038/s41558-019-0436-6 – volume: 42 start-page: 635 year: 2022 ident: 303_CR141 publication-title: Int. J. Climatol. doi: 10.1002/joc.7264 – volume: 65 start-page: 243 year: 2020 ident: 303_CR119 publication-title: Sci. Bull. doi: 10.1016/j.scib.2019.12.002 – volume: 9 start-page: e2021EF002027 year: 2021 ident: 303_CR118 publication-title: Earths Future doi: 10.1029/2021EF002027 – volume: 38 start-page: 3607 year: 2018 ident: 303_CR125 publication-title: Int. J. Climatol. doi: 10.1002/joc.5521 – volume: 53 start-page: 2047 year: 2019 ident: 303_CR110 publication-title: Clim. Dyn. doi: 10.1007/s00382-019-04775-4 – volume: 50 start-page: 105 year: 2011 ident: 303_CR20 publication-title: Clim. Res. doi: 10.3354/cr01067 – volume: 22 start-page: 600 year: 2009 ident: 303_CR70 publication-title: J. Clim. doi: 10.1175/2008JCLI2295.1 – volume: 7 start-page: 637 year: 2017 ident: 303_CR12 publication-title: Nat. Clim. Change doi: 10.1038/nclimate3352 – volume: 4 start-page: 1082 year: 2014 ident: 303_CR26 publication-title: Nat. Clim. Change doi: 10.1038/nclimate2410 – volume: 16 start-page: 094028 year: 2021 ident: 303_CR163 publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/ac1d0c – volume: 43 start-page: 1158 year: 2019 ident: 303_CR80 publication-title: Chin. J. Atmos. Sci. – volume: 162 start-page: 603 year: 2020 ident: 303_CR126 publication-title: Clim. Change doi: 10.1007/s10584-020-02725-2 – ident: 303_CR1 – volume: 101 start-page: E1464 year: 2020 ident: 303_CR27 publication-title: Bull. Am. Meteorol. Soc. doi: 10.1175/BAMS-D-19-0182.1 – volume: 47 start-page: 3235 year: 2016 ident: 303_CR111 publication-title: Clim. Dyn. doi: 10.1007/s00382-016-3023-9 – volume: 33 start-page: L11708 year: 2006 ident: 303_CR62 publication-title: Geophys. Res. Lett. doi: 10.1029/2006GL026377 – volume: 41 start-page: E259 year: 2021 ident: 303_CR99 publication-title: Int. J. Climatol. doi: 10.1002/joc.6682 – volume: 7 start-page: 978 year: 2019 ident: 303_CR107 publication-title: Earths Future doi: 10.1029/2019EF001237 – volume: 121 start-page: 10505 year: 2016 ident: 303_CR131 publication-title: J. Geophys. Res.-Atmos. doi: 10.1002/2016JD025210 – volume: 6 start-page: 1528 year: 2018 ident: 303_CR83 publication-title: Earth’s Future doi: 10.1029/2018EF000963 – volume: 3 start-page: 45 year: 2020 ident: 303_CR39 publication-title: Npj Clim. Atmos. Sci. doi: 10.1038/s41612-020-00151-w – volume: 528 start-page: 249 year: 2015 ident: 303_CR161 publication-title: Nature doi: 10.1038/nature15770 – volume: 29 start-page: 8989 year: 2016 ident: 303_CR146 publication-title: J. Clim. doi: 10.1175/JCLI-D-16-0377.1 – volume: 5 year: 2022 ident: 303_CR32 publication-title: Npj Clim. Atmos. Sci. doi: 10.1038/s41612-022-00253-7 – volume: 35 start-page: L16709 year: 2008 ident: 303_CR116 publication-title: Geophys. Res. Lett. doi: 10.1029/2008GL035075 – volume: 110 start-page: 385 year: 2012 ident: 303_CR4 publication-title: Clim. Change doi: 10.1007/s10584-011-0090-0 – volume: 6 start-page: 735 year: 2016 ident: 303_CR15 publication-title: Nat. Clim. Change doi: 10.1038/nclimate3055 – volume: 9 year: 2018 ident: 303_CR46 publication-title: Nat. Commun. doi: 10.1038/s41467-018-05633-3 – volume: 38 start-page: 253 year: 2021 ident: 303_CR81 publication-title: Adv. Atmos. Sci. doi: 10.1007/s00376-020-0182-8 – volume: 84 start-page: 2299 year: 2016 ident: 303_CR94 publication-title: Nat. Hazards doi: 10.1007/s11069-016-2553-0 – volume: 57 start-page: 17 year: 2021 ident: 303_CR5 publication-title: Clim. Dyn. doi: 10.1007/s00382-021-05691-2 – volume: 82 start-page: 155 year: 2004 ident: 303_CR63 publication-title: J. Meteorol. Soc. Jpn. doi: 10.2151/jmsj.82.155 |
SSID | ssj0002202976 |
Score | 2.5008063 |
SecondaryResourceType | review_article |
Snippet | East Asia is undergoing significant climate changes and these changes are likely to grow in the future. It is urgent to characterize both the mechanisms... Abstract East Asia is undergoing significant climate changes and these changes are likely to grow in the future. It is urgent to characterize both the... |
SourceID | doaj proquest crossref springer |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | 704/106/694 706/648/453 Atmospheric Protection/Air Quality Control/Air Pollution Atmospheric Sciences Climate change Climate Change/Climate Change Impacts Climate system Climatology Divergence Earth and Environmental Science Earth Sciences El Nino Fine structure Global warming Monsoons Review Article Ultrastructure Uncertainty Water vapor Wetting Wind |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBZ5XHoJbdNSp2nRofTSurFefpxKsmwIhYQSspCbkPUIC8FO1g79W_0N_WWdkbUbUmhufkjGzIxmPo2kbwj5ZKoqlKZSuVHB5LKBMdd4PKirIFw0SgYbSZLOL8qzhfxxra5Twm1I2yrXPjE6atdbzJEf8YqXMOUGvP397j7HqlG4uppKaGyTXXDBNUy-dk_mFz8vN1kWzrE4U5lOyxSiPhoQ0fMcN7GjgYu8eBKRInH_E7T5zwJpjDunL8leAoz0eNLwK7Llu9ckOwes269iSpx-prPbJQDPeLdPFoAEIZLQgNQEWOia9oHa2MLT6ZzvQJcdnZthpMfD0lAz0okXhP4yuDXmBnuwb-rP7xk1naMcLt6Qxen8anaWp-IJuYU5z5iLMigIPJWSZWCemRaCoQM4wlu4Mi2vkaLaitpIAK5Fy0rfqIo1lRWt8p4L8ZbsdH3n3xEamCtQ8ty6SqrQNG2QtbJGBGlqaUJG2FqA2iZmcSxwcavjCreo9SR0DULXUei6yMiXTZ-7iVfj2dYnqJdNS-TEjg_61Y1OQ0w7y5UXgTturJQNA0_kwGMxK5xTLTMZOVxrVaeBOuhHs8rI17WmH1___5cOnv_ae_KCo41BlOPFIdkZVw_-A8CXsf2YbPQvspXqpg priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Lat0wEBUh3WRT-kiJ27RoUbpp3Vhve5mahFBIVrmQnZD1CBeCb7l26W_1G_plnZHtW1LaQHayPQJ5NNIcSaMzhLx3xiTtjCqdSq6UDYy5JuJFXQXuolEy-UySdHmlL1by64262SN8uQuTg_YzpWWeppfosJMBgTgvMfYc7VKUsEx_gtTtaNWtbnf7KpxjOiY934-pRP2Pqvd8UKbqv4cv_zoSzZ7m_Bl5OkNEejo16jnZi_0LUlwCut1s8yY4_UDbuzVAzfz0kqwA-4HvoAnJCDC1Nd0k6rNEpNPN3oGue3rmhpGeDmtH3UgnJhD6w2EwzC3WYJ_Vr58tdX2gHAqHZHV-dt1elHO6hNLDKmcshU4KXI1RUicWmevA_QUAILyDkut4jaTUXtROAlStOqZjowxrjBedipEL8Yrs95s-HhGaWAA_ryvug5EqNU2XZK28E0m6WrpUELYo0PqZSxxTWtzZfKYtajsp3YLSbVa6rQrycVfn28Sk8aD0F-yXnSSyYOcXm-2tna3CBs9VFIkH7ryUDYO5J8AcxbwIQXXMFeR46VU7D83BcsO1wZ_TBfm09PSfz_9v0uvHib8hBxxtDvwcr47J_rj9Ht8CgBm7d9lifwMhjubS priority: 102 providerName: Springer Nature |
Title | Recent frontiers of climate changes in East Asia at global warming of 1.5°C and 2°C |
URI | https://link.springer.com/article/10.1038/s41612-022-00303-0 https://www.proquest.com/docview/2726761606 https://doaj.org/article/dc25e3f2d2ac4491870d3181c3dd5b1a |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LTtwwFLVauummooWqKXTkRcWmBOJ3shyiQWgkEKKMxM5y_KimQpmKBPFb_YZ-Wa-dDAUk2k1XcRJHcq5PdI5j-1yEPhulgjRK5EYEk_MKvrnKx426AuiiEjzYZJJ0eiZPFnx-Ja4epPqKa8IGe-AhcIfOUuFZoI4ay3lFAF8OcEgsc040JEkj4LwHg6nvydQlJmWS4y6ZgpWHXVTyNI-L1yOwWV48YqJk2P9IZT6ZGE18c7yJ3oxCEU-HBr5FL3z7DmWnoHFXN-lXON7D9fUSBGc620ILUIDAIDhES4KY4BqvAraphsfD_t4OL1s8M12Pp93SYNPjwQ8E35m4JOZbfIIciF8_a2xahykUttHieHZZn-Rj0oTcwlinz5kMAghHCS4D8cQ0QIIOZAhtoGQaWkZrastKw0GwFg2RvhKKVMqyRnhPGXuPNtpV6z8gHIgDtpcFtU5xEaqqCbwU1rDATclNyBBZB1Db0VE8Jra41mlmm5V6CLqGoOsUdF1k6Mv9Mz8GP42_1j6K_XJfM3phpwuAED0iRP8LIRnaXfeqHj_QTlNFpYovJzO0v-7pP7efb9LH_9GkHfSaRiQCB9JiF230N7f-E4ibvpmgV9Pp_Oscjkezs_OLCXpZy3qS0P0b6q_2GA |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaq7QEuiKdIKeADcIHQ-JXHAaF22WpLuyuEulJvxvGjWqlK2k2qij-F-A38MsZOslWR6K23POwomhnPfDP2zCD0RmWZS1UmYiWcinkBa66wPlFXgLkoBHc6FEmazdPpgn89EScb6NeQC-OPVQ46MShqU2sfI9-hGU3B5Qa8_fn8IvZdo_zu6tBCoxOLQ_vzCly25tPBF-DvW0r3J8fjadx3FYg1OANtzFInQCNngqeOWKJKsBIG7DQt4UqV1Der55rligOiS0qS2kJkpMg0K4W11AdAQeVvcgauzAht7k3m376vozqU-mZQaZ-dk7B8p_EeBI39oXm_oFic3LCAoVHADXT7z4ZssHP7D9GDHqDi3U6iHqENWz1G0Qywdb0KIXj8Do_PlgB0w90TtADkCZYLO18KwTfWxrXDOoywuMsrbvCywhPVtHi3WSqsWtzVIcFXyh_FOfUzyEfx5_cYq8pgChdP0eJOyPoMjaq6ss8RdsQkntNUm4wLVxSl47nQijmucq5chMhAQKn7Sua-ocaZDDvqLJcd0SUQXQaiyyRC79dzzrs6HreO3vN8WY_0NbjDg3p1KvslLY2mwjJHDVWa84KA5jOgIYlmxoiSqAhtD1yVvWJo5LUYR-jDwOnr1___pa3bv_Ya3Zsez47k0cH88AW6T728gYWlyTYatatL-xKgU1u-6uUVox93vUT-Ao8mJ2Y |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VIiEuiKdIW8AHxAVS4meSYwldlUcrDqzUm-X4Ua1UZatNUP8Wv4FfxthJFhUBEjcnGUvOeOz5bI-_AXhpyjIoU8rcyGByUeOYq328qCvRXdRSBJtIkk7P1MlSfDyX5zug5rswKWg_UVqmaXqODnvbRyDO8hh7Hu2S58XhlQu34Dbi7SIuuhrVbPdWGIspmdR0R6bg1R-q3_BDia7_Bsb87Vg0eZvFfbg3wURyNDbsAez47iFkp4hw15u0EU5ekeZyhXAzPT2CJeI_9B8kREKCmN6arAOxScKT8XZvT1YdOTb9QI76lSFmICMbCLk2MSDmItagh_LH94aYzhGGhcewXBx_bU7yKWVCbnGlM-RcBYnuppRCBeqpadEFOgQhrMWSaVkViaktr4xAuFq0VPlalrQuLW-l94zzJ7DbrTv_FEigDn29Kph1pZChrtsgKmkND8JUwoQM6KxAbSc-8ZjW4lKnc21e6VHpGpWuk9J1kcHrbZ2rkU3jn9LvYr9sJSMTdnqx3lzoyTK0s0x6HphjxgpRU5x_HM5T1HLnZEtNBgdzr-ppePaalUyV8edUBm_mnv71-e9N2vs_8Rdw58v7hf784ezTPtxl0fzQ7bHiAHaHzTf_DPHM0D5PxvsTjkTqyg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+frontiers+of+climate+changes+in+East+Asia+at+global+warming+of+1.5%C2%B0C+and+2%C2%B0C&rft.jtitle=NPJ+climate+and+atmospheric+science&rft.au=Qinglong+You&rft.au=Zhihong+Jiang&rft.au=Xu+Yue&rft.au=Weidong+Guo&rft.date=2022-10-20&rft.pub=Nature+Portfolio&rft.eissn=2397-3722&rft.volume=5&rft.issue=1&rft.spage=1&rft.epage=17&rft_id=info:doi/10.1038%2Fs41612-022-00303-0&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_dc25e3f2d2ac4491870d3181c3dd5b1a |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2397-3722&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2397-3722&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2397-3722&client=summon |