Facile biosynthesis of Ag–ZnO nanocomposites using Launaea cornuta leaf extract and their antimicrobial activity
The quest to synthesize safe, non-hazardous Ag–ZnO nanoomposites (NCs) with improved physical and chemical properties has necessitated green synthesis approaches. In this research, Launaea cornuta leaf extract was proposed for the green synthesis of Ag–ZnO NCs, wherein the leaf extract was used as a...
Saved in:
Published in | Discover nano Vol. 18; no. 1; p. 142 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
17.11.2023
Springer Nature B.V Springer |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The quest to synthesize safe, non-hazardous Ag–ZnO nanoomposites (NCs) with improved physical and chemical properties has necessitated green synthesis approaches. In this research,
Launaea cornuta
leaf extract was proposed for the green synthesis of Ag–ZnO NCs, wherein the leaf extract was used as a reducing and capping agent. The antibacterial activity of the prepared nanoomposites was investigated against
Escherichia coli
and
Staphylococcus aureus
through the disc diffusion method. The influence of the synthesis temperature, pH, and precursor concentration on the synthesis of the Ag–ZnO NCs and antimicrobial efficacy were investigated. The nanoparticles were characterized by ATR-FTIR, XRD, UV–Vis, FESEM, and TEM. The FTIR results indicated the presence of secondary metabolites in
Launaea cornuta
which assisted the green synthesis of the nanoparticles. The XRD results confirmed the successful synthesis of crystalline Ag–ZnO NCs with an average particle size of 21.51 nm. The SEM and TEM images indicated the synthesized nanoparticles to be spherical in shape. The optimum synthesis conditions for Ag–ZnO NCs were at 70 °C, pH of 7, and 8% silver. Antibacterial activity results show Ag–ZnO NCs to have higher microbial inhibition on
E. coli
than on
S. aureu
s with the zones of inhibition of 21 ± 1.08 and 19.67 ± 0.47 mm, respectively. Therefore, the results suggest that
Launaea cornuta
leaf extract can be used for the synthesis of Ag–ZnO NCs. |
---|---|
AbstractList | The quest to synthesize safe, non-hazardous Ag–ZnO nanoomposites (NCs) with improved physical and chemical properties has necessitated green synthesis approaches. In this research,
Launaea cornuta
leaf extract was proposed for the green synthesis of Ag–ZnO NCs, wherein the leaf extract was used as a reducing and capping agent. The antibacterial activity of the prepared nanoomposites was investigated against
Escherichia coli
and
Staphylococcus aureus
through the disc diffusion method. The influence of the synthesis temperature, pH, and precursor concentration on the synthesis of the Ag–ZnO NCs and antimicrobial efficacy were investigated. The nanoparticles were characterized by ATR-FTIR, XRD, UV–Vis, FESEM, and TEM. The FTIR results indicated the presence of secondary metabolites in
Launaea cornuta
which assisted the green synthesis of the nanoparticles. The XRD results confirmed the successful synthesis of crystalline Ag–ZnO NCs with an average particle size of 21.51 nm. The SEM and TEM images indicated the synthesized nanoparticles to be spherical in shape. The optimum synthesis conditions for Ag–ZnO NCs were at 70 °C, pH of 7, and 8% silver. Antibacterial activity results show Ag–ZnO NCs to have higher microbial inhibition on
E. coli
than on
S. aureu
s with the zones of inhibition of 21 ± 1.08 and 19.67 ± 0.47 mm, respectively. Therefore, the results suggest that
Launaea cornuta
leaf extract can be used for the synthesis of Ag–ZnO NCs. The quest to synthesize safe, non-hazardous Ag–ZnO nanoomposites (NCs) with improved physical and chemical properties has necessitated green synthesis approaches. In this research, Launaea cornuta leaf extract was proposed for the green synthesis of Ag–ZnO NCs, wherein the leaf extract was used as a reducing and capping agent. The antibacterial activity of the prepared nanoomposites was investigated against Escherichia coli and Staphylococcus aureus through the disc diffusion method. The influence of the synthesis temperature, pH, and precursor concentration on the synthesis of the Ag–ZnO NCs and antimicrobial efficacy were investigated. The nanoparticles were characterized by ATR-FTIR, XRD, UV–Vis, FESEM, and TEM. The FTIR results indicated the presence of secondary metabolites in Launaea cornuta which assisted the green synthesis of the nanoparticles. The XRD results confirmed the successful synthesis of crystalline Ag–ZnO NCs with an average particle size of 21.51 nm. The SEM and TEM images indicated the synthesized nanoparticles to be spherical in shape. The optimum synthesis conditions for Ag–ZnO NCs were at 70 °C, pH of 7, and 8% silver. Antibacterial activity results show Ag–ZnO NCs to have higher microbial inhibition on E. coli than on S. aureus with the zones of inhibition of 21 ± 1.08 and 19.67 ± 0.47 mm, respectively. Therefore, the results suggest that Launaea cornuta leaf extract can be used for the synthesis of Ag–ZnO NCs. The quest to synthesize safe, non-hazardous Ag-ZnO nanoomposites (NCs) with improved physical and chemical properties has necessitated green synthesis approaches. In this research, Launaea cornuta leaf extract was proposed for the green synthesis of Ag-ZnO NCs, wherein the leaf extract was used as a reducing and capping agent. The antibacterial activity of the prepared nanoomposites was investigated against Escherichia coli and Staphylococcus aureus through the disc diffusion method. The influence of the synthesis temperature, pH, and precursor concentration on the synthesis of the Ag-ZnO NCs and antimicrobial efficacy were investigated. The nanoparticles were characterized by ATR-FTIR, XRD, UV-Vis, FESEM, and TEM. The FTIR results indicated the presence of secondary metabolites in Launaea cornuta which assisted the green synthesis of the nanoparticles. The XRD results confirmed the successful synthesis of crystalline Ag-ZnO NCs with an average particle size of 21.51 nm. The SEM and TEM images indicated the synthesized nanoparticles to be spherical in shape. The optimum synthesis conditions for Ag-ZnO NCs were at 70 °C, pH of 7, and 8% silver. Antibacterial activity results show Ag-ZnO NCs to have higher microbial inhibition on E. coli than on S. aureus with the zones of inhibition of 21 ± 1.08 and 19.67 ± 0.47 mm, respectively. Therefore, the results suggest that Launaea cornuta leaf extract can be used for the synthesis of Ag-ZnO NCs.The quest to synthesize safe, non-hazardous Ag-ZnO nanoomposites (NCs) with improved physical and chemical properties has necessitated green synthesis approaches. In this research, Launaea cornuta leaf extract was proposed for the green synthesis of Ag-ZnO NCs, wherein the leaf extract was used as a reducing and capping agent. The antibacterial activity of the prepared nanoomposites was investigated against Escherichia coli and Staphylococcus aureus through the disc diffusion method. The influence of the synthesis temperature, pH, and precursor concentration on the synthesis of the Ag-ZnO NCs and antimicrobial efficacy were investigated. The nanoparticles were characterized by ATR-FTIR, XRD, UV-Vis, FESEM, and TEM. The FTIR results indicated the presence of secondary metabolites in Launaea cornuta which assisted the green synthesis of the nanoparticles. The XRD results confirmed the successful synthesis of crystalline Ag-ZnO NCs with an average particle size of 21.51 nm. The SEM and TEM images indicated the synthesized nanoparticles to be spherical in shape. The optimum synthesis conditions for Ag-ZnO NCs were at 70 °C, pH of 7, and 8% silver. Antibacterial activity results show Ag-ZnO NCs to have higher microbial inhibition on E. coli than on S. aureus with the zones of inhibition of 21 ± 1.08 and 19.67 ± 0.47 mm, respectively. Therefore, the results suggest that Launaea cornuta leaf extract can be used for the synthesis of Ag-ZnO NCs. Abstract The quest to synthesize safe, non-hazardous Ag–ZnO nanoomposites (NCs) with improved physical and chemical properties has necessitated green synthesis approaches. In this research, Launaea cornuta leaf extract was proposed for the green synthesis of Ag–ZnO NCs, wherein the leaf extract was used as a reducing and capping agent. The antibacterial activity of the prepared nanoomposites was investigated against Escherichia coli and Staphylococcus aureus through the disc diffusion method. The influence of the synthesis temperature, pH, and precursor concentration on the synthesis of the Ag–ZnO NCs and antimicrobial efficacy were investigated. The nanoparticles were characterized by ATR-FTIR, XRD, UV–Vis, FESEM, and TEM. The FTIR results indicated the presence of secondary metabolites in Launaea cornuta which assisted the green synthesis of the nanoparticles. The XRD results confirmed the successful synthesis of crystalline Ag–ZnO NCs with an average particle size of 21.51 nm. The SEM and TEM images indicated the synthesized nanoparticles to be spherical in shape. The optimum synthesis conditions for Ag–ZnO NCs were at 70 °C, pH of 7, and 8% silver. Antibacterial activity results show Ag–ZnO NCs to have higher microbial inhibition on E. coli than on S. aureus with the zones of inhibition of 21 ± 1.08 and 19.67 ± 0.47 mm, respectively. Therefore, the results suggest that Launaea cornuta leaf extract can be used for the synthesis of Ag–ZnO NCs. |
ArticleNumber | 142 |
Author | Machunda, Revocatus Basu, Onita D. Makauki, Elizabeth Mtavangu, Stanslaus George Rwiza, Mwemezi |
Author_xml | – sequence: 1 givenname: Elizabeth surname: Makauki fullname: Makauki, Elizabeth email: elizabeth.makauki@nm-aist.ac.tz organization: School of Materials Energy Water and Environmental Sciences, Nelson Mandela African Institution of Science and Technology – sequence: 2 givenname: Stanslaus George surname: Mtavangu fullname: Mtavangu, Stanslaus George organization: Department of Chemical Engineering, Faculty of Engineering Sciences, KU Leuven, Department of Chemistry, Dar es Salaam University College of Education – sequence: 3 givenname: Onita D. surname: Basu fullname: Basu, Onita D. organization: Department of Civil and Environmental Engineering, Faculty of Engineering and Design, Carleton University – sequence: 4 givenname: Mwemezi surname: Rwiza fullname: Rwiza, Mwemezi organization: School of Materials Energy Water and Environmental Sciences, Nelson Mandela African Institution of Science and Technology – sequence: 5 givenname: Revocatus surname: Machunda fullname: Machunda, Revocatus organization: School of Materials Energy Water and Environmental Sciences, Nelson Mandela African Institution of Science and Technology |
BookMark | eNqFkr1uFDEUhUcoSISQF6CyREMz4N_xuIwiApFWSpOKxrrjubN4NWsvtgexHe-QN-RJ8O6CQClC4R_Z3zm2js7L5izEgE3zmtF3jPXd-8xYp1lLuWipMFy1_FlzzrVgreHcnP2zf9Fc5ryhlPJe816p8ybdgPMzksHHvA_lC2afSZzI1frnj4fP4Y4ECNHF7S5mXzCTJfuwJitYAiAQF1NYCpAZYSL4vSRwhUAYSTXyqe6K33qX4uBhJvXOf_Nl_6p5PsGc8fL3etHc33y4v_7Uru4-3l5frVonjSqtkII5KTquhg4Gg2xE1ctOgGEjG9joqBCdMFOvOtCIepoc1kEHhXTkXFw0tyfbMcLG7pLfQtrbCN4eD2JaW0jFuxmtdBx1Pwo2AMhBTXWqBk4LyqiiklavtyevXYpfF8zFbn12OM8QMC7ZCqaE0lKz7r8o7w3T0nS6r-ibR-gmLinUTI4UNVzSw9v9iao55pxwss4XKD6GGrefLaP20AJ7aoGtLbDHFthDBPyR9E8MT4rESZQrHNaY_v7qCdUvAJXHng |
CitedBy_id | crossref_primary_10_1002_slct_202402678 crossref_primary_10_1016_j_inoche_2024_112144 crossref_primary_10_1002_jobm_202400543 crossref_primary_10_1016_j_napere_2024_100093 crossref_primary_10_1080_10934529_2024_2315922 crossref_primary_10_1007_s00449_024_02995_5 crossref_primary_10_1007_s12649_024_02600_6 crossref_primary_10_1016_j_inoche_2024_112564 crossref_primary_10_1016_j_chphi_2025_100850 crossref_primary_10_1016_j_chphi_2024_100763 crossref_primary_10_1088_2632_959X_ad80b1 crossref_primary_10_1038_s41598_024_67579_5 crossref_primary_10_3390_antibiotics13080748 crossref_primary_10_1007_s12668_024_01766_6 |
Cites_doi | 10.1016/j.arabjc.2010.11.011 10.1016/j.chemosphere.2022.135125 10.1016/j.mtcomm.2022.104747 10.1016/j.molstruc.2022.133123 10.1016/j.msec.2017.02.131 10.1016/j.jcis.2019.12.079 10.1007/s42452-020-2269-3 10.1016/j.msec.2014.05.007 10.1016/j.tibtech.2013.01.003 10.1016/j.vacuum.2020.109821 10.1016/j.apsusc.2021.150113 10.1177/2515690X211064585 10.1016/j.matlet.2020.128349 10.1016/j.mtcomm.2021.102457 10.1142/s1793984414400030 10.1186/s12951-018-0334-5 10.1186/s11671-016-1750-9 10.1016/j.matlet.2007.03.072 10.3390/cryst13030415 10.1016/j.jddst.2019.101465 10.2478/s11696-010-0045-3 10.1021/es060353j 10.4028/www.scientific.net/AMR.832.350 10.1007/s13762-018-2175-z 10.3389/fbioe.2019.00287 10.1016/j.onano.2022.100082 10.1016/j.msec.2018.10.063 10.3389/fmicb.2019.00820 10.1134/S001814392303013X 10.1016/j.watres.2008.02.021 10.1248/cpb.c110479 10.1007/s10854-015-3394-4 10.3390/molecules24122210 10.1016/j.saa.2020.118595 10.1080/21691401.2019.1577878 10.1007/s13204-012-0151-3 10.1155/2022/3758212 10.1007/s10311-020-01074-x 10.1186/s40104-019-0368-z 10.13040/IJPSR.0975-8232.IJP.1(5).296-00 10.1039/c4ra12784f 10.1155/2019/8642303 10.1007/s12668-020-00774-6 10.1007/s10529-015-2026-7 10.1016/j.arabjc.2013.04.007 10.1007/s00449-008-0224-6 10.1016/j.arabjc.2014.12.014 10.1155/2010/745120 10.1078/0944-5013-00069 10.1016/j.jcis.2004.02.012 10.1038/s41598-022-19403-1 10.1016/j.porgcoat.2018.08.004 10.3390/catal9020165 10.3390/cancers12040855 10.1016/j.jsps.2014.11.013 10.1016/j.psep.2017.03.010 10.1016/j.ceramint.2021.04.160 10.1166/asl.2010.1099 10.3389/fnano.2021.655062 10.1080/21553769.2014.952048 10.1155/2021/6687290 10.1016/j.cattod.2015.06.004 10.1080/10643389.2020.1806685 10.1016/j.msec.2017.03.090 10.1515/gps-2016-0052 10.1088/1742-6596/836/1/012050 10.1007/s00253-015-7108-x 10.1016/j.saa.2015.01.062 10.1002/jemt.24207 10.1016/j.colsurfb.2009.07.002 10.1007/s42452-019-0610-5 10.3390/polym15040985 10.1016/j.ceramint.2021.10.135 10.1128/AAC.46.8.2668-2670.2002 10.1007/s13399-023-03907-5 10.1016/j.colsurfb.2016.01.027 10.1007/s40195-015-0218-8 10.1038/s41598-020-65949-3 10.1155/2017/4752314 10.1007/s40097-018-0291-4 10.1016/j.jece.2018.102840 10.1016/j.colsurfb.2009.07.048 10.1016/j.matpr.2021.04.627 10.36721/PJPS.2020.33.6.SUP.2823-2830.1 10.3389/fmicb.2020.00238 10.2147/IJN.S200254 10.1016/j.molstruc.2021.130724 10.1038/s41598-020-77426-y 10.1016/j.coche.2013.09.004 10.1016/j.poly.2018.10.049 10.1007/s00231-017-2065-9 10.1016/j.cis.2008.09.002 10.1016/j.watres.2012.05.032 10.1039/x0xx00000x |
ContentType | Journal Article |
Copyright | The Author(s) 2023 Copyright Springer Nature B.V. Dec 2023 2023. The Author(s). |
Copyright_xml | – notice: The Author(s) 2023 – notice: Copyright Springer Nature B.V. Dec 2023 – notice: 2023. The Author(s). |
DBID | C6C AAYXX CITATION 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG 8FH ABJCF ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU D1I DWQXO F28 FR3 GNUQQ H8D H8G HCIFZ JG9 JQ2 KB. KR7 L7M LK8 L~C L~D M7P P64 PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 7S9 L.6 DOA |
DOI | 10.1186/s11671-023-03925-2 |
DatabaseName | Springer Nature OA Free Journals CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One ProQuest Materials Science Collection ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database ProQuest Central Student Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Materials Science Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace ProQuest Biological Science Collection Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biological Science Database Biotechnology and BioEngineering Abstracts Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic AGRICOLA AGRICOLA - Academic DOAJ Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Central Student ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File ProQuest One Applied & Life Sciences ProQuest One Sustainability Engineered Materials Abstracts Natural Science Collection Biological Science Collection ProQuest Central (New) ANTE: Abstracts in New Technology & Engineering Aluminium Industry Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection Ceramic Abstracts Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts Materials Science Collection ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Natural Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library Biotechnology Research Abstracts ProQuest Central Korea Materials Science Database Advanced Technologies Database with Aerospace ProQuest Materials Science Collection Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Materials Science & Engineering Collection Corrosion Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef AGRICOLA Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2731-9229 1556-276X |
EndPage | 142 |
ExternalDocumentID | oai_doaj_org_article_4c2e78d31baa4b5fa4b223c730105040 10_1186_s11671_023_03925_2 |
GroupedDBID | .4S 0R~ AAJSJ AAKKN ABEEZ ACACY ACULB ACVER AFGXO ALMA_UNASSIGNED_HOLDINGS ARCSS C24 C6C EBLON EBS EDO GROUPED_DOAJ MM. M~E PGMZT RPM RSV SOJ TUS AASML AAYXX CITATION .86 .DC 123 29M 2WC 4.4 40G 5VS 6NX 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG 8FH AAFWJ ABJCF ABMNI ABUWG ACGFO ACGFS ACIWK ACPRK ADBBV ADRAZ AEGXH AENEX AEUYN AFKRA AFPKN AFRAH AHBYD AHYZX AMKLP AMTXH AOIJS AZQEC BAPOH BBNVY BCNDV BENPR BGLVJ BHPHI CAG CCPQU CS3 D1I DU5 DWQXO F28 F5P FR3 GNUQQ GX1 H8D H8G HCIFZ HH5 HYE HZ~ I09 IZQ JG9 JQ2 KB. KDC KQ8 KR7 L7M LK8 L~C L~D M7P O5R O5S OK1 OVT P2P P64 PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PROAC RNS RPX SCM SDH TR2 U2A ~KM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c495t-3431c43625b6ab9e1de58463a91d1b1dc033639f856a7ee7ffceffc0b5e0d223 |
IEDL.DBID | DOA |
ISSN | 2731-9229 1931-7573 |
IngestDate | Wed Aug 27 01:24:41 EDT 2025 Thu Jul 10 23:52:53 EDT 2025 Thu Jul 10 23:51:56 EDT 2025 Fri Jul 25 09:34:45 EDT 2025 Thu Apr 24 23:11:18 EDT 2025 Tue Jul 01 04:17:23 EDT 2025 Fri Feb 21 02:41:33 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Nanoparticles Green synthesis Metabolites Microbial growth inhibition |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c495t-3431c43625b6ab9e1de58463a91d1b1dc033639f856a7ee7ffceffc0b5e0d223 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://doaj.org/article/4c2e78d31baa4b5fa4b223c730105040 |
PQID | 2891092400 |
PQPubID | 2034687 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_4c2e78d31baa4b5fa4b223c730105040 proquest_miscellaneous_3153574716 proquest_miscellaneous_2891749678 proquest_journals_2891092400 crossref_citationtrail_10_1186_s11671_023_03925_2 crossref_primary_10_1186_s11671_023_03925_2 springer_journals_10_1186_s11671_023_03925_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-11-17 |
PublicationDateYYYYMMDD | 2023-11-17 |
PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-17 day: 17 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Heidelberg |
PublicationTitle | Discover nano |
PublicationTitleAbbrev | Discover Nano |
PublicationYear | 2023 |
Publisher | Springer US Springer Nature B.V Springer |
Publisher_xml | – name: Springer US – name: Springer Nature B.V – name: Springer |
References | Ratan, Haidere, Nurunnabi, Shahriar, Ahammad, Shim (CR5) 2020; 12 Babu, Antony (CR16) 2019; 7 Kharissova, Dias, Kharisov, Pérez, Pérez (CR37) 2013; 31 Saha, Subramani, Petchi Muthu Raju, Rangaraj, Venkatachalam (CR23) 2018; 124 Noohpisheh, Amiri, Farhadi, Mohammadi-gholami (CR92) 2020; 240 Jomehzadeh, Koolivand, Dahdouh, Akbari, Zahedi (CR15) 2021; 27 Dibrov, Dzioba, Gosink, Häse (CR95) 2002; 46 Ankamwar (CR71) 2010; 7 Akintelu, Folorunso (CR29) 2020; 10 Karthik, Rajamani, Venkatesan, Shajahan, Rajhi, Aabid (CR40) 2023 Misonge, Kinyanjui, Kingori, Mwalukumbi (CR57) 2015; 3 Kumar, Selvi, Govindaraju (CR75) 2013; 3 Mehta, Chhajlani, Shrivastava (CR60) 2017; 836 Guzmán, Dille, Godet (CR47) 2009; 2 Alam, Balani (CR11) 2017; 75 Yulizar, Eprasatya, Bagus Apriandanu, Yunarti (CR69) 2021; 183 Awan, Akhtar, Anjum, Mushtaq, Almas, Mannan (CR54) 2020; 33 Pirtarighat, Ghannadnia, Baghshahi (CR14) 2019; 9 Akimat, Omwenga, Moriasi, Ngugi (CR56) 2021 Panchal, Paul, Sharma, Choudhary, Meena, Nehra (CR6) 2020; 563 Indriyani, Yulizar, Tri Yunarti, Oky Bagus Apriandanu, Marcony Surya (CR51) 2021; 563 Surya, Mauliddiyah, Apriandanu, Sudirman, Yulizar (CR52) 2022; 304 Moradi, Haghighi, Allahyari (CR24) 2017; 107 Gour, Jain (CR38) 2019; 47 Khalil, Ismail, El-Magdoub (CR72) 2012; 5 Gurgur, Oluyamo, Omotunde, Adetuyi (CR10) 2020; 2 Sharma, Yngard, Lin (CR28) 2009; 145 Singh, Singh, Rawat (CR76) 2019; 1 Rajeshkumar, Nandhini, Manjunath, Sivaperumal, Krishna Prasad, Alotaibi (CR19) 2021 Guilger-Casagrande, de Lima (CR77) 2019; 7 Yusof, Mohamad, Zaidan, Rahman (CR78) 2019 Liu, Wang, Zu, Fu, Li, Guo (CR63) 2014; 42 Alnehia, Al-Sharabi, Al-Hammadi, Al-Odayni, Alramadhan, Alodeni (CR73) 2023 Mousavi-kouhi, Beyk-khormizi, Sadegh (CR86) 2021; 47 Mohamad, Arham, Jai, Hadi (CR43) 2014; 832 Choi, Deng, Kim, Ross, Surampalli, Hu (CR90) 2008; 42 Dias, Bernardi, Marangoni, de Abreu Bernardi, de Souza Rastelli, Hernandes (CR26) 2019; 96 Lalley, Dionysiou, Varma, Shankara, Yang, Nadagouda (CR89) 2014; 3 Mohammed, Farhan, Abdula (CR94) 2019; 11 Zhao, Anichina, Lu, Bull, Krasner, Hrudey (CR32) 2012; 46 Surendra, Roopan, Al-Dhabi, Arasu, Sarkar, Suthindhiran (CR21) 2016 Muriira Karau, Nyagah, Njagi, King’ori Machocho, Koech, Wangai (CR55) 2014; 1 Roopan, Khan (CR20) 2010; 64 Madhumitha, Elango, Roopan (CR22) 2016; 100 Lee (CR12) 2016; 141 Balogun, Stephenson, Akanmu, Gamache, Jibrin (CR53) 2017; 8 Rajabi, Naghiha, Kheirizadeh, Sadatfaraji, Mirzaei, Alvand (CR93) 2017; 78 Fayaz, Karthik, Christiyan, Kumar, Sivakumar, Kaliappan (CR39) 2022 Zeghoud, Hemmami, Ben Seghir, Ben Amor, Kouadri, Rebiai (CR30) 2022; 33 Elviera, Yulizar, Apriandanu, Marcony Surya (CR70) 2022; 48 Hemmati, Rashtiani, Zangeneh, Mohammadi, Zangeneh, Veisi (CR65) 2019; 158 Gurunathan, Kalishwaralal, Vaidyanathan, Venkataraman, Pandian, Muniyandi (CR3) 2009; 74 Venis, Basu (CR82) 2021; 51 Dawadi, Katuwal, Gupta, Lamichhane, Thapa, Jaisi (CR7) 2021 Mortezagholi, Movahed, Fathi, Soleimani, Forutan Mirhosseini, Zeini (CR42) 2022; 85 Ahmad, Munir, Zeb, Ullah, Khan, Ali (CR49) 2019; 14 Ifijen, Maliki, Anegbe (CR62) 2022; 8 Alharthi, Alghamdi, Al-Zaqri, Alanazi, Alsyahi, El (CR80) 2020; 10 Shreema, Mathammal, Kalaiselvi, Vijayakumar, Selvakumar, Senthil (CR18) 2021; 47 Pazos-Ortiz, Roque-Ruiz, Hinojos-Márquez, López-Esparza, Donohué-Cornejo, Cuevas-González (CR88) 2017 Hamouda, Myc, Donovan, Shih, Reuter, Baker (CR96) 2001; 156 Khodashenas, Ghorbani (CR4) 2019; 12 Sathyavathi, Krishna, Rao, Saritha, Rao (CR79) 2010; 3 Yulizar, Gunlazuardi, Apriandanu, Syahfitri (CR66) 2020; 277 Ghosh, Das, Jena, Pradhan (CR83) 2015; 8 Masum, Siddiqa, Ali, Zhang, Abdallah, Ibrahim (CR33) 2019; 10 Roberson, Rangari, Jeelani, Samuel, Yates (CR9) 2014; 04 Bala, Saha, Chakraborty, Maiti, Das, Basu (CR36) 2015; 5 Fayaz, Balaji, Kalaichelvan, Venkatesan (CR50) 2009; 74 Sivagnanam, Getachew, Choi (CR2) 2017; 6 Khalil, Ismail, El-Baghdady, Mohamed (CR41) 2014; 7 Roopan, Mathew, Mahesh, Titus, Aggarwal, Bhatia (CR58) 2019; 16 Wang, Li, Liu, Wang (CR68) 2019; 24 Fahimmunisha, Ishwarya, AlSalhi, Devanesan, Govindarajan, Vaseeharan (CR91) 2020 Sondi, Salopek-Sondi (CR87) 2004; 275 Cardoza-Contreras, Vásquez-Gallegos, Vidal-Limon, Romo-Herrera, Águila, Contreras (CR85) 2019; 9 Naseer, Aslam, Khalid, Chen (CR74) 2020; 10 CR13 Rajeshkumar, Yadav, Sridharan, Roopan (CR8) 2023; 57 Marimuthu, Anandhan, Mahalingam, Thangamuthu, Mummoorthi (CR61) 2015; 26 Ramesh, Karthik, Cep, Elangovan (CR45) 2023 Hasell, Yang, Wang, Brown, Howdle (CR27) 2007; 61 Ramesh, Kokila, Geetha (CR64) 2015; 142 Yong, Beom, Kim (CR48) 2009; 32 Patil, Mali, Tamboli, Patil, Kulkarni, Yoon (CR17) 2016; 260 Krasner, Weinberg, Richardson, Pastor, Chinn, Sclimenti (CR31) 2006; 40 Aritonang, Koleangan, Wuntu (CR1) 2019; 10 Priya, Naveen, Kaur, Sidhu (CR34) 2021; 3 Ashraf, Anjum, Riaz, Naseem (CR59) 2020; 11 Chithra, Pushpanathan (CR81) 2015; 28 Talari, Bakar, Majeed, Tripathi, Tripathy (CR84) 2012; 60 Siddiqi, Husen, Rao (CR97) 2018; 16 Kuppusamy, Yusoff, Maniam, Govindan (CR44) 2016; 24 Mtavangu, Machunda, van der Bruggen, Njau (CR25) 2022; 12 Jadoun, Arif, Jangid, Meena (CR35) 2021; 19 Nakhjavani, Nikkhah, Sarafraz, Shoja, Sarafraz (CR98) 2017; 53 Suwarno, Yulizar, Apriandanu, Surya (CR67) 2022; 1264 Hussain, Singh, Singh, Singh, Singh (CR46) 2016; 38 RA Venis (3925_CR82) 2021; 51 I Hussain (3925_CR46) 2016; 38 B Mortezagholi (3925_CR42) 2022; 85 SM Mousavi-kouhi (3925_CR86) 2021; 47 J Yong (3925_CR48) 2009; 32 JO Misonge (3925_CR57) 2015; 3 TV Surendra (3925_CR21) 2016 G Muriira Karau (3925_CR55) 2014; 1 S Dawadi (3925_CR7) 2021 Y Yulizar (3925_CR69) 2021; 183 K Singh (3925_CR76) 2019; 1 HM Yusof (3925_CR78) 2019 MI Masum (3925_CR33) 2019; 10 B Khodashenas (3925_CR4) 2019; 12 T Hasell (3925_CR27) 2007; 61 S Hemmati (3925_CR65) 2019; 158 AC Suwarno (3925_CR67) 2022; 1264 SS Patil (3925_CR17) 2016; 260 MR Surya (3925_CR52) 2022; 304 B Ankamwar (3925_CR71) 2010; 7 P Kuppusamy (3925_CR44) 2016; 24 A Indriyani (3925_CR51) 2021; 563 T Marimuthu (3925_CR61) 2015; 26 SG Mtavangu (3925_CR25) 2022; 12 ZA Ratan (3925_CR5) 2020; 12 AT Babu (3925_CR16) 2019; 7 BA Fahimmunisha (3925_CR91) 2020 M Roberson (3925_CR9) 2014; 04 NAN Mohamad (3925_CR43) 2014; 832 S Zeghoud (3925_CR30) 2022; 33 I Sondi (3925_CR87) 2004; 275 HR Rajabi (3925_CR93) 2017; 78 O Choi (3925_CR90) 2008; 42 SA Akintelu (3925_CR29) 2020; 10 J Lee (3925_CR12) 2016; 141 HB Dias (3925_CR26) 2019; 96 E Pazos-Ortiz (3925_CR88) 2017 M Guilger-Casagrande (3925_CR77) 2019; 7 BK Mehta (3925_CR60) 2017; 836 KS Siddiqi (3925_CR97) 2018; 16 SM Roopan (3925_CR20) 2010; 64 J Lalley (3925_CR89) 2014; 3 S Ahmad (3925_CR49) 2019; 14 P Dibrov (3925_CR95) 2002; 46 N Bala (3925_CR36) 2015; 5 H Ashraf (3925_CR59) 2020; 11 MMH Khalil (3925_CR72) 2012; 5 Z Noohpisheh (3925_CR92) 2020; 240 T Ghosh (3925_CR83) 2015; 8 EK Akimat (3925_CR56) 2021 PS Ramesh (3925_CR64) 2015; 142 T Hamouda (3925_CR96) 2001; 156 SP Sivagnanam (3925_CR2) 2017; 6 P Kumar (3925_CR75) 2013; 3 IH Ifijen (3925_CR62) 2022; 8 K Shreema (3925_CR18) 2021; 47 P Panchal (3925_CR6) 2020; 563 R Sathyavathi (3925_CR79) 2010; 3 F Alam (3925_CR11) 2017; 75 H Fayaz (3925_CR39) 2022 YY Wang (3925_CR68) 2019; 24 3925_CR13 S Gurunathan (3925_CR3) 2009; 74 S Rajeshkumar (3925_CR19) 2021 FA Alharthi (3925_CR80) 2020; 10 S Rajeshkumar (3925_CR8) 2023; 57 AF Awan (3925_CR54) 2020; 33 MA Fayaz (3925_CR50) 2009; 74 MT Mohammed (3925_CR94) 2019; 11 R Saha (3925_CR23) 2018; 124 O Kharissova (3925_CR37) 2013; 31 MK Talari (3925_CR84) 2012; 60 A Gour (3925_CR38) 2019; 47 N Jomehzadeh (3925_CR15) 2021; 27 MN Cardoza-Contreras (3925_CR85) 2019; 9 Y Zhao (3925_CR32) 2012; 46 VK Sharma (3925_CR28) 2009; 145 S Pirtarighat (3925_CR14) 2019; 9 A Alnehia (3925_CR73) 2023 G Madhumitha (3925_CR22) 2016; 100 SM Roopan (3925_CR58) 2019; 16 ST Balogun (3925_CR53) 2017; 8 M Nakhjavani (3925_CR98) 2017; 53 MJ Chithra (3925_CR81) 2015; 28 S Jadoun (3925_CR35) 2021; 19 M Moradi (3925_CR24) 2017; 107 MG Guzmán (3925_CR47) 2009; 2 Z Liu (3925_CR63) 2014; 42 K Karthik (3925_CR40) 2023 M Naseer (3925_CR74) 2020; 10 E Gurgur (3925_CR10) 2020; 2 MMH Khalil (3925_CR41) 2014; 7 Elviera (3925_CR70) 2022; 48 SW Krasner (3925_CR31) 2006; 40 Priya (3925_CR34) 2021; 3 V Ramesh (3925_CR45) 2023 HF Aritonang (3925_CR1) 2019; 10 Y Yulizar (3925_CR66) 2020; 277 |
References_xml | – volume: 5 start-page: 431 year: 2012 end-page: 437 ident: CR72 article-title: Biosynthesis of Au nanoparticles using olive leaf extract. 1st nano updates publication-title: Arab J Chem doi: 10.1016/j.arabjc.2010.11.011 – volume: 304 start-page: 135125 year: 2022 ident: CR52 article-title: SmMnO -decorated ZnO in a hexane-water interface for enhancing visible light-driven photocatalytic degradation of malachite green publication-title: Chemosphere doi: 10.1016/j.chemosphere.2022.135125 – volume: 3 start-page: 116 year: 2015 end-page: 120 ident: CR57 article-title: Phytochemical screening and cytotoxicity evaluation of H. (Asteraceae) using brine shrimp publication-title: Merit Res J Med Med Sci – volume: 33 start-page: 104747 year: 2022 end-page: 104756 ident: CR30 article-title: A review on biogenic green synthesis of ZnO nanoparticles by plant biomass and their applications publication-title: Mater Today Commun doi: 10.1016/j.mtcomm.2022.104747 – volume: 1264 start-page: 133123 year: 2022 end-page: 133132 ident: CR67 article-title: Biosynthesis of Dy O nanoparticles using Vahl extract: optical, structural, morphological, and photocatalytic properties publication-title: J Mol Struct doi: 10.1016/j.molstruc.2022.133123 – volume: 75 start-page: 1106 year: 2017 end-page: 1114 ident: CR11 article-title: Role of silver/zinc oxide in affecting de-adhesion strength of on polymer biocomposites publication-title: Mater Sci Eng C doi: 10.1016/j.msec.2017.02.131 – volume: 563 start-page: 370 year: 2020 end-page: 380 ident: CR6 article-title: Biogenic mediated Ag/ZnO nanocomposites for photocatalytic and antibacterial activities towards disinfection of water publication-title: J Colloid Interface Sci doi: 10.1016/j.jcis.2019.12.079 – volume: 2 start-page: 1 year: 2020 end-page: 12 ident: CR10 article-title: Green synthesis of zinc oxide nanoparticles and zinc oxide—silver, zinc oxide–copper nanocomposites using as biotemplate publication-title: SN Appl Sci doi: 10.1007/s42452-020-2269-3 – volume: 42 start-page: 31 year: 2014 end-page: 37 ident: CR63 article-title: Synthesis of polyethylenimine (PEI) functionalized silver nanoparticles by a hydrothermal method and their antibacterial activity study publication-title: Mater Sci Eng C doi: 10.1016/j.msec.2014.05.007 – volume: 31 start-page: 240 year: 2013 end-page: 248 ident: CR37 article-title: The greener synthesis of nanoparticles publication-title: Trends Biotechnol doi: 10.1016/j.tibtech.2013.01.003 – volume: 183 start-page: 109821 year: 2021 ident: CR69 article-title: Facile synthesis of ZnO/GdCoO nanocomposites, characterization and their photocatalytic activity under visible light illumination publication-title: Vacuum doi: 10.1016/j.vacuum.2020.109821 – volume: 563 start-page: 150113 year: 2021 end-page: 150125 ident: CR51 article-title: One-pot green fabrication of BiFeO nanoparticles via L. leaves extracts for photocatalytic dye degradation publication-title: Appl Surf Sci doi: 10.1016/j.apsusc.2021.150113 – year: 2021 ident: CR56 article-title: Antioxidant, anti-inflammatory, acute oral toxicity, and qualitative phytochemistry of the aqueous root extract of (Hochst. Ex. Oliv. & Hiern.) publication-title: J Evid Based Integr Med doi: 10.1177/2515690X211064585 – volume: 277 start-page: 128349 year: 2020 end-page: 128353 ident: CR66 article-title: CuO-modified CoTiO via extract: a novel nanocomposite with high photocatalytic activity publication-title: Mater Lett doi: 10.1016/j.matlet.2020.128349 – volume: 27 start-page: 102457 year: 2021 ident: CR15 article-title: Investigating in-vitro antimicrobial activity, biosynthesis, and characterization of silver nanoparticles, zinc oxide nanoparticles, and silver-zinc oxide nanocomposites using Resin publication-title: Mater Today Commun doi: 10.1016/j.mtcomm.2021.102457 – volume: 04 start-page: 1440003 year: 2014 ident: CR9 article-title: Synthesis and characterization silver, zinc oxide and hybrid silver/zinc oxide nanoparticles for antimicrobial applications nano publication-title: Life doi: 10.1142/s1793984414400030 – volume: 16 start-page: 14 year: 2018 end-page: 42 ident: CR97 article-title: A review on biosynthesis of silver nanoparticles and their biocidal properties publication-title: J Nanobiotechnology doi: 10.1186/s12951-018-0334-5 – year: 2016 ident: CR21 article-title: Vegetable peel waste for the production of ZnO nanoparticles and its toxicological efficiency, antifungal, hemolytic, and antibacterial activities publication-title: Nanoscale Res Lett doi: 10.1186/s11671-016-1750-9 – volume: 61 start-page: 4906 year: 2007 end-page: 4910 ident: CR27 article-title: A facile synthetic route to aqueous dispersions of silver nanoparticles publication-title: Mater Lett doi: 10.1016/j.matlet.2007.03.072 – year: 2023 ident: CR40 article-title: Experimental investigation of the mechanical properties of carbon/basalt/SiC nanoparticle/polyester hybrid composite materials publication-title: Crystals (Basel) doi: 10.3390/cryst13030415 – year: 2020 ident: CR91 article-title: Green fabrication, characterization and antibacterial potential of zinc oxide nanoparticles using leaf extract: a novel drug delivery approach publication-title: J Drug Deliv Sci Technol. doi: 10.1016/j.jddst.2019.101465 – volume: 64 start-page: 678 year: 2010 end-page: 682 ident: CR20 article-title: ZnO nanorods catalyzed N-alkylation of piperidin-4-one, 4(3H)-pyrimidone, and ethyl 6-chloro-1,2-dihydro-2-oxo-4-phenylquinoline-3-carboxylate publication-title: Chem Pap doi: 10.2478/s11696-010-0045-3 – volume: 40 start-page: 7175 year: 2006 end-page: 7185 ident: CR31 article-title: Occurrence of a new generation of disinfection byproducts publication-title: Environ Sci Technol doi: 10.1021/es060353j – volume: 832 start-page: 350 year: 2014 end-page: 355 ident: CR43 article-title: Plant extract as reducing agent in synthesis of metallic nanoparticles: a review publication-title: Adv Mat Res doi: 10.4028/www.scientific.net/AMR.832.350 – volume: 16 start-page: 8053 year: 2019 end-page: 8060 ident: CR58 article-title: Environmental friendly synthesis of zinc oxide nanoparticles and estimation of its larvicidal activity against publication-title: Int J Environ Sci Technol doi: 10.1007/s13762-018-2175-z – volume: 7 start-page: 287 year: 2019 end-page: 302 ident: CR77 article-title: Synthesis of silver nanoparticles mediated by fungi: a review publication-title: Front Bioeng Biotechnol doi: 10.3389/fbioe.2019.00287 – volume: 8 start-page: 100082 year: 2022 end-page: 100106 ident: CR62 article-title: Synthesis, photocatalytic degradation and antibacterial properties of selenium or silver doped zinc oxide nanoparticles: a detailed review publication-title: OpenNano doi: 10.1016/j.onano.2022.100082 – volume: 96 start-page: 391 year: 2019 end-page: 401 ident: CR26 article-title: Synthesis, characterization and application of Ag doped ZnO nanoparticles in a composite resin publication-title: Mater Sci Eng C doi: 10.1016/j.msec.2018.10.063 – volume: 10 start-page: 820 year: 2019 end-page: 837 ident: CR33 article-title: Biogenic synthesis of silver nanoparticles using extract and its inhibitory action against the pathogen acidovorax oryzaestrain RS-2 of rice bacterial brown stripe publication-title: Front Microbiol doi: 10.3389/fmicb.2019.00820 – volume: 57 start-page: 205 year: 2023 end-page: 216 ident: CR8 article-title: Nano silver: an overview of shape, size-controlled synthesis and their antibacterial property publication-title: High Energy Chem doi: 10.1134/S001814392303013X – volume: 42 start-page: 3066 year: 2008 end-page: 3074 ident: CR90 article-title: The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth publication-title: Water Res doi: 10.1016/j.watres.2008.02.021 – volume: 60 start-page: 818 issue: 7 year: 2012 end-page: 824 ident: CR84 article-title: Synthesis, characterization and antimicrobial investigation of mechanochemically processed silver doped ZnO nanoparticles publication-title: Chem Pharm Bull doi: 10.1248/cpb.c110479 – volume: 26 start-page: 7577 year: 2015 end-page: 7587 ident: CR61 article-title: Effect of on the properties of spin coated ZnO thin films for dye sensitized solar cell applications publication-title: J Mater Sci Mater Electron doi: 10.1007/s10854-015-3394-4 – ident: CR13 – volume: 24 start-page: 2210 year: 2019 end-page: 2222 ident: CR68 article-title: Attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR) combined with chemometrics methods for the classification of Lingzhi species publication-title: Molecules doi: 10.3390/molecules24122210 – volume: 240 start-page: 118595 year: 2020 ident: CR92 article-title: Green synthesis of Ag–ZnO nanocomposites using -graecum leaf extract and their antibacterial, antifungal, antioxidant and photocatalytic properties publication-title: Spectrochim Acta A Mol Biomol Spectrosc doi: 10.1016/j.saa.2020.118595 – volume: 47 start-page: 844 year: 2019 end-page: 851 ident: CR38 article-title: Advances in green synthesis of nanoparticles publication-title: Artif Cells Nanomed Biotechnol doi: 10.1080/21691401.2019.1577878 – volume: 3 start-page: 495 year: 2013 end-page: 500 ident: CR75 article-title: Seaweed-mediated biosynthesis of silver nanoparticles using for its antifungal activity against spp. publication-title: Appl Nanosci (Switzerland) doi: 10.1007/s13204-012-0151-3 – year: 2022 ident: CR39 article-title: An investigation on the activation energy and thermal degradation of biocomposites of Jute/Bagasse/Coir/nano TiO /epoxy-reinforced polyaramid fibers publication-title: J Nanomater doi: 10.1155/2022/3758212 – volume: 8 start-page: 157 year: 2017 end-page: 162 ident: CR53 article-title: Antipseudomonal activity of aqueous and methanolic leaf extracts of Linn. (Astereceae) publication-title: J Chem Chem Eng – volume: 19 start-page: 355 year: 2021 end-page: 374 ident: CR35 article-title: Green synthesis of nanoparticles using plant extracts: a review publication-title: Environ Chem Lett doi: 10.1007/s10311-020-01074-x – year: 2019 ident: CR78 article-title: Microbial synthesis of zinc oxide nanoparticles and their potential application as an antimicrobial agent and a feed supplement in animal industry: a review publication-title: J Anim Sci Biotechnol doi: 10.1186/s40104-019-0368-z – volume: 1 start-page: 296 year: 2014 end-page: 300 ident: CR55 article-title: Profiling of the chemical compounds in ethyl acetate extracts of asteraceae by GC–MS publication-title: Int J Pharmacogn doi: 10.13040/IJPSR.0975-8232.IJP.1(5).296-00 – volume: 5 start-page: 4993 year: 2015 end-page: 5003 ident: CR36 article-title: Green synthesis of zinc oxide nanoparticles using leaf extract: effect of temperature on synthesis, anti-bacterial activity and anti-diabetic activity publication-title: RSC Adv doi: 10.1039/c4ra12784f – volume: 10 start-page: 1 year: 2019 end-page: 8 ident: CR1 article-title: Synthesis of silver nanoparticles using aqueous extract of medicinal plants’ ( and ) fresh leaves and analysis of antimicrobial activity publication-title: Int J Microbiol doi: 10.1155/2019/8642303 – volume: 10 start-page: 848 year: 2020 end-page: 863 ident: CR29 article-title: A review on green synthesis of zinc oxide nanoparticles using plant extracts and its biomedical applications publication-title: Bionanoscience doi: 10.1007/s12668-020-00774-6 – volume: 38 start-page: 545 year: 2016 end-page: 560 ident: CR46 article-title: Green synthesis of nanoparticles and its potential application publication-title: Biotechnol Lett doi: 10.1007/s10529-015-2026-7 – volume: 7 start-page: 1131 year: 2014 end-page: 1139 ident: CR41 article-title: Green synthesis of silver nanoparticles using olive leaf extract and its antibacterial activity publication-title: Arab J Chem doi: 10.1016/j.arabjc.2013.04.007 – volume: 32 start-page: 79 year: 2009 end-page: 84 ident: CR48 article-title: Rapid biological synthesis of silver nanoparticles using plant leaf extracts publication-title: Bioprocess Biosyst Eng doi: 10.1007/s00449-008-0224-6 – volume: 12 start-page: 1823 year: 2019 end-page: 1838 ident: CR4 article-title: Synthesis of silver nanoparticles with different shapes publication-title: Arab J Chem doi: 10.1016/j.arabjc.2014.12.014 – volume: 7 start-page: 1334 year: 2010 end-page: 1339 ident: CR71 article-title: Biosynthesis of gold nanoparticles (Green-Gold) using leaf extract of publication-title: E-J Chem doi: 10.1155/2010/745120 – volume: 156 start-page: 1 year: 2001 end-page: 7 ident: CR96 article-title: A novel surfactant nanoemulsion with a unique non-irritant topical antimicrobial activity against bacteria, enveloped viruses and fungi publication-title: Microbiol Res doi: 10.1078/0944-5013-00069 – volume: 275 start-page: 182 issue: 177 year: 2004 ident: CR87 article-title: Silver nanoparticles as antimicrobial agent: a case study on as a model for Gram-negative bacteria publication-title: J Colloid Interface Sci doi: 10.1016/j.jcis.2004.02.012 – volume: 12 start-page: 15359 year: 2022 end-page: 15372 ident: CR25 article-title: In situ facile green synthesis of Ag–ZnO nanocomposites using leaf extract and its antimicrobial efficacy on water disinfection publication-title: Sci Rep doi: 10.1038/s41598-022-19403-1 – volume: 124 start-page: 80 year: 2018 end-page: 91 ident: CR23 article-title: leaf extract-mediated synthesis of ZnO nanoparticles under different processing parameters for hydrophobic and antibacterial finishing over cotton fabrics publication-title: Prog Org Coat doi: 10.1016/j.porgcoat.2018.08.004 – volume: 9 start-page: 165 year: 2019 end-page: 176 ident: CR85 article-title: Photocatalytic and antimicrobial properties of Ga doped and Ag doped ZnO nanorods for water treatment publication-title: Catalysts doi: 10.3390/catal9020165 – volume: 12 start-page: 855 year: 2020 end-page: 880 ident: CR5 article-title: Green chemistry synthesis of silver nanoparticles and their potential anticancer effects publication-title: Cancers (Basel) doi: 10.3390/cancers12040855 – volume: 24 start-page: 473 year: 2016 end-page: 484 ident: CR44 article-title: Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications: an updated report publication-title: Saudi Pharm J doi: 10.1016/j.jsps.2014.11.013 – volume: 107 start-page: 414 year: 2017 end-page: 427 ident: CR24 article-title: Precipitation dispersion of Ag–ZnO nanocatalyst over functionalized multiwall carbon nanotube used in degradation of acid orange from wastewater publication-title: Process Saf Environ Prot doi: 10.1016/j.psep.2017.03.010 – volume: 47 start-page: 21490 year: 2021 end-page: 21497 ident: CR86 article-title: Silver-zinc oxide nanocomposite: from synthesis to antimicrobial and anticancer properties publication-title: Ceram Int doi: 10.1016/j.ceramint.2021.04.160 – volume: 3 start-page: 138 year: 2010 end-page: 143 ident: CR79 article-title: Biosynthesis of silver nanoparticles using leaf extract and their application in nonlinear optics publication-title: Adv Sci Lett doi: 10.1166/asl.2010.1099 – volume: 3 start-page: 655062 year: 2021 end-page: 655077 ident: CR34 article-title: Green synthesis: an eco-friendly route for the synthesis of iron oxide nanoparticles publication-title: Front Nanotechnol doi: 10.3389/fnano.2021.655062 – volume: 8 start-page: 47 year: 2015 end-page: 54 ident: CR83 article-title: Frontiers in life science antimicrobial effect of silver zinc oxide (Ag–ZnO) nanocomposite particles publication-title: Front Life Sci doi: 10.1080/21553769.2014.952048 – year: 2021 ident: CR7 article-title: Current research on silver nanoparticles: synthesis, characterization, and applications publication-title: J Nanomater doi: 10.1155/2021/6687290 – volume: 260 start-page: 126 year: 2016 end-page: 134 ident: CR17 article-title: Green approach for hierarchical nanostructured Ag–ZnO and their photocatalytic performance under sunlight publication-title: Catal Today doi: 10.1016/j.cattod.2015.06.004 – volume: 51 start-page: 2934 year: 2021 end-page: 2974 ident: CR82 article-title: Mechanisms and efficacy of disinfection in ceramic water filters: a critical review publication-title: Crit Rev Environ Sci Technol doi: 10.1080/10643389.2020.1806685 – volume: 78 start-page: 1109 year: 2017 end-page: 1118 ident: CR93 article-title: Microwave assisted extraction as an efficient approach for biosynthesis of zinc oxide nanoparticles: synthesis, characterization, and biological properties publication-title: Mater Sci Eng C doi: 10.1016/j.msec.2017.03.090 – volume: 6 start-page: 147 year: 2017 end-page: 160 ident: CR2 article-title: Green synthesis of silver nanoparticles from deoiled brown algal extract via Box–Behnken based design and their antimicrobial and sensing properties publication-title: Green Process Synth doi: 10.1515/gps-2016-0052 – volume: 2 start-page: 104 year: 2009 end-page: 107 ident: CR47 article-title: Synthesis of silver nanoparticles by chemical reduction method and their antibacterial activity publication-title: Int J Chem Biomol Eng – volume: 836 start-page: 012050 year: 2017 end-page: 12054 ident: CR60 article-title: Green synthesis of silver nanoparticles and their characterization by XRD publication-title: J Phys Conf Ser doi: 10.1088/1742-6596/836/1/012050 – volume: 100 start-page: 571 year: 2016 end-page: 581 ident: CR22 article-title: Biotechnological aspects of ZnO nanoparticles: overview on synthesis and its applications publication-title: Appl Microbiol Biotechnol doi: 10.1007/s00253-015-7108-x – volume: 142 start-page: 339 year: 2015 end-page: 343 ident: CR64 article-title: Plant mediated green synthesis and antibacterial activity of silver nanoparticles using Emblica officinalis fruit extract publication-title: Spectrochim Acta A Mol Biomol Spectrosc doi: 10.1016/j.saa.2015.01.062 – volume: 85 start-page: 3553 year: 2022 end-page: 3564 ident: CR42 article-title: Plant-mediated synthesis of silver-doped zinc oxide nanoparticles and evaluation of their antimicrobial activity against bacteria cause tooth decay publication-title: Microsc Res Tech doi: 10.1002/jemt.24207 – volume: 74 start-page: 123 year: 2009 end-page: 126 ident: CR50 article-title: Fungal based synthesis of silver nanoparticles: an effect of temperature on the size of particles publication-title: Colloids Surf B Biointerfaces doi: 10.1016/j.colsurfb.2009.07.002 – volume: 1 start-page: 624 year: 2019 end-page: 631 ident: CR76 article-title: Green synthesis of zinc oxide nanoparticles using leaf extract and its application towards photocatalytic degradation of Coomassie brilliant blue R-250 dye publication-title: SN Appl Sci doi: 10.1007/s42452-019-0610-5 – year: 2023 ident: CR45 article-title: Influence of stacking sequence on mechanical properties of basalt/ramie biodegradable hybrid polymer composites publication-title: Polymers (Basel) doi: 10.3390/polym15040985 – volume: 48 start-page: 3564 year: 2022 end-page: 3577 ident: CR70 article-title: Fabrication of novel SnWO /ZnO using L. leaf extract with enhanced photocatalytic methylene blue degradation under visible light irradiation publication-title: Ceram Int doi: 10.1016/j.ceramint.2021.10.135 – volume: 46 start-page: 2668 year: 2002 end-page: 2670 ident: CR95 article-title: Chemiosmotic mechanism of antimicrobial activity of Ag in Vibrio cholerae publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.46.8.2668-2670.2002 – volume: 11 start-page: 1025 year: 2019 end-page: 1034 ident: CR94 article-title: Green synthesis of silver nanoparticles using juice and study of their biochemical application publication-title: J Pharm Sci Res – year: 2023 ident: CR73 article-title: Phyto-mediated synthesis of silver-doped zinc oxide nanoparticles from leaf extract: optical, morphological, and antibacterial properties publication-title: Biomass Convers Biorefin doi: 10.1007/s13399-023-03907-5 – volume: 141 start-page: 158 year: 2016 end-page: 169 ident: CR12 article-title: Silver nanoparticles synthesized from leaf extract induced DNA damage, apoptosis and autophagy via generation of reactive oxygen species publication-title: Colloids Surf B Biointerfaces doi: 10.1016/j.colsurfb.2016.01.027 – volume: 28 start-page: 394 year: 2015 end-page: 404 ident: CR81 article-title: Effect of pH on crystal size and photoluminescence property of ZnO nanoparticles prepared by chemical precipitation method publication-title: Acta Metall Sin (Engl Lett) doi: 10.1007/s40195-015-0218-8 – volume: 10 start-page: 9055 year: 2020 ident: CR74 article-title: Green route to synthesize zinc oxide nanoparticles using leaf extracts of and and their antibacterial potential publication-title: Sci Rep doi: 10.1038/s41598-020-65949-3 – year: 2017 ident: CR88 article-title: Dose-dependent antimicrobial activity of silver nanoparticles on polycaprolactone fibers against gram-positive and gram-negative bacteria publication-title: J Nanomater doi: 10.1155/2017/4752314 – volume: 9 start-page: 1 year: 2019 end-page: 9 ident: CR14 article-title: Green synthesis of silver nanoparticles using the plant extract of grown in vitro and their antibacterial activity assessment publication-title: J Nanostruct Chem doi: 10.1007/s40097-018-0291-4 – volume: 7 start-page: 102840 year: 2019 end-page: 102879 ident: CR16 article-title: Green synthesis of silver doped nano metal oxides of zinc & copper for antibacterial properties, adsorption, catalytic hydrogenation & photodegradation of aromatics publication-title: J Environ Chem Eng doi: 10.1016/j.jece.2018.102840 – volume: 74 start-page: 328 year: 2009 end-page: 335 ident: CR3 article-title: Biosynthesis, purification and characterization of silver nanoparticles using publication-title: Colloids Surf B Biointerfaces doi: 10.1016/j.colsurfb.2009.07.048 – volume: 47 start-page: 2126 year: 2021 end-page: 2131 ident: CR18 article-title: Green synthesis of silver doped zinc oxide nanoparticles using fresh leaf extract its antioxidant potential publication-title: Mater Today Proc doi: 10.1016/j.matpr.2021.04.627 – volume: 33 start-page: 2823 year: 2020 end-page: 2830 ident: CR54 article-title: Anti-oxidant and hepatoprotective effects of and its phytochemical screening by HPLC and FTIR analysis publication-title: Pak J Pharm Sci doi: 10.36721/PJPS.2020.33.6.SUP.2823-2830.1 – volume: 11 start-page: 238 year: 2020 end-page: 259 ident: CR59 article-title: Microwave-assisted green synthesis and characterization of silver nanoparticles using for the management of fusarium wilt in tomato publication-title: Front Microbiol doi: 10.3389/fmicb.2020.00238 – volume: 14 start-page: 5087 year: 2019 end-page: 5107 ident: CR49 article-title: Green nanotechnology: a review on green synthesis of silver nanoparticles—an ecofriendly approach publication-title: Int J Nanomed doi: 10.2147/IJN.S200254 – year: 2021 ident: CR19 article-title: Environment friendly synthesis copper oxide nanoparticles and its antioxidant, antibacterial activities using Seaweed ( ) extract publication-title: J Mol Struct doi: 10.1016/j.molstruc.2021.130724 – volume: 10 start-page: 1 year: 2020 end-page: 14 ident: CR80 article-title: Facile one-pot green synthesis of Ag–ZnO Nanocomposites using potato peeland their Ag concentration dependent photocatalytic properties publication-title: Sci Rep doi: 10.1038/s41598-020-77426-y – volume: 3 start-page: 25 year: 2014 end-page: 29 ident: CR89 article-title: ScienceDirect Silver-based antibacterial surfaces for drinking water disinfection—an overview publication-title: Curr Opin Chem Eng doi: 10.1016/j.coche.2013.09.004 – volume: 158 start-page: 8 year: 2019 end-page: 14 ident: CR65 article-title: Green synthesis and characterization of silver nanoparticles using Fritillaria flower extract and their antibacterial activity against some human pathogens publication-title: Polyhedron doi: 10.1016/j.poly.2018.10.049 – volume: 53 start-page: 3201 year: 2017 end-page: 3209 ident: CR98 article-title: Green synthesis of silver nanoparticles using green tea leaves: experimental study on the morphological, rheological and antibacterial behaviour publication-title: Heat Mass Trans doi: 10.1007/s00231-017-2065-9 – volume: 145 start-page: 83 year: 2009 end-page: 96 ident: CR28 article-title: Silver nanoparticles: green synthesis and their antimicrobial activities publication-title: Adv Colloid Interface Sci doi: 10.1016/j.cis.2008.09.002 – volume: 46 start-page: 4351 year: 2012 end-page: 4360 ident: CR32 article-title: Occurrence and formation of chloro- and bromo-benzoquinones during drinking water disinfection publication-title: Water Res doi: 10.1016/j.watres.2012.05.032 – volume: 156 start-page: 1 year: 2001 ident: 3925_CR96 publication-title: Microbiol Res doi: 10.1078/0944-5013-00069 – year: 2021 ident: 3925_CR19 publication-title: J Mol Struct doi: 10.1016/j.molstruc.2021.130724 – volume: 3 start-page: 25 year: 2014 ident: 3925_CR89 publication-title: Curr Opin Chem Eng doi: 10.1016/j.coche.2013.09.004 – volume: 7 start-page: 1131 year: 2014 ident: 3925_CR41 publication-title: Arab J Chem doi: 10.1016/j.arabjc.2013.04.007 – volume: 33 start-page: 2823 year: 2020 ident: 3925_CR54 publication-title: Pak J Pharm Sci doi: 10.36721/PJPS.2020.33.6.SUP.2823-2830.1 – volume: 31 start-page: 240 year: 2013 ident: 3925_CR37 publication-title: Trends Biotechnol doi: 10.1016/j.tibtech.2013.01.003 – volume: 2 start-page: 104 year: 2009 ident: 3925_CR47 publication-title: Int J Chem Biomol Eng – volume: 5 start-page: 431 year: 2012 ident: 3925_CR72 publication-title: Arab J Chem doi: 10.1016/j.arabjc.2010.11.011 – year: 2021 ident: 3925_CR56 publication-title: J Evid Based Integr Med doi: 10.1177/2515690X211064585 – volume: 12 start-page: 15359 year: 2022 ident: 3925_CR25 publication-title: Sci Rep doi: 10.1038/s41598-022-19403-1 – volume: 26 start-page: 7577 year: 2015 ident: 3925_CR61 publication-title: J Mater Sci Mater Electron doi: 10.1007/s10854-015-3394-4 – volume: 40 start-page: 7175 year: 2006 ident: 3925_CR31 publication-title: Environ Sci Technol doi: 10.1021/es060353j – volume: 78 start-page: 1109 year: 2017 ident: 3925_CR93 publication-title: Mater Sci Eng C doi: 10.1016/j.msec.2017.03.090 – volume: 10 start-page: 1 year: 2020 ident: 3925_CR80 publication-title: Sci Rep doi: 10.1038/s41598-020-77426-y – volume: 47 start-page: 844 year: 2019 ident: 3925_CR38 publication-title: Artif Cells Nanomed Biotechnol doi: 10.1080/21691401.2019.1577878 – volume: 53 start-page: 3201 year: 2017 ident: 3925_CR98 publication-title: Heat Mass Trans doi: 10.1007/s00231-017-2065-9 – volume: 6 start-page: 147 year: 2017 ident: 3925_CR2 publication-title: Green Process Synth doi: 10.1515/gps-2016-0052 – volume: 46 start-page: 4351 year: 2012 ident: 3925_CR32 publication-title: Water Res doi: 10.1016/j.watres.2012.05.032 – volume: 33 start-page: 104747 year: 2022 ident: 3925_CR30 publication-title: Mater Today Commun doi: 10.1016/j.mtcomm.2022.104747 – volume: 8 start-page: 157 year: 2017 ident: 3925_CR53 publication-title: J Chem Chem Eng – volume: 64 start-page: 678 year: 2010 ident: 3925_CR20 publication-title: Chem Pap doi: 10.2478/s11696-010-0045-3 – volume: 42 start-page: 31 year: 2014 ident: 3925_CR63 publication-title: Mater Sci Eng C doi: 10.1016/j.msec.2014.05.007 – volume: 75 start-page: 1106 year: 2017 ident: 3925_CR11 publication-title: Mater Sci Eng C doi: 10.1016/j.msec.2017.02.131 – volume: 16 start-page: 14 year: 2018 ident: 3925_CR97 publication-title: J Nanobiotechnology doi: 10.1186/s12951-018-0334-5 – volume: 100 start-page: 571 year: 2016 ident: 3925_CR22 publication-title: Appl Microbiol Biotechnol doi: 10.1007/s00253-015-7108-x – volume: 46 start-page: 2668 year: 2002 ident: 3925_CR95 publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.46.8.2668-2670.2002 – volume: 10 start-page: 848 year: 2020 ident: 3925_CR29 publication-title: Bionanoscience doi: 10.1007/s12668-020-00774-6 – volume: 107 start-page: 414 year: 2017 ident: 3925_CR24 publication-title: Process Saf Environ Prot doi: 10.1016/j.psep.2017.03.010 – volume: 9 start-page: 1 year: 2019 ident: 3925_CR14 publication-title: J Nanostruct Chem doi: 10.1007/s40097-018-0291-4 – volume: 260 start-page: 126 year: 2016 ident: 3925_CR17 publication-title: Catal Today doi: 10.1016/j.cattod.2015.06.004 – volume: 14 start-page: 5087 year: 2019 ident: 3925_CR49 publication-title: Int J Nanomed doi: 10.2147/IJN.S200254 – volume: 51 start-page: 2934 year: 2021 ident: 3925_CR82 publication-title: Crit Rev Environ Sci Technol doi: 10.1080/10643389.2020.1806685 – volume: 3 start-page: 138 year: 2010 ident: 3925_CR79 publication-title: Adv Sci Lett doi: 10.1166/asl.2010.1099 – year: 2023 ident: 3925_CR45 publication-title: Polymers (Basel) doi: 10.3390/polym15040985 – volume: 28 start-page: 394 year: 2015 ident: 3925_CR81 publication-title: Acta Metall Sin (Engl Lett) doi: 10.1007/s40195-015-0218-8 – volume: 60 start-page: 818 issue: 7 year: 2012 ident: 3925_CR84 publication-title: Chem Pharm Bull doi: 10.1248/cpb.c110479 – volume: 47 start-page: 2126 year: 2021 ident: 3925_CR18 publication-title: Mater Today Proc doi: 10.1016/j.matpr.2021.04.627 – volume: 8 start-page: 100082 year: 2022 ident: 3925_CR62 publication-title: OpenNano doi: 10.1016/j.onano.2022.100082 – volume: 158 start-page: 8 year: 2019 ident: 3925_CR65 publication-title: Polyhedron doi: 10.1016/j.poly.2018.10.049 – year: 2020 ident: 3925_CR91 publication-title: J Drug Deliv Sci Technol. doi: 10.1016/j.jddst.2019.101465 – volume: 277 start-page: 128349 year: 2020 ident: 3925_CR66 publication-title: Mater Lett doi: 10.1016/j.matlet.2020.128349 – volume: 3 start-page: 116 year: 2015 ident: 3925_CR57 publication-title: Merit Res J Med Med Sci – volume: 275 start-page: 182 issue: 177 year: 2004 ident: 3925_CR87 publication-title: J Colloid Interface Sci doi: 10.1016/j.jcis.2004.02.012 – volume: 240 start-page: 118595 year: 2020 ident: 3925_CR92 publication-title: Spectrochim Acta A Mol Biomol Spectrosc doi: 10.1016/j.saa.2020.118595 – volume: 19 start-page: 355 year: 2021 ident: 3925_CR35 publication-title: Environ Chem Lett doi: 10.1007/s10311-020-01074-x – volume: 47 start-page: 21490 year: 2021 ident: 3925_CR86 publication-title: Ceram Int doi: 10.1016/j.ceramint.2021.04.160 – year: 2022 ident: 3925_CR39 publication-title: J Nanomater doi: 10.1155/2022/3758212 – volume: 38 start-page: 545 year: 2016 ident: 3925_CR46 publication-title: Biotechnol Lett doi: 10.1007/s10529-015-2026-7 – volume: 24 start-page: 473 year: 2016 ident: 3925_CR44 publication-title: Saudi Pharm J doi: 10.1016/j.jsps.2014.11.013 – volume: 142 start-page: 339 year: 2015 ident: 3925_CR64 publication-title: Spectrochim Acta A Mol Biomol Spectrosc doi: 10.1016/j.saa.2015.01.062 – volume: 3 start-page: 495 year: 2013 ident: 3925_CR75 publication-title: Appl Nanosci (Switzerland) doi: 10.1007/s13204-012-0151-3 – volume: 42 start-page: 3066 year: 2008 ident: 3925_CR90 publication-title: Water Res doi: 10.1016/j.watres.2008.02.021 – year: 2023 ident: 3925_CR73 publication-title: Biomass Convers Biorefin doi: 10.1007/s13399-023-03907-5 – volume: 7 start-page: 287 year: 2019 ident: 3925_CR77 publication-title: Front Bioeng Biotechnol doi: 10.3389/fbioe.2019.00287 – volume: 11 start-page: 238 year: 2020 ident: 3925_CR59 publication-title: Front Microbiol doi: 10.3389/fmicb.2020.00238 – volume: 24 start-page: 2210 year: 2019 ident: 3925_CR68 publication-title: Molecules doi: 10.3390/molecules24122210 – volume: 27 start-page: 102457 year: 2021 ident: 3925_CR15 publication-title: Mater Today Commun doi: 10.1016/j.mtcomm.2021.102457 – volume: 48 start-page: 3564 year: 2022 ident: 3925_CR70 publication-title: Ceram Int doi: 10.1016/j.ceramint.2021.10.135 – volume: 61 start-page: 4906 year: 2007 ident: 3925_CR27 publication-title: Mater Lett doi: 10.1016/j.matlet.2007.03.072 – volume: 1 start-page: 624 year: 2019 ident: 3925_CR76 publication-title: SN Appl Sci doi: 10.1007/s42452-019-0610-5 – volume: 74 start-page: 328 year: 2009 ident: 3925_CR3 publication-title: Colloids Surf B Biointerfaces doi: 10.1016/j.colsurfb.2009.07.048 – volume: 836 start-page: 012050 year: 2017 ident: 3925_CR60 publication-title: J Phys Conf Ser doi: 10.1088/1742-6596/836/1/012050 – volume: 124 start-page: 80 year: 2018 ident: 3925_CR23 publication-title: Prog Org Coat doi: 10.1016/j.porgcoat.2018.08.004 – volume: 32 start-page: 79 year: 2009 ident: 3925_CR48 publication-title: Bioprocess Biosyst Eng doi: 10.1007/s00449-008-0224-6 – volume: 2 start-page: 1 year: 2020 ident: 3925_CR10 publication-title: SN Appl Sci doi: 10.1007/s42452-020-2269-3 – volume: 183 start-page: 109821 year: 2021 ident: 3925_CR69 publication-title: Vacuum doi: 10.1016/j.vacuum.2020.109821 – volume: 145 start-page: 83 year: 2009 ident: 3925_CR28 publication-title: Adv Colloid Interface Sci doi: 10.1016/j.cis.2008.09.002 – year: 2017 ident: 3925_CR88 publication-title: J Nanomater doi: 10.1155/2017/4752314 – volume: 7 start-page: 102840 year: 2019 ident: 3925_CR16 publication-title: J Environ Chem Eng doi: 10.1016/j.jece.2018.102840 – year: 2021 ident: 3925_CR7 publication-title: J Nanomater doi: 10.1155/2021/6687290 – volume: 9 start-page: 165 year: 2019 ident: 3925_CR85 publication-title: Catalysts doi: 10.3390/catal9020165 – volume: 1 start-page: 296 year: 2014 ident: 3925_CR55 publication-title: Int J Pharmacogn doi: 10.13040/IJPSR.0975-8232.IJP.1(5).296-00 – volume: 8 start-page: 47 year: 2015 ident: 3925_CR83 publication-title: Front Life Sci doi: 10.1080/21553769.2014.952048 – volume: 04 start-page: 1440003 year: 2014 ident: 3925_CR9 publication-title: Life doi: 10.1142/s1793984414400030 – volume: 74 start-page: 123 year: 2009 ident: 3925_CR50 publication-title: Colloids Surf B Biointerfaces doi: 10.1016/j.colsurfb.2009.07.002 – volume: 10 start-page: 9055 year: 2020 ident: 3925_CR74 publication-title: Sci Rep doi: 10.1038/s41598-020-65949-3 – volume: 16 start-page: 8053 year: 2019 ident: 3925_CR58 publication-title: Int J Environ Sci Technol doi: 10.1007/s13762-018-2175-z – volume: 96 start-page: 391 year: 2019 ident: 3925_CR26 publication-title: Mater Sci Eng C doi: 10.1016/j.msec.2018.10.063 – volume: 5 start-page: 4993 year: 2015 ident: 3925_CR36 publication-title: RSC Adv doi: 10.1039/c4ra12784f – volume: 1264 start-page: 133123 year: 2022 ident: 3925_CR67 publication-title: J Mol Struct doi: 10.1016/j.molstruc.2022.133123 – volume: 7 start-page: 1334 year: 2010 ident: 3925_CR71 publication-title: E-J Chem doi: 10.1155/2010/745120 – volume: 563 start-page: 150113 year: 2021 ident: 3925_CR51 publication-title: Appl Surf Sci doi: 10.1016/j.apsusc.2021.150113 – volume: 10 start-page: 1 year: 2019 ident: 3925_CR1 publication-title: Int J Microbiol doi: 10.1155/2019/8642303 – year: 2019 ident: 3925_CR78 publication-title: J Anim Sci Biotechnol doi: 10.1186/s40104-019-0368-z – volume: 10 start-page: 820 year: 2019 ident: 3925_CR33 publication-title: Front Microbiol doi: 10.3389/fmicb.2019.00820 – ident: 3925_CR13 doi: 10.1039/x0xx00000x – volume: 12 start-page: 1823 year: 2019 ident: 3925_CR4 publication-title: Arab J Chem doi: 10.1016/j.arabjc.2014.12.014 – volume: 85 start-page: 3553 year: 2022 ident: 3925_CR42 publication-title: Microsc Res Tech doi: 10.1002/jemt.24207 – volume: 57 start-page: 205 year: 2023 ident: 3925_CR8 publication-title: High Energy Chem doi: 10.1134/S001814392303013X – volume: 304 start-page: 135125 year: 2022 ident: 3925_CR52 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2022.135125 – volume: 832 start-page: 350 year: 2014 ident: 3925_CR43 publication-title: Adv Mat Res doi: 10.4028/www.scientific.net/AMR.832.350 – volume: 12 start-page: 855 year: 2020 ident: 3925_CR5 publication-title: Cancers (Basel) doi: 10.3390/cancers12040855 – volume: 563 start-page: 370 year: 2020 ident: 3925_CR6 publication-title: J Colloid Interface Sci doi: 10.1016/j.jcis.2019.12.079 – volume: 3 start-page: 655062 year: 2021 ident: 3925_CR34 publication-title: Front Nanotechnol doi: 10.3389/fnano.2021.655062 – volume: 141 start-page: 158 year: 2016 ident: 3925_CR12 publication-title: Colloids Surf B Biointerfaces doi: 10.1016/j.colsurfb.2016.01.027 – volume: 11 start-page: 1025 year: 2019 ident: 3925_CR94 publication-title: J Pharm Sci Res – year: 2016 ident: 3925_CR21 publication-title: Nanoscale Res Lett doi: 10.1186/s11671-016-1750-9 – year: 2023 ident: 3925_CR40 publication-title: Crystals (Basel) doi: 10.3390/cryst13030415 |
SSID | ssj0002872855 ssj0047076 |
Score | 2.4530227 |
Snippet | The quest to synthesize safe, non-hazardous Ag–ZnO nanoomposites (NCs) with improved physical and chemical properties has necessitated green synthesis... The quest to synthesize safe, non-hazardous Ag-ZnO nanoomposites (NCs) with improved physical and chemical properties has necessitated green synthesis... Abstract The quest to synthesize safe, non-hazardous Ag–ZnO nanoomposites (NCs) with improved physical and chemical properties has necessitated green synthesis... |
SourceID | doaj proquest crossref springer |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 142 |
SubjectTerms | Antibacterial activity antibacterial properties Antimicrobial activity Antimicrobial agents Biosynthesis Chemical properties Chemical synthesis Chemistry and Materials Science E coli Escherichia coli Green synthesis Launaea Launaea cornuta leaf extracts Leaves Materials Science Metabolites Microbial growth inhibition Microorganisms Molecular Medicine Nanochemistry Nanocomposites Nanoparticles Nanoscale Science and Technology Nanotechnology Nanotechnology and Microengineering particle size Plant extracts Secondary metabolites Silver Staphylococcus aureus temperature Zinc oxide |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NbtQwELagvcAB8SsWCjISN7Bqx3acnFCLuqoQFISKVHGx7NherdQ6ZbN76K3vwBvyJMxkky1Fag-JosRRbE9m5hvPeIaQt41XUaTEWaqMZEpFxaral6xQmpcJ_UQRlwa-HJWHP9SnE30yLLh1Q1jlKBN7QR3aBtfId8EwELzGiMcP578YVo1C7-pQQuMu2QYRXIHxtb1_cPTt-yiLleF9eTlAKYIZbeS4baYqdzv0QIApXUjGASRoVlxTTX0G_2uw8z9Paa-Apg_JgwE50r01qR-ROzE_Jvf_ySf4hCymrgEup37edhcZoF0372ib6N7sz-Xvn_krzS63GESOkVqxoxj0PqOf3Sq76CjYoXm1dPQ0ukRBZuP-KepyoL0zAa6W87N5n7cJuoH7IbDsxFNyPD04_njIhqIKrAFbaMkkIIZGgdrSvnS-jiJExCDS1SIIL0LDpQTUkipdOhOjSamJcHCvIw-AJZ6Rrdzm-JzQoEXyJmlf1VEFbyrVFFwGzAHHyyKUEyLG6bTNkHAc616c2t7wqEq7JoEFEtieBLaYkHebd87X6TZubb2PVNq0xFTZ_Y12MbMD51noVTRVkMI7p7xOcIJhNCjZuAYRNiE7I43twL-dvfrbJuTN5jFwHrpTXI7tat3GqBq0_c1tJCgUjXY_zMb78f-5-szNQ3txe69ekntY9x43RQqzQ7aWi1V8Beho6V8PLPAXUkUL9g priority: 102 providerName: ProQuest – databaseName: SpringerLINK dbid: C24 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR1Ni9QwNMh68SIuKo7uSgRvWkzapEmP6-KwiB-XFRYvIZ_DyJou087Bm__Bf-gv8b1MO7LiCh5aSvtCmpe8r7yPEPLcOxF5SqxKWjWVEFFUunNtVQvJ2oR-oohbA-8_tGefxNsLeTElhQ1ztPvskiycupC1bl8N6DEA07duKgZCXVbAeG9LsN1xXZ9OOQ5fynaRqrWUc4bMX5tek0KlWP81DfMPp2iRNct75O6kJNKT3aweklsx3yebpfVAwtSt--FbBr1tWA-0T_Rk9fP7j8_5I8029xghjmFYcaAY0b6i7-w222gpGJl5O1p6GW2iwJAxOYraHGjxFMDTuP66LkWZoGNMdsAzJR6Q8-Wb89OzajoxofJg6IxVA-qAFyCTpGut6yIPERWMxnY8cMeDZ00DKknSsrUqRpWSj3AxJyMLoCg8JAe5z_ERoUHy5FSSTndRBKe08DVrAhZ4Y20d2gXhMwKNn6qJ46EWl6ZYFbo1O6QbQLopSDf1grzYt7na1dL4J_RrnJc9JNbBLi_6zcpMZGXgr6LSoeHOWuFkghsMwyPbYhL404IczbNqJuIcDNiYnHUYPLsgz_afgazQV2Jz7Lc7GCU6EOU3wzQgLSQa9YCNl_OK-d3NzUN7_H_gT8gdPOQeMyC5OiIH42Ybj0EVGt3TsvJ_Ad1mAYs priority: 102 providerName: Springer Nature |
Title | Facile biosynthesis of Ag–ZnO nanocomposites using Launaea cornuta leaf extract and their antimicrobial activity |
URI | https://link.springer.com/article/10.1186/s11671-023-03925-2 https://www.proquest.com/docview/2891092400 https://www.proquest.com/docview/2891749678 https://www.proquest.com/docview/3153574716 https://doaj.org/article/4c2e78d31baa4b5fa4b223c730105040 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrR3LbtQw0IJygQPiKRbKykjcIKqd2I5zbFfdVggKQkVacYns2K62Kg5qsgdu_AN_yJcw42SXLVLhwiFWHo7izMMz4xnPEPKyscLzEFgWdFlkQniR6cqqLBeSqYB-Io9LA-9O1PEn8WYhF1ulvjAmbEgPPABuTzS5L7UruDVGWBmgAYnWIGEyCRSIsy_IvC1j6jwtGZW5lnK9S0arvQ4dDmA550XGQCeQWX5FEqWE_Ve0zD8co0nezO-Ru6OiSPeHAd4nN3x8QO5spQ98SC7npgGmpnbZdt8iaHLdsqNtoPtnP7__-Bzf02hiizHjGJjlO4ox7mf0rVlF4w0FszOuekMvvAkUpmjcLkVNdDT5DuCsX35ZpjRNMAzc_oBVJh6R0_nh6ew4G2soZA2YPn1WgILQCJBS0ipjK8-dR5WjMBV33HLXsKIAJSVoqUzpfRlC4-FgVnrmANCPyU5so39CqJM82DJIqysvnC01YIYVDlO-MZU7NSF8Dc66GfOLY5mLizrZGVrVAwpqQEGdUFDnE_Jq887XIbvGX3sfIJY2PTEzdroB9FKP9FL_i14mZHeN43pk164Gq5OzCsNpJ-TF5jEwGnpPTPTtauhTigqE-_V9CpAfEs18gMbrNf38_sz1v_b0f_zaM3I7R_rGIMVyl-z0lyv_HFSm3k7JTT0_mpJbB4cnHz7C1SwX2KrZNPENtEcLPk1rXb8A6nYXeQ |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELaqcgAOiF-xpYCR4ARWk9iOkwNC5WfZ0m25LFLFxbJje7VSccomK9Qb78Bz8FI8CTPZzZYitbceNlrtOorjmflmxjOeIeR5ZYVPQ0hYKBRnQnjBitLmLBMyyQPGiTxuDRwc5qMv4tORPNogv_uzMJhW2WNiB9SurnCPfAccgzQpMePxzcl3hl2jMLrat9BYssW-P_0BLlvzeu890PdFlg0_TN6N2KqrAKvAGWgZB5VZCcBtaXNjS586j0qYmzJ1qU1dlXAOajsUMjfKexVC5eGTWOkTl2GdA0D8a4LzEgWqGH7sgV-opOtlByZRypRUvD-jU-Q7DYY7wG_POEvAIpEsO6cHu3YB52zc_8KynbYb3ia3VmYq3V3y1R2y4eNdcvOf4oX3yHxoKoAUamd1cxrBjmxmDa0D3Z3--fnra_xMo4k1ZqxjWphvKGbYT-nYLKLxhoLTGxetocfeBAoKAg9rURMd7SIX8K2dfZt1RaJgGnj4Antc3CeTq1jrB2Qz1tE_JNTJNFgVpC1KL5xVhaiyhDssOJfkmcsHJO2XU1er6ubYZONYd15OkeslCTSQQHck0NmAvFzfc7Ks7XHp6LdIpfVIrMvd_VDPp3ol5hpm5VXheGqNEVYGuMBrVAijiQS8HJDtnsZ6BRaNPmPtAXm2_hvEHGM3Jvp6sRyjRAmmxcVjOGgviZsMsBqvev45e8zFr7Z1-ayekuujycFYj_cO9x-RGxlyMSZCqm2y2c4X_jGYZa190gkDJfqKhe8v7b1HkA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3batRAdChbEH0Qr7hadQR90mEnyUwmeRBpbZfW1rVIheLLMJPMLAt1Uje7SN_8B7_G3_FLPCeXrRXatz4khGRCJnPuc26EvCyscJH3nPlMJUwIJ1iW25TFQvLUo5_I4dbAx0m6-0V8OJbHa-R3nwuDYZU9T2wYdVkVuEc-AsMg4jlGPI58FxZxuD1-d_qdYQcp9LT27TRaFNl3Zz_AfKvf7m0DrF_F8Xjn6P0u6zoMsAIMgwVLQHwWAni4tKmxuYtKhwI5MXlURjYqC54kIMJ9JlOjnFPeFw4ObqXjZYw1D4D7ryswiviArG_tTA4_92JAKN50tgMFKWJKqqTP2MnSUY3OD7Di44Rx0E8kiy9IxaZ5wAWN9z8nbSP7xnfI7U5ppZstlt0lay7cI7f-KWV4n8zHpgAGQ-2sqs8CaJX1rKaVp5vTPz9_fQ2faDChwvh1DBJzNcV4-yk9MMtgnKFgAoflwtATZzyFNcfULWpCSRs_BlwtZt9mTckomAamYmDHiwfk6DpW-yEZhCq4R4SWMvJWeWmz3InSqkwUMU9KLD_H07hMhyTql1MXXa1zbLlxohubJ0t1CwININANCHQ8JK9X75y2lT6uHL2FUFqNxCrdzY1qPtUd0WuYlVNZmUTWGGGlhxP8RoFMlUvgnkOy0cNYd6yj1ueIPiQvVo-B6NGTY4Krlu0YJXJQNC4fk4Ask7jlAKvxpsef889c_muPr57Vc3IDCE8f7E32n5CbMSIxRkWqDTJYzJfuKehoC_usowZK9DXT31-9IE0i |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Facile+biosynthesis+of+Ag%E2%80%93ZnO+nanocomposites+using+Launaea+cornuta+leaf+extract+and+their+antimicrobial+activity&rft.jtitle=Discover+nano&rft.au=Elizabeth+Makauki&rft.au=Stanslaus+George+Mtavangu&rft.au=Onita+D.+Basu&rft.au=Mwemezi+Rwiza&rft.date=2023-11-17&rft.pub=Springer&rft.eissn=2731-9229&rft.volume=18&rft.issue=1&rft.spage=1&rft.epage=16&rft_id=info:doi/10.1186%2Fs11671-023-03925-2&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_4c2e78d31baa4b5fa4b223c730105040 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2731-9229&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2731-9229&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2731-9229&client=summon |