Tunable stacking fault energies by tailoring local chemical order in CrCoNi medium-entropy alloys
High-entropy alloys (HEAs) are an intriguing new class of metallic materials due to their unique mechanical behavior. Achieving a detailed understanding of structure–property relationships in these materials has been challenged by the compositional disorder that underlies their unique mechanical beh...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 115; no. 36; pp. 8919 - 8924 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
04.09.2018
National Academy of Sciences, Washington, DC (United States) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | High-entropy alloys (HEAs) are an intriguing new class of metallic materials due to their unique mechanical behavior. Achieving a detailed understanding of structure–property relationships in these materials has been challenged by the compositional disorder that underlies their unique mechanical behavior. Accordingly, in this work, we employ first-principles calculations to investigate the nature of local chemical order and establish its relationship to the intrinsic and extrinsic stacking fault energy (SFE) in CrCoNi medium-entropy solid-solution alloys, whose combination of strength, ductility, and toughness properties approaches the best on record. We find that the average intrinsic and extrinsic SFE are both highly tunable, with values ranging from −43 to 30 mJ·m−2 and from −28 to 66 mJ·m−2, respectively, as the degree of local chemical order increases. The state of local ordering also strongly correlates with the energy difference between the face-centered cubic (fcc) and hexagonal close-packed (hcp) phases, which affects the occurrence of transformation-induced plasticity. This theoretical study demonstrates that chemical short-range order is thermodynamically favored in HEAs and can be tuned to affect the mechanical behavior of these alloys. It thus addresses the pressing need to establish robust processing–structure–property relationships to guide the science-based design of new HEAs with targeted mechanical behavior. |
---|---|
AbstractList | Our work has revealed the nature of local chemical order and has established its significant relationship to the intrinsic and extrinsic stacking fault energy in CrCoNi medium-entropy solid-solution alloys, whose combination of strength, ductility, and toughness properties approaches the best on record. These findings highlight the general need to discern how critical the role of local chemical ordering is in dictating the mechanical of properties of medium- and high-entropy alloys. Our results highlight the possibility of tuning order in disorder to ultimately achieve the science-based design and optimization of new high-entropy alloy systems with specifically desired combinations of macroscale mechanical properties.
High-entropy alloys (HEAs) are an intriguing new class of metallic materials due to their unique mechanical behavior. Achieving a detailed understanding of structure–property relationships in these materials has been challenged by the compositional disorder that underlies their unique mechanical behavior. Accordingly, in this work, we employ first-principles calculations to investigate the nature of local chemical order and establish its relationship to the intrinsic and extrinsic stacking fault energy (SFE) in CrCoNi medium-entropy solid-solution alloys, whose combination of strength, ductility, and toughness properties approaches the best on record. We find that the average intrinsic and extrinsic SFE are both highly tunable, with values ranging from −43 to 30 mJ⋅m
−2
and from −28 to 66 mJ⋅m
−2
, respectively, as the degree of local chemical order increases. The state of local ordering also strongly correlates with the energy difference between the face-centered cubic (
fcc
) and hexagonal close-packed (
hcp
) phases, which affects the occurrence of transformation-induced plasticity. This theoretical study demonstrates that chemical short-range order is thermodynamically favored in HEAs and can be tuned to affect the mechanical behavior of these alloys. It thus addresses the pressing need to establish robust processing–structure–property relationships to guide the science-based design of new HEAs with targeted mechanical behavior. High-entropy alloys (HEAs) are an intriguing new class of metallic materials due to their unique mechanical behavior. Achieving a detailed understanding of structure-property relationships in these materials has been challenged by the compositional disorder that underlies their unique mechanical behavior. Accordingly, in this work, we employ first-principles calculations to investigate the nature of local chemical order and establish its relationship to the intrinsic and extrinsic stacking fault energy (SFE) in CrCoNi medium-entropy solid-solution alloys, whose combination of strength, ductility, and toughness properties approaches the best on record. We find that the average intrinsic and extrinsic SFE are both highly tunable, with values ranging from -43 to 30 mJ⋅m and from -28 to 66 mJ⋅m , respectively, as the degree of local chemical order increases. The state of local ordering also strongly correlates with the energy difference between the face-centered cubic ( ) and hexagonal close-packed ( ) phases, which affects the occurrence of transformation-induced plasticity. This theoretical study demonstrates that chemical short-range order is thermodynamically favored in HEAs and can be tuned to affect the mechanical behavior of these alloys. It thus addresses the pressing need to establish robust processing-structure-property relationships to guide the science-based design of new HEAs with targeted mechanical behavior. High-entropy alloys (HEAs) are an intriguing new class of metallic materials due to their unique mechanical behavior. Achieving a detailed understanding of structure–property relationships in these materials has been challenged by the compositional disorder that underlies their unique mechanical behavior. Accordingly, in this work, we employ first-principles calculations to investigate the nature of local chemical order and establish its relationship to the intrinsic and extrinsic stacking fault energy (SFE) in CrCoNi medium-entropy solid-solution alloys, whose combination of strength, ductility, and toughness properties approaches the best on record. We find that the average intrinsic and extrinsic SFE are both highly tunable, with values ranging from −43 to 30 mJ⋅m−2 and from −28 to 66 mJ⋅m−2, respectively, as the degree of local chemical order increases. The state of local ordering also strongly correlates with the energy difference between the face-centered cubic (fcc) and hexagonal close-packed (hcp) phases, which affects the occurrence of transformation-induced plasticity. This theoretical study demonstrates that chemical short-range order is thermodynamically favored in HEAs and can be tuned to affect the mechanical behavior of these alloys. It thus addresses the pressing need to establish robust processing–structure–property relationships to guide the science-based design of new HEAs with targeted mechanical behavior. High-entropy alloys (HEAs) are an intriguing new class of metallic materials due to their unique mechanical behavior. Achieving a detailed understanding of structure–property relationships in these materials has been challenged by the compositional disorder that underlies their unique mechanical behavior. Accordingly, in this work, we employ first-principles calculations to investigate the nature of local chemical order and establish its relationship to the intrinsic and extrinsic stacking fault energy (SFE) in CrCoNi medium-entropy solid-solution alloys, whose combination of strength, ductility, and toughness properties approaches the best on record. We find that the average intrinsic and extrinsic SFE are both highly tunable, with values ranging from −43 to 30 mJ·m−2 and from −28 to 66 mJ·m−2, respectively, as the degree of local chemical order increases. The state of local ordering also strongly correlates with the energy difference between the face-centered cubic (fcc) and hexagonal close-packed (hcp) phases, which affects the occurrence of transformation-induced plasticity. This theoretical study demonstrates that chemical short-range order is thermodynamically favored in HEAs and can be tuned to affect the mechanical behavior of these alloys. It thus addresses the pressing need to establish robust processing–structure–property relationships to guide the science-based design of new HEAs with targeted mechanical behavior. High-entropy alloys (HEAs) are an intriguing new class of metallic materials due to their unique mechanical behavior. Achieving a detailed understanding of structure–property relationships in these materials has been challenged by the compositional disorder that underlies their unique mechanical behavior. Accordingly, in this work, we employ first-principles calculations to investigate the nature of local chemical order and establish its relationship to the intrinsic and extrinsic stacking fault energy (SFE) in CrCoNi medium-entropy solid-solution alloys, whose combination of strength, ductility, and toughness properties approaches the best on record. We find that the average intrinsic and extrinsic SFE are both highly tunable, with values ranging from –43 to 30 mJ•m–2and from –28 to 66 mJ•m–2, respectively, as the degree of local chemical order increases. The state of local ordering also strongly correlates with the energy difference between the face-centered cubic (fcc) and hexagonal close-packed (hcp) phases, which affects the occurrence of transformation-induced plasticity. Here, this theoretical study demonstrates that chemical short-range order is thermodynamically favored in HEAs and can be tuned to affect the mechanical behavior of these alloys. It thus addresses the pressing need to establish robust processing–structure–property relationships to guide the science-based design of new HEAs with targeted mechanical behavior. High-entropy alloys (HEAs) are an intriguing new class of metallic materials due to their unique mechanical behavior. Achieving a detailed understanding of structure-property relationships in these materials has been challenged by the compositional disorder that underlies their unique mechanical behavior. Accordingly, in this work, we employ first-principles calculations to investigate the nature of local chemical order and establish its relationship to the intrinsic and extrinsic stacking fault energy (SFE) in CrCoNi medium-entropy solid-solution alloys, whose combination of strength, ductility, and toughness properties approaches the best on record. We find that the average intrinsic and extrinsic SFE are both highly tunable, with values ranging from -43 to 30 mJ⋅m-2 and from -28 to 66 mJ⋅m-2, respectively, as the degree of local chemical order increases. The state of local ordering also strongly correlates with the energy difference between the face-centered cubic (fcc) and hexagonal close-packed (hcp) phases, which affects the occurrence of transformation-induced plasticity. This theoretical study demonstrates that chemical short-range order is thermodynamically favored in HEAs and can be tuned to affect the mechanical behavior of these alloys. It thus addresses the pressing need to establish robust processing-structure-property relationships to guide the science-based design of new HEAs with targeted mechanical behavior.High-entropy alloys (HEAs) are an intriguing new class of metallic materials due to their unique mechanical behavior. Achieving a detailed understanding of structure-property relationships in these materials has been challenged by the compositional disorder that underlies their unique mechanical behavior. Accordingly, in this work, we employ first-principles calculations to investigate the nature of local chemical order and establish its relationship to the intrinsic and extrinsic stacking fault energy (SFE) in CrCoNi medium-entropy solid-solution alloys, whose combination of strength, ductility, and toughness properties approaches the best on record. We find that the average intrinsic and extrinsic SFE are both highly tunable, with values ranging from -43 to 30 mJ⋅m-2 and from -28 to 66 mJ⋅m-2, respectively, as the degree of local chemical order increases. The state of local ordering also strongly correlates with the energy difference between the face-centered cubic (fcc) and hexagonal close-packed (hcp) phases, which affects the occurrence of transformation-induced plasticity. This theoretical study demonstrates that chemical short-range order is thermodynamically favored in HEAs and can be tuned to affect the mechanical behavior of these alloys. It thus addresses the pressing need to establish robust processing-structure-property relationships to guide the science-based design of new HEAs with targeted mechanical behavior. |
Author | Ritchie, Robert O. Yu, Qin Ding, Jun Asta, Mark |
Author_xml | – sequence: 1 givenname: Jun surname: Ding fullname: Ding, Jun organization: Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 – sequence: 2 givenname: Qin surname: Yu fullname: Yu, Qin organization: Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 – sequence: 3 givenname: Mark surname: Asta fullname: Asta, Mark organization: Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 – sequence: 4 givenname: Robert O. surname: Ritchie fullname: Ritchie, Robert O. organization: Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30127034$$D View this record in MEDLINE/PubMed https://www.osti.gov/servlets/purl/1543914$$D View this record in Osti.gov |
BookMark | eNp9UsFu1DAQjVAR3RbOnEARvXBJO2M7TnJBQisKSBVcytmadZxdL157sR2k_XsSbVmgB062NO-9eTPzLoozH7wpipcI1wgNv9l7StfYQislINZPigVCh5UUHZwVCwDWVK1g4ry4SGkLAF3dwrPinAOyBrhYFHQ_elo5U6ZM-rv163Kg0eXSeBPX1qRydSgzWRfiXHNBkyv1xuzs_AmxN7G0vlzGZfhiy53p7birjM8x7A8lORcO6XnxdCCXzIuH97L4dvvhfvmpuvv68fPy_V2lRVfnirMWCEjwoSEJjK9qwXtOHWsFQUPQyx611qu676BtmppoQDHIBgSCNoT8snh31N2Pq8mInl2QU_todxQPKpBV_1a83ah1-KkkchAgJ4E3R4GQslVJ22z0Rgfvjc4KJzsdign09qFLDD9Gk7La2aSNc-RNGJNi0_qZQNnN0KtH0G0Yo592oBgiCInI5q6v_7Z98vv7RBPg5gjQMaQUzXCCIKg5BGoOgfoTgolRP2JMs1C2YZ7buv_wXh1525RDPLVhsubIJsIva0m_1A |
CitedBy_id | crossref_primary_10_1016_j_jmrt_2023_03_175 crossref_primary_10_1016_j_jnucmat_2024_155186 crossref_primary_10_1016_j_rinma_2023_100364 crossref_primary_10_1016_j_scriptamat_2022_114950 crossref_primary_10_1016_j_intermet_2024_108560 crossref_primary_10_1016_j_jallcom_2022_168521 crossref_primary_10_1016_j_jmst_2023_10_025 crossref_primary_10_1016_j_actamat_2020_05_003 crossref_primary_10_1063_1_5135324 crossref_primary_10_1016_j_actamat_2022_118541 crossref_primary_10_1016_j_actamat_2022_118662 crossref_primary_10_1016_j_cpc_2024_109265 crossref_primary_10_1016_j_physb_2022_414447 crossref_primary_10_1126_sciadv_abq7433 crossref_primary_10_1016_j_actamat_2024_120199 crossref_primary_10_1016_j_mtphys_2022_100799 crossref_primary_10_1038_s41467_020_16083_1 crossref_primary_10_1016_j_msea_2020_139241 crossref_primary_10_1080_21663831_2020_1741469 crossref_primary_10_1007_s10853_021_06314_1 crossref_primary_10_1016_j_pmatsci_2024_101252 crossref_primary_10_1016_j_jnucmat_2022_153573 crossref_primary_10_1016_j_actamat_2024_120190 crossref_primary_10_1017_S1431927620016396 crossref_primary_10_1063_5_0069417 crossref_primary_10_1073_pnas_2020540118 crossref_primary_10_1016_j_jallcom_2019_06_318 crossref_primary_10_1016_j_actamat_2022_118314 crossref_primary_10_1016_j_intermet_2025_108737 crossref_primary_10_1016_j_scriptamat_2019_06_019 crossref_primary_10_1016_j_scriptamat_2024_116111 crossref_primary_10_1016_j_msea_2023_145532 crossref_primary_10_1016_j_commatsci_2024_113587 crossref_primary_10_1016_j_jallcom_2022_167418 crossref_primary_10_1016_j_actamat_2024_120088 crossref_primary_10_1038_s41467_022_34335_0 crossref_primary_10_1016_j_ijmecsci_2025_109979 crossref_primary_10_1016_j_ijrmhm_2022_105942 crossref_primary_10_1080_27660400_2022_2153632 crossref_primary_10_1016_j_ijplas_2024_104155 crossref_primary_10_1016_j_mtcomm_2022_103141 crossref_primary_10_1016_j_actamat_2023_118967 crossref_primary_10_1016_j_mtla_2020_100628 crossref_primary_10_1016_j_scriptamat_2020_02_021 crossref_primary_10_1063_5_0206773 crossref_primary_10_1007_s11665_021_06092_6 crossref_primary_10_1021_acs_chemrev_2c00468 crossref_primary_10_1103_PhysRevMaterials_8_033607 crossref_primary_10_1016_j_msea_2020_140251 crossref_primary_10_1016_j_jmst_2022_07_031 crossref_primary_10_1016_j_jallcom_2024_174550 crossref_primary_10_2139_ssrn_3966229 crossref_primary_10_1038_s41524_020_0339_0 crossref_primary_10_1016_j_jmst_2024_03_027 crossref_primary_10_1016_j_actamat_2021_117380 crossref_primary_10_1016_j_mtcomm_2020_101336 crossref_primary_10_1016_j_jmst_2023_01_014 crossref_primary_10_1016_j_pmatsci_2023_101090 crossref_primary_10_1016_j_mtsust_2023_100639 crossref_primary_10_1016_j_jmst_2020_04_062 crossref_primary_10_1063_5_0067268 crossref_primary_10_1016_j_actamat_2022_118537 crossref_primary_10_1016_j_jmrt_2023_04_074 crossref_primary_10_1016_j_matt_2023_09_010 crossref_primary_10_1016_j_actamat_2023_118712 crossref_primary_10_1016_j_matchar_2023_113546 crossref_primary_10_1016_j_jallcom_2024_175751 crossref_primary_10_1016_j_mechmat_2023_104783 crossref_primary_10_1016_j_actamat_2021_117140 crossref_primary_10_1016_j_scriptamat_2024_116535 crossref_primary_10_1002_adem_202300291 crossref_primary_10_1016_j_msea_2024_146829 crossref_primary_10_1016_j_jallcom_2021_161412 crossref_primary_10_1016_j_mtcomm_2022_105306 crossref_primary_10_1016_j_taml_2021_100310 crossref_primary_10_1073_pnas_2316912121 crossref_primary_10_1016_j_actamat_2020_05_042 crossref_primary_10_1039_D2CS01030E crossref_primary_10_1016_j_fmre_2022_05_024 crossref_primary_10_1016_j_ijplas_2024_104059 crossref_primary_10_1063_5_0128657 crossref_primary_10_1007_s40843_023_2584_2 crossref_primary_10_1016_j_jallcom_2024_175421 crossref_primary_10_1016_j_pmatsci_2021_100777 crossref_primary_10_1016_j_jmst_2021_05_045 crossref_primary_10_1016_j_actamat_2023_118982 crossref_primary_10_1016_j_jallcom_2021_159215 crossref_primary_10_1016_j_matt_2023_03_034 crossref_primary_10_1016_j_scriptamat_2021_114465 crossref_primary_10_1103_PhysRevE_104_025310 crossref_primary_10_1016_j_scriptamat_2020_09_039 crossref_primary_10_1016_j_jnucmat_2023_154724 crossref_primary_10_1016_j_pmatsci_2025_101475 crossref_primary_10_1103_PhysRevLett_132_116101 crossref_primary_10_1103_PhysRevMaterials_3_113603 crossref_primary_10_1016_j_corsci_2020_108510 crossref_primary_10_1016_j_ijplas_2024_104164 crossref_primary_10_1016_j_commatsci_2022_111764 crossref_primary_10_1016_j_actamat_2021_117089 crossref_primary_10_1016_j_commatsci_2022_111763 crossref_primary_10_1016_j_jmst_2021_05_053 crossref_primary_10_3390_met14020226 crossref_primary_10_3390_met10020194 crossref_primary_10_1016_j_jmst_2022_07_065 crossref_primary_10_1016_j_intermet_2021_107444 crossref_primary_10_1016_j_jnoncrysol_2022_121695 crossref_primary_10_1063_5_0057888 crossref_primary_10_1038_s41467_022_32134_1 crossref_primary_10_1016_j_actamat_2025_120887 crossref_primary_10_1557_s43577_022_00285_7 crossref_primary_10_1016_j_jnucmat_2021_153140 crossref_primary_10_3389_fmats_2022_1006726 crossref_primary_10_1007_s11837_021_04871_z crossref_primary_10_1016_j_scriptamat_2021_114136 crossref_primary_10_1016_j_matdes_2024_112724 crossref_primary_10_1016_j_jmst_2022_02_052 crossref_primary_10_1126_sciadv_aax4002 crossref_primary_10_3389_fmats_2021_673574 crossref_primary_10_1016_j_jmst_2020_12_017 crossref_primary_10_1080_14686996_2022_2080512 crossref_primary_10_1126_science_adn2428 crossref_primary_10_1016_j_intermet_2024_108505 crossref_primary_10_1038_s41524_024_01322_6 crossref_primary_10_1016_j_ijplas_2024_104079 crossref_primary_10_1016_j_jnucmat_2023_154706 crossref_primary_10_1016_j_jnucmat_2023_154827 crossref_primary_10_1016_j_matdes_2024_112840 crossref_primary_10_1038_s41524_020_00472_7 crossref_primary_10_1073_pnas_2322962121 crossref_primary_10_2139_ssrn_4128810 crossref_primary_10_1016_j_jmrt_2022_01_118 crossref_primary_10_1103_PhysRevMaterials_7_013801 crossref_primary_10_1016_j_actamat_2025_120755 crossref_primary_10_1016_j_scriptamat_2021_114364 crossref_primary_10_1016_j_msea_2023_145309 crossref_primary_10_1016_j_scriptamat_2024_116400 crossref_primary_10_3390_met10081072 crossref_primary_10_1016_j_scriptamat_2021_114126 crossref_primary_10_1016_j_scriptamat_2022_114547 crossref_primary_10_1038_s41467_021_23860_z crossref_primary_10_1063_5_0223074 crossref_primary_10_1103_PhysRevMaterials_4_113802 crossref_primary_10_1063_5_0082835 crossref_primary_10_1039_D4NR01577K crossref_primary_10_3389_fmats_2021_767795 crossref_primary_10_1016_j_ijmecsci_2022_107931 crossref_primary_10_1016_j_mtchem_2024_102435 crossref_primary_10_1016_j_actamat_2020_04_034 crossref_primary_10_1063_5_0138379 crossref_primary_10_1103_PhysRevLett_127_115704 crossref_primary_10_1038_s41467_022_30018_y crossref_primary_10_1016_j_commatsci_2019_109366 crossref_primary_10_1557_s43577_023_00575_8 crossref_primary_10_1016_j_jallcom_2020_157597 crossref_primary_10_1016_j_ijplas_2022_103443 crossref_primary_10_1016_j_ijplas_2022_103442 crossref_primary_10_1016_j_ceramint_2024_11_322 crossref_primary_10_1039_D3NR05251F crossref_primary_10_1016_j_scriptamat_2023_115373 crossref_primary_10_1016_j_jmrt_2022_11_057 crossref_primary_10_1016_j_matdes_2022_111572 crossref_primary_10_1016_j_actamat_2021_117571 crossref_primary_10_1016_j_actamat_2023_119185 crossref_primary_10_1016_j_jallcom_2025_178461 crossref_primary_10_1016_j_ijplas_2023_103859 crossref_primary_10_1016_j_ijplas_2023_103619 crossref_primary_10_1016_j_scriptamat_2021_114269 crossref_primary_10_1088_1361_651X_ad04f3 crossref_primary_10_1016_j_jmst_2022_02_041 crossref_primary_10_1016_j_jallcom_2023_172002 crossref_primary_10_1016_j_actamat_2022_117621 crossref_primary_10_1016_j_jmps_2024_105639 crossref_primary_10_1016_j_msea_2020_140501 crossref_primary_10_2139_ssrn_4134069 crossref_primary_10_1016_j_ijsolstr_2024_113175 crossref_primary_10_1016_j_jallcom_2019_06_277 crossref_primary_10_1016_j_ijplas_2023_103730 crossref_primary_10_1016_j_intermet_2020_106775 crossref_primary_10_1073_pnas_1919136117 crossref_primary_10_1360_TB_2024_0436 crossref_primary_10_1016_j_jmst_2024_05_020 crossref_primary_10_1016_j_jallcom_2021_163059 crossref_primary_10_1016_j_scriptamat_2023_115463 crossref_primary_10_1038_s41524_022_00842_3 crossref_primary_10_1016_j_jallcom_2021_163171 crossref_primary_10_1016_j_ijplas_2020_102819 crossref_primary_10_1016_j_jnucmat_2023_154633 crossref_primary_10_1103_PhysRevMaterials_8_043805 crossref_primary_10_1063_5_0025310 crossref_primary_10_1063_5_0137187 crossref_primary_10_1016_j_msea_2019_138403 crossref_primary_10_1080_21663831_2024_2426692 crossref_primary_10_1016_j_mattod_2023_12_006 crossref_primary_10_1016_j_actamat_2021_117314 crossref_primary_10_1103_PhysRevE_108_035003 crossref_primary_10_1016_j_actamat_2019_09_050 crossref_primary_10_1016_j_intermet_2025_108665 crossref_primary_10_1016_j_intermet_2024_108386 crossref_primary_10_1103_PhysRevMaterials_7_033606 crossref_primary_10_1016_j_actamat_2020_04_052 crossref_primary_10_1016_j_intermet_2023_108103 crossref_primary_10_1063_5_0102088 crossref_primary_10_2320_matertrans_MT_H2024004 crossref_primary_10_1038_s41467_019_13311_1 crossref_primary_10_1016_j_matchar_2019_02_034 crossref_primary_10_1016_j_intermet_2019_106553 crossref_primary_10_1016_j_matchemphys_2023_127783 crossref_primary_10_1007_s11837_022_05477_9 crossref_primary_10_1016_j_jmst_2023_12_024 crossref_primary_10_1063_5_0130784 crossref_primary_10_3390_met14101197 crossref_primary_10_1126_science_abp8070 crossref_primary_10_1016_j_actamat_2022_117847 crossref_primary_10_1016_j_commatsci_2020_110135 crossref_primary_10_1098_rsta_2020_0437 crossref_primary_10_1103_PhysRevMaterials_8_053602 crossref_primary_10_1016_j_ijplas_2023_103832 crossref_primary_10_1038_s41524_020_0348_z crossref_primary_10_1103_PhysRevB_103_104107 crossref_primary_10_1103_PhysRevMaterials_7_L111601 crossref_primary_10_1016_j_commatsci_2023_112010 crossref_primary_10_1016_j_jmst_2023_05_072 crossref_primary_10_3390_e20090655 crossref_primary_10_1016_j_actamat_2020_10_066 crossref_primary_10_1016_j_actamat_2021_117490 crossref_primary_10_2320_matertrans_MT_MK2019007 crossref_primary_10_2139_ssrn_4191166 crossref_primary_10_1007_s11661_020_05755_8 crossref_primary_10_1002_ange_202017076 crossref_primary_10_1016_j_msea_2020_139854 crossref_primary_10_1557_s43577_023_00555_y crossref_primary_10_1016_j_msea_2019_138107 crossref_primary_10_1063_5_0069108 crossref_primary_10_1557_s43577_022_00306_5 crossref_primary_10_1002_sus2_261 crossref_primary_10_1038_s41524_020_00377_5 crossref_primary_10_1039_D0RA00518E crossref_primary_10_1016_j_commatsci_2021_110723 crossref_primary_10_1126_sciadv_adq6398 crossref_primary_10_1007_s40192_022_00269_0 crossref_primary_10_1016_j_ijplas_2023_103768 crossref_primary_10_1016_j_actamat_2021_117135 crossref_primary_10_1038_s41467_023_42894_z crossref_primary_10_1103_PhysRevMaterials_7_L110401 crossref_primary_10_3390_met12111966 crossref_primary_10_1016_j_ijplas_2023_103643 crossref_primary_10_1016_j_cossms_2024_101177 crossref_primary_10_1126_sciadv_aax2799 crossref_primary_10_3390_ma16031149 crossref_primary_10_1038_s41467_021_25134_0 crossref_primary_10_1016_j_jmrt_2022_06_074 crossref_primary_10_1007_s11837_024_06753_6 crossref_primary_10_1016_j_commatsci_2021_110618 crossref_primary_10_1007_s11669_021_00899_5 crossref_primary_10_1016_j_ijplas_2023_103770 crossref_primary_10_1016_j_eml_2023_102107 crossref_primary_10_1038_s41586_020_2275_z crossref_primary_10_1016_j_jmst_2022_10_070 crossref_primary_10_1016_j_mtcomm_2024_108302 crossref_primary_10_1016_j_intermet_2023_108132 crossref_primary_10_1016_j_commatsci_2023_112191 crossref_primary_10_1016_j_jmrt_2025_02_187 crossref_primary_10_1016_j_actamat_2021_117487 crossref_primary_10_1007_s11669_021_00877_x crossref_primary_10_1016_j_actamat_2024_120285 crossref_primary_10_1016_j_matdes_2023_111831 crossref_primary_10_1039_D1MH01612A crossref_primary_10_1016_j_jallcom_2022_166768 crossref_primary_10_7498_aps_74_20250128 crossref_primary_10_1016_j_matdes_2019_107955 crossref_primary_10_1016_j_jmst_2023_10_003 crossref_primary_10_1007_s11661_020_05966_z crossref_primary_10_1016_j_jallcom_2024_173788 crossref_primary_10_1002_adem_202301316 crossref_primary_10_1016_j_jallcom_2021_158869 crossref_primary_10_1016_j_msea_2020_140611 crossref_primary_10_1016_j_actamat_2021_117358 crossref_primary_10_1103_PhysRevB_107_184116 crossref_primary_10_1016_j_actamat_2020_02_041 crossref_primary_10_1016_j_actamat_2021_117112 crossref_primary_10_1016_j_ijplas_2021_103144 crossref_primary_10_1016_j_intermet_2024_108469 crossref_primary_10_1016_j_actamat_2021_117472 crossref_primary_10_1038_s41467_024_49606_1 crossref_primary_10_1016_j_scriptamat_2019_09_020 crossref_primary_10_4028_p_w0F1CK crossref_primary_10_1016_j_scriptamat_2023_115536 crossref_primary_10_1038_s41586_019_1617_1 crossref_primary_10_1016_j_intermet_2019_106474 crossref_primary_10_1016_j_msea_2022_144319 crossref_primary_10_3390_ma17235932 crossref_primary_10_1007_s10853_020_04387_y crossref_primary_10_1016_j_mattod_2021_02_022 crossref_primary_10_1557_s43577_023_00567_8 crossref_primary_10_1016_j_jmrt_2024_12_201 crossref_primary_10_1016_j_nanoen_2022_107958 crossref_primary_10_1016_j_actamat_2022_117889 crossref_primary_10_1080_21663831_2022_2144773 crossref_primary_10_1038_s41524_020_00389_1 crossref_primary_10_3390_ma16031044 crossref_primary_10_1016_j_matchar_2024_113645 crossref_primary_10_1016_j_actamat_2023_119230 crossref_primary_10_1016_j_actamat_2023_119472 crossref_primary_10_1016_j_actamat_2023_119471 crossref_primary_10_1016_j_actamat_2023_119591 crossref_primary_10_1016_j_scriptamat_2020_06_019 crossref_primary_10_1007_s12598_024_02852_0 crossref_primary_10_1016_j_actamat_2024_119753 crossref_primary_10_1038_s41529_024_00495_1 crossref_primary_10_1016_j_commatsci_2024_112836 crossref_primary_10_1016_j_jmst_2020_08_058 crossref_primary_10_1016_j_triboint_2024_109392 crossref_primary_10_1016_j_actamat_2021_117615 crossref_primary_10_1038_s41467_019_11464_7 crossref_primary_10_1073_pnas_2209188120 crossref_primary_10_2355_isijinternational_ISIJINT_2020_504 crossref_primary_10_1007_s11661_021_06263_z crossref_primary_10_1016_j_jallcom_2023_171547 crossref_primary_10_1016_j_matpr_2020_12_023 crossref_primary_10_1016_j_jmst_2021_02_034 crossref_primary_10_1016_j_commatsci_2023_112680 crossref_primary_10_1016_j_matchar_2022_111779 crossref_primary_10_1016_j_jallcom_2021_161289 crossref_primary_10_1016_j_scriptamat_2020_06_008 crossref_primary_10_1016_j_msea_2021_141181 crossref_primary_10_1007_s11837_019_03705_3 crossref_primary_10_2320_matertrans_MT_M2023071 crossref_primary_10_1016_j_scriptamat_2023_115632 crossref_primary_10_1088_1361_651X_ab435c crossref_primary_10_1016_j_isci_2023_106209 crossref_primary_10_1088_1361_651X_ab3b62 crossref_primary_10_1016_j_jmrt_2024_07_104 crossref_primary_10_1021_acsami_0c18483 crossref_primary_10_1103_PhysRevMaterials_7_053601 crossref_primary_10_1016_j_pmatsci_2022_101018 crossref_primary_10_3389_fmats_2021_792359 crossref_primary_10_1016_j_actamat_2023_119228 crossref_primary_10_1016_j_actamat_2023_119349 crossref_primary_10_1016_j_jallcom_2022_168093 crossref_primary_10_1063_5_0201673 crossref_primary_10_1016_j_jmst_2024_07_024 crossref_primary_10_1016_j_matchar_2022_111884 crossref_primary_10_1038_s41524_024_01393_5 crossref_primary_10_1016_j_intermet_2022_107462 crossref_primary_10_1016_j_intermet_2023_107882 crossref_primary_10_1103_PhysRevMaterials_5_103604 crossref_primary_10_1016_j_actamat_2023_119583 crossref_primary_10_1038_s41467_020_14641_1 crossref_primary_10_7566_JPSJ_88_054803 crossref_primary_10_1016_j_intermet_2020_106919 crossref_primary_10_1016_j_actamat_2024_119775 crossref_primary_10_1557_s43577_022_00280_y crossref_primary_10_1021_acs_chemrev_1c00387 crossref_primary_10_1016_j_jmst_2022_12_011 crossref_primary_10_1016_j_ijplas_2024_103980 crossref_primary_10_1002_adem_202400990 crossref_primary_10_1002_anie_202017076 crossref_primary_10_1103_PhysRevMaterials_6_113804 crossref_primary_10_1016_j_jallcom_2023_170555 crossref_primary_10_1016_j_scriptamat_2020_113633 crossref_primary_10_1038_s41467_022_34471_7 crossref_primary_10_1016_j_compositesb_2021_108837 crossref_primary_10_1038_s41563_023_01636_8 crossref_primary_10_1016_j_ijplas_2022_103389 crossref_primary_10_1016_j_jallcom_2020_156321 crossref_primary_10_1016_j_addma_2024_104332 crossref_primary_10_1016_j_msea_2024_147543 crossref_primary_10_1016_j_jmst_2022_05_062 crossref_primary_10_1016_j_ijplas_2021_102944 crossref_primary_10_1016_j_msea_2021_141085 crossref_primary_10_1073_pnas_2023181118 crossref_primary_10_1007_s11661_025_07728_1 crossref_primary_10_2139_ssrn_4060462 crossref_primary_10_1016_j_cej_2024_156419 crossref_primary_10_1016_j_actamat_2023_119248 crossref_primary_10_2320_matertrans_MT_M2023043 crossref_primary_10_1038_s41524_020_0321_x crossref_primary_10_1016_j_actamat_2023_119031 crossref_primary_10_1016_j_actamat_2023_119030 crossref_primary_10_1016_j_commatsci_2023_112598 crossref_primary_10_2139_ssrn_4015204 crossref_primary_10_1016_j_apsusc_2024_160730 crossref_primary_10_1021_acs_nanolett_0c04244 crossref_primary_10_1016_j_msea_2022_143959 crossref_primary_10_1016_j_jallcom_2023_169016 crossref_primary_10_1016_j_mtcomm_2020_101902 crossref_primary_10_1039_D2ME00045H crossref_primary_10_1002_mgea_7 crossref_primary_10_1002_adfm_202418722 crossref_primary_10_1038_s41467_022_34470_8 crossref_primary_10_1016_j_jmst_2025_01_023 crossref_primary_10_1063_5_0122675 crossref_primary_10_1080_21663831_2019_1644683 crossref_primary_10_1016_j_msea_2021_141124 crossref_primary_10_54227_mlab_20220035 crossref_primary_10_1016_j_jmst_2023_07_050 crossref_primary_10_1016_j_jallcom_2023_171462 crossref_primary_10_1016_j_jallcom_2022_165747 crossref_primary_10_1038_s43588_023_00407_4 crossref_primary_10_1016_j_matchar_2024_114203 crossref_primary_10_1016_j_mtla_2019_100565 crossref_primary_10_1016_j_scriptamat_2019_02_038 crossref_primary_10_1016_j_compositesb_2023_110651 crossref_primary_10_1016_j_jmst_2020_10_078 crossref_primary_10_1063_5_0177256 crossref_primary_10_3390_modelling5010019 crossref_primary_10_3389_fmats_2022_1118952 crossref_primary_10_1016_j_actamat_2021_117527 crossref_primary_10_1016_j_jallcom_2023_170025 crossref_primary_10_1016_j_jallcom_2020_156633 crossref_primary_10_3389_fmats_2020_575262 crossref_primary_10_3390_met15030247 crossref_primary_10_1103_PhysRevMaterials_7_053801 crossref_primary_10_1016_j_actamat_2023_119389 crossref_primary_10_1016_j_matdes_2020_109396 crossref_primary_10_1007_s44210_022_00008_2 crossref_primary_10_1103_PhysRevMaterials_5_104606 crossref_primary_10_1016_j_matchemphys_2023_128667 crossref_primary_10_2139_ssrn_4195385 crossref_primary_10_1016_j_commatsci_2023_112456 crossref_primary_10_1016_j_matchar_2024_114357 crossref_primary_10_3390_met14050560 crossref_primary_10_1103_PhysRevB_107_094109 crossref_primary_10_2139_ssrn_4105267 crossref_primary_10_1002_adfm_202408941 crossref_primary_10_1016_j_actamat_2021_116786 crossref_primary_10_7498_aps_74_20250097 crossref_primary_10_1038_s41467_023_43314_y crossref_primary_10_1038_s41524_024_01439_8 crossref_primary_10_1016_j_jallcom_2025_178559 crossref_primary_10_1016_j_intermet_2020_106844 crossref_primary_10_1016_j_actamat_2023_119179 crossref_primary_10_1016_j_ijplas_2020_102850 crossref_primary_10_2320_matertrans_MT_M2022021 crossref_primary_10_1038_s41524_023_01046_z crossref_primary_10_2320_matertrans_MT_M2021191 crossref_primary_10_1002_adem_202400827 crossref_primary_10_1016_j_actamat_2023_119041 crossref_primary_10_1016_j_jmst_2020_06_018 crossref_primary_10_1016_j_mtsust_2024_100694 crossref_primary_10_1016_j_scriptamat_2019_02_015 crossref_primary_10_1073_pnas_2218673120 crossref_primary_10_1016_j_mtla_2021_101258 crossref_primary_10_1016_j_jmst_2021_10_034 crossref_primary_10_1126_science_abm0120 crossref_primary_10_1016_j_actamat_2021_117504 crossref_primary_10_1038_s41586_021_03428_z crossref_primary_10_1063_5_0069086 crossref_primary_10_1016_j_pmatsci_2020_100709 crossref_primary_10_2139_ssrn_4103093 crossref_primary_10_1016_j_actamat_2024_120209 crossref_primary_10_1016_j_addma_2024_104243 crossref_primary_10_3390_nano10010059 crossref_primary_10_1016_j_actamat_2022_118380 crossref_primary_10_1103_PhysRevMaterials_4_103612 crossref_primary_10_1021_acs_jpclett_4c03628 crossref_primary_10_1016_j_jmst_2022_06_047 crossref_primary_10_1038_s41467_024_52018_w crossref_primary_10_1021_acsnano_4c03435 crossref_primary_10_1016_j_intermet_2022_107753 crossref_primary_10_1002_advs_202304122 crossref_primary_10_1016_j_commatsci_2022_111218 crossref_primary_10_1016_j_actamat_2021_116801 crossref_primary_10_1016_j_pmatsci_2018_12_003 crossref_primary_10_1016_j_actamat_2021_116800 crossref_primary_10_1063_5_0135538 crossref_primary_10_1103_PhysRevMaterials_7_073606 crossref_primary_10_1016_j_msea_2024_146995 crossref_primary_10_1039_D2TA03338K crossref_primary_10_1016_j_actamat_2019_12_015 crossref_primary_10_1016_S1003_6326_24_66651_3 crossref_primary_10_1126_science_abj8114 crossref_primary_10_1016_j_ijplas_2021_102997 crossref_primary_10_1088_1361_651X_ab7f8b crossref_primary_10_1016_j_actamat_2022_118022 crossref_primary_10_1103_PhysRevMaterials_4_023608 crossref_primary_10_2139_ssrn_4020821 crossref_primary_10_1016_j_jmst_2024_11_067 crossref_primary_10_1093_pnasnexus_pgac282 crossref_primary_10_3390_met13030594 crossref_primary_10_1080_02670836_2020_1851437 crossref_primary_10_1016_j_jallcom_2024_174005 crossref_primary_10_1016_j_scriptamat_2019_12_004 crossref_primary_10_1016_j_intermet_2022_107747 crossref_primary_10_1063_5_0231343 crossref_primary_10_1073_pnas_2114167118 crossref_primary_10_1016_j_comptc_2024_114815 crossref_primary_10_1016_j_mattod_2024_10_004 crossref_primary_10_1088_2053_1591_ab7a64 crossref_primary_10_3390_met11122054 crossref_primary_10_1016_j_actamat_2022_118159 crossref_primary_10_1016_j_pnsc_2024_02_007 crossref_primary_10_1063_1_5045216 crossref_primary_10_1073_pnas_2211787120 crossref_primary_10_1016_j_mtnano_2021_100139 crossref_primary_10_1016_j_intermet_2021_107125 crossref_primary_10_1126_sciadv_adn2877 crossref_primary_10_1016_j_jmst_2021_08_075 crossref_primary_10_3390_cryst12081084 crossref_primary_10_1038_s43246_022_00289_5 crossref_primary_10_1016_j_jallcom_2021_161314 crossref_primary_10_1016_j_jallcom_2020_156838 crossref_primary_10_1038_s41598_020_60013_6 crossref_primary_10_1016_j_matchar_2021_111437 crossref_primary_10_3390_ma13030578 crossref_primary_10_1016_j_jmst_2024_09_008 crossref_primary_10_1016_j_mtcomm_2023_106214 crossref_primary_10_1016_j_actamat_2023_119531 crossref_primary_10_1016_j_actamat_2025_120713 crossref_primary_10_1002_advs_202100870 crossref_primary_10_1016_j_msea_2022_142854 crossref_primary_10_1016_j_matlet_2020_128821 crossref_primary_10_1016_j_msea_2022_142856 crossref_primary_10_1016_j_mtla_2021_101059 crossref_primary_10_1016_j_jallcom_2023_169745 crossref_primary_10_1016_j_jmst_2021_07_019 crossref_primary_10_1016_j_mtphys_2024_101468 crossref_primary_10_1016_j_mtla_2022_101476 crossref_primary_10_1002_adem_202400341 crossref_primary_10_1038_s41467_024_47927_9 crossref_primary_10_1016_j_actamat_2019_12_003 crossref_primary_10_1016_j_actamat_2023_118678 crossref_primary_10_1016_j_actamat_2023_119404 crossref_primary_10_1016_j_commatsci_2022_111787 crossref_primary_10_1016_j_actamat_2020_08_044 crossref_primary_10_1016_j_intermet_2021_107345 crossref_primary_10_1016_j_jallcom_2024_176321 crossref_primary_10_1007_s10853_022_07066_2 crossref_primary_10_3390_ma16165579 crossref_primary_10_1016_j_jmrt_2024_03_011 crossref_primary_10_1016_j_actamat_2021_116958 crossref_primary_10_1016_j_commatsci_2024_112912 crossref_primary_10_1016_j_msea_2022_142906 crossref_primary_10_1016_j_intermet_2021_107275 crossref_primary_10_1016_j_mtcomm_2023_106630 crossref_primary_10_1016_j_mtcomm_2022_104059 crossref_primary_10_1038_s44160_024_00690_7 crossref_primary_10_1103_PhysRevResearch_6_013146 crossref_primary_10_2320_matertrans_MT_M2021234 crossref_primary_10_5940_jcrsj_65_172 crossref_primary_10_1016_j_ijplas_2021_102951 crossref_primary_10_1016_j_scriptamat_2024_116381 crossref_primary_10_2320_matertrans_MT_M2020144 crossref_primary_10_1103_PhysRevMaterials_8_013601 crossref_primary_10_1002_smll_202310615 crossref_primary_10_1103_PhysRevMaterials_5_113608 crossref_primary_10_1038_s41586_023_06785_z crossref_primary_10_1016_j_actamat_2021_116829 crossref_primary_10_1002_advs_202407283 crossref_primary_10_1016_j_ijplas_2024_104200 crossref_primary_10_1007_s12613_024_2884_x crossref_primary_10_1016_j_mtphys_2023_101062 crossref_primary_10_1039_D3RA07313K crossref_primary_10_1080_21663831_2023_2208166 crossref_primary_10_1016_j_mtnano_2024_100511 crossref_primary_10_1038_s41467_024_45696_z crossref_primary_10_1038_s41467_022_28687_w crossref_primary_10_1038_s41467_022_30524_z crossref_primary_10_1016_j_jmst_2021_07_042 crossref_primary_10_1016_j_jmst_2022_08_034 crossref_primary_10_1016_j_jmst_2022_08_033 crossref_primary_10_1016_j_scriptamat_2025_116559 crossref_primary_10_1038_s41563_023_01570_9 crossref_primary_10_1016_j_rinp_2022_105285 crossref_primary_10_1038_s41563_023_01517_0 crossref_primary_10_1016_j_actamat_2021_116938 crossref_primary_10_1016_j_actamat_2020_07_066 crossref_primary_10_2320_matertrans_MT_MA2024011 crossref_primary_10_1103_PhysRevB_105_115124 crossref_primary_10_1073_pnas_2409317121 crossref_primary_10_1360_SST_2023_0057 crossref_primary_10_1088_1361_651X_aca4ed crossref_primary_10_1016_j_ijfatigue_2019_105418 crossref_primary_10_2320_matertrans_MT_MA2024008 crossref_primary_10_1016_j_ijplas_2024_104112 crossref_primary_10_2320_matertrans_MT_MA2024001 crossref_primary_10_2320_matertrans_MT_MA2024003 crossref_primary_10_1016_j_cossms_2022_101032 crossref_primary_10_1016_j_jmst_2023_01_042 crossref_primary_10_1016_j_scriptamat_2025_116561 crossref_primary_10_1016_j_intermet_2022_107693 crossref_primary_10_1016_j_matchar_2022_111798 crossref_primary_10_1016_j_actamat_2022_118165 crossref_primary_10_1038_s41529_021_00163_8 crossref_primary_10_1016_j_surfcoat_2023_129407 crossref_primary_10_1016_j_actamat_2020_07_050 crossref_primary_10_1016_j_jallcom_2023_171734 crossref_primary_10_5940_jcrsj_65_183 crossref_primary_10_1016_j_jmrt_2021_09_095 |
Cites_doi | 10.1016/j.actamat.2016.08.081 10.1016/j.mattod.2016.04.001 10.1103/PhysRevLett.118.205501 10.1007/s11661-013-2000-8 10.1038/s41467-018-03846-0 10.1126/science.1254581 10.1103/PhysRevB.49.14251 10.1016/j.msea.2003.10.257 10.1038/ncomms15687 10.1016/j.scriptamat.2016.11.014 10.1103/PhysRevLett.77.3865 10.1080/09506608.2016.1180020 10.1038/ncomms9736 10.1038/ncomms10602 10.1038/ncomms6964 10.1038/ncomms13564 10.1016/j.actamat.2016.03.045 10.1016/j.mser.2017.09.002 10.1016/j.actamat.2017.05.001 10.1016/j.actamat.2016.07.038 10.1103/PhysRevLett.65.353 10.1038/ncomms7529 10.1016/j.actamat.2018.02.037 10.1038/ncomms14390 10.1016/j.actamat.2017.04.033 10.1016/j.scriptamat.2017.09.049 10.1016/j.actamat.2013.04.059 10.1063/1.4922994 10.1103/PhysRevB.47.558 10.1038/nature17981 10.1103/PhysRevB.59.1758 10.1016/j.actamat.2017.02.027 10.1103/PhysRevLett.116.135504 10.1093/biomet/57.1.97 10.1016/j.actamat.2017.02.036 10.1016/j.pmatsci.2013.10.001 10.1103/PhysRevB.13.5188 10.1038/ncomms10143 10.1016/j.actamat.2015.08.050 10.1016/j.actamat.2015.08.015 10.1002/adem.200300567 |
ContentType | Journal Article |
Copyright | Volumes 1–89 and 106–115, copyright as a collective work only; author(s) retains copyright to individual articles Copyright National Academy of Sciences Sep 4, 2018 2018 |
Copyright_xml | – notice: Volumes 1–89 and 106–115, copyright as a collective work only; author(s) retains copyright to individual articles – notice: Copyright National Academy of Sciences Sep 4, 2018 – notice: 2018 |
CorporateAuthor | Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC) Univ. of California, Oakland, CA (United States) |
CorporateAuthor_xml | – name: Univ. of California, Oakland, CA (United States) – name: Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC) |
DBID | AAYXX CITATION NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 OIOZB OTOTI 5PM |
DOI | 10.1073/pnas.1808660115 |
DatabaseName | CrossRef PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic OSTI.GOV - Hybrid OSTI.GOV PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed Virology and AIDS Abstracts MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 8924 |
ExternalDocumentID | PMC6130406 1543914 30127034 10_1073_pnas_1808660115 26531207 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article |
GrantInformation_xml | – fundername: National Energy Research Computing Center grantid: DE-AC02-05CH11231 – fundername: US Department of Engergy, Office of Science grantid: DE-AC02-05CH11231 |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ ADULT AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 HH5 HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM AAYXX CITATION NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 79B AAPBV ABPTK ADZLD ASUFR DNJUQ DOOOF DWIUU JSODD OIOZB OTOTI RHF VQA ZA5 5PM |
ID | FETCH-LOGICAL-c495t-3280a0a43f7a6023b543d3a9284a07a0d6d1cccb5d908775aaf14f670410cea13 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 18:11:52 EDT 2025 Wed Nov 29 06:11:49 EST 2023 Fri Jul 11 05:41:16 EDT 2025 Mon Jun 30 08:24:51 EDT 2025 Thu Apr 03 07:03:06 EDT 2025 Thu Apr 24 22:55:12 EDT 2025 Tue Jul 01 03:19:53 EDT 2025 Fri May 30 11:18:43 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 36 |
Keywords | transformation-induced plasticity local chemical order medium-entropy alloys stacking fault energy |
Language | English |
License | Published under the PNAS license. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c495t-3280a0a43f7a6023b543d3a9284a07a0d6d1cccb5d908775aaf14f670410cea13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22). Materials Sciences & Engineering Division AC02-05CH11231 Author contributions: J.D., M.A., and R.O.R. designed research; J.D. and Q.Y. performed research; J.D. analyzed data; and J.D., M.A., and R.O.R. wrote the paper. Edited by William D. Nix, Stanford University, Stanford, CA, and approved July 25, 2018 (received for review May 20, 2018) |
ORCID | 0000-0002-0501-6998 0000-0002-4091-8663 0000000205016998 0000000240918663 |
OpenAccessLink | https://www.osti.gov/servlets/purl/1543914 |
PMID | 30127034 |
PQID | 2110461126 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6130406 osti_scitechconnect_1543914 proquest_miscellaneous_2091241694 proquest_journals_2110461126 pubmed_primary_30127034 crossref_primary_10_1073_pnas_1808660115 crossref_citationtrail_10_1073_pnas_1808660115 jstor_primary_26531207 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-09-04 |
PublicationDateYYYYMMDD | 2018-09-04 |
PublicationDate_xml | – month: 09 year: 2018 text: 2018-09-04 day: 04 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2018 |
Publisher | National Academy of Sciences National Academy of Sciences, Washington, DC (United States) |
Publisher_xml | – name: National Academy of Sciences – name: National Academy of Sciences, Washington, DC (United States) |
References | Warren BE (e_1_3_3_24_2) 1990 Claudia M (e_1_3_3_35_2) 2015; 5 e_1_3_3_17_2 e_1_3_3_16_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_32_2 Hirth JP (e_1_3_3_14_2) 1982 e_1_3_3_33_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_40_2 Olson GB (e_1_3_3_29_2) 1976; 7 e_1_3_3_6_2 e_1_3_3_5_2 e_1_3_3_8_2 e_1_3_3_7_2 e_1_3_3_28_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_23_2 e_1_3_3_26_2 e_1_3_3_45_2 e_1_3_3_25_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_43_2 e_1_3_3_1_2 e_1_3_3_44_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_41_2 e_1_3_3_3_2 e_1_3_3_21_2 e_1_3_3_42_2 |
References_xml | – ident: e_1_3_3_5_2 doi: 10.1016/j.actamat.2016.08.081 – ident: e_1_3_3_19_2 doi: 10.1016/j.mattod.2016.04.001 – ident: e_1_3_3_21_2 doi: 10.1103/PhysRevLett.118.205501 – ident: e_1_3_3_23_2 doi: 10.1007/s11661-013-2000-8 – ident: e_1_3_3_18_2 doi: 10.1038/s41467-018-03846-0 – ident: e_1_3_3_6_2 doi: 10.1126/science.1254581 – ident: e_1_3_3_41_2 doi: 10.1103/PhysRevB.49.14251 – ident: e_1_3_3_2_2 doi: 10.1016/j.msea.2003.10.257 – ident: e_1_3_3_16_2 doi: 10.1038/ncomms15687 – ident: e_1_3_3_25_2 doi: 10.1016/j.scriptamat.2016.11.014 – ident: e_1_3_3_44_2 doi: 10.1103/PhysRevLett.77.3865 – ident: e_1_3_3_4_2 doi: 10.1080/09506608.2016.1180020 – ident: e_1_3_3_36_2 doi: 10.1038/ncomms9736 – ident: e_1_3_3_7_2 doi: 10.1038/ncomms10602 – volume: 5 start-page: 011041 year: 2015 ident: e_1_3_3_35_2 article-title: Criterion for predicting the formation of single-phase high-entropy alloys publication-title: Phys Rev X – ident: e_1_3_3_32_2 doi: 10.1038/ncomms6964 – ident: e_1_3_3_38_2 doi: 10.1038/ncomms13564 – ident: e_1_3_3_12_2 doi: 10.1016/j.actamat.2016.03.045 – ident: e_1_3_3_15_2 doi: 10.1016/j.mser.2017.09.002 – ident: e_1_3_3_17_2 doi: 10.1016/j.actamat.2017.05.001 – ident: e_1_3_3_8_2 doi: 10.1016/j.actamat.2016.07.038 – ident: e_1_3_3_39_2 doi: 10.1103/PhysRevLett.65.353 – volume-title: Theory of Dislocations year: 1982 ident: e_1_3_3_14_2 – ident: e_1_3_3_34_2 doi: 10.1038/ncomms7529 – ident: e_1_3_3_26_2 doi: 10.1016/j.actamat.2018.02.037 – ident: e_1_3_3_11_2 doi: 10.1038/ncomms14390 – ident: e_1_3_3_13_2 doi: 10.1016/j.actamat.2017.04.033 – volume: 7 start-page: 1897 year: 1976 ident: e_1_3_3_29_2 article-title: A general mechanism of martensitic nucleation: Part I. General concepts and the FCC -> HCP transformation publication-title: Metall Trans A Phys Metall Mater Sci – ident: e_1_3_3_22_2 doi: 10.1016/j.scriptamat.2017.09.049 – ident: e_1_3_3_30_2 doi: 10.1016/j.actamat.2013.04.059 – volume-title: X-Ray Diffraction year: 1990 ident: e_1_3_3_24_2 – ident: e_1_3_3_31_2 doi: 10.1063/1.4922994 – ident: e_1_3_3_40_2 doi: 10.1103/PhysRevB.47.558 – ident: e_1_3_3_33_2 doi: 10.1038/nature17981 – ident: e_1_3_3_42_2 doi: 10.1103/PhysRevB.59.1758 – ident: e_1_3_3_27_2 doi: 10.1016/j.actamat.2017.02.027 – ident: e_1_3_3_37_2 doi: 10.1103/PhysRevLett.116.135504 – ident: e_1_3_3_45_2 doi: 10.1093/biomet/57.1.97 – ident: e_1_3_3_9_2 doi: 10.1016/j.actamat.2017.02.036 – ident: e_1_3_3_3_2 doi: 10.1016/j.pmatsci.2013.10.001 – ident: e_1_3_3_43_2 doi: 10.1103/PhysRevB.13.5188 – ident: e_1_3_3_10_2 doi: 10.1038/ncomms10143 – ident: e_1_3_3_28_2 doi: 10.1016/j.actamat.2015.08.050 – ident: e_1_3_3_20_2 doi: 10.1016/j.actamat.2015.08.015 – ident: e_1_3_3_1_2 doi: 10.1002/adem.200300567 |
SSID | ssj0009580 |
Score | 2.6911294 |
Snippet | High-entropy alloys (HEAs) are an intriguing new class of metallic materials due to their unique mechanical behavior. Achieving a detailed understanding of... Our work has revealed the nature of local chemical order and has established its significant relationship to the intrinsic and extrinsic stacking fault energy... |
SourceID | pubmedcentral osti proquest pubmed crossref jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 8919 |
SubjectTerms | Alloys Ductility Entropy Entropy of solution First principles High entropy alloys local chemical order MATERIALS SCIENCE Mechanical properties Medium entropy alloys Organic chemistry Other Topics Physical Sciences Science & Technology Short range order Stacking Stacking fault energy transformation-induced plasticity |
Title | Tunable stacking fault energies by tailoring local chemical order in CrCoNi medium-entropy alloys |
URI | https://www.jstor.org/stable/26531207 https://www.ncbi.nlm.nih.gov/pubmed/30127034 https://www.proquest.com/docview/2110461126 https://www.proquest.com/docview/2091241694 https://www.osti.gov/servlets/purl/1543914 https://pubmed.ncbi.nlm.nih.gov/PMC6130406 |
Volume | 115 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfKuHBBDBiEDWQkDkNRShI7TnKsBmiaRBlok8YpchxHRIx0WpND-YP4O3n-iJuWTRpcqspx3abvl_dhv_d7CL1hdZJVMSEBU5sblFLQg5WUAa_KKCqllLUupP00Z8fn9OQiuZhMfo-ylvqunIpfN9aV_I9UYQzkqqpk_0GyblEYgPcgX3gFCcPr3WTcm8on8PDED50SyfvLzldM0or9QbuWvLE5dtpq-WIgCNCcm7rm7_poMW_0IXv_M1CbvYurla_O41fLset66kzdckgsmA87ibN1XYpVFks_8E_n6y7H723vlJPeofFbrwa-NG5gZl3Zcf3Q1wZgZc5QTBK4_3k63qmIdFqF6S3sKgcACdTUTE-lUbjgrwSMmpahTiObCk8LPTJWsFluNaw11rlZ7S9DAJpLdS9u-XIaZRC2sXBYdINye8sUugRFfTSfkkItUKwXuIfuxxCOxNoAjMmdM1PqZO9voJBKybutX7Dh_ZgEWPAFFqDNb4pwthN1R57P2SP00IYseGbwt4smsn2Mdgc540PLXP72CeIWkHgAJNaAxAMgcbnCDpBYAxIPgMQakLhpsQEk3gQkNoB8is4_fjg7Og5sD49AQOjdBSTOQh5ySuqUM_APy4SSivAcvCIepjysWBUJIcqkyhU1ZcJ5HdGapSGNQiF5RPbQTrto5XOE00qGIqxiynJQKRAUlhBLpHUdZjKqEkY8NB3-20JYgnvVZ-WyuEWaHjp0H7gy3C63T93TwnLzYgbGKw5TD-0r6RXgryrSZaGy00RXQGBC8oh66GAQamH1xrJQWy6UqdI9D712l0Grq6M63spFD3PgsQDfGu7UQ88MBtxXE50tQuBKuoEON0Exxm9eaZvvmjlebRaAB__i7je-jx6sH-UDtNNd9_IluOFd-Uo_A38Afi7bgw |
linkProvider | ABC ChemistRy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tunable+stacking+fault+energies+by+tailoring+local+chemical+order+in+CrCoNi+medium-entropy+alloys&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Ding%2C+Jun&rft.au=Yu%2C+Qin&rft.au=Asta%2C+Mark&rft.au=Ritchie%2C+Robert+O.&rft.date=2018-09-04&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=115&rft.issue=36&rft.spage=8919&rft.epage=8924&rft_id=info:doi/10.1073%2Fpnas.1808660115&rft.externalDBID=n%2Fa&rft.externalDocID=10_1073_pnas_1808660115 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon |