Tunable stacking fault energies by tailoring local chemical order in CrCoNi medium-entropy alloys

High-entropy alloys (HEAs) are an intriguing new class of metallic materials due to their unique mechanical behavior. Achieving a detailed understanding of structure–property relationships in these materials has been challenged by the compositional disorder that underlies their unique mechanical beh...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 115; no. 36; pp. 8919 - 8924
Main Authors Ding, Jun, Yu, Qin, Asta, Mark, Ritchie, Robert O.
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 04.09.2018
National Academy of Sciences, Washington, DC (United States)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract High-entropy alloys (HEAs) are an intriguing new class of metallic materials due to their unique mechanical behavior. Achieving a detailed understanding of structure–property relationships in these materials has been challenged by the compositional disorder that underlies their unique mechanical behavior. Accordingly, in this work, we employ first-principles calculations to investigate the nature of local chemical order and establish its relationship to the intrinsic and extrinsic stacking fault energy (SFE) in CrCoNi medium-entropy solid-solution alloys, whose combination of strength, ductility, and toughness properties approaches the best on record. We find that the average intrinsic and extrinsic SFE are both highly tunable, with values ranging from −43 to 30 mJ·m−2 and from −28 to 66 mJ·m−2, respectively, as the degree of local chemical order increases. The state of local ordering also strongly correlates with the energy difference between the face-centered cubic (fcc) and hexagonal close-packed (hcp) phases, which affects the occurrence of transformation-induced plasticity. This theoretical study demonstrates that chemical short-range order is thermodynamically favored in HEAs and can be tuned to affect the mechanical behavior of these alloys. It thus addresses the pressing need to establish robust processing–structure–property relationships to guide the science-based design of new HEAs with targeted mechanical behavior.
AbstractList Our work has revealed the nature of local chemical order and has established its significant relationship to the intrinsic and extrinsic stacking fault energy in CrCoNi medium-entropy solid-solution alloys, whose combination of strength, ductility, and toughness properties approaches the best on record. These findings highlight the general need to discern how critical the role of local chemical ordering is in dictating the mechanical of properties of medium- and high-entropy alloys. Our results highlight the possibility of tuning order in disorder to ultimately achieve the science-based design and optimization of new high-entropy alloy systems with specifically desired combinations of macroscale mechanical properties. High-entropy alloys (HEAs) are an intriguing new class of metallic materials due to their unique mechanical behavior. Achieving a detailed understanding of structure–property relationships in these materials has been challenged by the compositional disorder that underlies their unique mechanical behavior. Accordingly, in this work, we employ first-principles calculations to investigate the nature of local chemical order and establish its relationship to the intrinsic and extrinsic stacking fault energy (SFE) in CrCoNi medium-entropy solid-solution alloys, whose combination of strength, ductility, and toughness properties approaches the best on record. We find that the average intrinsic and extrinsic SFE are both highly tunable, with values ranging from −43 to 30 mJ⋅m −2 and from −28 to 66 mJ⋅m −2 , respectively, as the degree of local chemical order increases. The state of local ordering also strongly correlates with the energy difference between the face-centered cubic ( fcc ) and hexagonal close-packed ( hcp ) phases, which affects the occurrence of transformation-induced plasticity. This theoretical study demonstrates that chemical short-range order is thermodynamically favored in HEAs and can be tuned to affect the mechanical behavior of these alloys. It thus addresses the pressing need to establish robust processing–structure–property relationships to guide the science-based design of new HEAs with targeted mechanical behavior.
High-entropy alloys (HEAs) are an intriguing new class of metallic materials due to their unique mechanical behavior. Achieving a detailed understanding of structure-property relationships in these materials has been challenged by the compositional disorder that underlies their unique mechanical behavior. Accordingly, in this work, we employ first-principles calculations to investigate the nature of local chemical order and establish its relationship to the intrinsic and extrinsic stacking fault energy (SFE) in CrCoNi medium-entropy solid-solution alloys, whose combination of strength, ductility, and toughness properties approaches the best on record. We find that the average intrinsic and extrinsic SFE are both highly tunable, with values ranging from -43 to 30 mJ⋅m and from -28 to 66 mJ⋅m , respectively, as the degree of local chemical order increases. The state of local ordering also strongly correlates with the energy difference between the face-centered cubic ( ) and hexagonal close-packed ( ) phases, which affects the occurrence of transformation-induced plasticity. This theoretical study demonstrates that chemical short-range order is thermodynamically favored in HEAs and can be tuned to affect the mechanical behavior of these alloys. It thus addresses the pressing need to establish robust processing-structure-property relationships to guide the science-based design of new HEAs with targeted mechanical behavior.
High-entropy alloys (HEAs) are an intriguing new class of metallic materials due to their unique mechanical behavior. Achieving a detailed understanding of structure–property relationships in these materials has been challenged by the compositional disorder that underlies their unique mechanical behavior. Accordingly, in this work, we employ first-principles calculations to investigate the nature of local chemical order and establish its relationship to the intrinsic and extrinsic stacking fault energy (SFE) in CrCoNi medium-entropy solid-solution alloys, whose combination of strength, ductility, and toughness properties approaches the best on record. We find that the average intrinsic and extrinsic SFE are both highly tunable, with values ranging from −43 to 30 mJ⋅m−2 and from −28 to 66 mJ⋅m−2, respectively, as the degree of local chemical order increases. The state of local ordering also strongly correlates with the energy difference between the face-centered cubic (fcc) and hexagonal close-packed (hcp) phases, which affects the occurrence of transformation-induced plasticity. This theoretical study demonstrates that chemical short-range order is thermodynamically favored in HEAs and can be tuned to affect the mechanical behavior of these alloys. It thus addresses the pressing need to establish robust processing–structure–property relationships to guide the science-based design of new HEAs with targeted mechanical behavior.
High-entropy alloys (HEAs) are an intriguing new class of metallic materials due to their unique mechanical behavior. Achieving a detailed understanding of structure–property relationships in these materials has been challenged by the compositional disorder that underlies their unique mechanical behavior. Accordingly, in this work, we employ first-principles calculations to investigate the nature of local chemical order and establish its relationship to the intrinsic and extrinsic stacking fault energy (SFE) in CrCoNi medium-entropy solid-solution alloys, whose combination of strength, ductility, and toughness properties approaches the best on record. We find that the average intrinsic and extrinsic SFE are both highly tunable, with values ranging from −43 to 30 mJ·m−2 and from −28 to 66 mJ·m−2, respectively, as the degree of local chemical order increases. The state of local ordering also strongly correlates with the energy difference between the face-centered cubic (fcc) and hexagonal close-packed (hcp) phases, which affects the occurrence of transformation-induced plasticity. This theoretical study demonstrates that chemical short-range order is thermodynamically favored in HEAs and can be tuned to affect the mechanical behavior of these alloys. It thus addresses the pressing need to establish robust processing–structure–property relationships to guide the science-based design of new HEAs with targeted mechanical behavior.
High-entropy alloys (HEAs) are an intriguing new class of metallic materials due to their unique mechanical behavior. Achieving a detailed understanding of structure–property relationships in these materials has been challenged by the compositional disorder that underlies their unique mechanical behavior. Accordingly, in this work, we employ first-principles calculations to investigate the nature of local chemical order and establish its relationship to the intrinsic and extrinsic stacking fault energy (SFE) in CrCoNi medium-entropy solid-solution alloys, whose combination of strength, ductility, and toughness properties approaches the best on record. We find that the average intrinsic and extrinsic SFE are both highly tunable, with values ranging from –43 to 30 mJ•m–2and from –28 to 66 mJ•m–2, respectively, as the degree of local chemical order increases. The state of local ordering also strongly correlates with the energy difference between the face-centered cubic (fcc) and hexagonal close-packed (hcp) phases, which affects the occurrence of transformation-induced plasticity. Here, this theoretical study demonstrates that chemical short-range order is thermodynamically favored in HEAs and can be tuned to affect the mechanical behavior of these alloys. It thus addresses the pressing need to establish robust processing–structure–property relationships to guide the science-based design of new HEAs with targeted mechanical behavior.
High-entropy alloys (HEAs) are an intriguing new class of metallic materials due to their unique mechanical behavior. Achieving a detailed understanding of structure-property relationships in these materials has been challenged by the compositional disorder that underlies their unique mechanical behavior. Accordingly, in this work, we employ first-principles calculations to investigate the nature of local chemical order and establish its relationship to the intrinsic and extrinsic stacking fault energy (SFE) in CrCoNi medium-entropy solid-solution alloys, whose combination of strength, ductility, and toughness properties approaches the best on record. We find that the average intrinsic and extrinsic SFE are both highly tunable, with values ranging from -43 to 30 mJ⋅m-2 and from -28 to 66 mJ⋅m-2, respectively, as the degree of local chemical order increases. The state of local ordering also strongly correlates with the energy difference between the face-centered cubic (fcc) and hexagonal close-packed (hcp) phases, which affects the occurrence of transformation-induced plasticity. This theoretical study demonstrates that chemical short-range order is thermodynamically favored in HEAs and can be tuned to affect the mechanical behavior of these alloys. It thus addresses the pressing need to establish robust processing-structure-property relationships to guide the science-based design of new HEAs with targeted mechanical behavior.High-entropy alloys (HEAs) are an intriguing new class of metallic materials due to their unique mechanical behavior. Achieving a detailed understanding of structure-property relationships in these materials has been challenged by the compositional disorder that underlies their unique mechanical behavior. Accordingly, in this work, we employ first-principles calculations to investigate the nature of local chemical order and establish its relationship to the intrinsic and extrinsic stacking fault energy (SFE) in CrCoNi medium-entropy solid-solution alloys, whose combination of strength, ductility, and toughness properties approaches the best on record. We find that the average intrinsic and extrinsic SFE are both highly tunable, with values ranging from -43 to 30 mJ⋅m-2 and from -28 to 66 mJ⋅m-2, respectively, as the degree of local chemical order increases. The state of local ordering also strongly correlates with the energy difference between the face-centered cubic (fcc) and hexagonal close-packed (hcp) phases, which affects the occurrence of transformation-induced plasticity. This theoretical study demonstrates that chemical short-range order is thermodynamically favored in HEAs and can be tuned to affect the mechanical behavior of these alloys. It thus addresses the pressing need to establish robust processing-structure-property relationships to guide the science-based design of new HEAs with targeted mechanical behavior.
Author Ritchie, Robert O.
Yu, Qin
Ding, Jun
Asta, Mark
Author_xml – sequence: 1
  givenname: Jun
  surname: Ding
  fullname: Ding, Jun
  organization: Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
– sequence: 2
  givenname: Qin
  surname: Yu
  fullname: Yu, Qin
  organization: Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
– sequence: 3
  givenname: Mark
  surname: Asta
  fullname: Asta, Mark
  organization: Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
– sequence: 4
  givenname: Robert O.
  surname: Ritchie
  fullname: Ritchie, Robert O.
  organization: Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30127034$$D View this record in MEDLINE/PubMed
https://www.osti.gov/servlets/purl/1543914$$D View this record in Osti.gov
BookMark eNp9UsFu1DAQjVAR3RbOnEARvXBJO2M7TnJBQisKSBVcytmadZxdL157sR2k_XsSbVmgB062NO-9eTPzLoozH7wpipcI1wgNv9l7StfYQislINZPigVCh5UUHZwVCwDWVK1g4ry4SGkLAF3dwrPinAOyBrhYFHQ_elo5U6ZM-rv163Kg0eXSeBPX1qRydSgzWRfiXHNBkyv1xuzs_AmxN7G0vlzGZfhiy53p7birjM8x7A8lORcO6XnxdCCXzIuH97L4dvvhfvmpuvv68fPy_V2lRVfnirMWCEjwoSEJjK9qwXtOHWsFQUPQyx611qu676BtmppoQDHIBgSCNoT8snh31N2Pq8mInl2QU_todxQPKpBV_1a83ah1-KkkchAgJ4E3R4GQslVJ22z0Rgfvjc4KJzsdign09qFLDD9Gk7La2aSNc-RNGJNi0_qZQNnN0KtH0G0Yo592oBgiCInI5q6v_7Z98vv7RBPg5gjQMaQUzXCCIKg5BGoOgfoTgolRP2JMs1C2YZ7buv_wXh1525RDPLVhsubIJsIva0m_1A
CitedBy_id crossref_primary_10_1016_j_jmrt_2023_03_175
crossref_primary_10_1016_j_jnucmat_2024_155186
crossref_primary_10_1016_j_rinma_2023_100364
crossref_primary_10_1016_j_scriptamat_2022_114950
crossref_primary_10_1016_j_intermet_2024_108560
crossref_primary_10_1016_j_jallcom_2022_168521
crossref_primary_10_1016_j_jmst_2023_10_025
crossref_primary_10_1016_j_actamat_2020_05_003
crossref_primary_10_1063_1_5135324
crossref_primary_10_1016_j_actamat_2022_118541
crossref_primary_10_1016_j_actamat_2022_118662
crossref_primary_10_1016_j_cpc_2024_109265
crossref_primary_10_1016_j_physb_2022_414447
crossref_primary_10_1126_sciadv_abq7433
crossref_primary_10_1016_j_actamat_2024_120199
crossref_primary_10_1016_j_mtphys_2022_100799
crossref_primary_10_1038_s41467_020_16083_1
crossref_primary_10_1016_j_msea_2020_139241
crossref_primary_10_1080_21663831_2020_1741469
crossref_primary_10_1007_s10853_021_06314_1
crossref_primary_10_1016_j_pmatsci_2024_101252
crossref_primary_10_1016_j_jnucmat_2022_153573
crossref_primary_10_1016_j_actamat_2024_120190
crossref_primary_10_1017_S1431927620016396
crossref_primary_10_1063_5_0069417
crossref_primary_10_1073_pnas_2020540118
crossref_primary_10_1016_j_jallcom_2019_06_318
crossref_primary_10_1016_j_actamat_2022_118314
crossref_primary_10_1016_j_intermet_2025_108737
crossref_primary_10_1016_j_scriptamat_2019_06_019
crossref_primary_10_1016_j_scriptamat_2024_116111
crossref_primary_10_1016_j_msea_2023_145532
crossref_primary_10_1016_j_commatsci_2024_113587
crossref_primary_10_1016_j_jallcom_2022_167418
crossref_primary_10_1016_j_actamat_2024_120088
crossref_primary_10_1038_s41467_022_34335_0
crossref_primary_10_1016_j_ijmecsci_2025_109979
crossref_primary_10_1016_j_ijrmhm_2022_105942
crossref_primary_10_1080_27660400_2022_2153632
crossref_primary_10_1016_j_ijplas_2024_104155
crossref_primary_10_1016_j_mtcomm_2022_103141
crossref_primary_10_1016_j_actamat_2023_118967
crossref_primary_10_1016_j_mtla_2020_100628
crossref_primary_10_1016_j_scriptamat_2020_02_021
crossref_primary_10_1063_5_0206773
crossref_primary_10_1007_s11665_021_06092_6
crossref_primary_10_1021_acs_chemrev_2c00468
crossref_primary_10_1103_PhysRevMaterials_8_033607
crossref_primary_10_1016_j_msea_2020_140251
crossref_primary_10_1016_j_jmst_2022_07_031
crossref_primary_10_1016_j_jallcom_2024_174550
crossref_primary_10_2139_ssrn_3966229
crossref_primary_10_1038_s41524_020_0339_0
crossref_primary_10_1016_j_jmst_2024_03_027
crossref_primary_10_1016_j_actamat_2021_117380
crossref_primary_10_1016_j_mtcomm_2020_101336
crossref_primary_10_1016_j_jmst_2023_01_014
crossref_primary_10_1016_j_pmatsci_2023_101090
crossref_primary_10_1016_j_mtsust_2023_100639
crossref_primary_10_1016_j_jmst_2020_04_062
crossref_primary_10_1063_5_0067268
crossref_primary_10_1016_j_actamat_2022_118537
crossref_primary_10_1016_j_jmrt_2023_04_074
crossref_primary_10_1016_j_matt_2023_09_010
crossref_primary_10_1016_j_actamat_2023_118712
crossref_primary_10_1016_j_matchar_2023_113546
crossref_primary_10_1016_j_jallcom_2024_175751
crossref_primary_10_1016_j_mechmat_2023_104783
crossref_primary_10_1016_j_actamat_2021_117140
crossref_primary_10_1016_j_scriptamat_2024_116535
crossref_primary_10_1002_adem_202300291
crossref_primary_10_1016_j_msea_2024_146829
crossref_primary_10_1016_j_jallcom_2021_161412
crossref_primary_10_1016_j_mtcomm_2022_105306
crossref_primary_10_1016_j_taml_2021_100310
crossref_primary_10_1073_pnas_2316912121
crossref_primary_10_1016_j_actamat_2020_05_042
crossref_primary_10_1039_D2CS01030E
crossref_primary_10_1016_j_fmre_2022_05_024
crossref_primary_10_1016_j_ijplas_2024_104059
crossref_primary_10_1063_5_0128657
crossref_primary_10_1007_s40843_023_2584_2
crossref_primary_10_1016_j_jallcom_2024_175421
crossref_primary_10_1016_j_pmatsci_2021_100777
crossref_primary_10_1016_j_jmst_2021_05_045
crossref_primary_10_1016_j_actamat_2023_118982
crossref_primary_10_1016_j_jallcom_2021_159215
crossref_primary_10_1016_j_matt_2023_03_034
crossref_primary_10_1016_j_scriptamat_2021_114465
crossref_primary_10_1103_PhysRevE_104_025310
crossref_primary_10_1016_j_scriptamat_2020_09_039
crossref_primary_10_1016_j_jnucmat_2023_154724
crossref_primary_10_1016_j_pmatsci_2025_101475
crossref_primary_10_1103_PhysRevLett_132_116101
crossref_primary_10_1103_PhysRevMaterials_3_113603
crossref_primary_10_1016_j_corsci_2020_108510
crossref_primary_10_1016_j_ijplas_2024_104164
crossref_primary_10_1016_j_commatsci_2022_111764
crossref_primary_10_1016_j_actamat_2021_117089
crossref_primary_10_1016_j_commatsci_2022_111763
crossref_primary_10_1016_j_jmst_2021_05_053
crossref_primary_10_3390_met14020226
crossref_primary_10_3390_met10020194
crossref_primary_10_1016_j_jmst_2022_07_065
crossref_primary_10_1016_j_intermet_2021_107444
crossref_primary_10_1016_j_jnoncrysol_2022_121695
crossref_primary_10_1063_5_0057888
crossref_primary_10_1038_s41467_022_32134_1
crossref_primary_10_1016_j_actamat_2025_120887
crossref_primary_10_1557_s43577_022_00285_7
crossref_primary_10_1016_j_jnucmat_2021_153140
crossref_primary_10_3389_fmats_2022_1006726
crossref_primary_10_1007_s11837_021_04871_z
crossref_primary_10_1016_j_scriptamat_2021_114136
crossref_primary_10_1016_j_matdes_2024_112724
crossref_primary_10_1016_j_jmst_2022_02_052
crossref_primary_10_1126_sciadv_aax4002
crossref_primary_10_3389_fmats_2021_673574
crossref_primary_10_1016_j_jmst_2020_12_017
crossref_primary_10_1080_14686996_2022_2080512
crossref_primary_10_1126_science_adn2428
crossref_primary_10_1016_j_intermet_2024_108505
crossref_primary_10_1038_s41524_024_01322_6
crossref_primary_10_1016_j_ijplas_2024_104079
crossref_primary_10_1016_j_jnucmat_2023_154706
crossref_primary_10_1016_j_jnucmat_2023_154827
crossref_primary_10_1016_j_matdes_2024_112840
crossref_primary_10_1038_s41524_020_00472_7
crossref_primary_10_1073_pnas_2322962121
crossref_primary_10_2139_ssrn_4128810
crossref_primary_10_1016_j_jmrt_2022_01_118
crossref_primary_10_1103_PhysRevMaterials_7_013801
crossref_primary_10_1016_j_actamat_2025_120755
crossref_primary_10_1016_j_scriptamat_2021_114364
crossref_primary_10_1016_j_msea_2023_145309
crossref_primary_10_1016_j_scriptamat_2024_116400
crossref_primary_10_3390_met10081072
crossref_primary_10_1016_j_scriptamat_2021_114126
crossref_primary_10_1016_j_scriptamat_2022_114547
crossref_primary_10_1038_s41467_021_23860_z
crossref_primary_10_1063_5_0223074
crossref_primary_10_1103_PhysRevMaterials_4_113802
crossref_primary_10_1063_5_0082835
crossref_primary_10_1039_D4NR01577K
crossref_primary_10_3389_fmats_2021_767795
crossref_primary_10_1016_j_ijmecsci_2022_107931
crossref_primary_10_1016_j_mtchem_2024_102435
crossref_primary_10_1016_j_actamat_2020_04_034
crossref_primary_10_1063_5_0138379
crossref_primary_10_1103_PhysRevLett_127_115704
crossref_primary_10_1038_s41467_022_30018_y
crossref_primary_10_1016_j_commatsci_2019_109366
crossref_primary_10_1557_s43577_023_00575_8
crossref_primary_10_1016_j_jallcom_2020_157597
crossref_primary_10_1016_j_ijplas_2022_103443
crossref_primary_10_1016_j_ijplas_2022_103442
crossref_primary_10_1016_j_ceramint_2024_11_322
crossref_primary_10_1039_D3NR05251F
crossref_primary_10_1016_j_scriptamat_2023_115373
crossref_primary_10_1016_j_jmrt_2022_11_057
crossref_primary_10_1016_j_matdes_2022_111572
crossref_primary_10_1016_j_actamat_2021_117571
crossref_primary_10_1016_j_actamat_2023_119185
crossref_primary_10_1016_j_jallcom_2025_178461
crossref_primary_10_1016_j_ijplas_2023_103859
crossref_primary_10_1016_j_ijplas_2023_103619
crossref_primary_10_1016_j_scriptamat_2021_114269
crossref_primary_10_1088_1361_651X_ad04f3
crossref_primary_10_1016_j_jmst_2022_02_041
crossref_primary_10_1016_j_jallcom_2023_172002
crossref_primary_10_1016_j_actamat_2022_117621
crossref_primary_10_1016_j_jmps_2024_105639
crossref_primary_10_1016_j_msea_2020_140501
crossref_primary_10_2139_ssrn_4134069
crossref_primary_10_1016_j_ijsolstr_2024_113175
crossref_primary_10_1016_j_jallcom_2019_06_277
crossref_primary_10_1016_j_ijplas_2023_103730
crossref_primary_10_1016_j_intermet_2020_106775
crossref_primary_10_1073_pnas_1919136117
crossref_primary_10_1360_TB_2024_0436
crossref_primary_10_1016_j_jmst_2024_05_020
crossref_primary_10_1016_j_jallcom_2021_163059
crossref_primary_10_1016_j_scriptamat_2023_115463
crossref_primary_10_1038_s41524_022_00842_3
crossref_primary_10_1016_j_jallcom_2021_163171
crossref_primary_10_1016_j_ijplas_2020_102819
crossref_primary_10_1016_j_jnucmat_2023_154633
crossref_primary_10_1103_PhysRevMaterials_8_043805
crossref_primary_10_1063_5_0025310
crossref_primary_10_1063_5_0137187
crossref_primary_10_1016_j_msea_2019_138403
crossref_primary_10_1080_21663831_2024_2426692
crossref_primary_10_1016_j_mattod_2023_12_006
crossref_primary_10_1016_j_actamat_2021_117314
crossref_primary_10_1103_PhysRevE_108_035003
crossref_primary_10_1016_j_actamat_2019_09_050
crossref_primary_10_1016_j_intermet_2025_108665
crossref_primary_10_1016_j_intermet_2024_108386
crossref_primary_10_1103_PhysRevMaterials_7_033606
crossref_primary_10_1016_j_actamat_2020_04_052
crossref_primary_10_1016_j_intermet_2023_108103
crossref_primary_10_1063_5_0102088
crossref_primary_10_2320_matertrans_MT_H2024004
crossref_primary_10_1038_s41467_019_13311_1
crossref_primary_10_1016_j_matchar_2019_02_034
crossref_primary_10_1016_j_intermet_2019_106553
crossref_primary_10_1016_j_matchemphys_2023_127783
crossref_primary_10_1007_s11837_022_05477_9
crossref_primary_10_1016_j_jmst_2023_12_024
crossref_primary_10_1063_5_0130784
crossref_primary_10_3390_met14101197
crossref_primary_10_1126_science_abp8070
crossref_primary_10_1016_j_actamat_2022_117847
crossref_primary_10_1016_j_commatsci_2020_110135
crossref_primary_10_1098_rsta_2020_0437
crossref_primary_10_1103_PhysRevMaterials_8_053602
crossref_primary_10_1016_j_ijplas_2023_103832
crossref_primary_10_1038_s41524_020_0348_z
crossref_primary_10_1103_PhysRevB_103_104107
crossref_primary_10_1103_PhysRevMaterials_7_L111601
crossref_primary_10_1016_j_commatsci_2023_112010
crossref_primary_10_1016_j_jmst_2023_05_072
crossref_primary_10_3390_e20090655
crossref_primary_10_1016_j_actamat_2020_10_066
crossref_primary_10_1016_j_actamat_2021_117490
crossref_primary_10_2320_matertrans_MT_MK2019007
crossref_primary_10_2139_ssrn_4191166
crossref_primary_10_1007_s11661_020_05755_8
crossref_primary_10_1002_ange_202017076
crossref_primary_10_1016_j_msea_2020_139854
crossref_primary_10_1557_s43577_023_00555_y
crossref_primary_10_1016_j_msea_2019_138107
crossref_primary_10_1063_5_0069108
crossref_primary_10_1557_s43577_022_00306_5
crossref_primary_10_1002_sus2_261
crossref_primary_10_1038_s41524_020_00377_5
crossref_primary_10_1039_D0RA00518E
crossref_primary_10_1016_j_commatsci_2021_110723
crossref_primary_10_1126_sciadv_adq6398
crossref_primary_10_1007_s40192_022_00269_0
crossref_primary_10_1016_j_ijplas_2023_103768
crossref_primary_10_1016_j_actamat_2021_117135
crossref_primary_10_1038_s41467_023_42894_z
crossref_primary_10_1103_PhysRevMaterials_7_L110401
crossref_primary_10_3390_met12111966
crossref_primary_10_1016_j_ijplas_2023_103643
crossref_primary_10_1016_j_cossms_2024_101177
crossref_primary_10_1126_sciadv_aax2799
crossref_primary_10_3390_ma16031149
crossref_primary_10_1038_s41467_021_25134_0
crossref_primary_10_1016_j_jmrt_2022_06_074
crossref_primary_10_1007_s11837_024_06753_6
crossref_primary_10_1016_j_commatsci_2021_110618
crossref_primary_10_1007_s11669_021_00899_5
crossref_primary_10_1016_j_ijplas_2023_103770
crossref_primary_10_1016_j_eml_2023_102107
crossref_primary_10_1038_s41586_020_2275_z
crossref_primary_10_1016_j_jmst_2022_10_070
crossref_primary_10_1016_j_mtcomm_2024_108302
crossref_primary_10_1016_j_intermet_2023_108132
crossref_primary_10_1016_j_commatsci_2023_112191
crossref_primary_10_1016_j_jmrt_2025_02_187
crossref_primary_10_1016_j_actamat_2021_117487
crossref_primary_10_1007_s11669_021_00877_x
crossref_primary_10_1016_j_actamat_2024_120285
crossref_primary_10_1016_j_matdes_2023_111831
crossref_primary_10_1039_D1MH01612A
crossref_primary_10_1016_j_jallcom_2022_166768
crossref_primary_10_7498_aps_74_20250128
crossref_primary_10_1016_j_matdes_2019_107955
crossref_primary_10_1016_j_jmst_2023_10_003
crossref_primary_10_1007_s11661_020_05966_z
crossref_primary_10_1016_j_jallcom_2024_173788
crossref_primary_10_1002_adem_202301316
crossref_primary_10_1016_j_jallcom_2021_158869
crossref_primary_10_1016_j_msea_2020_140611
crossref_primary_10_1016_j_actamat_2021_117358
crossref_primary_10_1103_PhysRevB_107_184116
crossref_primary_10_1016_j_actamat_2020_02_041
crossref_primary_10_1016_j_actamat_2021_117112
crossref_primary_10_1016_j_ijplas_2021_103144
crossref_primary_10_1016_j_intermet_2024_108469
crossref_primary_10_1016_j_actamat_2021_117472
crossref_primary_10_1038_s41467_024_49606_1
crossref_primary_10_1016_j_scriptamat_2019_09_020
crossref_primary_10_4028_p_w0F1CK
crossref_primary_10_1016_j_scriptamat_2023_115536
crossref_primary_10_1038_s41586_019_1617_1
crossref_primary_10_1016_j_intermet_2019_106474
crossref_primary_10_1016_j_msea_2022_144319
crossref_primary_10_3390_ma17235932
crossref_primary_10_1007_s10853_020_04387_y
crossref_primary_10_1016_j_mattod_2021_02_022
crossref_primary_10_1557_s43577_023_00567_8
crossref_primary_10_1016_j_jmrt_2024_12_201
crossref_primary_10_1016_j_nanoen_2022_107958
crossref_primary_10_1016_j_actamat_2022_117889
crossref_primary_10_1080_21663831_2022_2144773
crossref_primary_10_1038_s41524_020_00389_1
crossref_primary_10_3390_ma16031044
crossref_primary_10_1016_j_matchar_2024_113645
crossref_primary_10_1016_j_actamat_2023_119230
crossref_primary_10_1016_j_actamat_2023_119472
crossref_primary_10_1016_j_actamat_2023_119471
crossref_primary_10_1016_j_actamat_2023_119591
crossref_primary_10_1016_j_scriptamat_2020_06_019
crossref_primary_10_1007_s12598_024_02852_0
crossref_primary_10_1016_j_actamat_2024_119753
crossref_primary_10_1038_s41529_024_00495_1
crossref_primary_10_1016_j_commatsci_2024_112836
crossref_primary_10_1016_j_jmst_2020_08_058
crossref_primary_10_1016_j_triboint_2024_109392
crossref_primary_10_1016_j_actamat_2021_117615
crossref_primary_10_1038_s41467_019_11464_7
crossref_primary_10_1073_pnas_2209188120
crossref_primary_10_2355_isijinternational_ISIJINT_2020_504
crossref_primary_10_1007_s11661_021_06263_z
crossref_primary_10_1016_j_jallcom_2023_171547
crossref_primary_10_1016_j_matpr_2020_12_023
crossref_primary_10_1016_j_jmst_2021_02_034
crossref_primary_10_1016_j_commatsci_2023_112680
crossref_primary_10_1016_j_matchar_2022_111779
crossref_primary_10_1016_j_jallcom_2021_161289
crossref_primary_10_1016_j_scriptamat_2020_06_008
crossref_primary_10_1016_j_msea_2021_141181
crossref_primary_10_1007_s11837_019_03705_3
crossref_primary_10_2320_matertrans_MT_M2023071
crossref_primary_10_1016_j_scriptamat_2023_115632
crossref_primary_10_1088_1361_651X_ab435c
crossref_primary_10_1016_j_isci_2023_106209
crossref_primary_10_1088_1361_651X_ab3b62
crossref_primary_10_1016_j_jmrt_2024_07_104
crossref_primary_10_1021_acsami_0c18483
crossref_primary_10_1103_PhysRevMaterials_7_053601
crossref_primary_10_1016_j_pmatsci_2022_101018
crossref_primary_10_3389_fmats_2021_792359
crossref_primary_10_1016_j_actamat_2023_119228
crossref_primary_10_1016_j_actamat_2023_119349
crossref_primary_10_1016_j_jallcom_2022_168093
crossref_primary_10_1063_5_0201673
crossref_primary_10_1016_j_jmst_2024_07_024
crossref_primary_10_1016_j_matchar_2022_111884
crossref_primary_10_1038_s41524_024_01393_5
crossref_primary_10_1016_j_intermet_2022_107462
crossref_primary_10_1016_j_intermet_2023_107882
crossref_primary_10_1103_PhysRevMaterials_5_103604
crossref_primary_10_1016_j_actamat_2023_119583
crossref_primary_10_1038_s41467_020_14641_1
crossref_primary_10_7566_JPSJ_88_054803
crossref_primary_10_1016_j_intermet_2020_106919
crossref_primary_10_1016_j_actamat_2024_119775
crossref_primary_10_1557_s43577_022_00280_y
crossref_primary_10_1021_acs_chemrev_1c00387
crossref_primary_10_1016_j_jmst_2022_12_011
crossref_primary_10_1016_j_ijplas_2024_103980
crossref_primary_10_1002_adem_202400990
crossref_primary_10_1002_anie_202017076
crossref_primary_10_1103_PhysRevMaterials_6_113804
crossref_primary_10_1016_j_jallcom_2023_170555
crossref_primary_10_1016_j_scriptamat_2020_113633
crossref_primary_10_1038_s41467_022_34471_7
crossref_primary_10_1016_j_compositesb_2021_108837
crossref_primary_10_1038_s41563_023_01636_8
crossref_primary_10_1016_j_ijplas_2022_103389
crossref_primary_10_1016_j_jallcom_2020_156321
crossref_primary_10_1016_j_addma_2024_104332
crossref_primary_10_1016_j_msea_2024_147543
crossref_primary_10_1016_j_jmst_2022_05_062
crossref_primary_10_1016_j_ijplas_2021_102944
crossref_primary_10_1016_j_msea_2021_141085
crossref_primary_10_1073_pnas_2023181118
crossref_primary_10_1007_s11661_025_07728_1
crossref_primary_10_2139_ssrn_4060462
crossref_primary_10_1016_j_cej_2024_156419
crossref_primary_10_1016_j_actamat_2023_119248
crossref_primary_10_2320_matertrans_MT_M2023043
crossref_primary_10_1038_s41524_020_0321_x
crossref_primary_10_1016_j_actamat_2023_119031
crossref_primary_10_1016_j_actamat_2023_119030
crossref_primary_10_1016_j_commatsci_2023_112598
crossref_primary_10_2139_ssrn_4015204
crossref_primary_10_1016_j_apsusc_2024_160730
crossref_primary_10_1021_acs_nanolett_0c04244
crossref_primary_10_1016_j_msea_2022_143959
crossref_primary_10_1016_j_jallcom_2023_169016
crossref_primary_10_1016_j_mtcomm_2020_101902
crossref_primary_10_1039_D2ME00045H
crossref_primary_10_1002_mgea_7
crossref_primary_10_1002_adfm_202418722
crossref_primary_10_1038_s41467_022_34470_8
crossref_primary_10_1016_j_jmst_2025_01_023
crossref_primary_10_1063_5_0122675
crossref_primary_10_1080_21663831_2019_1644683
crossref_primary_10_1016_j_msea_2021_141124
crossref_primary_10_54227_mlab_20220035
crossref_primary_10_1016_j_jmst_2023_07_050
crossref_primary_10_1016_j_jallcom_2023_171462
crossref_primary_10_1016_j_jallcom_2022_165747
crossref_primary_10_1038_s43588_023_00407_4
crossref_primary_10_1016_j_matchar_2024_114203
crossref_primary_10_1016_j_mtla_2019_100565
crossref_primary_10_1016_j_scriptamat_2019_02_038
crossref_primary_10_1016_j_compositesb_2023_110651
crossref_primary_10_1016_j_jmst_2020_10_078
crossref_primary_10_1063_5_0177256
crossref_primary_10_3390_modelling5010019
crossref_primary_10_3389_fmats_2022_1118952
crossref_primary_10_1016_j_actamat_2021_117527
crossref_primary_10_1016_j_jallcom_2023_170025
crossref_primary_10_1016_j_jallcom_2020_156633
crossref_primary_10_3389_fmats_2020_575262
crossref_primary_10_3390_met15030247
crossref_primary_10_1103_PhysRevMaterials_7_053801
crossref_primary_10_1016_j_actamat_2023_119389
crossref_primary_10_1016_j_matdes_2020_109396
crossref_primary_10_1007_s44210_022_00008_2
crossref_primary_10_1103_PhysRevMaterials_5_104606
crossref_primary_10_1016_j_matchemphys_2023_128667
crossref_primary_10_2139_ssrn_4195385
crossref_primary_10_1016_j_commatsci_2023_112456
crossref_primary_10_1016_j_matchar_2024_114357
crossref_primary_10_3390_met14050560
crossref_primary_10_1103_PhysRevB_107_094109
crossref_primary_10_2139_ssrn_4105267
crossref_primary_10_1002_adfm_202408941
crossref_primary_10_1016_j_actamat_2021_116786
crossref_primary_10_7498_aps_74_20250097
crossref_primary_10_1038_s41467_023_43314_y
crossref_primary_10_1038_s41524_024_01439_8
crossref_primary_10_1016_j_jallcom_2025_178559
crossref_primary_10_1016_j_intermet_2020_106844
crossref_primary_10_1016_j_actamat_2023_119179
crossref_primary_10_1016_j_ijplas_2020_102850
crossref_primary_10_2320_matertrans_MT_M2022021
crossref_primary_10_1038_s41524_023_01046_z
crossref_primary_10_2320_matertrans_MT_M2021191
crossref_primary_10_1002_adem_202400827
crossref_primary_10_1016_j_actamat_2023_119041
crossref_primary_10_1016_j_jmst_2020_06_018
crossref_primary_10_1016_j_mtsust_2024_100694
crossref_primary_10_1016_j_scriptamat_2019_02_015
crossref_primary_10_1073_pnas_2218673120
crossref_primary_10_1016_j_mtla_2021_101258
crossref_primary_10_1016_j_jmst_2021_10_034
crossref_primary_10_1126_science_abm0120
crossref_primary_10_1016_j_actamat_2021_117504
crossref_primary_10_1038_s41586_021_03428_z
crossref_primary_10_1063_5_0069086
crossref_primary_10_1016_j_pmatsci_2020_100709
crossref_primary_10_2139_ssrn_4103093
crossref_primary_10_1016_j_actamat_2024_120209
crossref_primary_10_1016_j_addma_2024_104243
crossref_primary_10_3390_nano10010059
crossref_primary_10_1016_j_actamat_2022_118380
crossref_primary_10_1103_PhysRevMaterials_4_103612
crossref_primary_10_1021_acs_jpclett_4c03628
crossref_primary_10_1016_j_jmst_2022_06_047
crossref_primary_10_1038_s41467_024_52018_w
crossref_primary_10_1021_acsnano_4c03435
crossref_primary_10_1016_j_intermet_2022_107753
crossref_primary_10_1002_advs_202304122
crossref_primary_10_1016_j_commatsci_2022_111218
crossref_primary_10_1016_j_actamat_2021_116801
crossref_primary_10_1016_j_pmatsci_2018_12_003
crossref_primary_10_1016_j_actamat_2021_116800
crossref_primary_10_1063_5_0135538
crossref_primary_10_1103_PhysRevMaterials_7_073606
crossref_primary_10_1016_j_msea_2024_146995
crossref_primary_10_1039_D2TA03338K
crossref_primary_10_1016_j_actamat_2019_12_015
crossref_primary_10_1016_S1003_6326_24_66651_3
crossref_primary_10_1126_science_abj8114
crossref_primary_10_1016_j_ijplas_2021_102997
crossref_primary_10_1088_1361_651X_ab7f8b
crossref_primary_10_1016_j_actamat_2022_118022
crossref_primary_10_1103_PhysRevMaterials_4_023608
crossref_primary_10_2139_ssrn_4020821
crossref_primary_10_1016_j_jmst_2024_11_067
crossref_primary_10_1093_pnasnexus_pgac282
crossref_primary_10_3390_met13030594
crossref_primary_10_1080_02670836_2020_1851437
crossref_primary_10_1016_j_jallcom_2024_174005
crossref_primary_10_1016_j_scriptamat_2019_12_004
crossref_primary_10_1016_j_intermet_2022_107747
crossref_primary_10_1063_5_0231343
crossref_primary_10_1073_pnas_2114167118
crossref_primary_10_1016_j_comptc_2024_114815
crossref_primary_10_1016_j_mattod_2024_10_004
crossref_primary_10_1088_2053_1591_ab7a64
crossref_primary_10_3390_met11122054
crossref_primary_10_1016_j_actamat_2022_118159
crossref_primary_10_1016_j_pnsc_2024_02_007
crossref_primary_10_1063_1_5045216
crossref_primary_10_1073_pnas_2211787120
crossref_primary_10_1016_j_mtnano_2021_100139
crossref_primary_10_1016_j_intermet_2021_107125
crossref_primary_10_1126_sciadv_adn2877
crossref_primary_10_1016_j_jmst_2021_08_075
crossref_primary_10_3390_cryst12081084
crossref_primary_10_1038_s43246_022_00289_5
crossref_primary_10_1016_j_jallcom_2021_161314
crossref_primary_10_1016_j_jallcom_2020_156838
crossref_primary_10_1038_s41598_020_60013_6
crossref_primary_10_1016_j_matchar_2021_111437
crossref_primary_10_3390_ma13030578
crossref_primary_10_1016_j_jmst_2024_09_008
crossref_primary_10_1016_j_mtcomm_2023_106214
crossref_primary_10_1016_j_actamat_2023_119531
crossref_primary_10_1016_j_actamat_2025_120713
crossref_primary_10_1002_advs_202100870
crossref_primary_10_1016_j_msea_2022_142854
crossref_primary_10_1016_j_matlet_2020_128821
crossref_primary_10_1016_j_msea_2022_142856
crossref_primary_10_1016_j_mtla_2021_101059
crossref_primary_10_1016_j_jallcom_2023_169745
crossref_primary_10_1016_j_jmst_2021_07_019
crossref_primary_10_1016_j_mtphys_2024_101468
crossref_primary_10_1016_j_mtla_2022_101476
crossref_primary_10_1002_adem_202400341
crossref_primary_10_1038_s41467_024_47927_9
crossref_primary_10_1016_j_actamat_2019_12_003
crossref_primary_10_1016_j_actamat_2023_118678
crossref_primary_10_1016_j_actamat_2023_119404
crossref_primary_10_1016_j_commatsci_2022_111787
crossref_primary_10_1016_j_actamat_2020_08_044
crossref_primary_10_1016_j_intermet_2021_107345
crossref_primary_10_1016_j_jallcom_2024_176321
crossref_primary_10_1007_s10853_022_07066_2
crossref_primary_10_3390_ma16165579
crossref_primary_10_1016_j_jmrt_2024_03_011
crossref_primary_10_1016_j_actamat_2021_116958
crossref_primary_10_1016_j_commatsci_2024_112912
crossref_primary_10_1016_j_msea_2022_142906
crossref_primary_10_1016_j_intermet_2021_107275
crossref_primary_10_1016_j_mtcomm_2023_106630
crossref_primary_10_1016_j_mtcomm_2022_104059
crossref_primary_10_1038_s44160_024_00690_7
crossref_primary_10_1103_PhysRevResearch_6_013146
crossref_primary_10_2320_matertrans_MT_M2021234
crossref_primary_10_5940_jcrsj_65_172
crossref_primary_10_1016_j_ijplas_2021_102951
crossref_primary_10_1016_j_scriptamat_2024_116381
crossref_primary_10_2320_matertrans_MT_M2020144
crossref_primary_10_1103_PhysRevMaterials_8_013601
crossref_primary_10_1002_smll_202310615
crossref_primary_10_1103_PhysRevMaterials_5_113608
crossref_primary_10_1038_s41586_023_06785_z
crossref_primary_10_1016_j_actamat_2021_116829
crossref_primary_10_1002_advs_202407283
crossref_primary_10_1016_j_ijplas_2024_104200
crossref_primary_10_1007_s12613_024_2884_x
crossref_primary_10_1016_j_mtphys_2023_101062
crossref_primary_10_1039_D3RA07313K
crossref_primary_10_1080_21663831_2023_2208166
crossref_primary_10_1016_j_mtnano_2024_100511
crossref_primary_10_1038_s41467_024_45696_z
crossref_primary_10_1038_s41467_022_28687_w
crossref_primary_10_1038_s41467_022_30524_z
crossref_primary_10_1016_j_jmst_2021_07_042
crossref_primary_10_1016_j_jmst_2022_08_034
crossref_primary_10_1016_j_jmst_2022_08_033
crossref_primary_10_1016_j_scriptamat_2025_116559
crossref_primary_10_1038_s41563_023_01570_9
crossref_primary_10_1016_j_rinp_2022_105285
crossref_primary_10_1038_s41563_023_01517_0
crossref_primary_10_1016_j_actamat_2021_116938
crossref_primary_10_1016_j_actamat_2020_07_066
crossref_primary_10_2320_matertrans_MT_MA2024011
crossref_primary_10_1103_PhysRevB_105_115124
crossref_primary_10_1073_pnas_2409317121
crossref_primary_10_1360_SST_2023_0057
crossref_primary_10_1088_1361_651X_aca4ed
crossref_primary_10_1016_j_ijfatigue_2019_105418
crossref_primary_10_2320_matertrans_MT_MA2024008
crossref_primary_10_1016_j_ijplas_2024_104112
crossref_primary_10_2320_matertrans_MT_MA2024001
crossref_primary_10_2320_matertrans_MT_MA2024003
crossref_primary_10_1016_j_cossms_2022_101032
crossref_primary_10_1016_j_jmst_2023_01_042
crossref_primary_10_1016_j_scriptamat_2025_116561
crossref_primary_10_1016_j_intermet_2022_107693
crossref_primary_10_1016_j_matchar_2022_111798
crossref_primary_10_1016_j_actamat_2022_118165
crossref_primary_10_1038_s41529_021_00163_8
crossref_primary_10_1016_j_surfcoat_2023_129407
crossref_primary_10_1016_j_actamat_2020_07_050
crossref_primary_10_1016_j_jallcom_2023_171734
crossref_primary_10_5940_jcrsj_65_183
crossref_primary_10_1016_j_jmrt_2021_09_095
Cites_doi 10.1016/j.actamat.2016.08.081
10.1016/j.mattod.2016.04.001
10.1103/PhysRevLett.118.205501
10.1007/s11661-013-2000-8
10.1038/s41467-018-03846-0
10.1126/science.1254581
10.1103/PhysRevB.49.14251
10.1016/j.msea.2003.10.257
10.1038/ncomms15687
10.1016/j.scriptamat.2016.11.014
10.1103/PhysRevLett.77.3865
10.1080/09506608.2016.1180020
10.1038/ncomms9736
10.1038/ncomms10602
10.1038/ncomms6964
10.1038/ncomms13564
10.1016/j.actamat.2016.03.045
10.1016/j.mser.2017.09.002
10.1016/j.actamat.2017.05.001
10.1016/j.actamat.2016.07.038
10.1103/PhysRevLett.65.353
10.1038/ncomms7529
10.1016/j.actamat.2018.02.037
10.1038/ncomms14390
10.1016/j.actamat.2017.04.033
10.1016/j.scriptamat.2017.09.049
10.1016/j.actamat.2013.04.059
10.1063/1.4922994
10.1103/PhysRevB.47.558
10.1038/nature17981
10.1103/PhysRevB.59.1758
10.1016/j.actamat.2017.02.027
10.1103/PhysRevLett.116.135504
10.1093/biomet/57.1.97
10.1016/j.actamat.2017.02.036
10.1016/j.pmatsci.2013.10.001
10.1103/PhysRevB.13.5188
10.1038/ncomms10143
10.1016/j.actamat.2015.08.050
10.1016/j.actamat.2015.08.015
10.1002/adem.200300567
ContentType Journal Article
Copyright Volumes 1–89 and 106–115, copyright as a collective work only; author(s) retains copyright to individual articles
Copyright National Academy of Sciences Sep 4, 2018
2018
Copyright_xml – notice: Volumes 1–89 and 106–115, copyright as a collective work only; author(s) retains copyright to individual articles
– notice: Copyright National Academy of Sciences Sep 4, 2018
– notice: 2018
CorporateAuthor Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)
Univ. of California, Oakland, CA (United States)
CorporateAuthor_xml – name: Univ. of California, Oakland, CA (United States)
– name: Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)
DBID AAYXX
CITATION
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
OIOZB
OTOTI
5PM
DOI 10.1073/pnas.1808660115
DatabaseName CrossRef
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
OSTI.GOV - Hybrid
OSTI.GOV
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef
PubMed
Virology and AIDS Abstracts



MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 8924
ExternalDocumentID PMC6130406
1543914
30127034
10_1073_pnas_1808660115
26531207
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GrantInformation_xml – fundername: National Energy Research Computing Center
  grantid: DE-AC02-05CH11231
– fundername: US Department of Engergy, Office of Science
  grantid: DE-AC02-05CH11231
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
AAYXX
CITATION
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
79B
AAPBV
ABPTK
ADZLD
ASUFR
DNJUQ
DOOOF
DWIUU
JSODD
OIOZB
OTOTI
RHF
VQA
ZA5
5PM
ID FETCH-LOGICAL-c495t-3280a0a43f7a6023b543d3a9284a07a0d6d1cccb5d908775aaf14f670410cea13
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 18:11:52 EDT 2025
Wed Nov 29 06:11:49 EST 2023
Fri Jul 11 05:41:16 EDT 2025
Mon Jun 30 08:24:51 EDT 2025
Thu Apr 03 07:03:06 EDT 2025
Thu Apr 24 22:55:12 EDT 2025
Tue Jul 01 03:19:53 EDT 2025
Fri May 30 11:18:43 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 36
Keywords transformation-induced plasticity
local chemical order
medium-entropy alloys
stacking fault energy
Language English
License Published under the PNAS license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c495t-3280a0a43f7a6023b543d3a9284a07a0d6d1cccb5d908775aaf14f670410cea13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22). Materials Sciences & Engineering Division
AC02-05CH11231
Author contributions: J.D., M.A., and R.O.R. designed research; J.D. and Q.Y. performed research; J.D. analyzed data; and J.D., M.A., and R.O.R. wrote the paper.
Edited by William D. Nix, Stanford University, Stanford, CA, and approved July 25, 2018 (received for review May 20, 2018)
ORCID 0000-0002-0501-6998
0000-0002-4091-8663
0000000205016998
0000000240918663
OpenAccessLink https://www.osti.gov/servlets/purl/1543914
PMID 30127034
PQID 2110461126
PQPubID 42026
PageCount 6
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6130406
osti_scitechconnect_1543914
proquest_miscellaneous_2091241694
proquest_journals_2110461126
pubmed_primary_30127034
crossref_primary_10_1073_pnas_1808660115
crossref_citationtrail_10_1073_pnas_1808660115
jstor_primary_26531207
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-09-04
PublicationDateYYYYMMDD 2018-09-04
PublicationDate_xml – month: 09
  year: 2018
  text: 2018-09-04
  day: 04
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2018
Publisher National Academy of Sciences
National Academy of Sciences, Washington, DC (United States)
Publisher_xml – name: National Academy of Sciences
– name: National Academy of Sciences, Washington, DC (United States)
References Warren BE (e_1_3_3_24_2) 1990
Claudia M (e_1_3_3_35_2) 2015; 5
e_1_3_3_17_2
e_1_3_3_16_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_32_2
Hirth JP (e_1_3_3_14_2) 1982
e_1_3_3_33_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_40_2
Olson GB (e_1_3_3_29_2) 1976; 7
e_1_3_3_6_2
e_1_3_3_5_2
e_1_3_3_8_2
e_1_3_3_7_2
e_1_3_3_28_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_23_2
e_1_3_3_26_2
e_1_3_3_45_2
e_1_3_3_25_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_43_2
e_1_3_3_1_2
e_1_3_3_44_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_42_2
References_xml – ident: e_1_3_3_5_2
  doi: 10.1016/j.actamat.2016.08.081
– ident: e_1_3_3_19_2
  doi: 10.1016/j.mattod.2016.04.001
– ident: e_1_3_3_21_2
  doi: 10.1103/PhysRevLett.118.205501
– ident: e_1_3_3_23_2
  doi: 10.1007/s11661-013-2000-8
– ident: e_1_3_3_18_2
  doi: 10.1038/s41467-018-03846-0
– ident: e_1_3_3_6_2
  doi: 10.1126/science.1254581
– ident: e_1_3_3_41_2
  doi: 10.1103/PhysRevB.49.14251
– ident: e_1_3_3_2_2
  doi: 10.1016/j.msea.2003.10.257
– ident: e_1_3_3_16_2
  doi: 10.1038/ncomms15687
– ident: e_1_3_3_25_2
  doi: 10.1016/j.scriptamat.2016.11.014
– ident: e_1_3_3_44_2
  doi: 10.1103/PhysRevLett.77.3865
– ident: e_1_3_3_4_2
  doi: 10.1080/09506608.2016.1180020
– ident: e_1_3_3_36_2
  doi: 10.1038/ncomms9736
– ident: e_1_3_3_7_2
  doi: 10.1038/ncomms10602
– volume: 5
  start-page: 011041
  year: 2015
  ident: e_1_3_3_35_2
  article-title: Criterion for predicting the formation of single-phase high-entropy alloys
  publication-title: Phys Rev X
– ident: e_1_3_3_32_2
  doi: 10.1038/ncomms6964
– ident: e_1_3_3_38_2
  doi: 10.1038/ncomms13564
– ident: e_1_3_3_12_2
  doi: 10.1016/j.actamat.2016.03.045
– ident: e_1_3_3_15_2
  doi: 10.1016/j.mser.2017.09.002
– ident: e_1_3_3_17_2
  doi: 10.1016/j.actamat.2017.05.001
– ident: e_1_3_3_8_2
  doi: 10.1016/j.actamat.2016.07.038
– ident: e_1_3_3_39_2
  doi: 10.1103/PhysRevLett.65.353
– volume-title: Theory of Dislocations
  year: 1982
  ident: e_1_3_3_14_2
– ident: e_1_3_3_34_2
  doi: 10.1038/ncomms7529
– ident: e_1_3_3_26_2
  doi: 10.1016/j.actamat.2018.02.037
– ident: e_1_3_3_11_2
  doi: 10.1038/ncomms14390
– ident: e_1_3_3_13_2
  doi: 10.1016/j.actamat.2017.04.033
– volume: 7
  start-page: 1897
  year: 1976
  ident: e_1_3_3_29_2
  article-title: A general mechanism of martensitic nucleation: Part I. General concepts and the FCC -> HCP transformation
  publication-title: Metall Trans A Phys Metall Mater Sci
– ident: e_1_3_3_22_2
  doi: 10.1016/j.scriptamat.2017.09.049
– ident: e_1_3_3_30_2
  doi: 10.1016/j.actamat.2013.04.059
– volume-title: X-Ray Diffraction
  year: 1990
  ident: e_1_3_3_24_2
– ident: e_1_3_3_31_2
  doi: 10.1063/1.4922994
– ident: e_1_3_3_40_2
  doi: 10.1103/PhysRevB.47.558
– ident: e_1_3_3_33_2
  doi: 10.1038/nature17981
– ident: e_1_3_3_42_2
  doi: 10.1103/PhysRevB.59.1758
– ident: e_1_3_3_27_2
  doi: 10.1016/j.actamat.2017.02.027
– ident: e_1_3_3_37_2
  doi: 10.1103/PhysRevLett.116.135504
– ident: e_1_3_3_45_2
  doi: 10.1093/biomet/57.1.97
– ident: e_1_3_3_9_2
  doi: 10.1016/j.actamat.2017.02.036
– ident: e_1_3_3_3_2
  doi: 10.1016/j.pmatsci.2013.10.001
– ident: e_1_3_3_43_2
  doi: 10.1103/PhysRevB.13.5188
– ident: e_1_3_3_10_2
  doi: 10.1038/ncomms10143
– ident: e_1_3_3_28_2
  doi: 10.1016/j.actamat.2015.08.050
– ident: e_1_3_3_20_2
  doi: 10.1016/j.actamat.2015.08.015
– ident: e_1_3_3_1_2
  doi: 10.1002/adem.200300567
SSID ssj0009580
Score 2.6911294
Snippet High-entropy alloys (HEAs) are an intriguing new class of metallic materials due to their unique mechanical behavior. Achieving a detailed understanding of...
Our work has revealed the nature of local chemical order and has established its significant relationship to the intrinsic and extrinsic stacking fault energy...
SourceID pubmedcentral
osti
proquest
pubmed
crossref
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 8919
SubjectTerms Alloys
Ductility
Entropy
Entropy of solution
First principles
High entropy alloys
local chemical order
MATERIALS SCIENCE
Mechanical properties
Medium entropy alloys
Organic chemistry
Other Topics
Physical Sciences
Science & Technology
Short range order
Stacking
Stacking fault energy
transformation-induced plasticity
Title Tunable stacking fault energies by tailoring local chemical order in CrCoNi medium-entropy alloys
URI https://www.jstor.org/stable/26531207
https://www.ncbi.nlm.nih.gov/pubmed/30127034
https://www.proquest.com/docview/2110461126
https://www.proquest.com/docview/2091241694
https://www.osti.gov/servlets/purl/1543914
https://pubmed.ncbi.nlm.nih.gov/PMC6130406
Volume 115
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfKuHBBDBiEDWQkDkNRShI7TnKsBmiaRBlok8YpchxHRIx0WpND-YP4O3n-iJuWTRpcqspx3abvl_dhv_d7CL1hdZJVMSEBU5sblFLQg5WUAa_KKCqllLUupP00Z8fn9OQiuZhMfo-ylvqunIpfN9aV_I9UYQzkqqpk_0GyblEYgPcgX3gFCcPr3WTcm8on8PDED50SyfvLzldM0or9QbuWvLE5dtpq-WIgCNCcm7rm7_poMW_0IXv_M1CbvYurla_O41fLset66kzdckgsmA87ibN1XYpVFks_8E_n6y7H723vlJPeofFbrwa-NG5gZl3Zcf3Q1wZgZc5QTBK4_3k63qmIdFqF6S3sKgcACdTUTE-lUbjgrwSMmpahTiObCk8LPTJWsFluNaw11rlZ7S9DAJpLdS9u-XIaZRC2sXBYdINye8sUugRFfTSfkkItUKwXuIfuxxCOxNoAjMmdM1PqZO9voJBKybutX7Dh_ZgEWPAFFqDNb4pwthN1R57P2SP00IYseGbwt4smsn2Mdgc540PLXP72CeIWkHgAJNaAxAMgcbnCDpBYAxIPgMQakLhpsQEk3gQkNoB8is4_fjg7Og5sD49AQOjdBSTOQh5ySuqUM_APy4SSivAcvCIepjysWBUJIcqkyhU1ZcJ5HdGapSGNQiF5RPbQTrto5XOE00qGIqxiynJQKRAUlhBLpHUdZjKqEkY8NB3-20JYgnvVZ-WyuEWaHjp0H7gy3C63T93TwnLzYgbGKw5TD-0r6RXgryrSZaGy00RXQGBC8oh66GAQamH1xrJQWy6UqdI9D712l0Grq6M63spFD3PgsQDfGu7UQ88MBtxXE50tQuBKuoEON0Exxm9eaZvvmjlebRaAB__i7je-jx6sH-UDtNNd9_IluOFd-Uo_A38Afi7bgw
linkProvider ABC ChemistRy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tunable+stacking+fault+energies+by+tailoring+local+chemical+order+in+CrCoNi+medium-entropy+alloys&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Ding%2C+Jun&rft.au=Yu%2C+Qin&rft.au=Asta%2C+Mark&rft.au=Ritchie%2C+Robert+O.&rft.date=2018-09-04&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=115&rft.issue=36&rft.spage=8919&rft.epage=8924&rft_id=info:doi/10.1073%2Fpnas.1808660115&rft.externalDBID=n%2Fa&rft.externalDocID=10_1073_pnas_1808660115
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon