Evidence that transcranial direct current stimulation (tDCS) generates little-to-no reliable neurophysiologic effect beyond MEP amplitude modulation in healthy human subjects: A systematic review

Transcranial direct current stimulation (tDCS) is a form of neuromodulation that is increasingly being utilized to examine and modify a number of cognitive and behavioral measures. The theoretical mechanisms by which tDCS generates these changes are predicated upon a rather large neurophysiological...

Full description

Saved in:
Bibliographic Details
Published inNeuropsychologia Vol. 66; pp. 213 - 236
Main Authors Horvath, Jared Cooney, Forte, Jason D., Carter, Olivia
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.01.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Transcranial direct current stimulation (tDCS) is a form of neuromodulation that is increasingly being utilized to examine and modify a number of cognitive and behavioral measures. The theoretical mechanisms by which tDCS generates these changes are predicated upon a rather large neurophysiological literature. However, a robust systematic review of this neurophysiological data has not yet been undertaken. tDCS data in healthy adults (18–50) from every neurophysiological outcome measure reported by at least two different research groups in the literature was collected. When possible, data was pooled and quantitatively analyzed to assess significance. When pooling was not possible, data was qualitatively compared to assess reliability. Of the 30 neurophysiological outcome measures reported by at least two different research groups, tDCS was found to have a reliable effect on only one: MEP amplitude. Interestingly, the magnitude of this effect has been significantly decreasing over the last 14 years. Our systematic review does not support the idea that tDCS has a reliable neurophysiological effect beyond MEP amplitude modulation – though important limitations of this review (and conclusion) are discussed. This work raises questions concerning the mechanistic foundations and general efficacy of this device – the implications of which extend to the steadily increasing tDCS psychological literature. •Of 30 poolable neurophysiologic measures, tDCS has a significant effect on only one.•The effect of tDCS on MEP amplitude has been significantly decreasing since 2000.•tDCS does not appear to generate reliable neurophysiologic effects beyond MEPs.
AbstractList Background: Transcranial direct current stimulation (tDCS) is a form of neuromodulation that is increasingly being utilized to examine and modify a number of cognitive and behavioral measures. The theoretical mechanisms by which tDCS generates these changes are predicated upon a rather large neurophysiological literature. However, a robust systematic review of this neurophysiological data has not yet been undertaken. Methods: tDCS data in healthy adults (18-50) from every neurophysiological outcome measure reported by at least two different research groups in the literature was collected. When possible, data was pooled and quantitatively analyzed to assess significance. When pooling was not possible, data was qualitatively compared to assess reliability. Results: Of the 30 neurophysiological outcome measures reported by at least two different research groups, tDCS was found to have a reliable effect on only one: MEP amplitude. Interestingly, the magnitude of this effect has been significantly decreasing over the last 14 years. Conclusion: Our systematic review does not support the idea that tDCS has a reliable neurophysiological effect beyond MEP amplitude modulation - though important limitations of this review (and conclusion) are discussed. This work raises questions concerning the mechanistic foundations and general efficacy of this device - the implications of which extend to the steadily increasing tDCS psychological literature.
Transcranial direct current stimulation (tDCS) is a form of neuromodulation that is increasingly being utilized to examine and modify a number of cognitive and behavioral measures. The theoretical mechanisms by which tDCS generates these changes are predicated upon a rather large neurophysiological literature. However, a robust systematic review of this neurophysiological data has not yet been undertaken.BACKGROUNDTranscranial direct current stimulation (tDCS) is a form of neuromodulation that is increasingly being utilized to examine and modify a number of cognitive and behavioral measures. The theoretical mechanisms by which tDCS generates these changes are predicated upon a rather large neurophysiological literature. However, a robust systematic review of this neurophysiological data has not yet been undertaken.tDCS data in healthy adults (18-50) from every neurophysiological outcome measure reported by at least two different research groups in the literature was collected. When possible, data was pooled and quantitatively analyzed to assess significance. When pooling was not possible, data was qualitatively compared to assess reliability.METHODStDCS data in healthy adults (18-50) from every neurophysiological outcome measure reported by at least two different research groups in the literature was collected. When possible, data was pooled and quantitatively analyzed to assess significance. When pooling was not possible, data was qualitatively compared to assess reliability.Of the 30 neurophysiological outcome measures reported by at least two different research groups, tDCS was found to have a reliable effect on only one: MEP amplitude. Interestingly, the magnitude of this effect has been significantly decreasing over the last 14 years.RESULTSOf the 30 neurophysiological outcome measures reported by at least two different research groups, tDCS was found to have a reliable effect on only one: MEP amplitude. Interestingly, the magnitude of this effect has been significantly decreasing over the last 14 years.Our systematic review does not support the idea that tDCS has a reliable neurophysiological effect beyond MEP amplitude modulation - though important limitations of this review (and conclusion) are discussed. This work raises questions concerning the mechanistic foundations and general efficacy of this device - the implications of which extend to the steadily increasing tDCS psychological literature.CONCLUSIONOur systematic review does not support the idea that tDCS has a reliable neurophysiological effect beyond MEP amplitude modulation - though important limitations of this review (and conclusion) are discussed. This work raises questions concerning the mechanistic foundations and general efficacy of this device - the implications of which extend to the steadily increasing tDCS psychological literature.
Transcranial direct current stimulation (tDCS) is a form of neuromodulation that is increasingly being utilized to examine and modify a number of cognitive and behavioral measures. The theoretical mechanisms by which tDCS generates these changes are predicated upon a rather large neurophysiological literature. However, a robust systematic review of this neurophysiological data has not yet been undertaken. tDCS data in healthy adults (18-50) from every neurophysiological outcome measure reported by at least two different research groups in the literature was collected. When possible, data was pooled and quantitatively analyzed to assess significance. When pooling was not possible, data was qualitatively compared to assess reliability. Of the 30 neurophysiological outcome measures reported by at least two different research groups, tDCS was found to have a reliable effect on only one: MEP amplitude. Interestingly, the magnitude of this effect has been significantly decreasing over the last 14 years. Our systematic review does not support the idea that tDCS has a reliable neurophysiological effect beyond MEP amplitude modulation - though important limitations of this review (and conclusion) are discussed. This work raises questions concerning the mechanistic foundations and general efficacy of this device - the implications of which extend to the steadily increasing tDCS psychological literature.
Transcranial direct current stimulation (tDCS) is a form of neuromodulation that is increasingly being utilized to examine and modify a number of cognitive and behavioral measures. The theoretical mechanisms by which tDCS generates these changes are predicated upon a rather large neurophysiological literature. However, a robust systematic review of this neurophysiological data has not yet been undertaken. tDCS data in healthy adults (18–50) from every neurophysiological outcome measure reported by at least two different research groups in the literature was collected. When possible, data was pooled and quantitatively analyzed to assess significance. When pooling was not possible, data was qualitatively compared to assess reliability. Of the 30 neurophysiological outcome measures reported by at least two different research groups, tDCS was found to have a reliable effect on only one: MEP amplitude. Interestingly, the magnitude of this effect has been significantly decreasing over the last 14 years. Our systematic review does not support the idea that tDCS has a reliable neurophysiological effect beyond MEP amplitude modulation – though important limitations of this review (and conclusion) are discussed. This work raises questions concerning the mechanistic foundations and general efficacy of this device – the implications of which extend to the steadily increasing tDCS psychological literature. •Of 30 poolable neurophysiologic measures, tDCS has a significant effect on only one.•The effect of tDCS on MEP amplitude has been significantly decreasing since 2000.•tDCS does not appear to generate reliable neurophysiologic effects beyond MEPs.
Author Forte, Jason D.
Horvath, Jared Cooney
Carter, Olivia
Author_xml – sequence: 1
  givenname: Jared Cooney
  surname: Horvath
  fullname: Horvath, Jared Cooney
  email: jared.cooney.horvath@gmail.com
– sequence: 2
  givenname: Jason D.
  surname: Forte
  fullname: Forte, Jason D.
– sequence: 3
  givenname: Olivia
  surname: Carter
  fullname: Carter, Olivia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25448853$$D View this record in MEDLINE/PubMed
BookMark eNqNkkFv0zAYhi00xLrBX0A-oXFIsR07TTggTV1hSEMgAWfLcb4srhy72M5Qfh9_DHddLzv1Yl8eP9-n1-8FOnPeAULvKFlSQqsP26WDKfhdnPXgrb83askI5UtKl4TRF2hB61VZlILyM7QghNVF2ZTsHF3EuCWEcMHqV-icCc7rWpQL9G_zYDpwGnAaVMIpKBd1PoyyuDMBdMJ6CgFcwjGZcbIqGe_wVbpZ_3yP78FBUAkitiYlC0XyhfM4gDWqtYAPuw5zNI-7agx9v1e2MHvX4W-bH1iNu_x26gCPvjvqjcMDKJuGGQ_TqByOU7vND-NHfI3jHBOMGdR50IOBv6_Ry17ZCG-e7kv0-_Pm1_q2uPv-5ev6-q7QvBGpYLqpOtVSVbU5n0qXNWeqEh0F0jZ9zobSilcADe91L7SoO9Zw0tcVYaqvu7q8RFcH7y74PxPEJEcTNVirHPgpSlpVhBOyWp2CisyKhomMvn1Cp3aETu6CGVWY5fGPMnBzAHTwMQbopTbpMaf8W8ZKSuS-GnIrn1dD7qshKZW5Glnz6ZnmOOlkwe1BADnjnHuQUZt9dQ49kZ03p6r-A1VV5z4
CitedBy_id crossref_primary_10_1016_j_cortex_2017_06_017
crossref_primary_10_1038_s41467_021_22743_7
crossref_primary_10_3389_fnhum_2022_842954
crossref_primary_10_1016_j_arr_2016_05_006
crossref_primary_10_1016_j_neuropsychologia_2015_01_037
crossref_primary_10_1371_journal_pone_0194936
crossref_primary_10_1038_s41593_017_0054_4
crossref_primary_10_1080_17588928_2016_1173664
crossref_primary_10_3233_RNN_211230
crossref_primary_10_1016_j_neuroimage_2016_01_057
crossref_primary_10_1111_ejn_15756
crossref_primary_10_14814_phy2_14264
crossref_primary_10_1038_s41598_021_95084_6
crossref_primary_10_1016_j_brs_2017_12_008
crossref_primary_10_1016_j_clinph_2021_01_020
crossref_primary_10_1088_1741_2552_ab41ba
crossref_primary_10_1007_s11682_019_00195_4
crossref_primary_10_1177_1073858416631966
crossref_primary_10_1016_j_brat_2025_104701
crossref_primary_10_1016_j_brs_2021_02_016
crossref_primary_10_3390_bioengineering10111265
crossref_primary_10_1016_j_appet_2017_03_006
crossref_primary_10_1016_j_neuropsychologia_2015_04_014
crossref_primary_10_3389_fnimg_2024_1341732
crossref_primary_10_1073_pnas_1815958116
crossref_primary_10_3390_ijms21061948
crossref_primary_10_1016_j_bandc_2018_09_008
crossref_primary_10_1016_j_neuropsychologia_2018_10_001
crossref_primary_10_3389_fphys_2017_00090
crossref_primary_10_1016_j_scib_2024_10_001
crossref_primary_10_1016_j_bpsc_2022_09_014
crossref_primary_10_3233_RNN_180872
crossref_primary_10_3389_fnhum_2024_1305446
crossref_primary_10_1007_s00221_020_05842_7
crossref_primary_10_36290_neu_2018_132
crossref_primary_10_1016_j_brainres_2016_03_038
crossref_primary_10_1016_j_brs_2020_04_015
crossref_primary_10_1093_cercor_bhy093
crossref_primary_10_1016_j_clinph_2021_01_011
crossref_primary_10_1016_j_ynirp_2021_100028
crossref_primary_10_1016_j_nicl_2024_103599
crossref_primary_10_1016_j_neubiorev_2016_03_028
crossref_primary_10_1007_s41465_020_00172_6
crossref_primary_10_1016_j_neuropsychologia_2021_107985
crossref_primary_10_1016_j_arcontrol_2022_05_001
crossref_primary_10_1016_j_brs_2015_12_003
crossref_primary_10_1016_j_brs_2019_12_001
crossref_primary_10_3390_brainsci14070694
crossref_primary_10_1016_j_cortex_2019_10_006
crossref_primary_10_1016_j_cortex_2018_08_012
crossref_primary_10_3389_fnhum_2020_588671
crossref_primary_10_1016_j_bandc_2021_105807
crossref_primary_10_1016_j_neubiorev_2021_11_002
crossref_primary_10_1016_j_bandc_2016_06_009
crossref_primary_10_1016_j_neuroimage_2022_119547
crossref_primary_10_1002_jnr_23741
crossref_primary_10_1016_j_yebeh_2015_10_032
crossref_primary_10_3390_brainsci6030026
crossref_primary_10_1111_nyas_13098
crossref_primary_10_1080_00207454_2020_1775594
crossref_primary_10_1016_j_neucli_2018_12_003
crossref_primary_10_1038_s41598_022_22893_8
crossref_primary_10_1111_acer_13841
crossref_primary_10_1016_j_biopsych_2015_11_008
crossref_primary_10_3390_brainsci10110855
crossref_primary_10_3389_fnhum_2017_00448
crossref_primary_10_3390_life13122353
crossref_primary_10_1016_j_neuropsychologia_2021_107854
crossref_primary_10_3233_RNN_150569
crossref_primary_10_1038_s41598_021_85804_3
crossref_primary_10_1016_j_bandl_2020_104791
crossref_primary_10_1038_s41598_021_00850_1
crossref_primary_10_1016_j_neuroimage_2023_120145
crossref_primary_10_1016_j_gaitpost_2023_08_014
crossref_primary_10_1016_j_neurom_2024_05_002
crossref_primary_10_1162_netn_a_00374
crossref_primary_10_1038_s41598_018_35124_w
crossref_primary_10_3390_brainsci12020248
crossref_primary_10_1016_j_ejpn_2023_01_013
crossref_primary_10_1016_j_neulet_2019_05_003
crossref_primary_10_3389_fnins_2021_704880
crossref_primary_10_1016_j_neucli_2017_09_002
crossref_primary_10_1016_j_brs_2016_10_013
crossref_primary_10_1016_j_schres_2018_06_010
crossref_primary_10_1111_ejn_16073
crossref_primary_10_3389_fnagi_2015_00230
crossref_primary_10_3389_fneur_2018_01145
crossref_primary_10_1016_j_neuroscience_2019_03_029
crossref_primary_10_1162_jocn_a_00867
crossref_primary_10_1007_s00221_019_05640_w
crossref_primary_10_3389_fncel_2015_00181
crossref_primary_10_3758_s13415_016_0462_z
crossref_primary_10_1016_j_brs_2015_05_010
crossref_primary_10_1016_j_npbr_2018_10_005
crossref_primary_10_3389_fpsyg_2015_00244
crossref_primary_10_1016_j_neuropsychologia_2016_03_008
crossref_primary_10_1016_j_brs_2017_11_001
crossref_primary_10_1038_s41598_024_59927_2
crossref_primary_10_1016_j_brs_2019_03_008
crossref_primary_10_1002_14651858_CD009645_pub3
crossref_primary_10_1002_14651858_CD009645_pub4
crossref_primary_10_1007_s41465_020_00179_z
crossref_primary_10_1111_ejn_14347
crossref_primary_10_3389_fpsyg_2019_00213
crossref_primary_10_1371_journal_pone_0210873
crossref_primary_10_3389_fnhum_2017_00142
crossref_primary_10_1038_s41598_018_37226_x
crossref_primary_10_1016_j_cortex_2020_08_002
crossref_primary_10_1038_s41598_017_17326_w
crossref_primary_10_3389_fnins_2018_00410
crossref_primary_10_1186_s12984_020_00665_7
crossref_primary_10_3758_s13414_016_1224_2
crossref_primary_10_1016_j_neubiorev_2020_09_005
crossref_primary_10_3390_brainsci10040244
crossref_primary_10_1007_s12311_018_0939_0
crossref_primary_10_1016_j_clinph_2017_06_035
crossref_primary_10_1016_j_brs_2023_11_018
crossref_primary_10_1007_s00221_021_06163_z
crossref_primary_10_1007_s00482_022_00684_4
crossref_primary_10_1007_s11055_023_01354_3
crossref_primary_10_1016_j_schres_2019_07_017
crossref_primary_10_3389_fnhum_2016_00049
crossref_primary_10_3390_brainsci10020082
crossref_primary_10_1016_j_neuroimage_2022_119713
crossref_primary_10_3389_fnhum_2017_00153
crossref_primary_10_1109_TNSRE_2022_3224897
crossref_primary_10_1080_00222895_2023_2184320
crossref_primary_10_1162_jocn_a_01134
crossref_primary_10_1016_j_cortex_2015_05_007
crossref_primary_10_1016_j_jsams_2019_10_015
crossref_primary_10_1097_YCT_0000000000000534
crossref_primary_10_1016_j_brs_2016_03_001
crossref_primary_10_1177_19417381251313775
crossref_primary_10_1016_j_psychsport_2019_04_014
crossref_primary_10_3389_fnagi_2018_00057
crossref_primary_10_3389_fnins_2017_00334
crossref_primary_10_1162_jocn_a_00967
crossref_primary_10_3389_fnins_2018_00083
crossref_primary_10_1016_j_brs_2020_11_005
crossref_primary_10_3390_brainsci10040236
crossref_primary_10_3389_fphar_2019_00032
crossref_primary_10_1073_pnas_1503093112
crossref_primary_10_1088_1741_2552_ab29c5
crossref_primary_10_1016_j_neuroimage_2016_08_020
crossref_primary_10_3389_fpsyt_2017_00147
crossref_primary_10_1016_j_brs_2020_04_007
crossref_primary_10_1007_s40122_023_00554_6
crossref_primary_10_14814_phy2_14087
crossref_primary_10_1016_j_neuropsychologia_2019_107325
crossref_primary_10_1016_j_neuropsychologia_2017_11_028
crossref_primary_10_1016_j_brs_2022_08_024
crossref_primary_10_3171_2017_11_FOCUS17621
crossref_primary_10_1016_j_biopsych_2015_04_016
crossref_primary_10_1016_j_rehab_2018_04_005
crossref_primary_10_1016_j_neulet_2015_06_008
crossref_primary_10_1097_YCT_0000000000000541
crossref_primary_10_3389_fnhum_2020_00056
crossref_primary_10_3342_kjorl_hns_2021_00234
crossref_primary_10_3389_fnins_2018_00433
crossref_primary_10_3390_jcm12072601
crossref_primary_10_1080_17588928_2018_1504014
crossref_primary_10_1007_s10339_022_01076_3
crossref_primary_10_3389_fnins_2017_00664
crossref_primary_10_1117_1_NPh_7_2_020901
crossref_primary_10_1523_ENEURO_0204_19_2019
crossref_primary_10_1249_MSS_0000000000002129
crossref_primary_10_1016_j_ibneur_2021_12_005
crossref_primary_10_1055_a_1198_8525
crossref_primary_10_1287_mnsc_2022_4596
crossref_primary_10_3389_fncel_2016_00092
crossref_primary_10_1016_j_neulet_2023_137442
crossref_primary_10_1038_s41598_022_24618_3
crossref_primary_10_1038_s41598_021_00933_z
crossref_primary_10_3389_fnhum_2016_00384
crossref_primary_10_1016_j_arr_2022_101738
crossref_primary_10_1016_j_neubiorev_2017_11_001
crossref_primary_10_1016_j_neuroimage_2023_119915
crossref_primary_10_1016_j_bpsc_2018_02_002
crossref_primary_10_1016_j_clinph_2017_01_004
crossref_primary_10_1111_ejn_15584
crossref_primary_10_1016_j_brs_2018_06_004
crossref_primary_10_1016_j_clinph_2017_01_003
crossref_primary_10_1016_j_neuroimage_2018_10_069
crossref_primary_10_3389_fnimg_2022_1069500
crossref_primary_10_3389_fnins_2018_00426
crossref_primary_10_1016_j_brs_2018_12_002
crossref_primary_10_1016_j_neubiorev_2017_11_008
crossref_primary_10_1093_brain_awae307
crossref_primary_10_1038_531S6a
crossref_primary_10_1016_j_brs_2016_07_006
crossref_primary_10_1177_10738584221113806
crossref_primary_10_1016_j_brs_2017_09_015
crossref_primary_10_1080_23273798_2016_1247970
crossref_primary_10_1371_journal_pone_0163598
crossref_primary_10_1016_j_neuroimage_2015_12_021
crossref_primary_10_1080_09638288_2022_2161643
crossref_primary_10_1097_PSY_0000000000000368
crossref_primary_10_1080_1068316X_2018_1425409
crossref_primary_10_3389_fpsyg_2016_01981
crossref_primary_10_1016_j_neuropsychologia_2019_02_009
crossref_primary_10_1371_journal_pone_0132170
crossref_primary_10_1016_j_cortex_2025_02_012
crossref_primary_10_3389_fnrgo_2020_583733
crossref_primary_10_1038_s41598_017_14030_7
crossref_primary_10_1038_srep42456
crossref_primary_10_1016_j_neubiorev_2016_01_009
crossref_primary_10_1111_ejn_14261
crossref_primary_10_3389_fncel_2015_00355
crossref_primary_10_1002_ejp_2060
crossref_primary_10_1093_scan_nsw176
crossref_primary_10_1016_j_neubiorev_2016_01_008
crossref_primary_10_1016_j_neuropsychologia_2015_06_020
crossref_primary_10_3389_fnins_2017_00641
crossref_primary_10_1016_j_neuroimage_2016_06_032
crossref_primary_10_1038_srep10618
crossref_primary_10_1007_s41465_022_00250_x
crossref_primary_10_1093_cercor_bhx041
crossref_primary_10_1016_j_brs_2019_10_014
crossref_primary_10_1016_j_brs_2022_05_003
crossref_primary_10_1016_j_neuropsychologia_2019_107170
crossref_primary_10_1016_j_neuroimage_2019_116403
crossref_primary_10_1016_j_brs_2017_10_012
crossref_primary_10_1088_1741_2552_acb14d
crossref_primary_10_1136_jnnp_2018_320213
crossref_primary_10_1117_1_NPh_5_1_015001
crossref_primary_10_3389_fnhum_2016_00643
crossref_primary_10_1111_ejn_15006
crossref_primary_10_3389_fnins_2016_00550
crossref_primary_10_1016_j_brs_2020_10_002
crossref_primary_10_1109_ACCESS_2020_3028618
crossref_primary_10_1007_s12311_024_01749_z
crossref_primary_10_3389_fnhum_2022_833619
crossref_primary_10_3233_RNN_140464
crossref_primary_10_3390_brainsci9080189
crossref_primary_10_3389_fnhum_2019_00137
crossref_primary_10_1038_s41598_020_61180_2
crossref_primary_10_1016_j_neubiorev_2016_08_001
crossref_primary_10_3389_fnins_2018_00166
crossref_primary_10_1007_s41465_024_00315_z
crossref_primary_10_1109_TMI_2019_2915206
crossref_primary_10_1089_brain_2021_0006
crossref_primary_10_1155_2016_9674790
crossref_primary_10_3934_Neuroscience_2017_2_71
crossref_primary_10_1093_cercor_bhz019
crossref_primary_10_1007_s12152_022_09507_w
crossref_primary_10_1007_s41465_017_0007_6
crossref_primary_10_1016_j_neuroimage_2015_09_069
crossref_primary_10_3389_fnimg_2022_982288
crossref_primary_10_1016_j_physbeh_2017_04_004
crossref_primary_10_1098_rsos_181186
crossref_primary_10_3389_fnhum_2016_00199
crossref_primary_10_1007_s41465_019_00136_5
crossref_primary_10_1088_1741_2552_ac857d
crossref_primary_10_1016_j_cub_2017_09_020
crossref_primary_10_1016_j_clinph_2021_10_016
crossref_primary_10_1111_bdi_12427
crossref_primary_10_3389_fnins_2018_00999
crossref_primary_10_1586_17434440_2015_1090308
crossref_primary_10_3389_fnhum_2019_00140
crossref_primary_10_1016_j_cortex_2016_10_016
crossref_primary_10_1016_j_tins_2016_09_001
crossref_primary_10_3389_fpsyt_2024_1441533
crossref_primary_10_1016_j_brainres_2021_147722
crossref_primary_10_1016_j_neulet_2016_06_056
crossref_primary_10_1515_revneuro_2017_0023
crossref_primary_10_1016_j_neuron_2015_07_032
crossref_primary_10_1080_09602011_2020_1805335
crossref_primary_10_1111_ejn_13640
crossref_primary_10_1016_j_smrv_2018_01_008
crossref_primary_10_3389_fnins_2018_00617
crossref_primary_10_1111_adb_12463
crossref_primary_10_1162_netn_a_00097
crossref_primary_10_3389_fnhum_2023_1286238
crossref_primary_10_1162_jocn_a_01679
crossref_primary_10_1515_revneuro_2019_0047
crossref_primary_10_1038_s41467_019_13417_6
crossref_primary_10_1016_j_neuropsychologia_2016_04_028
crossref_primary_10_1016_j_brs_2019_09_017
crossref_primary_10_1007_s00221_016_4667_8
crossref_primary_10_1007_s10827_024_00886_y
crossref_primary_10_1016_j_brs_2015_07_029
crossref_primary_10_1016_j_brs_2015_07_027
crossref_primary_10_3389_fpsyg_2017_00952
crossref_primary_10_1007_s00221_019_05666_0
crossref_primary_10_1007_s41465_018_0113_0
crossref_primary_10_1016_j_bbr_2019_03_014
crossref_primary_10_1152_jn_00074_2020
crossref_primary_10_5812_mejrh_131627
crossref_primary_10_1038_s41598_020_63479_6
crossref_primary_10_3389_fnhum_2020_00349
crossref_primary_10_1016_j_cobme_2018_10_004
crossref_primary_10_1016_j_cortex_2016_11_005
crossref_primary_10_1016_j_brs_2017_01_001
crossref_primary_10_3390_geriatrics1040032
crossref_primary_10_1007_s00702_017_1752_5
crossref_primary_10_1016_j_brs_2015_01_400
crossref_primary_10_3389_fnhum_2019_00043
crossref_primary_10_3389_fnhum_2017_00309
crossref_primary_10_1371_journal_pone_0141417
crossref_primary_10_3389_fnhum_2016_00208
crossref_primary_10_1093_cercor_bhac540
crossref_primary_10_1016_j_brs_2017_07_010
crossref_primary_10_3390_brainsci13101441
crossref_primary_10_1016_j_brs_2021_08_017
crossref_primary_10_1016_j_brainres_2017_05_005
crossref_primary_10_3389_fpsyt_2016_00087
crossref_primary_10_1016_j_cortex_2018_09_019
crossref_primary_10_1016_j_neuropsychologia_2018_03_012
crossref_primary_10_1016_j_cortex_2018_11_014
crossref_primary_10_1016_j_brs_2018_12_977
crossref_primary_10_1016_j_cortex_2016_11_016
crossref_primary_10_1111_ner_12787
crossref_primary_10_1016_j_cortex_2018_09_010
crossref_primary_10_1016_j_neuropsychologia_2016_09_017
crossref_primary_10_1111_joor_12529
crossref_primary_10_3389_fncir_2023_1214959
crossref_primary_10_1371_journal_pone_0300779
crossref_primary_10_1038_s41467_017_01045_x
crossref_primary_10_3389_fncel_2022_818703
crossref_primary_10_3233_RNN_211210
crossref_primary_10_1097_WNN_0000000000000098
crossref_primary_10_3389_fnhum_2016_00439
crossref_primary_10_3390_brainsci12050522
crossref_primary_10_1080_17470919_2016_1273133
crossref_primary_10_1016_j_humov_2019_04_017
crossref_primary_10_3389_fnins_2015_00515
crossref_primary_10_1016_j_neuropsychologia_2018_08_009
crossref_primary_10_1371_journal_pone_0197192
crossref_primary_10_1080_17588928_2018_1512480
crossref_primary_10_1097_PHM_0000000000000834
crossref_primary_10_3389_fnhum_2022_887849
crossref_primary_10_1007_s41465_020_00200_5
crossref_primary_10_1016_j_tics_2018_03_006
crossref_primary_10_1016_j_psc_2018_05_004
crossref_primary_10_1016_j_cortex_2017_07_001
crossref_primary_10_1371_journal_pone_0175635
crossref_primary_10_1016_j_heliyon_2020_e05132
crossref_primary_10_1038_s41598_023_43597_7
crossref_primary_10_1016_j_cortex_2017_02_014
crossref_primary_10_1038_npp_2016_170
crossref_primary_10_3389_fpsyg_2018_02351
crossref_primary_10_1016_j_clinph_2015_04_001
crossref_primary_10_1016_j_brs_2021_04_008
crossref_primary_10_1016_j_bbr_2022_114165
crossref_primary_10_1177_1094428117708857
crossref_primary_10_1155_2018_3156796
crossref_primary_10_1002_hbm_22893
crossref_primary_10_1371_journal_pone_0198053
crossref_primary_10_1080_17470919_2021_1889657
crossref_primary_10_1111_ejn_13321
crossref_primary_10_1016_j_neuropsychologia_2017_07_031
crossref_primary_10_1111_ejn_14651
crossref_primary_10_1007_s00221_016_4740_3
crossref_primary_10_1038_s41467_018_07233_7
crossref_primary_10_1186_s12984_021_00901_8
crossref_primary_10_3389_fpsyg_2018_00867
crossref_primary_10_1016_j_brs_2016_06_052
crossref_primary_10_3390_bioengineering11080744
crossref_primary_10_1038_s41380_024_02624_3
crossref_primary_10_1016_j_neuroimage_2019_116183
crossref_primary_10_1371_journal_pone_0167697
crossref_primary_10_1162_imag_a_00431
crossref_primary_10_5265_jcogpsy_20_91
Cites_doi 10.1002/hbm.22322
10.1212/WNL.57.10.1899
10.1017/S1461145712000041
10.1016/0168-5597(89)90029-4
10.1113/jphysiol.2012.249730
10.1152/jn.00736.2013
10.1186/1129-2377-14-23
10.3389/fnhum.2013.00688
10.1097/00006123-198701000-00031
10.1038/jcbfm.2011.72
10.1113/jphysiol.1997.sp021905
10.1016/j.jpainsymman.2007.08.014
10.3109/00207454.2012.707715
10.1016/j.jpain.2011.07.001
10.1097/WNR.0000000000000021
10.1016/j.cub.2011.01.069
10.1016/j.brs.2011.03.002
10.1093/cercor/bhm098
10.1113/jphysiol.2005.088310
10.1152/jn.01046.2009
10.1111/j.1460-9568.2006.04676.x
10.1152/jn.00608.2009
10.1111/j.1526-4637.2008.00508.x
10.1016/S1388-2457(02)00412-1
10.1111/j.1460-9568.2009.06937.x
10.1016/j.brs.2011.08.006
10.1007/s00221-012-3369-0
10.1016/j.brs.2012.04.011
10.1093/cercor/bhr071
10.1113/jphysiol.2005.092429
10.1152/jn.00171.2011
10.1016/j.brs.2011.04.006
10.1016/j.brs.2011.05.001
10.1002/1522-2594(200102)45:2<196::AID-MRM1026>3.0.CO;2-1
10.1016/j.neuroimage.2013.06.076
10.1371/journal.pone.0047514
10.1016/j.brs.2013.10.002
10.1016/j.clinph.2010.09.025
10.1016/j.brs.2008.06.004
10.1016/j.neulet.2012.05.074
10.1113/jphysiol.2006.116939
10.1016/j.neucli.2010.01.001
10.1016/j.brainres.2013.07.026
10.1093/brain/awf238
10.1177/1073858410386614
10.1097/AJP.0b013e318157233b
10.1016/j.neuroimage.2010.11.036
10.1212/WNL.38.1.64
10.3389/fnsys.2014.00002
10.1523/JNEUROSCI.5316-03.2004
10.1162/jocn.2009.21126
10.1111/j.1460-9568.2008.06090.x
10.1186/1471-2202-12-2
10.1016/j.neulet.2009.05.037
10.1002/hbm.21380
10.1371/journal.pone.0063221
10.1007/978-1-4939-0879-0
10.1016/j.brs.2013.03.001
10.3389/fnhum.2013.00256
10.1016/j.neuroimage.2010.11.085
10.1177/0333102410390394
10.1016/j.brs.2012.09.010
10.1002/hbm.20360
10.1523/JNEUROSCI.5348-06.2007
10.1016/0168-5597(92)90095-S
10.1002/mrm.21709
10.1523/JNEUROSCI.4104-07.2007
10.1016/j.clinph.2006.07.136
10.1113/jphysiol.2003.049916
10.1007/s00221-003-1800-2
10.1155/2013/603502
10.1097/01.wnr.0000127637.22805.7c
10.3389/fnhum.2013.00183
10.1016/j.biopsych.2009.03.022
10.1111/j.0953-816X.2004.03398.x
10.1016/j.neulet.2012.06.033
10.1152/ajpgi.00294.2009
10.1007/s00221-006-0733-y
10.1016/0168-5597(93)90115-6
10.1212/WNL.42.10.1951
10.1523/JNEUROSCI.0542-11.2011
10.1109/TNSRE.2013.2249111
10.1371/journal.pone.0057425
10.1152/jn.00617.2010
10.1016/j.neuroscience.2010.01.019
10.1038/35018000
10.1152/jn.00924.2009
10.1016/S1388-2457(01)00633-2
10.1111/j.1460-9568.2005.04233.x
10.1007/s10548-005-6033-1
10.1371/journal.pone.0059669
10.1007/s00221-008-1278-z
10.1016/j.pain.2004.04.009
10.1016/j.neulet.2011.01.066
10.1016/j.neulet.2012.01.037
10.1152/jn.01312.2006
10.1097/00004691-200007000-00005
10.1017/S1461145713000084
10.1111/j.1469-7793.2000.t01-1-00633.x
10.1007/s00406-012-0298-7
10.1002/mus.22012
10.1007/s00221-007-1093-y
10.1016/j.neuron.2007.06.026
10.1523/JNEUROSCI.0728-09.2009
10.1113/jphysiol.2011.205161
10.1371/journal.pone.0030971
10.1007/s00221-007-1149-z
10.1016/j.neulet.2013.01.047
10.1016/j.clinph.2003.10.009
10.1016/j.neulet.2011.05.007
10.1093/cercor/bhh085
10.1016/j.neuropsychologia.2011.10.015
10.1038/sj.npp.1300517
10.1093/brain/awh527
10.1007/BF00631044
10.1016/j.neulet.2011.05.244
10.1016/j.brs.2008.06.002
10.1186/1743-0003-7-27
10.1007/s00702-012-0845-4
10.1097/WNR.0b013e32835c36b8
10.1016/j.jpain.2012.12.007
10.1111/j.1460-9568.2007.05896.x
10.1016/0924-980X(96)96541-8
10.1007/s00702-013-1104-z
10.1590/S0004-282X1977000400004
10.1016/j.biopsych.2004.07.017
10.1016/j.biopsych.2011.05.009
10.1152/jn.01084.2010
10.1016/j.brs.2012.09.009
10.1167/iovs.03-0688
10.1523/JNEUROSCI.4432-08.2009
ContentType Journal Article
Copyright 2014 Elsevier Ltd
Copyright © 2014 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2014 Elsevier Ltd
– notice: Copyright © 2014 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TK
DOI 10.1016/j.neuropsychologia.2014.11.021
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Neurosciences Abstracts
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Neurosciences Abstracts
DatabaseTitleList Neurosciences Abstracts
MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1873-3514
EndPage 236
ExternalDocumentID 25448853
10_1016_j_neuropsychologia_2014_11_021
S0028393214004394
Genre Systematic Review
Journal Article
GroupedDBID ---
--K
--M
--Z
-~X
.GJ
.~1
0R~
123
1B1
1RT
1~.
1~5
29N
4.4
41~
457
4G.
53G
5RE
5VS
7-5
71M
8P~
9JM
9JO
AABNK
AACTN
AADFP
AADPK
AAEDT
AAEDW
AAGJA
AAGUQ
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXLA
AAXUO
AAYJJ
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABOYX
ABXDB
ABYKQ
ACCUC
ACDAQ
ACGFO
ACGFS
ACHQT
ACIUM
ACNCT
ACRLP
ACXNI
ADBBV
ADEZE
ADIYS
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AETEA
AFFNX
AFKWA
AFTJW
AFXIZ
AFYLN
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
C45
CS3
D0S
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMQ
HMW
HVGLF
HZ~
H~9
IHE
J1W
KOM
L7B
M2V
M3V
M41
MO0
MOBAO
MVM
N9A
O-L
O9-
OAUVE
OHT
OKEIE
OVD
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SEW
SNS
SPCBC
SPS
SSB
SSN
SSY
SSZ
T5K
TEORI
TN5
UHB
UQL
WH7
WUQ
XJT
XOL
YQT
ZGI
ZKB
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
7TK
ID FETCH-LOGICAL-c495t-2c96dab1a6b3516c3842a65d1e0b9f00411646ee94fcf5c58d2940f8602af8d83
IEDL.DBID .~1
ISSN 0028-3932
1873-3514
IngestDate Fri Jul 11 02:28:24 EDT 2025
Fri Jul 11 01:00:40 EDT 2025
Sun Jul 13 01:33:33 EDT 2025
Thu Apr 24 22:49:23 EDT 2025
Tue Jul 01 04:14:14 EDT 2025
Fri Feb 23 02:35:27 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Transcranial magnetic stimulation (TMS)
Electroencephalography (EEG)
Systematic review
Functional magnetic resonance imaging (fMRI)
Event related potential (ERP)
Transcranial direct current stimulation (tDCS)
Neurophysiology
Language English
License Copyright © 2014 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c495t-2c96dab1a6b3516c3842a65d1e0b9f00411646ee94fcf5c58d2940f8602af8d83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ObjectType-Undefined-4
PMID 25448853
PQID 1656045925
PQPubID 23479
PageCount 24
ParticipantIDs proquest_miscellaneous_1660400778
proquest_miscellaneous_1656045925
pubmed_primary_25448853
crossref_citationtrail_10_1016_j_neuropsychologia_2014_11_021
crossref_primary_10_1016_j_neuropsychologia_2014_11_021
elsevier_sciencedirect_doi_10_1016_j_neuropsychologia_2014_11_021
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2015
2015-01-00
2015-Jan
20150101
PublicationDateYYYYMMDD 2015-01-01
PublicationDate_xml – month: 01
  year: 2015
  text: January 2015
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Neuropsychologia
PublicationTitleAlternate Neuropsychologia
PublicationYear 2015
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Schabrun, Chipchase, Zipf, Thickbroom, Hodges (bib126) 2013; 6
Ohara, Crone, Weiss, Treede, Lenz (bib104) 2004; 110
Sack, Kadosh, Schuhmann, Moerel, Walsh, Goebel (bib123) 2009; 21
Nitsche, Paulus (bib99) 2011; 29
Lolas (bib74) 1977; 35
Mobley, Linder, Braeuer, Ellis, Zwelling (bib80) 2013; 8
Saiote, Polania, Rosenberger, Paulus, Antal (bib124) 2013; 8
Stagg, Bachtiar, Johansen-Berg (bib134) 2011; 21
Borckardt (bib17) 2012; 13
Cambieri, Scelzo, Li Voti, Priori, Accornero, Inghilleri (bib23) 2012; 522
Boros, Poreisz, Munchau, Paulus, Nitsche (bib18) 2008; 27
Bikson (bib14) 2013; 7
Clark (bib27) 2012; 59
Nakamura, Kitagawa, Kawaguchi, Tsuji (bib86) 1997; 498
Nitsche (bib88) 2008; 1
Schönfeldt-Lecuona, Thielscher, Freudenmann, Kron, Spitzer, Herwig (bib129) 2005; 17
Baudewig, Nitsche, Paulus, Frahm (bib12) 2001; 45
Kuo, Bikson, Datta, Minhas, Paulus, Kuo, Nitsche (bib62) 2013; 6
Lang, Siebner, Ernst, Nitsche, Paulus, Lemon, Rothwell (bib67) 2004; 56
Monte-Silva, Kuo, Liebetanz, Paulus, Nitsche (bib82) 2010; 103
Vigano (bib143) 2013; 14
Hasan, Misewitsch, Nitsche, Gruber, Padberg, Falkai, Wobrock (bib50) 2013; 6
Nitsche, Lampe, Antal, Liebetanz, Lang, Tergau, Paulus (bib94) 2006; 23
Miyaguchi (bib79) 2013; 1529
Furubayashi (bib38) 2008; 185
O’Connell, Cossar, Marston, Wand, Bunce, Moseley, De Souza (bib103) 2012; 7
Stagg (bib135) 2009; 29
Thirugnanasambandam, Sparing, Dafotakis, Meister, Paulus, Nitsche, Fink (bib141) 2011; 29
Ardolino, Bossi, Barbieri, Priori (bib10) 2005; 568
Jefferson, Mistry, Singh, Rathwell, Hamdy (bib53) 2009; 297
Jeffery, Norton, Roy, Gorassini (bib54) 2007; 182
Nitsche, Paulus (bib97) 2000; 527
Kidgell, Daly, Young, Lum, Tooley, Jaberzadeh, Zoghi, Pearce (bib57) 2013; 2013
Nitsche (bib89) 2007; 97
Cantello, Gianelli, Civardi, Mutani (bib24) 1992; 42
Csifcsak (bib30) 2009; 10
Quartarone (bib114) 2004; 15
Nitsche, Jaussi, Liebetanz, Lang, Tergau, Paulus (bib92) 2004; 29
Zaehle, Sandmann, Thorne, Jancke, Herrmann (bib147) 2011; 12
Notturno, Marzetti, Pizzella, Uncini, Zappasodi (bib102) 2013; 35
Rango, Cogiamanian, Marceglia, Barberis, Arighi, Biondetti, Priori (bib117) 2008; 60
Nitsche (bib95) 2004; 19
Schmidt, Fleischmann, Bathe-Peters, Irlbacher, Brandt (bib128) 2013; 8
Kiers, Cros, Chiappa, Fang (bib59) 1993; 89
Simis, Adeyemo, Medeiros, Miraval, Gagliardi, Fregni (bib132) 2013; 24
Horvath, Carter, Forte (bib51) 2014; 8
Mordillo-Mateos (bib84) 2012; 5
Rae, Lee, Ordidge, Alonzo, Loo (bib116) 2013; 16
Rowan, Tolunsky (bib122) 2003
Power, Norton, Porter, Doyle, Hui, Chan (bib113) 2006; 577
Rosler, Roth, Magistris (bib120) 2008; 187
Polania, Paulus, Nitsche (bib111) 2012; 33
Nitsche, Kuo, Karrasch, Wachter, Liebetanz, Paulus (bib93) 2009; 66
Batsikadze, Moliadze, Paulus, Kuo, Nitsche (bib11) 2013; 591
Antal, Polania, Schmidt-Samoa, Dechent, Paulus (bib8) 2011; 55
Logothetis, Pauls, Augath, Trinath, Oeltermann (bib73) 2011; 412
Antal, Kincses, Nitsche, Bartfai, Paulus (bib7) 2004; 45
Kar, Wright (bib55) 2014; 111
Wirth, Rahman, Kuenecke, Koenig, Horn, Sommer, Dierks (bib146) 2011; 49
Ziemann, Rothwell (bib148) 2000; 17
Fricke, Seeber, Thirugnanasambandam, Paulus, Nitsche, Rothwell (bib37) 2011; 105
Monte-Silva, Kuo, Thirugnanasambandam, Liebetanz, Paulus, Nitsche (bib83) 2009; 29
Stagg, O’Shea, Kincses, Woolrich, Matthews, Johansen-Berg (bib137) 2009; 30
Jang, Ahn, Byun, Kim, Lee, Kwon (bib52) 2009; 460
Guieu, Bourriez, Derambure, Defebvre, Cassim (bib43) 1999; 6
Gugino, Rafael Romero, Aglio, Titone, Ramirez, Pascual-Leone, Shenton (bib42) 2001; 112
Wei, He, Zhou, Wang (bib145) 2013; 21
Munneke, Stegeman, Hengeveld, Rongen, Schelhaas, Zwarts (bib85) 2011; 44
Schade, Moliadze, Paulus, Antal (bib127) 2012; 30
Nitsche, Paulus (bib98) 2001; 57
Binkofski (bib15) 2011; 70
Nitsche (bib90) 2003; 553
Teo (bib139) 2014; 15
Liebetanz, Nitsche, Tergau, Paulus (bib71) 2002; 125
Hansen (bib48) 2011; 31
Siebner, Lang, Rizzo, Nitsche, Paulus, Lemon, Rothwell (bib131) 2004; 24
List (bib72) 2011; 21
Lang, Nitsche, Paulus, Rothwell, Lemon (bib66) 2004; 156
Nitsche, Nitsche, Klein, Tergau, Rothwell, Paulus (bib96) 2003; 114
Polania, Paulus, Nitsche (bib112) 2012; 7
Emerson, Sgro, Pedley, Hauser (bib36) 1988; 38
Galvez, Alonzo, Martin, Loo (bib39) 2013; 16
Lapenta, Minati, Fregni, Boggio (bib70) 2013; 7
Berryhill, Jones (bib13) 2012; 521
Roche, Lackmy, Achache, Bussel, Katz (bib119) 2011; 589
Amassian, Cracco (bib5) 1987; 20
Bocci (bib16) 2013; 121
Suzuki (bib138) 2012; 122
Osherovich (bib105) 2013; 6
Hasan (bib49) 2012; 262
Pena-Gomez (bib110) 2012; 5
Di Lazzaro (bib31) 2012; 119
Handy (bib47) 2005
Lang (bib68) 2005; 22
Nielsen (bib87) 1996; 101
Dieckhofer, Waberski, Nitsche, Paulus, Buchner, Gobbele (bib34) 2006; 117
Kirimoto, Ogata, Onishi, Oyama, Goto, Tobimatsu (bib60) 2011; 122
Tremblay, Beaule, Lepage, Theoret (bib142) 2013; 24
Villamar, Wivatvongvana, Patumanond, Bikson, Truong, Datta, Fregni (bib144) 2013; 14
Kuo, Grosch, Fregni, Paulus, Nitsche (bib63) 2007; 27
Antal, Terney, Poreisz, Paulus (bib9) 2007; 26
Sparing, Buelte, Meister, Pauš, Fink (bib133) 2008; 29
Clark, Coffman, Trumbo, Gasparovic (bib28) 2011; 500
Lang (bib69) 2011; 105
Ahdab, Ayache, Brugieres, Goujon, Lefaucheur (bib2) 2010; 40
Brasil-Neto, McShane, Fuhr, Hallett, Cohen (bib21) 1992; 85
Caparelli-Daquer (bib25) 2012; 2012
McCambridge, Bradnam, Stinear, Byblow (bib78) 2011; 105
Park, Chang, Park, Shin, Kim, Kim (bib107) 2013; 539
Sehm, Kipping, Schäfer, Villringer, Ragert (bib130) 2013; 7
Accornero, Li Voti, La Riccia, Gregori (bib1) 2007; 178
Paquette, Sidel, Radinska, Soucy, Thiel (bib106) 2011; 31
Nitsche (bib101) 2005; 568
Hamer (bib46) 1968; 2
Konig, Ankenmuller (bib61) 1960; 47
Groppa, Bergmann, Siems, Molle, Marshall, Siebner (bib41) 2010; 166
Kuo, Paulus, Nitsche (bib64) 2008; 18
Matsumoto, Fujiwara, Takahashi, Liu, Kimura, Ushiba (bib77) 2010; 7
Stagg, Nitsche (bib136) 2011; 17
Bradnam, Stinear, Lewis, Byblow (bib19) 2010; 103
Antal, Brepohl, Poreisz, Boros, Csifcsak, Paulus (bib6) 2008; 24
Brunoni, Nitsche, Bolognini, Bikson, Wagner, Merabet, Fregni (bib22) 2012; 5
Nitsche (bib100) 2007; 27
Maeoka, Matsuo, Hiyamizu, Morioka, Ando (bib76) 2012; 512
Hallett (bib44) 2000; 406
Quartarone (bib115) 2005; 128
Di Lazzaro (bib32) 2004; 115
Monte-Silva, Kuo, Hessenthaler, Fresnoza, Liebetanz, Paulus, Nitsche (bib81) 2013; 6
Hallett (bib45) 2007; 55
Keeser (bib56) 2011; 31
Amassian, Cracco, Maccabee (bib4) 1989; 74
Gieryn (bib40) 1992; 3
Pellicciari, Brignani, Miniussi (bib109) 2013; 83
Nitsche, Grundey, Liebetanz, Lang, Tergau, Paulus (bib91) 2004; 14
Elbert, Lutzenberger, Rockstroh, Birbaumer (bib35) 1981; 14
Rotenberg, Horvath, Pascual-Leone (bib121) 2014
Cengiz, Murase, Rothwell (bib26) 2013; 225
Bradnam, Stinear, Byblow (bib20) 2011; 105
Alonzo, Brassil, Taylor, Martin, Loo (bib3) 2012; 5
Kwon, Jang (bib65) 2011; 492
Di Russo, Martinez, Sereno, Pitzalis, Hillyard (bib33) 2002; 38
Paulus (bib108) 2008; 1
Scelzo (bib125) 2011; 498
Terney (bib140) 2008; 36
Rizzo, Terranova, Crupi, Sant’angelo, Girlanda, Quartarone (bib118) 2014; 7
Stagg (10.1016/j.neuropsychologia.2014.11.021_bib136) 2011; 17
Mobley (10.1016/j.neuropsychologia.2014.11.021_bib80) 2013; 8
Rotenberg (10.1016/j.neuropsychologia.2014.11.021_bib121) 2014
Sehm (10.1016/j.neuropsychologia.2014.11.021_bib130) 2013; 7
Antal (10.1016/j.neuropsychologia.2014.11.021_bib9) 2007; 26
Elbert (10.1016/j.neuropsychologia.2014.11.021_bib35) 1981; 14
Logothetis (10.1016/j.neuropsychologia.2014.11.021_bib73) 2011; 412
Terney (10.1016/j.neuropsychologia.2014.11.021_bib140) 2008; 36
Kidgell (10.1016/j.neuropsychologia.2014.11.021_bib57) 2013; 2013
Alonzo (10.1016/j.neuropsychologia.2014.11.021_bib3) 2012; 5
Binkofski (10.1016/j.neuropsychologia.2014.11.021_bib15) 2011; 70
Ahdab (10.1016/j.neuropsychologia.2014.11.021_bib2) 2010; 40
Emerson (10.1016/j.neuropsychologia.2014.11.021_bib36) 1988; 38
Kiers (10.1016/j.neuropsychologia.2014.11.021_bib59) 1993; 89
Stagg (10.1016/j.neuropsychologia.2014.11.021_bib135) 2009; 29
Hasan (10.1016/j.neuropsychologia.2014.11.021_bib49) 2012; 262
Scelzo (10.1016/j.neuropsychologia.2014.11.021_bib125) 2011; 498
Keeser (10.1016/j.neuropsychologia.2014.11.021_bib56) 2011; 31
Liebetanz (10.1016/j.neuropsychologia.2014.11.021_bib71) 2002; 125
Tremblay (10.1016/j.neuropsychologia.2014.11.021_bib142) 2013; 24
Baudewig (10.1016/j.neuropsychologia.2014.11.021_bib12) 2001; 45
Lang (10.1016/j.neuropsychologia.2014.11.021_bib68) 2005; 22
Brasil-Neto (10.1016/j.neuropsychologia.2014.11.021_bib21) 1992; 85
Nitsche (10.1016/j.neuropsychologia.2014.11.021_bib91) 2004; 14
Wirth (10.1016/j.neuropsychologia.2014.11.021_bib146) 2011; 49
Batsikadze (10.1016/j.neuropsychologia.2014.11.021_bib11) 2013; 591
Roche (10.1016/j.neuropsychologia.2014.11.021_bib119) 2011; 589
Villamar (10.1016/j.neuropsychologia.2014.11.021_bib144) 2013; 14
Di Lazzaro (10.1016/j.neuropsychologia.2014.11.021_bib32) 2004; 115
Handy (10.1016/j.neuropsychologia.2014.11.021_bib47) 2005
Ardolino (10.1016/j.neuropsychologia.2014.11.021_bib10) 2005; 568
Wei (10.1016/j.neuropsychologia.2014.11.021_bib145) 2013; 21
Cengiz (10.1016/j.neuropsychologia.2014.11.021_bib26) 2013; 225
Clark (10.1016/j.neuropsychologia.2014.11.021_bib27) 2012; 59
Lang (10.1016/j.neuropsychologia.2014.11.021_bib67) 2004; 56
Konig (10.1016/j.neuropsychologia.2014.11.021_bib61) 1960; 47
Gieryn (10.1016/j.neuropsychologia.2014.11.021_bib40) 1992; 3
Power (10.1016/j.neuropsychologia.2014.11.021_bib113) 2006; 577
Antal (10.1016/j.neuropsychologia.2014.11.021_bib7) 2004; 45
Kwon (10.1016/j.neuropsychologia.2014.11.021_bib65) 2011; 492
Schmidt (10.1016/j.neuropsychologia.2014.11.021_bib128) 2013; 8
Di Lazzaro (10.1016/j.neuropsychologia.2014.11.021_bib31) 2012; 119
Groppa (10.1016/j.neuropsychologia.2014.11.021_bib41) 2010; 166
Nitsche (10.1016/j.neuropsychologia.2014.11.021_bib90) 2003; 553
Monte-Silva (10.1016/j.neuropsychologia.2014.11.021_bib81) 2013; 6
Jefferson (10.1016/j.neuropsychologia.2014.11.021_bib53) 2009; 297
Munneke (10.1016/j.neuropsychologia.2014.11.021_bib85) 2011; 44
Quartarone (10.1016/j.neuropsychologia.2014.11.021_bib115) 2005; 128
O’Connell (10.1016/j.neuropsychologia.2014.11.021_bib103) 2012; 7
Rango (10.1016/j.neuropsychologia.2014.11.021_bib117) 2008; 60
Cambieri (10.1016/j.neuropsychologia.2014.11.021_bib23) 2012; 522
Hallett (10.1016/j.neuropsychologia.2014.11.021_bib45) 2007; 55
Jeffery (10.1016/j.neuropsychologia.2014.11.021_bib54) 2007; 182
Nitsche (10.1016/j.neuropsychologia.2014.11.021_bib94) 2006; 23
Ziemann (10.1016/j.neuropsychologia.2014.11.021_bib148) 2000; 17
Schönfeldt-Lecuona (10.1016/j.neuropsychologia.2014.11.021_bib129) 2005; 17
Pellicciari (10.1016/j.neuropsychologia.2014.11.021_bib109) 2013; 83
Nitsche (10.1016/j.neuropsychologia.2014.11.021_bib98) 2001; 57
Nitsche (10.1016/j.neuropsychologia.2014.11.021_bib100) 2007; 27
Zaehle (10.1016/j.neuropsychologia.2014.11.021_bib147) 2011; 12
Nitsche (10.1016/j.neuropsychologia.2014.11.021_bib97) 2000; 527
Brunoni (10.1016/j.neuropsychologia.2014.11.021_bib22) 2012; 5
Nielsen (10.1016/j.neuropsychologia.2014.11.021_bib87) 1996; 101
Clark (10.1016/j.neuropsychologia.2014.11.021_bib28) 2011; 500
Lolas (10.1016/j.neuropsychologia.2014.11.021_bib74) 1977; 35
Stagg (10.1016/j.neuropsychologia.2014.11.021_bib134) 2011; 21
Kar (10.1016/j.neuropsychologia.2014.11.021_bib55) 2014; 111
Miyaguchi (10.1016/j.neuropsychologia.2014.11.021_bib79) 2013; 1529
Paquette (10.1016/j.neuropsychologia.2014.11.021_bib106) 2011; 31
Maeoka (10.1016/j.neuropsychologia.2014.11.021_bib76) 2012; 512
Schade (10.1016/j.neuropsychologia.2014.11.021_bib127) 2012; 30
Hansen (10.1016/j.neuropsychologia.2014.11.021_bib48) 2011; 31
Suzuki (10.1016/j.neuropsychologia.2014.11.021_bib138) 2012; 122
List (10.1016/j.neuropsychologia.2014.11.021_bib72) 2011; 21
Rae (10.1016/j.neuropsychologia.2014.11.021_bib116) 2013; 16
Thirugnanasambandam (10.1016/j.neuropsychologia.2014.11.021_bib141) 2011; 29
Monte-Silva (10.1016/j.neuropsychologia.2014.11.021_bib82) 2010; 103
Rosler (10.1016/j.neuropsychologia.2014.11.021_bib120) 2008; 187
Fricke (10.1016/j.neuropsychologia.2014.11.021_bib37) 2011; 105
Hallett (10.1016/j.neuropsychologia.2014.11.021_bib44) 2000; 406
Schabrun (10.1016/j.neuropsychologia.2014.11.021_bib126) 2013; 6
Quartarone (10.1016/j.neuropsychologia.2014.11.021_bib114) 2004; 15
Pena-Gomez (10.1016/j.neuropsychologia.2014.11.021_bib110) 2012; 5
Rizzo (10.1016/j.neuropsychologia.2014.11.021_bib118) 2014; 7
Berryhill (10.1016/j.neuropsychologia.2014.11.021_bib13) 2012; 521
Jang (10.1016/j.neuropsychologia.2014.11.021_bib52) 2009; 460
Nitsche (10.1016/j.neuropsychologia.2014.11.021_bib101) 2005; 568
Kuo (10.1016/j.neuropsychologia.2014.11.021_bib62) 2013; 6
Polania (10.1016/j.neuropsychologia.2014.11.021_bib111) 2012; 33
Hasan (10.1016/j.neuropsychologia.2014.11.021_bib50) 2013; 6
Siebner (10.1016/j.neuropsychologia.2014.11.021_bib131) 2004; 24
Matsumoto (10.1016/j.neuropsychologia.2014.11.021_bib77) 2010; 7
Nitsche (10.1016/j.neuropsychologia.2014.11.021_bib88) 2008; 1
Paulus (10.1016/j.neuropsychologia.2014.11.021_bib108) 2008; 1
Nitsche (10.1016/j.neuropsychologia.2014.11.021_bib95) 2004; 19
Amassian (10.1016/j.neuropsychologia.2014.11.021_bib4) 1989; 74
Gugino (10.1016/j.neuropsychologia.2014.11.021_bib42) 2001; 112
Lang (10.1016/j.neuropsychologia.2014.11.021_bib69) 2011; 105
Galvez (10.1016/j.neuropsychologia.2014.11.021_bib39) 2013; 16
Csifcsak (10.1016/j.neuropsychologia.2014.11.021_bib30) 2009; 10
Accornero (10.1016/j.neuropsychologia.2014.11.021_bib1) 2007; 178
Rowan (10.1016/j.neuropsychologia.2014.11.021_bib122) 2003
Teo (10.1016/j.neuropsychologia.2014.11.021_bib139) 2014; 15
Nakamura (10.1016/j.neuropsychologia.2014.11.021_bib86) 1997; 498
Dieckhofer (10.1016/j.neuropsychologia.2014.11.021_bib34) 2006; 117
Horvath (10.1016/j.neuropsychologia.2014.11.021_bib51) 2014; 8
Sack (10.1016/j.neuropsychologia.2014.11.021_bib123) 2009; 21
Borckardt (10.1016/j.neuropsychologia.2014.11.021_bib17) 2012; 13
Osherovich (10.1016/j.neuropsychologia.2014.11.021_bib105) 2013; 6
Bikson (10.1016/j.neuropsychologia.2014.11.021_bib14) 2013; 7
Nitsche (10.1016/j.neuropsychologia.2014.11.021_bib99) 2011; 29
Hamer (10.1016/j.neuropsychologia.2014.11.021_bib46) 1968; 2
Amassian (10.1016/j.neuropsychologia.2014.11.021_bib5) 1987; 20
Stagg (10.1016/j.neuropsychologia.2014.11.021_bib137) 2009; 30
Park (10.1016/j.neuropsychologia.2014.11.021_bib107) 2013; 539
Simis (10.1016/j.neuropsychologia.2014.11.021_bib132) 2013; 24
Bradnam (10.1016/j.neuropsychologia.2014.11.021_bib20) 2011; 105
McCambridge (10.1016/j.neuropsychologia.2014.11.021_bib78) 2011; 105
Vigano (10.1016/j.neuropsychologia.2014.11.021_bib143) 2013; 14
Cantello (10.1016/j.neuropsychologia.2014.11.021_bib24) 1992; 42
Saiote (10.1016/j.neuropsychologia.2014.11.021_bib124) 2013; 8
Kirimoto (10.1016/j.neuropsychologia.2014.11.021_bib60) 2011; 122
Polania (10.1016/j.neuropsychologia.2014.11.021_bib112) 2012; 7
Antal (10.1016/j.neuropsychologia.2014.11.021_bib8) 2011; 55
Lapenta (10.1016/j.neuropsychologia.2014.11.021_bib70) 2013; 7
Monte-Silva (10.1016/j.neuropsychologia.2014.11.021_bib83) 2009; 29
Nitsche (10.1016/j.neuropsychologia.2014.11.021_bib96) 2003; 114
Sparing (10.1016/j.neuropsychologia.2014.11.021_bib133) 2008; 29
Furubayashi (10.1016/j.neuropsychologia.2014.11.021_bib38) 2008; 185
Nitsche (10.1016/j.neuropsychologia.2014.11.021_bib89) 2007; 97
Bradnam (10.1016/j.neuropsychologia.2014.11.021_bib19) 2010; 103
Kuo (10.1016/j.neuropsychologia.2014.11.021_bib64) 2008; 18
Notturno (10.1016/j.neuropsychologia.2014.11.021_bib102) 2013; 35
Ohara (10.1016/j.neuropsychologia.2014.11.021_bib104) 2004; 110
Di Russo (10.1016/j.neuropsychologia.2014.11.021_bib33) 2002; 38
Nitsche (10.1016/j.neuropsychologia.2014.11.021_bib92) 2004; 29
Antal (10.1016/j.neuropsychologia.2014.11.021_bib6) 2008; 24
Lang (10.1016/j.neuropsychologia.2014.11.021_bib66) 2004; 156
Mordillo-Mateos (10.1016/j.neuropsychologia.2014.11.021_bib84) 2012; 5
Nitsche (10.1016/j.neuropsychologia.2014.11.021_bib93) 2009; 66
Caparelli-Daquer (10.1016/j.neuropsychologia.2014.11.021_bib25) 2012; 2012
Boros (10.1016/j.neuropsychologia.2014.11.021_bib18) 2008; 27
Kuo (10.1016/j.neuropsychologia.2014.11.021_bib63) 2007; 27
Guieu (10.1016/j.neuropsychologia.2014.11.021_bib43) 1999; 6
Bocci (10.1016/j.neuropsychologia.2014.11.021_bib16) 2013; 121
26143023 - Brain Stimul. 2015 Jul-Aug;8(4):846-9. doi: 10.1016/j.brs.2015.05.010.
References_xml – volume: 16
  start-page: 1695
  year: 2013
  end-page: 1706
  ident: bib116
  article-title: Anodal transcranial direct current stimulation increases brain intracellular pH and modulates bioenergetics
  publication-title: Int. J. Neuropsychopharmacol.
– volume: 29
  start-page: 6124
  year: 2009
  end-page: 6131
  ident: bib83
  article-title: Dose-dependent inverted U-shaped effect of dopamine (D2-like) receptor activation on focal and nonfocal plasticity in humans
  publication-title: J. Neurosci.
– volume: 8
  start-page: e63221
  year: 2013
  ident: bib80
  article-title: A survey on data reproducibility in cancer research provides insights into our limited ability to translate findings from the laboratory to the clinic.
  publication-title: PloS One
– volume: 5
  start-page: 175
  year: 2012
  end-page: 195
  ident: bib22
  article-title: Clinical research with transcranial direct current stimulation (tDCS): challenges and future directions
  publication-title: Brain Stimul.
– volume: 166
  start-page: 1219
  year: 2010
  end-page: 1225
  ident: bib41
  article-title: Slow-oscillatory transcranial direct current stimulation can induce bidirectional shifts in motor cortical excitability in awake humans
  publication-title: Neuroscience
– volume: 110
  start-page: 318
  year: 2004
  end-page: 328
  ident: bib104
  article-title: Amplitudes of laser evoked potential recorded from primary somatosensory, parasylvian and medial frontal cortex are graded with stimulus intensity
  publication-title: Pain
– volume: 1
  start-page: 206
  year: 2008
  end-page: 223
  ident: bib88
  article-title: Transcranial direct current stimulation: state of the art 2008
  publication-title: Brain Stimul.
– volume: 182
  start-page: 281
  year: 2007
  end-page: 287
  ident: bib54
  article-title: Effects of transcranial direct current stimulation on the excitability of the leg motor cortex
  publication-title: Exp. Brain Res.
– volume: 122
  start-page: 675
  year: 2012
  end-page: 681
  ident: bib138
  article-title: Comparison of the after-effects of transcranial direct current stimulation over the motor cortex in patients with stroke and healthy volunteers
  publication-title: Int. J. Neurosci.
– volume: 27
  start-page: 14442
  year: 2007
  end-page: 14447
  ident: bib63
  article-title: Focusing effect of acetylcholine on neuroplasticity in the human motor cortex
  publication-title: J. Neurosci.
– volume: 522
  start-page: 167
  year: 2012
  end-page: 171
  ident: bib23
  article-title: Transcranial direct current stimulation modulates motor responses evoked by repetitive transcranial magnetic stimulation
  publication-title: Neurosci. Lett.
– volume: 178
  start-page: 261
  year: 2007
  end-page: 266
  ident: bib1
  article-title: Visual evoked potentials modulation during direct current cortical polarization
  publication-title: Exp. Brain Res.
– volume: 225
  start-page: 321
  year: 2013
  end-page: 331
  ident: bib26
  article-title: Opposite effects of weak transcranial direct current stimulation on different phases of short interval intracortical inhibition (SICI)
  publication-title: Exp. Brain Res.
– volume: 7
  start-page: 1
  year: 2013
  end-page: 5
  ident: bib14
  article-title: Origins of specificity during tDCS: anatomical, activity-selective, and input-bias mechanisms
  publication-title: Front. Hum. Neurosci.
– volume: 42
  start-page: 1951
  year: 1992
  end-page: 1959
  ident: bib24
  article-title: Magnetic brain stimulation: the silent period after the motor evoked potential
  publication-title: Neurology
– volume: 13
  start-page: 112
  year: 2012
  end-page: 120
  ident: bib17
  article-title: A pilot study of the tolerability and effects of high-definition transcranial direct current stimulation (HD-tDCS) on pain perception
  publication-title: J. Pain
– volume: 33
  start-page: 2499
  year: 2012
  end-page: 2508
  ident: bib111
  article-title: Modulating cortico-striatal and thalamo-cortical functional connectivity with transcranial direct current stimulation
  publication-title: Hum. Brain Mapp.
– volume: 35
  start-page: 325
  year: 1977
  end-page: 328
  ident: bib74
  article-title: Low-level electric currents and brain indicators of behavioral activation
  publication-title: Arg. Neruopsiquiat.
– volume: 29
  start-page: 82
  year: 2008
  end-page: 96
  ident: bib133
  article-title: Transcranial magnetic stimulation and the challenge of coil placement: a comparison of conventional and stereotaxic neuronavigational strategies
  publication-title: Hum. Brain Mapp.
– volume: 512
  start-page: 12
  year: 2012
  end-page: 16
  ident: bib76
  article-title: Influence of transcranial direct current stimulation of the dorsolateral prefrontal cortex on pain related emotions: a study using electroencephalographic power spectrum analysis
  publication-title: Neurosci. Lett.
– volume: 7
  start-page: 27
  year: 2010
  ident: bib77
  article-title: Modulation of mu rhythm desynchronization during motor imagery by transcranial direct current stimulation
  publication-title: J. Neuroeng. Rehabil.
– volume: 6
  start-page: 624
  year: 2013
  end-page: 630
  ident: bib126
  article-title: Interaction between simultaneously applied neuromodulatory interventions in humans
  publication-title: Brain Stimul.
– volume: 30
  start-page: 1412
  year: 2009
  end-page: 1423
  ident: bib137
  article-title: Modulation of movement-associated cortical activation by transcranial direct current stimulation
  publication-title: Eur. J. Neurosci.
– volume: 185
  start-page: 279
  year: 2008
  end-page: 286
  ident: bib38
  article-title: Short and long duration transcranial direct current stimulation (tDCS) over the human hand motor area
  publication-title: Exp. Brain Res.
– volume: 2013
  start-page: 1
  year: 2013
  end-page: 9
  ident: bib57
  article-title: Different intensities of anodal transcranial direct current stimulation do not differentiall modulate motor cortex plasticity
  publication-title: Neural Plast.
– volume: 89
  start-page: 415
  year: 1993
  end-page: 423
  ident: bib59
  article-title: Variability of motor potentials evoked by transcranial magnetic stimulation
  publication-title: Electroencephalogr. Clin. Neurophysiol.
– volume: 27
  start-page: 3807
  year: 2007
  end-page: 3812
  ident: bib100
  article-title: Timing-dependent modulation of associative plasticity by general network excitability in the human motor cortex
  publication-title: J. Neurosci.
– volume: 5
  start-page: 214
  year: 2012
  end-page: 222
  ident: bib84
  article-title: Effects of simultaneous bilateral tDCS of the human motor cortex
  publication-title: Brain Stimul.
– volume: 21
  start-page: 404
  year: 2013
  end-page: 415
  ident: bib145
  article-title: Performance of motor imagery brain-computer interface based on anodal transcranial direct current stimulation modulation
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 60
  start-page: 782
  year: 2008
  end-page: 789
  ident: bib117
  article-title: Myoinositol content in the human brain is modified by transcranial direct current stimulation in a matter of minutes: a 1H-MRS study
  publication-title: Magn. Reson. Med.
– volume: 6
  start-page: 11
  year: 1999
  ident: bib43
  article-title: Temporal and spatial aspects of event-related desynchronization and movement-related cortical potentials
  publication-title: Handb. Electroencephalogr. Clin. Neurophysiol.
– volume: 460
  start-page: 117
  year: 2009
  end-page: 120
  ident: bib52
  article-title: The effect of transcranial direct current stimulation on the cortical activation by motor task in the human brain: an fMRI study
  publication-title: Neurosci. Lett.
– volume: 103
  start-page: 1735
  year: 2010
  end-page: 1740
  ident: bib82
  article-title: Shaping the optimal repetition interval for cathodal transcranial direct current stimulation (tDCS)
  publication-title: J. Neurophysiol.
– volume: 101
  start-page: 404
  year: 1996
  end-page: 411
  ident: bib87
  article-title: Improvement of amplitude variability of motor evoked potentials in multiple sclerosis patients and in healthy subjects
  publication-title: Electroencephalogr. Clin. Neurophysiol.
– volume: 568
  start-page: 653
  year: 2005
  end-page: 663
  ident: bib10
  article-title: Non-synaptic mechanisms underlie the after-effects of cathodal transcutaneous direct current stimulation of the human brain
  publication-title: J. Physiol.
– volume: 49
  start-page: 3989
  year: 2011
  end-page: 3998
  ident: bib146
  article-title: Effects of transcranial direct current stimulation (tDCS) on behaviour and electrophysiology of language production
  publication-title: Neuropsychologia
– volume: 17
  start-page: 397
  year: 2000
  end-page: 405
  ident: bib148
  article-title: I-waves in motor cortex
  publication-title: J. Clin. Neurophysiol.
– volume: 45
  start-page: 196
  year: 2001
  end-page: 201
  ident: bib12
  article-title: Regional modulation of BOLD MRI responses to human sensorimotor activation by transcranial direct current stimulation
  publication-title: Magn. Reson. Med.
– volume: 22
  start-page: 495
  year: 2005
  end-page: 504
  ident: bib68
  article-title: How does transcranial DC stimulation of the primary motor cortex alter regional neuronal activity in the human brain?
  publication-title: Eur. J. Neurosci.
– volume: 24
  start-page: 46
  year: 2013
  end-page: 50
  ident: bib142
  article-title: Anodal transcranial direct current stimulation modulates GABAB-related intracortical inhibition in the M1 of healthy individuals
  publication-title: Neuroreport
– volume: 297
  start-page: G1035
  year: 2009
  end-page: G1040
  ident: bib53
  article-title: Characterizing the application of transcranial direct current stimulation in human pharyngeal motor cortex
  publication-title: Am. J. Physiol. Gastrointest. Liver Physiol.
– volume: 40
  start-page: 27
  year: 2010
  end-page: 36
  ident: bib2
  article-title: Comparison of “standard” and “navigated” procedures of TMS coil positioning over motor, premotor and prefrontal targets in patients with chronic pain and depression
  publication-title: Neurophysiol. Clin./Clin. Neurophysiol.
– volume: 112
  start-page: 1781
  year: 2001
  end-page: 1792
  ident: bib42
  article-title: Transcranial magnetic stimulation coregistered with MRI: a comparison of a guided versus blind stimulation technique and its effect on evoked compound muscle action potentials
  publication-title: Clin. Neurophysiol.
– volume: 31
  start-page: 661
  year: 2011
  end-page: 670
  ident: bib48
  article-title: Modulation of human trigeminal and extracranial nociceptive processing by transcranial direct current stimulation of the motor cortex
  publication-title: Cephalalgia
– volume: 498
  start-page: 817
  year: 1997
  end-page: 823
  ident: bib86
  article-title: Intracortical facilitation and inhibition after transcranial magnetic stimulation in conscious humans
  publication-title: J. Physiol.
– volume: 128
  start-page: 1943
  year: 2005
  end-page: 1950
  ident: bib115
  article-title: Homeostatic-like plasticity of the primary motor hand area is impaired in focal hand dystonia
  publication-title: Brain
– volume: 114
  start-page: 600
  year: 2003
  end-page: 604
  ident: bib96
  article-title: Level of action of cathodal DC polarisation induced inhibition of the human motor cortex
  publication-title: Clin. Neurophysiol.
– volume: 105
  start-page: 1141
  year: 2011
  end-page: 1149
  ident: bib37
  article-title: Time course of the induction of homeostatic plasticity generated by repeated transcranial direct current stimulation of the human motor cortex
  publication-title: J. Neurophysiol.
– volume: 83
  start-page: 569
  year: 2013
  end-page: 580
  ident: bib109
  article-title: Excitability modulation of the motor system induced by transcranial direct current stimulation: a multimodal approach
  publication-title: Neuroimage
– volume: 15
  start-page: 1
  year: 2014
  end-page: 9
  ident: bib139
  article-title: Late cortical plasticity in motor and auditory cortex: role of met-allele in BDNF Val66Met polymorphism
  publication-title: Int. J. Neuropsychopharmacol.
– volume: 18
  start-page: 648
  year: 2008
  end-page: 651
  ident: bib64
  article-title: Boosting focally-induced brain plasticity by dopamine
  publication-title: Cereb. Cortex
– volume: 591
  start-page: 1987
  year: 2013
  end-page: 2000
  ident: bib11
  article-title: Partially non-linear stimulation intensity-dependent effects of direct current stimulation on motor cortex excitability in humans
  publication-title: J. Physiol.
– volume: 1
  start-page: 151
  year: 2008
  end-page: 163
  ident: bib108
  article-title: State of the art: pharmacologic effects on cortical excitability measures tested by transcranial magnetic stimulation
  publication-title: Brain Stimul.
– volume: 7
  start-page: 7
  year: 2013
  ident: bib130
  article-title: A comparison between uni-and bilateral tDCS effects on functional connectivity of the human motor cortex
  publication-title: Front. Hum. Neurosci.
– volume: 6
  start-page: 821
  year: 2013
  end-page: 829
  ident: bib50
  article-title: Impaired motor cortex responses in non-psychotic first-degree relatives of schizophrenia patients: a cathodal tDCS pilot study
  publication-title: Brain Stimul.
– volume: 26
  start-page: 2687
  year: 2007
  end-page: 2691
  ident: bib9
  article-title: Towards unravelling task-related modulations of neuroplastic changes induced in the human motor cortex
  publication-title: Eur. J. Neurosci.
– volume: 156
  start-page: 439
  year: 2004
  end-page: 443
  ident: bib66
  article-title: Effects of transcranial direct current stimulation over the human motor cortex on corticospinal and transcallosal excitability
  publication-title: Exp. Brain Res.
– volume: 6
  year: 2013
  ident: bib105
  article-title: Doubts about Targretin in AD
  publication-title: SciBX: Sci.-Bus. eXch.
– volume: 29
  start-page: 463
  year: 2011
  end-page: 492
  ident: bib99
  article-title: Transcranial direct current stimulation—update 2011
  publication-title: Restor. Neurol. Neurosci.
– volume: 7
  start-page: e30971
  year: 2012
  ident: bib112
  article-title: Reorganizing the intrinsic functional architecture of the human primary motor cortex during rest with non-invasive cortical stimulation
  publication-title: PLoS One
– volume: 21
  start-page: 2774
  year: 2011
  end-page: 2787
  ident: bib72
  article-title: Enhanced rapid-onset cortical plasticity in CADASIL as a possible mechanism of preserved cognition
  publication-title: Cereb. Cortex
– volume: 21
  start-page: 480
  year: 2011
  end-page: 484
  ident: bib134
  article-title: The role of GABA in human motor learning
  publication-title: Curr. Biol.
– year: 2005
  ident: bib47
  article-title: Event-related Potentials: A Methods Handbook
– volume: 105
  start-page: 2937
  year: 2011
  end-page: 2942
  ident: bib78
  article-title: Cathodal transcranial direct current stimulation of the primary motor cortex improves selective muscle activation in the ipsilateral arm
  publication-title: J. Neurophysiol.
– volume: 1529
  start-page: 83
  year: 2013
  end-page: 91
  ident: bib79
  article-title: Corticomotor excitability induced by anodal transcranial direct current stimulation with and without non-exhaustive movement
  publication-title: Brain Res.
– volume: 111
  start-page: 1397
  year: 2014
  end-page: 1399
  ident: bib55
  article-title: Probing the mechanisms underlying the mitigation of cognitive aging with anodal transcranial direct current stimulation
  publication-title: J. Neurophysiol.
– volume: 15
  start-page: 1287
  year: 2004
  end-page: 1291
  ident: bib114
  article-title: Long lasting effects of transcranial direct current stimulation on motor imagery
  publication-title: Neuroreport
– volume: 5
  start-page: 252
  year: 2012
  end-page: 263
  ident: bib110
  article-title: Modulation of large-scale brain networks by transcranial direct current stimulation evidenced by resting-state functional MRI
  publication-title: Brain Stimul.
– volume: 29
  start-page: 5202
  year: 2009
  end-page: 5206
  ident: bib135
  article-title: Polarity-sensitive modulation of cortical neurotransmitters by transcranial stimulation
  publication-title: J. Neurosci.
– volume: 74
  start-page: 401
  year: 1989
  end-page: 416
  ident: bib4
  article-title: Focal stimulation of human cerebral cortex with the magnetic coil: a comparison with electrical stimulation
  publication-title: Electroencephalogr. Clin. Neurophysiol.
– volume: 521
  start-page: 148
  year: 2012
  end-page: 151
  ident: bib13
  article-title: tDCS selectively improves working memory in older adults with more education
  publication-title: Neurosci. Lett.
– volume: 119
  start-page: 1499
  year: 2012
  end-page: 1506
  ident: bib31
  article-title: The effects of prolonged cathodal direct current stimulation on the excitatory and inhibitory circuits of the ipsilateral and contralateral motor cortex
  publication-title: J. Neural Transm.
– year: 2003
  ident: bib122
  publication-title: Primer of EEG
– volume: 85
  start-page: 9
  year: 1992
  end-page: 16
  ident: bib21
  article-title: Topographic mapping of the human motor cortex with magnetic stimulation: factors affecting accuracy and reproducibility
  publication-title: Electroencephalogr. Clin. Neurophysiol.
– volume: 12
  start-page: 2
  year: 2011
  ident: bib147
  article-title: Transcranial direct current stimulation of the prefrontal cortex modulates working memory performance: combined behavioural and electrophysiological evidence
  publication-title: BMC Neurosci.
– volume: 24
  start-page: 56
  year: 2008
  end-page: 63
  ident: bib6
  article-title: Transcranial direct current stimulation over somatosensory cortex decreases experimentally induced acute pain perception
  publication-title: Clin. J. Pain
– volume: 539
  start-page: 7
  year: 2013
  end-page: 10
  ident: bib107
  article-title: Transcranial direct current stimulation increases resting state interhemispheric connectivity
  publication-title: Neurosci. Lett.
– volume: 122
  start-page: 777
  year: 2011
  end-page: 783
  ident: bib60
  article-title: Transcranial direct current stimulation over the motor association cortex induces plastic changes in ipsilateral primary motor and somatosensory cortices
  publication-title: Clin. Neurophysiol.
– volume: 44
  start-page: 109
  year: 2011
  end-page: 114
  ident: bib85
  article-title: Transcranial direct current stimulation does not modulate motor cortex excitability in patients with amyotrophic lateral sclerosis
  publication-title: Muscle Nerve
– volume: 553
  start-page: 293
  year: 2003
  end-page: 301
  ident: bib90
  article-title: Pharmacological modulation of cortical excitability shifts induced by transcranial direct current stimulation in humans
  publication-title: J. Physiol.
– volume: 27
  start-page: 1292
  year: 2008
  end-page: 1300
  ident: bib18
  article-title: Premotor transcranial direct current stimulation (tDCS) affects primary motor excitability in humans
  publication-title: Eur. J. Neurosci.
– volume: 406
  start-page: 147
  year: 2000
  end-page: 150
  ident: bib44
  article-title: Transcranial magnetic stimulation and the human brain
  publication-title: Nature
– volume: 125
  start-page: 2238
  year: 2002
  end-page: 2247
  ident: bib71
  article-title: Pharmacological approach to the mechanisms of transcranial DC-stimulation-induced after-effects of human motor cortex excitability
  publication-title: Brain
– volume: 105
  start-page: 2802
  year: 2011
  end-page: 2810
  ident: bib69
  article-title: Transcranial direct current stimulation effects on I-wave activity in humans
  publication-title: J. Neurophysiol.
– volume: 103
  start-page: 2382
  year: 2010
  end-page: 2389
  ident: bib19
  article-title: Task-dependent modulation of inputs to proximal upper limb following transcranial direct current stimulation of primary motor cortex
  publication-title: J. Neurophysiol.
– volume: 59
  start-page: 117
  year: 2012
  end-page: 128
  ident: bib27
  article-title: TDCS guided using fMRI significantly accelerates learning to identify concealed objects
  publication-title: Neuroimage
– volume: 492
  start-page: 105
  year: 2011
  end-page: 108
  ident: bib65
  article-title: The enhanced cortical activation induced by transcranial direct current stimulation during hand movements
  publication-title: Neurosci. Lett.
– volume: 45
  start-page: 702
  year: 2004
  end-page: 707
  ident: bib7
  article-title: Excitability changes induced in the human primary visual cortex by transcranial direct current stimulation: direct electrophysiological evidence
  publication-title: Invest. Ophthalmol. Vis. Sci.
– volume: 498
  start-page: 167
  year: 2011
  end-page: 170
  ident: bib125
  article-title: Increased short latency afferent inhibition after anodal transcranial direct current stimulation
  publication-title: Neurosci. Lett.
– volume: 500
  start-page: 67
  year: 2011
  end-page: 71
  ident: bib28
  article-title: Transcranial direct current stimulation (tDCS) produces localized and specific alterations in neurochemistry: a (1)H magnetic resonance spectroscopy study
  publication-title: Neurosci. Lett.
– volume: 6
  start-page: 424
  year: 2013
  end-page: 432
  ident: bib81
  article-title: Induction of late LTP-like plasticity in the human motor cortex by repeated non-invasive brain stimulation
  publication-title: Brain Stimul.
– volume: 20
  start-page: 148
  year: 1987
  end-page: 155
  ident: bib5
  article-title: Human cerebral cortical responses to contralateral transcranial stimulation
  publication-title: Neurosurg
– volume: 17
  start-page: 37
  year: 2011
  end-page: 53
  ident: bib136
  article-title: Physiological basis of transcranial direct current stimulation
  publication-title: Neuroscientist
– volume: 70
  start-page: 690
  year: 2011
  end-page: 695
  ident: bib15
  article-title: Brain energy consumption induced by electrical stimulation promotes systemic glucose uptake
  publication-title: Biol. Psychiatry
– volume: 568
  start-page: 291
  year: 2005
  end-page: 303
  ident: bib101
  article-title: Modulating parameters of excitability during and after transcranial direct current stimulation of the human motor cortex
  publication-title: J. Physiol.
– volume: 66
  start-page: 503
  year: 2009
  end-page: 508
  ident: bib93
  article-title: Serotonin affects transcranial direct current-induced neuroplasticity in humans
  publication-title: Biol. Psychiatry
– volume: 117
  start-page: 2221
  year: 2006
  end-page: 2227
  ident: bib34
  article-title: Transcranial direct current stimulation applied over the somatosensory cortex-differential effect on low and high frequency SEPs
  publication-title: Clin. Neurophysiol.
– volume: 8
  start-page: e59669
  year: 2013
  ident: bib124
  article-title: High-frequency TRNS reduces BOLD activity during visuomotor learning
  publication-title: PLoS One
– volume: 55
  start-page: 187
  year: 2007
  end-page: 199
  ident: bib45
  article-title: Transcranial magnetic stimulation: a primer
  publication-title: Neuron
– volume: 7
  start-page: 113
  year: 2014
  end-page: 121
  ident: bib118
  article-title: Increased transcranial direct current stimulation after effects during concurrent peripheral electrical nerve stimulation
  publication-title: Brain Stimul.
– volume: 589
  start-page: 2813
  year: 2011
  end-page: 2826
  ident: bib119
  article-title: Effects of anodal transcranial direct current stimulation over the leg motor area on lumbar spinal network excitability in healthy subjects
  publication-title: J. Physiol.
– volume: 29
  start-page: 1573
  year: 2004
  end-page: 1578
  ident: bib92
  article-title: Consolidation of human motor cortical neuroplasticity by
  publication-title: Neuropsychopharmacology
– volume: 14
  start-page: 23
  year: 2013
  ident: bib143
  article-title: Transcranial direct current stimulation (tDCS) of the visual cortex: a proof-of-concept study based on interictal electrophysiological abnormalities in migraine
  publication-title: J. Headache Pain
– volume: 577
  start-page: 795
  year: 2006
  end-page: 803
  ident: bib113
  article-title: Transcranial direct current stimulation of the primary motor cortex affects cortical drive to human musculature as assessed by intermuscular coherence
  publication-title: J. Physiol.
– volume: 17
  start-page: 253
  year: 2005
  end-page: 259
  ident: bib129
  article-title: Accuracy of stereotaxic positioning of transcranial magnetic stimulation
  publication-title: Br. Topogr.
– volume: 14
  start-page: 371
  year: 2013
  end-page: 383
  ident: bib144
  article-title: Focal modulation of the primary motor cortex in fibromyalgia using 4×1-ring high-definition transcranial direct current stimulation (HD-tDCS): immediate and delayed analgesic effects of cathodal and anodal stimulation
  publication-title: J. Pain
– volume: 7
  start-page: e47514
  year: 2012
  ident: bib103
  article-title: Rethinking clinical trials of transcranial direct current stimulation: participant and assessor blinding is inadequate at intensities of 2
  publication-title: PLOS One
– volume: 14
  start-page: 101
  year: 1981
  end-page: 114
  ident: bib35
  article-title: The influence of low-level transcortical dc-currents on response speed in humans
  publication-title: J. Neurosci.
– volume: 19
  start-page: 2720
  year: 2004
  end-page: 2726
  ident: bib95
  article-title: GABAergic modulation of DC stimulation-induced motor cortex excitability shifts in humans
  publication-title: Eur. J. Neurosci.
– volume: 8
  start-page: 2
  year: 2014
  ident: bib51
  article-title: Transcranial direct current stimulation: five important issues we aren't discussing (but probably should be)
  publication-title: Front. Syst. Neurosci.
– volume: 47
  start-page: 486
  year: 1960
  end-page: 490
  ident: bib61
  article-title: den EinfluSS besonders niederfrequenter elektrischer Vorgänge in der Atmosphäre auf den Menschen
  publication-title: Naturwissenschaften
– volume: 23
  start-page: 1651
  year: 2006
  end-page: 1657
  ident: bib94
  article-title: Dopaminergic modulation of long-lasting direct current-induced cortical excitability changes in the human motor cortex
  publication-title: Eur. J. Neurosci.
– volume: 97
  start-page: 3109
  year: 2007
  end-page: 3117
  ident: bib89
  article-title: Shaping the effects of transcranial direct current stimulation of the human motor cortex
  publication-title: J. Neurophysiol.
– volume: 31
  start-page: 15284
  year: 2011
  end-page: 15293
  ident: bib56
  article-title: Prefrontal transcranial direct current stimulation changes connectivity of resting-state networks during fMRI
  publication-title: J. Neurosci.
– volume: 24
  start-page: 3379
  year: 2004
  end-page: 3385
  ident: bib131
  article-title: Preconditioning of low-frequency repetitive transcranial magnetic stimulation with transcranial direct current stimulation: evidence for homeostatic plasticity in the human motor cortex
  publication-title: J. Neurosci.
– volume: 5
  start-page: 208
  year: 2012
  end-page: 213
  ident: bib3
  article-title: Daily transcranial direct current stimulation (tDCS) leads to greater increases in cortical excitability than second daily transcranial direct current stimulation
  publication-title: Brain Stimul.
– volume: 56
  start-page: 634
  year: 2004
  end-page: 639
  ident: bib67
  article-title: Preconditioning with transcranial direct current stimulation sensitizes the motor cortex to rapid-rate transcranial magnetic stimulation and controls the direction of after-effects
  publication-title: Biol. Psychiatry
– volume: 30
  start-page: 191
  year: 2012
  end-page: 198
  ident: bib127
  article-title: Modulating neuronal excitability in the motor cortex with tDCS shows moderate hemispheric asymmetry due to subjects’ handedness: a pilot study
  publication-title: Restor. Neurol. Neurosci.
– volume: 121
  year: 2013
  ident: bib16
  article-title: Evidence for metaplasticity in the human visual cortex
  publication-title: J. Neural Transm.
– volume: 8
  start-page: e57425
  year: 2013
  ident: bib128
  article-title: Evolution of premotor cortical excitability after cathodal inhibition of the primary motor cortex: a sham-controlled serial navigated TMS study
  publication-title: PLoS One
– volume: 29
  start-page: 311
  year: 2011
  end-page: 320
  ident: bib141
  article-title: Isometric contraction interferes with transcranial direct current stimulation (tDCS) induced plasticity: evidence of state-dependent neuromodulation in human motor cortex
  publication-title: Restor. Neurol. Neurosci.
– volume: 24
  start-page: 973
  year: 2013
  end-page: 975
  ident: bib132
  article-title: Motor cortex-induced plasticity by noninvasive brain stimulation: a comparison between transcranial direct current stimulation and transcranial magnetic stimulation
  publication-title: Neuroreport
– volume: 115
  start-page: 255
  year: 2004
  end-page: 266
  ident: bib32
  article-title: The physiological basis of transcranial motor cortex stimulation in conscious humans
  publication-title: Clin. Neurophysiol.
– volume: 262
  start-page: 415
  year: 2012
  end-page: 423
  ident: bib49
  article-title: Abnormal bihemispheric responses in schizophrenia patients following cathodal transcranial direct stimulation
  publication-title: Eur. Arch. Psychiatry Clin. Neurosci.
– volume: 2
  start-page: 217
  year: 1968
  end-page: 222
  ident: bib46
  article-title: Effects of low-level, low-frequency electric fields in human reaction time
  publication-title: Comm. Behav. Biol.
– volume: 38
  start-page: 64
  year: 1988
  end-page: 68
  ident: bib36
  article-title: State-dependent changes in the N20 component of the median nerve somatosensory evoked potential
  publication-title: Neurology
– volume: 14
  start-page: 1240
  year: 2004
  end-page: 1245
  ident: bib91
  article-title: Catecholaminergic consolidation of motor cortical neuroplasticity in humans
  publication-title: Cereb. Cortex
– volume: 2012
  start-page: 735
  year: 2012
  end-page: 738
  ident: bib25
  article-title: A pilot study on effects of 4×1 high-definition tDCS on motor cortex excitability
  publication-title: Conf. Proc. IEEE Eng. Med. Biol. Soc.
– volume: 10
  start-page: 122
  year: 2009
  end-page: 132
  ident: bib30
  article-title: Modulatory effects of transcranial direct current stimulation on laser-evoked potentials
  publication-title: Pain Med.
– volume: 412
  start-page: 7
  year: 2011
  ident: bib73
  article-title: Neurophysiological investigation of the basis of the fMRI signal
  publication-title: Nature
– year: 2014
  ident: bib121
  article-title: Neuromethods: Transcranial Magnetic Stimulation
– volume: 21
  start-page: 207
  year: 2009
  end-page: 221
  ident: bib123
  article-title: Optimizing functional accuracy of TMS in cognitive studies: a comparison of methods
  publication-title: J. Cogn. Neurosci.
– volume: 38
  start-page: 16
  year: 2002
  ident: bib33
  article-title: Cortical sources of the early components of the visual evoked potential
  publication-title: Neurology
– volume: 57
  start-page: 1899
  year: 2001
  end-page: 1901
  ident: bib98
  article-title: Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans
  publication-title: Neurology
– volume: 7
  start-page: 256
  year: 2013
  ident: bib70
  article-title: Je pense donc je fais: transcranial direct current stimulation modulates brain oscillations associated with motor imagery and movement observation
  publication-title: Front. Hum. Neurosci.
– volume: 35
  year: 2013
  ident: bib102
  article-title: Local and remote effects of transcranial direct current stimulation on the electrical activity of the motor cortical network
  publication-title: Hum. Brain Mapp.
– volume: 16
  start-page: 13
  year: 2013
  end-page: 21
  ident: bib39
  article-title: Transcranial direct current stimulation treatment protocols: should stimulus intensity be constant or incremental over multiple sessions?
  publication-title: Int. J. Neuropsychopharmacol.
– volume: 527
  start-page: 633
  year: 2000
  end-page: 639
  ident: bib97
  article-title: Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation
  publication-title: J. Physiol.
– volume: 6
  start-page: 644
  year: 2013
  end-page: 648
  ident: bib62
  article-title: Comparing cortical plasticity induced by conventional and high-definition 4×1 ring tDCS: a neurophysiological study
  publication-title: Brain Stimul.
– volume: 36
  start-page: 79
  year: 2008
  end-page: 91
  ident: bib140
  article-title: Pergolide increases the efficacy of cathodal direct current stimulation to reduce the amplitude of laser-evoked potentials in humans
  publication-title: J. Pain Symptom Manage.
– volume: 187
  start-page: 51
  year: 2008
  end-page: 59
  ident: bib120
  article-title: Trial-to-trial size variability of motor-evoked potentials. A study using the triple stimulation technique
  publication-title: Exp. Brain Res.
– volume: 55
  start-page: 590
  year: 2011
  end-page: 596
  ident: bib8
  article-title: Transcranial direct current stimulation over the primary motor cortex during fMRI
  publication-title: Neuroimage
– volume: 31
  start-page: 2086
  year: 2011
  end-page: 2095
  ident: bib106
  article-title: Bilateral transcranial direct current stimulation modulates activation-induced regional blood flow changes during voluntary movement
  publication-title: J. Cereb. Blood Flow Metab.
– volume: 3
  start-page: 217
  year: 1992
  ident: bib40
  article-title: The ballad of Pons and Fleischmann: experiment and narrative in the (un) making of cold fusion
  publication-title: Soc. Dimens. Sci.
– volume: 105
  start-page: 2582
  year: 2011
  end-page: 2589
  ident: bib20
  article-title: Cathodal transcranial direct current stimulation suppresses ipsilateral projections to presumed propriospinal neurons of the proximal upper limb
  publication-title: J. Neurophysiol.
– volume: 35
  issue: 5
  year: 2013
  ident: 10.1016/j.neuropsychologia.2014.11.021_bib102
  article-title: Local and remote effects of transcranial direct current stimulation on the electrical activity of the motor cortical network
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.22322
– volume: 57
  start-page: 1899
  issue: 10
  year: 2001
  ident: 10.1016/j.neuropsychologia.2014.11.021_bib98
  article-title: Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans
  publication-title: Neurology
  doi: 10.1212/WNL.57.10.1899
– volume: 16
  start-page: 13
  issue: 1
  year: 2013
  ident: 10.1016/j.neuropsychologia.2014.11.021_bib39
  article-title: Transcranial direct current stimulation treatment protocols: should stimulus intensity be constant or incremental over multiple sessions?
  publication-title: Int. J. Neuropsychopharmacol.
  doi: 10.1017/S1461145712000041
– volume: 74
  start-page: 401
  issue: 6
  year: 1989
  ident: 10.1016/j.neuropsychologia.2014.11.021_bib4
  article-title: Focal stimulation of human cerebral cortex with the magnetic coil: a comparison with electrical stimulation
  publication-title: Electroencephalogr. Clin. Neurophysiol.
  doi: 10.1016/0168-5597(89)90029-4
– volume: 591
  start-page: 1987
  issue: Pt. 7
  year: 2013
  ident: 10.1016/j.neuropsychologia.2014.11.021_bib11
  article-title: Partially non-linear stimulation intensity-dependent effects of direct current stimulation on motor cortex excitability in humans
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.2012.249730
– volume: 111
  start-page: 1397
  issue: 7
  year: 2014
  ident: 10.1016/j.neuropsychologia.2014.11.021_bib55
  article-title: Probing the mechanisms underlying the mitigation of cognitive aging with anodal transcranial direct current stimulation
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00736.2013
– volume: 14
  start-page: 23
  issue: 1
  year: 2013
  ident: 10.1016/j.neuropsychologia.2014.11.021_bib143
  article-title: Transcranial direct current stimulation (tDCS) of the visual cortex: a proof-of-concept study based on interictal electrophysiological abnormalities in migraine
  publication-title: J. Headache Pain
  doi: 10.1186/1129-2377-14-23
– volume: 7
  start-page: 1
  year: 2013
  ident: 10.1016/j.neuropsychologia.2014.11.021_bib14
  article-title: Origins of specificity during tDCS: anatomical, activity-selective, and input-bias mechanisms
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2013.00688
– volume: 20
  start-page: 148
  issue: 1
  year: 1987
  ident: 10.1016/j.neuropsychologia.2014.11.021_bib5
  article-title: Human cerebral cortical responses to contralateral transcranial stimulation
  publication-title: Neurosurg
  doi: 10.1097/00006123-198701000-00031
– volume: 31
  start-page: 2086
  issue: 10
  year: 2011
  ident: 10.1016/j.neuropsychologia.2014.11.021_bib106
  article-title: Bilateral transcranial direct current stimulation modulates activation-induced regional blood flow changes during voluntary movement
  publication-title: J. Cereb. Blood Flow Metab.
  doi: 10.1038/jcbfm.2011.72
– volume: 498
  start-page: 817
  issue: Pt. 3
  year: 1997
  ident: 10.1016/j.neuropsychologia.2014.11.021_bib86
  article-title: Intracortical facilitation and inhibition after transcranial magnetic stimulation in conscious humans
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.1997.sp021905
– volume: 36
  start-page: 79
  issue: 1
  year: 2008
  ident: 10.1016/j.neuropsychologia.2014.11.021_bib140
  article-title: Pergolide increases the efficacy of cathodal direct current stimulation to reduce the amplitude of laser-evoked potentials in humans
  publication-title: J. Pain Symptom Manage.
  doi: 10.1016/j.jpainsymman.2007.08.014
– volume: 122
  start-page: 675
  issue: 11
  year: 2012
  ident: 10.1016/j.neuropsychologia.2014.11.021_bib138
  article-title: Comparison of the after-effects of transcranial direct current stimulation over the motor cortex in patients with stroke and healthy volunteers
  publication-title: Int. J. Neurosci.
  doi: 10.3109/00207454.2012.707715
– volume: 29
  start-page: 311
  issue: 5
  year: 2011
  ident: 10.1016/j.neuropsychologia.2014.11.021_bib141
  article-title: Isometric contraction interferes with transcranial direct current stimulation (tDCS) induced plasticity: evidence of state-dependent neuromodulation in human motor cortex
  publication-title: Restor. Neurol. Neurosci.
– volume: 13
  start-page: 112
  issue: 2
  year: 2012
  ident: 10.1016/j.neuropsychologia.2014.11.021_bib17
  article-title: A pilot study of the tolerability and effects of high-definition transcranial direct current stimulation (HD-tDCS) on pain perception
  publication-title: J. Pain
  doi: 10.1016/j.jpain.2011.07.001
– volume: 24
  start-page: 973
  issue: 17
  year: 2013
  ident: 10.1016/j.neuropsychologia.2014.11.021_bib132
  article-title: Motor cortex-induced plasticity by noninvasive brain stimulation: a comparison between transcranial direct current stimulation and transcranial magnetic stimulation
  publication-title: Neuroreport
  doi: 10.1097/WNR.0000000000000021
– volume: 21
  start-page: 480
  issue: 6
  year: 2011
  ident: 10.1016/j.neuropsychologia.2014.11.021_bib134
  article-title: The role of GABA in human motor learning
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2011.01.069
– volume: 15
  start-page: 1
  issue: 5
  year: 2014
  ident: 10.1016/j.neuropsychologia.2014.11.021_bib139
  article-title: Late cortical plasticity in motor and auditory cortex: role of met-allele in BDNF Val66Met polymorphism
  publication-title: Int. J. Neuropsychopharmacol.
– volume: 5
  start-page: 175
  issue: 3
  year: 2012
  ident: 10.1016/j.neuropsychologia.2014.11.021_bib22
  article-title: Clinical research with transcranial direct current stimulation (tDCS): challenges and future directions
  publication-title: Brain Stimul.
  doi: 10.1016/j.brs.2011.03.002
– volume: 6
  start-page: 11
  year: 1999
  ident: 10.1016/j.neuropsychologia.2014.11.021_bib43
  article-title: Temporal and spatial aspects of event-related desynchronization and movement-related cortical potentials
  publication-title: Handb. Electroencephalogr. Clin. Neurophysiol.
– volume: 18
  start-page: 648
  issue: 3
  year: 2008
  ident: 10.1016/j.neuropsychologia.2014.11.021_bib64
  article-title: Boosting focally-induced brain plasticity by dopamine
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhm098
– volume: 568
  start-page: 653
  issue: Pt. 2
  year: 2005
  ident: 10.1016/j.neuropsychologia.2014.11.021_bib10
  article-title: Non-synaptic mechanisms underlie the after-effects of cathodal transcutaneous direct current stimulation of the human brain
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.2005.088310
– volume: 103
  start-page: 2382
  year: 2010
  ident: 10.1016/j.neuropsychologia.2014.11.021_bib19
  article-title: Task-dependent modulation of inputs to proximal upper limb following transcranial direct current stimulation of primary motor cortex
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.01046.2009
– volume: 23
  start-page: 1651
  issue: 6
  year: 2006
  ident: 10.1016/j.neuropsychologia.2014.11.021_bib94
  article-title: Dopaminergic modulation of long-lasting direct current-induced cortical excitability changes in the human motor cortex
  publication-title: Eur. J. Neurosci.
  doi: 10.1111/j.1460-9568.2006.04676.x
– volume: 105
  start-page: 1141
  issue: 3
  year: 2011
  ident: 10.1016/j.neuropsychologia.2014.11.021_bib37
  article-title: Time course of the induction of homeostatic plasticity generated by repeated transcranial direct current stimulation of the human motor cortex
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00608.2009
– volume: 10
  start-page: 122
  issue: 1
  year: 2009
  ident: 10.1016/j.neuropsychologia.2014.11.021_bib30
  article-title: Modulatory effects of transcranial direct current stimulation on laser-evoked potentials
  publication-title: Pain Med.
  doi: 10.1111/j.1526-4637.2008.00508.x
– volume: 114
  start-page: 600
  issue: 4
  year: 2003
  ident: 10.1016/j.neuropsychologia.2014.11.021_bib96
  article-title: Level of action of cathodal DC polarisation induced inhibition of the human motor cortex
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/S1388-2457(02)00412-1
– volume: 30
  start-page: 1412
  issue: 7
  year: 2009
  ident: 10.1016/j.neuropsychologia.2014.11.021_bib137
  article-title: Modulation of movement-associated cortical activation by transcranial direct current stimulation
  publication-title: Eur. J. Neurosci.
  doi: 10.1111/j.1460-9568.2009.06937.x
– volume: 5
  start-page: 252
  issue: 3
  year: 2012
  ident: 10.1016/j.neuropsychologia.2014.11.021_bib110
  article-title: Modulation of large-scale brain networks by transcranial direct current stimulation evidenced by resting-state functional MRI
  publication-title: Brain Stimul.
  doi: 10.1016/j.brs.2011.08.006
– volume: 225
  start-page: 321
  issue: 3
  year: 2013
  ident: 10.1016/j.neuropsychologia.2014.11.021_bib26
  article-title: Opposite effects of weak transcranial direct current stimulation on different phases of short interval intracortical inhibition (SICI)
  publication-title: Exp. Brain Res.
  doi: 10.1007/s00221-012-3369-0
– volume: 38
  start-page: 16
  issue: 1
  year: 2002
  ident: 10.1016/j.neuropsychologia.2014.11.021_bib33
  article-title: Cortical sources of the early components of the visual evoked potential
  publication-title: Neurology
– volume: 6
  start-page: 424
  issue: 3
  year: 2013
  ident: 10.1016/j.neuropsychologia.2014.11.021_bib81
  article-title: Induction of late LTP-like plasticity in the human motor cortex by repeated non-invasive brain stimulation
  publication-title: Brain Stimul.
  doi: 10.1016/j.brs.2012.04.011
– volume: 21
  start-page: 2774
  issue: 12
  year: 2011
  ident: 10.1016/j.neuropsychologia.2014.11.021_bib72
  article-title: Enhanced rapid-onset cortical plasticity in CADASIL as a possible mechanism of preserved cognition
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhr071
– volume: 568
  start-page: 291
  issue: Pt. 1
  year: 2005
  ident: 10.1016/j.neuropsychologia.2014.11.021_bib101
  article-title: Modulating parameters of excitability during and after transcranial direct current stimulation of the human motor cortex
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.2005.092429
– volume: 105
  start-page: 2937
  issue: 6
  year: 2011
  ident: 10.1016/j.neuropsychologia.2014.11.021_bib78
  article-title: Cathodal transcranial direct current stimulation of the primary motor cortex improves selective muscle activation in the ipsilateral arm
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00171.2011
– volume: 29
  start-page: 463
  issue: 6
  year: 2011
  ident: 10.1016/j.neuropsychologia.2014.11.021_bib99
  article-title: Transcranial direct current stimulation—update 2011
  publication-title: Restor. Neurol. Neurosci.
– volume: 5
  start-page: 208
  issue: 3
  year: 2012
  ident: 10.1016/j.neuropsychologia.2014.11.021_bib3
  article-title: Daily transcranial direct current stimulation (tDCS) leads to greater increases in cortical excitability than second daily transcranial direct current stimulation
  publication-title: Brain Stimul.
  doi: 10.1016/j.brs.2011.04.006
– volume: 5
  start-page: 214
  issue: 3
  year: 2012
  ident: 10.1016/j.neuropsychologia.2014.11.021_bib84
  article-title: Effects of simultaneous bilateral tDCS of the human motor cortex
  publication-title: Brain Stimul.
  doi: 10.1016/j.brs.2011.05.001
– volume: 45
  start-page: 196
  issue: 2
  year: 2001
  ident: 10.1016/j.neuropsychologia.2014.11.021_bib12
  article-title: Regional modulation of BOLD MRI responses to human sensorimotor activation by transcranial direct current stimulation
  publication-title: Magn. Reson. Med.
  doi: 10.1002/1522-2594(200102)45:2<196::AID-MRM1026>3.0.CO;2-1
– volume: 83
  start-page: 569
  year: 2013
  ident: 10.1016/j.neuropsychologia.2014.11.021_bib109
  article-title: Excitability modulation of the motor system induced by transcranial direct current stimulation: a multimodal approach
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.06.076
– volume: 7
  start-page: e47514
  issue: 10
  year: 2012
  ident: 10.1016/j.neuropsychologia.2014.11.021_bib103
  article-title: Rethinking clinical trials of transcranial direct current stimulation: participant and assessor blinding is inadequate at intensities of 2mA
  publication-title: PLOS One
  doi: 10.1371/journal.pone.0047514
– volume: 7
  start-page: 113
  issue: 1
  year: 2014
  ident: 10.1016/j.neuropsychologia.2014.11.021_bib118
  article-title: Increased transcranial direct current stimulation after effects during concurrent peripheral electrical nerve stimulation
  publication-title: Brain Stimul.
  doi: 10.1016/j.brs.2013.10.002
– volume: 122
  start-page: 777
  issue: 4
  year: 2011
  ident: 10.1016/j.neuropsychologia.2014.11.021_bib60
  article-title: Transcranial direct current stimulation over the motor association cortex induces plastic changes in ipsilateral primary motor and somatosensory cortices
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2010.09.025
– volume: 1
  start-page: 206
  issue: 3
  year: 2008
  ident: 10.1016/j.neuropsychologia.2014.11.021_bib88
  article-title: Transcranial direct current stimulation: state of the art 2008
  publication-title: Brain Stimul.
  doi: 10.1016/j.brs.2008.06.004
– volume: 521
  start-page: 148
  issue: 2
  year: 2012
  ident: 10.1016/j.neuropsychologia.2014.11.021_bib13
  article-title: tDCS selectively improves working memory in older adults with more education
  publication-title: Neurosci. Lett.
  doi: 10.1016/j.neulet.2012.05.074
– volume: 577
  start-page: 795
  issue: Pt. 3
  year: 2006
  ident: 10.1016/j.neuropsychologia.2014.11.021_bib113
  article-title: Transcranial direct current stimulation of the primary motor cortex affects cortical drive to human musculature as assessed by intermuscular coherence
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.2006.116939
– volume: 40
  start-page: 27
  issue: 1
  year: 2010
  ident: 10.1016/j.neuropsychologia.2014.11.021_bib2
  article-title: Comparison of “standard” and “navigated” procedures of TMS coil positioning over motor, premotor and prefrontal targets in patients with chronic pain and depression
  publication-title: Neurophysiol. Clin./Clin. Neurophysiol.
  doi: 10.1016/j.neucli.2010.01.001
– volume: 1529
  start-page: 83
  year: 2013
  ident: 10.1016/j.neuropsychologia.2014.11.021_bib79
  article-title: Corticomotor excitability induced by anodal transcranial direct current stimulation with and without non-exhaustive movement
  publication-title: Brain Res.
  doi: 10.1016/j.brainres.2013.07.026
– volume: 125
  start-page: 2238
  issue: Pt. 10
  year: 2002
  ident: 10.1016/j.neuropsychologia.2014.11.021_bib71
  article-title: Pharmacological approach to the mechanisms of transcranial DC-stimulation-induced after-effects of human motor cortex excitability
  publication-title: Brain
  doi: 10.1093/brain/awf238
– volume: 17
  start-page: 37
  issue: 1
  year: 2011
  ident: 10.1016/j.neuropsychologia.2014.11.021_bib136
  article-title: Physiological basis of transcranial direct current stimulation
  publication-title: Neuroscientist
  doi: 10.1177/1073858410386614
– volume: 24
  start-page: 56
  issue: 1
  year: 2008
  ident: 10.1016/j.neuropsychologia.2014.11.021_bib6
  article-title: Transcranial direct current stimulation over somatosensory cortex decreases experimentally induced acute pain perception
  publication-title: Clin. J. Pain
  doi: 10.1097/AJP.0b013e318157233b
– volume: 59
  start-page: 117
  issue: 1
  year: 2012
  ident: 10.1016/j.neuropsychologia.2014.11.021_bib27
  article-title: TDCS guided using fMRI significantly accelerates learning to identify concealed objects
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.11.036
– volume: 38
  start-page: 64
  issue: 1
  year: 1988
  ident: 10.1016/j.neuropsychologia.2014.11.021_bib36
  article-title: State-dependent changes in the N20 component of the median nerve somatosensory evoked potential
  publication-title: Neurology
  doi: 10.1212/WNL.38.1.64
– volume: 8
  start-page: 2
  year: 2014
  ident: 10.1016/j.neuropsychologia.2014.11.021_bib51
  article-title: Transcranial direct current stimulation: five important issues we aren't discussing (but probably should be)
  publication-title: Front. Syst. Neurosci.
  doi: 10.3389/fnsys.2014.00002
– volume: 24
  start-page: 3379
  issue: 13
  year: 2004
  ident: 10.1016/j.neuropsychologia.2014.11.021_bib131
  article-title: Preconditioning of low-frequency repetitive transcranial magnetic stimulation with transcranial direct current stimulation: evidence for homeostatic plasticity in the human motor cortex
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.5316-03.2004
– volume: 21
  start-page: 207
  issue: 2
  year: 2009
  ident: 10.1016/j.neuropsychologia.2014.11.021_bib123
  article-title: Optimizing functional accuracy of TMS in cognitive studies: a comparison of methods
  publication-title: J. Cogn. Neurosci.
  doi: 10.1162/jocn.2009.21126
– volume: 27
  start-page: 1292
  issue: 5
  year: 2008
  ident: 10.1016/j.neuropsychologia.2014.11.021_bib18
  article-title: Premotor transcranial direct current stimulation (tDCS) affects primary motor excitability in humans
  publication-title: Eur. J. Neurosci.
  doi: 10.1111/j.1460-9568.2008.06090.x
– volume: 12
  start-page: 2
  year: 2011
  ident: 10.1016/j.neuropsychologia.2014.11.021_bib147
  article-title: Transcranial direct current stimulation of the prefrontal cortex modulates working memory performance: combined behavioural and electrophysiological evidence
  publication-title: BMC Neurosci.
  doi: 10.1186/1471-2202-12-2
– volume: 460
  start-page: 117
  issue: 2
  year: 2009
  ident: 10.1016/j.neuropsychologia.2014.11.021_bib52
  article-title: The effect of transcranial direct current stimulation on the cortical activation by motor task in the human brain: an fMRI study
  publication-title: Neurosci. Lett.
  doi: 10.1016/j.neulet.2009.05.037
– volume: 33
  start-page: 2499
  issue: 10
  year: 2012
  ident: 10.1016/j.neuropsychologia.2014.11.021_bib111
  article-title: Modulating cortico-striatal and thalamo-cortical functional connectivity with transcranial direct current stimulation
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.21380
– volume: 8
  start-page: e63221
  issue: 5
  year: 2013
  ident: 10.1016/j.neuropsychologia.2014.11.021_bib80
  article-title: A survey on data reproducibility in cancer research provides insights into our limited ability to translate findings from the laboratory to the clinic.
  publication-title: PloS One
  doi: 10.1371/journal.pone.0063221
– year: 2014
  ident: 10.1016/j.neuropsychologia.2014.11.021_bib121
  doi: 10.1007/978-1-4939-0879-0
– volume: 6
  start-page: 821
  issue: 5
  year: 2013
  ident: 10.1016/j.neuropsychologia.2014.11.021_bib50
  article-title: Impaired motor cortex responses in non-psychotic first-degree relatives of schizophrenia patients: a cathodal tDCS pilot study
  publication-title: Brain Stimul.
  doi: 10.1016/j.brs.2013.03.001
– volume: 7
  start-page: 256
  year: 2013
  ident: 10.1016/j.neuropsychologia.2014.11.021_bib70
  article-title: Je pense donc je fais: transcranial direct current stimulation modulates brain oscillations associated with motor imagery and movement observation
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2013.00256
– volume: 55
  start-page: 590
  issue: 2
  year: 2011
  ident: 10.1016/j.neuropsychologia.2014.11.021_bib8
  article-title: Transcranial direct current stimulation over the primary motor cortex during fMRI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.11.085
– volume: 31
  start-page: 661
  issue: 6
  year: 2011
  ident: 10.1016/j.neuropsychologia.2014.11.021_bib48
  article-title: Modulation of human trigeminal and extracranial nociceptive processing by transcranial direct current stimulation of the motor cortex
  publication-title: Cephalalgia
  doi: 10.1177/0333102410390394
– volume: 6
  start-page: 644
  issue: 4
  year: 2013
  ident: 10.1016/j.neuropsychologia.2014.11.021_bib62
  article-title: Comparing cortical plasticity induced by conventional and high-definition 4×1 ring tDCS: a neurophysiological study
  publication-title: Brain Stimul.
  doi: 10.1016/j.brs.2012.09.010
– volume: 29
  start-page: 82
  issue: 1
  year: 2008
  ident: 10.1016/j.neuropsychologia.2014.11.021_bib133
  article-title: Transcranial magnetic stimulation and the challenge of coil placement: a comparison of conventional and stereotaxic neuronavigational strategies
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.20360
– volume: 27
  start-page: 3807
  issue: 14
  year: 2007
  ident: 10.1016/j.neuropsychologia.2014.11.021_bib100
  article-title: Timing-dependent modulation of associative plasticity by general network excitability in the human motor cortex
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.5348-06.2007
– volume: 85
  start-page: 9
  issue: 1
  year: 1992
  ident: 10.1016/j.neuropsychologia.2014.11.021_bib21
  article-title: Topographic mapping of the human motor cortex with magnetic stimulation: factors affecting accuracy and reproducibility
  publication-title: Electroencephalogr. Clin. Neurophysiol.
  doi: 10.1016/0168-5597(92)90095-S
– volume: 60
  start-page: 782
  issue: 4
  year: 2008
  ident: 10.1016/j.neuropsychologia.2014.11.021_bib117
  article-title: Myoinositol content in the human brain is modified by transcranial direct current stimulation in a matter of minutes: a 1H-MRS study
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.21709
– volume: 27
  start-page: 14442
  issue: 52
  year: 2007
  ident: 10.1016/j.neuropsychologia.2014.11.021_bib63
  article-title: Focusing effect of acetylcholine on neuroplasticity in the human motor cortex
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.4104-07.2007
– volume: 117
  start-page: 2221
  issue: 10
  year: 2006
  ident: 10.1016/j.neuropsychologia.2014.11.021_bib34
  article-title: Transcranial direct current stimulation applied over the somatosensory cortex-differential effect on low and high frequency SEPs
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2006.07.136
– volume: 553
  start-page: 293
  issue: Pt 1
  year: 2003
  ident: 10.1016/j.neuropsychologia.2014.11.021_bib90
  article-title: Pharmacological modulation of cortical excitability shifts induced by transcranial direct current stimulation in humans
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.2003.049916
– volume: 156
  start-page: 439
  issue: 4
  year: 2004
  ident: 10.1016/j.neuropsychologia.2014.11.021_bib66
  article-title: Effects of transcranial direct current stimulation over the human motor cortex on corticospinal and transcallosal excitability
  publication-title: Exp. Brain Res.
  doi: 10.1007/s00221-003-1800-2
– volume: 2013
  start-page: 1
  year: 2013
  ident: 10.1016/j.neuropsychologia.2014.11.021_bib57
  article-title: Different intensities of anodal transcranial direct current stimulation do not differentiall modulate motor cortex plasticity
  publication-title: Neural Plast.
  doi: 10.1155/2013/603502
– volume: 15
  start-page: 1287
  issue: 8
  year: 2004
  ident: 10.1016/j.neuropsychologia.2014.11.021_bib114
  article-title: Long lasting effects of transcranial direct current stimulation on motor imagery
  publication-title: Neuroreport
  doi: 10.1097/01.wnr.0000127637.22805.7c
– volume: 7
  start-page: 7
  year: 2013
  ident: 10.1016/j.neuropsychologia.2014.11.021_bib130
  article-title: A comparison between uni-and bilateral tDCS effects on functional connectivity of the human motor cortex
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2013.00183
– volume: 66
  start-page: 503
  issue: 5
  year: 2009
  ident: 10.1016/j.neuropsychologia.2014.11.021_bib93
  article-title: Serotonin affects transcranial direct current-induced neuroplasticity in humans
  publication-title: Biol. Psychiatry
  doi: 10.1016/j.biopsych.2009.03.022
– volume: 19
  start-page: 2720
  issue: 10
  year: 2004
  ident: 10.1016/j.neuropsychologia.2014.11.021_bib95
  article-title: GABAergic modulation of DC stimulation-induced motor cortex excitability shifts in humans
  publication-title: Eur. J. Neurosci.
  doi: 10.1111/j.0953-816X.2004.03398.x
– volume: 522
  start-page: 167
  issue: 2
  year: 2012
  ident: 10.1016/j.neuropsychologia.2014.11.021_bib23
  article-title: Transcranial direct current stimulation modulates motor responses evoked by repetitive transcranial magnetic stimulation
  publication-title: Neurosci. Lett.
  doi: 10.1016/j.neulet.2012.06.033
– volume: 297
  start-page: G1035
  year: 2009
  ident: 10.1016/j.neuropsychologia.2014.11.021_bib53
  article-title: Characterizing the application of transcranial direct current stimulation in human pharyngeal motor cortex
  publication-title: Am. J. Physiol. Gastrointest. Liver Physiol.
  doi: 10.1152/ajpgi.00294.2009
– year: 2003
  ident: 10.1016/j.neuropsychologia.2014.11.021_bib122
– volume: 178
  start-page: 261
  issue: 2
  year: 2007
  ident: 10.1016/j.neuropsychologia.2014.11.021_bib1
  article-title: Visual evoked potentials modulation during direct current cortical polarization
  publication-title: Exp. Brain Res.
  doi: 10.1007/s00221-006-0733-y
– volume: 89
  start-page: 415
  issue: 6
  year: 1993
  ident: 10.1016/j.neuropsychologia.2014.11.021_bib59
  article-title: Variability of motor potentials evoked by transcranial magnetic stimulation
  publication-title: Electroencephalogr. Clin. Neurophysiol.
  doi: 10.1016/0168-5597(93)90115-6
– volume: 42
  start-page: 1951
  issue: 10
  year: 1992
  ident: 10.1016/j.neuropsychologia.2014.11.021_bib24
  article-title: Magnetic brain stimulation: the silent period after the motor evoked potential
  publication-title: Neurology
  doi: 10.1212/WNL.42.10.1951
– volume: 31
  start-page: 15284
  issue: 43
  year: 2011
  ident: 10.1016/j.neuropsychologia.2014.11.021_bib56
  article-title: Prefrontal transcranial direct current stimulation changes connectivity of resting-state networks during fMRI
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.0542-11.2011
– volume: 21
  start-page: 404
  issue: 3
  year: 2013
  ident: 10.1016/j.neuropsychologia.2014.11.021_bib145
  article-title: Performance of motor imagery brain-computer interface based on anodal transcranial direct current stimulation modulation
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2013.2249111
– volume: 8
  start-page: e57425
  issue: 2
  year: 2013
  ident: 10.1016/j.neuropsychologia.2014.11.021_bib128
  article-title: Evolution of premotor cortical excitability after cathodal inhibition of the primary motor cortex: a sham-controlled serial navigated TMS study
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0057425
– volume: 105
  start-page: 2802
  issue: 6
  year: 2011
  ident: 10.1016/j.neuropsychologia.2014.11.021_bib69
  article-title: Transcranial direct current stimulation effects on I-wave activity in humans
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00617.2010
– volume: 166
  start-page: 1219
  issue: 4
  year: 2010
  ident: 10.1016/j.neuropsychologia.2014.11.021_bib41
  article-title: Slow-oscillatory transcranial direct current stimulation can induce bidirectional shifts in motor cortical excitability in awake humans
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2010.01.019
– volume: 406
  start-page: 147
  issue: 6792
  year: 2000
  ident: 10.1016/j.neuropsychologia.2014.11.021_bib44
  article-title: Transcranial magnetic stimulation and the human brain
  publication-title: Nature
  doi: 10.1038/35018000
– volume: 103
  start-page: 1735
  issue: 4
  year: 2010
  ident: 10.1016/j.neuropsychologia.2014.11.021_bib82
  article-title: Shaping the optimal repetition interval for cathodal transcranial direct current stimulation (tDCS)
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00924.2009
– volume: 112
  start-page: 1781
  issue: 10
  year: 2001
  ident: 10.1016/j.neuropsychologia.2014.11.021_bib42
  article-title: Transcranial magnetic stimulation coregistered with MRI: a comparison of a guided versus blind stimulation technique and its effect on evoked compound muscle action potentials
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/S1388-2457(01)00633-2
– volume: 22
  start-page: 495
  issue: 2
  year: 2005
  ident: 10.1016/j.neuropsychologia.2014.11.021_bib68
  article-title: How does transcranial DC stimulation of the primary motor cortex alter regional neuronal activity in the human brain?
  publication-title: Eur. J. Neurosci.
  doi: 10.1111/j.1460-9568.2005.04233.x
– volume: 17
  start-page: 253
  issue: 4
  year: 2005
  ident: 10.1016/j.neuropsychologia.2014.11.021_bib129
  article-title: Accuracy of stereotaxic positioning of transcranial magnetic stimulation
  publication-title: Br. Topogr.
  doi: 10.1007/s10548-005-6033-1
– volume: 8
  start-page: e59669
  issue: 3
  year: 2013
  ident: 10.1016/j.neuropsychologia.2014.11.021_bib124
  article-title: High-frequency TRNS reduces BOLD activity during visuomotor learning
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0059669
– volume: 187
  start-page: 51
  issue: 1
  year: 2008
  ident: 10.1016/j.neuropsychologia.2014.11.021_bib120
  article-title: Trial-to-trial size variability of motor-evoked potentials. A study using the triple stimulation technique
  publication-title: Exp. Brain Res.
  doi: 10.1007/s00221-008-1278-z
– volume: 110
  start-page: 318
  issue: 1−2
  year: 2004
  ident: 10.1016/j.neuropsychologia.2014.11.021_bib104
  article-title: Amplitudes of laser evoked potential recorded from primary somatosensory, parasylvian and medial frontal cortex are graded with stimulus intensity
  publication-title: Pain
  doi: 10.1016/j.pain.2004.04.009
– volume: 492
  start-page: 105
  issue: 2
  year: 2011
  ident: 10.1016/j.neuropsychologia.2014.11.021_bib65
  article-title: The enhanced cortical activation induced by transcranial direct current stimulation during hand movements
  publication-title: Neurosci. Lett.
  doi: 10.1016/j.neulet.2011.01.066
– volume: 512
  start-page: 12
  issue: 1
  year: 2012
  ident: 10.1016/j.neuropsychologia.2014.11.021_bib76
  article-title: Influence of transcranial direct current stimulation of the dorsolateral prefrontal cortex on pain related emotions: a study using electroencephalographic power spectrum analysis
  publication-title: Neurosci. Lett.
  doi: 10.1016/j.neulet.2012.01.037
– volume: 97
  start-page: 3109
  issue: 4
  year: 2007
  ident: 10.1016/j.neuropsychologia.2014.11.021_bib89
  article-title: Shaping the effects of transcranial direct current stimulation of the human motor cortex
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.01312.2006
– volume: 17
  start-page: 397
  issue: 4
  year: 2000
  ident: 10.1016/j.neuropsychologia.2014.11.021_bib148
  article-title: I-waves in motor cortex
  publication-title: J. Clin. Neurophysiol.
  doi: 10.1097/00004691-200007000-00005
– volume: 16
  start-page: 1695
  issue: 8
  year: 2013
  ident: 10.1016/j.neuropsychologia.2014.11.021_bib116
  article-title: Anodal transcranial direct current stimulation increases brain intracellular pH and modulates bioenergetics
  publication-title: Int. J. Neuropsychopharmacol.
  doi: 10.1017/S1461145713000084
– volume: 527
  start-page: 633
  issue: Pt. 3
  year: 2000
  ident: 10.1016/j.neuropsychologia.2014.11.021_bib97
  article-title: Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation
  publication-title: J. Physiol.
  doi: 10.1111/j.1469-7793.2000.t01-1-00633.x
– volume: 262
  start-page: 415
  issue: 5
  year: 2012
  ident: 10.1016/j.neuropsychologia.2014.11.021_bib49
  article-title: Abnormal bihemispheric responses in schizophrenia patients following cathodal transcranial direct stimulation
  publication-title: Eur. Arch. Psychiatry Clin. Neurosci.
  doi: 10.1007/s00406-012-0298-7
– volume: 44
  start-page: 109
  issue: 1
  year: 2011
  ident: 10.1016/j.neuropsychologia.2014.11.021_bib85
  article-title: Transcranial direct current stimulation does not modulate motor cortex excitability in patients with amyotrophic lateral sclerosis
  publication-title: Muscle Nerve
  doi: 10.1002/mus.22012
– volume: 182
  start-page: 281
  issue: 2
  year: 2007
  ident: 10.1016/j.neuropsychologia.2014.11.021_bib54
  article-title: Effects of transcranial direct current stimulation on the excitability of the leg motor cortex
  publication-title: Exp. Brain Res.
  doi: 10.1007/s00221-007-1093-y
– volume: 55
  start-page: 187
  issue: 2
  year: 2007
  ident: 10.1016/j.neuropsychologia.2014.11.021_bib45
  article-title: Transcranial magnetic stimulation: a primer
  publication-title: Neuron
  doi: 10.1016/j.neuron.2007.06.026
– volume: 29
  start-page: 6124
  issue: 19
  year: 2009
  ident: 10.1016/j.neuropsychologia.2014.11.021_bib83
  article-title: Dose-dependent inverted U-shaped effect of dopamine (D2-like) receptor activation on focal and nonfocal plasticity in humans
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.0728-09.2009
– volume: 3
  start-page: 217
  year: 1992
  ident: 10.1016/j.neuropsychologia.2014.11.021_bib40
  article-title: The ballad of Pons and Fleischmann: experiment and narrative in the (un) making of cold fusion
  publication-title: Soc. Dimens. Sci.
– volume: 589
  start-page: 2813
  issue: 11
  year: 2011
  ident: 10.1016/j.neuropsychologia.2014.11.021_bib119
  article-title: Effects of anodal transcranial direct current stimulation over the leg motor area on lumbar spinal network excitability in healthy subjects
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.2011.205161
– volume: 7
  start-page: e30971
  issue: 1
  year: 2012
  ident: 10.1016/j.neuropsychologia.2014.11.021_bib112
  article-title: Reorganizing the intrinsic functional architecture of the human primary motor cortex during rest with non-invasive cortical stimulation
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0030971
– volume: 185
  start-page: 279
  issue: 2
  year: 2008
  ident: 10.1016/j.neuropsychologia.2014.11.021_bib38
  article-title: Short and long duration transcranial direct current stimulation (tDCS) over the human hand motor area
  publication-title: Exp. Brain Res.
  doi: 10.1007/s00221-007-1149-z
– volume: 539
  start-page: 7
  year: 2013
  ident: 10.1016/j.neuropsychologia.2014.11.021_bib107
  article-title: Transcranial direct current stimulation increases resting state interhemispheric connectivity
  publication-title: Neurosci. Lett.
  doi: 10.1016/j.neulet.2013.01.047
– volume: 115
  start-page: 255
  issue: 2
  year: 2004
  ident: 10.1016/j.neuropsychologia.2014.11.021_bib32
  article-title: The physiological basis of transcranial motor cortex stimulation in conscious humans
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2003.10.009
– volume: 412
  start-page: 7
  issue: 6843
  year: 2011
  ident: 10.1016/j.neuropsychologia.2014.11.021_bib73
  article-title: Neurophysiological investigation of the basis of the fMRI signal
  publication-title: Nature
– volume: 14
  start-page: 101
  year: 1981
  ident: 10.1016/j.neuropsychologia.2014.11.021_bib35
  article-title: The influence of low-level transcortical dc-currents on response speed in humans
  publication-title: J. Neurosci.
– volume: 498
  start-page: 167
  issue: 2
  year: 2011
  ident: 10.1016/j.neuropsychologia.2014.11.021_bib125
  article-title: Increased short latency afferent inhibition after anodal transcranial direct current stimulation
  publication-title: Neurosci. Lett.
  doi: 10.1016/j.neulet.2011.05.007
– volume: 14
  start-page: 1240
  issue: 11
  year: 2004
  ident: 10.1016/j.neuropsychologia.2014.11.021_bib91
  article-title: Catecholaminergic consolidation of motor cortical neuroplasticity in humans
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhh085
– volume: 49
  start-page: 3989
  issue: 14
  year: 2011
  ident: 10.1016/j.neuropsychologia.2014.11.021_bib146
  article-title: Effects of transcranial direct current stimulation (tDCS) on behaviour and electrophysiology of language production
  publication-title: Neuropsychologia
  doi: 10.1016/j.neuropsychologia.2011.10.015
– volume: 29
  start-page: 1573
  issue: 8
  year: 2004
  ident: 10.1016/j.neuropsychologia.2014.11.021_bib92
  article-title: Consolidation of human motor cortical neuroplasticity by d-cycloserine
  publication-title: Neuropsychopharmacology
  doi: 10.1038/sj.npp.1300517
– volume: 128
  start-page: 1943
  issue: Pt. 8
  year: 2005
  ident: 10.1016/j.neuropsychologia.2014.11.021_bib115
  article-title: Homeostatic-like plasticity of the primary motor hand area is impaired in focal hand dystonia
  publication-title: Brain
  doi: 10.1093/brain/awh527
– year: 2005
  ident: 10.1016/j.neuropsychologia.2014.11.021_bib47
– volume: 30
  start-page: 191
  issue: 3
  year: 2012
  ident: 10.1016/j.neuropsychologia.2014.11.021_bib127
  article-title: Modulating neuronal excitability in the motor cortex with tDCS shows moderate hemispheric asymmetry due to subjects’ handedness: a pilot study
  publication-title: Restor. Neurol. Neurosci.
– volume: 47
  start-page: 486
  issue: 21
  year: 1960
  ident: 10.1016/j.neuropsychologia.2014.11.021_bib61
  article-title: den EinfluSS besonders niederfrequenter elektrischer Vorgänge in der Atmosphäre auf den Menschen
  publication-title: Naturwissenschaften
  doi: 10.1007/BF00631044
– volume: 500
  start-page: 67
  issue: 1
  year: 2011
  ident: 10.1016/j.neuropsychologia.2014.11.021_bib28
  article-title: Transcranial direct current stimulation (tDCS) produces localized and specific alterations in neurochemistry: a (1)H magnetic resonance spectroscopy study
  publication-title: Neurosci. Lett.
  doi: 10.1016/j.neulet.2011.05.244
– volume: 1
  start-page: 151
  issue: 3
  year: 2008
  ident: 10.1016/j.neuropsychologia.2014.11.021_bib108
  article-title: State of the art: pharmacologic effects on cortical excitability measures tested by transcranial magnetic stimulation
  publication-title: Brain Stimul.
  doi: 10.1016/j.brs.2008.06.002
– volume: 7
  start-page: 27
  year: 2010
  ident: 10.1016/j.neuropsychologia.2014.11.021_bib77
  article-title: Modulation of mu rhythm desynchronization during motor imagery by transcranial direct current stimulation
  publication-title: J. Neuroeng. Rehabil.
  doi: 10.1186/1743-0003-7-27
– volume: 119
  start-page: 1499
  issue: 12
  year: 2012
  ident: 10.1016/j.neuropsychologia.2014.11.021_bib31
  article-title: The effects of prolonged cathodal direct current stimulation on the excitatory and inhibitory circuits of the ipsilateral and contralateral motor cortex
  publication-title: J. Neural Transm.
  doi: 10.1007/s00702-012-0845-4
– volume: 24
  start-page: 46
  issue: 1
  year: 2013
  ident: 10.1016/j.neuropsychologia.2014.11.021_bib142
  article-title: Anodal transcranial direct current stimulation modulates GABAB-related intracortical inhibition in the M1 of healthy individuals
  publication-title: Neuroreport
  doi: 10.1097/WNR.0b013e32835c36b8
– volume: 14
  start-page: 371
  issue: 4
  year: 2013
  ident: 10.1016/j.neuropsychologia.2014.11.021_bib144
  article-title: Focal modulation of the primary motor cortex in fibromyalgia using 4×1-ring high-definition transcranial direct current stimulation (HD-tDCS): immediate and delayed analgesic effects of cathodal and anodal stimulation
  publication-title: J. Pain
  doi: 10.1016/j.jpain.2012.12.007
– volume: 6
  issue: 21
  year: 2013
  ident: 10.1016/j.neuropsychologia.2014.11.021_bib105
  article-title: Doubts about Targretin in AD
  publication-title: SciBX: Sci.-Bus. eXch.
– volume: 26
  start-page: 2687
  issue: 9
  year: 2007
  ident: 10.1016/j.neuropsychologia.2014.11.021_bib9
  article-title: Towards unravelling task-related modulations of neuroplastic changes induced in the human motor cortex
  publication-title: Eur. J. Neurosci.
  doi: 10.1111/j.1460-9568.2007.05896.x
– volume: 101
  start-page: 404
  issue: 5
  year: 1996
  ident: 10.1016/j.neuropsychologia.2014.11.021_bib87
  article-title: Improvement of amplitude variability of motor evoked potentials in multiple sclerosis patients and in healthy subjects
  publication-title: Electroencephalogr. Clin. Neurophysiol.
  doi: 10.1016/0924-980X(96)96541-8
– volume: 121
  issue: 3
  year: 2013
  ident: 10.1016/j.neuropsychologia.2014.11.021_bib16
  article-title: Evidence for metaplasticity in the human visual cortex
  publication-title: J. Neural Transm.
  doi: 10.1007/s00702-013-1104-z
– volume: 2
  start-page: 217
  year: 1968
  ident: 10.1016/j.neuropsychologia.2014.11.021_bib46
  article-title: Effects of low-level, low-frequency electric fields in human reaction time
  publication-title: Comm. Behav. Biol.
– volume: 35
  start-page: 325
  year: 1977
  ident: 10.1016/j.neuropsychologia.2014.11.021_bib74
  article-title: Low-level electric currents and brain indicators of behavioral activation
  publication-title: Arg. Neruopsiquiat.
  doi: 10.1590/S0004-282X1977000400004
– volume: 56
  start-page: 634
  issue: 9
  year: 2004
  ident: 10.1016/j.neuropsychologia.2014.11.021_bib67
  article-title: Preconditioning with transcranial direct current stimulation sensitizes the motor cortex to rapid-rate transcranial magnetic stimulation and controls the direction of after-effects
  publication-title: Biol. Psychiatry
  doi: 10.1016/j.biopsych.2004.07.017
– volume: 70
  start-page: 690
  issue: 7
  year: 2011
  ident: 10.1016/j.neuropsychologia.2014.11.021_bib15
  article-title: Brain energy consumption induced by electrical stimulation promotes systemic glucose uptake
  publication-title: Biol. Psychiatry
  doi: 10.1016/j.biopsych.2011.05.009
– volume: 105
  start-page: 2582
  issue: 5
  year: 2011
  ident: 10.1016/j.neuropsychologia.2014.11.021_bib20
  article-title: Cathodal transcranial direct current stimulation suppresses ipsilateral projections to presumed propriospinal neurons of the proximal upper limb
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.01084.2010
– volume: 6
  start-page: 624
  issue: 4
  year: 2013
  ident: 10.1016/j.neuropsychologia.2014.11.021_bib126
  article-title: Interaction between simultaneously applied neuromodulatory interventions in humans
  publication-title: Brain Stimul.
  doi: 10.1016/j.brs.2012.09.009
– volume: 45
  start-page: 702
  issue: 2
  year: 2004
  ident: 10.1016/j.neuropsychologia.2014.11.021_bib7
  article-title: Excitability changes induced in the human primary visual cortex by transcranial direct current stimulation: direct electrophysiological evidence
  publication-title: Invest. Ophthalmol. Vis. Sci.
  doi: 10.1167/iovs.03-0688
– volume: 29
  start-page: 5202
  issue: 16
  year: 2009
  ident: 10.1016/j.neuropsychologia.2014.11.021_bib135
  article-title: Polarity-sensitive modulation of cortical neurotransmitters by transcranial stimulation
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.4432-08.2009
– volume: 2012
  start-page: 735
  year: 2012
  ident: 10.1016/j.neuropsychologia.2014.11.021_bib25
  article-title: A pilot study on effects of 4×1 high-definition tDCS on motor cortex excitability
  publication-title: Conf. Proc. IEEE Eng. Med. Biol. Soc.
– reference: 26143023 - Brain Stimul. 2015 Jul-Aug;8(4):846-9. doi: 10.1016/j.brs.2015.05.010.
SSID ssj0004528
Score 2.6072562
SecondaryResourceType review_article
Snippet Transcranial direct current stimulation (tDCS) is a form of neuromodulation that is increasingly being utilized to examine and modify a number of cognitive and...
Background: Transcranial direct current stimulation (tDCS) is a form of neuromodulation that is increasingly being utilized to examine and modify a number of...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 213
SubjectTerms Adolescent
Adult
Brain - physiology
Brain Mapping - methods
Electroencephalography
Electroencephalography (EEG)
Event related potential (ERP)
Evoked Potentials
Evoked Potentials, Motor
Functional magnetic resonance imaging (fMRI)
Humans
Magnetic Resonance Imaging - methods
Middle Aged
Neurophysiology
Reproducibility of Results
Systematic review
Transcranial direct current stimulation (tDCS)
Transcranial Direct Current Stimulation - methods
Transcranial magnetic stimulation (TMS)
Transcranial Magnetic Stimulation - methods
Young Adult
Title Evidence that transcranial direct current stimulation (tDCS) generates little-to-no reliable neurophysiologic effect beyond MEP amplitude modulation in healthy human subjects: A systematic review
URI https://dx.doi.org/10.1016/j.neuropsychologia.2014.11.021
https://www.ncbi.nlm.nih.gov/pubmed/25448853
https://www.proquest.com/docview/1656045925
https://www.proquest.com/docview/1660400778
Volume 66
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYhhdBLadPX9hGmUEp7cGLLkh-FHJZtwrZlQ6EN5GZkPdItib1kvYde-ufyxzIj2Zu2kJJDLwYbW0ieTzMjaeYbxl4nsTIWLVsktMEFinNpVMepjRQChpuydsLvQ86Osumx-HQiTzbYZMiFobDKXvcHne61df9kr_-be4v5nHJ80TSWVGgn9vmdlMEuckL57q_kd8bwYmBipre32JvrGC_PGblYaxriIUrELrF68uQmQ3WTI-oN0uF9dq_3JGEcOvuAbdhmm23N-rPyh-xyKBgK3XfVQUdGSeMFAQdh0KADORPgND_vy3jB2-7D5Os7OPV01OiHAvrpiKeoa6OmhQt7NqdkKwhjIiEH7QkhMARqnxEDs4MvoChYnagz4bw1Q_PzBkLq5U_w5QFhuappK2j5HsZwTSsNIaXmETs-PPg2mUZ9yYZI40qri7guM6PqRGV1KpNMp4XgKpMmsXFdOiL3Ij4za0vhtJNaFoaXInZUCEu5whTpY7bZtI19ykA64Yzjeaa0Fjy3Ki1MaoyKUzS8ieUjtj_Ip9I9nzmV1TirhsC1H9Xf8q1IvrjoqVC-I5avv18EZo9bfzke4FD9gdUKzdCt23g14KjCCU2nNKqx7WpZeTokIUsu__VORso3z4sRexJAuB4Dcc4V6IQ9-w-9fM7u4p0MW04v2GZ3sbIv0Qnr6h0_y3bYnfHHz9OjK010Ot8
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZKkQoXxJvlOUgIwSFt4jgvJA6rpdUC3QqJVurNcvyARW2y6mYPXPhz_DFm7GQLSEU9cMkhsS0787Q98w1jL5JYGYuWLRLa4AbFuTSq49RGChmGm6p2wp9Dzg7y6ZH4cJwdb7DJkAtDYZW97g863Wvr_s1O_zd3FvM55fiiaayo0E7s8zuvsKsCxZfKGGz_SH6HDC8HKGZqvsVengd5edDIxVrVEBBRIrYJ1pMnF1mqizxRb5H2brIbvSsJ4zDbW2zDNrfZ1qy_LL_Dfg4VQ6H7qjroyCppfCDHQVg16IDOBCjnp30dL3jVvZt8fg1fPB41OqKAjjoyVNS1UdPCmT2ZU7YVhDURlYP6hBAZArVPiYHZ7idQFK1O2Jlw2pph-HkDIffyO_j6gLBc1XQWtHwDYzjHlYaQU3OXHe3tHk6mUV-zIdK41eoirqvcqDpReZ1mSa7TUnCVZyaxcV05QvciQDNrK-G0y3RWGl6J2FElLOVKU6b32GbTNvYBg8wJZxwvcqW14IVVaWlSY1ScouVNLB-xtwN9pO4BzamuxokcIte-yb_pK4m-uOuRSN8RK9b9FwHa49I9xwM7yD-YVaIduvQYzwc-kijRdE2jGtuultLjIYms4tm_2uSkfYuiHLH7gQnXayDQuRK9sIf_YZbP2LXp4Wxf7r8_-PiIXccvWTh_esw2u7OVfYIeWVc_9RL3CyBmPG0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evidence+that+transcranial+direct+current+stimulation+%28tDCS%29+generates+little-to-no+reliable+neurophysiologic+effect+beyond+MEP+amplitude+modulation+in+healthy+human+subjects%3A+A+systematic+review&rft.jtitle=Neuropsychologia&rft.au=Horvath%2C+Jared+Cooney&rft.au=te%2C+Jason+D&rft.au=Carter%2C+Olivia&rft.date=2015-01-01&rft.issn=0028-3932&rft.volume=66&rft.spage=213&rft.epage=236&rft_id=info:doi/10.1016%2Fj.neuropsychologia.2014.11.021&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-3932&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-3932&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-3932&client=summon