Evidence that transcranial direct current stimulation (tDCS) generates little-to-no reliable neurophysiologic effect beyond MEP amplitude modulation in healthy human subjects: A systematic review
Transcranial direct current stimulation (tDCS) is a form of neuromodulation that is increasingly being utilized to examine and modify a number of cognitive and behavioral measures. The theoretical mechanisms by which tDCS generates these changes are predicated upon a rather large neurophysiological...
Saved in:
Published in | Neuropsychologia Vol. 66; pp. 213 - 236 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.01.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Transcranial direct current stimulation (tDCS) is a form of neuromodulation that is increasingly being utilized to examine and modify a number of cognitive and behavioral measures. The theoretical mechanisms by which tDCS generates these changes are predicated upon a rather large neurophysiological literature. However, a robust systematic review of this neurophysiological data has not yet been undertaken.
tDCS data in healthy adults (18–50) from every neurophysiological outcome measure reported by at least two different research groups in the literature was collected. When possible, data was pooled and quantitatively analyzed to assess significance. When pooling was not possible, data was qualitatively compared to assess reliability.
Of the 30 neurophysiological outcome measures reported by at least two different research groups, tDCS was found to have a reliable effect on only one: MEP amplitude. Interestingly, the magnitude of this effect has been significantly decreasing over the last 14 years.
Our systematic review does not support the idea that tDCS has a reliable neurophysiological effect beyond MEP amplitude modulation – though important limitations of this review (and conclusion) are discussed. This work raises questions concerning the mechanistic foundations and general efficacy of this device – the implications of which extend to the steadily increasing tDCS psychological literature.
•Of 30 poolable neurophysiologic measures, tDCS has a significant effect on only one.•The effect of tDCS on MEP amplitude has been significantly decreasing since 2000.•tDCS does not appear to generate reliable neurophysiologic effects beyond MEPs. |
---|---|
AbstractList | Background: Transcranial direct current stimulation (tDCS) is a form of neuromodulation that is increasingly being utilized to examine and modify a number of cognitive and behavioral measures. The theoretical mechanisms by which tDCS generates these changes are predicated upon a rather large neurophysiological literature. However, a robust systematic review of this neurophysiological data has not yet been undertaken. Methods: tDCS data in healthy adults (18-50) from every neurophysiological outcome measure reported by at least two different research groups in the literature was collected. When possible, data was pooled and quantitatively analyzed to assess significance. When pooling was not possible, data was qualitatively compared to assess reliability. Results: Of the 30 neurophysiological outcome measures reported by at least two different research groups, tDCS was found to have a reliable effect on only one: MEP amplitude. Interestingly, the magnitude of this effect has been significantly decreasing over the last 14 years. Conclusion: Our systematic review does not support the idea that tDCS has a reliable neurophysiological effect beyond MEP amplitude modulation - though important limitations of this review (and conclusion) are discussed. This work raises questions concerning the mechanistic foundations and general efficacy of this device - the implications of which extend to the steadily increasing tDCS psychological literature. Transcranial direct current stimulation (tDCS) is a form of neuromodulation that is increasingly being utilized to examine and modify a number of cognitive and behavioral measures. The theoretical mechanisms by which tDCS generates these changes are predicated upon a rather large neurophysiological literature. However, a robust systematic review of this neurophysiological data has not yet been undertaken.BACKGROUNDTranscranial direct current stimulation (tDCS) is a form of neuromodulation that is increasingly being utilized to examine and modify a number of cognitive and behavioral measures. The theoretical mechanisms by which tDCS generates these changes are predicated upon a rather large neurophysiological literature. However, a robust systematic review of this neurophysiological data has not yet been undertaken.tDCS data in healthy adults (18-50) from every neurophysiological outcome measure reported by at least two different research groups in the literature was collected. When possible, data was pooled and quantitatively analyzed to assess significance. When pooling was not possible, data was qualitatively compared to assess reliability.METHODStDCS data in healthy adults (18-50) from every neurophysiological outcome measure reported by at least two different research groups in the literature was collected. When possible, data was pooled and quantitatively analyzed to assess significance. When pooling was not possible, data was qualitatively compared to assess reliability.Of the 30 neurophysiological outcome measures reported by at least two different research groups, tDCS was found to have a reliable effect on only one: MEP amplitude. Interestingly, the magnitude of this effect has been significantly decreasing over the last 14 years.RESULTSOf the 30 neurophysiological outcome measures reported by at least two different research groups, tDCS was found to have a reliable effect on only one: MEP amplitude. Interestingly, the magnitude of this effect has been significantly decreasing over the last 14 years.Our systematic review does not support the idea that tDCS has a reliable neurophysiological effect beyond MEP amplitude modulation - though important limitations of this review (and conclusion) are discussed. This work raises questions concerning the mechanistic foundations and general efficacy of this device - the implications of which extend to the steadily increasing tDCS psychological literature.CONCLUSIONOur systematic review does not support the idea that tDCS has a reliable neurophysiological effect beyond MEP amplitude modulation - though important limitations of this review (and conclusion) are discussed. This work raises questions concerning the mechanistic foundations and general efficacy of this device - the implications of which extend to the steadily increasing tDCS psychological literature. Transcranial direct current stimulation (tDCS) is a form of neuromodulation that is increasingly being utilized to examine and modify a number of cognitive and behavioral measures. The theoretical mechanisms by which tDCS generates these changes are predicated upon a rather large neurophysiological literature. However, a robust systematic review of this neurophysiological data has not yet been undertaken. tDCS data in healthy adults (18-50) from every neurophysiological outcome measure reported by at least two different research groups in the literature was collected. When possible, data was pooled and quantitatively analyzed to assess significance. When pooling was not possible, data was qualitatively compared to assess reliability. Of the 30 neurophysiological outcome measures reported by at least two different research groups, tDCS was found to have a reliable effect on only one: MEP amplitude. Interestingly, the magnitude of this effect has been significantly decreasing over the last 14 years. Our systematic review does not support the idea that tDCS has a reliable neurophysiological effect beyond MEP amplitude modulation - though important limitations of this review (and conclusion) are discussed. This work raises questions concerning the mechanistic foundations and general efficacy of this device - the implications of which extend to the steadily increasing tDCS psychological literature. Transcranial direct current stimulation (tDCS) is a form of neuromodulation that is increasingly being utilized to examine and modify a number of cognitive and behavioral measures. The theoretical mechanisms by which tDCS generates these changes are predicated upon a rather large neurophysiological literature. However, a robust systematic review of this neurophysiological data has not yet been undertaken. tDCS data in healthy adults (18–50) from every neurophysiological outcome measure reported by at least two different research groups in the literature was collected. When possible, data was pooled and quantitatively analyzed to assess significance. When pooling was not possible, data was qualitatively compared to assess reliability. Of the 30 neurophysiological outcome measures reported by at least two different research groups, tDCS was found to have a reliable effect on only one: MEP amplitude. Interestingly, the magnitude of this effect has been significantly decreasing over the last 14 years. Our systematic review does not support the idea that tDCS has a reliable neurophysiological effect beyond MEP amplitude modulation – though important limitations of this review (and conclusion) are discussed. This work raises questions concerning the mechanistic foundations and general efficacy of this device – the implications of which extend to the steadily increasing tDCS psychological literature. •Of 30 poolable neurophysiologic measures, tDCS has a significant effect on only one.•The effect of tDCS on MEP amplitude has been significantly decreasing since 2000.•tDCS does not appear to generate reliable neurophysiologic effects beyond MEPs. |
Author | Forte, Jason D. Horvath, Jared Cooney Carter, Olivia |
Author_xml | – sequence: 1 givenname: Jared Cooney surname: Horvath fullname: Horvath, Jared Cooney email: jared.cooney.horvath@gmail.com – sequence: 2 givenname: Jason D. surname: Forte fullname: Forte, Jason D. – sequence: 3 givenname: Olivia surname: Carter fullname: Carter, Olivia |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25448853$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkkFv0zAYhi00xLrBX0A-oXFIsR07TTggTV1hSEMgAWfLcb4srhy72M5Qfh9_DHddLzv1Yl8eP9-n1-8FOnPeAULvKFlSQqsP26WDKfhdnPXgrb83askI5UtKl4TRF2hB61VZlILyM7QghNVF2ZTsHF3EuCWEcMHqV-icCc7rWpQL9G_zYDpwGnAaVMIpKBd1PoyyuDMBdMJ6CgFcwjGZcbIqGe_wVbpZ_3yP78FBUAkitiYlC0XyhfM4gDWqtYAPuw5zNI-7agx9v1e2MHvX4W-bH1iNu_x26gCPvjvqjcMDKJuGGQ_TqByOU7vND-NHfI3jHBOMGdR50IOBv6_Ry17ZCG-e7kv0-_Pm1_q2uPv-5ev6-q7QvBGpYLqpOtVSVbU5n0qXNWeqEh0F0jZ9zobSilcADe91L7SoO9Zw0tcVYaqvu7q8RFcH7y74PxPEJEcTNVirHPgpSlpVhBOyWp2CisyKhomMvn1Cp3aETu6CGVWY5fGPMnBzAHTwMQbopTbpMaf8W8ZKSuS-GnIrn1dD7qshKZW5Glnz6ZnmOOlkwe1BADnjnHuQUZt9dQ49kZ03p6r-A1VV5z4 |
CitedBy_id | crossref_primary_10_1016_j_cortex_2017_06_017 crossref_primary_10_1038_s41467_021_22743_7 crossref_primary_10_3389_fnhum_2022_842954 crossref_primary_10_1016_j_arr_2016_05_006 crossref_primary_10_1016_j_neuropsychologia_2015_01_037 crossref_primary_10_1371_journal_pone_0194936 crossref_primary_10_1038_s41593_017_0054_4 crossref_primary_10_1080_17588928_2016_1173664 crossref_primary_10_3233_RNN_211230 crossref_primary_10_1016_j_neuroimage_2016_01_057 crossref_primary_10_1111_ejn_15756 crossref_primary_10_14814_phy2_14264 crossref_primary_10_1038_s41598_021_95084_6 crossref_primary_10_1016_j_brs_2017_12_008 crossref_primary_10_1016_j_clinph_2021_01_020 crossref_primary_10_1088_1741_2552_ab41ba crossref_primary_10_1007_s11682_019_00195_4 crossref_primary_10_1177_1073858416631966 crossref_primary_10_1016_j_brat_2025_104701 crossref_primary_10_1016_j_brs_2021_02_016 crossref_primary_10_3390_bioengineering10111265 crossref_primary_10_1016_j_appet_2017_03_006 crossref_primary_10_1016_j_neuropsychologia_2015_04_014 crossref_primary_10_3389_fnimg_2024_1341732 crossref_primary_10_1073_pnas_1815958116 crossref_primary_10_3390_ijms21061948 crossref_primary_10_1016_j_bandc_2018_09_008 crossref_primary_10_1016_j_neuropsychologia_2018_10_001 crossref_primary_10_3389_fphys_2017_00090 crossref_primary_10_1016_j_scib_2024_10_001 crossref_primary_10_1016_j_bpsc_2022_09_014 crossref_primary_10_3233_RNN_180872 crossref_primary_10_3389_fnhum_2024_1305446 crossref_primary_10_1007_s00221_020_05842_7 crossref_primary_10_36290_neu_2018_132 crossref_primary_10_1016_j_brainres_2016_03_038 crossref_primary_10_1016_j_brs_2020_04_015 crossref_primary_10_1093_cercor_bhy093 crossref_primary_10_1016_j_clinph_2021_01_011 crossref_primary_10_1016_j_ynirp_2021_100028 crossref_primary_10_1016_j_nicl_2024_103599 crossref_primary_10_1016_j_neubiorev_2016_03_028 crossref_primary_10_1007_s41465_020_00172_6 crossref_primary_10_1016_j_neuropsychologia_2021_107985 crossref_primary_10_1016_j_arcontrol_2022_05_001 crossref_primary_10_1016_j_brs_2015_12_003 crossref_primary_10_1016_j_brs_2019_12_001 crossref_primary_10_3390_brainsci14070694 crossref_primary_10_1016_j_cortex_2019_10_006 crossref_primary_10_1016_j_cortex_2018_08_012 crossref_primary_10_3389_fnhum_2020_588671 crossref_primary_10_1016_j_bandc_2021_105807 crossref_primary_10_1016_j_neubiorev_2021_11_002 crossref_primary_10_1016_j_bandc_2016_06_009 crossref_primary_10_1016_j_neuroimage_2022_119547 crossref_primary_10_1002_jnr_23741 crossref_primary_10_1016_j_yebeh_2015_10_032 crossref_primary_10_3390_brainsci6030026 crossref_primary_10_1111_nyas_13098 crossref_primary_10_1080_00207454_2020_1775594 crossref_primary_10_1016_j_neucli_2018_12_003 crossref_primary_10_1038_s41598_022_22893_8 crossref_primary_10_1111_acer_13841 crossref_primary_10_1016_j_biopsych_2015_11_008 crossref_primary_10_3390_brainsci10110855 crossref_primary_10_3389_fnhum_2017_00448 crossref_primary_10_3390_life13122353 crossref_primary_10_1016_j_neuropsychologia_2021_107854 crossref_primary_10_3233_RNN_150569 crossref_primary_10_1038_s41598_021_85804_3 crossref_primary_10_1016_j_bandl_2020_104791 crossref_primary_10_1038_s41598_021_00850_1 crossref_primary_10_1016_j_neuroimage_2023_120145 crossref_primary_10_1016_j_gaitpost_2023_08_014 crossref_primary_10_1016_j_neurom_2024_05_002 crossref_primary_10_1162_netn_a_00374 crossref_primary_10_1038_s41598_018_35124_w crossref_primary_10_3390_brainsci12020248 crossref_primary_10_1016_j_ejpn_2023_01_013 crossref_primary_10_1016_j_neulet_2019_05_003 crossref_primary_10_3389_fnins_2021_704880 crossref_primary_10_1016_j_neucli_2017_09_002 crossref_primary_10_1016_j_brs_2016_10_013 crossref_primary_10_1016_j_schres_2018_06_010 crossref_primary_10_1111_ejn_16073 crossref_primary_10_3389_fnagi_2015_00230 crossref_primary_10_3389_fneur_2018_01145 crossref_primary_10_1016_j_neuroscience_2019_03_029 crossref_primary_10_1162_jocn_a_00867 crossref_primary_10_1007_s00221_019_05640_w crossref_primary_10_3389_fncel_2015_00181 crossref_primary_10_3758_s13415_016_0462_z crossref_primary_10_1016_j_brs_2015_05_010 crossref_primary_10_1016_j_npbr_2018_10_005 crossref_primary_10_3389_fpsyg_2015_00244 crossref_primary_10_1016_j_neuropsychologia_2016_03_008 crossref_primary_10_1016_j_brs_2017_11_001 crossref_primary_10_1038_s41598_024_59927_2 crossref_primary_10_1016_j_brs_2019_03_008 crossref_primary_10_1002_14651858_CD009645_pub3 crossref_primary_10_1002_14651858_CD009645_pub4 crossref_primary_10_1007_s41465_020_00179_z crossref_primary_10_1111_ejn_14347 crossref_primary_10_3389_fpsyg_2019_00213 crossref_primary_10_1371_journal_pone_0210873 crossref_primary_10_3389_fnhum_2017_00142 crossref_primary_10_1038_s41598_018_37226_x crossref_primary_10_1016_j_cortex_2020_08_002 crossref_primary_10_1038_s41598_017_17326_w crossref_primary_10_3389_fnins_2018_00410 crossref_primary_10_1186_s12984_020_00665_7 crossref_primary_10_3758_s13414_016_1224_2 crossref_primary_10_1016_j_neubiorev_2020_09_005 crossref_primary_10_3390_brainsci10040244 crossref_primary_10_1007_s12311_018_0939_0 crossref_primary_10_1016_j_clinph_2017_06_035 crossref_primary_10_1016_j_brs_2023_11_018 crossref_primary_10_1007_s00221_021_06163_z crossref_primary_10_1007_s00482_022_00684_4 crossref_primary_10_1007_s11055_023_01354_3 crossref_primary_10_1016_j_schres_2019_07_017 crossref_primary_10_3389_fnhum_2016_00049 crossref_primary_10_3390_brainsci10020082 crossref_primary_10_1016_j_neuroimage_2022_119713 crossref_primary_10_3389_fnhum_2017_00153 crossref_primary_10_1109_TNSRE_2022_3224897 crossref_primary_10_1080_00222895_2023_2184320 crossref_primary_10_1162_jocn_a_01134 crossref_primary_10_1016_j_cortex_2015_05_007 crossref_primary_10_1016_j_jsams_2019_10_015 crossref_primary_10_1097_YCT_0000000000000534 crossref_primary_10_1016_j_brs_2016_03_001 crossref_primary_10_1177_19417381251313775 crossref_primary_10_1016_j_psychsport_2019_04_014 crossref_primary_10_3389_fnagi_2018_00057 crossref_primary_10_3389_fnins_2017_00334 crossref_primary_10_1162_jocn_a_00967 crossref_primary_10_3389_fnins_2018_00083 crossref_primary_10_1016_j_brs_2020_11_005 crossref_primary_10_3390_brainsci10040236 crossref_primary_10_3389_fphar_2019_00032 crossref_primary_10_1073_pnas_1503093112 crossref_primary_10_1088_1741_2552_ab29c5 crossref_primary_10_1016_j_neuroimage_2016_08_020 crossref_primary_10_3389_fpsyt_2017_00147 crossref_primary_10_1016_j_brs_2020_04_007 crossref_primary_10_1007_s40122_023_00554_6 crossref_primary_10_14814_phy2_14087 crossref_primary_10_1016_j_neuropsychologia_2019_107325 crossref_primary_10_1016_j_neuropsychologia_2017_11_028 crossref_primary_10_1016_j_brs_2022_08_024 crossref_primary_10_3171_2017_11_FOCUS17621 crossref_primary_10_1016_j_biopsych_2015_04_016 crossref_primary_10_1016_j_rehab_2018_04_005 crossref_primary_10_1016_j_neulet_2015_06_008 crossref_primary_10_1097_YCT_0000000000000541 crossref_primary_10_3389_fnhum_2020_00056 crossref_primary_10_3342_kjorl_hns_2021_00234 crossref_primary_10_3389_fnins_2018_00433 crossref_primary_10_3390_jcm12072601 crossref_primary_10_1080_17588928_2018_1504014 crossref_primary_10_1007_s10339_022_01076_3 crossref_primary_10_3389_fnins_2017_00664 crossref_primary_10_1117_1_NPh_7_2_020901 crossref_primary_10_1523_ENEURO_0204_19_2019 crossref_primary_10_1249_MSS_0000000000002129 crossref_primary_10_1016_j_ibneur_2021_12_005 crossref_primary_10_1055_a_1198_8525 crossref_primary_10_1287_mnsc_2022_4596 crossref_primary_10_3389_fncel_2016_00092 crossref_primary_10_1016_j_neulet_2023_137442 crossref_primary_10_1038_s41598_022_24618_3 crossref_primary_10_1038_s41598_021_00933_z crossref_primary_10_3389_fnhum_2016_00384 crossref_primary_10_1016_j_arr_2022_101738 crossref_primary_10_1016_j_neubiorev_2017_11_001 crossref_primary_10_1016_j_neuroimage_2023_119915 crossref_primary_10_1016_j_bpsc_2018_02_002 crossref_primary_10_1016_j_clinph_2017_01_004 crossref_primary_10_1111_ejn_15584 crossref_primary_10_1016_j_brs_2018_06_004 crossref_primary_10_1016_j_clinph_2017_01_003 crossref_primary_10_1016_j_neuroimage_2018_10_069 crossref_primary_10_3389_fnimg_2022_1069500 crossref_primary_10_3389_fnins_2018_00426 crossref_primary_10_1016_j_brs_2018_12_002 crossref_primary_10_1016_j_neubiorev_2017_11_008 crossref_primary_10_1093_brain_awae307 crossref_primary_10_1038_531S6a crossref_primary_10_1016_j_brs_2016_07_006 crossref_primary_10_1177_10738584221113806 crossref_primary_10_1016_j_brs_2017_09_015 crossref_primary_10_1080_23273798_2016_1247970 crossref_primary_10_1371_journal_pone_0163598 crossref_primary_10_1016_j_neuroimage_2015_12_021 crossref_primary_10_1080_09638288_2022_2161643 crossref_primary_10_1097_PSY_0000000000000368 crossref_primary_10_1080_1068316X_2018_1425409 crossref_primary_10_3389_fpsyg_2016_01981 crossref_primary_10_1016_j_neuropsychologia_2019_02_009 crossref_primary_10_1371_journal_pone_0132170 crossref_primary_10_1016_j_cortex_2025_02_012 crossref_primary_10_3389_fnrgo_2020_583733 crossref_primary_10_1038_s41598_017_14030_7 crossref_primary_10_1038_srep42456 crossref_primary_10_1016_j_neubiorev_2016_01_009 crossref_primary_10_1111_ejn_14261 crossref_primary_10_3389_fncel_2015_00355 crossref_primary_10_1002_ejp_2060 crossref_primary_10_1093_scan_nsw176 crossref_primary_10_1016_j_neubiorev_2016_01_008 crossref_primary_10_1016_j_neuropsychologia_2015_06_020 crossref_primary_10_3389_fnins_2017_00641 crossref_primary_10_1016_j_neuroimage_2016_06_032 crossref_primary_10_1038_srep10618 crossref_primary_10_1007_s41465_022_00250_x crossref_primary_10_1093_cercor_bhx041 crossref_primary_10_1016_j_brs_2019_10_014 crossref_primary_10_1016_j_brs_2022_05_003 crossref_primary_10_1016_j_neuropsychologia_2019_107170 crossref_primary_10_1016_j_neuroimage_2019_116403 crossref_primary_10_1016_j_brs_2017_10_012 crossref_primary_10_1088_1741_2552_acb14d crossref_primary_10_1136_jnnp_2018_320213 crossref_primary_10_1117_1_NPh_5_1_015001 crossref_primary_10_3389_fnhum_2016_00643 crossref_primary_10_1111_ejn_15006 crossref_primary_10_3389_fnins_2016_00550 crossref_primary_10_1016_j_brs_2020_10_002 crossref_primary_10_1109_ACCESS_2020_3028618 crossref_primary_10_1007_s12311_024_01749_z crossref_primary_10_3389_fnhum_2022_833619 crossref_primary_10_3233_RNN_140464 crossref_primary_10_3390_brainsci9080189 crossref_primary_10_3389_fnhum_2019_00137 crossref_primary_10_1038_s41598_020_61180_2 crossref_primary_10_1016_j_neubiorev_2016_08_001 crossref_primary_10_3389_fnins_2018_00166 crossref_primary_10_1007_s41465_024_00315_z crossref_primary_10_1109_TMI_2019_2915206 crossref_primary_10_1089_brain_2021_0006 crossref_primary_10_1155_2016_9674790 crossref_primary_10_3934_Neuroscience_2017_2_71 crossref_primary_10_1093_cercor_bhz019 crossref_primary_10_1007_s12152_022_09507_w crossref_primary_10_1007_s41465_017_0007_6 crossref_primary_10_1016_j_neuroimage_2015_09_069 crossref_primary_10_3389_fnimg_2022_982288 crossref_primary_10_1016_j_physbeh_2017_04_004 crossref_primary_10_1098_rsos_181186 crossref_primary_10_3389_fnhum_2016_00199 crossref_primary_10_1007_s41465_019_00136_5 crossref_primary_10_1088_1741_2552_ac857d crossref_primary_10_1016_j_cub_2017_09_020 crossref_primary_10_1016_j_clinph_2021_10_016 crossref_primary_10_1111_bdi_12427 crossref_primary_10_3389_fnins_2018_00999 crossref_primary_10_1586_17434440_2015_1090308 crossref_primary_10_3389_fnhum_2019_00140 crossref_primary_10_1016_j_cortex_2016_10_016 crossref_primary_10_1016_j_tins_2016_09_001 crossref_primary_10_3389_fpsyt_2024_1441533 crossref_primary_10_1016_j_brainres_2021_147722 crossref_primary_10_1016_j_neulet_2016_06_056 crossref_primary_10_1515_revneuro_2017_0023 crossref_primary_10_1016_j_neuron_2015_07_032 crossref_primary_10_1080_09602011_2020_1805335 crossref_primary_10_1111_ejn_13640 crossref_primary_10_1016_j_smrv_2018_01_008 crossref_primary_10_3389_fnins_2018_00617 crossref_primary_10_1111_adb_12463 crossref_primary_10_1162_netn_a_00097 crossref_primary_10_3389_fnhum_2023_1286238 crossref_primary_10_1162_jocn_a_01679 crossref_primary_10_1515_revneuro_2019_0047 crossref_primary_10_1038_s41467_019_13417_6 crossref_primary_10_1016_j_neuropsychologia_2016_04_028 crossref_primary_10_1016_j_brs_2019_09_017 crossref_primary_10_1007_s00221_016_4667_8 crossref_primary_10_1007_s10827_024_00886_y crossref_primary_10_1016_j_brs_2015_07_029 crossref_primary_10_1016_j_brs_2015_07_027 crossref_primary_10_3389_fpsyg_2017_00952 crossref_primary_10_1007_s00221_019_05666_0 crossref_primary_10_1007_s41465_018_0113_0 crossref_primary_10_1016_j_bbr_2019_03_014 crossref_primary_10_1152_jn_00074_2020 crossref_primary_10_5812_mejrh_131627 crossref_primary_10_1038_s41598_020_63479_6 crossref_primary_10_3389_fnhum_2020_00349 crossref_primary_10_1016_j_cobme_2018_10_004 crossref_primary_10_1016_j_cortex_2016_11_005 crossref_primary_10_1016_j_brs_2017_01_001 crossref_primary_10_3390_geriatrics1040032 crossref_primary_10_1007_s00702_017_1752_5 crossref_primary_10_1016_j_brs_2015_01_400 crossref_primary_10_3389_fnhum_2019_00043 crossref_primary_10_3389_fnhum_2017_00309 crossref_primary_10_1371_journal_pone_0141417 crossref_primary_10_3389_fnhum_2016_00208 crossref_primary_10_1093_cercor_bhac540 crossref_primary_10_1016_j_brs_2017_07_010 crossref_primary_10_3390_brainsci13101441 crossref_primary_10_1016_j_brs_2021_08_017 crossref_primary_10_1016_j_brainres_2017_05_005 crossref_primary_10_3389_fpsyt_2016_00087 crossref_primary_10_1016_j_cortex_2018_09_019 crossref_primary_10_1016_j_neuropsychologia_2018_03_012 crossref_primary_10_1016_j_cortex_2018_11_014 crossref_primary_10_1016_j_brs_2018_12_977 crossref_primary_10_1016_j_cortex_2016_11_016 crossref_primary_10_1111_ner_12787 crossref_primary_10_1016_j_cortex_2018_09_010 crossref_primary_10_1016_j_neuropsychologia_2016_09_017 crossref_primary_10_1111_joor_12529 crossref_primary_10_3389_fncir_2023_1214959 crossref_primary_10_1371_journal_pone_0300779 crossref_primary_10_1038_s41467_017_01045_x crossref_primary_10_3389_fncel_2022_818703 crossref_primary_10_3233_RNN_211210 crossref_primary_10_1097_WNN_0000000000000098 crossref_primary_10_3389_fnhum_2016_00439 crossref_primary_10_3390_brainsci12050522 crossref_primary_10_1080_17470919_2016_1273133 crossref_primary_10_1016_j_humov_2019_04_017 crossref_primary_10_3389_fnins_2015_00515 crossref_primary_10_1016_j_neuropsychologia_2018_08_009 crossref_primary_10_1371_journal_pone_0197192 crossref_primary_10_1080_17588928_2018_1512480 crossref_primary_10_1097_PHM_0000000000000834 crossref_primary_10_3389_fnhum_2022_887849 crossref_primary_10_1007_s41465_020_00200_5 crossref_primary_10_1016_j_tics_2018_03_006 crossref_primary_10_1016_j_psc_2018_05_004 crossref_primary_10_1016_j_cortex_2017_07_001 crossref_primary_10_1371_journal_pone_0175635 crossref_primary_10_1016_j_heliyon_2020_e05132 crossref_primary_10_1038_s41598_023_43597_7 crossref_primary_10_1016_j_cortex_2017_02_014 crossref_primary_10_1038_npp_2016_170 crossref_primary_10_3389_fpsyg_2018_02351 crossref_primary_10_1016_j_clinph_2015_04_001 crossref_primary_10_1016_j_brs_2021_04_008 crossref_primary_10_1016_j_bbr_2022_114165 crossref_primary_10_1177_1094428117708857 crossref_primary_10_1155_2018_3156796 crossref_primary_10_1002_hbm_22893 crossref_primary_10_1371_journal_pone_0198053 crossref_primary_10_1080_17470919_2021_1889657 crossref_primary_10_1111_ejn_13321 crossref_primary_10_1016_j_neuropsychologia_2017_07_031 crossref_primary_10_1111_ejn_14651 crossref_primary_10_1007_s00221_016_4740_3 crossref_primary_10_1038_s41467_018_07233_7 crossref_primary_10_1186_s12984_021_00901_8 crossref_primary_10_3389_fpsyg_2018_00867 crossref_primary_10_1016_j_brs_2016_06_052 crossref_primary_10_3390_bioengineering11080744 crossref_primary_10_1038_s41380_024_02624_3 crossref_primary_10_1016_j_neuroimage_2019_116183 crossref_primary_10_1371_journal_pone_0167697 crossref_primary_10_1162_imag_a_00431 crossref_primary_10_5265_jcogpsy_20_91 |
Cites_doi | 10.1002/hbm.22322 10.1212/WNL.57.10.1899 10.1017/S1461145712000041 10.1016/0168-5597(89)90029-4 10.1113/jphysiol.2012.249730 10.1152/jn.00736.2013 10.1186/1129-2377-14-23 10.3389/fnhum.2013.00688 10.1097/00006123-198701000-00031 10.1038/jcbfm.2011.72 10.1113/jphysiol.1997.sp021905 10.1016/j.jpainsymman.2007.08.014 10.3109/00207454.2012.707715 10.1016/j.jpain.2011.07.001 10.1097/WNR.0000000000000021 10.1016/j.cub.2011.01.069 10.1016/j.brs.2011.03.002 10.1093/cercor/bhm098 10.1113/jphysiol.2005.088310 10.1152/jn.01046.2009 10.1111/j.1460-9568.2006.04676.x 10.1152/jn.00608.2009 10.1111/j.1526-4637.2008.00508.x 10.1016/S1388-2457(02)00412-1 10.1111/j.1460-9568.2009.06937.x 10.1016/j.brs.2011.08.006 10.1007/s00221-012-3369-0 10.1016/j.brs.2012.04.011 10.1093/cercor/bhr071 10.1113/jphysiol.2005.092429 10.1152/jn.00171.2011 10.1016/j.brs.2011.04.006 10.1016/j.brs.2011.05.001 10.1002/1522-2594(200102)45:2<196::AID-MRM1026>3.0.CO;2-1 10.1016/j.neuroimage.2013.06.076 10.1371/journal.pone.0047514 10.1016/j.brs.2013.10.002 10.1016/j.clinph.2010.09.025 10.1016/j.brs.2008.06.004 10.1016/j.neulet.2012.05.074 10.1113/jphysiol.2006.116939 10.1016/j.neucli.2010.01.001 10.1016/j.brainres.2013.07.026 10.1093/brain/awf238 10.1177/1073858410386614 10.1097/AJP.0b013e318157233b 10.1016/j.neuroimage.2010.11.036 10.1212/WNL.38.1.64 10.3389/fnsys.2014.00002 10.1523/JNEUROSCI.5316-03.2004 10.1162/jocn.2009.21126 10.1111/j.1460-9568.2008.06090.x 10.1186/1471-2202-12-2 10.1016/j.neulet.2009.05.037 10.1002/hbm.21380 10.1371/journal.pone.0063221 10.1007/978-1-4939-0879-0 10.1016/j.brs.2013.03.001 10.3389/fnhum.2013.00256 10.1016/j.neuroimage.2010.11.085 10.1177/0333102410390394 10.1016/j.brs.2012.09.010 10.1002/hbm.20360 10.1523/JNEUROSCI.5348-06.2007 10.1016/0168-5597(92)90095-S 10.1002/mrm.21709 10.1523/JNEUROSCI.4104-07.2007 10.1016/j.clinph.2006.07.136 10.1113/jphysiol.2003.049916 10.1007/s00221-003-1800-2 10.1155/2013/603502 10.1097/01.wnr.0000127637.22805.7c 10.3389/fnhum.2013.00183 10.1016/j.biopsych.2009.03.022 10.1111/j.0953-816X.2004.03398.x 10.1016/j.neulet.2012.06.033 10.1152/ajpgi.00294.2009 10.1007/s00221-006-0733-y 10.1016/0168-5597(93)90115-6 10.1212/WNL.42.10.1951 10.1523/JNEUROSCI.0542-11.2011 10.1109/TNSRE.2013.2249111 10.1371/journal.pone.0057425 10.1152/jn.00617.2010 10.1016/j.neuroscience.2010.01.019 10.1038/35018000 10.1152/jn.00924.2009 10.1016/S1388-2457(01)00633-2 10.1111/j.1460-9568.2005.04233.x 10.1007/s10548-005-6033-1 10.1371/journal.pone.0059669 10.1007/s00221-008-1278-z 10.1016/j.pain.2004.04.009 10.1016/j.neulet.2011.01.066 10.1016/j.neulet.2012.01.037 10.1152/jn.01312.2006 10.1097/00004691-200007000-00005 10.1017/S1461145713000084 10.1111/j.1469-7793.2000.t01-1-00633.x 10.1007/s00406-012-0298-7 10.1002/mus.22012 10.1007/s00221-007-1093-y 10.1016/j.neuron.2007.06.026 10.1523/JNEUROSCI.0728-09.2009 10.1113/jphysiol.2011.205161 10.1371/journal.pone.0030971 10.1007/s00221-007-1149-z 10.1016/j.neulet.2013.01.047 10.1016/j.clinph.2003.10.009 10.1016/j.neulet.2011.05.007 10.1093/cercor/bhh085 10.1016/j.neuropsychologia.2011.10.015 10.1038/sj.npp.1300517 10.1093/brain/awh527 10.1007/BF00631044 10.1016/j.neulet.2011.05.244 10.1016/j.brs.2008.06.002 10.1186/1743-0003-7-27 10.1007/s00702-012-0845-4 10.1097/WNR.0b013e32835c36b8 10.1016/j.jpain.2012.12.007 10.1111/j.1460-9568.2007.05896.x 10.1016/0924-980X(96)96541-8 10.1007/s00702-013-1104-z 10.1590/S0004-282X1977000400004 10.1016/j.biopsych.2004.07.017 10.1016/j.biopsych.2011.05.009 10.1152/jn.01084.2010 10.1016/j.brs.2012.09.009 10.1167/iovs.03-0688 10.1523/JNEUROSCI.4432-08.2009 |
ContentType | Journal Article |
Copyright | 2014 Elsevier Ltd Copyright © 2014 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2014 Elsevier Ltd – notice: Copyright © 2014 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7TK |
DOI | 10.1016/j.neuropsychologia.2014.11.021 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Neurosciences Abstracts |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Neurosciences Abstracts |
DatabaseTitleList | Neurosciences Abstracts MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1873-3514 |
EndPage | 236 |
ExternalDocumentID | 25448853 10_1016_j_neuropsychologia_2014_11_021 S0028393214004394 |
Genre | Systematic Review Journal Article |
GroupedDBID | --- --K --M --Z -~X .GJ .~1 0R~ 123 1B1 1RT 1~. 1~5 29N 4.4 41~ 457 4G. 53G 5RE 5VS 7-5 71M 8P~ 9JM 9JO AABNK AACTN AADFP AADPK AAEDT AAEDW AAGJA AAGUQ AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXLA AAXUO AAYJJ ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABOYX ABXDB ABYKQ ACCUC ACDAQ ACGFO ACGFS ACHQT ACIUM ACNCT ACRLP ACXNI ADBBV ADEZE ADIYS ADMUD AEBSH AEFWE AEKER AENEX AETEA AFFNX AFKWA AFTJW AFXIZ AFYLN AGHFR AGUBO AGWIK AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC C45 CS3 D0S DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMQ HMW HVGLF HZ~ H~9 IHE J1W KOM L7B M2V M3V M41 MO0 MOBAO MVM N9A O-L O9- OAUVE OHT OKEIE OVD OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SCC SDF SDG SDP SES SEW SNS SPCBC SPS SSB SSN SSY SSZ T5K TEORI TN5 UHB UQL WH7 WUQ XJT XOL YQT ZGI ZKB ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADXHL AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EFKBS EIF NPM 7X8 7TK |
ID | FETCH-LOGICAL-c495t-2c96dab1a6b3516c3842a65d1e0b9f00411646ee94fcf5c58d2940f8602af8d83 |
IEDL.DBID | .~1 |
ISSN | 0028-3932 1873-3514 |
IngestDate | Fri Jul 11 02:28:24 EDT 2025 Fri Jul 11 01:00:40 EDT 2025 Sun Jul 13 01:33:33 EDT 2025 Thu Apr 24 22:49:23 EDT 2025 Tue Jul 01 04:14:14 EDT 2025 Fri Feb 23 02:35:27 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Transcranial magnetic stimulation (TMS) Electroencephalography (EEG) Systematic review Functional magnetic resonance imaging (fMRI) Event related potential (ERP) Transcranial direct current stimulation (tDCS) Neurophysiology |
Language | English |
License | Copyright © 2014 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c495t-2c96dab1a6b3516c3842a65d1e0b9f00411646ee94fcf5c58d2940f8602af8d83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 ObjectType-Undefined-4 |
PMID | 25448853 |
PQID | 1656045925 |
PQPubID | 23479 |
PageCount | 24 |
ParticipantIDs | proquest_miscellaneous_1660400778 proquest_miscellaneous_1656045925 pubmed_primary_25448853 crossref_citationtrail_10_1016_j_neuropsychologia_2014_11_021 crossref_primary_10_1016_j_neuropsychologia_2014_11_021 elsevier_sciencedirect_doi_10_1016_j_neuropsychologia_2014_11_021 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2015 2015-01-00 2015-Jan 20150101 |
PublicationDateYYYYMMDD | 2015-01-01 |
PublicationDate_xml | – month: 01 year: 2015 text: January 2015 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Neuropsychologia |
PublicationTitleAlternate | Neuropsychologia |
PublicationYear | 2015 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Schabrun, Chipchase, Zipf, Thickbroom, Hodges (bib126) 2013; 6 Ohara, Crone, Weiss, Treede, Lenz (bib104) 2004; 110 Sack, Kadosh, Schuhmann, Moerel, Walsh, Goebel (bib123) 2009; 21 Nitsche, Paulus (bib99) 2011; 29 Lolas (bib74) 1977; 35 Mobley, Linder, Braeuer, Ellis, Zwelling (bib80) 2013; 8 Saiote, Polania, Rosenberger, Paulus, Antal (bib124) 2013; 8 Stagg, Bachtiar, Johansen-Berg (bib134) 2011; 21 Borckardt (bib17) 2012; 13 Cambieri, Scelzo, Li Voti, Priori, Accornero, Inghilleri (bib23) 2012; 522 Boros, Poreisz, Munchau, Paulus, Nitsche (bib18) 2008; 27 Bikson (bib14) 2013; 7 Clark (bib27) 2012; 59 Nakamura, Kitagawa, Kawaguchi, Tsuji (bib86) 1997; 498 Nitsche (bib88) 2008; 1 Schönfeldt-Lecuona, Thielscher, Freudenmann, Kron, Spitzer, Herwig (bib129) 2005; 17 Baudewig, Nitsche, Paulus, Frahm (bib12) 2001; 45 Kuo, Bikson, Datta, Minhas, Paulus, Kuo, Nitsche (bib62) 2013; 6 Lang, Siebner, Ernst, Nitsche, Paulus, Lemon, Rothwell (bib67) 2004; 56 Monte-Silva, Kuo, Liebetanz, Paulus, Nitsche (bib82) 2010; 103 Vigano (bib143) 2013; 14 Hasan, Misewitsch, Nitsche, Gruber, Padberg, Falkai, Wobrock (bib50) 2013; 6 Nitsche, Lampe, Antal, Liebetanz, Lang, Tergau, Paulus (bib94) 2006; 23 Miyaguchi (bib79) 2013; 1529 Furubayashi (bib38) 2008; 185 O’Connell, Cossar, Marston, Wand, Bunce, Moseley, De Souza (bib103) 2012; 7 Stagg (bib135) 2009; 29 Thirugnanasambandam, Sparing, Dafotakis, Meister, Paulus, Nitsche, Fink (bib141) 2011; 29 Ardolino, Bossi, Barbieri, Priori (bib10) 2005; 568 Jefferson, Mistry, Singh, Rathwell, Hamdy (bib53) 2009; 297 Jeffery, Norton, Roy, Gorassini (bib54) 2007; 182 Nitsche, Paulus (bib97) 2000; 527 Kidgell, Daly, Young, Lum, Tooley, Jaberzadeh, Zoghi, Pearce (bib57) 2013; 2013 Nitsche (bib89) 2007; 97 Cantello, Gianelli, Civardi, Mutani (bib24) 1992; 42 Csifcsak (bib30) 2009; 10 Quartarone (bib114) 2004; 15 Nitsche, Jaussi, Liebetanz, Lang, Tergau, Paulus (bib92) 2004; 29 Zaehle, Sandmann, Thorne, Jancke, Herrmann (bib147) 2011; 12 Notturno, Marzetti, Pizzella, Uncini, Zappasodi (bib102) 2013; 35 Rango, Cogiamanian, Marceglia, Barberis, Arighi, Biondetti, Priori (bib117) 2008; 60 Nitsche (bib95) 2004; 19 Schmidt, Fleischmann, Bathe-Peters, Irlbacher, Brandt (bib128) 2013; 8 Kiers, Cros, Chiappa, Fang (bib59) 1993; 89 Simis, Adeyemo, Medeiros, Miraval, Gagliardi, Fregni (bib132) 2013; 24 Horvath, Carter, Forte (bib51) 2014; 8 Mordillo-Mateos (bib84) 2012; 5 Rae, Lee, Ordidge, Alonzo, Loo (bib116) 2013; 16 Rowan, Tolunsky (bib122) 2003 Power, Norton, Porter, Doyle, Hui, Chan (bib113) 2006; 577 Rosler, Roth, Magistris (bib120) 2008; 187 Polania, Paulus, Nitsche (bib111) 2012; 33 Nitsche, Kuo, Karrasch, Wachter, Liebetanz, Paulus (bib93) 2009; 66 Batsikadze, Moliadze, Paulus, Kuo, Nitsche (bib11) 2013; 591 Antal, Polania, Schmidt-Samoa, Dechent, Paulus (bib8) 2011; 55 Logothetis, Pauls, Augath, Trinath, Oeltermann (bib73) 2011; 412 Antal, Kincses, Nitsche, Bartfai, Paulus (bib7) 2004; 45 Kar, Wright (bib55) 2014; 111 Wirth, Rahman, Kuenecke, Koenig, Horn, Sommer, Dierks (bib146) 2011; 49 Ziemann, Rothwell (bib148) 2000; 17 Fricke, Seeber, Thirugnanasambandam, Paulus, Nitsche, Rothwell (bib37) 2011; 105 Monte-Silva, Kuo, Thirugnanasambandam, Liebetanz, Paulus, Nitsche (bib83) 2009; 29 Stagg, O’Shea, Kincses, Woolrich, Matthews, Johansen-Berg (bib137) 2009; 30 Jang, Ahn, Byun, Kim, Lee, Kwon (bib52) 2009; 460 Guieu, Bourriez, Derambure, Defebvre, Cassim (bib43) 1999; 6 Gugino, Rafael Romero, Aglio, Titone, Ramirez, Pascual-Leone, Shenton (bib42) 2001; 112 Wei, He, Zhou, Wang (bib145) 2013; 21 Munneke, Stegeman, Hengeveld, Rongen, Schelhaas, Zwarts (bib85) 2011; 44 Schade, Moliadze, Paulus, Antal (bib127) 2012; 30 Nitsche, Paulus (bib98) 2001; 57 Binkofski (bib15) 2011; 70 Nitsche (bib90) 2003; 553 Teo (bib139) 2014; 15 Liebetanz, Nitsche, Tergau, Paulus (bib71) 2002; 125 Hansen (bib48) 2011; 31 Siebner, Lang, Rizzo, Nitsche, Paulus, Lemon, Rothwell (bib131) 2004; 24 List (bib72) 2011; 21 Lang, Nitsche, Paulus, Rothwell, Lemon (bib66) 2004; 156 Nitsche, Nitsche, Klein, Tergau, Rothwell, Paulus (bib96) 2003; 114 Polania, Paulus, Nitsche (bib112) 2012; 7 Emerson, Sgro, Pedley, Hauser (bib36) 1988; 38 Galvez, Alonzo, Martin, Loo (bib39) 2013; 16 Lapenta, Minati, Fregni, Boggio (bib70) 2013; 7 Berryhill, Jones (bib13) 2012; 521 Roche, Lackmy, Achache, Bussel, Katz (bib119) 2011; 589 Amassian, Cracco (bib5) 1987; 20 Bocci (bib16) 2013; 121 Suzuki (bib138) 2012; 122 Osherovich (bib105) 2013; 6 Hasan (bib49) 2012; 262 Pena-Gomez (bib110) 2012; 5 Di Lazzaro (bib31) 2012; 119 Handy (bib47) 2005 Lang (bib68) 2005; 22 Nielsen (bib87) 1996; 101 Dieckhofer, Waberski, Nitsche, Paulus, Buchner, Gobbele (bib34) 2006; 117 Kirimoto, Ogata, Onishi, Oyama, Goto, Tobimatsu (bib60) 2011; 122 Tremblay, Beaule, Lepage, Theoret (bib142) 2013; 24 Villamar, Wivatvongvana, Patumanond, Bikson, Truong, Datta, Fregni (bib144) 2013; 14 Kuo, Grosch, Fregni, Paulus, Nitsche (bib63) 2007; 27 Antal, Terney, Poreisz, Paulus (bib9) 2007; 26 Sparing, Buelte, Meister, Pauš, Fink (bib133) 2008; 29 Clark, Coffman, Trumbo, Gasparovic (bib28) 2011; 500 Lang (bib69) 2011; 105 Ahdab, Ayache, Brugieres, Goujon, Lefaucheur (bib2) 2010; 40 Brasil-Neto, McShane, Fuhr, Hallett, Cohen (bib21) 1992; 85 Caparelli-Daquer (bib25) 2012; 2012 McCambridge, Bradnam, Stinear, Byblow (bib78) 2011; 105 Park, Chang, Park, Shin, Kim, Kim (bib107) 2013; 539 Sehm, Kipping, Schäfer, Villringer, Ragert (bib130) 2013; 7 Accornero, Li Voti, La Riccia, Gregori (bib1) 2007; 178 Paquette, Sidel, Radinska, Soucy, Thiel (bib106) 2011; 31 Nitsche (bib101) 2005; 568 Hamer (bib46) 1968; 2 Konig, Ankenmuller (bib61) 1960; 47 Groppa, Bergmann, Siems, Molle, Marshall, Siebner (bib41) 2010; 166 Kuo, Paulus, Nitsche (bib64) 2008; 18 Matsumoto, Fujiwara, Takahashi, Liu, Kimura, Ushiba (bib77) 2010; 7 Stagg, Nitsche (bib136) 2011; 17 Bradnam, Stinear, Lewis, Byblow (bib19) 2010; 103 Antal, Brepohl, Poreisz, Boros, Csifcsak, Paulus (bib6) 2008; 24 Brunoni, Nitsche, Bolognini, Bikson, Wagner, Merabet, Fregni (bib22) 2012; 5 Nitsche (bib100) 2007; 27 Maeoka, Matsuo, Hiyamizu, Morioka, Ando (bib76) 2012; 512 Hallett (bib44) 2000; 406 Quartarone (bib115) 2005; 128 Di Lazzaro (bib32) 2004; 115 Monte-Silva, Kuo, Hessenthaler, Fresnoza, Liebetanz, Paulus, Nitsche (bib81) 2013; 6 Hallett (bib45) 2007; 55 Keeser (bib56) 2011; 31 Amassian, Cracco, Maccabee (bib4) 1989; 74 Gieryn (bib40) 1992; 3 Pellicciari, Brignani, Miniussi (bib109) 2013; 83 Nitsche, Grundey, Liebetanz, Lang, Tergau, Paulus (bib91) 2004; 14 Elbert, Lutzenberger, Rockstroh, Birbaumer (bib35) 1981; 14 Rotenberg, Horvath, Pascual-Leone (bib121) 2014 Cengiz, Murase, Rothwell (bib26) 2013; 225 Bradnam, Stinear, Byblow (bib20) 2011; 105 Alonzo, Brassil, Taylor, Martin, Loo (bib3) 2012; 5 Kwon, Jang (bib65) 2011; 492 Di Russo, Martinez, Sereno, Pitzalis, Hillyard (bib33) 2002; 38 Paulus (bib108) 2008; 1 Scelzo (bib125) 2011; 498 Terney (bib140) 2008; 36 Rizzo, Terranova, Crupi, Sant’angelo, Girlanda, Quartarone (bib118) 2014; 7 Stagg (10.1016/j.neuropsychologia.2014.11.021_bib136) 2011; 17 Mobley (10.1016/j.neuropsychologia.2014.11.021_bib80) 2013; 8 Rotenberg (10.1016/j.neuropsychologia.2014.11.021_bib121) 2014 Sehm (10.1016/j.neuropsychologia.2014.11.021_bib130) 2013; 7 Antal (10.1016/j.neuropsychologia.2014.11.021_bib9) 2007; 26 Elbert (10.1016/j.neuropsychologia.2014.11.021_bib35) 1981; 14 Logothetis (10.1016/j.neuropsychologia.2014.11.021_bib73) 2011; 412 Terney (10.1016/j.neuropsychologia.2014.11.021_bib140) 2008; 36 Kidgell (10.1016/j.neuropsychologia.2014.11.021_bib57) 2013; 2013 Alonzo (10.1016/j.neuropsychologia.2014.11.021_bib3) 2012; 5 Binkofski (10.1016/j.neuropsychologia.2014.11.021_bib15) 2011; 70 Ahdab (10.1016/j.neuropsychologia.2014.11.021_bib2) 2010; 40 Emerson (10.1016/j.neuropsychologia.2014.11.021_bib36) 1988; 38 Kiers (10.1016/j.neuropsychologia.2014.11.021_bib59) 1993; 89 Stagg (10.1016/j.neuropsychologia.2014.11.021_bib135) 2009; 29 Hasan (10.1016/j.neuropsychologia.2014.11.021_bib49) 2012; 262 Scelzo (10.1016/j.neuropsychologia.2014.11.021_bib125) 2011; 498 Keeser (10.1016/j.neuropsychologia.2014.11.021_bib56) 2011; 31 Liebetanz (10.1016/j.neuropsychologia.2014.11.021_bib71) 2002; 125 Tremblay (10.1016/j.neuropsychologia.2014.11.021_bib142) 2013; 24 Baudewig (10.1016/j.neuropsychologia.2014.11.021_bib12) 2001; 45 Lang (10.1016/j.neuropsychologia.2014.11.021_bib68) 2005; 22 Brasil-Neto (10.1016/j.neuropsychologia.2014.11.021_bib21) 1992; 85 Nitsche (10.1016/j.neuropsychologia.2014.11.021_bib91) 2004; 14 Wirth (10.1016/j.neuropsychologia.2014.11.021_bib146) 2011; 49 Batsikadze (10.1016/j.neuropsychologia.2014.11.021_bib11) 2013; 591 Roche (10.1016/j.neuropsychologia.2014.11.021_bib119) 2011; 589 Villamar (10.1016/j.neuropsychologia.2014.11.021_bib144) 2013; 14 Di Lazzaro (10.1016/j.neuropsychologia.2014.11.021_bib32) 2004; 115 Handy (10.1016/j.neuropsychologia.2014.11.021_bib47) 2005 Ardolino (10.1016/j.neuropsychologia.2014.11.021_bib10) 2005; 568 Wei (10.1016/j.neuropsychologia.2014.11.021_bib145) 2013; 21 Cengiz (10.1016/j.neuropsychologia.2014.11.021_bib26) 2013; 225 Clark (10.1016/j.neuropsychologia.2014.11.021_bib27) 2012; 59 Lang (10.1016/j.neuropsychologia.2014.11.021_bib67) 2004; 56 Konig (10.1016/j.neuropsychologia.2014.11.021_bib61) 1960; 47 Gieryn (10.1016/j.neuropsychologia.2014.11.021_bib40) 1992; 3 Power (10.1016/j.neuropsychologia.2014.11.021_bib113) 2006; 577 Antal (10.1016/j.neuropsychologia.2014.11.021_bib7) 2004; 45 Kwon (10.1016/j.neuropsychologia.2014.11.021_bib65) 2011; 492 Schmidt (10.1016/j.neuropsychologia.2014.11.021_bib128) 2013; 8 Di Lazzaro (10.1016/j.neuropsychologia.2014.11.021_bib31) 2012; 119 Groppa (10.1016/j.neuropsychologia.2014.11.021_bib41) 2010; 166 Nitsche (10.1016/j.neuropsychologia.2014.11.021_bib90) 2003; 553 Monte-Silva (10.1016/j.neuropsychologia.2014.11.021_bib81) 2013; 6 Jefferson (10.1016/j.neuropsychologia.2014.11.021_bib53) 2009; 297 Munneke (10.1016/j.neuropsychologia.2014.11.021_bib85) 2011; 44 Quartarone (10.1016/j.neuropsychologia.2014.11.021_bib115) 2005; 128 O’Connell (10.1016/j.neuropsychologia.2014.11.021_bib103) 2012; 7 Rango (10.1016/j.neuropsychologia.2014.11.021_bib117) 2008; 60 Cambieri (10.1016/j.neuropsychologia.2014.11.021_bib23) 2012; 522 Hallett (10.1016/j.neuropsychologia.2014.11.021_bib45) 2007; 55 Jeffery (10.1016/j.neuropsychologia.2014.11.021_bib54) 2007; 182 Nitsche (10.1016/j.neuropsychologia.2014.11.021_bib94) 2006; 23 Ziemann (10.1016/j.neuropsychologia.2014.11.021_bib148) 2000; 17 Schönfeldt-Lecuona (10.1016/j.neuropsychologia.2014.11.021_bib129) 2005; 17 Pellicciari (10.1016/j.neuropsychologia.2014.11.021_bib109) 2013; 83 Nitsche (10.1016/j.neuropsychologia.2014.11.021_bib98) 2001; 57 Nitsche (10.1016/j.neuropsychologia.2014.11.021_bib100) 2007; 27 Zaehle (10.1016/j.neuropsychologia.2014.11.021_bib147) 2011; 12 Nitsche (10.1016/j.neuropsychologia.2014.11.021_bib97) 2000; 527 Brunoni (10.1016/j.neuropsychologia.2014.11.021_bib22) 2012; 5 Nielsen (10.1016/j.neuropsychologia.2014.11.021_bib87) 1996; 101 Clark (10.1016/j.neuropsychologia.2014.11.021_bib28) 2011; 500 Lolas (10.1016/j.neuropsychologia.2014.11.021_bib74) 1977; 35 Stagg (10.1016/j.neuropsychologia.2014.11.021_bib134) 2011; 21 Kar (10.1016/j.neuropsychologia.2014.11.021_bib55) 2014; 111 Miyaguchi (10.1016/j.neuropsychologia.2014.11.021_bib79) 2013; 1529 Paquette (10.1016/j.neuropsychologia.2014.11.021_bib106) 2011; 31 Maeoka (10.1016/j.neuropsychologia.2014.11.021_bib76) 2012; 512 Schade (10.1016/j.neuropsychologia.2014.11.021_bib127) 2012; 30 Hansen (10.1016/j.neuropsychologia.2014.11.021_bib48) 2011; 31 Suzuki (10.1016/j.neuropsychologia.2014.11.021_bib138) 2012; 122 List (10.1016/j.neuropsychologia.2014.11.021_bib72) 2011; 21 Rae (10.1016/j.neuropsychologia.2014.11.021_bib116) 2013; 16 Thirugnanasambandam (10.1016/j.neuropsychologia.2014.11.021_bib141) 2011; 29 Monte-Silva (10.1016/j.neuropsychologia.2014.11.021_bib82) 2010; 103 Rosler (10.1016/j.neuropsychologia.2014.11.021_bib120) 2008; 187 Fricke (10.1016/j.neuropsychologia.2014.11.021_bib37) 2011; 105 Hallett (10.1016/j.neuropsychologia.2014.11.021_bib44) 2000; 406 Schabrun (10.1016/j.neuropsychologia.2014.11.021_bib126) 2013; 6 Quartarone (10.1016/j.neuropsychologia.2014.11.021_bib114) 2004; 15 Pena-Gomez (10.1016/j.neuropsychologia.2014.11.021_bib110) 2012; 5 Rizzo (10.1016/j.neuropsychologia.2014.11.021_bib118) 2014; 7 Berryhill (10.1016/j.neuropsychologia.2014.11.021_bib13) 2012; 521 Jang (10.1016/j.neuropsychologia.2014.11.021_bib52) 2009; 460 Nitsche (10.1016/j.neuropsychologia.2014.11.021_bib101) 2005; 568 Kuo (10.1016/j.neuropsychologia.2014.11.021_bib62) 2013; 6 Polania (10.1016/j.neuropsychologia.2014.11.021_bib111) 2012; 33 Hasan (10.1016/j.neuropsychologia.2014.11.021_bib50) 2013; 6 Siebner (10.1016/j.neuropsychologia.2014.11.021_bib131) 2004; 24 Matsumoto (10.1016/j.neuropsychologia.2014.11.021_bib77) 2010; 7 Nitsche (10.1016/j.neuropsychologia.2014.11.021_bib88) 2008; 1 Paulus (10.1016/j.neuropsychologia.2014.11.021_bib108) 2008; 1 Nitsche (10.1016/j.neuropsychologia.2014.11.021_bib95) 2004; 19 Amassian (10.1016/j.neuropsychologia.2014.11.021_bib4) 1989; 74 Gugino (10.1016/j.neuropsychologia.2014.11.021_bib42) 2001; 112 Lang (10.1016/j.neuropsychologia.2014.11.021_bib69) 2011; 105 Galvez (10.1016/j.neuropsychologia.2014.11.021_bib39) 2013; 16 Csifcsak (10.1016/j.neuropsychologia.2014.11.021_bib30) 2009; 10 Accornero (10.1016/j.neuropsychologia.2014.11.021_bib1) 2007; 178 Rowan (10.1016/j.neuropsychologia.2014.11.021_bib122) 2003 Teo (10.1016/j.neuropsychologia.2014.11.021_bib139) 2014; 15 Nakamura (10.1016/j.neuropsychologia.2014.11.021_bib86) 1997; 498 Dieckhofer (10.1016/j.neuropsychologia.2014.11.021_bib34) 2006; 117 Horvath (10.1016/j.neuropsychologia.2014.11.021_bib51) 2014; 8 Sack (10.1016/j.neuropsychologia.2014.11.021_bib123) 2009; 21 Borckardt (10.1016/j.neuropsychologia.2014.11.021_bib17) 2012; 13 Osherovich (10.1016/j.neuropsychologia.2014.11.021_bib105) 2013; 6 Bikson (10.1016/j.neuropsychologia.2014.11.021_bib14) 2013; 7 Nitsche (10.1016/j.neuropsychologia.2014.11.021_bib99) 2011; 29 Hamer (10.1016/j.neuropsychologia.2014.11.021_bib46) 1968; 2 Amassian (10.1016/j.neuropsychologia.2014.11.021_bib5) 1987; 20 Stagg (10.1016/j.neuropsychologia.2014.11.021_bib137) 2009; 30 Park (10.1016/j.neuropsychologia.2014.11.021_bib107) 2013; 539 Simis (10.1016/j.neuropsychologia.2014.11.021_bib132) 2013; 24 Bradnam (10.1016/j.neuropsychologia.2014.11.021_bib20) 2011; 105 McCambridge (10.1016/j.neuropsychologia.2014.11.021_bib78) 2011; 105 Vigano (10.1016/j.neuropsychologia.2014.11.021_bib143) 2013; 14 Cantello (10.1016/j.neuropsychologia.2014.11.021_bib24) 1992; 42 Saiote (10.1016/j.neuropsychologia.2014.11.021_bib124) 2013; 8 Kirimoto (10.1016/j.neuropsychologia.2014.11.021_bib60) 2011; 122 Polania (10.1016/j.neuropsychologia.2014.11.021_bib112) 2012; 7 Antal (10.1016/j.neuropsychologia.2014.11.021_bib8) 2011; 55 Lapenta (10.1016/j.neuropsychologia.2014.11.021_bib70) 2013; 7 Monte-Silva (10.1016/j.neuropsychologia.2014.11.021_bib83) 2009; 29 Nitsche (10.1016/j.neuropsychologia.2014.11.021_bib96) 2003; 114 Sparing (10.1016/j.neuropsychologia.2014.11.021_bib133) 2008; 29 Furubayashi (10.1016/j.neuropsychologia.2014.11.021_bib38) 2008; 185 Nitsche (10.1016/j.neuropsychologia.2014.11.021_bib89) 2007; 97 Bradnam (10.1016/j.neuropsychologia.2014.11.021_bib19) 2010; 103 Kuo (10.1016/j.neuropsychologia.2014.11.021_bib64) 2008; 18 Notturno (10.1016/j.neuropsychologia.2014.11.021_bib102) 2013; 35 Ohara (10.1016/j.neuropsychologia.2014.11.021_bib104) 2004; 110 Di Russo (10.1016/j.neuropsychologia.2014.11.021_bib33) 2002; 38 Nitsche (10.1016/j.neuropsychologia.2014.11.021_bib92) 2004; 29 Antal (10.1016/j.neuropsychologia.2014.11.021_bib6) 2008; 24 Lang (10.1016/j.neuropsychologia.2014.11.021_bib66) 2004; 156 Mordillo-Mateos (10.1016/j.neuropsychologia.2014.11.021_bib84) 2012; 5 Nitsche (10.1016/j.neuropsychologia.2014.11.021_bib93) 2009; 66 Caparelli-Daquer (10.1016/j.neuropsychologia.2014.11.021_bib25) 2012; 2012 Boros (10.1016/j.neuropsychologia.2014.11.021_bib18) 2008; 27 Kuo (10.1016/j.neuropsychologia.2014.11.021_bib63) 2007; 27 Guieu (10.1016/j.neuropsychologia.2014.11.021_bib43) 1999; 6 Bocci (10.1016/j.neuropsychologia.2014.11.021_bib16) 2013; 121 26143023 - Brain Stimul. 2015 Jul-Aug;8(4):846-9. doi: 10.1016/j.brs.2015.05.010. |
References_xml | – volume: 16 start-page: 1695 year: 2013 end-page: 1706 ident: bib116 article-title: Anodal transcranial direct current stimulation increases brain intracellular pH and modulates bioenergetics publication-title: Int. J. Neuropsychopharmacol. – volume: 29 start-page: 6124 year: 2009 end-page: 6131 ident: bib83 article-title: Dose-dependent inverted U-shaped effect of dopamine (D2-like) receptor activation on focal and nonfocal plasticity in humans publication-title: J. Neurosci. – volume: 8 start-page: e63221 year: 2013 ident: bib80 article-title: A survey on data reproducibility in cancer research provides insights into our limited ability to translate findings from the laboratory to the clinic. publication-title: PloS One – volume: 5 start-page: 175 year: 2012 end-page: 195 ident: bib22 article-title: Clinical research with transcranial direct current stimulation (tDCS): challenges and future directions publication-title: Brain Stimul. – volume: 166 start-page: 1219 year: 2010 end-page: 1225 ident: bib41 article-title: Slow-oscillatory transcranial direct current stimulation can induce bidirectional shifts in motor cortical excitability in awake humans publication-title: Neuroscience – volume: 110 start-page: 318 year: 2004 end-page: 328 ident: bib104 article-title: Amplitudes of laser evoked potential recorded from primary somatosensory, parasylvian and medial frontal cortex are graded with stimulus intensity publication-title: Pain – volume: 1 start-page: 206 year: 2008 end-page: 223 ident: bib88 article-title: Transcranial direct current stimulation: state of the art 2008 publication-title: Brain Stimul. – volume: 182 start-page: 281 year: 2007 end-page: 287 ident: bib54 article-title: Effects of transcranial direct current stimulation on the excitability of the leg motor cortex publication-title: Exp. Brain Res. – volume: 122 start-page: 675 year: 2012 end-page: 681 ident: bib138 article-title: Comparison of the after-effects of transcranial direct current stimulation over the motor cortex in patients with stroke and healthy volunteers publication-title: Int. J. Neurosci. – volume: 27 start-page: 14442 year: 2007 end-page: 14447 ident: bib63 article-title: Focusing effect of acetylcholine on neuroplasticity in the human motor cortex publication-title: J. Neurosci. – volume: 522 start-page: 167 year: 2012 end-page: 171 ident: bib23 article-title: Transcranial direct current stimulation modulates motor responses evoked by repetitive transcranial magnetic stimulation publication-title: Neurosci. Lett. – volume: 178 start-page: 261 year: 2007 end-page: 266 ident: bib1 article-title: Visual evoked potentials modulation during direct current cortical polarization publication-title: Exp. Brain Res. – volume: 225 start-page: 321 year: 2013 end-page: 331 ident: bib26 article-title: Opposite effects of weak transcranial direct current stimulation on different phases of short interval intracortical inhibition (SICI) publication-title: Exp. Brain Res. – volume: 7 start-page: 1 year: 2013 end-page: 5 ident: bib14 article-title: Origins of specificity during tDCS: anatomical, activity-selective, and input-bias mechanisms publication-title: Front. Hum. Neurosci. – volume: 42 start-page: 1951 year: 1992 end-page: 1959 ident: bib24 article-title: Magnetic brain stimulation: the silent period after the motor evoked potential publication-title: Neurology – volume: 13 start-page: 112 year: 2012 end-page: 120 ident: bib17 article-title: A pilot study of the tolerability and effects of high-definition transcranial direct current stimulation (HD-tDCS) on pain perception publication-title: J. Pain – volume: 33 start-page: 2499 year: 2012 end-page: 2508 ident: bib111 article-title: Modulating cortico-striatal and thalamo-cortical functional connectivity with transcranial direct current stimulation publication-title: Hum. Brain Mapp. – volume: 35 start-page: 325 year: 1977 end-page: 328 ident: bib74 article-title: Low-level electric currents and brain indicators of behavioral activation publication-title: Arg. Neruopsiquiat. – volume: 29 start-page: 82 year: 2008 end-page: 96 ident: bib133 article-title: Transcranial magnetic stimulation and the challenge of coil placement: a comparison of conventional and stereotaxic neuronavigational strategies publication-title: Hum. Brain Mapp. – volume: 512 start-page: 12 year: 2012 end-page: 16 ident: bib76 article-title: Influence of transcranial direct current stimulation of the dorsolateral prefrontal cortex on pain related emotions: a study using electroencephalographic power spectrum analysis publication-title: Neurosci. Lett. – volume: 7 start-page: 27 year: 2010 ident: bib77 article-title: Modulation of mu rhythm desynchronization during motor imagery by transcranial direct current stimulation publication-title: J. Neuroeng. Rehabil. – volume: 6 start-page: 624 year: 2013 end-page: 630 ident: bib126 article-title: Interaction between simultaneously applied neuromodulatory interventions in humans publication-title: Brain Stimul. – volume: 30 start-page: 1412 year: 2009 end-page: 1423 ident: bib137 article-title: Modulation of movement-associated cortical activation by transcranial direct current stimulation publication-title: Eur. J. Neurosci. – volume: 185 start-page: 279 year: 2008 end-page: 286 ident: bib38 article-title: Short and long duration transcranial direct current stimulation (tDCS) over the human hand motor area publication-title: Exp. Brain Res. – volume: 2013 start-page: 1 year: 2013 end-page: 9 ident: bib57 article-title: Different intensities of anodal transcranial direct current stimulation do not differentiall modulate motor cortex plasticity publication-title: Neural Plast. – volume: 89 start-page: 415 year: 1993 end-page: 423 ident: bib59 article-title: Variability of motor potentials evoked by transcranial magnetic stimulation publication-title: Electroencephalogr. Clin. Neurophysiol. – volume: 27 start-page: 3807 year: 2007 end-page: 3812 ident: bib100 article-title: Timing-dependent modulation of associative plasticity by general network excitability in the human motor cortex publication-title: J. Neurosci. – volume: 5 start-page: 214 year: 2012 end-page: 222 ident: bib84 article-title: Effects of simultaneous bilateral tDCS of the human motor cortex publication-title: Brain Stimul. – volume: 21 start-page: 404 year: 2013 end-page: 415 ident: bib145 article-title: Performance of motor imagery brain-computer interface based on anodal transcranial direct current stimulation modulation publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 60 start-page: 782 year: 2008 end-page: 789 ident: bib117 article-title: Myoinositol content in the human brain is modified by transcranial direct current stimulation in a matter of minutes: a 1H-MRS study publication-title: Magn. Reson. Med. – volume: 6 start-page: 11 year: 1999 ident: bib43 article-title: Temporal and spatial aspects of event-related desynchronization and movement-related cortical potentials publication-title: Handb. Electroencephalogr. Clin. Neurophysiol. – volume: 460 start-page: 117 year: 2009 end-page: 120 ident: bib52 article-title: The effect of transcranial direct current stimulation on the cortical activation by motor task in the human brain: an fMRI study publication-title: Neurosci. Lett. – volume: 103 start-page: 1735 year: 2010 end-page: 1740 ident: bib82 article-title: Shaping the optimal repetition interval for cathodal transcranial direct current stimulation (tDCS) publication-title: J. Neurophysiol. – volume: 101 start-page: 404 year: 1996 end-page: 411 ident: bib87 article-title: Improvement of amplitude variability of motor evoked potentials in multiple sclerosis patients and in healthy subjects publication-title: Electroencephalogr. Clin. Neurophysiol. – volume: 568 start-page: 653 year: 2005 end-page: 663 ident: bib10 article-title: Non-synaptic mechanisms underlie the after-effects of cathodal transcutaneous direct current stimulation of the human brain publication-title: J. Physiol. – volume: 49 start-page: 3989 year: 2011 end-page: 3998 ident: bib146 article-title: Effects of transcranial direct current stimulation (tDCS) on behaviour and electrophysiology of language production publication-title: Neuropsychologia – volume: 17 start-page: 397 year: 2000 end-page: 405 ident: bib148 article-title: I-waves in motor cortex publication-title: J. Clin. Neurophysiol. – volume: 45 start-page: 196 year: 2001 end-page: 201 ident: bib12 article-title: Regional modulation of BOLD MRI responses to human sensorimotor activation by transcranial direct current stimulation publication-title: Magn. Reson. Med. – volume: 22 start-page: 495 year: 2005 end-page: 504 ident: bib68 article-title: How does transcranial DC stimulation of the primary motor cortex alter regional neuronal activity in the human brain? publication-title: Eur. J. Neurosci. – volume: 24 start-page: 46 year: 2013 end-page: 50 ident: bib142 article-title: Anodal transcranial direct current stimulation modulates GABAB-related intracortical inhibition in the M1 of healthy individuals publication-title: Neuroreport – volume: 297 start-page: G1035 year: 2009 end-page: G1040 ident: bib53 article-title: Characterizing the application of transcranial direct current stimulation in human pharyngeal motor cortex publication-title: Am. J. Physiol. Gastrointest. Liver Physiol. – volume: 40 start-page: 27 year: 2010 end-page: 36 ident: bib2 article-title: Comparison of “standard” and “navigated” procedures of TMS coil positioning over motor, premotor and prefrontal targets in patients with chronic pain and depression publication-title: Neurophysiol. Clin./Clin. Neurophysiol. – volume: 112 start-page: 1781 year: 2001 end-page: 1792 ident: bib42 article-title: Transcranial magnetic stimulation coregistered with MRI: a comparison of a guided versus blind stimulation technique and its effect on evoked compound muscle action potentials publication-title: Clin. Neurophysiol. – volume: 31 start-page: 661 year: 2011 end-page: 670 ident: bib48 article-title: Modulation of human trigeminal and extracranial nociceptive processing by transcranial direct current stimulation of the motor cortex publication-title: Cephalalgia – volume: 498 start-page: 817 year: 1997 end-page: 823 ident: bib86 article-title: Intracortical facilitation and inhibition after transcranial magnetic stimulation in conscious humans publication-title: J. Physiol. – volume: 128 start-page: 1943 year: 2005 end-page: 1950 ident: bib115 article-title: Homeostatic-like plasticity of the primary motor hand area is impaired in focal hand dystonia publication-title: Brain – volume: 114 start-page: 600 year: 2003 end-page: 604 ident: bib96 article-title: Level of action of cathodal DC polarisation induced inhibition of the human motor cortex publication-title: Clin. Neurophysiol. – volume: 105 start-page: 1141 year: 2011 end-page: 1149 ident: bib37 article-title: Time course of the induction of homeostatic plasticity generated by repeated transcranial direct current stimulation of the human motor cortex publication-title: J. Neurophysiol. – volume: 83 start-page: 569 year: 2013 end-page: 580 ident: bib109 article-title: Excitability modulation of the motor system induced by transcranial direct current stimulation: a multimodal approach publication-title: Neuroimage – volume: 15 start-page: 1 year: 2014 end-page: 9 ident: bib139 article-title: Late cortical plasticity in motor and auditory cortex: role of met-allele in BDNF Val66Met polymorphism publication-title: Int. J. Neuropsychopharmacol. – volume: 18 start-page: 648 year: 2008 end-page: 651 ident: bib64 article-title: Boosting focally-induced brain plasticity by dopamine publication-title: Cereb. Cortex – volume: 591 start-page: 1987 year: 2013 end-page: 2000 ident: bib11 article-title: Partially non-linear stimulation intensity-dependent effects of direct current stimulation on motor cortex excitability in humans publication-title: J. Physiol. – volume: 1 start-page: 151 year: 2008 end-page: 163 ident: bib108 article-title: State of the art: pharmacologic effects on cortical excitability measures tested by transcranial magnetic stimulation publication-title: Brain Stimul. – volume: 7 start-page: 7 year: 2013 ident: bib130 article-title: A comparison between uni-and bilateral tDCS effects on functional connectivity of the human motor cortex publication-title: Front. Hum. Neurosci. – volume: 6 start-page: 821 year: 2013 end-page: 829 ident: bib50 article-title: Impaired motor cortex responses in non-psychotic first-degree relatives of schizophrenia patients: a cathodal tDCS pilot study publication-title: Brain Stimul. – volume: 26 start-page: 2687 year: 2007 end-page: 2691 ident: bib9 article-title: Towards unravelling task-related modulations of neuroplastic changes induced in the human motor cortex publication-title: Eur. J. Neurosci. – volume: 156 start-page: 439 year: 2004 end-page: 443 ident: bib66 article-title: Effects of transcranial direct current stimulation over the human motor cortex on corticospinal and transcallosal excitability publication-title: Exp. Brain Res. – volume: 6 year: 2013 ident: bib105 article-title: Doubts about Targretin in AD publication-title: SciBX: Sci.-Bus. eXch. – volume: 29 start-page: 463 year: 2011 end-page: 492 ident: bib99 article-title: Transcranial direct current stimulation—update 2011 publication-title: Restor. Neurol. Neurosci. – volume: 7 start-page: e30971 year: 2012 ident: bib112 article-title: Reorganizing the intrinsic functional architecture of the human primary motor cortex during rest with non-invasive cortical stimulation publication-title: PLoS One – volume: 21 start-page: 2774 year: 2011 end-page: 2787 ident: bib72 article-title: Enhanced rapid-onset cortical plasticity in CADASIL as a possible mechanism of preserved cognition publication-title: Cereb. Cortex – volume: 21 start-page: 480 year: 2011 end-page: 484 ident: bib134 article-title: The role of GABA in human motor learning publication-title: Curr. Biol. – year: 2005 ident: bib47 article-title: Event-related Potentials: A Methods Handbook – volume: 105 start-page: 2937 year: 2011 end-page: 2942 ident: bib78 article-title: Cathodal transcranial direct current stimulation of the primary motor cortex improves selective muscle activation in the ipsilateral arm publication-title: J. Neurophysiol. – volume: 1529 start-page: 83 year: 2013 end-page: 91 ident: bib79 article-title: Corticomotor excitability induced by anodal transcranial direct current stimulation with and without non-exhaustive movement publication-title: Brain Res. – volume: 111 start-page: 1397 year: 2014 end-page: 1399 ident: bib55 article-title: Probing the mechanisms underlying the mitigation of cognitive aging with anodal transcranial direct current stimulation publication-title: J. Neurophysiol. – volume: 15 start-page: 1287 year: 2004 end-page: 1291 ident: bib114 article-title: Long lasting effects of transcranial direct current stimulation on motor imagery publication-title: Neuroreport – volume: 5 start-page: 252 year: 2012 end-page: 263 ident: bib110 article-title: Modulation of large-scale brain networks by transcranial direct current stimulation evidenced by resting-state functional MRI publication-title: Brain Stimul. – volume: 29 start-page: 5202 year: 2009 end-page: 5206 ident: bib135 article-title: Polarity-sensitive modulation of cortical neurotransmitters by transcranial stimulation publication-title: J. Neurosci. – volume: 74 start-page: 401 year: 1989 end-page: 416 ident: bib4 article-title: Focal stimulation of human cerebral cortex with the magnetic coil: a comparison with electrical stimulation publication-title: Electroencephalogr. Clin. Neurophysiol. – volume: 521 start-page: 148 year: 2012 end-page: 151 ident: bib13 article-title: tDCS selectively improves working memory in older adults with more education publication-title: Neurosci. Lett. – volume: 119 start-page: 1499 year: 2012 end-page: 1506 ident: bib31 article-title: The effects of prolonged cathodal direct current stimulation on the excitatory and inhibitory circuits of the ipsilateral and contralateral motor cortex publication-title: J. Neural Transm. – year: 2003 ident: bib122 publication-title: Primer of EEG – volume: 85 start-page: 9 year: 1992 end-page: 16 ident: bib21 article-title: Topographic mapping of the human motor cortex with magnetic stimulation: factors affecting accuracy and reproducibility publication-title: Electroencephalogr. Clin. Neurophysiol. – volume: 12 start-page: 2 year: 2011 ident: bib147 article-title: Transcranial direct current stimulation of the prefrontal cortex modulates working memory performance: combined behavioural and electrophysiological evidence publication-title: BMC Neurosci. – volume: 24 start-page: 56 year: 2008 end-page: 63 ident: bib6 article-title: Transcranial direct current stimulation over somatosensory cortex decreases experimentally induced acute pain perception publication-title: Clin. J. Pain – volume: 539 start-page: 7 year: 2013 end-page: 10 ident: bib107 article-title: Transcranial direct current stimulation increases resting state interhemispheric connectivity publication-title: Neurosci. Lett. – volume: 122 start-page: 777 year: 2011 end-page: 783 ident: bib60 article-title: Transcranial direct current stimulation over the motor association cortex induces plastic changes in ipsilateral primary motor and somatosensory cortices publication-title: Clin. Neurophysiol. – volume: 44 start-page: 109 year: 2011 end-page: 114 ident: bib85 article-title: Transcranial direct current stimulation does not modulate motor cortex excitability in patients with amyotrophic lateral sclerosis publication-title: Muscle Nerve – volume: 553 start-page: 293 year: 2003 end-page: 301 ident: bib90 article-title: Pharmacological modulation of cortical excitability shifts induced by transcranial direct current stimulation in humans publication-title: J. Physiol. – volume: 27 start-page: 1292 year: 2008 end-page: 1300 ident: bib18 article-title: Premotor transcranial direct current stimulation (tDCS) affects primary motor excitability in humans publication-title: Eur. J. Neurosci. – volume: 406 start-page: 147 year: 2000 end-page: 150 ident: bib44 article-title: Transcranial magnetic stimulation and the human brain publication-title: Nature – volume: 125 start-page: 2238 year: 2002 end-page: 2247 ident: bib71 article-title: Pharmacological approach to the mechanisms of transcranial DC-stimulation-induced after-effects of human motor cortex excitability publication-title: Brain – volume: 105 start-page: 2802 year: 2011 end-page: 2810 ident: bib69 article-title: Transcranial direct current stimulation effects on I-wave activity in humans publication-title: J. Neurophysiol. – volume: 103 start-page: 2382 year: 2010 end-page: 2389 ident: bib19 article-title: Task-dependent modulation of inputs to proximal upper limb following transcranial direct current stimulation of primary motor cortex publication-title: J. Neurophysiol. – volume: 59 start-page: 117 year: 2012 end-page: 128 ident: bib27 article-title: TDCS guided using fMRI significantly accelerates learning to identify concealed objects publication-title: Neuroimage – volume: 492 start-page: 105 year: 2011 end-page: 108 ident: bib65 article-title: The enhanced cortical activation induced by transcranial direct current stimulation during hand movements publication-title: Neurosci. Lett. – volume: 45 start-page: 702 year: 2004 end-page: 707 ident: bib7 article-title: Excitability changes induced in the human primary visual cortex by transcranial direct current stimulation: direct electrophysiological evidence publication-title: Invest. Ophthalmol. Vis. Sci. – volume: 498 start-page: 167 year: 2011 end-page: 170 ident: bib125 article-title: Increased short latency afferent inhibition after anodal transcranial direct current stimulation publication-title: Neurosci. Lett. – volume: 500 start-page: 67 year: 2011 end-page: 71 ident: bib28 article-title: Transcranial direct current stimulation (tDCS) produces localized and specific alterations in neurochemistry: a (1)H magnetic resonance spectroscopy study publication-title: Neurosci. Lett. – volume: 6 start-page: 424 year: 2013 end-page: 432 ident: bib81 article-title: Induction of late LTP-like plasticity in the human motor cortex by repeated non-invasive brain stimulation publication-title: Brain Stimul. – volume: 20 start-page: 148 year: 1987 end-page: 155 ident: bib5 article-title: Human cerebral cortical responses to contralateral transcranial stimulation publication-title: Neurosurg – volume: 17 start-page: 37 year: 2011 end-page: 53 ident: bib136 article-title: Physiological basis of transcranial direct current stimulation publication-title: Neuroscientist – volume: 70 start-page: 690 year: 2011 end-page: 695 ident: bib15 article-title: Brain energy consumption induced by electrical stimulation promotes systemic glucose uptake publication-title: Biol. Psychiatry – volume: 568 start-page: 291 year: 2005 end-page: 303 ident: bib101 article-title: Modulating parameters of excitability during and after transcranial direct current stimulation of the human motor cortex publication-title: J. Physiol. – volume: 66 start-page: 503 year: 2009 end-page: 508 ident: bib93 article-title: Serotonin affects transcranial direct current-induced neuroplasticity in humans publication-title: Biol. Psychiatry – volume: 117 start-page: 2221 year: 2006 end-page: 2227 ident: bib34 article-title: Transcranial direct current stimulation applied over the somatosensory cortex-differential effect on low and high frequency SEPs publication-title: Clin. Neurophysiol. – volume: 8 start-page: e59669 year: 2013 ident: bib124 article-title: High-frequency TRNS reduces BOLD activity during visuomotor learning publication-title: PLoS One – volume: 55 start-page: 187 year: 2007 end-page: 199 ident: bib45 article-title: Transcranial magnetic stimulation: a primer publication-title: Neuron – volume: 7 start-page: 113 year: 2014 end-page: 121 ident: bib118 article-title: Increased transcranial direct current stimulation after effects during concurrent peripheral electrical nerve stimulation publication-title: Brain Stimul. – volume: 589 start-page: 2813 year: 2011 end-page: 2826 ident: bib119 article-title: Effects of anodal transcranial direct current stimulation over the leg motor area on lumbar spinal network excitability in healthy subjects publication-title: J. Physiol. – volume: 29 start-page: 1573 year: 2004 end-page: 1578 ident: bib92 article-title: Consolidation of human motor cortical neuroplasticity by publication-title: Neuropsychopharmacology – volume: 14 start-page: 23 year: 2013 ident: bib143 article-title: Transcranial direct current stimulation (tDCS) of the visual cortex: a proof-of-concept study based on interictal electrophysiological abnormalities in migraine publication-title: J. Headache Pain – volume: 577 start-page: 795 year: 2006 end-page: 803 ident: bib113 article-title: Transcranial direct current stimulation of the primary motor cortex affects cortical drive to human musculature as assessed by intermuscular coherence publication-title: J. Physiol. – volume: 17 start-page: 253 year: 2005 end-page: 259 ident: bib129 article-title: Accuracy of stereotaxic positioning of transcranial magnetic stimulation publication-title: Br. Topogr. – volume: 14 start-page: 371 year: 2013 end-page: 383 ident: bib144 article-title: Focal modulation of the primary motor cortex in fibromyalgia using 4×1-ring high-definition transcranial direct current stimulation (HD-tDCS): immediate and delayed analgesic effects of cathodal and anodal stimulation publication-title: J. Pain – volume: 7 start-page: e47514 year: 2012 ident: bib103 article-title: Rethinking clinical trials of transcranial direct current stimulation: participant and assessor blinding is inadequate at intensities of 2 publication-title: PLOS One – volume: 14 start-page: 101 year: 1981 end-page: 114 ident: bib35 article-title: The influence of low-level transcortical dc-currents on response speed in humans publication-title: J. Neurosci. – volume: 19 start-page: 2720 year: 2004 end-page: 2726 ident: bib95 article-title: GABAergic modulation of DC stimulation-induced motor cortex excitability shifts in humans publication-title: Eur. J. Neurosci. – volume: 8 start-page: 2 year: 2014 ident: bib51 article-title: Transcranial direct current stimulation: five important issues we aren't discussing (but probably should be) publication-title: Front. Syst. Neurosci. – volume: 47 start-page: 486 year: 1960 end-page: 490 ident: bib61 article-title: den EinfluSS besonders niederfrequenter elektrischer Vorgänge in der Atmosphäre auf den Menschen publication-title: Naturwissenschaften – volume: 23 start-page: 1651 year: 2006 end-page: 1657 ident: bib94 article-title: Dopaminergic modulation of long-lasting direct current-induced cortical excitability changes in the human motor cortex publication-title: Eur. J. Neurosci. – volume: 97 start-page: 3109 year: 2007 end-page: 3117 ident: bib89 article-title: Shaping the effects of transcranial direct current stimulation of the human motor cortex publication-title: J. Neurophysiol. – volume: 31 start-page: 15284 year: 2011 end-page: 15293 ident: bib56 article-title: Prefrontal transcranial direct current stimulation changes connectivity of resting-state networks during fMRI publication-title: J. Neurosci. – volume: 24 start-page: 3379 year: 2004 end-page: 3385 ident: bib131 article-title: Preconditioning of low-frequency repetitive transcranial magnetic stimulation with transcranial direct current stimulation: evidence for homeostatic plasticity in the human motor cortex publication-title: J. Neurosci. – volume: 5 start-page: 208 year: 2012 end-page: 213 ident: bib3 article-title: Daily transcranial direct current stimulation (tDCS) leads to greater increases in cortical excitability than second daily transcranial direct current stimulation publication-title: Brain Stimul. – volume: 56 start-page: 634 year: 2004 end-page: 639 ident: bib67 article-title: Preconditioning with transcranial direct current stimulation sensitizes the motor cortex to rapid-rate transcranial magnetic stimulation and controls the direction of after-effects publication-title: Biol. Psychiatry – volume: 30 start-page: 191 year: 2012 end-page: 198 ident: bib127 article-title: Modulating neuronal excitability in the motor cortex with tDCS shows moderate hemispheric asymmetry due to subjects’ handedness: a pilot study publication-title: Restor. Neurol. Neurosci. – volume: 121 year: 2013 ident: bib16 article-title: Evidence for metaplasticity in the human visual cortex publication-title: J. Neural Transm. – volume: 8 start-page: e57425 year: 2013 ident: bib128 article-title: Evolution of premotor cortical excitability after cathodal inhibition of the primary motor cortex: a sham-controlled serial navigated TMS study publication-title: PLoS One – volume: 29 start-page: 311 year: 2011 end-page: 320 ident: bib141 article-title: Isometric contraction interferes with transcranial direct current stimulation (tDCS) induced plasticity: evidence of state-dependent neuromodulation in human motor cortex publication-title: Restor. Neurol. Neurosci. – volume: 24 start-page: 973 year: 2013 end-page: 975 ident: bib132 article-title: Motor cortex-induced plasticity by noninvasive brain stimulation: a comparison between transcranial direct current stimulation and transcranial magnetic stimulation publication-title: Neuroreport – volume: 115 start-page: 255 year: 2004 end-page: 266 ident: bib32 article-title: The physiological basis of transcranial motor cortex stimulation in conscious humans publication-title: Clin. Neurophysiol. – volume: 262 start-page: 415 year: 2012 end-page: 423 ident: bib49 article-title: Abnormal bihemispheric responses in schizophrenia patients following cathodal transcranial direct stimulation publication-title: Eur. Arch. Psychiatry Clin. Neurosci. – volume: 2 start-page: 217 year: 1968 end-page: 222 ident: bib46 article-title: Effects of low-level, low-frequency electric fields in human reaction time publication-title: Comm. Behav. Biol. – volume: 38 start-page: 64 year: 1988 end-page: 68 ident: bib36 article-title: State-dependent changes in the N20 component of the median nerve somatosensory evoked potential publication-title: Neurology – volume: 14 start-page: 1240 year: 2004 end-page: 1245 ident: bib91 article-title: Catecholaminergic consolidation of motor cortical neuroplasticity in humans publication-title: Cereb. Cortex – volume: 2012 start-page: 735 year: 2012 end-page: 738 ident: bib25 article-title: A pilot study on effects of 4×1 high-definition tDCS on motor cortex excitability publication-title: Conf. Proc. IEEE Eng. Med. Biol. Soc. – volume: 10 start-page: 122 year: 2009 end-page: 132 ident: bib30 article-title: Modulatory effects of transcranial direct current stimulation on laser-evoked potentials publication-title: Pain Med. – volume: 412 start-page: 7 year: 2011 ident: bib73 article-title: Neurophysiological investigation of the basis of the fMRI signal publication-title: Nature – year: 2014 ident: bib121 article-title: Neuromethods: Transcranial Magnetic Stimulation – volume: 21 start-page: 207 year: 2009 end-page: 221 ident: bib123 article-title: Optimizing functional accuracy of TMS in cognitive studies: a comparison of methods publication-title: J. Cogn. Neurosci. – volume: 38 start-page: 16 year: 2002 ident: bib33 article-title: Cortical sources of the early components of the visual evoked potential publication-title: Neurology – volume: 57 start-page: 1899 year: 2001 end-page: 1901 ident: bib98 article-title: Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans publication-title: Neurology – volume: 7 start-page: 256 year: 2013 ident: bib70 article-title: Je pense donc je fais: transcranial direct current stimulation modulates brain oscillations associated with motor imagery and movement observation publication-title: Front. Hum. Neurosci. – volume: 35 year: 2013 ident: bib102 article-title: Local and remote effects of transcranial direct current stimulation on the electrical activity of the motor cortical network publication-title: Hum. Brain Mapp. – volume: 16 start-page: 13 year: 2013 end-page: 21 ident: bib39 article-title: Transcranial direct current stimulation treatment protocols: should stimulus intensity be constant or incremental over multiple sessions? publication-title: Int. J. Neuropsychopharmacol. – volume: 527 start-page: 633 year: 2000 end-page: 639 ident: bib97 article-title: Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation publication-title: J. Physiol. – volume: 6 start-page: 644 year: 2013 end-page: 648 ident: bib62 article-title: Comparing cortical plasticity induced by conventional and high-definition 4×1 ring tDCS: a neurophysiological study publication-title: Brain Stimul. – volume: 36 start-page: 79 year: 2008 end-page: 91 ident: bib140 article-title: Pergolide increases the efficacy of cathodal direct current stimulation to reduce the amplitude of laser-evoked potentials in humans publication-title: J. Pain Symptom Manage. – volume: 187 start-page: 51 year: 2008 end-page: 59 ident: bib120 article-title: Trial-to-trial size variability of motor-evoked potentials. A study using the triple stimulation technique publication-title: Exp. Brain Res. – volume: 55 start-page: 590 year: 2011 end-page: 596 ident: bib8 article-title: Transcranial direct current stimulation over the primary motor cortex during fMRI publication-title: Neuroimage – volume: 31 start-page: 2086 year: 2011 end-page: 2095 ident: bib106 article-title: Bilateral transcranial direct current stimulation modulates activation-induced regional blood flow changes during voluntary movement publication-title: J. Cereb. Blood Flow Metab. – volume: 3 start-page: 217 year: 1992 ident: bib40 article-title: The ballad of Pons and Fleischmann: experiment and narrative in the (un) making of cold fusion publication-title: Soc. Dimens. Sci. – volume: 105 start-page: 2582 year: 2011 end-page: 2589 ident: bib20 article-title: Cathodal transcranial direct current stimulation suppresses ipsilateral projections to presumed propriospinal neurons of the proximal upper limb publication-title: J. Neurophysiol. – volume: 35 issue: 5 year: 2013 ident: 10.1016/j.neuropsychologia.2014.11.021_bib102 article-title: Local and remote effects of transcranial direct current stimulation on the electrical activity of the motor cortical network publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.22322 – volume: 57 start-page: 1899 issue: 10 year: 2001 ident: 10.1016/j.neuropsychologia.2014.11.021_bib98 article-title: Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans publication-title: Neurology doi: 10.1212/WNL.57.10.1899 – volume: 16 start-page: 13 issue: 1 year: 2013 ident: 10.1016/j.neuropsychologia.2014.11.021_bib39 article-title: Transcranial direct current stimulation treatment protocols: should stimulus intensity be constant or incremental over multiple sessions? publication-title: Int. J. Neuropsychopharmacol. doi: 10.1017/S1461145712000041 – volume: 74 start-page: 401 issue: 6 year: 1989 ident: 10.1016/j.neuropsychologia.2014.11.021_bib4 article-title: Focal stimulation of human cerebral cortex with the magnetic coil: a comparison with electrical stimulation publication-title: Electroencephalogr. Clin. Neurophysiol. doi: 10.1016/0168-5597(89)90029-4 – volume: 591 start-page: 1987 issue: Pt. 7 year: 2013 ident: 10.1016/j.neuropsychologia.2014.11.021_bib11 article-title: Partially non-linear stimulation intensity-dependent effects of direct current stimulation on motor cortex excitability in humans publication-title: J. Physiol. doi: 10.1113/jphysiol.2012.249730 – volume: 111 start-page: 1397 issue: 7 year: 2014 ident: 10.1016/j.neuropsychologia.2014.11.021_bib55 article-title: Probing the mechanisms underlying the mitigation of cognitive aging with anodal transcranial direct current stimulation publication-title: J. Neurophysiol. doi: 10.1152/jn.00736.2013 – volume: 14 start-page: 23 issue: 1 year: 2013 ident: 10.1016/j.neuropsychologia.2014.11.021_bib143 article-title: Transcranial direct current stimulation (tDCS) of the visual cortex: a proof-of-concept study based on interictal electrophysiological abnormalities in migraine publication-title: J. Headache Pain doi: 10.1186/1129-2377-14-23 – volume: 7 start-page: 1 year: 2013 ident: 10.1016/j.neuropsychologia.2014.11.021_bib14 article-title: Origins of specificity during tDCS: anatomical, activity-selective, and input-bias mechanisms publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2013.00688 – volume: 20 start-page: 148 issue: 1 year: 1987 ident: 10.1016/j.neuropsychologia.2014.11.021_bib5 article-title: Human cerebral cortical responses to contralateral transcranial stimulation publication-title: Neurosurg doi: 10.1097/00006123-198701000-00031 – volume: 31 start-page: 2086 issue: 10 year: 2011 ident: 10.1016/j.neuropsychologia.2014.11.021_bib106 article-title: Bilateral transcranial direct current stimulation modulates activation-induced regional blood flow changes during voluntary movement publication-title: J. Cereb. Blood Flow Metab. doi: 10.1038/jcbfm.2011.72 – volume: 498 start-page: 817 issue: Pt. 3 year: 1997 ident: 10.1016/j.neuropsychologia.2014.11.021_bib86 article-title: Intracortical facilitation and inhibition after transcranial magnetic stimulation in conscious humans publication-title: J. Physiol. doi: 10.1113/jphysiol.1997.sp021905 – volume: 36 start-page: 79 issue: 1 year: 2008 ident: 10.1016/j.neuropsychologia.2014.11.021_bib140 article-title: Pergolide increases the efficacy of cathodal direct current stimulation to reduce the amplitude of laser-evoked potentials in humans publication-title: J. Pain Symptom Manage. doi: 10.1016/j.jpainsymman.2007.08.014 – volume: 122 start-page: 675 issue: 11 year: 2012 ident: 10.1016/j.neuropsychologia.2014.11.021_bib138 article-title: Comparison of the after-effects of transcranial direct current stimulation over the motor cortex in patients with stroke and healthy volunteers publication-title: Int. J. Neurosci. doi: 10.3109/00207454.2012.707715 – volume: 29 start-page: 311 issue: 5 year: 2011 ident: 10.1016/j.neuropsychologia.2014.11.021_bib141 article-title: Isometric contraction interferes with transcranial direct current stimulation (tDCS) induced plasticity: evidence of state-dependent neuromodulation in human motor cortex publication-title: Restor. Neurol. Neurosci. – volume: 13 start-page: 112 issue: 2 year: 2012 ident: 10.1016/j.neuropsychologia.2014.11.021_bib17 article-title: A pilot study of the tolerability and effects of high-definition transcranial direct current stimulation (HD-tDCS) on pain perception publication-title: J. Pain doi: 10.1016/j.jpain.2011.07.001 – volume: 24 start-page: 973 issue: 17 year: 2013 ident: 10.1016/j.neuropsychologia.2014.11.021_bib132 article-title: Motor cortex-induced plasticity by noninvasive brain stimulation: a comparison between transcranial direct current stimulation and transcranial magnetic stimulation publication-title: Neuroreport doi: 10.1097/WNR.0000000000000021 – volume: 21 start-page: 480 issue: 6 year: 2011 ident: 10.1016/j.neuropsychologia.2014.11.021_bib134 article-title: The role of GABA in human motor learning publication-title: Curr. Biol. doi: 10.1016/j.cub.2011.01.069 – volume: 15 start-page: 1 issue: 5 year: 2014 ident: 10.1016/j.neuropsychologia.2014.11.021_bib139 article-title: Late cortical plasticity in motor and auditory cortex: role of met-allele in BDNF Val66Met polymorphism publication-title: Int. J. Neuropsychopharmacol. – volume: 5 start-page: 175 issue: 3 year: 2012 ident: 10.1016/j.neuropsychologia.2014.11.021_bib22 article-title: Clinical research with transcranial direct current stimulation (tDCS): challenges and future directions publication-title: Brain Stimul. doi: 10.1016/j.brs.2011.03.002 – volume: 6 start-page: 11 year: 1999 ident: 10.1016/j.neuropsychologia.2014.11.021_bib43 article-title: Temporal and spatial aspects of event-related desynchronization and movement-related cortical potentials publication-title: Handb. Electroencephalogr. Clin. Neurophysiol. – volume: 18 start-page: 648 issue: 3 year: 2008 ident: 10.1016/j.neuropsychologia.2014.11.021_bib64 article-title: Boosting focally-induced brain plasticity by dopamine publication-title: Cereb. Cortex doi: 10.1093/cercor/bhm098 – volume: 568 start-page: 653 issue: Pt. 2 year: 2005 ident: 10.1016/j.neuropsychologia.2014.11.021_bib10 article-title: Non-synaptic mechanisms underlie the after-effects of cathodal transcutaneous direct current stimulation of the human brain publication-title: J. Physiol. doi: 10.1113/jphysiol.2005.088310 – volume: 103 start-page: 2382 year: 2010 ident: 10.1016/j.neuropsychologia.2014.11.021_bib19 article-title: Task-dependent modulation of inputs to proximal upper limb following transcranial direct current stimulation of primary motor cortex publication-title: J. Neurophysiol. doi: 10.1152/jn.01046.2009 – volume: 23 start-page: 1651 issue: 6 year: 2006 ident: 10.1016/j.neuropsychologia.2014.11.021_bib94 article-title: Dopaminergic modulation of long-lasting direct current-induced cortical excitability changes in the human motor cortex publication-title: Eur. J. Neurosci. doi: 10.1111/j.1460-9568.2006.04676.x – volume: 105 start-page: 1141 issue: 3 year: 2011 ident: 10.1016/j.neuropsychologia.2014.11.021_bib37 article-title: Time course of the induction of homeostatic plasticity generated by repeated transcranial direct current stimulation of the human motor cortex publication-title: J. Neurophysiol. doi: 10.1152/jn.00608.2009 – volume: 10 start-page: 122 issue: 1 year: 2009 ident: 10.1016/j.neuropsychologia.2014.11.021_bib30 article-title: Modulatory effects of transcranial direct current stimulation on laser-evoked potentials publication-title: Pain Med. doi: 10.1111/j.1526-4637.2008.00508.x – volume: 114 start-page: 600 issue: 4 year: 2003 ident: 10.1016/j.neuropsychologia.2014.11.021_bib96 article-title: Level of action of cathodal DC polarisation induced inhibition of the human motor cortex publication-title: Clin. Neurophysiol. doi: 10.1016/S1388-2457(02)00412-1 – volume: 30 start-page: 1412 issue: 7 year: 2009 ident: 10.1016/j.neuropsychologia.2014.11.021_bib137 article-title: Modulation of movement-associated cortical activation by transcranial direct current stimulation publication-title: Eur. J. Neurosci. doi: 10.1111/j.1460-9568.2009.06937.x – volume: 5 start-page: 252 issue: 3 year: 2012 ident: 10.1016/j.neuropsychologia.2014.11.021_bib110 article-title: Modulation of large-scale brain networks by transcranial direct current stimulation evidenced by resting-state functional MRI publication-title: Brain Stimul. doi: 10.1016/j.brs.2011.08.006 – volume: 225 start-page: 321 issue: 3 year: 2013 ident: 10.1016/j.neuropsychologia.2014.11.021_bib26 article-title: Opposite effects of weak transcranial direct current stimulation on different phases of short interval intracortical inhibition (SICI) publication-title: Exp. Brain Res. doi: 10.1007/s00221-012-3369-0 – volume: 38 start-page: 16 issue: 1 year: 2002 ident: 10.1016/j.neuropsychologia.2014.11.021_bib33 article-title: Cortical sources of the early components of the visual evoked potential publication-title: Neurology – volume: 6 start-page: 424 issue: 3 year: 2013 ident: 10.1016/j.neuropsychologia.2014.11.021_bib81 article-title: Induction of late LTP-like plasticity in the human motor cortex by repeated non-invasive brain stimulation publication-title: Brain Stimul. doi: 10.1016/j.brs.2012.04.011 – volume: 21 start-page: 2774 issue: 12 year: 2011 ident: 10.1016/j.neuropsychologia.2014.11.021_bib72 article-title: Enhanced rapid-onset cortical plasticity in CADASIL as a possible mechanism of preserved cognition publication-title: Cereb. Cortex doi: 10.1093/cercor/bhr071 – volume: 568 start-page: 291 issue: Pt. 1 year: 2005 ident: 10.1016/j.neuropsychologia.2014.11.021_bib101 article-title: Modulating parameters of excitability during and after transcranial direct current stimulation of the human motor cortex publication-title: J. Physiol. doi: 10.1113/jphysiol.2005.092429 – volume: 105 start-page: 2937 issue: 6 year: 2011 ident: 10.1016/j.neuropsychologia.2014.11.021_bib78 article-title: Cathodal transcranial direct current stimulation of the primary motor cortex improves selective muscle activation in the ipsilateral arm publication-title: J. Neurophysiol. doi: 10.1152/jn.00171.2011 – volume: 29 start-page: 463 issue: 6 year: 2011 ident: 10.1016/j.neuropsychologia.2014.11.021_bib99 article-title: Transcranial direct current stimulation—update 2011 publication-title: Restor. Neurol. Neurosci. – volume: 5 start-page: 208 issue: 3 year: 2012 ident: 10.1016/j.neuropsychologia.2014.11.021_bib3 article-title: Daily transcranial direct current stimulation (tDCS) leads to greater increases in cortical excitability than second daily transcranial direct current stimulation publication-title: Brain Stimul. doi: 10.1016/j.brs.2011.04.006 – volume: 5 start-page: 214 issue: 3 year: 2012 ident: 10.1016/j.neuropsychologia.2014.11.021_bib84 article-title: Effects of simultaneous bilateral tDCS of the human motor cortex publication-title: Brain Stimul. doi: 10.1016/j.brs.2011.05.001 – volume: 45 start-page: 196 issue: 2 year: 2001 ident: 10.1016/j.neuropsychologia.2014.11.021_bib12 article-title: Regional modulation of BOLD MRI responses to human sensorimotor activation by transcranial direct current stimulation publication-title: Magn. Reson. Med. doi: 10.1002/1522-2594(200102)45:2<196::AID-MRM1026>3.0.CO;2-1 – volume: 83 start-page: 569 year: 2013 ident: 10.1016/j.neuropsychologia.2014.11.021_bib109 article-title: Excitability modulation of the motor system induced by transcranial direct current stimulation: a multimodal approach publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.06.076 – volume: 7 start-page: e47514 issue: 10 year: 2012 ident: 10.1016/j.neuropsychologia.2014.11.021_bib103 article-title: Rethinking clinical trials of transcranial direct current stimulation: participant and assessor blinding is inadequate at intensities of 2mA publication-title: PLOS One doi: 10.1371/journal.pone.0047514 – volume: 7 start-page: 113 issue: 1 year: 2014 ident: 10.1016/j.neuropsychologia.2014.11.021_bib118 article-title: Increased transcranial direct current stimulation after effects during concurrent peripheral electrical nerve stimulation publication-title: Brain Stimul. doi: 10.1016/j.brs.2013.10.002 – volume: 122 start-page: 777 issue: 4 year: 2011 ident: 10.1016/j.neuropsychologia.2014.11.021_bib60 article-title: Transcranial direct current stimulation over the motor association cortex induces plastic changes in ipsilateral primary motor and somatosensory cortices publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2010.09.025 – volume: 1 start-page: 206 issue: 3 year: 2008 ident: 10.1016/j.neuropsychologia.2014.11.021_bib88 article-title: Transcranial direct current stimulation: state of the art 2008 publication-title: Brain Stimul. doi: 10.1016/j.brs.2008.06.004 – volume: 521 start-page: 148 issue: 2 year: 2012 ident: 10.1016/j.neuropsychologia.2014.11.021_bib13 article-title: tDCS selectively improves working memory in older adults with more education publication-title: Neurosci. Lett. doi: 10.1016/j.neulet.2012.05.074 – volume: 577 start-page: 795 issue: Pt. 3 year: 2006 ident: 10.1016/j.neuropsychologia.2014.11.021_bib113 article-title: Transcranial direct current stimulation of the primary motor cortex affects cortical drive to human musculature as assessed by intermuscular coherence publication-title: J. Physiol. doi: 10.1113/jphysiol.2006.116939 – volume: 40 start-page: 27 issue: 1 year: 2010 ident: 10.1016/j.neuropsychologia.2014.11.021_bib2 article-title: Comparison of “standard” and “navigated” procedures of TMS coil positioning over motor, premotor and prefrontal targets in patients with chronic pain and depression publication-title: Neurophysiol. Clin./Clin. Neurophysiol. doi: 10.1016/j.neucli.2010.01.001 – volume: 1529 start-page: 83 year: 2013 ident: 10.1016/j.neuropsychologia.2014.11.021_bib79 article-title: Corticomotor excitability induced by anodal transcranial direct current stimulation with and without non-exhaustive movement publication-title: Brain Res. doi: 10.1016/j.brainres.2013.07.026 – volume: 125 start-page: 2238 issue: Pt. 10 year: 2002 ident: 10.1016/j.neuropsychologia.2014.11.021_bib71 article-title: Pharmacological approach to the mechanisms of transcranial DC-stimulation-induced after-effects of human motor cortex excitability publication-title: Brain doi: 10.1093/brain/awf238 – volume: 17 start-page: 37 issue: 1 year: 2011 ident: 10.1016/j.neuropsychologia.2014.11.021_bib136 article-title: Physiological basis of transcranial direct current stimulation publication-title: Neuroscientist doi: 10.1177/1073858410386614 – volume: 24 start-page: 56 issue: 1 year: 2008 ident: 10.1016/j.neuropsychologia.2014.11.021_bib6 article-title: Transcranial direct current stimulation over somatosensory cortex decreases experimentally induced acute pain perception publication-title: Clin. J. Pain doi: 10.1097/AJP.0b013e318157233b – volume: 59 start-page: 117 issue: 1 year: 2012 ident: 10.1016/j.neuropsychologia.2014.11.021_bib27 article-title: TDCS guided using fMRI significantly accelerates learning to identify concealed objects publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.11.036 – volume: 38 start-page: 64 issue: 1 year: 1988 ident: 10.1016/j.neuropsychologia.2014.11.021_bib36 article-title: State-dependent changes in the N20 component of the median nerve somatosensory evoked potential publication-title: Neurology doi: 10.1212/WNL.38.1.64 – volume: 8 start-page: 2 year: 2014 ident: 10.1016/j.neuropsychologia.2014.11.021_bib51 article-title: Transcranial direct current stimulation: five important issues we aren't discussing (but probably should be) publication-title: Front. Syst. Neurosci. doi: 10.3389/fnsys.2014.00002 – volume: 24 start-page: 3379 issue: 13 year: 2004 ident: 10.1016/j.neuropsychologia.2014.11.021_bib131 article-title: Preconditioning of low-frequency repetitive transcranial magnetic stimulation with transcranial direct current stimulation: evidence for homeostatic plasticity in the human motor cortex publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.5316-03.2004 – volume: 21 start-page: 207 issue: 2 year: 2009 ident: 10.1016/j.neuropsychologia.2014.11.021_bib123 article-title: Optimizing functional accuracy of TMS in cognitive studies: a comparison of methods publication-title: J. Cogn. Neurosci. doi: 10.1162/jocn.2009.21126 – volume: 27 start-page: 1292 issue: 5 year: 2008 ident: 10.1016/j.neuropsychologia.2014.11.021_bib18 article-title: Premotor transcranial direct current stimulation (tDCS) affects primary motor excitability in humans publication-title: Eur. J. Neurosci. doi: 10.1111/j.1460-9568.2008.06090.x – volume: 12 start-page: 2 year: 2011 ident: 10.1016/j.neuropsychologia.2014.11.021_bib147 article-title: Transcranial direct current stimulation of the prefrontal cortex modulates working memory performance: combined behavioural and electrophysiological evidence publication-title: BMC Neurosci. doi: 10.1186/1471-2202-12-2 – volume: 460 start-page: 117 issue: 2 year: 2009 ident: 10.1016/j.neuropsychologia.2014.11.021_bib52 article-title: The effect of transcranial direct current stimulation on the cortical activation by motor task in the human brain: an fMRI study publication-title: Neurosci. Lett. doi: 10.1016/j.neulet.2009.05.037 – volume: 33 start-page: 2499 issue: 10 year: 2012 ident: 10.1016/j.neuropsychologia.2014.11.021_bib111 article-title: Modulating cortico-striatal and thalamo-cortical functional connectivity with transcranial direct current stimulation publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.21380 – volume: 8 start-page: e63221 issue: 5 year: 2013 ident: 10.1016/j.neuropsychologia.2014.11.021_bib80 article-title: A survey on data reproducibility in cancer research provides insights into our limited ability to translate findings from the laboratory to the clinic. publication-title: PloS One doi: 10.1371/journal.pone.0063221 – year: 2014 ident: 10.1016/j.neuropsychologia.2014.11.021_bib121 doi: 10.1007/978-1-4939-0879-0 – volume: 6 start-page: 821 issue: 5 year: 2013 ident: 10.1016/j.neuropsychologia.2014.11.021_bib50 article-title: Impaired motor cortex responses in non-psychotic first-degree relatives of schizophrenia patients: a cathodal tDCS pilot study publication-title: Brain Stimul. doi: 10.1016/j.brs.2013.03.001 – volume: 7 start-page: 256 year: 2013 ident: 10.1016/j.neuropsychologia.2014.11.021_bib70 article-title: Je pense donc je fais: transcranial direct current stimulation modulates brain oscillations associated with motor imagery and movement observation publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2013.00256 – volume: 55 start-page: 590 issue: 2 year: 2011 ident: 10.1016/j.neuropsychologia.2014.11.021_bib8 article-title: Transcranial direct current stimulation over the primary motor cortex during fMRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.11.085 – volume: 31 start-page: 661 issue: 6 year: 2011 ident: 10.1016/j.neuropsychologia.2014.11.021_bib48 article-title: Modulation of human trigeminal and extracranial nociceptive processing by transcranial direct current stimulation of the motor cortex publication-title: Cephalalgia doi: 10.1177/0333102410390394 – volume: 6 start-page: 644 issue: 4 year: 2013 ident: 10.1016/j.neuropsychologia.2014.11.021_bib62 article-title: Comparing cortical plasticity induced by conventional and high-definition 4×1 ring tDCS: a neurophysiological study publication-title: Brain Stimul. doi: 10.1016/j.brs.2012.09.010 – volume: 29 start-page: 82 issue: 1 year: 2008 ident: 10.1016/j.neuropsychologia.2014.11.021_bib133 article-title: Transcranial magnetic stimulation and the challenge of coil placement: a comparison of conventional and stereotaxic neuronavigational strategies publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.20360 – volume: 27 start-page: 3807 issue: 14 year: 2007 ident: 10.1016/j.neuropsychologia.2014.11.021_bib100 article-title: Timing-dependent modulation of associative plasticity by general network excitability in the human motor cortex publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.5348-06.2007 – volume: 85 start-page: 9 issue: 1 year: 1992 ident: 10.1016/j.neuropsychologia.2014.11.021_bib21 article-title: Topographic mapping of the human motor cortex with magnetic stimulation: factors affecting accuracy and reproducibility publication-title: Electroencephalogr. Clin. Neurophysiol. doi: 10.1016/0168-5597(92)90095-S – volume: 60 start-page: 782 issue: 4 year: 2008 ident: 10.1016/j.neuropsychologia.2014.11.021_bib117 article-title: Myoinositol content in the human brain is modified by transcranial direct current stimulation in a matter of minutes: a 1H-MRS study publication-title: Magn. Reson. Med. doi: 10.1002/mrm.21709 – volume: 27 start-page: 14442 issue: 52 year: 2007 ident: 10.1016/j.neuropsychologia.2014.11.021_bib63 article-title: Focusing effect of acetylcholine on neuroplasticity in the human motor cortex publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.4104-07.2007 – volume: 117 start-page: 2221 issue: 10 year: 2006 ident: 10.1016/j.neuropsychologia.2014.11.021_bib34 article-title: Transcranial direct current stimulation applied over the somatosensory cortex-differential effect on low and high frequency SEPs publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2006.07.136 – volume: 553 start-page: 293 issue: Pt 1 year: 2003 ident: 10.1016/j.neuropsychologia.2014.11.021_bib90 article-title: Pharmacological modulation of cortical excitability shifts induced by transcranial direct current stimulation in humans publication-title: J. Physiol. doi: 10.1113/jphysiol.2003.049916 – volume: 156 start-page: 439 issue: 4 year: 2004 ident: 10.1016/j.neuropsychologia.2014.11.021_bib66 article-title: Effects of transcranial direct current stimulation over the human motor cortex on corticospinal and transcallosal excitability publication-title: Exp. Brain Res. doi: 10.1007/s00221-003-1800-2 – volume: 2013 start-page: 1 year: 2013 ident: 10.1016/j.neuropsychologia.2014.11.021_bib57 article-title: Different intensities of anodal transcranial direct current stimulation do not differentiall modulate motor cortex plasticity publication-title: Neural Plast. doi: 10.1155/2013/603502 – volume: 15 start-page: 1287 issue: 8 year: 2004 ident: 10.1016/j.neuropsychologia.2014.11.021_bib114 article-title: Long lasting effects of transcranial direct current stimulation on motor imagery publication-title: Neuroreport doi: 10.1097/01.wnr.0000127637.22805.7c – volume: 7 start-page: 7 year: 2013 ident: 10.1016/j.neuropsychologia.2014.11.021_bib130 article-title: A comparison between uni-and bilateral tDCS effects on functional connectivity of the human motor cortex publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2013.00183 – volume: 66 start-page: 503 issue: 5 year: 2009 ident: 10.1016/j.neuropsychologia.2014.11.021_bib93 article-title: Serotonin affects transcranial direct current-induced neuroplasticity in humans publication-title: Biol. Psychiatry doi: 10.1016/j.biopsych.2009.03.022 – volume: 19 start-page: 2720 issue: 10 year: 2004 ident: 10.1016/j.neuropsychologia.2014.11.021_bib95 article-title: GABAergic modulation of DC stimulation-induced motor cortex excitability shifts in humans publication-title: Eur. J. Neurosci. doi: 10.1111/j.0953-816X.2004.03398.x – volume: 522 start-page: 167 issue: 2 year: 2012 ident: 10.1016/j.neuropsychologia.2014.11.021_bib23 article-title: Transcranial direct current stimulation modulates motor responses evoked by repetitive transcranial magnetic stimulation publication-title: Neurosci. Lett. doi: 10.1016/j.neulet.2012.06.033 – volume: 297 start-page: G1035 year: 2009 ident: 10.1016/j.neuropsychologia.2014.11.021_bib53 article-title: Characterizing the application of transcranial direct current stimulation in human pharyngeal motor cortex publication-title: Am. J. Physiol. Gastrointest. Liver Physiol. doi: 10.1152/ajpgi.00294.2009 – year: 2003 ident: 10.1016/j.neuropsychologia.2014.11.021_bib122 – volume: 178 start-page: 261 issue: 2 year: 2007 ident: 10.1016/j.neuropsychologia.2014.11.021_bib1 article-title: Visual evoked potentials modulation during direct current cortical polarization publication-title: Exp. Brain Res. doi: 10.1007/s00221-006-0733-y – volume: 89 start-page: 415 issue: 6 year: 1993 ident: 10.1016/j.neuropsychologia.2014.11.021_bib59 article-title: Variability of motor potentials evoked by transcranial magnetic stimulation publication-title: Electroencephalogr. Clin. Neurophysiol. doi: 10.1016/0168-5597(93)90115-6 – volume: 42 start-page: 1951 issue: 10 year: 1992 ident: 10.1016/j.neuropsychologia.2014.11.021_bib24 article-title: Magnetic brain stimulation: the silent period after the motor evoked potential publication-title: Neurology doi: 10.1212/WNL.42.10.1951 – volume: 31 start-page: 15284 issue: 43 year: 2011 ident: 10.1016/j.neuropsychologia.2014.11.021_bib56 article-title: Prefrontal transcranial direct current stimulation changes connectivity of resting-state networks during fMRI publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.0542-11.2011 – volume: 21 start-page: 404 issue: 3 year: 2013 ident: 10.1016/j.neuropsychologia.2014.11.021_bib145 article-title: Performance of motor imagery brain-computer interface based on anodal transcranial direct current stimulation modulation publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2013.2249111 – volume: 8 start-page: e57425 issue: 2 year: 2013 ident: 10.1016/j.neuropsychologia.2014.11.021_bib128 article-title: Evolution of premotor cortical excitability after cathodal inhibition of the primary motor cortex: a sham-controlled serial navigated TMS study publication-title: PLoS One doi: 10.1371/journal.pone.0057425 – volume: 105 start-page: 2802 issue: 6 year: 2011 ident: 10.1016/j.neuropsychologia.2014.11.021_bib69 article-title: Transcranial direct current stimulation effects on I-wave activity in humans publication-title: J. Neurophysiol. doi: 10.1152/jn.00617.2010 – volume: 166 start-page: 1219 issue: 4 year: 2010 ident: 10.1016/j.neuropsychologia.2014.11.021_bib41 article-title: Slow-oscillatory transcranial direct current stimulation can induce bidirectional shifts in motor cortical excitability in awake humans publication-title: Neuroscience doi: 10.1016/j.neuroscience.2010.01.019 – volume: 406 start-page: 147 issue: 6792 year: 2000 ident: 10.1016/j.neuropsychologia.2014.11.021_bib44 article-title: Transcranial magnetic stimulation and the human brain publication-title: Nature doi: 10.1038/35018000 – volume: 103 start-page: 1735 issue: 4 year: 2010 ident: 10.1016/j.neuropsychologia.2014.11.021_bib82 article-title: Shaping the optimal repetition interval for cathodal transcranial direct current stimulation (tDCS) publication-title: J. Neurophysiol. doi: 10.1152/jn.00924.2009 – volume: 112 start-page: 1781 issue: 10 year: 2001 ident: 10.1016/j.neuropsychologia.2014.11.021_bib42 article-title: Transcranial magnetic stimulation coregistered with MRI: a comparison of a guided versus blind stimulation technique and its effect on evoked compound muscle action potentials publication-title: Clin. Neurophysiol. doi: 10.1016/S1388-2457(01)00633-2 – volume: 22 start-page: 495 issue: 2 year: 2005 ident: 10.1016/j.neuropsychologia.2014.11.021_bib68 article-title: How does transcranial DC stimulation of the primary motor cortex alter regional neuronal activity in the human brain? publication-title: Eur. J. Neurosci. doi: 10.1111/j.1460-9568.2005.04233.x – volume: 17 start-page: 253 issue: 4 year: 2005 ident: 10.1016/j.neuropsychologia.2014.11.021_bib129 article-title: Accuracy of stereotaxic positioning of transcranial magnetic stimulation publication-title: Br. Topogr. doi: 10.1007/s10548-005-6033-1 – volume: 8 start-page: e59669 issue: 3 year: 2013 ident: 10.1016/j.neuropsychologia.2014.11.021_bib124 article-title: High-frequency TRNS reduces BOLD activity during visuomotor learning publication-title: PLoS One doi: 10.1371/journal.pone.0059669 – volume: 187 start-page: 51 issue: 1 year: 2008 ident: 10.1016/j.neuropsychologia.2014.11.021_bib120 article-title: Trial-to-trial size variability of motor-evoked potentials. A study using the triple stimulation technique publication-title: Exp. Brain Res. doi: 10.1007/s00221-008-1278-z – volume: 110 start-page: 318 issue: 1−2 year: 2004 ident: 10.1016/j.neuropsychologia.2014.11.021_bib104 article-title: Amplitudes of laser evoked potential recorded from primary somatosensory, parasylvian and medial frontal cortex are graded with stimulus intensity publication-title: Pain doi: 10.1016/j.pain.2004.04.009 – volume: 492 start-page: 105 issue: 2 year: 2011 ident: 10.1016/j.neuropsychologia.2014.11.021_bib65 article-title: The enhanced cortical activation induced by transcranial direct current stimulation during hand movements publication-title: Neurosci. Lett. doi: 10.1016/j.neulet.2011.01.066 – volume: 512 start-page: 12 issue: 1 year: 2012 ident: 10.1016/j.neuropsychologia.2014.11.021_bib76 article-title: Influence of transcranial direct current stimulation of the dorsolateral prefrontal cortex on pain related emotions: a study using electroencephalographic power spectrum analysis publication-title: Neurosci. Lett. doi: 10.1016/j.neulet.2012.01.037 – volume: 97 start-page: 3109 issue: 4 year: 2007 ident: 10.1016/j.neuropsychologia.2014.11.021_bib89 article-title: Shaping the effects of transcranial direct current stimulation of the human motor cortex publication-title: J. Neurophysiol. doi: 10.1152/jn.01312.2006 – volume: 17 start-page: 397 issue: 4 year: 2000 ident: 10.1016/j.neuropsychologia.2014.11.021_bib148 article-title: I-waves in motor cortex publication-title: J. Clin. Neurophysiol. doi: 10.1097/00004691-200007000-00005 – volume: 16 start-page: 1695 issue: 8 year: 2013 ident: 10.1016/j.neuropsychologia.2014.11.021_bib116 article-title: Anodal transcranial direct current stimulation increases brain intracellular pH and modulates bioenergetics publication-title: Int. J. Neuropsychopharmacol. doi: 10.1017/S1461145713000084 – volume: 527 start-page: 633 issue: Pt. 3 year: 2000 ident: 10.1016/j.neuropsychologia.2014.11.021_bib97 article-title: Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation publication-title: J. Physiol. doi: 10.1111/j.1469-7793.2000.t01-1-00633.x – volume: 262 start-page: 415 issue: 5 year: 2012 ident: 10.1016/j.neuropsychologia.2014.11.021_bib49 article-title: Abnormal bihemispheric responses in schizophrenia patients following cathodal transcranial direct stimulation publication-title: Eur. Arch. Psychiatry Clin. Neurosci. doi: 10.1007/s00406-012-0298-7 – volume: 44 start-page: 109 issue: 1 year: 2011 ident: 10.1016/j.neuropsychologia.2014.11.021_bib85 article-title: Transcranial direct current stimulation does not modulate motor cortex excitability in patients with amyotrophic lateral sclerosis publication-title: Muscle Nerve doi: 10.1002/mus.22012 – volume: 182 start-page: 281 issue: 2 year: 2007 ident: 10.1016/j.neuropsychologia.2014.11.021_bib54 article-title: Effects of transcranial direct current stimulation on the excitability of the leg motor cortex publication-title: Exp. Brain Res. doi: 10.1007/s00221-007-1093-y – volume: 55 start-page: 187 issue: 2 year: 2007 ident: 10.1016/j.neuropsychologia.2014.11.021_bib45 article-title: Transcranial magnetic stimulation: a primer publication-title: Neuron doi: 10.1016/j.neuron.2007.06.026 – volume: 29 start-page: 6124 issue: 19 year: 2009 ident: 10.1016/j.neuropsychologia.2014.11.021_bib83 article-title: Dose-dependent inverted U-shaped effect of dopamine (D2-like) receptor activation on focal and nonfocal plasticity in humans publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.0728-09.2009 – volume: 3 start-page: 217 year: 1992 ident: 10.1016/j.neuropsychologia.2014.11.021_bib40 article-title: The ballad of Pons and Fleischmann: experiment and narrative in the (un) making of cold fusion publication-title: Soc. Dimens. Sci. – volume: 589 start-page: 2813 issue: 11 year: 2011 ident: 10.1016/j.neuropsychologia.2014.11.021_bib119 article-title: Effects of anodal transcranial direct current stimulation over the leg motor area on lumbar spinal network excitability in healthy subjects publication-title: J. Physiol. doi: 10.1113/jphysiol.2011.205161 – volume: 7 start-page: e30971 issue: 1 year: 2012 ident: 10.1016/j.neuropsychologia.2014.11.021_bib112 article-title: Reorganizing the intrinsic functional architecture of the human primary motor cortex during rest with non-invasive cortical stimulation publication-title: PLoS One doi: 10.1371/journal.pone.0030971 – volume: 185 start-page: 279 issue: 2 year: 2008 ident: 10.1016/j.neuropsychologia.2014.11.021_bib38 article-title: Short and long duration transcranial direct current stimulation (tDCS) over the human hand motor area publication-title: Exp. Brain Res. doi: 10.1007/s00221-007-1149-z – volume: 539 start-page: 7 year: 2013 ident: 10.1016/j.neuropsychologia.2014.11.021_bib107 article-title: Transcranial direct current stimulation increases resting state interhemispheric connectivity publication-title: Neurosci. Lett. doi: 10.1016/j.neulet.2013.01.047 – volume: 115 start-page: 255 issue: 2 year: 2004 ident: 10.1016/j.neuropsychologia.2014.11.021_bib32 article-title: The physiological basis of transcranial motor cortex stimulation in conscious humans publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2003.10.009 – volume: 412 start-page: 7 issue: 6843 year: 2011 ident: 10.1016/j.neuropsychologia.2014.11.021_bib73 article-title: Neurophysiological investigation of the basis of the fMRI signal publication-title: Nature – volume: 14 start-page: 101 year: 1981 ident: 10.1016/j.neuropsychologia.2014.11.021_bib35 article-title: The influence of low-level transcortical dc-currents on response speed in humans publication-title: J. Neurosci. – volume: 498 start-page: 167 issue: 2 year: 2011 ident: 10.1016/j.neuropsychologia.2014.11.021_bib125 article-title: Increased short latency afferent inhibition after anodal transcranial direct current stimulation publication-title: Neurosci. Lett. doi: 10.1016/j.neulet.2011.05.007 – volume: 14 start-page: 1240 issue: 11 year: 2004 ident: 10.1016/j.neuropsychologia.2014.11.021_bib91 article-title: Catecholaminergic consolidation of motor cortical neuroplasticity in humans publication-title: Cereb. Cortex doi: 10.1093/cercor/bhh085 – volume: 49 start-page: 3989 issue: 14 year: 2011 ident: 10.1016/j.neuropsychologia.2014.11.021_bib146 article-title: Effects of transcranial direct current stimulation (tDCS) on behaviour and electrophysiology of language production publication-title: Neuropsychologia doi: 10.1016/j.neuropsychologia.2011.10.015 – volume: 29 start-page: 1573 issue: 8 year: 2004 ident: 10.1016/j.neuropsychologia.2014.11.021_bib92 article-title: Consolidation of human motor cortical neuroplasticity by d-cycloserine publication-title: Neuropsychopharmacology doi: 10.1038/sj.npp.1300517 – volume: 128 start-page: 1943 issue: Pt. 8 year: 2005 ident: 10.1016/j.neuropsychologia.2014.11.021_bib115 article-title: Homeostatic-like plasticity of the primary motor hand area is impaired in focal hand dystonia publication-title: Brain doi: 10.1093/brain/awh527 – year: 2005 ident: 10.1016/j.neuropsychologia.2014.11.021_bib47 – volume: 30 start-page: 191 issue: 3 year: 2012 ident: 10.1016/j.neuropsychologia.2014.11.021_bib127 article-title: Modulating neuronal excitability in the motor cortex with tDCS shows moderate hemispheric asymmetry due to subjects’ handedness: a pilot study publication-title: Restor. Neurol. Neurosci. – volume: 47 start-page: 486 issue: 21 year: 1960 ident: 10.1016/j.neuropsychologia.2014.11.021_bib61 article-title: den EinfluSS besonders niederfrequenter elektrischer Vorgänge in der Atmosphäre auf den Menschen publication-title: Naturwissenschaften doi: 10.1007/BF00631044 – volume: 500 start-page: 67 issue: 1 year: 2011 ident: 10.1016/j.neuropsychologia.2014.11.021_bib28 article-title: Transcranial direct current stimulation (tDCS) produces localized and specific alterations in neurochemistry: a (1)H magnetic resonance spectroscopy study publication-title: Neurosci. Lett. doi: 10.1016/j.neulet.2011.05.244 – volume: 1 start-page: 151 issue: 3 year: 2008 ident: 10.1016/j.neuropsychologia.2014.11.021_bib108 article-title: State of the art: pharmacologic effects on cortical excitability measures tested by transcranial magnetic stimulation publication-title: Brain Stimul. doi: 10.1016/j.brs.2008.06.002 – volume: 7 start-page: 27 year: 2010 ident: 10.1016/j.neuropsychologia.2014.11.021_bib77 article-title: Modulation of mu rhythm desynchronization during motor imagery by transcranial direct current stimulation publication-title: J. Neuroeng. Rehabil. doi: 10.1186/1743-0003-7-27 – volume: 119 start-page: 1499 issue: 12 year: 2012 ident: 10.1016/j.neuropsychologia.2014.11.021_bib31 article-title: The effects of prolonged cathodal direct current stimulation on the excitatory and inhibitory circuits of the ipsilateral and contralateral motor cortex publication-title: J. Neural Transm. doi: 10.1007/s00702-012-0845-4 – volume: 24 start-page: 46 issue: 1 year: 2013 ident: 10.1016/j.neuropsychologia.2014.11.021_bib142 article-title: Anodal transcranial direct current stimulation modulates GABAB-related intracortical inhibition in the M1 of healthy individuals publication-title: Neuroreport doi: 10.1097/WNR.0b013e32835c36b8 – volume: 14 start-page: 371 issue: 4 year: 2013 ident: 10.1016/j.neuropsychologia.2014.11.021_bib144 article-title: Focal modulation of the primary motor cortex in fibromyalgia using 4×1-ring high-definition transcranial direct current stimulation (HD-tDCS): immediate and delayed analgesic effects of cathodal and anodal stimulation publication-title: J. Pain doi: 10.1016/j.jpain.2012.12.007 – volume: 6 issue: 21 year: 2013 ident: 10.1016/j.neuropsychologia.2014.11.021_bib105 article-title: Doubts about Targretin in AD publication-title: SciBX: Sci.-Bus. eXch. – volume: 26 start-page: 2687 issue: 9 year: 2007 ident: 10.1016/j.neuropsychologia.2014.11.021_bib9 article-title: Towards unravelling task-related modulations of neuroplastic changes induced in the human motor cortex publication-title: Eur. J. Neurosci. doi: 10.1111/j.1460-9568.2007.05896.x – volume: 101 start-page: 404 issue: 5 year: 1996 ident: 10.1016/j.neuropsychologia.2014.11.021_bib87 article-title: Improvement of amplitude variability of motor evoked potentials in multiple sclerosis patients and in healthy subjects publication-title: Electroencephalogr. Clin. Neurophysiol. doi: 10.1016/0924-980X(96)96541-8 – volume: 121 issue: 3 year: 2013 ident: 10.1016/j.neuropsychologia.2014.11.021_bib16 article-title: Evidence for metaplasticity in the human visual cortex publication-title: J. Neural Transm. doi: 10.1007/s00702-013-1104-z – volume: 2 start-page: 217 year: 1968 ident: 10.1016/j.neuropsychologia.2014.11.021_bib46 article-title: Effects of low-level, low-frequency electric fields in human reaction time publication-title: Comm. Behav. Biol. – volume: 35 start-page: 325 year: 1977 ident: 10.1016/j.neuropsychologia.2014.11.021_bib74 article-title: Low-level electric currents and brain indicators of behavioral activation publication-title: Arg. Neruopsiquiat. doi: 10.1590/S0004-282X1977000400004 – volume: 56 start-page: 634 issue: 9 year: 2004 ident: 10.1016/j.neuropsychologia.2014.11.021_bib67 article-title: Preconditioning with transcranial direct current stimulation sensitizes the motor cortex to rapid-rate transcranial magnetic stimulation and controls the direction of after-effects publication-title: Biol. Psychiatry doi: 10.1016/j.biopsych.2004.07.017 – volume: 70 start-page: 690 issue: 7 year: 2011 ident: 10.1016/j.neuropsychologia.2014.11.021_bib15 article-title: Brain energy consumption induced by electrical stimulation promotes systemic glucose uptake publication-title: Biol. Psychiatry doi: 10.1016/j.biopsych.2011.05.009 – volume: 105 start-page: 2582 issue: 5 year: 2011 ident: 10.1016/j.neuropsychologia.2014.11.021_bib20 article-title: Cathodal transcranial direct current stimulation suppresses ipsilateral projections to presumed propriospinal neurons of the proximal upper limb publication-title: J. Neurophysiol. doi: 10.1152/jn.01084.2010 – volume: 6 start-page: 624 issue: 4 year: 2013 ident: 10.1016/j.neuropsychologia.2014.11.021_bib126 article-title: Interaction between simultaneously applied neuromodulatory interventions in humans publication-title: Brain Stimul. doi: 10.1016/j.brs.2012.09.009 – volume: 45 start-page: 702 issue: 2 year: 2004 ident: 10.1016/j.neuropsychologia.2014.11.021_bib7 article-title: Excitability changes induced in the human primary visual cortex by transcranial direct current stimulation: direct electrophysiological evidence publication-title: Invest. Ophthalmol. Vis. Sci. doi: 10.1167/iovs.03-0688 – volume: 29 start-page: 5202 issue: 16 year: 2009 ident: 10.1016/j.neuropsychologia.2014.11.021_bib135 article-title: Polarity-sensitive modulation of cortical neurotransmitters by transcranial stimulation publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.4432-08.2009 – volume: 2012 start-page: 735 year: 2012 ident: 10.1016/j.neuropsychologia.2014.11.021_bib25 article-title: A pilot study on effects of 4×1 high-definition tDCS on motor cortex excitability publication-title: Conf. Proc. IEEE Eng. Med. Biol. Soc. – reference: 26143023 - Brain Stimul. 2015 Jul-Aug;8(4):846-9. doi: 10.1016/j.brs.2015.05.010. |
SSID | ssj0004528 |
Score | 2.6072562 |
SecondaryResourceType | review_article |
Snippet | Transcranial direct current stimulation (tDCS) is a form of neuromodulation that is increasingly being utilized to examine and modify a number of cognitive and... Background: Transcranial direct current stimulation (tDCS) is a form of neuromodulation that is increasingly being utilized to examine and modify a number of... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 213 |
SubjectTerms | Adolescent Adult Brain - physiology Brain Mapping - methods Electroencephalography Electroencephalography (EEG) Event related potential (ERP) Evoked Potentials Evoked Potentials, Motor Functional magnetic resonance imaging (fMRI) Humans Magnetic Resonance Imaging - methods Middle Aged Neurophysiology Reproducibility of Results Systematic review Transcranial direct current stimulation (tDCS) Transcranial Direct Current Stimulation - methods Transcranial magnetic stimulation (TMS) Transcranial Magnetic Stimulation - methods Young Adult |
Title | Evidence that transcranial direct current stimulation (tDCS) generates little-to-no reliable neurophysiologic effect beyond MEP amplitude modulation in healthy human subjects: A systematic review |
URI | https://dx.doi.org/10.1016/j.neuropsychologia.2014.11.021 https://www.ncbi.nlm.nih.gov/pubmed/25448853 https://www.proquest.com/docview/1656045925 https://www.proquest.com/docview/1660400778 |
Volume | 66 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYhhdBLadPX9hGmUEp7cGLLkh-FHJZtwrZlQ6EN5GZkPdItib1kvYde-ufyxzIj2Zu2kJJDLwYbW0ieTzMjaeYbxl4nsTIWLVsktMEFinNpVMepjRQChpuydsLvQ86Osumx-HQiTzbYZMiFobDKXvcHne61df9kr_-be4v5nHJ80TSWVGgn9vmdlMEuckL57q_kd8bwYmBipre32JvrGC_PGblYaxriIUrELrF68uQmQ3WTI-oN0uF9dq_3JGEcOvuAbdhmm23N-rPyh-xyKBgK3XfVQUdGSeMFAQdh0KADORPgND_vy3jB2-7D5Os7OPV01OiHAvrpiKeoa6OmhQt7NqdkKwhjIiEH7QkhMARqnxEDs4MvoChYnagz4bw1Q_PzBkLq5U_w5QFhuappK2j5HsZwTSsNIaXmETs-PPg2mUZ9yYZI40qri7guM6PqRGV1KpNMp4XgKpMmsXFdOiL3Ij4za0vhtJNaFoaXInZUCEu5whTpY7bZtI19ykA64Yzjeaa0Fjy3Ki1MaoyKUzS8ieUjtj_Ip9I9nzmV1TirhsC1H9Xf8q1IvrjoqVC-I5avv18EZo9bfzke4FD9gdUKzdCt23g14KjCCU2nNKqx7WpZeTokIUsu__VORso3z4sRexJAuB4Dcc4V6IQ9-w-9fM7u4p0MW04v2GZ3sbIv0Qnr6h0_y3bYnfHHz9OjK010Ot8 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZKkQoXxJvlOUgIwSFt4jgvJA6rpdUC3QqJVurNcvyARW2y6mYPXPhz_DFm7GQLSEU9cMkhsS0787Q98w1jL5JYGYuWLRLa4AbFuTSq49RGChmGm6p2wp9Dzg7y6ZH4cJwdb7DJkAtDYZW97g863Wvr_s1O_zd3FvM55fiiaayo0E7s8zuvsKsCxZfKGGz_SH6HDC8HKGZqvsVengd5edDIxVrVEBBRIrYJ1pMnF1mqizxRb5H2brIbvSsJ4zDbW2zDNrfZ1qy_LL_Dfg4VQ6H7qjroyCppfCDHQVg16IDOBCjnp30dL3jVvZt8fg1fPB41OqKAjjoyVNS1UdPCmT2ZU7YVhDURlYP6hBAZArVPiYHZ7idQFK1O2Jlw2pph-HkDIffyO_j6gLBc1XQWtHwDYzjHlYaQU3OXHe3tHk6mUV-zIdK41eoirqvcqDpReZ1mSa7TUnCVZyaxcV05QvciQDNrK-G0y3RWGl6J2FElLOVKU6b32GbTNvYBg8wJZxwvcqW14IVVaWlSY1ScouVNLB-xtwN9pO4BzamuxokcIte-yb_pK4m-uOuRSN8RK9b9FwHa49I9xwM7yD-YVaIduvQYzwc-kijRdE2jGtuultLjIYms4tm_2uSkfYuiHLH7gQnXayDQuRK9sIf_YZbP2LXp4Wxf7r8_-PiIXccvWTh_esw2u7OVfYIeWVc_9RL3CyBmPG0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evidence+that+transcranial+direct+current+stimulation+%28tDCS%29+generates+little-to-no+reliable+neurophysiologic+effect+beyond+MEP+amplitude+modulation+in+healthy+human+subjects%3A+A+systematic+review&rft.jtitle=Neuropsychologia&rft.au=Horvath%2C+Jared+Cooney&rft.au=te%2C+Jason+D&rft.au=Carter%2C+Olivia&rft.date=2015-01-01&rft.issn=0028-3932&rft.volume=66&rft.spage=213&rft.epage=236&rft_id=info:doi/10.1016%2Fj.neuropsychologia.2014.11.021&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-3932&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-3932&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-3932&client=summon |