Spike Optimization to Improve Properties of Ferroelectric Tunnel Junction Synaptic Devices for Neuromorphic Computing System Applications
The continuous advancement of Artificial Intelligence (AI) technology depends on the efficient processing of unstructured data, encompassing text, speech, and video. Traditional serial computing systems based on the von Neumann architecture, employed in information and communication technology devel...
Saved in:
Published in | Nanomaterials (Basel, Switzerland) Vol. 13; no. 19; p. 2704 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.10.2023
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The continuous advancement of Artificial Intelligence (AI) technology depends on the efficient processing of unstructured data, encompassing text, speech, and video. Traditional serial computing systems based on the von Neumann architecture, employed in information and communication technology development for decades, are not suitable for the concurrent processing of massive unstructured data tasks with relatively low-level operations. As a result, there arises a pressing need to develop novel parallel computing systems. Recently, there has been a burgeoning interest among developers in emulating the intricate operations of the human brain, which efficiently processes vast datasets with remarkable energy efficiency. This has led to the proposal of neuromorphic computing systems. Of these, Spiking Neural Networks (SNNs), designed to closely resemble the information processing mechanisms of biological neural networks, are subjects of intense research activity. Nevertheless, a comprehensive investigation into the relationship between spike shapes and Spike-Timing-Dependent Plasticity (STDP) to ensure efficient synaptic behavior remains insufficiently explored. In this study, we systematically explore various input spike types to optimize the resistive memory characteristics of Hafnium-based Ferroelectric Tunnel Junction (FTJ) devices. Among the various spike shapes investigated, the square-triangle (RT) spike exhibited good linearity and symmetry, and a wide range of weight values could be realized depending on the offset of the RT spike. These results indicate that the spike shape serves as a crucial indicator in the alteration of synaptic connections, representing the strength of the signals. |
---|---|
AbstractList | The continuous advancement of Artificial Intelligence (AI) technology depends on the efficient processing of unstructured data, encompassing text, speech, and video. Traditional serial computing systems based on the von Neumann architecture, employed in information and communication technology development for decades, are not suitable for the concurrent processing of massive unstructured data tasks with relatively low-level operations. As a result, there arises a pressing need to develop novel parallel computing systems. Recently, there has been a burgeoning interest among developers in emulating the intricate operations of the human brain, which efficiently processes vast datasets with remarkable energy efficiency. This has led to the proposal of neuromorphic computing systems. Of these, Spiking Neural Networks (SNNs), designed to closely resemble the information processing mechanisms of biological neural networks, are subjects of intense research activity. Nevertheless, a comprehensive investigation into the relationship between spike shapes and Spike-Timing-Dependent Plasticity (STDP) to ensure efficient synaptic behavior remains insufficiently explored. In this study, we systematically explore various input spike types to optimize the resistive memory characteristics of Hafnium-based Ferroelectric Tunnel Junction (FTJ) devices. Among the various spike shapes investigated, the square-triangle (RT) spike exhibited good linearity and symmetry, and a wide range of weight values could be realized depending on the offset of the RT spike. These results indicate that the spike shape serves as a crucial indicator in the alteration of synaptic connections, representing the strength of the signals. The continuous advancement of Artificial Intelligence (AI) technology depends on the efficient processing of unstructured data, encompassing text, speech, and video. Traditional serial computing systems based on the von Neumann architecture, employed in information and communication technology development for decades, are not suitable for the concurrent processing of massive unstructured data tasks with relatively low-level operations. As a result, there arises a pressing need to develop novel parallel computing systems. Recently, there has been a burgeoning interest among developers in emulating the intricate operations of the human brain, which efficiently processes vast datasets with remarkable energy efficiency. This has led to the proposal of neuromorphic computing systems. Of these, Spiking Neural Networks (SNNs), designed to closely resemble the information processing mechanisms of biological neural networks, are subjects of intense research activity. Nevertheless, a comprehensive investigation into the relationship between spike shapes and Spike-Timing-Dependent Plasticity (STDP) to ensure efficient synaptic behavior remains insufficiently explored. In this study, we systematically explore various input spike types to optimize the resistive memory characteristics of Hafnium-based Ferroelectric Tunnel Junction (FTJ) devices. Among the various spike shapes investigated, the square-triangle (RT) spike exhibited good linearity and symmetry, and a wide range of weight values could be realized depending on the offset of the RT spike. These results indicate that the spike shape serves as a crucial indicator in the alteration of synaptic connections, representing the strength of the signals.The continuous advancement of Artificial Intelligence (AI) technology depends on the efficient processing of unstructured data, encompassing text, speech, and video. Traditional serial computing systems based on the von Neumann architecture, employed in information and communication technology development for decades, are not suitable for the concurrent processing of massive unstructured data tasks with relatively low-level operations. As a result, there arises a pressing need to develop novel parallel computing systems. Recently, there has been a burgeoning interest among developers in emulating the intricate operations of the human brain, which efficiently processes vast datasets with remarkable energy efficiency. This has led to the proposal of neuromorphic computing systems. Of these, Spiking Neural Networks (SNNs), designed to closely resemble the information processing mechanisms of biological neural networks, are subjects of intense research activity. Nevertheless, a comprehensive investigation into the relationship between spike shapes and Spike-Timing-Dependent Plasticity (STDP) to ensure efficient synaptic behavior remains insufficiently explored. In this study, we systematically explore various input spike types to optimize the resistive memory characteristics of Hafnium-based Ferroelectric Tunnel Junction (FTJ) devices. Among the various spike shapes investigated, the square-triangle (RT) spike exhibited good linearity and symmetry, and a wide range of weight values could be realized depending on the offset of the RT spike. These results indicate that the spike shape serves as a crucial indicator in the alteration of synaptic connections, representing the strength of the signals. |
Audience | Academic |
Author | Hwang, Hyunjoo Kho, Wonwoo Lee, Jimin Kang, Minjeong Kim, Hyo-Bae Ahn, Ji-Hoon Kim, Hoseong Ahn, Seung-Eon Noh, Taewan Kang, Yoomi Byun, Jisu |
AuthorAffiliation | 3 Department of Nano & Semiconductor Eng, Tech University of Korea, Siheung 05073, Republic of Korea 2 Department of Materials Science and Chemical Engineering, Hanyang University, Ansan 15588, Republic of Korea; hbkim9510@hanyang.ac.kr (H.-B.K.); ajh1820@hanyang.ac.kr (J.-H.A.) 1 Department of IT ∙ Semiconductor Convergence Eng, Tech University of Korea, Siheung 05073, Republic of Korea; bjs3253@tukorea.ac.kr (J.B.); kww0424@tukorea.ac.kr (W.K.); hyunjoo1952@tukorea.ac.kr (H.H.); ahha030@tukorea.ac.kr (Y.K.); dbsk1533@tukorea.ac.kr (M.K.); snrnspdy@tukorea.ac.kr (T.N.); hskim0721@tukorea.ac.kr (H.K.); qlsl000829@tukorea.ac.kr (J.L.) |
AuthorAffiliation_xml | – name: 3 Department of Nano & Semiconductor Eng, Tech University of Korea, Siheung 05073, Republic of Korea – name: 1 Department of IT ∙ Semiconductor Convergence Eng, Tech University of Korea, Siheung 05073, Republic of Korea; bjs3253@tukorea.ac.kr (J.B.); kww0424@tukorea.ac.kr (W.K.); hyunjoo1952@tukorea.ac.kr (H.H.); ahha030@tukorea.ac.kr (Y.K.); dbsk1533@tukorea.ac.kr (M.K.); snrnspdy@tukorea.ac.kr (T.N.); hskim0721@tukorea.ac.kr (H.K.); qlsl000829@tukorea.ac.kr (J.L.) – name: 2 Department of Materials Science and Chemical Engineering, Hanyang University, Ansan 15588, Republic of Korea; hbkim9510@hanyang.ac.kr (H.-B.K.); ajh1820@hanyang.ac.kr (J.-H.A.) |
Author_xml | – sequence: 1 givenname: Jisu surname: Byun fullname: Byun, Jisu – sequence: 2 givenname: Wonwoo surname: Kho fullname: Kho, Wonwoo – sequence: 3 givenname: Hyunjoo surname: Hwang fullname: Hwang, Hyunjoo – sequence: 4 givenname: Yoomi surname: Kang fullname: Kang, Yoomi – sequence: 5 givenname: Minjeong surname: Kang fullname: Kang, Minjeong – sequence: 6 givenname: Taewan surname: Noh fullname: Noh, Taewan – sequence: 7 givenname: Hoseong surname: Kim fullname: Kim, Hoseong – sequence: 8 givenname: Jimin surname: Lee fullname: Lee, Jimin – sequence: 9 givenname: Hyo-Bae surname: Kim fullname: Kim, Hyo-Bae – sequence: 10 givenname: Ji-Hoon orcidid: 0000-0001-6928-4038 surname: Ahn fullname: Ahn, Ji-Hoon – sequence: 11 givenname: Seung-Eon orcidid: 0000-0001-7434-5579 surname: Ahn fullname: Ahn, Seung-Eon |
BookMark | eNptUktv1DAQjlARLaU3foAlLhzYEj_ixwmtFgqLKorUco4cZ7L1ktjBdlYq_4B_jbNbobbCPow18z089rwsjpx3UBSvcXlOqSrfO-08plgRUbJnxQkphVowpfDRg_NxcRbjtsxLYSor-qI4pkJSTll1Uvy5Hu1PQFdjsoP9rZP1DiWP1sMY_A7Q9-BHCMlCRL5DFxCChx5MCtagm8k56NHXyZk97frO6Sxj0EfYWZMZnQ_oG0zBDz6Mt7mw8sM4Jes2GRsTDGg5jr01e9f4qnje6T7C2X08LX5cfLpZfVlcXn1er5aXC8NUlRZENpJw2XaEKt5hIMLQOQrCaMUBC9wIwkvcABONxIKUXDaGk8oIUFhTelqsD7qt19t6DHbQ4a722tb7hA-bWueOTQ-1ajBrJe1KA5QB4bptjRSCUi44EVhkrQ8HrXFqBmgNuBR0_0j0ccXZ23rjdzUuK8GYJFnh7b1C8L8miKkebDTQ99qBn2JNZj-Feaky9M0T6NZPweW3mlG84oTxWfD8gNro3IF1nc_GJu8WBmvy9HQ255dCEKyE5CwT3h0IJvgYA3T_ro_Leh6y-uGQZTh5Ajc27X8w-9j-_6S_k8XXVA |
CitedBy_id | crossref_primary_10_1007_s11357_024_01378_8 |
Cites_doi | 10.1002/aisy.201900034 10.1038/s41528-022-00152-0 10.1002/admt.202101323 10.1002/adfm.201704862 10.1063/1.3634052 10.1063/1.5042408 10.1038/s41598-020-64878-5 10.1109/IJCNN.2016.7727298 10.1038/s41467-020-15249-1 10.1002/aelm.201800795 10.1109/IEDM19573.2019.8993565 10.1007/s10853-018-2134-6 10.1088/1361-6528/ab4a6d 10.1088/0957-4484/18/36/365202 10.1038/npre.2009.3010.1 10.1016/j.engstruct.2019.109637 10.1109/LED.2017.2723503 10.1063/5.0126392 10.3390/nano13030439 10.1002/adfm.202002638 10.1038/s41598-019-56816-x 10.1016/j.aeue.2019.01.003 10.1088/2634-4386/ac974d 10.1039/C8FD00127H 10.3390/nano13010114 10.1038/s41467-020-15159-2 10.1021/acsaelm.0c00832 10.1007/s10825-022-01895-9 10.1016/j.isci.2020.101846 10.1109/JETCAS.2018.2796379 10.1002/adfm.202202366 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 by the authors. 2023 |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 by the authors. 2023 |
DBID | AAYXX CITATION 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG 8FH ABJCF ABUWG AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU D1I DWQXO F28 FR3 GNUQQ H8D H8G HCIFZ JG9 JQ2 KB. KR7 L7M LK8 L~C L~D M7P P64 PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/nano13192704 |
DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database ProQuest Central Student Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Materials Science Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace ProQuest Biological Science Collection Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biological Science Database Biotechnology and BioEngineering Abstracts Materials Science Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Central Student ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Biological Science Collection ProQuest Central (New) ANTE: Abstracts in New Technology & Engineering Aluminium Industry Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection Ceramic Abstracts Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts Materials Science Collection ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Natural Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library Biotechnology Research Abstracts ProQuest Central Korea Materials Science Database Advanced Technologies Database with Aerospace ProQuest Materials Science Collection Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Materials Science & Engineering Collection Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2079-4991 |
ExternalDocumentID | oai_doaj_org_article_9b14d83f0ce34e26addc877336762717 PMC10574482 A772197864 10_3390_nano13192704 |
GeographicLocations | South Korea |
GeographicLocations_xml | – name: South Korea |
GrantInformation_xml | – fundername: Ministry of Science and ICT (MSIT, Republic of Korea) grantid: NRF-2022R1A2C1007013 – fundername: Korean Government (MOTIE) grantid: P0008458 |
GroupedDBID | 53G 5VS 8FE 8FG 8FH AADQD AAFWJ AAHBH AAYXX ABJCF ADBBV ADMLS AENEX AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BBNVY BCNDV BENPR BGLVJ BHPHI CCPQU CITATION D1I GROUPED_DOAJ HCIFZ HYE I-F IAO ITC KB. KQ8 LK8 M7P MODMG M~E OK1 PDBOC PGMZT PHGZM PHGZT PIMPY PROAC RPM PMFND 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC DWQXO F28 FR3 GNUQQ H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c495t-28b8268df2396f1e27c36f1e724356e171b72601be47b8172068bc625c7e91a33 |
IEDL.DBID | DOA |
ISSN | 2079-4991 |
IngestDate | Wed Aug 27 01:30:58 EDT 2025 Thu Aug 21 18:35:34 EDT 2025 Thu Jul 10 21:13:41 EDT 2025 Fri Jul 25 12:03:00 EDT 2025 Tue Jun 10 21:10:25 EDT 2025 Tue Jul 01 00:51:42 EDT 2025 Thu Apr 24 22:54:56 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 19 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c495t-28b8268df2396f1e27c36f1e724356e171b72601be47b8172068bc625c7e91a33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-6928-4038 0000-0001-7434-5579 |
OpenAccessLink | https://doaj.org/article/9b14d83f0ce34e26addc877336762717 |
PMID | 37836345 |
PQID | 2876562462 |
PQPubID | 2032354 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_9b14d83f0ce34e26addc877336762717 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10574482 proquest_miscellaneous_2877391609 proquest_journals_2876562462 gale_infotracacademiconefile_A772197864 crossref_primary_10_3390_nano13192704 crossref_citationtrail_10_3390_nano13192704 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-10-01 |
PublicationDateYYYYMMDD | 2023-10-01 |
PublicationDate_xml | – month: 10 year: 2023 text: 2023-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Nanomaterials (Basel, Switzerland) |
PublicationYear | 2023 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Yang (ref_29) 2022; 32 Luo (ref_10) 2020; 11 Ryu (ref_18) 2019; 9 ref_14 ref_13 ref_12 Emelyanov (ref_22) 2019; 31 (ref_9) 2011; 99 Kim (ref_1) 2020; 23 ref_19 Hong (ref_5) 2018; 53 Max (ref_32) 2020; 2 ref_15 Khatir (ref_34) 2019; 199 Nandakumar (ref_7) 2018; 124 Elhamdaoui (ref_17) 2022; 21 Wang (ref_26) 2018; 28 Cai (ref_24) 2022; 6 Sulzbach (ref_11) 2020; 30 Majumdar (ref_23) 2019; 5 Gerstner (ref_2) 2010; 35 Nandakumar (ref_8) 2020; 10 Moon (ref_4) 2019; 213 Song (ref_30) 2022; 7 Lv (ref_6) 2022; 121 Majumdar (ref_31) 2022; 2 ref_20 Marinella (ref_28) 2018; 8 Mittermeier (ref_21) 2019; 1 ref_27 Ma (ref_25) 2020; 11 Snider (ref_3) 2007; 18 Zayer (ref_33) 2019; 100 Lashkare (ref_16) 2017; 38 |
References_xml | – volume: 1 start-page: 1900034 year: 2019 ident: ref_21 article-title: CMOS compatible Hf0. 5Zr0. 5O2 ferroelectric tunnel junctions for neuromorphic devices publication-title: Adv. Intell. Syst. doi: 10.1002/aisy.201900034 – volume: 6 start-page: 16 year: 2022 ident: ref_24 article-title: Molecular ferroelectric/semiconductor interfacial memristors for artificial synapses publication-title: Npj Flex. Electron. doi: 10.1038/s41528-022-00152-0 – volume: 7 start-page: 2101323 year: 2022 ident: ref_30 article-title: Highly stable artificial synapses based on ferroelectric tunnel junctions for neuromorphic computing applications publication-title: Adv. Mater. Technol. doi: 10.1002/admt.202101323 – volume: 35 start-page: 36 year: 2010 ident: ref_2 article-title: Spike-timing dependent plasticity publication-title: Spike-Timing Depend. Plast. – volume: 28 start-page: 1704862 year: 2018 ident: ref_26 article-title: Threshold switching of Ag or Cu in dielectrics: Materials, mechanism, and applications publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201704862 – volume: 99 start-page: 102903 year: 2011 ident: ref_9 article-title: Ferroelectricity in hafnium oxide thin films publication-title: Appl. Phys. Lett. doi: 10.1063/1.3634052 – volume: 124 start-page: 152135 year: 2018 ident: ref_7 article-title: A phase-change memory model for neuromorphic computing publication-title: J. Appl. Phys. doi: 10.1063/1.5042408 – volume: 10 start-page: 1 year: 2020 ident: ref_8 article-title: Experimental demonstration of supervised learning in spiking neural networks with phase-change memory synapses publication-title: Sci. Rep. doi: 10.1038/s41598-020-64878-5 – ident: ref_27 doi: 10.1109/IJCNN.2016.7727298 – volume: 11 start-page: 1439 year: 2020 ident: ref_25 article-title: Sub-nanosecond memristor based on ferroelectric tunnel junction publication-title: Nat. Commun. doi: 10.1038/s41467-020-15249-1 – volume: 5 start-page: 1800795 year: 2019 ident: ref_23 article-title: Energy-efficient organic ferroelectric tunnel junction memristors for neuromorphic computing publication-title: Adv. Electron. Mater. doi: 10.1002/aelm.201800795 – ident: ref_14 – ident: ref_15 doi: 10.1109/IEDM19573.2019.8993565 – volume: 53 start-page: 8720 year: 2018 ident: ref_5 article-title: Oxide-based RRAM materials for neuromorphic computing publication-title: J. Mater. Sci. doi: 10.1007/s10853-018-2134-6 – volume: 31 start-page: 045201 year: 2019 ident: ref_22 article-title: Self-adaptive STDP-based learning of a spiking neuron with nanocomposite memristive weights publication-title: Nanotechnology doi: 10.1088/1361-6528/ab4a6d – volume: 18 start-page: 365202 year: 2007 ident: ref_3 article-title: Self-organized computation with unreliable, memristive nanodevices publication-title: Nanotechnology doi: 10.1088/0957-4484/18/36/365202 – ident: ref_20 doi: 10.1038/npre.2009.3010.1 – volume: 199 start-page: 109637 year: 2019 ident: ref_34 article-title: An efficient artificial neural network for damage detection in bridges and beam-like structures by improving training parameters using cuckoo search algorithm publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2019.109637 – volume: 38 start-page: 1212 year: 2017 ident: ref_16 article-title: PCMO-based RRAM and NPN bipolar selector as synapse for energy efficient STDP publication-title: IEEE Electron Device Lett. doi: 10.1109/LED.2017.2723503 – volume: 121 start-page: 232406 year: 2022 ident: ref_6 article-title: Stochastic artificial synapses based on nanoscale magnetic tunnel junction for neuromorphic applications publication-title: Appl. Phys. Lett. doi: 10.1063/5.0126392 – ident: ref_12 doi: 10.3390/nano13030439 – volume: 30 start-page: 2002638 year: 2020 ident: ref_11 article-title: Blocking of Conducting Channels Widens Window for Ferroelectric Resistive Switching in Interface-Engineered Hf0.5Zr0.5O2 Tunnel Devices publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202002638 – volume: 9 start-page: 20383 year: 2019 ident: ref_18 article-title: Ferroelectric tunneling junctions based on aluminum oxide/zirconium-doped hafnium oxide for neuromorphic computing publication-title: Sci. Rep. doi: 10.1038/s41598-019-56816-x – volume: 100 start-page: 56 year: 2019 ident: ref_33 article-title: Low power, ultrafast synaptic plasticity in 1R-ferroelectric tunnel memristive structure for spiking neural networks publication-title: AEU-Int. J. Electron. Commun. doi: 10.1016/j.aeue.2019.01.003 – volume: 2 start-page: 041001 year: 2022 ident: ref_31 article-title: An efficient deep neural network accelerator using controlled ferroelectric domain dynamics publication-title: Neuromorphic Comput. Eng. doi: 10.1088/2634-4386/ac974d – volume: 213 start-page: 421 year: 2019 ident: ref_4 article-title: RRAM-based synapse devices for neuromorphic systems publication-title: Faraday Discuss. doi: 10.1039/C8FD00127H – ident: ref_13 – ident: ref_19 doi: 10.3390/nano13010114 – volume: 11 start-page: 1391 year: 2020 ident: ref_10 article-title: A highly CMOS compatible hafnia-based ferroelectric diode publication-title: Nat. Commun. doi: 10.1038/s41467-020-15159-2 – volume: 2 start-page: 4023 year: 2020 ident: ref_32 article-title: Hafnia-based double-layer ferroelectric tunnel junctions as artificial synapses for neuromorphic computing publication-title: ACS Appl. Electron. Mater. doi: 10.1021/acsaelm.0c00832 – volume: 21 start-page: 1038 year: 2022 ident: ref_17 article-title: Spike-time-dependent plasticity rule in memristor models for circuit design publication-title: J. Comput. Electron. doi: 10.1007/s10825-022-01895-9 – volume: 23 start-page: 101846 year: 2020 ident: ref_1 article-title: Emerging materials for neuromorphic devices and systems publication-title: Iscience doi: 10.1016/j.isci.2020.101846 – volume: 8 start-page: 86 year: 2018 ident: ref_28 article-title: Multiscale co-design analysis of energy, latency, area, and accuracy of a ReRAM analog neural training accelerator publication-title: IEEE J. Emerg. Sel. Top. Circuits Syst. doi: 10.1109/JETCAS.2018.2796379 – volume: 32 start-page: 2202366 year: 2022 ident: ref_29 article-title: High-Performance Neuromorphic Computing Based on Ferroelectric Synapses with Excellent Conductance Linearity and Symmetry publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202202366 |
SSID | ssj0000913853 |
Score | 2.2413957 |
Snippet | The continuous advancement of Artificial Intelligence (AI) technology depends on the efficient processing of unstructured data, encompassing text, speech, and... |
SourceID | doaj pubmedcentral proquest gale crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 2704 |
SubjectTerms | Analysis Artificial intelligence Brain Concurrent processing Data processing Energy efficiency Ferroelectric devices Ferroelectric materials Ferroelectricity Ferroelectrics Firing pattern FTJ Hafnium Information processing Magnetic tunnel junctions Mathematical optimization Methods Neural networks Neuromorphic computing Optimization Pattern recognition Properties SNN STDP Synapses synaptic devices Synaptic plasticity Tunnel junctions Unstructured data |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELege4EHxPgQgYGMBOIBRUsczx9PqINV0yTGxDZpb5HtXKDalpSsfeBP4L_mLnG7FgTqQ6TYqdOefXe_8_l3jL2xANJXzqZKgEylMir1e0GmRkjjXAaIfWhH9_OxOjyXRxd7FzHgdhPTKpc6sVfUVRsoRr6Lnj26HkIq8WH2I6WqUbS7Gkto3GVbqIKNGbGt_YPjk6-rKAuxXqJBGjLeC8T3u41r2hznndCxNtvSFvWU_X8r5j-TJdesz-QhexDdRj4e5LzN7kDziN1fIxN8zH6dzqaXwL-gDriOhyv5vOVD1AD4CUXdO6JP5W3NJ9B17VACZxr42YKyXfgR2rj-sdOfjcOvCfwT9IqEo2fLexqP6xblgg1DMQgclw-U53y8thH-hJ1PDs4-Hqax0EIaEB_NU2E8ogxT1aKwqs5B6FDQVQt0phTkOveaqMc8SO0NujyZMj4gcgoabO6K4ikbNW0DzxivMpVpj5-sdlI4azXUYAXgTUWuQsLeL__yMkQWciqGcVUiGiEBlesCStjbVe_ZwL7xj377JL1VH-LM7m-03bcyLsHS-lxWpqizAIUEoVCzB6OJDhINAqLahL0j2Ze0svGVgosHFPCHEUdWOUYgkiPoVjjcznJ6lHHJ35S3EzRhr1fNuFhpB8Y10C76PppOOmc2YWZjWm28-mZLM_3e035TRWYE0-L5_0d_we4JdMSGhMMdNpp3C3iJjtPcv4qr4zetLByM priority: 102 providerName: ProQuest |
Title | Spike Optimization to Improve Properties of Ferroelectric Tunnel Junction Synaptic Devices for Neuromorphic Computing System Applications |
URI | https://www.proquest.com/docview/2876562462 https://www.proquest.com/docview/2877391609 https://pubmed.ncbi.nlm.nih.gov/PMC10574482 https://doaj.org/article/9b14d83f0ce34e26addc877336762717 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagXOCAeIpAuzISiAOKmjiuH8dt6VJVolS0lXqLbO9EXUGTatk98BP418zY2VW2FeKCclgp9iZOZsYzXzz-hrF3FkD6qbO5EiBzqYzK_V6QuRHSOFcAYh9a0f1yoo4u5PHl3uWg1BflhCV64PTidq0v5dRUTRGgkiAU2mMwmkj80IwRi9Dsiz5vAKbiHGzLCh1RynSvENfvtq7tStQ3ofuabCsfFKn6707It5MkB15n8oQ97sNFPk7DfMruQfuMPRqQCD5nv89uZt-Bf0Xbv-43VfJFx9PXAuCn9LV9TrSpvGv4BObzLpW-mQV-vqQsF36Mvi3-7exX6_AygX-COIFwjGh5pO-47lAe2JCKQOB9eaI65-PBAvgLdjE5PD84yvsCC3lAXLTIhfGILsy0EZVVTQlCh4p-tcAgSkGpS6-JcsyD1N5gqFMo4wMipqDBlq6qXrKttmvhFePTQhXa41E0TgpnrYYGrAA8qShEyNjH1SuvQ88-TkUwftSIQkhA9VBAGXu_7n2TWDf-0m-fpLfuQ1zZ8QRqUN1rUP0vDcrYB5J9TRaNQwqu35iAD0bcWPUYAUiJYFvh7bZX6lH3pv6zRsiJMbGQSmTs7boZjZRWXlwL3TL20bTDubAZMxtqtTH0zZZ2dhXpvqkSM4Jo8fp_POwb9lBgmJbSEbfZ1mK-hB0MqxZ-xO6byecRe7B_eHL6bRTt6Q_MtCWI |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELZWywE4IJ4isICRWHFA0SaO104OCBWW0n2CtF1pb8Z2JlDBJiXbCu1P4M_wG5nJo7QguK16iBQ7ddoZz8sz3zD2LAOQLrdZqATIUKpUhW7byzAVMrU2AvR96ET38EiNTuTe6fbpGvvZ18JQWmUvExtBnVeeYuRbaNmj6SGkEq-m30LqGkWnq30LjZYt9uHiO7ps5y93d5C-m0IM347fjMKuq0Do0RmYhSJ1aFKneSGSTBUxCO0TumqBloOCWMdOE86WA6ldivo9Uqnz6CZ4DVlsKQCKIv-KTFCTU2X68N0ipkMYm6j-2vx6HI-2SltWMXK50F0nuF7zNQ0C_lYDf6ZmLum64U12ozNS-aDlqltsDcrb7PoSdOEd9uN4OvkC_D1KnLOulJPPKt7GKIB_oBh_TWCtvCr4EOq6ahvuTDwfzym3hu-hRm0eO74oLX6N5zvQiC2OdjRvQEPOKuQCHGhbT-C6vAVY54OlY_e77ORSCHCPrZdVCfcZzyMVaYefqLBS2CzTUEAmAG8qMkwC9qL_y43vMM-p9cZXg74PEcgsEyhgm4vZ0xbr4x_zXhP1FnMIobu5UdWfTLfhTeZimadJEXlIJAiFesSnmsAnUf2gDx2w50R7Q3IEX8nbrhwCfxghcpkBuj0xuvgKl9vo2cN0Aubc_N4OAXu6GEbRQOc9toRq3szRVFcdZQFLV9hq5dVXR8rJ5wZknPo_o-suHvx_9Sfs6mh8eGAOdo_2H7JrAk3ANtVxg63P6jk8QpNt5h43-4Szj5e9MX8BnzdVrg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLamTkLwgLiKwAAjMfGAoiaOZycPCHV01S5QKrZJewuOcwIVLClZK7SfwF_i13FO4pQWBG9THyLFTp323I-Pv8PY8wRAZrlJfCVA-lLFys92rPRjIWNjAsDYh3Z0343V_qk8PNs522A_u7MwVFbZ6cRGUeeVpRx5Hz17dD2EVKJfuLKIyXD0evbNpw5StNPatdNoWeQILr9j-Hbx6mCItN4WYrR38mbfdx0GfIuBwdwXcYbudZwXIkpUEYLQNqKrFuhFKAh1mGnC3MpA6ixGWx-oOLMYMlgNSWgoGYrqf1NTVNRjm7t748mHZYaHEDfRGLbV9lGUBP3SlFWIPC-06wvX2cGmXcDfRuHPQs0Vyze6xW46l5UPWh67zTagvMNurAAZ3mU_jmfTL8Dfo_45dwc7-bzibcYC-IQy_jVBt_Kq4COo66ptvzO1_GRBlTb8EO1r89jxZWnwaywfQqPEOHrVvIEQOa-QJ3CgbUSB6_IWbp0PVjbh77HTKyHBfdYrqxIeMJ4HKtAZfoLCSGGSREMBiQC8qchN8djL7i9PrUNAp0YcX1OMhIhA6SqBPLa9nD1rkT_-MW-XqLecQ3jdzY2q_pQ68U-TLJR5HBWBhUiCUGhVbKwJihKNEUbUHntBtE9Jq-ArWeMOR-API3yudIBBUIgBv8Lltjr2SJ26uUh_C4fHni2HUVHQ7o8poVo0czSdsg4Sj8VrbLX26usj5fRzAzlO3aAxkBcP_7_6U3YNhTJ9ezA-esSuC_QH27rHLdab1wt4jP7bPHviBIWzj1ctm78AFexbQA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spike+Optimization+to+Improve+Properties+of+Ferroelectric+Tunnel+Junction+Synaptic+Devices+for+Neuromorphic+Computing+System+Applications&rft.jtitle=Nanomaterials+%28Basel%2C+Switzerland%29&rft.au=Byun%2C+Jisu&rft.au=Kho%2C+Wonwoo&rft.au=Hwang%2C+Hyunjoo&rft.au=Kang%2C+Yoomi&rft.date=2023-10-01&rft.pub=MDPI&rft.eissn=2079-4991&rft.volume=13&rft.issue=19&rft_id=info:doi/10.3390%2Fnano13192704&rft_id=info%3Apmid%2F37836345&rft.externalDocID=PMC10574482 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-4991&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-4991&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-4991&client=summon |