Spike Optimization to Improve Properties of Ferroelectric Tunnel Junction Synaptic Devices for Neuromorphic Computing System Applications

The continuous advancement of Artificial Intelligence (AI) technology depends on the efficient processing of unstructured data, encompassing text, speech, and video. Traditional serial computing systems based on the von Neumann architecture, employed in information and communication technology devel...

Full description

Saved in:
Bibliographic Details
Published inNanomaterials (Basel, Switzerland) Vol. 13; no. 19; p. 2704
Main Authors Byun, Jisu, Kho, Wonwoo, Hwang, Hyunjoo, Kang, Yoomi, Kang, Minjeong, Noh, Taewan, Kim, Hoseong, Lee, Jimin, Kim, Hyo-Bae, Ahn, Ji-Hoon, Ahn, Seung-Eon
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.10.2023
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The continuous advancement of Artificial Intelligence (AI) technology depends on the efficient processing of unstructured data, encompassing text, speech, and video. Traditional serial computing systems based on the von Neumann architecture, employed in information and communication technology development for decades, are not suitable for the concurrent processing of massive unstructured data tasks with relatively low-level operations. As a result, there arises a pressing need to develop novel parallel computing systems. Recently, there has been a burgeoning interest among developers in emulating the intricate operations of the human brain, which efficiently processes vast datasets with remarkable energy efficiency. This has led to the proposal of neuromorphic computing systems. Of these, Spiking Neural Networks (SNNs), designed to closely resemble the information processing mechanisms of biological neural networks, are subjects of intense research activity. Nevertheless, a comprehensive investigation into the relationship between spike shapes and Spike-Timing-Dependent Plasticity (STDP) to ensure efficient synaptic behavior remains insufficiently explored. In this study, we systematically explore various input spike types to optimize the resistive memory characteristics of Hafnium-based Ferroelectric Tunnel Junction (FTJ) devices. Among the various spike shapes investigated, the square-triangle (RT) spike exhibited good linearity and symmetry, and a wide range of weight values could be realized depending on the offset of the RT spike. These results indicate that the spike shape serves as a crucial indicator in the alteration of synaptic connections, representing the strength of the signals.
AbstractList The continuous advancement of Artificial Intelligence (AI) technology depends on the efficient processing of unstructured data, encompassing text, speech, and video. Traditional serial computing systems based on the von Neumann architecture, employed in information and communication technology development for decades, are not suitable for the concurrent processing of massive unstructured data tasks with relatively low-level operations. As a result, there arises a pressing need to develop novel parallel computing systems. Recently, there has been a burgeoning interest among developers in emulating the intricate operations of the human brain, which efficiently processes vast datasets with remarkable energy efficiency. This has led to the proposal of neuromorphic computing systems. Of these, Spiking Neural Networks (SNNs), designed to closely resemble the information processing mechanisms of biological neural networks, are subjects of intense research activity. Nevertheless, a comprehensive investigation into the relationship between spike shapes and Spike-Timing-Dependent Plasticity (STDP) to ensure efficient synaptic behavior remains insufficiently explored. In this study, we systematically explore various input spike types to optimize the resistive memory characteristics of Hafnium-based Ferroelectric Tunnel Junction (FTJ) devices. Among the various spike shapes investigated, the square-triangle (RT) spike exhibited good linearity and symmetry, and a wide range of weight values could be realized depending on the offset of the RT spike. These results indicate that the spike shape serves as a crucial indicator in the alteration of synaptic connections, representing the strength of the signals.
The continuous advancement of Artificial Intelligence (AI) technology depends on the efficient processing of unstructured data, encompassing text, speech, and video. Traditional serial computing systems based on the von Neumann architecture, employed in information and communication technology development for decades, are not suitable for the concurrent processing of massive unstructured data tasks with relatively low-level operations. As a result, there arises a pressing need to develop novel parallel computing systems. Recently, there has been a burgeoning interest among developers in emulating the intricate operations of the human brain, which efficiently processes vast datasets with remarkable energy efficiency. This has led to the proposal of neuromorphic computing systems. Of these, Spiking Neural Networks (SNNs), designed to closely resemble the information processing mechanisms of biological neural networks, are subjects of intense research activity. Nevertheless, a comprehensive investigation into the relationship between spike shapes and Spike-Timing-Dependent Plasticity (STDP) to ensure efficient synaptic behavior remains insufficiently explored. In this study, we systematically explore various input spike types to optimize the resistive memory characteristics of Hafnium-based Ferroelectric Tunnel Junction (FTJ) devices. Among the various spike shapes investigated, the square-triangle (RT) spike exhibited good linearity and symmetry, and a wide range of weight values could be realized depending on the offset of the RT spike. These results indicate that the spike shape serves as a crucial indicator in the alteration of synaptic connections, representing the strength of the signals.The continuous advancement of Artificial Intelligence (AI) technology depends on the efficient processing of unstructured data, encompassing text, speech, and video. Traditional serial computing systems based on the von Neumann architecture, employed in information and communication technology development for decades, are not suitable for the concurrent processing of massive unstructured data tasks with relatively low-level operations. As a result, there arises a pressing need to develop novel parallel computing systems. Recently, there has been a burgeoning interest among developers in emulating the intricate operations of the human brain, which efficiently processes vast datasets with remarkable energy efficiency. This has led to the proposal of neuromorphic computing systems. Of these, Spiking Neural Networks (SNNs), designed to closely resemble the information processing mechanisms of biological neural networks, are subjects of intense research activity. Nevertheless, a comprehensive investigation into the relationship between spike shapes and Spike-Timing-Dependent Plasticity (STDP) to ensure efficient synaptic behavior remains insufficiently explored. In this study, we systematically explore various input spike types to optimize the resistive memory characteristics of Hafnium-based Ferroelectric Tunnel Junction (FTJ) devices. Among the various spike shapes investigated, the square-triangle (RT) spike exhibited good linearity and symmetry, and a wide range of weight values could be realized depending on the offset of the RT spike. These results indicate that the spike shape serves as a crucial indicator in the alteration of synaptic connections, representing the strength of the signals.
Audience Academic
Author Hwang, Hyunjoo
Kho, Wonwoo
Lee, Jimin
Kang, Minjeong
Kim, Hyo-Bae
Ahn, Ji-Hoon
Kim, Hoseong
Ahn, Seung-Eon
Noh, Taewan
Kang, Yoomi
Byun, Jisu
AuthorAffiliation 3 Department of Nano & Semiconductor Eng, Tech University of Korea, Siheung 05073, Republic of Korea
2 Department of Materials Science and Chemical Engineering, Hanyang University, Ansan 15588, Republic of Korea; hbkim9510@hanyang.ac.kr (H.-B.K.); ajh1820@hanyang.ac.kr (J.-H.A.)
1 Department of IT ∙ Semiconductor Convergence Eng, Tech University of Korea, Siheung 05073, Republic of Korea; bjs3253@tukorea.ac.kr (J.B.); kww0424@tukorea.ac.kr (W.K.); hyunjoo1952@tukorea.ac.kr (H.H.); ahha030@tukorea.ac.kr (Y.K.); dbsk1533@tukorea.ac.kr (M.K.); snrnspdy@tukorea.ac.kr (T.N.); hskim0721@tukorea.ac.kr (H.K.); qlsl000829@tukorea.ac.kr (J.L.)
AuthorAffiliation_xml – name: 3 Department of Nano & Semiconductor Eng, Tech University of Korea, Siheung 05073, Republic of Korea
– name: 1 Department of IT ∙ Semiconductor Convergence Eng, Tech University of Korea, Siheung 05073, Republic of Korea; bjs3253@tukorea.ac.kr (J.B.); kww0424@tukorea.ac.kr (W.K.); hyunjoo1952@tukorea.ac.kr (H.H.); ahha030@tukorea.ac.kr (Y.K.); dbsk1533@tukorea.ac.kr (M.K.); snrnspdy@tukorea.ac.kr (T.N.); hskim0721@tukorea.ac.kr (H.K.); qlsl000829@tukorea.ac.kr (J.L.)
– name: 2 Department of Materials Science and Chemical Engineering, Hanyang University, Ansan 15588, Republic of Korea; hbkim9510@hanyang.ac.kr (H.-B.K.); ajh1820@hanyang.ac.kr (J.-H.A.)
Author_xml – sequence: 1
  givenname: Jisu
  surname: Byun
  fullname: Byun, Jisu
– sequence: 2
  givenname: Wonwoo
  surname: Kho
  fullname: Kho, Wonwoo
– sequence: 3
  givenname: Hyunjoo
  surname: Hwang
  fullname: Hwang, Hyunjoo
– sequence: 4
  givenname: Yoomi
  surname: Kang
  fullname: Kang, Yoomi
– sequence: 5
  givenname: Minjeong
  surname: Kang
  fullname: Kang, Minjeong
– sequence: 6
  givenname: Taewan
  surname: Noh
  fullname: Noh, Taewan
– sequence: 7
  givenname: Hoseong
  surname: Kim
  fullname: Kim, Hoseong
– sequence: 8
  givenname: Jimin
  surname: Lee
  fullname: Lee, Jimin
– sequence: 9
  givenname: Hyo-Bae
  surname: Kim
  fullname: Kim, Hyo-Bae
– sequence: 10
  givenname: Ji-Hoon
  orcidid: 0000-0001-6928-4038
  surname: Ahn
  fullname: Ahn, Ji-Hoon
– sequence: 11
  givenname: Seung-Eon
  orcidid: 0000-0001-7434-5579
  surname: Ahn
  fullname: Ahn, Seung-Eon
BookMark eNptUktv1DAQjlARLaU3foAlLhzYEj_ixwmtFgqLKorUco4cZ7L1ktjBdlYq_4B_jbNbobbCPow18z089rwsjpx3UBSvcXlOqSrfO-08plgRUbJnxQkphVowpfDRg_NxcRbjtsxLYSor-qI4pkJSTll1Uvy5Hu1PQFdjsoP9rZP1DiWP1sMY_A7Q9-BHCMlCRL5DFxCChx5MCtagm8k56NHXyZk97frO6Sxj0EfYWZMZnQ_oG0zBDz6Mt7mw8sM4Jes2GRsTDGg5jr01e9f4qnje6T7C2X08LX5cfLpZfVlcXn1er5aXC8NUlRZENpJw2XaEKt5hIMLQOQrCaMUBC9wIwkvcABONxIKUXDaGk8oIUFhTelqsD7qt19t6DHbQ4a722tb7hA-bWueOTQ-1ajBrJe1KA5QB4bptjRSCUi44EVhkrQ8HrXFqBmgNuBR0_0j0ccXZ23rjdzUuK8GYJFnh7b1C8L8miKkebDTQ99qBn2JNZj-Feaky9M0T6NZPweW3mlG84oTxWfD8gNro3IF1nc_GJu8WBmvy9HQ255dCEKyE5CwT3h0IJvgYA3T_ro_Leh6y-uGQZTh5Ajc27X8w-9j-_6S_k8XXVA
CitedBy_id crossref_primary_10_1007_s11357_024_01378_8
Cites_doi 10.1002/aisy.201900034
10.1038/s41528-022-00152-0
10.1002/admt.202101323
10.1002/adfm.201704862
10.1063/1.3634052
10.1063/1.5042408
10.1038/s41598-020-64878-5
10.1109/IJCNN.2016.7727298
10.1038/s41467-020-15249-1
10.1002/aelm.201800795
10.1109/IEDM19573.2019.8993565
10.1007/s10853-018-2134-6
10.1088/1361-6528/ab4a6d
10.1088/0957-4484/18/36/365202
10.1038/npre.2009.3010.1
10.1016/j.engstruct.2019.109637
10.1109/LED.2017.2723503
10.1063/5.0126392
10.3390/nano13030439
10.1002/adfm.202002638
10.1038/s41598-019-56816-x
10.1016/j.aeue.2019.01.003
10.1088/2634-4386/ac974d
10.1039/C8FD00127H
10.3390/nano13010114
10.1038/s41467-020-15159-2
10.1021/acsaelm.0c00832
10.1007/s10825-022-01895-9
10.1016/j.isci.2020.101846
10.1109/JETCAS.2018.2796379
10.1002/adfm.202202366
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 by the authors. 2023
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 by the authors. 2023
DBID AAYXX
CITATION
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
8FH
ABJCF
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
F28
FR3
GNUQQ
H8D
H8G
HCIFZ
JG9
JQ2
KB.
KR7
L7M
LK8
L~C
L~D
M7P
P64
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/nano13192704
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Central Student
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Materials Science Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
ProQuest Biological Science Collection
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biological Science Database
Biotechnology and BioEngineering Abstracts
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Central Student
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Biological Science Collection
ProQuest Central (New)
ANTE: Abstracts in New Technology & Engineering
Aluminium Industry Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
Ceramic Abstracts
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
Materials Science Collection
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
Biotechnology Research Abstracts
ProQuest Central Korea
Materials Science Database
Advanced Technologies Database with Aerospace
ProQuest Materials Science Collection
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Materials Science & Engineering Collection
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList

Publicly Available Content Database

MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2079-4991
ExternalDocumentID oai_doaj_org_article_9b14d83f0ce34e26addc877336762717
PMC10574482
A772197864
10_3390_nano13192704
GeographicLocations South Korea
GeographicLocations_xml – name: South Korea
GrantInformation_xml – fundername: Ministry of Science and ICT (MSIT, Republic of Korea)
  grantid: NRF-2022R1A2C1007013
– fundername: Korean Government (MOTIE)
  grantid: P0008458
GroupedDBID 53G
5VS
8FE
8FG
8FH
AADQD
AAFWJ
AAHBH
AAYXX
ABJCF
ADBBV
ADMLS
AENEX
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
CCPQU
CITATION
D1I
GROUPED_DOAJ
HCIFZ
HYE
I-F
IAO
ITC
KB.
KQ8
LK8
M7P
MODMG
M~E
OK1
PDBOC
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
RPM
PMFND
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
DWQXO
F28
FR3
GNUQQ
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c495t-28b8268df2396f1e27c36f1e724356e171b72601be47b8172068bc625c7e91a33
IEDL.DBID DOA
ISSN 2079-4991
IngestDate Wed Aug 27 01:30:58 EDT 2025
Thu Aug 21 18:35:34 EDT 2025
Thu Jul 10 21:13:41 EDT 2025
Fri Jul 25 12:03:00 EDT 2025
Tue Jun 10 21:10:25 EDT 2025
Tue Jul 01 00:51:42 EDT 2025
Thu Apr 24 22:54:56 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 19
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c495t-28b8268df2396f1e27c36f1e724356e171b72601be47b8172068bc625c7e91a33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6928-4038
0000-0001-7434-5579
OpenAccessLink https://doaj.org/article/9b14d83f0ce34e26addc877336762717
PMID 37836345
PQID 2876562462
PQPubID 2032354
ParticipantIDs doaj_primary_oai_doaj_org_article_9b14d83f0ce34e26addc877336762717
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10574482
proquest_miscellaneous_2877391609
proquest_journals_2876562462
gale_infotracacademiconefile_A772197864
crossref_primary_10_3390_nano13192704
crossref_citationtrail_10_3390_nano13192704
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-10-01
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Nanomaterials (Basel, Switzerland)
PublicationYear 2023
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Yang (ref_29) 2022; 32
Luo (ref_10) 2020; 11
Ryu (ref_18) 2019; 9
ref_14
ref_13
ref_12
Emelyanov (ref_22) 2019; 31
(ref_9) 2011; 99
Kim (ref_1) 2020; 23
ref_19
Hong (ref_5) 2018; 53
Max (ref_32) 2020; 2
ref_15
Khatir (ref_34) 2019; 199
Nandakumar (ref_7) 2018; 124
Elhamdaoui (ref_17) 2022; 21
Wang (ref_26) 2018; 28
Cai (ref_24) 2022; 6
Sulzbach (ref_11) 2020; 30
Majumdar (ref_23) 2019; 5
Gerstner (ref_2) 2010; 35
Nandakumar (ref_8) 2020; 10
Moon (ref_4) 2019; 213
Song (ref_30) 2022; 7
Lv (ref_6) 2022; 121
Majumdar (ref_31) 2022; 2
ref_20
Marinella (ref_28) 2018; 8
Mittermeier (ref_21) 2019; 1
ref_27
Ma (ref_25) 2020; 11
Snider (ref_3) 2007; 18
Zayer (ref_33) 2019; 100
Lashkare (ref_16) 2017; 38
References_xml – volume: 1
  start-page: 1900034
  year: 2019
  ident: ref_21
  article-title: CMOS compatible Hf0. 5Zr0. 5O2 ferroelectric tunnel junctions for neuromorphic devices
  publication-title: Adv. Intell. Syst.
  doi: 10.1002/aisy.201900034
– volume: 6
  start-page: 16
  year: 2022
  ident: ref_24
  article-title: Molecular ferroelectric/semiconductor interfacial memristors for artificial synapses
  publication-title: Npj Flex. Electron.
  doi: 10.1038/s41528-022-00152-0
– volume: 7
  start-page: 2101323
  year: 2022
  ident: ref_30
  article-title: Highly stable artificial synapses based on ferroelectric tunnel junctions for neuromorphic computing applications
  publication-title: Adv. Mater. Technol.
  doi: 10.1002/admt.202101323
– volume: 35
  start-page: 36
  year: 2010
  ident: ref_2
  article-title: Spike-timing dependent plasticity
  publication-title: Spike-Timing Depend. Plast.
– volume: 28
  start-page: 1704862
  year: 2018
  ident: ref_26
  article-title: Threshold switching of Ag or Cu in dielectrics: Materials, mechanism, and applications
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201704862
– volume: 99
  start-page: 102903
  year: 2011
  ident: ref_9
  article-title: Ferroelectricity in hafnium oxide thin films
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3634052
– volume: 124
  start-page: 152135
  year: 2018
  ident: ref_7
  article-title: A phase-change memory model for neuromorphic computing
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.5042408
– volume: 10
  start-page: 1
  year: 2020
  ident: ref_8
  article-title: Experimental demonstration of supervised learning in spiking neural networks with phase-change memory synapses
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-64878-5
– ident: ref_27
  doi: 10.1109/IJCNN.2016.7727298
– volume: 11
  start-page: 1439
  year: 2020
  ident: ref_25
  article-title: Sub-nanosecond memristor based on ferroelectric tunnel junction
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-15249-1
– volume: 5
  start-page: 1800795
  year: 2019
  ident: ref_23
  article-title: Energy-efficient organic ferroelectric tunnel junction memristors for neuromorphic computing
  publication-title: Adv. Electron. Mater.
  doi: 10.1002/aelm.201800795
– ident: ref_14
– ident: ref_15
  doi: 10.1109/IEDM19573.2019.8993565
– volume: 53
  start-page: 8720
  year: 2018
  ident: ref_5
  article-title: Oxide-based RRAM materials for neuromorphic computing
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-018-2134-6
– volume: 31
  start-page: 045201
  year: 2019
  ident: ref_22
  article-title: Self-adaptive STDP-based learning of a spiking neuron with nanocomposite memristive weights
  publication-title: Nanotechnology
  doi: 10.1088/1361-6528/ab4a6d
– volume: 18
  start-page: 365202
  year: 2007
  ident: ref_3
  article-title: Self-organized computation with unreliable, memristive nanodevices
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/18/36/365202
– ident: ref_20
  doi: 10.1038/npre.2009.3010.1
– volume: 199
  start-page: 109637
  year: 2019
  ident: ref_34
  article-title: An efficient artificial neural network for damage detection in bridges and beam-like structures by improving training parameters using cuckoo search algorithm
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2019.109637
– volume: 38
  start-page: 1212
  year: 2017
  ident: ref_16
  article-title: PCMO-based RRAM and NPN bipolar selector as synapse for energy efficient STDP
  publication-title: IEEE Electron Device Lett.
  doi: 10.1109/LED.2017.2723503
– volume: 121
  start-page: 232406
  year: 2022
  ident: ref_6
  article-title: Stochastic artificial synapses based on nanoscale magnetic tunnel junction for neuromorphic applications
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/5.0126392
– ident: ref_12
  doi: 10.3390/nano13030439
– volume: 30
  start-page: 2002638
  year: 2020
  ident: ref_11
  article-title: Blocking of Conducting Channels Widens Window for Ferroelectric Resistive Switching in Interface-Engineered Hf0.5Zr0.5O2 Tunnel Devices
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202002638
– volume: 9
  start-page: 20383
  year: 2019
  ident: ref_18
  article-title: Ferroelectric tunneling junctions based on aluminum oxide/zirconium-doped hafnium oxide for neuromorphic computing
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-56816-x
– volume: 100
  start-page: 56
  year: 2019
  ident: ref_33
  article-title: Low power, ultrafast synaptic plasticity in 1R-ferroelectric tunnel memristive structure for spiking neural networks
  publication-title: AEU-Int. J. Electron. Commun.
  doi: 10.1016/j.aeue.2019.01.003
– volume: 2
  start-page: 041001
  year: 2022
  ident: ref_31
  article-title: An efficient deep neural network accelerator using controlled ferroelectric domain dynamics
  publication-title: Neuromorphic Comput. Eng.
  doi: 10.1088/2634-4386/ac974d
– volume: 213
  start-page: 421
  year: 2019
  ident: ref_4
  article-title: RRAM-based synapse devices for neuromorphic systems
  publication-title: Faraday Discuss.
  doi: 10.1039/C8FD00127H
– ident: ref_13
– ident: ref_19
  doi: 10.3390/nano13010114
– volume: 11
  start-page: 1391
  year: 2020
  ident: ref_10
  article-title: A highly CMOS compatible hafnia-based ferroelectric diode
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-15159-2
– volume: 2
  start-page: 4023
  year: 2020
  ident: ref_32
  article-title: Hafnia-based double-layer ferroelectric tunnel junctions as artificial synapses for neuromorphic computing
  publication-title: ACS Appl. Electron. Mater.
  doi: 10.1021/acsaelm.0c00832
– volume: 21
  start-page: 1038
  year: 2022
  ident: ref_17
  article-title: Spike-time-dependent plasticity rule in memristor models for circuit design
  publication-title: J. Comput. Electron.
  doi: 10.1007/s10825-022-01895-9
– volume: 23
  start-page: 101846
  year: 2020
  ident: ref_1
  article-title: Emerging materials for neuromorphic devices and systems
  publication-title: Iscience
  doi: 10.1016/j.isci.2020.101846
– volume: 8
  start-page: 86
  year: 2018
  ident: ref_28
  article-title: Multiscale co-design analysis of energy, latency, area, and accuracy of a ReRAM analog neural training accelerator
  publication-title: IEEE J. Emerg. Sel. Top. Circuits Syst.
  doi: 10.1109/JETCAS.2018.2796379
– volume: 32
  start-page: 2202366
  year: 2022
  ident: ref_29
  article-title: High-Performance Neuromorphic Computing Based on Ferroelectric Synapses with Excellent Conductance Linearity and Symmetry
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202202366
SSID ssj0000913853
Score 2.2413957
Snippet The continuous advancement of Artificial Intelligence (AI) technology depends on the efficient processing of unstructured data, encompassing text, speech, and...
SourceID doaj
pubmedcentral
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 2704
SubjectTerms Analysis
Artificial intelligence
Brain
Concurrent processing
Data processing
Energy efficiency
Ferroelectric devices
Ferroelectric materials
Ferroelectricity
Ferroelectrics
Firing pattern
FTJ
Hafnium
Information processing
Magnetic tunnel junctions
Mathematical optimization
Methods
Neural networks
Neuromorphic computing
Optimization
Pattern recognition
Properties
SNN
STDP
Synapses
synaptic devices
Synaptic plasticity
Tunnel junctions
Unstructured data
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELege4EHxPgQgYGMBOIBRUsczx9PqINV0yTGxDZpb5HtXKDalpSsfeBP4L_mLnG7FgTqQ6TYqdOefXe_8_l3jL2xANJXzqZKgEylMir1e0GmRkjjXAaIfWhH9_OxOjyXRxd7FzHgdhPTKpc6sVfUVRsoRr6Lnj26HkIq8WH2I6WqUbS7Gkto3GVbqIKNGbGt_YPjk6-rKAuxXqJBGjLeC8T3u41r2hznndCxNtvSFvWU_X8r5j-TJdesz-QhexDdRj4e5LzN7kDziN1fIxN8zH6dzqaXwL-gDriOhyv5vOVD1AD4CUXdO6JP5W3NJ9B17VACZxr42YKyXfgR2rj-sdOfjcOvCfwT9IqEo2fLexqP6xblgg1DMQgclw-U53y8thH-hJ1PDs4-Hqax0EIaEB_NU2E8ogxT1aKwqs5B6FDQVQt0phTkOveaqMc8SO0NujyZMj4gcgoabO6K4ikbNW0DzxivMpVpj5-sdlI4azXUYAXgTUWuQsLeL__yMkQWciqGcVUiGiEBlesCStjbVe_ZwL7xj377JL1VH-LM7m-03bcyLsHS-lxWpqizAIUEoVCzB6OJDhINAqLahL0j2Ze0svGVgosHFPCHEUdWOUYgkiPoVjjcznJ6lHHJ35S3EzRhr1fNuFhpB8Y10C76PppOOmc2YWZjWm28-mZLM_3e035TRWYE0-L5_0d_we4JdMSGhMMdNpp3C3iJjtPcv4qr4zetLByM
  priority: 102
  providerName: ProQuest
Title Spike Optimization to Improve Properties of Ferroelectric Tunnel Junction Synaptic Devices for Neuromorphic Computing System Applications
URI https://www.proquest.com/docview/2876562462
https://www.proquest.com/docview/2877391609
https://pubmed.ncbi.nlm.nih.gov/PMC10574482
https://doaj.org/article/9b14d83f0ce34e26addc877336762717
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagXOCAeIpAuzISiAOKmjiuH8dt6VJVolS0lXqLbO9EXUGTatk98BP418zY2VW2FeKCclgp9iZOZsYzXzz-hrF3FkD6qbO5EiBzqYzK_V6QuRHSOFcAYh9a0f1yoo4u5PHl3uWg1BflhCV64PTidq0v5dRUTRGgkiAU2mMwmkj80IwRi9Dsiz5vAKbiHGzLCh1RynSvENfvtq7tStQ3ofuabCsfFKn6707It5MkB15n8oQ97sNFPk7DfMruQfuMPRqQCD5nv89uZt-Bf0Xbv-43VfJFx9PXAuCn9LV9TrSpvGv4BObzLpW-mQV-vqQsF36Mvi3-7exX6_AygX-COIFwjGh5pO-47lAe2JCKQOB9eaI65-PBAvgLdjE5PD84yvsCC3lAXLTIhfGILsy0EZVVTQlCh4p-tcAgSkGpS6-JcsyD1N5gqFMo4wMipqDBlq6qXrKttmvhFePTQhXa41E0TgpnrYYGrAA8qShEyNjH1SuvQ88-TkUwftSIQkhA9VBAGXu_7n2TWDf-0m-fpLfuQ1zZ8QRqUN1rUP0vDcrYB5J9TRaNQwqu35iAD0bcWPUYAUiJYFvh7bZX6lH3pv6zRsiJMbGQSmTs7boZjZRWXlwL3TL20bTDubAZMxtqtTH0zZZ2dhXpvqkSM4Jo8fp_POwb9lBgmJbSEbfZ1mK-hB0MqxZ-xO6byecRe7B_eHL6bRTt6Q_MtCWI
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELZWywE4IJ4isICRWHFA0SaO104OCBWW0n2CtF1pb8Z2JlDBJiXbCu1P4M_wG5nJo7QguK16iBQ7ddoZz8sz3zD2LAOQLrdZqATIUKpUhW7byzAVMrU2AvR96ET38EiNTuTe6fbpGvvZ18JQWmUvExtBnVeeYuRbaNmj6SGkEq-m30LqGkWnq30LjZYt9uHiO7ps5y93d5C-m0IM347fjMKuq0Do0RmYhSJ1aFKneSGSTBUxCO0TumqBloOCWMdOE86WA6ldivo9Uqnz6CZ4DVlsKQCKIv-KTFCTU2X68N0ipkMYm6j-2vx6HI-2SltWMXK50F0nuF7zNQ0C_lYDf6ZmLum64U12ozNS-aDlqltsDcrb7PoSdOEd9uN4OvkC_D1KnLOulJPPKt7GKIB_oBh_TWCtvCr4EOq6ahvuTDwfzym3hu-hRm0eO74oLX6N5zvQiC2OdjRvQEPOKuQCHGhbT-C6vAVY54OlY_e77ORSCHCPrZdVCfcZzyMVaYefqLBS2CzTUEAmAG8qMkwC9qL_y43vMM-p9cZXg74PEcgsEyhgm4vZ0xbr4x_zXhP1FnMIobu5UdWfTLfhTeZimadJEXlIJAiFesSnmsAnUf2gDx2w50R7Q3IEX8nbrhwCfxghcpkBuj0xuvgKl9vo2cN0Aubc_N4OAXu6GEbRQOc9toRq3szRVFcdZQFLV9hq5dVXR8rJ5wZknPo_o-suHvx_9Sfs6mh8eGAOdo_2H7JrAk3ANtVxg63P6jk8QpNt5h43-4Szj5e9MX8BnzdVrg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLamTkLwgLiKwAAjMfGAoiaOZycPCHV01S5QKrZJewuOcwIVLClZK7SfwF_i13FO4pQWBG9THyLFTp323I-Pv8PY8wRAZrlJfCVA-lLFys92rPRjIWNjAsDYh3Z0343V_qk8PNs522A_u7MwVFbZ6cRGUeeVpRx5Hz17dD2EVKJfuLKIyXD0evbNpw5StNPatdNoWeQILr9j-Hbx6mCItN4WYrR38mbfdx0GfIuBwdwXcYbudZwXIkpUEYLQNqKrFuhFKAh1mGnC3MpA6ixGWx-oOLMYMlgNSWgoGYrqf1NTVNRjm7t748mHZYaHEDfRGLbV9lGUBP3SlFWIPC-06wvX2cGmXcDfRuHPQs0Vyze6xW46l5UPWh67zTagvMNurAAZ3mU_jmfTL8Dfo_45dwc7-bzibcYC-IQy_jVBt_Kq4COo66ptvzO1_GRBlTb8EO1r89jxZWnwaywfQqPEOHrVvIEQOa-QJ3CgbUSB6_IWbp0PVjbh77HTKyHBfdYrqxIeMJ4HKtAZfoLCSGGSREMBiQC8qchN8djL7i9PrUNAp0YcX1OMhIhA6SqBPLa9nD1rkT_-MW-XqLecQ3jdzY2q_pQ68U-TLJR5HBWBhUiCUGhVbKwJihKNEUbUHntBtE9Jq-ArWeMOR-API3yudIBBUIgBv8Lltjr2SJ26uUh_C4fHni2HUVHQ7o8poVo0czSdsg4Sj8VrbLX26usj5fRzAzlO3aAxkBcP_7_6U3YNhTJ9ezA-esSuC_QH27rHLdab1wt4jP7bPHviBIWzj1ctm78AFexbQA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spike+Optimization+to+Improve+Properties+of+Ferroelectric+Tunnel+Junction+Synaptic+Devices+for+Neuromorphic+Computing+System+Applications&rft.jtitle=Nanomaterials+%28Basel%2C+Switzerland%29&rft.au=Byun%2C+Jisu&rft.au=Kho%2C+Wonwoo&rft.au=Hwang%2C+Hyunjoo&rft.au=Kang%2C+Yoomi&rft.date=2023-10-01&rft.pub=MDPI&rft.eissn=2079-4991&rft.volume=13&rft.issue=19&rft_id=info:doi/10.3390%2Fnano13192704&rft_id=info%3Apmid%2F37836345&rft.externalDocID=PMC10574482
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-4991&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-4991&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-4991&client=summon