Topological quantum computation based on chiral Majorana fermions

The chiral Majorana fermion is a massless self-conjugate fermion which can arise as the edge state of certain 2D topological matters. It has been theoretically predicted and experimentally observed in a hybrid device of a quantum anomalous Hall insulator and a conventional superconductor. Its closel...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 115; no. 43; pp. 10938 - 10942
Main Authors Lian, Biao, Sun, Xiao-Qi, Vaezi, Abolhassan, Qi, Xiao-Liang, Zhang, Shou-Cheng
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 23.10.2018
National Academy of Sciences, Washington, DC (United States)
Subjects
Online AccessGet full text
ISSN0027-8424
1091-6490
1091-6490
DOI10.1073/pnas.1810003115

Cover

Loading…
Abstract The chiral Majorana fermion is a massless self-conjugate fermion which can arise as the edge state of certain 2D topological matters. It has been theoretically predicted and experimentally observed in a hybrid device of a quantum anomalous Hall insulator and a conventional superconductor. Its closely related cousin, the Majorana zero mode in the bulk of the corresponding topological matter, is known to be applicable in topological quantum computations. Here we show that the propagation of chiral Majorana fermions leads to the same unitary transformation as that in the braiding of Majorana zero modes and propose a platform to perform quantum computation with chiral Majorana fermions. A Corbino ring junction of the hybrid device can use quantum coherent chiral Majorana fermions to implement the Hadamard gate and the phase gate, and the junction conductance yields a natural readout for the qubit state.
AbstractList The chiral Majorana fermion is a massless self-conjugate fermion which can arise as the edge state of certain 2D topological matters. It has been theoretically predicted and experimentally observed in a hybrid device of a quantum anomalous Hall insulator and a conventional superconductor. Its closely related cousin, the Majorana zero mode in the bulk of the corresponding topological matter, is known to be applicable in topological quantum computations. Here we show that the propagation of chiral Majorana fermions leads to the same unitary transformation as that in the braiding of Majorana zero modes and propose a platform to perform quantum computation with chiral Majorana fermions. A Corbino ring junction of the hybrid device can use quantum coherent chiral Majorana fermions to implement the Hadamard gate and the phase gate, and the junction conductance yields a natural readout for the qubit state.
We propose a platform of quantum computation using the chiral Majorana fermions on the edges of topological materials. The quantum gates are naturally accomplished by the propagation of chiral Majorana fermions. If realized, its computation speed can be 1 0 3 faster than the currently existing quantum computation schemes. The chiral Majorana fermion is a massless self-conjugate fermion which can arise as the edge state of certain 2D topological matters. It has been theoretically predicted and experimentally observed in a hybrid device of a quantum anomalous Hall insulator and a conventional superconductor. Its closely related cousin, the Majorana zero mode in the bulk of the corresponding topological matter, is known to be applicable in topological quantum computations. Here we show that the propagation of chiral Majorana fermions leads to the same unitary transformation as that in the braiding of Majorana zero modes and propose a platform to perform quantum computation with chiral Majorana fermions. A Corbino ring junction of the hybrid device can use quantum coherent chiral Majorana fermions to implement the Hadamard gate and the phase gate, and the junction conductance yields a natural readout for the qubit state.
Here, the chiral Majorana fermion is a massless self-conjugate fermion which can arise as the edge state of certain 2D topological matters. It has been theoretically predicted and experimentally observed in a hybrid device of a quantum anomalous Hall insulator and a conventional superconductor. Its closely related cousin, the Majorana zero mode in the bulk of the corresponding topological matter, is known to be applicable in topological quantum computations. Here we show that the propagation of chiral Majorana fermions leads to the same unitary transformation as that in the braiding of Majorana zero modes and propose a platform to perform quantum computation with chiral Majorana fermions. A Corbino ring junction of the hybrid device can use quantum coherent chiral Majorana fermions to implement the Hadamard gate and the phase gate, and the junction conductance yields a natural readout for the qubit state.
The chiral Majorana fermion is a massless self-conjugate fermion which can arise as the edge state of certain 2D topological matters. It has been theoretically predicted and experimentally observed in a hybrid device of a quantum anomalous Hall insulator and a conventional superconductor. Its closely related cousin, the Majorana zero mode in the bulk of the corresponding topological matter, is known to be applicable in topological quantum computations. Here we show that the propagation of chiral Majorana fermions leads to the same unitary transformation as that in the braiding of Majorana zero modes and propose a platform to perform quantum computation with chiral Majorana fermions. A Corbino ring junction of the hybrid device can use quantum coherent chiral Majorana fermions to implement the Hadamard gate and the phase gate, and the junction conductance yields a natural readout for the qubit state.The chiral Majorana fermion is a massless self-conjugate fermion which can arise as the edge state of certain 2D topological matters. It has been theoretically predicted and experimentally observed in a hybrid device of a quantum anomalous Hall insulator and a conventional superconductor. Its closely related cousin, the Majorana zero mode in the bulk of the corresponding topological matter, is known to be applicable in topological quantum computations. Here we show that the propagation of chiral Majorana fermions leads to the same unitary transformation as that in the braiding of Majorana zero modes and propose a platform to perform quantum computation with chiral Majorana fermions. A Corbino ring junction of the hybrid device can use quantum coherent chiral Majorana fermions to implement the Hadamard gate and the phase gate, and the junction conductance yields a natural readout for the qubit state.
Author Qi, Xiao-Liang
Vaezi, Abolhassan
Zhang, Shou-Cheng
Lian, Biao
Sun, Xiao-Qi
Author_xml – sequence: 1
  givenname: Biao
  surname: Lian
  fullname: Lian, Biao
  organization: Stanford Center for Topological Quantum Physics, Stanford University, Stanford, CA 94305-4045
– sequence: 2
  givenname: Xiao-Qi
  surname: Sun
  fullname: Sun, Xiao-Qi
  organization: Stanford Center for Topological Quantum Physics, Stanford University, Stanford, CA 94305-4045
– sequence: 3
  givenname: Abolhassan
  surname: Vaezi
  fullname: Vaezi, Abolhassan
  organization: Stanford Center for Topological Quantum Physics, Stanford University, Stanford, CA 94305-4045
– sequence: 4
  givenname: Xiao-Liang
  surname: Qi
  fullname: Qi, Xiao-Liang
  organization: Stanford Center for Topological Quantum Physics, Stanford University, Stanford, CA 94305-4045
– sequence: 5
  givenname: Shou-Cheng
  surname: Zhang
  fullname: Zhang, Shou-Cheng
  organization: Stanford Center for Topological Quantum Physics, Stanford University, Stanford, CA 94305-4045
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30297431$$D View this record in MEDLINE/PubMed
https://www.osti.gov/servlets/purl/1490636$$D View this record in Osti.gov
BookMark eNp9kc1v1DAQxS1URLcLZ06gFVy4pJ3xRxJfKlUVX1IRl3K2HMfpepXYqe0g8d_jZcsCPXCxLfk3M2_eOyMnPnhLyEuEc4SGXcxep3NsEQAYonhCVggSq5pLOCErANpULaf8lJyltCuQFC08I6cMqGw4wxW5ug1zGMOdM3rc3C_a52XamDDNS9bZBb_pdLL9pjzM1sXCfNG7ELXXm8HGqQDpOXk66DHZFw_3mnz78P72-lN18_Xj5-urm8pwKXJFedcira2gSA30aCTjvWbCQNtJ3tCOwtAMRhrW1igHAN4L0Td9V4O2RSpbk8tD33npJtsb63PRo-boJh1_qKCd-vfHu626C99VTUFwRkuDN4cGIWWnknHZmq0J3luTFRbHalYX6N3DlBjuF5uymlwydhy1t2FJiiI2TPK2nGvy9hG6C0v0xYNCFYcbRL6f-vpv2Ue9vyMowMUBMDGkFO1wRBDUPmS1D1n9CblUiEcVZZdfaZW93fifuleHul3KIR7H0FoUd7hgPwGoX7P4
CitedBy_id crossref_primary_10_1088_1361_648X_ac9944
crossref_primary_10_1038_s41563_024_02088_4
crossref_primary_10_1103_PhysRevB_104_245409
crossref_primary_10_21468_SciPostPhys_9_5_080
crossref_primary_10_1016_j_device_2024_100359
crossref_primary_10_1088_0256_307X_40_3_037502
crossref_primary_10_1103_PhysRevB_102_245405
crossref_primary_10_1103_PhysRevLett_132_106602
crossref_primary_10_1002_adom_202201105
crossref_primary_10_1038_d41586_018_07709_y
crossref_primary_10_1126_science_aay5533
crossref_primary_10_21468_SciPostPhys_18_3_076
crossref_primary_10_21468_SciPostPhys_6_2_022
crossref_primary_10_1038_s42254_020_0240_2
crossref_primary_10_1038_s41586_022_05516_0
crossref_primary_10_1088_1361_648X_ab052c
crossref_primary_10_1038_s42005_023_01311_z
crossref_primary_10_1103_PhysRevB_105_134517
crossref_primary_10_1038_s41598_021_87056_7
crossref_primary_10_1103_PhysRevA_105_012415
crossref_primary_10_1103_PhysRevB_103_134514
crossref_primary_10_1103_PhysRevB_109_024421
crossref_primary_10_1038_s41567_022_01812_8
crossref_primary_10_1063_5_0039910
crossref_primary_10_1088_1361_648X_ad49fc
crossref_primary_10_1103_PhysRevB_102_235156
crossref_primary_10_7498_aps_72_20230690
crossref_primary_10_1103_PhysRevResearch_5_L012012
crossref_primary_10_1103_PhysRevB_102_205402
crossref_primary_10_5488_CMP_24_43701
crossref_primary_10_1103_PhysRevMaterials_4_114008
crossref_primary_10_1038_s41586_025_08621_y
crossref_primary_10_1103_PhysRevB_101_085113
crossref_primary_10_1103_PhysRevB_109_014516
crossref_primary_10_21468_SciPostPhys_14_5_115
crossref_primary_10_1103_PhysRevLett_125_187702
crossref_primary_10_1038_s41598_023_34585_y
crossref_primary_10_1126_science_aaw3780
crossref_primary_10_1063_5_0100989
crossref_primary_10_1103_PhysRevB_103_024405
crossref_primary_10_1209_0295_5075_ac1879
crossref_primary_10_1103_PhysRevB_107_024408
crossref_primary_10_1140_epjb_e2019_100011_2
crossref_primary_10_3390_condmat7010026
crossref_primary_10_1088_1674_1056_ada551
crossref_primary_10_1103_PhysRevB_105_125109
crossref_primary_10_1103_PhysRevMaterials_6_053402
crossref_primary_10_1038_s41586_020_2963_8
crossref_primary_10_1103_PhysRevResearch_3_013253
crossref_primary_10_1103_PhysRevB_110_214512
crossref_primary_10_1063_5_0037751
crossref_primary_10_7498_aps_73_20240739
crossref_primary_10_3390_condmat10010014
crossref_primary_10_1103_PhysRevLett_121_256801
crossref_primary_10_1126_science_abb2823
crossref_primary_10_1088_1674_1056_ad0147
crossref_primary_10_1002_pssa_202400426
crossref_primary_10_1016_j_physrep_2023_01_002
crossref_primary_10_1021_acs_nanolett_2c03213
crossref_primary_10_1103_PhysRevB_109_L121301
crossref_primary_10_1126_science_adk9749
crossref_primary_10_1039_D4NR00194J
crossref_primary_10_1103_PhysRevB_100_235407
crossref_primary_10_1103_PhysRevB_99_100504
crossref_primary_10_1103_PhysRevLett_128_251601
crossref_primary_10_1103_PhysRevB_104_214422
crossref_primary_10_1103_PhysRevB_111_L020501
crossref_primary_10_1088_2053_1583_ab6ff7
crossref_primary_10_3390_nano13010038
crossref_primary_10_1103_PhysRevLett_131_086601
crossref_primary_10_21468_SciPostPhys_6_5_055
crossref_primary_10_1063_5_0063996
crossref_primary_10_1103_PhysRevB_98_245405
crossref_primary_10_1038_s41567_020_0898_5
crossref_primary_10_1016_j_cossms_2021_100939
crossref_primary_10_1021_acs_nanolett_2c02356
crossref_primary_10_1038_s41567_019_0532_6
crossref_primary_10_21468_SciPostPhysLectNotes_15
crossref_primary_10_1038_s42005_022_00920_4
crossref_primary_10_1088_1367_2630_ac3cf6
crossref_primary_10_1073_pnas_2405304121
crossref_primary_10_1038_s41567_021_01490_y
crossref_primary_10_1103_PhysRevB_105_214525
crossref_primary_10_1103_PhysRevB_109_125130
crossref_primary_10_1021_acs_jpcc_0c01663
crossref_primary_10_1088_1367_2630_ac5f87
crossref_primary_10_1103_PhysRevB_104_155304
crossref_primary_10_1038_s41563_023_01622_0
crossref_primary_10_1103_PhysRevB_101_024516
crossref_primary_10_1063_5_0140086
crossref_primary_10_1088_1367_2630_ad4abc
crossref_primary_10_1103_PhysRevB_107_184517
crossref_primary_10_1103_PhysRevB_105_125414
crossref_primary_10_1557_mrs_2020_122
crossref_primary_10_1103_PhysRevMaterials_8_084802
crossref_primary_10_1103_PhysRevB_104_134518
crossref_primary_10_1038_s41524_023_01144_y
crossref_primary_10_1002_adma_202102107
crossref_primary_10_1088_1367_2630_adb779
crossref_primary_10_1088_1361_648X_aca4b4
crossref_primary_10_1039_D4TC04243C
crossref_primary_10_1103_PhysRevB_99_184514
crossref_primary_10_1016_j_commatsci_2022_111982
crossref_primary_10_1103_PhysRevMaterials_7_L111801
crossref_primary_10_1021_acs_cgd_3c00054
crossref_primary_10_1002_aelm_202200943
crossref_primary_10_4236_wjcmp_2021_113005
crossref_primary_10_1038_s41598_023_40059_y
crossref_primary_10_1103_PhysRevB_100_035423
crossref_primary_10_21468_SciPostPhys_8_1_013
crossref_primary_10_1088_1361_648X_ac4531
crossref_primary_10_1063_5_0092169
crossref_primary_10_1103_PhysRevB_108_115302
crossref_primary_10_1007_s11467_019_0893_4
crossref_primary_10_1088_0256_307X_38_10_107404
crossref_primary_10_1103_PhysRevB_99_195431
crossref_primary_10_1103_PhysRevB_104_035434
crossref_primary_10_1038_s42254_018_0011_5
crossref_primary_10_1103_PhysRevB_104_214502
crossref_primary_10_1103_PhysRevResearch_5_013066
crossref_primary_10_7498_aps_72_20230704
crossref_primary_10_1103_PhysRevB_103_L180504
crossref_primary_10_1103_PhysRevA_109_L051302
crossref_primary_10_1038_s42005_023_01330_w
crossref_primary_10_1103_PhysRevResearch_2_043430
crossref_primary_10_1038_s41578_019_0136_x
crossref_primary_10_1103_PhysRevResearch_2_023043
crossref_primary_10_1016_j_ssc_2023_115182
crossref_primary_10_1039_D4CP03325F
crossref_primary_10_1016_j_jallcom_2019_05_351
crossref_primary_10_1063_5_0101784
crossref_primary_10_1103_PhysRevB_106_195115
crossref_primary_10_1103_PhysRevB_108_165122
crossref_primary_10_1038_s42005_019_0250_5
crossref_primary_10_1103_PhysRevB_107_125404
crossref_primary_10_1103_PhysRevB_111_054509
crossref_primary_10_1016_j_physb_2021_413467
crossref_primary_10_21468_SciPostPhysLectNotes_58
crossref_primary_10_1103_PhysRevLett_125_036801
crossref_primary_10_1103_PhysRevB_107_235146
crossref_primary_10_1103_PhysRevB_106_045139
crossref_primary_10_1103_PhysRevB_100_161101
crossref_primary_10_1103_PhysRevA_110_022609
crossref_primary_10_1103_PhysRevB_104_205131
crossref_primary_10_1103_PhysRevResearch_6_033060
crossref_primary_10_1007_s11433_022_2063_7
crossref_primary_10_1038_s42005_023_01485_6
crossref_primary_10_1016_j_commatsci_2020_110262
crossref_primary_10_1088_1674_1056_ad462f
crossref_primary_10_1103_PhysRevB_109_184518
crossref_primary_10_1103_PhysRevResearch_2_023146
crossref_primary_10_1103_PhysRevX_15_011052
crossref_primary_10_1016_j_xinn_2021_100098
crossref_primary_10_1038_s41598_023_41997_3
crossref_primary_10_1103_PhysRevB_99_041404
crossref_primary_10_1103_PhysRevLett_127_197701
crossref_primary_10_1038_s41467_021_24276_5
crossref_primary_10_1002_adma_202312004
crossref_primary_10_1103_PhysRevB_106_205105
crossref_primary_10_1088_1367_2630_acbed3
crossref_primary_10_7498_aps_69_20200534
crossref_primary_10_1088_1361_648X_ad5e2c
crossref_primary_10_1103_PhysRevLett_125_086401
crossref_primary_10_1088_1367_2630_ab5cad
crossref_primary_10_1103_PhysRevB_109_184508
crossref_primary_10_1103_PhysRevB_107_165405
crossref_primary_10_1088_1674_1056_ac7208
crossref_primary_10_1073_pnas_2404009121
crossref_primary_10_1103_PhysRevB_110_115128
crossref_primary_10_1103_PhysRevB_101_245441
crossref_primary_10_1088_1674_1056_abe296
crossref_primary_10_1002_pssb_202000371
crossref_primary_10_1103_PhysRevB_100_205302
crossref_primary_10_1021_acsnano_3c08601
crossref_primary_10_1038_s41524_022_00800_z
crossref_primary_10_1016_j_jpcs_2022_110734
crossref_primary_10_1016_j_physe_2022_115555
crossref_primary_10_1038_s41567_019_0540_6
crossref_primary_10_1038_s41699_022_00305_9
crossref_primary_10_1103_PhysRevLett_122_146803
crossref_primary_10_1007_s12274_022_5025_8
crossref_primary_10_1063_5_0082214
crossref_primary_10_1103_PhysRevB_103_L241109
crossref_primary_10_1103_PhysRevB_104_054433
crossref_primary_10_1103_PhysRevB_105_045423
crossref_primary_10_1103_PhysRevB_110_064517
crossref_primary_10_1103_PhysRevB_109_205144
crossref_primary_10_7498_aps_69_20200717
crossref_primary_10_1002_adma_202401716
crossref_primary_10_1103_PhysRevLett_124_126402
crossref_primary_10_1103_PhysRevResearch_6_033323
crossref_primary_10_1038_s41567_024_02444_w
crossref_primary_10_1093_nsr_nwad066
crossref_primary_10_1103_PhysRevB_105_205428
crossref_primary_10_1103_PhysRevB_102_121107
crossref_primary_10_1063_5_0015444
crossref_primary_10_1103_PhysRevLett_132_036601
crossref_primary_10_1126_science_ade0850
crossref_primary_10_1038_s41586_021_03849_w
crossref_primary_10_1021_jacs_9b00984
crossref_primary_10_1103_PhysRevMaterials_9_014409
crossref_primary_10_1103_PhysRevB_106_L121108
crossref_primary_10_1038_s41467_023_42779_1
crossref_primary_10_1103_PhysRevB_111_L081111
crossref_primary_10_1038_s41467_024_52156_1
crossref_primary_10_1103_PhysRevB_101_235308
crossref_primary_10_1103_PhysRevB_99_195137
crossref_primary_10_1063_1_5089546
crossref_primary_10_1103_PhysRevB_99_094509
crossref_primary_10_1016_j_jii_2023_100511
crossref_primary_10_1021_acsengineeringau_1c00033
crossref_primary_10_1103_PhysRevB_108_235147
crossref_primary_10_1103_PhysRevB_100_165117
crossref_primary_10_3390_nano14141210
crossref_primary_10_1103_PhysRevB_109_214513
crossref_primary_10_1088_1361_648X_ad550a
crossref_primary_10_1016_j_mser_2021_100620
crossref_primary_10_1103_PhysRevB_104_L201410
crossref_primary_10_1103_PhysRevB_101_104502
crossref_primary_10_1103_PhysRevResearch_1_013012
crossref_primary_10_1002_adfm_202415988
crossref_primary_10_1103_PhysRevB_109_165401
crossref_primary_10_1103_PhysRevLett_125_017001
crossref_primary_10_3390_nano14151251
crossref_primary_10_1631_jzus_A2400397
crossref_primary_10_1103_PhysRevB_105_064502
crossref_primary_10_1103_PhysRevB_103_184507
crossref_primary_10_1038_s41524_021_00511_x
crossref_primary_10_1063_5_0059447
crossref_primary_10_1103_PhysRevB_106_054209
crossref_primary_10_1103_PhysRevB_103_184509
crossref_primary_10_1007_s10909_024_03093_2
Cites_doi 10.1103/RevModPhys.80.1083
10.1038/s41534-016-0004-0
10.1103/PhysRevB.82.184516
10.1103/PhysRevLett.86.268
10.1103/PhysRevB.83.100512
10.1016/0550-3213(91)90407-O
10.1103/PhysRevA.73.042313
10.1103/PhysRevB.98.075145
10.1016/j.aop.2005.10.005
10.1103/PhysRevB.61.10267
10.1088/0034-4885/75/7/076501
10.1103/PhysRevLett.107.136403
10.1103/PhysRevLett.39.1167
10.1103/PhysRevLett.61.1297
10.1103/PhysRevA.71.022316
10.1103/PhysRevLett.102.216404
10.1103/PhysRevB.81.205110
10.1016/j.physrep.2008.09.003
10.1103/RevModPhys.83.1057
10.1103/PhysRevLett.105.077001
10.1126/science.1187485
10.1070/1063-7869/44/10S/S29
10.1126/science.1234414
10.1038/nphys1915
10.1103/PhysRevB.92.064520
10.1103/PhysRevLett.67.883
10.1103/PhysRevLett.96.016802
10.1126/science.aag2792
10.1016/S0003-4916(02)00018-0
10.1103/PhysRevB.95.235305
10.1103/PhysRevB.82.045122
10.1103/PhysRevLett.104.180505
10.1103/PhysRevLett.102.216403
10.1103/PhysRevLett.101.146802
10.1126/science.1141243
10.1103/PhysRevLett.96.016803
10.1103/PhysRevLett.64.1437
ContentType Journal Article
Copyright Volumes 1–89 and 106–115, copyright as a collective work only; author(s) retains copyright to individual articles
Copyright National Academy of Sciences Oct 23, 2018
2018
Copyright_xml – notice: Volumes 1–89 and 106–115, copyright as a collective work only; author(s) retains copyright to individual articles
– notice: Copyright National Academy of Sciences Oct 23, 2018
– notice: 2018
CorporateAuthor SLAC National Accelerator Lab., Menlo Park, CA (United States)
CorporateAuthor_xml – name: SLAC National Accelerator Lab., Menlo Park, CA (United States)
DBID AAYXX
CITATION
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
OIOZB
OTOTI
5PM
DOI 10.1073/pnas.1810003115
DatabaseName CrossRef
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
OSTI.GOV - Hybrid
OSTI.GOV
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList Virology and AIDS Abstracts
CrossRef
PubMed



MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 10942
ExternalDocumentID PMC6205432
1490636
30297431
10_1073_pnas_1810003115
26532345
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
AAYXX
CITATION
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
79B
AAPBV
ABPTK
ADZLD
ASUFR
DNJUQ
DOOOF
DWIUU
JSODD
OIOZB
OTOTI
PQEST
RHF
VQA
ZA5
5PM
ID FETCH-LOGICAL-c495t-24b8126e5212c0d1c934da35c08b9472b20f7fc9c38619f004d55d7db60ae4313
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 18:12:05 EDT 2025
Thu May 18 22:37:34 EDT 2023
Thu Jul 10 18:29:37 EDT 2025
Mon Jun 30 10:13:57 EDT 2025
Thu Apr 03 07:05:58 EDT 2025
Thu Apr 24 23:03:51 EDT 2025
Tue Jul 01 03:19:55 EDT 2025
Fri May 30 11:17:11 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 43
Keywords topological
Majorana
quantum computing
Language English
License Published under the PNAS license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c495t-24b8126e5212c0d1c934da35c08b9472b20f7fc9c38619f004d55d7db60ae4313
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
USDOE
AC02-76SF00515
Contributed by Shou-Cheng Zhang, September 5, 2018 (sent for review June 11, 2018; reviewed by Eduardo Fradkin, Naoto Nagaosa, and Fuchun Zhang)
1B.L. and X.-Q.S. contributed equally to this work.
Author contributions: X.-L.Q. and S.-C.Z. designed research; B.L., X.-Q.S., and A.V. performed research; and B.L., X.-Q.S., A.V., X.-L.Q., and S.-C.Z. wrote the paper.
Reviewers: E.F., University of Illinois at Urbana–Champaign; N.N., The University of Tokyo and Riken Center for Emergent Matter Science; and F.Z., Kavli Institute for Theoretical Physics China.
OpenAccessLink https://www.osti.gov/servlets/purl/1490636
PMID 30297431
PQID 2130271142
PQPubID 42026
PageCount 5
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6205432
osti_scitechconnect_1490636
proquest_miscellaneous_2117394817
proquest_journals_2130271142
pubmed_primary_30297431
crossref_primary_10_1073_pnas_1810003115
crossref_citationtrail_10_1073_pnas_1810003115
jstor_primary_26532345
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-10-23
PublicationDateYYYYMMDD 2018-10-23
PublicationDate_xml – month: 10
  year: 2018
  text: 2018-10-23
  day: 23
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2018
Publisher National Academy of Sciences
National Academy of Sciences, Washington, DC (United States)
Publisher_xml – name: National Academy of Sciences
– name: National Academy of Sciences, Washington, DC (United States)
References e_1_3_3_17_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_32_2
e_1_3_3_33_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_10_2
e_1_3_3_31_2
Aasen D (e_1_3_3_16_2) 2016; 6
e_1_3_3_6_2
e_1_3_3_5_2
e_1_3_3_8_2
e_1_3_3_7_2
e_1_3_3_28_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_24_2
e_1_3_3_23_2
e_1_3_3_26_2
e_1_3_3_25_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_1_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_3_2
e_1_3_3_21_2
10041395 - Phys Rev Lett. 1990 Mar 19;64(12):1437-1440
19519120 - Phys Rev Lett. 2009 May 29;102(21):216404
16486495 - Phys Rev Lett. 2006 Jan 13;96(1):016802
11177808 - Phys Rev Lett. 2001 Jan 8;86(2):268-71
22026879 - Phys Rev Lett. 2011 Sep 23;107(13):136403
17525333 - Science. 2007 May 25;316(5828):1169-72
16486496 - Phys Rev Lett. 2006 Jan 13;96(1):016803
28729508 - Science. 2017 Jul 21;357(6348):294-299
10038756 - Phys Rev Lett. 1988 Sep 12;61(11):1297-1300
10045013 - Phys Rev Lett. 1991 Aug 12;67(7):883-886
20868069 - Phys Rev Lett. 2010 Aug 13;105(7):077001
20482161 - Phys Rev Lett. 2010 May 7;104(18):180505
23493424 - Science. 2013 Apr 12;340(6129):167-70
20522741 - Science. 2010 Jul 2;329(5987):61-4
18851555 - Phys Rev Lett. 2008 Oct 3;101(14):146802
22790778 - Rep Prog Phys. 2012 Jul;75(7):076501
19519119 - Phys Rev Lett. 2009 May 29;102(21):216403
References_xml – ident: e_1_3_3_21_2
  doi: 10.1103/RevModPhys.80.1083
– ident: e_1_3_3_32_2
  doi: 10.1038/s41534-016-0004-0
– ident: e_1_3_3_2_2
  doi: 10.1103/PhysRevB.82.184516
– ident: e_1_3_3_12_2
  doi: 10.1103/PhysRevLett.86.268
– ident: e_1_3_3_3_2
  doi: 10.1103/PhysRevB.83.100512
– ident: e_1_3_3_7_2
  doi: 10.1016/0550-3213(91)90407-O
– ident: e_1_3_3_36_2
  doi: 10.1103/PhysRevA.73.042313
– ident: e_1_3_3_25_2
  doi: 10.1103/PhysRevB.98.075145
– ident: e_1_3_3_23_2
– ident: e_1_3_3_8_2
  doi: 10.1016/j.aop.2005.10.005
– ident: e_1_3_3_9_2
  doi: 10.1103/PhysRevB.61.10267
– ident: e_1_3_3_15_2
  doi: 10.1088/0034-4885/75/7/076501
– ident: e_1_3_3_5_2
  doi: 10.1103/PhysRevLett.107.136403
– ident: e_1_3_3_26_2
  doi: 10.1103/PhysRevLett.39.1167
– ident: e_1_3_3_27_2
  doi: 10.1103/PhysRevLett.61.1297
– ident: e_1_3_3_35_2
  doi: 10.1103/PhysRevA.71.022316
– ident: e_1_3_3_37_2
  doi: 10.1103/PhysRevLett.102.216404
– volume: 6
  start-page: 031016
  year: 2016
  ident: e_1_3_3_16_2
  article-title: Milestones toward Majorana-based quantum computing
  publication-title: Phys Rev X
– ident: e_1_3_3_39_2
  doi: 10.1103/PhysRevB.81.205110
– ident: e_1_3_3_31_2
  doi: 10.1016/j.physrep.2008.09.003
– ident: e_1_3_3_1_2
  doi: 10.1103/RevModPhys.83.1057
– ident: e_1_3_3_11_2
  doi: 10.1103/PhysRevLett.105.077001
– ident: e_1_3_3_19_2
  doi: 10.1126/science.1187485
– ident: e_1_3_3_10_2
  doi: 10.1070/1063-7869/44/10S/S29
– ident: e_1_3_3_20_2
  doi: 10.1126/science.1234414
– ident: e_1_3_3_14_2
  doi: 10.1038/nphys1915
– ident: e_1_3_3_4_2
  doi: 10.1103/PhysRevB.92.064520
– ident: e_1_3_3_29_2
  doi: 10.1103/PhysRevLett.67.883
– ident: e_1_3_3_38_2
  doi: 10.1103/PhysRevLett.96.016802
– ident: e_1_3_3_6_2
  doi: 10.1126/science.aag2792
– ident: e_1_3_3_13_2
  doi: 10.1016/S0003-4916(02)00018-0
– ident: e_1_3_3_17_2
  doi: 10.1103/PhysRevB.95.235305
– ident: e_1_3_3_24_2
  doi: 10.1103/PhysRevB.82.045122
– ident: e_1_3_3_34_2
  doi: 10.1103/PhysRevLett.104.180505
– ident: e_1_3_3_30_2
  doi: 10.1103/PhysRevLett.102.216403
– ident: e_1_3_3_18_2
  doi: 10.1103/PhysRevLett.101.146802
– ident: e_1_3_3_33_2
  doi: 10.1126/science.1141243
– ident: e_1_3_3_22_2
  doi: 10.1103/PhysRevLett.96.016803
– ident: e_1_3_3_28_2
  doi: 10.1103/PhysRevLett.64.1437
– reference: 28729508 - Science. 2017 Jul 21;357(6348):294-299
– reference: 19519119 - Phys Rev Lett. 2009 May 29;102(21):216403
– reference: 18851555 - Phys Rev Lett. 2008 Oct 3;101(14):146802
– reference: 17525333 - Science. 2007 May 25;316(5828):1169-72
– reference: 11177808 - Phys Rev Lett. 2001 Jan 8;86(2):268-71
– reference: 22790778 - Rep Prog Phys. 2012 Jul;75(7):076501
– reference: 10041395 - Phys Rev Lett. 1990 Mar 19;64(12):1437-1440
– reference: 22026879 - Phys Rev Lett. 2011 Sep 23;107(13):136403
– reference: 20482161 - Phys Rev Lett. 2010 May 7;104(18):180505
– reference: 23493424 - Science. 2013 Apr 12;340(6129):167-70
– reference: 16486496 - Phys Rev Lett. 2006 Jan 13;96(1):016803
– reference: 20868069 - Phys Rev Lett. 2010 Aug 13;105(7):077001
– reference: 10038756 - Phys Rev Lett. 1988 Sep 12;61(11):1297-1300
– reference: 20522741 - Science. 2010 Jul 2;329(5987):61-4
– reference: 16486495 - Phys Rev Lett. 2006 Jan 13;96(1):016802
– reference: 19519120 - Phys Rev Lett. 2009 May 29;102(21):216404
– reference: 10045013 - Phys Rev Lett. 1991 Aug 12;67(7):883-886
SSID ssj0009580
Score 2.675023
Snippet The chiral Majorana fermion is a massless self-conjugate fermion which can arise as the edge state of certain 2D topological matters. It has been theoretically...
We propose a platform of quantum computation using the chiral Majorana fermions on the edges of topological materials. The quantum gates are naturally...
Here, the chiral Majorana fermion is a massless self-conjugate fermion which can arise as the edge state of certain 2D topological matters. It has been...
SourceID pubmedcentral
osti
proquest
pubmed
crossref
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 10938
SubjectTerms Braiding
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
Computation
Conductance
Fermions
Majorana
Physical Sciences
quantum computing
Quantum theory
Qubits (quantum computing)
Resistance
Superconductors
topological
Topology
Title Topological quantum computation based on chiral Majorana fermions
URI https://www.jstor.org/stable/26532345
https://www.ncbi.nlm.nih.gov/pubmed/30297431
https://www.proquest.com/docview/2130271142
https://www.proquest.com/docview/2117394817
https://www.osti.gov/servlets/purl/1490636
https://pubmed.ncbi.nlm.nih.gov/PMC6205432
Volume 115
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfKuHBBDBiEDRQkDkNVShI7dnMsCJgQVJu0od4ix3HXoJFutLnsv-A_5vkzadmkwSVKHddt_J7fh_3e7yH0JqGg9OYULLcEVhPhJIk4j2XExlWVsITjrNJon1N6dEa-zLLZYPC7F7XUrsuRuL4xr-R_qAptQFeVJfsPlPWDQgPcA33hChSG691obCoc6Hm-amGO2p86Rry1IYRKRVXqOEAsapWI_43_AIo3fDhXITBuo86apsdela1c4MDU7RROurwTKwxWw2h4PO2qGH-tzU7q-5ovu4Mm3TSDpuikdq3fubzWIQSTcnmxANu948-T2vdX4533tyQSjQ9rsoZ9igCoPmKSo0fSSFYwTCJKTG1QL3pNKqflMYJ7klTBXI17ahk-Gxiuv2Q-CClVqLjhqxGYK8rJc8NuoGtvaT0fi6hP4Rku1ABFN8A9dD8Fz0MVxfg8S3o4zmOT1WTf0KFFMfxu6x9sGDom1hXU_hIE903OzHZMbs_IOX2EHlrvJJwYVttFA9k8RruO5OGhBSl_-wRNerwXWt4Le7wXat4L4cbwXuh4L3S89xSdffp4-uEosuU4IgFe9DpKSQnWIJUq21vEVSJyTCpYzCIelzlhaZnGczYXucBj8MrnsE6rLKtYVdKYS7BT8R7aaZaNfI5CTjHTuE_g_JIsFrmUOBaMUSrAvk7yAI3c3BXCYtWrkikXxS3UCtCh_8KlgWm5veueJobvl9IMp5jAg31FnQJMT4WfLFSgmViDb5yDGU8DdOCIVlgRsCpSfeyv0tED9No_BgGtTt14I5et6pMwrDCRWICeGRr7n8aqdBxMTYDYBvV9BwX-vvmkqRcaBJ6m4Gzh9MXdX3wfPegW6wHaWf9q5UuwqNflK83jfwCF9MY7
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Topological+quantum+computation+based+on+chiral+Majorana+fermions&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Lian%2C+Biao&rft.au=Sun%2C+Xiao-Qi&rft.au=Vaezi%2C+Abolhassan&rft.au=Qi%2C+Xiao-Liang&rft.date=2018-10-23&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=115&rft.issue=43&rft.spage=10938&rft.epage=10942&rft_id=info:doi/10.1073%2Fpnas.1810003115&rft.externalDBID=n%2Fa&rft.externalDocID=10_1073_pnas_1810003115
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon