Topological quantum computation based on chiral Majorana fermions
The chiral Majorana fermion is a massless self-conjugate fermion which can arise as the edge state of certain 2D topological matters. It has been theoretically predicted and experimentally observed in a hybrid device of a quantum anomalous Hall insulator and a conventional superconductor. Its closel...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 115; no. 43; pp. 10938 - 10942 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
23.10.2018
National Academy of Sciences, Washington, DC (United States) |
Subjects | |
Online Access | Get full text |
ISSN | 0027-8424 1091-6490 1091-6490 |
DOI | 10.1073/pnas.1810003115 |
Cover
Loading…
Abstract | The chiral Majorana fermion is a massless self-conjugate fermion which can arise as the edge state of certain 2D topological matters. It has been theoretically predicted and experimentally observed in a hybrid device of a quantum anomalous Hall insulator and a conventional superconductor. Its closely related cousin, the Majorana zero mode in the bulk of the corresponding topological matter, is known to be applicable in topological quantum computations. Here we show that the propagation of chiral Majorana fermions leads to the same unitary transformation as that in the braiding of Majorana zero modes and propose a platform to perform quantum computation with chiral Majorana fermions. A Corbino ring junction of the hybrid device can use quantum coherent chiral Majorana fermions to implement the Hadamard gate and the phase gate, and the junction conductance yields a natural readout for the qubit state. |
---|---|
AbstractList | The chiral Majorana fermion is a massless self-conjugate fermion which can arise as the edge state of certain 2D topological matters. It has been theoretically predicted and experimentally observed in a hybrid device of a quantum anomalous Hall insulator and a conventional superconductor. Its closely related cousin, the Majorana zero mode in the bulk of the corresponding topological matter, is known to be applicable in topological quantum computations. Here we show that the propagation of chiral Majorana fermions leads to the same unitary transformation as that in the braiding of Majorana zero modes and propose a platform to perform quantum computation with chiral Majorana fermions. A Corbino ring junction of the hybrid device can use quantum coherent chiral Majorana fermions to implement the Hadamard gate and the phase gate, and the junction conductance yields a natural readout for the qubit state. We propose a platform of quantum computation using the chiral Majorana fermions on the edges of topological materials. The quantum gates are naturally accomplished by the propagation of chiral Majorana fermions. If realized, its computation speed can be 1 0 3 faster than the currently existing quantum computation schemes. The chiral Majorana fermion is a massless self-conjugate fermion which can arise as the edge state of certain 2D topological matters. It has been theoretically predicted and experimentally observed in a hybrid device of a quantum anomalous Hall insulator and a conventional superconductor. Its closely related cousin, the Majorana zero mode in the bulk of the corresponding topological matter, is known to be applicable in topological quantum computations. Here we show that the propagation of chiral Majorana fermions leads to the same unitary transformation as that in the braiding of Majorana zero modes and propose a platform to perform quantum computation with chiral Majorana fermions. A Corbino ring junction of the hybrid device can use quantum coherent chiral Majorana fermions to implement the Hadamard gate and the phase gate, and the junction conductance yields a natural readout for the qubit state. Here, the chiral Majorana fermion is a massless self-conjugate fermion which can arise as the edge state of certain 2D topological matters. It has been theoretically predicted and experimentally observed in a hybrid device of a quantum anomalous Hall insulator and a conventional superconductor. Its closely related cousin, the Majorana zero mode in the bulk of the corresponding topological matter, is known to be applicable in topological quantum computations. Here we show that the propagation of chiral Majorana fermions leads to the same unitary transformation as that in the braiding of Majorana zero modes and propose a platform to perform quantum computation with chiral Majorana fermions. A Corbino ring junction of the hybrid device can use quantum coherent chiral Majorana fermions to implement the Hadamard gate and the phase gate, and the junction conductance yields a natural readout for the qubit state. The chiral Majorana fermion is a massless self-conjugate fermion which can arise as the edge state of certain 2D topological matters. It has been theoretically predicted and experimentally observed in a hybrid device of a quantum anomalous Hall insulator and a conventional superconductor. Its closely related cousin, the Majorana zero mode in the bulk of the corresponding topological matter, is known to be applicable in topological quantum computations. Here we show that the propagation of chiral Majorana fermions leads to the same unitary transformation as that in the braiding of Majorana zero modes and propose a platform to perform quantum computation with chiral Majorana fermions. A Corbino ring junction of the hybrid device can use quantum coherent chiral Majorana fermions to implement the Hadamard gate and the phase gate, and the junction conductance yields a natural readout for the qubit state.The chiral Majorana fermion is a massless self-conjugate fermion which can arise as the edge state of certain 2D topological matters. It has been theoretically predicted and experimentally observed in a hybrid device of a quantum anomalous Hall insulator and a conventional superconductor. Its closely related cousin, the Majorana zero mode in the bulk of the corresponding topological matter, is known to be applicable in topological quantum computations. Here we show that the propagation of chiral Majorana fermions leads to the same unitary transformation as that in the braiding of Majorana zero modes and propose a platform to perform quantum computation with chiral Majorana fermions. A Corbino ring junction of the hybrid device can use quantum coherent chiral Majorana fermions to implement the Hadamard gate and the phase gate, and the junction conductance yields a natural readout for the qubit state. |
Author | Qi, Xiao-Liang Vaezi, Abolhassan Zhang, Shou-Cheng Lian, Biao Sun, Xiao-Qi |
Author_xml | – sequence: 1 givenname: Biao surname: Lian fullname: Lian, Biao organization: Stanford Center for Topological Quantum Physics, Stanford University, Stanford, CA 94305-4045 – sequence: 2 givenname: Xiao-Qi surname: Sun fullname: Sun, Xiao-Qi organization: Stanford Center for Topological Quantum Physics, Stanford University, Stanford, CA 94305-4045 – sequence: 3 givenname: Abolhassan surname: Vaezi fullname: Vaezi, Abolhassan organization: Stanford Center for Topological Quantum Physics, Stanford University, Stanford, CA 94305-4045 – sequence: 4 givenname: Xiao-Liang surname: Qi fullname: Qi, Xiao-Liang organization: Stanford Center for Topological Quantum Physics, Stanford University, Stanford, CA 94305-4045 – sequence: 5 givenname: Shou-Cheng surname: Zhang fullname: Zhang, Shou-Cheng organization: Stanford Center for Topological Quantum Physics, Stanford University, Stanford, CA 94305-4045 |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30297431$$D View this record in MEDLINE/PubMed https://www.osti.gov/servlets/purl/1490636$$D View this record in Osti.gov |
BookMark | eNp9kc1v1DAQxS1URLcLZ06gFVy4pJ3xRxJfKlUVX1IRl3K2HMfpepXYqe0g8d_jZcsCPXCxLfk3M2_eOyMnPnhLyEuEc4SGXcxep3NsEQAYonhCVggSq5pLOCErANpULaf8lJyltCuQFC08I6cMqGw4wxW5ug1zGMOdM3rc3C_a52XamDDNS9bZBb_pdLL9pjzM1sXCfNG7ELXXm8HGqQDpOXk66DHZFw_3mnz78P72-lN18_Xj5-urm8pwKXJFedcira2gSA30aCTjvWbCQNtJ3tCOwtAMRhrW1igHAN4L0Td9V4O2RSpbk8tD33npJtsb63PRo-boJh1_qKCd-vfHu626C99VTUFwRkuDN4cGIWWnknHZmq0J3luTFRbHalYX6N3DlBjuF5uymlwydhy1t2FJiiI2TPK2nGvy9hG6C0v0xYNCFYcbRL6f-vpv2Ue9vyMowMUBMDGkFO1wRBDUPmS1D1n9CblUiEcVZZdfaZW93fifuleHul3KIR7H0FoUd7hgPwGoX7P4 |
CitedBy_id | crossref_primary_10_1088_1361_648X_ac9944 crossref_primary_10_1038_s41563_024_02088_4 crossref_primary_10_1103_PhysRevB_104_245409 crossref_primary_10_21468_SciPostPhys_9_5_080 crossref_primary_10_1016_j_device_2024_100359 crossref_primary_10_1088_0256_307X_40_3_037502 crossref_primary_10_1103_PhysRevB_102_245405 crossref_primary_10_1103_PhysRevLett_132_106602 crossref_primary_10_1002_adom_202201105 crossref_primary_10_1038_d41586_018_07709_y crossref_primary_10_1126_science_aay5533 crossref_primary_10_21468_SciPostPhys_18_3_076 crossref_primary_10_21468_SciPostPhys_6_2_022 crossref_primary_10_1038_s42254_020_0240_2 crossref_primary_10_1038_s41586_022_05516_0 crossref_primary_10_1088_1361_648X_ab052c crossref_primary_10_1038_s42005_023_01311_z crossref_primary_10_1103_PhysRevB_105_134517 crossref_primary_10_1038_s41598_021_87056_7 crossref_primary_10_1103_PhysRevA_105_012415 crossref_primary_10_1103_PhysRevB_103_134514 crossref_primary_10_1103_PhysRevB_109_024421 crossref_primary_10_1038_s41567_022_01812_8 crossref_primary_10_1063_5_0039910 crossref_primary_10_1088_1361_648X_ad49fc crossref_primary_10_1103_PhysRevB_102_235156 crossref_primary_10_7498_aps_72_20230690 crossref_primary_10_1103_PhysRevResearch_5_L012012 crossref_primary_10_1103_PhysRevB_102_205402 crossref_primary_10_5488_CMP_24_43701 crossref_primary_10_1103_PhysRevMaterials_4_114008 crossref_primary_10_1038_s41586_025_08621_y crossref_primary_10_1103_PhysRevB_101_085113 crossref_primary_10_1103_PhysRevB_109_014516 crossref_primary_10_21468_SciPostPhys_14_5_115 crossref_primary_10_1103_PhysRevLett_125_187702 crossref_primary_10_1038_s41598_023_34585_y crossref_primary_10_1126_science_aaw3780 crossref_primary_10_1063_5_0100989 crossref_primary_10_1103_PhysRevB_103_024405 crossref_primary_10_1209_0295_5075_ac1879 crossref_primary_10_1103_PhysRevB_107_024408 crossref_primary_10_1140_epjb_e2019_100011_2 crossref_primary_10_3390_condmat7010026 crossref_primary_10_1088_1674_1056_ada551 crossref_primary_10_1103_PhysRevB_105_125109 crossref_primary_10_1103_PhysRevMaterials_6_053402 crossref_primary_10_1038_s41586_020_2963_8 crossref_primary_10_1103_PhysRevResearch_3_013253 crossref_primary_10_1103_PhysRevB_110_214512 crossref_primary_10_1063_5_0037751 crossref_primary_10_7498_aps_73_20240739 crossref_primary_10_3390_condmat10010014 crossref_primary_10_1103_PhysRevLett_121_256801 crossref_primary_10_1126_science_abb2823 crossref_primary_10_1088_1674_1056_ad0147 crossref_primary_10_1002_pssa_202400426 crossref_primary_10_1016_j_physrep_2023_01_002 crossref_primary_10_1021_acs_nanolett_2c03213 crossref_primary_10_1103_PhysRevB_109_L121301 crossref_primary_10_1126_science_adk9749 crossref_primary_10_1039_D4NR00194J crossref_primary_10_1103_PhysRevB_100_235407 crossref_primary_10_1103_PhysRevB_99_100504 crossref_primary_10_1103_PhysRevLett_128_251601 crossref_primary_10_1103_PhysRevB_104_214422 crossref_primary_10_1103_PhysRevB_111_L020501 crossref_primary_10_1088_2053_1583_ab6ff7 crossref_primary_10_3390_nano13010038 crossref_primary_10_1103_PhysRevLett_131_086601 crossref_primary_10_21468_SciPostPhys_6_5_055 crossref_primary_10_1063_5_0063996 crossref_primary_10_1103_PhysRevB_98_245405 crossref_primary_10_1038_s41567_020_0898_5 crossref_primary_10_1016_j_cossms_2021_100939 crossref_primary_10_1021_acs_nanolett_2c02356 crossref_primary_10_1038_s41567_019_0532_6 crossref_primary_10_21468_SciPostPhysLectNotes_15 crossref_primary_10_1038_s42005_022_00920_4 crossref_primary_10_1088_1367_2630_ac3cf6 crossref_primary_10_1073_pnas_2405304121 crossref_primary_10_1038_s41567_021_01490_y crossref_primary_10_1103_PhysRevB_105_214525 crossref_primary_10_1103_PhysRevB_109_125130 crossref_primary_10_1021_acs_jpcc_0c01663 crossref_primary_10_1088_1367_2630_ac5f87 crossref_primary_10_1103_PhysRevB_104_155304 crossref_primary_10_1038_s41563_023_01622_0 crossref_primary_10_1103_PhysRevB_101_024516 crossref_primary_10_1063_5_0140086 crossref_primary_10_1088_1367_2630_ad4abc crossref_primary_10_1103_PhysRevB_107_184517 crossref_primary_10_1103_PhysRevB_105_125414 crossref_primary_10_1557_mrs_2020_122 crossref_primary_10_1103_PhysRevMaterials_8_084802 crossref_primary_10_1103_PhysRevB_104_134518 crossref_primary_10_1038_s41524_023_01144_y crossref_primary_10_1002_adma_202102107 crossref_primary_10_1088_1367_2630_adb779 crossref_primary_10_1088_1361_648X_aca4b4 crossref_primary_10_1039_D4TC04243C crossref_primary_10_1103_PhysRevB_99_184514 crossref_primary_10_1016_j_commatsci_2022_111982 crossref_primary_10_1103_PhysRevMaterials_7_L111801 crossref_primary_10_1021_acs_cgd_3c00054 crossref_primary_10_1002_aelm_202200943 crossref_primary_10_4236_wjcmp_2021_113005 crossref_primary_10_1038_s41598_023_40059_y crossref_primary_10_1103_PhysRevB_100_035423 crossref_primary_10_21468_SciPostPhys_8_1_013 crossref_primary_10_1088_1361_648X_ac4531 crossref_primary_10_1063_5_0092169 crossref_primary_10_1103_PhysRevB_108_115302 crossref_primary_10_1007_s11467_019_0893_4 crossref_primary_10_1088_0256_307X_38_10_107404 crossref_primary_10_1103_PhysRevB_99_195431 crossref_primary_10_1103_PhysRevB_104_035434 crossref_primary_10_1038_s42254_018_0011_5 crossref_primary_10_1103_PhysRevB_104_214502 crossref_primary_10_1103_PhysRevResearch_5_013066 crossref_primary_10_7498_aps_72_20230704 crossref_primary_10_1103_PhysRevB_103_L180504 crossref_primary_10_1103_PhysRevA_109_L051302 crossref_primary_10_1038_s42005_023_01330_w crossref_primary_10_1103_PhysRevResearch_2_043430 crossref_primary_10_1038_s41578_019_0136_x crossref_primary_10_1103_PhysRevResearch_2_023043 crossref_primary_10_1016_j_ssc_2023_115182 crossref_primary_10_1039_D4CP03325F crossref_primary_10_1016_j_jallcom_2019_05_351 crossref_primary_10_1063_5_0101784 crossref_primary_10_1103_PhysRevB_106_195115 crossref_primary_10_1103_PhysRevB_108_165122 crossref_primary_10_1038_s42005_019_0250_5 crossref_primary_10_1103_PhysRevB_107_125404 crossref_primary_10_1103_PhysRevB_111_054509 crossref_primary_10_1016_j_physb_2021_413467 crossref_primary_10_21468_SciPostPhysLectNotes_58 crossref_primary_10_1103_PhysRevLett_125_036801 crossref_primary_10_1103_PhysRevB_107_235146 crossref_primary_10_1103_PhysRevB_106_045139 crossref_primary_10_1103_PhysRevB_100_161101 crossref_primary_10_1103_PhysRevA_110_022609 crossref_primary_10_1103_PhysRevB_104_205131 crossref_primary_10_1103_PhysRevResearch_6_033060 crossref_primary_10_1007_s11433_022_2063_7 crossref_primary_10_1038_s42005_023_01485_6 crossref_primary_10_1016_j_commatsci_2020_110262 crossref_primary_10_1088_1674_1056_ad462f crossref_primary_10_1103_PhysRevB_109_184518 crossref_primary_10_1103_PhysRevResearch_2_023146 crossref_primary_10_1103_PhysRevX_15_011052 crossref_primary_10_1016_j_xinn_2021_100098 crossref_primary_10_1038_s41598_023_41997_3 crossref_primary_10_1103_PhysRevB_99_041404 crossref_primary_10_1103_PhysRevLett_127_197701 crossref_primary_10_1038_s41467_021_24276_5 crossref_primary_10_1002_adma_202312004 crossref_primary_10_1103_PhysRevB_106_205105 crossref_primary_10_1088_1367_2630_acbed3 crossref_primary_10_7498_aps_69_20200534 crossref_primary_10_1088_1361_648X_ad5e2c crossref_primary_10_1103_PhysRevLett_125_086401 crossref_primary_10_1088_1367_2630_ab5cad crossref_primary_10_1103_PhysRevB_109_184508 crossref_primary_10_1103_PhysRevB_107_165405 crossref_primary_10_1088_1674_1056_ac7208 crossref_primary_10_1073_pnas_2404009121 crossref_primary_10_1103_PhysRevB_110_115128 crossref_primary_10_1103_PhysRevB_101_245441 crossref_primary_10_1088_1674_1056_abe296 crossref_primary_10_1002_pssb_202000371 crossref_primary_10_1103_PhysRevB_100_205302 crossref_primary_10_1021_acsnano_3c08601 crossref_primary_10_1038_s41524_022_00800_z crossref_primary_10_1016_j_jpcs_2022_110734 crossref_primary_10_1016_j_physe_2022_115555 crossref_primary_10_1038_s41567_019_0540_6 crossref_primary_10_1038_s41699_022_00305_9 crossref_primary_10_1103_PhysRevLett_122_146803 crossref_primary_10_1007_s12274_022_5025_8 crossref_primary_10_1063_5_0082214 crossref_primary_10_1103_PhysRevB_103_L241109 crossref_primary_10_1103_PhysRevB_104_054433 crossref_primary_10_1103_PhysRevB_105_045423 crossref_primary_10_1103_PhysRevB_110_064517 crossref_primary_10_1103_PhysRevB_109_205144 crossref_primary_10_7498_aps_69_20200717 crossref_primary_10_1002_adma_202401716 crossref_primary_10_1103_PhysRevLett_124_126402 crossref_primary_10_1103_PhysRevResearch_6_033323 crossref_primary_10_1038_s41567_024_02444_w crossref_primary_10_1093_nsr_nwad066 crossref_primary_10_1103_PhysRevB_105_205428 crossref_primary_10_1103_PhysRevB_102_121107 crossref_primary_10_1063_5_0015444 crossref_primary_10_1103_PhysRevLett_132_036601 crossref_primary_10_1126_science_ade0850 crossref_primary_10_1038_s41586_021_03849_w crossref_primary_10_1021_jacs_9b00984 crossref_primary_10_1103_PhysRevMaterials_9_014409 crossref_primary_10_1103_PhysRevB_106_L121108 crossref_primary_10_1038_s41467_023_42779_1 crossref_primary_10_1103_PhysRevB_111_L081111 crossref_primary_10_1038_s41467_024_52156_1 crossref_primary_10_1103_PhysRevB_101_235308 crossref_primary_10_1103_PhysRevB_99_195137 crossref_primary_10_1063_1_5089546 crossref_primary_10_1103_PhysRevB_99_094509 crossref_primary_10_1016_j_jii_2023_100511 crossref_primary_10_1021_acsengineeringau_1c00033 crossref_primary_10_1103_PhysRevB_108_235147 crossref_primary_10_1103_PhysRevB_100_165117 crossref_primary_10_3390_nano14141210 crossref_primary_10_1103_PhysRevB_109_214513 crossref_primary_10_1088_1361_648X_ad550a crossref_primary_10_1016_j_mser_2021_100620 crossref_primary_10_1103_PhysRevB_104_L201410 crossref_primary_10_1103_PhysRevB_101_104502 crossref_primary_10_1103_PhysRevResearch_1_013012 crossref_primary_10_1002_adfm_202415988 crossref_primary_10_1103_PhysRevB_109_165401 crossref_primary_10_1103_PhysRevLett_125_017001 crossref_primary_10_3390_nano14151251 crossref_primary_10_1631_jzus_A2400397 crossref_primary_10_1103_PhysRevB_105_064502 crossref_primary_10_1103_PhysRevB_103_184507 crossref_primary_10_1038_s41524_021_00511_x crossref_primary_10_1063_5_0059447 crossref_primary_10_1103_PhysRevB_106_054209 crossref_primary_10_1103_PhysRevB_103_184509 crossref_primary_10_1007_s10909_024_03093_2 |
Cites_doi | 10.1103/RevModPhys.80.1083 10.1038/s41534-016-0004-0 10.1103/PhysRevB.82.184516 10.1103/PhysRevLett.86.268 10.1103/PhysRevB.83.100512 10.1016/0550-3213(91)90407-O 10.1103/PhysRevA.73.042313 10.1103/PhysRevB.98.075145 10.1016/j.aop.2005.10.005 10.1103/PhysRevB.61.10267 10.1088/0034-4885/75/7/076501 10.1103/PhysRevLett.107.136403 10.1103/PhysRevLett.39.1167 10.1103/PhysRevLett.61.1297 10.1103/PhysRevA.71.022316 10.1103/PhysRevLett.102.216404 10.1103/PhysRevB.81.205110 10.1016/j.physrep.2008.09.003 10.1103/RevModPhys.83.1057 10.1103/PhysRevLett.105.077001 10.1126/science.1187485 10.1070/1063-7869/44/10S/S29 10.1126/science.1234414 10.1038/nphys1915 10.1103/PhysRevB.92.064520 10.1103/PhysRevLett.67.883 10.1103/PhysRevLett.96.016802 10.1126/science.aag2792 10.1016/S0003-4916(02)00018-0 10.1103/PhysRevB.95.235305 10.1103/PhysRevB.82.045122 10.1103/PhysRevLett.104.180505 10.1103/PhysRevLett.102.216403 10.1103/PhysRevLett.101.146802 10.1126/science.1141243 10.1103/PhysRevLett.96.016803 10.1103/PhysRevLett.64.1437 |
ContentType | Journal Article |
Copyright | Volumes 1–89 and 106–115, copyright as a collective work only; author(s) retains copyright to individual articles Copyright National Academy of Sciences Oct 23, 2018 2018 |
Copyright_xml | – notice: Volumes 1–89 and 106–115, copyright as a collective work only; author(s) retains copyright to individual articles – notice: Copyright National Academy of Sciences Oct 23, 2018 – notice: 2018 |
CorporateAuthor | SLAC National Accelerator Lab., Menlo Park, CA (United States) |
CorporateAuthor_xml | – name: SLAC National Accelerator Lab., Menlo Park, CA (United States) |
DBID | AAYXX CITATION NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 OIOZB OTOTI 5PM |
DOI | 10.1073/pnas.1810003115 |
DatabaseName | CrossRef PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic OSTI.GOV - Hybrid OSTI.GOV PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | Virology and AIDS Abstracts CrossRef PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 10942 |
ExternalDocumentID | PMC6205432 1490636 30297431 10_1073_pnas_1810003115 26532345 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ ADULT AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 HH5 HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM AAYXX CITATION NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 79B AAPBV ABPTK ADZLD ASUFR DNJUQ DOOOF DWIUU JSODD OIOZB OTOTI PQEST RHF VQA ZA5 5PM |
ID | FETCH-LOGICAL-c495t-24b8126e5212c0d1c934da35c08b9472b20f7fc9c38619f004d55d7db60ae4313 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 18:12:05 EDT 2025 Thu May 18 22:37:34 EDT 2023 Thu Jul 10 18:29:37 EDT 2025 Mon Jun 30 10:13:57 EDT 2025 Thu Apr 03 07:05:58 EDT 2025 Thu Apr 24 23:03:51 EDT 2025 Tue Jul 01 03:19:55 EDT 2025 Fri May 30 11:17:11 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 43 |
Keywords | topological Majorana quantum computing |
Language | English |
License | Published under the PNAS license. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c495t-24b8126e5212c0d1c934da35c08b9472b20f7fc9c38619f004d55d7db60ae4313 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 USDOE AC02-76SF00515 Contributed by Shou-Cheng Zhang, September 5, 2018 (sent for review June 11, 2018; reviewed by Eduardo Fradkin, Naoto Nagaosa, and Fuchun Zhang) 1B.L. and X.-Q.S. contributed equally to this work. Author contributions: X.-L.Q. and S.-C.Z. designed research; B.L., X.-Q.S., and A.V. performed research; and B.L., X.-Q.S., A.V., X.-L.Q., and S.-C.Z. wrote the paper. Reviewers: E.F., University of Illinois at Urbana–Champaign; N.N., The University of Tokyo and Riken Center for Emergent Matter Science; and F.Z., Kavli Institute for Theoretical Physics China. |
OpenAccessLink | https://www.osti.gov/servlets/purl/1490636 |
PMID | 30297431 |
PQID | 2130271142 |
PQPubID | 42026 |
PageCount | 5 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6205432 osti_scitechconnect_1490636 proquest_miscellaneous_2117394817 proquest_journals_2130271142 pubmed_primary_30297431 crossref_primary_10_1073_pnas_1810003115 crossref_citationtrail_10_1073_pnas_1810003115 jstor_primary_26532345 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-10-23 |
PublicationDateYYYYMMDD | 2018-10-23 |
PublicationDate_xml | – month: 10 year: 2018 text: 2018-10-23 day: 23 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2018 |
Publisher | National Academy of Sciences National Academy of Sciences, Washington, DC (United States) |
Publisher_xml | – name: National Academy of Sciences – name: National Academy of Sciences, Washington, DC (United States) |
References | e_1_3_3_17_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_32_2 e_1_3_3_33_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_10_2 e_1_3_3_31_2 Aasen D (e_1_3_3_16_2) 2016; 6 e_1_3_3_6_2 e_1_3_3_5_2 e_1_3_3_8_2 e_1_3_3_7_2 e_1_3_3_28_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_24_2 e_1_3_3_23_2 e_1_3_3_26_2 e_1_3_3_25_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_1_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_3_2 e_1_3_3_21_2 10041395 - Phys Rev Lett. 1990 Mar 19;64(12):1437-1440 19519120 - Phys Rev Lett. 2009 May 29;102(21):216404 16486495 - Phys Rev Lett. 2006 Jan 13;96(1):016802 11177808 - Phys Rev Lett. 2001 Jan 8;86(2):268-71 22026879 - Phys Rev Lett. 2011 Sep 23;107(13):136403 17525333 - Science. 2007 May 25;316(5828):1169-72 16486496 - Phys Rev Lett. 2006 Jan 13;96(1):016803 28729508 - Science. 2017 Jul 21;357(6348):294-299 10038756 - Phys Rev Lett. 1988 Sep 12;61(11):1297-1300 10045013 - Phys Rev Lett. 1991 Aug 12;67(7):883-886 20868069 - Phys Rev Lett. 2010 Aug 13;105(7):077001 20482161 - Phys Rev Lett. 2010 May 7;104(18):180505 23493424 - Science. 2013 Apr 12;340(6129):167-70 20522741 - Science. 2010 Jul 2;329(5987):61-4 18851555 - Phys Rev Lett. 2008 Oct 3;101(14):146802 22790778 - Rep Prog Phys. 2012 Jul;75(7):076501 19519119 - Phys Rev Lett. 2009 May 29;102(21):216403 |
References_xml | – ident: e_1_3_3_21_2 doi: 10.1103/RevModPhys.80.1083 – ident: e_1_3_3_32_2 doi: 10.1038/s41534-016-0004-0 – ident: e_1_3_3_2_2 doi: 10.1103/PhysRevB.82.184516 – ident: e_1_3_3_12_2 doi: 10.1103/PhysRevLett.86.268 – ident: e_1_3_3_3_2 doi: 10.1103/PhysRevB.83.100512 – ident: e_1_3_3_7_2 doi: 10.1016/0550-3213(91)90407-O – ident: e_1_3_3_36_2 doi: 10.1103/PhysRevA.73.042313 – ident: e_1_3_3_25_2 doi: 10.1103/PhysRevB.98.075145 – ident: e_1_3_3_23_2 – ident: e_1_3_3_8_2 doi: 10.1016/j.aop.2005.10.005 – ident: e_1_3_3_9_2 doi: 10.1103/PhysRevB.61.10267 – ident: e_1_3_3_15_2 doi: 10.1088/0034-4885/75/7/076501 – ident: e_1_3_3_5_2 doi: 10.1103/PhysRevLett.107.136403 – ident: e_1_3_3_26_2 doi: 10.1103/PhysRevLett.39.1167 – ident: e_1_3_3_27_2 doi: 10.1103/PhysRevLett.61.1297 – ident: e_1_3_3_35_2 doi: 10.1103/PhysRevA.71.022316 – ident: e_1_3_3_37_2 doi: 10.1103/PhysRevLett.102.216404 – volume: 6 start-page: 031016 year: 2016 ident: e_1_3_3_16_2 article-title: Milestones toward Majorana-based quantum computing publication-title: Phys Rev X – ident: e_1_3_3_39_2 doi: 10.1103/PhysRevB.81.205110 – ident: e_1_3_3_31_2 doi: 10.1016/j.physrep.2008.09.003 – ident: e_1_3_3_1_2 doi: 10.1103/RevModPhys.83.1057 – ident: e_1_3_3_11_2 doi: 10.1103/PhysRevLett.105.077001 – ident: e_1_3_3_19_2 doi: 10.1126/science.1187485 – ident: e_1_3_3_10_2 doi: 10.1070/1063-7869/44/10S/S29 – ident: e_1_3_3_20_2 doi: 10.1126/science.1234414 – ident: e_1_3_3_14_2 doi: 10.1038/nphys1915 – ident: e_1_3_3_4_2 doi: 10.1103/PhysRevB.92.064520 – ident: e_1_3_3_29_2 doi: 10.1103/PhysRevLett.67.883 – ident: e_1_3_3_38_2 doi: 10.1103/PhysRevLett.96.016802 – ident: e_1_3_3_6_2 doi: 10.1126/science.aag2792 – ident: e_1_3_3_13_2 doi: 10.1016/S0003-4916(02)00018-0 – ident: e_1_3_3_17_2 doi: 10.1103/PhysRevB.95.235305 – ident: e_1_3_3_24_2 doi: 10.1103/PhysRevB.82.045122 – ident: e_1_3_3_34_2 doi: 10.1103/PhysRevLett.104.180505 – ident: e_1_3_3_30_2 doi: 10.1103/PhysRevLett.102.216403 – ident: e_1_3_3_18_2 doi: 10.1103/PhysRevLett.101.146802 – ident: e_1_3_3_33_2 doi: 10.1126/science.1141243 – ident: e_1_3_3_22_2 doi: 10.1103/PhysRevLett.96.016803 – ident: e_1_3_3_28_2 doi: 10.1103/PhysRevLett.64.1437 – reference: 28729508 - Science. 2017 Jul 21;357(6348):294-299 – reference: 19519119 - Phys Rev Lett. 2009 May 29;102(21):216403 – reference: 18851555 - Phys Rev Lett. 2008 Oct 3;101(14):146802 – reference: 17525333 - Science. 2007 May 25;316(5828):1169-72 – reference: 11177808 - Phys Rev Lett. 2001 Jan 8;86(2):268-71 – reference: 22790778 - Rep Prog Phys. 2012 Jul;75(7):076501 – reference: 10041395 - Phys Rev Lett. 1990 Mar 19;64(12):1437-1440 – reference: 22026879 - Phys Rev Lett. 2011 Sep 23;107(13):136403 – reference: 20482161 - Phys Rev Lett. 2010 May 7;104(18):180505 – reference: 23493424 - Science. 2013 Apr 12;340(6129):167-70 – reference: 16486496 - Phys Rev Lett. 2006 Jan 13;96(1):016803 – reference: 20868069 - Phys Rev Lett. 2010 Aug 13;105(7):077001 – reference: 10038756 - Phys Rev Lett. 1988 Sep 12;61(11):1297-1300 – reference: 20522741 - Science. 2010 Jul 2;329(5987):61-4 – reference: 16486495 - Phys Rev Lett. 2006 Jan 13;96(1):016802 – reference: 19519120 - Phys Rev Lett. 2009 May 29;102(21):216404 – reference: 10045013 - Phys Rev Lett. 1991 Aug 12;67(7):883-886 |
SSID | ssj0009580 |
Score | 2.675023 |
Snippet | The chiral Majorana fermion is a massless self-conjugate fermion which can arise as the edge state of certain 2D topological matters. It has been theoretically... We propose a platform of quantum computation using the chiral Majorana fermions on the edges of topological materials. The quantum gates are naturally... Here, the chiral Majorana fermion is a massless self-conjugate fermion which can arise as the edge state of certain 2D topological matters. It has been... |
SourceID | pubmedcentral osti proquest pubmed crossref jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 10938 |
SubjectTerms | Braiding CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS Computation Conductance Fermions Majorana Physical Sciences quantum computing Quantum theory Qubits (quantum computing) Resistance Superconductors topological Topology |
Title | Topological quantum computation based on chiral Majorana fermions |
URI | https://www.jstor.org/stable/26532345 https://www.ncbi.nlm.nih.gov/pubmed/30297431 https://www.proquest.com/docview/2130271142 https://www.proquest.com/docview/2117394817 https://www.osti.gov/servlets/purl/1490636 https://pubmed.ncbi.nlm.nih.gov/PMC6205432 |
Volume | 115 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfKuHBBDBiEDRQkDkNVShI7dnMsCJgQVJu0od4ix3HXoJFutLnsv-A_5vkzadmkwSVKHddt_J7fh_3e7yH0JqGg9OYULLcEVhPhJIk4j2XExlWVsITjrNJon1N6dEa-zLLZYPC7F7XUrsuRuL4xr-R_qAptQFeVJfsPlPWDQgPcA33hChSG691obCoc6Hm-amGO2p86Rry1IYRKRVXqOEAsapWI_43_AIo3fDhXITBuo86apsdela1c4MDU7RROurwTKwxWw2h4PO2qGH-tzU7q-5ovu4Mm3TSDpuikdq3fubzWIQSTcnmxANu948-T2vdX4533tyQSjQ9rsoZ9igCoPmKSo0fSSFYwTCJKTG1QL3pNKqflMYJ7klTBXI17ahk-Gxiuv2Q-CClVqLjhqxGYK8rJc8NuoGtvaT0fi6hP4Rku1ABFN8A9dD8Fz0MVxfg8S3o4zmOT1WTf0KFFMfxu6x9sGDom1hXU_hIE903OzHZMbs_IOX2EHlrvJJwYVttFA9k8RruO5OGhBSl_-wRNerwXWt4Le7wXat4L4cbwXuh4L3S89xSdffp4-uEosuU4IgFe9DpKSQnWIJUq21vEVSJyTCpYzCIelzlhaZnGczYXucBj8MrnsE6rLKtYVdKYS7BT8R7aaZaNfI5CTjHTuE_g_JIsFrmUOBaMUSrAvk7yAI3c3BXCYtWrkikXxS3UCtCh_8KlgWm5veueJobvl9IMp5jAg31FnQJMT4WfLFSgmViDb5yDGU8DdOCIVlgRsCpSfeyv0tED9No_BgGtTt14I5et6pMwrDCRWICeGRr7n8aqdBxMTYDYBvV9BwX-vvmkqRcaBJ6m4Gzh9MXdX3wfPegW6wHaWf9q5UuwqNflK83jfwCF9MY7 |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Topological+quantum+computation+based+on+chiral+Majorana+fermions&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Lian%2C+Biao&rft.au=Sun%2C+Xiao-Qi&rft.au=Vaezi%2C+Abolhassan&rft.au=Qi%2C+Xiao-Liang&rft.date=2018-10-23&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=115&rft.issue=43&rft.spage=10938&rft.epage=10942&rft_id=info:doi/10.1073%2Fpnas.1810003115&rft.externalDBID=n%2Fa&rft.externalDocID=10_1073_pnas_1810003115 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon |