Leveraging machine learning to consolidate the diversity in experimental results of perovskite solar cells

Perovskite solar cells offer great potential for smart energy applications due to their flexibility and solution processability. However, the use of solution-based techniques has resulted in significant variations in device fabrication, leading to inconsistent results on the same composition. Machin...

Full description

Saved in:
Bibliographic Details
Published inRSC advances Vol. 13; no. 32; pp. 22529 - 22537
Main Authors Hussain, Wahid, Sawar, Samina, Sultan, Muhammad
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 19.07.2023
The Royal Society of Chemistry
Subjects
Online AccessGet full text
ISSN2046-2069
2046-2069
DOI10.1039/d3ra02305b

Cover

Loading…
Abstract Perovskite solar cells offer great potential for smart energy applications due to their flexibility and solution processability. However, the use of solution-based techniques has resulted in significant variations in device fabrication, leading to inconsistent results on the same composition. Machine learning (ML) and data science offer a potential solution to these challenges by enabling the automated design of perovskite solar cells. In this study, we leveraged machine learning tools to predict the band gap of hybrid organic-inorganic perovskites (HOIPs) and the power conversion efficiency of their solar cell devices. By analyzing 42 000 experimental datasets, we developed ML models for perovskite device design through a two-step predicting method, enabling the automation of perovskite materials development and device optimization. Additionally, band gap dependence of device parameters from experimental data is also validated, as predicted by the Shockley-Queisser model. This work has the potential to streamline the development of perovskite solar cells (PSCs) and optimize their performance without relying on time-consuming trial-and-error approaches. Application of a machine learning approach to device design. Starting from database analysis followed by a dataset creation based on those insights. Data preprocessing is done to extract features for ML prediction and design new PSCs.
AbstractList Perovskite solar cells offer great potential for smart energy applications due to their flexibility and solution processability. However, the use of solution-based techniques has resulted in significant variations in device fabrication, leading to inconsistent results on the same composition. Machine learning (ML) and data science offer a potential solution to these challenges by enabling the automated design of perovskite solar cells. In this study, we leveraged machine learning tools to predict the band gap of hybrid organic-inorganic perovskites (HOIPs) and the power conversion efficiency of their solar cell devices. By analyzing 42 000 experimental datasets, we developed ML models for perovskite device design through a two-step predicting method, enabling the automation of perovskite materials development and device optimization. Additionally, band gap dependence of device parameters from experimental data is also validated, as predicted by the Shockley-Queisser model. This work has the potential to streamline the development of perovskite solar cells (PSCs) and optimize their performance without relying on time-consuming trial-and-error approaches.
Perovskite solar cells offer great potential for smart energy applications due to their flexibility and solution processability. However, the use of solution-based techniques has resulted in significant variations in device fabrication, leading to inconsistent results on the same composition. Machine learning (ML) and data science offer a potential solution to these challenges by enabling the automated design of perovskite solar cells. In this study, we leveraged machine learning tools to predict the band gap of hybrid organic-inorganic perovskites (HOIPs) and the power conversion efficiency of their solar cell devices. By analyzing 42 000 experimental datasets, we developed ML models for perovskite device design through a two-step predicting method, enabling the automation of perovskite materials development and device optimization. Additionally, band gap dependence of device parameters from experimental data is also validated, as predicted by the Shockley-Queisser model. This work has the potential to streamline the development of perovskite solar cells (PSCs) and optimize their performance without relying on time-consuming trial-and-error approaches. Application of a machine learning approach to device design. Starting from database analysis followed by a dataset creation based on those insights. Data preprocessing is done to extract features for ML prediction and design new PSCs.
Perovskite solar cells offer great potential for smart energy applications due to their flexibility and solution processability. However, the use of solution-based techniques has resulted in significant variations in device fabrication, leading to inconsistent results on the same composition. Machine learning (ML) and data science offer a potential solution to these challenges by enabling the automated design of perovskite solar cells. In this study, we leveraged machine learning tools to predict the band gap of hybrid organic-inorganic perovskites (HOIPs) and the power conversion efficiency of their solar cell devices. By analyzing 42 000 experimental datasets, we developed ML models for perovskite device design through a two-step predicting method, enabling the automation of perovskite materials development and device optimization. Additionally, band gap dependence of device parameters from experimental data is also validated, as predicted by the Shockley-Queisser model. This work has the potential to streamline the development of perovskite solar cells (PSCs) and optimize their performance without relying on time-consuming trial-and-error approaches.Perovskite solar cells offer great potential for smart energy applications due to their flexibility and solution processability. However, the use of solution-based techniques has resulted in significant variations in device fabrication, leading to inconsistent results on the same composition. Machine learning (ML) and data science offer a potential solution to these challenges by enabling the automated design of perovskite solar cells. In this study, we leveraged machine learning tools to predict the band gap of hybrid organic-inorganic perovskites (HOIPs) and the power conversion efficiency of their solar cell devices. By analyzing 42 000 experimental datasets, we developed ML models for perovskite device design through a two-step predicting method, enabling the automation of perovskite materials development and device optimization. Additionally, band gap dependence of device parameters from experimental data is also validated, as predicted by the Shockley-Queisser model. This work has the potential to streamline the development of perovskite solar cells (PSCs) and optimize their performance without relying on time-consuming trial-and-error approaches.
Author Sawar, Samina
Sultan, Muhammad
Hussain, Wahid
AuthorAffiliation Department of Plant Sciences
Kohsar University Murree
Quaid-i-Azam University
Department of Physics
AuthorAffiliation_xml – sequence: 0
  name: Department of Physics
– sequence: 0
  name: Department of Plant Sciences
– sequence: 0
  name: Quaid-i-Azam University
– sequence: 0
  name: Kohsar University Murree
Author_xml – sequence: 1
  givenname: Wahid
  surname: Hussain
  fullname: Hussain, Wahid
– sequence: 2
  givenname: Samina
  surname: Sawar
  fullname: Sawar, Samina
– sequence: 3
  givenname: Muhammad
  surname: Sultan
  fullname: Sultan, Muhammad
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37497089$$D View this record in MEDLINE/PubMed
BookMark eNptkt1vFCEUxYmpsbX2xXcNiS_GZBUGho8nU-tnsomJ0ecJw9zZZWVhBWZj_3sZt661kRfI5XdOzuXyEJ2EGAChx5S8pITpVwNLhjSMtP09dNYQLhYNEfrk1vkUXeS8IXWJljaCPkCnTHItidJnaLOEPSSzcmGFt8auXQDswaQwF0rENoYcvRtMAVzWgAdX8ezKNXYBw88dJLeFUIzHCfLkS8ZxxLUa9_m7q5oqNglb8D4_QvdH4zNc3Ozn6Nv7d1-vPi6Wnz98urpcLizXbVk0tFVqbFnPNJNWNdpK0gsiRqs4tINioFSt91Zqycmg-UjADNI09TQyIOwcvT747qZ-C4Ot8ZLx3a4mNem6i8Z1_94Et-5Wcd_V9xRSt6I6PL9xSPHHBLl0W5fnHkyAOOWuUZwRxjVlFX12B93EKYXa30xxSiQVM_X0dqRjlj9zqMCLA2BTzDnBeEQomXPp7i37cvl7zm8qTO7A1hVTXJzbcf7_kicHScr2aP3367Bf9yu1QQ
CitedBy_id crossref_primary_10_1080_09500839_2024_2366219
crossref_primary_10_1016_j_mtcomm_2024_111113
crossref_primary_10_1016_j_commatsci_2024_113325
crossref_primary_10_1080_10407782_2024_2357582
crossref_primary_10_1002_adts_202400652
crossref_primary_10_1016_j_mtener_2024_101742
crossref_primary_10_1007_s10853_024_09802_2
crossref_primary_10_1038_s41524_024_01383_7
Cites_doi 10.1038/s41598-020-77474-4
10.1002/adfm.202214271
10.1016/j.jhazmat.2021.127848
10.1038/sdata.2016.18
10.1002/admi.201700731
10.1557/mrs.2015.167
10.1016/j.nanoen.2019.104249
10.1126/science.aad5845
10.1063/5.0004641
10.1126/science.aah5557
10.1016/j.pquantelec.2017.05.002
10.1007/s11434-013-0072-x
10.1002/aenm.201501310
10.1038/s41578-019-0151-y
10.1002/adma.201701077
10.3390/coatings12081089
10.1126/science.153.3731.34
10.1021/ja5033259
10.1021/acsenergylett.0c02100
10.1016/j.optmat.2021.111288
10.1016/j.commatsci.2021.110360
10.1016/j.solener.2021.02.018
10.1039/C5EE03874J
10.1002/aenm.201602400
10.1021/acsenergylett.2c00463
10.1007/s40820-023-01046-0
10.1021/acsomega.0c04406
10.1002/aenm.201901891
10.1021/acsami.7b06001
10.1088/1361-6463/abd65a
10.1038/s41560-021-00941-3
10.1021/acsami.1c10420
10.1021/acsomega.1c02156
10.3390/cryst12050573
10.1021/acs.jpclett.1c03526
10.1002/pssb.202000600
10.1038/s41586-018-0575-3
10.1007/BF01507527
10.1039/D2NR01292H
10.1063/1.4946894
10.1016/j.nanoen.2018.11.069
10.1021/acs.chemmater.5b04107
10.1039/D0EE02838J
10.1021/acsami.0c23032
10.1002/adma.201803019
ContentType Journal Article
Copyright This journal is © The Royal Society of Chemistry.
Copyright Royal Society of Chemistry 2023
This journal is © The Royal Society of Chemistry 2023 The Royal Society of Chemistry
Copyright_xml – notice: This journal is © The Royal Society of Chemistry.
– notice: Copyright Royal Society of Chemistry 2023
– notice: This journal is © The Royal Society of Chemistry 2023 The Royal Society of Chemistry
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
5PM
DOI 10.1039/d3ra02305b
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList PubMed


CrossRef
MEDLINE - Academic
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2046-2069
EndPage 22537
ExternalDocumentID PMC10367956
37497089
10_1039_D3RA02305B
d3ra02305b
Genre Journal Article
GroupedDBID -JG
0-7
0R~
53G
AAFWJ
AAHBH
AAIWI
AAJAE
AARTK
AAWGC
AAXHV
ABEMK
ABGFH
ABPDG
ABXOH
ACGFS
ADBBV
ADMRA
AEFDR
AENEX
AESAV
AFLYV
AFVBQ
AGEGJ
AGRSR
AGSTE
AHGCF
AKBGW
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
BCNDV
BLAPV
BSQNT
C6K
EBS
EE0
EF-
GROUPED_DOAJ
H13
HZ~
H~N
J3I
M~E
O9-
OK1
PGMZT
R7C
R7G
RCNCU
RPM
RPMJG
RRC
RSCEA
RVUXY
SLH
SMJ
ZCN
AAYXX
ABIQK
AFPKN
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
5PM
ID FETCH-LOGICAL-c495t-21588f53b3937c829c70b606fc84e5d83e887c8bc79740d94f0ead7a294ff3e03
ISSN 2046-2069
IngestDate Thu Aug 21 18:37:23 EDT 2025
Fri Jul 11 00:03:52 EDT 2025
Sun Jun 29 15:46:09 EDT 2025
Thu Jan 02 22:51:23 EST 2025
Thu Apr 24 23:07:00 EDT 2025
Tue Jul 01 04:20:37 EDT 2025
Tue Dec 17 20:58:22 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 32
Language English
License This journal is © The Royal Society of Chemistry.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c495t-21588f53b3937c829c70b606fc84e5d83e887c8bc79740d94f0ead7a294ff3e03
Notes https://doi.org/10.1039/d3ra02305b
Electronic supplementary information (ESI) available: The perovskite database, curated data, and supporting figures. See DOI
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0009-0008-9520-0553
0000-0002-2990-7197
OpenAccessLink http://dx.doi.org/10.1039/d3ra02305b
PMID 37497089
PQID 2844107163
PQPubID 2047525
PageCount 9
ParticipantIDs proquest_journals_2844107163
proquest_miscellaneous_2843034913
pubmed_primary_37497089
crossref_primary_10_1039_D3RA02305B
rsc_primary_d3ra02305b
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10367956
crossref_citationtrail_10_1039_D3RA02305B
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-07-19
PublicationDateYYYYMMDD 2023-07-19
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-19
  day: 19
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle RSC advances
PublicationTitleAlternate RSC Adv
PublicationYear 2023
Publisher Royal Society of Chemistry
The Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
– name: The Royal Society of Chemistry
References Ono (D3RA02305B/cit29/1) 2017; 9
Shockley (D3RA02305B/cit47/1) 1961; 32
Zhao (D3RA02305B/cit23/1) 2022; 12
Zhao (D3RA02305B/cit34/1) 2021; 30
Asif (D3RA02305B/cit11/1) 2021; 14
Goldschmidt (D3RA02305B/cit25/1) 1926; 14
Lee (D3RA02305B/cit30/1) 2015; 5
Martynow (D3RA02305B/cit44/1) 2020; 5
Wilkinson (D3RA02305B/cit19/1) 2016; 3
McMeekin (D3RA02305B/cit32/1) 2016; 351
Agrawal (D3RA02305B/cit7/1) 2016; 4
Zhuang (D3RA02305B/cit21/1) 2023; 15
Li (D3RA02305B/cit26/1) 2016; 28
Eibeck (D3RA02305B/cit15/1) 2021; 6
Ghanshyam (D3RA02305B/cit14/1) 2021; 193
Jacobson (D3RA02305B/cit20/1) 2021
Ouedraogo (D3RA02305B/cit24/1) 2020; 67
Liu (D3RA02305B/cit6/1) 2014; 59
Tran (D3RA02305B/cit42/1) 2021; 13
Yılmaz (D3RA02305B/cit13/1) 2020
Liu (D3RA02305B/cit8/1) 2020; 8
Odabası (D3RA02305B/cit17/1) 2019; 56
Yadav (D3RA02305B/cit27/1) 2017; 29
Chen (D3RA02305B/cit50/1) 2019; 31
Werner (D3RA02305B/cit37/1) 2017; 5
Liu (D3RA02305B/cit43/1) 2022; 14
Markvart (D3RA02305B/cit46/1) 2022; 11
Miyake (D3RA02305B/cit16/1) 2021; 12
Liu (D3RA02305B/cit12/1) 2023; 33
Hao (D3RA02305B/cit45/1) 2014; 136
Djurišić (D3RA02305B/cit5/1) 2017; 53
Maniyarasu (D3RA02305B/cit31/1) 2021; 13
Firdaus (D3RA02305B/cit4/1) 2021; 118
Ren (D3RA02305B/cit22/1) 2022; 426
Chen (D3RA02305B/cit39/1) 2017; 7
Bailie (D3RA02305B/cit38/1) 2015; 40
Saliba (D3RA02305B/cit33/1) 2016; 9
Saliba (D3RA02305B/cit28/1) 2016; 354
Bellman (D3RA02305B/cit36/1) 1966; 153
Lin (D3RA02305B/cit40/1) 2018; 562
Khee (D3RA02305B/cit41/1) 2021; 54
Liu (D3RA02305B/cit1/1) 2018; 51
Chantana (D3RA02305B/cit49/1) 2021; 217
Suzuki (D3RA02305B/cit10/1) 2020; 10
Goetz (D3RA02305B/cit35/1) 2022; 7
Roy (D3RA02305B/cit3/1) 2022; 12
Luo (D3RA02305B/cit48/1) 2020; 5
Maldonado (D3RA02305B/cit2/1) 2020; 5
Katsikas (D3RA02305B/cit9/1) 2021; 258
Li (D3RA02305B/cit18/1) 2019
References_xml – volume: 10
  start-page: 21790
  year: 2020
  ident: D3RA02305B/cit10/1
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-77474-4
– volume: 33
  start-page: 2214271
  year: 2023
  ident: D3RA02305B/cit12/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202214271
– volume: 426
  start-page: 127848
  year: 2022
  ident: D3RA02305B/cit22/1
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2021.127848
– volume: 3
  start-page: 160018
  year: 2016
  ident: D3RA02305B/cit19/1
  publication-title: Sci. Data
  doi: 10.1038/sdata.2016.18
– volume: 5
  start-page: 1700731
  year: 2017
  ident: D3RA02305B/cit37/1
  publication-title: Adv. Mater. Interfaces
  doi: 10.1002/admi.201700731
– volume: 40
  start-page: 681
  year: 2015
  ident: D3RA02305B/cit38/1
  publication-title: MRS Bull.
  doi: 10.1557/mrs.2015.167
– volume: 67
  start-page: 104249
  year: 2020
  ident: D3RA02305B/cit24/1
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.104249
– volume: 351
  start-page: 151
  year: 2016
  ident: D3RA02305B/cit32/1
  publication-title: Science
  doi: 10.1126/science.aad5845
– volume: 8
  start-page: 061104
  year: 2020
  ident: D3RA02305B/cit8/1
  publication-title: APL Mater.
  doi: 10.1063/5.0004641
– volume: 354
  start-page: 206
  year: 2016
  ident: D3RA02305B/cit28/1
  publication-title: Science
  doi: 10.1126/science.aah5557
– volume: 30
  start-page: 1
  year: 2021
  ident: D3RA02305B/cit34/1
  publication-title: ACM Trans. Softw. Eng. Methodol.
– volume: 32
  start-page: 160
  year: 1961
  ident: D3RA02305B/cit47/1
  publication-title: J. Appl. Phys.
– volume: 53
  start-page: 1
  year: 2017
  ident: D3RA02305B/cit5/1
  publication-title: Prog. Quantum Electron.
  doi: 10.1016/j.pquantelec.2017.05.002
– volume: 59
  start-page: 1619
  year: 2014
  ident: D3RA02305B/cit6/1
  publication-title: Chin. Sci. Bull.
  doi: 10.1007/s11434-013-0072-x
– volume: 5
  start-page: 1501310
  year: 2015
  ident: D3RA02305B/cit30/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201501310
– volume: 5
  start-page: 44
  year: 2020
  ident: D3RA02305B/cit48/1
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/s41578-019-0151-y
– volume: 29
  start-page: 1701077
  year: 2017
  ident: D3RA02305B/cit27/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201701077
– volume: 12
  start-page: 1089
  year: 2022
  ident: D3RA02305B/cit3/1
  publication-title: Coatings
  doi: 10.3390/coatings12081089
– volume: 153
  start-page: 34
  year: 1966
  ident: D3RA02305B/cit36/1
  publication-title: Science
  doi: 10.1126/science.153.3731.34
– volume: 136
  start-page: 8094
  year: 2014
  ident: D3RA02305B/cit45/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja5033259
– volume: 5
  start-page: 3628
  year: 2020
  ident: D3RA02305B/cit2/1
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.0c02100
– volume: 118
  start-page: 111288
  year: 2021
  ident: D3RA02305B/cit4/1
  publication-title: Opt. Mater.
  doi: 10.1016/j.optmat.2021.111288
– volume: 193
  start-page: 110360
  year: 2021
  ident: D3RA02305B/cit14/1
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2021.110360
– volume: 217
  start-page: 342
  year: 2021
  ident: D3RA02305B/cit49/1
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2021.02.018
– volume: 9
  start-page: 19891997
  year: 2016
  ident: D3RA02305B/cit33/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C5EE03874J
– volume: 7
  start-page: 1602400
  year: 2017
  ident: D3RA02305B/cit39/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201602400
– volume: 7
  start-page: 1750
  year: 2022
  ident: D3RA02305B/cit35/1
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.2c00463
– volume: 15
  start-page: 84
  year: 2023
  ident: D3RA02305B/cit21/1
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-023-01046-0
– volume: 5
  start-page: 26946
  year: 2020
  ident: D3RA02305B/cit44/1
  publication-title: ACS Omega
  doi: 10.1021/acsomega.0c04406
– start-page: 1901891
  year: 2019
  ident: D3RA02305B/cit18/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201901891
– volume: 9
  start-page: 30197
  year: 2017
  ident: D3RA02305B/cit29/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b06001
– volume: 11
  start-page: 430
  year: 2022
  ident: D3RA02305B/cit46/1
  publication-title: Energy Environ.
– volume: 51
  start-page: 123001
  year: 2018
  ident: D3RA02305B/cit1/1
  publication-title: Appl. Phys.
– volume: 54
  start-page: 143001
  year: 2021
  ident: D3RA02305B/cit41/1
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/1361-6463/abd65a
– start-page: 107
  year: 2021
  ident: D3RA02305B/cit20/1
  publication-title: Nat. Energy
  doi: 10.1038/s41560-021-00941-3
– volume: 13
  start-page: 43573
  year: 2021
  ident: D3RA02305B/cit31/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c10420
– volume: 6
  start-page: 2376423775
  year: 2021
  ident: D3RA02305B/cit15/1
  publication-title: ACS Omega
  doi: 10.1021/acsomega.1c02156
– start-page: 105546
  year: 2020
  ident: D3RA02305B/cit13/1
  publication-title: Nano Energy
– volume: 12
  start-page: 573
  year: 2022
  ident: D3RA02305B/cit23/1
  publication-title: Crystals
  doi: 10.3390/cryst12050573
– volume: 12
  start-page: 1239112401
  year: 2021
  ident: D3RA02305B/cit16/1
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.1c03526
– volume: 258
  start-page: 2000600
  year: 2021
  ident: D3RA02305B/cit9/1
  publication-title: Phys. Status Solidi B
  doi: 10.1002/pssb.202000600
– volume: 562
  start-page: 245
  year: 2018
  ident: D3RA02305B/cit40/1
  publication-title: Nature
  doi: 10.1038/s41586-018-0575-3
– volume: 14
  start-page: 477
  year: 1926
  ident: D3RA02305B/cit25/1
  publication-title: Naturwissenschaften
  doi: 10.1007/BF01507527
– volume: 14
  start-page: 6743
  year: 2022
  ident: D3RA02305B/cit43/1
  publication-title: Nanoscale
  doi: 10.1039/D2NR01292H
– volume: 4
  start-page: 053208
  year: 2016
  ident: D3RA02305B/cit7/1
  publication-title: APL Mater.
  doi: 10.1063/1.4946894
– volume: 56
  start-page: 770
  year: 2019
  ident: D3RA02305B/cit17/1
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.11.069
– volume: 28
  start-page: 284
  year: 2016
  ident: D3RA02305B/cit26/1
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.5b04107
– volume: 14
  start-page: 90
  year: 2021
  ident: D3RA02305B/cit11/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D0EE02838J
– volume: 13
  start-page: 13372
  year: 2021
  ident: D3RA02305B/cit42/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c23032
– volume: 31
  start-page: 1803019
  year: 2019
  ident: D3RA02305B/cit50/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201803019
SSID ssj0000651261
Score 2.4365113
Snippet Perovskite solar cells offer great potential for smart energy applications due to their flexibility and solution processability. However, the use of...
SourceID pubmedcentral
proquest
pubmed
crossref
rsc
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 22529
SubjectTerms Automation
Chemistry
Data science
Energy conversion efficiency
Energy gap
Machine learning
Optimization
Perovskites
Photovoltaic cells
Solar cells
Title Leveraging machine learning to consolidate the diversity in experimental results of perovskite solar cells
URI https://www.ncbi.nlm.nih.gov/pubmed/37497089
https://www.proquest.com/docview/2844107163
https://www.proquest.com/docview/2843034913
https://pubmed.ncbi.nlm.nih.gov/PMC10367956
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZoOcAF8SqkFGQEF1SlJHEe9oFDtYAqRDl0W9Hbykmc7qJuFm2SIvHrGT-TJXsoXKJs4mwe88Webzz5BqG3IYFRqACmykQq_DitEp9HkRSCpCEHOlEmqkrE6bf05CL-cplc9sEc9XVJmx8Vv7d-V_I_VoVtYFf5lew_WNb9KWyAdbAvLMHCsLyVjb8KuGRdZmipkiKFrQJxJX1KoLpw_oXk9Mq_LF0OxmIk7d901zqrQwqH3zQypnvYSNp7KEP7zdCHPZtObOpA06OiabiWI_jO5zZLvvsw5b90BveUL02hbjMF1erI62k358slL4fRh4jIsKbp41QnFQG_BpvocitHYss228uSAZpMSNP0mVFigh7C_tY6MKPePSBSHPUjOTuWzCnp53jcvP1fQ5tLOFRT7YTN-mN30N0ImEU0YOF68AYPSKnsuruworaEve8P33RjRtxknGK7s7YVZZTncv4QPTCUAx9r_DxCd0T9GN2b2Ep_T9CPHkfY4AhbHOF2hQc4woAj7HCEFzUe4ggbHOFVhXscYYUjrHD0FF18_nQ-OfFNDQ6_AOrc-uARUlolJJfCiQWNWJEFOZDeqqCxSEpKBIxSBc2LDIhpULK4CqBvyngEaxURAdlDu_WqFs8RzmnFAkZYHoPbyIOCZ2kpmyYiBA5Shh56Zx_prDAC9bJOyvVsbD0PvXFtf2pZlq2tDqxlZua1bWbgj8UhONYp8dBrtxueuHwMvBarTrUhUrgphDbPtCHdaUgWsyygzEN0w8SugRRs39xTL-ZKuB0uL81YknpoD9DgDijJmqsLzvdvdVsv0P3-VTxAu-26Ey_BNW7zVwrMfwAbDboy
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Leveraging+machine+learning+to+consolidate+the+diversity+in+experimental+results+of+perovskite+solar+cells&rft.jtitle=RSC+advances&rft.au=Hussain%2C+Wahid&rft.au=Sawar%2C+Samina&rft.au=Sultan%2C+Muhammad&rft.date=2023-07-19&rft.issn=2046-2069&rft.eissn=2046-2069&rft.volume=13&rft.issue=32&rft.spage=22529&rft.epage=22537&rft_id=info:doi/10.1039%2FD3RA02305B&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_D3RA02305B
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2046-2069&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2046-2069&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2046-2069&client=summon