Leveraging machine learning to consolidate the diversity in experimental results of perovskite solar cells
Perovskite solar cells offer great potential for smart energy applications due to their flexibility and solution processability. However, the use of solution-based techniques has resulted in significant variations in device fabrication, leading to inconsistent results on the same composition. Machin...
Saved in:
Published in | RSC advances Vol. 13; no. 32; pp. 22529 - 22537 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
19.07.2023
The Royal Society of Chemistry |
Subjects | |
Online Access | Get full text |
ISSN | 2046-2069 2046-2069 |
DOI | 10.1039/d3ra02305b |
Cover
Loading…
Abstract | Perovskite solar cells offer great potential for smart energy applications due to their flexibility and solution processability. However, the use of solution-based techniques has resulted in significant variations in device fabrication, leading to inconsistent results on the same composition. Machine learning (ML) and data science offer a potential solution to these challenges by enabling the automated design of perovskite solar cells. In this study, we leveraged machine learning tools to predict the band gap of hybrid organic-inorganic perovskites (HOIPs) and the power conversion efficiency of their solar cell devices. By analyzing 42 000 experimental datasets, we developed ML models for perovskite device design through a two-step predicting method, enabling the automation of perovskite materials development and device optimization. Additionally, band gap dependence of device parameters from experimental data is also validated, as predicted by the Shockley-Queisser model. This work has the potential to streamline the development of perovskite solar cells (PSCs) and optimize their performance without relying on time-consuming trial-and-error approaches.
Application of a machine learning approach to device design. Starting from database analysis followed by a dataset creation based on those insights. Data preprocessing is done to extract features for ML prediction and design new PSCs. |
---|---|
AbstractList | Perovskite solar cells offer great potential for smart energy applications due to their flexibility and solution processability. However, the use of solution-based techniques has resulted in significant variations in device fabrication, leading to inconsistent results on the same composition. Machine learning (ML) and data science offer a potential solution to these challenges by enabling the automated design of perovskite solar cells. In this study, we leveraged machine learning tools to predict the band gap of hybrid organic-inorganic perovskites (HOIPs) and the power conversion efficiency of their solar cell devices. By analyzing 42 000 experimental datasets, we developed ML models for perovskite device design through a two-step predicting method, enabling the automation of perovskite materials development and device optimization. Additionally, band gap dependence of device parameters from experimental data is also validated, as predicted by the Shockley-Queisser model. This work has the potential to streamline the development of perovskite solar cells (PSCs) and optimize their performance without relying on time-consuming trial-and-error approaches. Perovskite solar cells offer great potential for smart energy applications due to their flexibility and solution processability. However, the use of solution-based techniques has resulted in significant variations in device fabrication, leading to inconsistent results on the same composition. Machine learning (ML) and data science offer a potential solution to these challenges by enabling the automated design of perovskite solar cells. In this study, we leveraged machine learning tools to predict the band gap of hybrid organic-inorganic perovskites (HOIPs) and the power conversion efficiency of their solar cell devices. By analyzing 42 000 experimental datasets, we developed ML models for perovskite device design through a two-step predicting method, enabling the automation of perovskite materials development and device optimization. Additionally, band gap dependence of device parameters from experimental data is also validated, as predicted by the Shockley-Queisser model. This work has the potential to streamline the development of perovskite solar cells (PSCs) and optimize their performance without relying on time-consuming trial-and-error approaches. Application of a machine learning approach to device design. Starting from database analysis followed by a dataset creation based on those insights. Data preprocessing is done to extract features for ML prediction and design new PSCs. Perovskite solar cells offer great potential for smart energy applications due to their flexibility and solution processability. However, the use of solution-based techniques has resulted in significant variations in device fabrication, leading to inconsistent results on the same composition. Machine learning (ML) and data science offer a potential solution to these challenges by enabling the automated design of perovskite solar cells. In this study, we leveraged machine learning tools to predict the band gap of hybrid organic-inorganic perovskites (HOIPs) and the power conversion efficiency of their solar cell devices. By analyzing 42 000 experimental datasets, we developed ML models for perovskite device design through a two-step predicting method, enabling the automation of perovskite materials development and device optimization. Additionally, band gap dependence of device parameters from experimental data is also validated, as predicted by the Shockley-Queisser model. This work has the potential to streamline the development of perovskite solar cells (PSCs) and optimize their performance without relying on time-consuming trial-and-error approaches.Perovskite solar cells offer great potential for smart energy applications due to their flexibility and solution processability. However, the use of solution-based techniques has resulted in significant variations in device fabrication, leading to inconsistent results on the same composition. Machine learning (ML) and data science offer a potential solution to these challenges by enabling the automated design of perovskite solar cells. In this study, we leveraged machine learning tools to predict the band gap of hybrid organic-inorganic perovskites (HOIPs) and the power conversion efficiency of their solar cell devices. By analyzing 42 000 experimental datasets, we developed ML models for perovskite device design through a two-step predicting method, enabling the automation of perovskite materials development and device optimization. Additionally, band gap dependence of device parameters from experimental data is also validated, as predicted by the Shockley-Queisser model. This work has the potential to streamline the development of perovskite solar cells (PSCs) and optimize their performance without relying on time-consuming trial-and-error approaches. |
Author | Sawar, Samina Sultan, Muhammad Hussain, Wahid |
AuthorAffiliation | Department of Plant Sciences Kohsar University Murree Quaid-i-Azam University Department of Physics |
AuthorAffiliation_xml | – sequence: 0 name: Department of Physics – sequence: 0 name: Department of Plant Sciences – sequence: 0 name: Quaid-i-Azam University – sequence: 0 name: Kohsar University Murree |
Author_xml | – sequence: 1 givenname: Wahid surname: Hussain fullname: Hussain, Wahid – sequence: 2 givenname: Samina surname: Sawar fullname: Sawar, Samina – sequence: 3 givenname: Muhammad surname: Sultan fullname: Sultan, Muhammad |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37497089$$D View this record in MEDLINE/PubMed |
BookMark | eNptkt1vFCEUxYmpsbX2xXcNiS_GZBUGho8nU-tnsomJ0ecJw9zZZWVhBWZj_3sZt661kRfI5XdOzuXyEJ2EGAChx5S8pITpVwNLhjSMtP09dNYQLhYNEfrk1vkUXeS8IXWJljaCPkCnTHItidJnaLOEPSSzcmGFt8auXQDswaQwF0rENoYcvRtMAVzWgAdX8ezKNXYBw88dJLeFUIzHCfLkS8ZxxLUa9_m7q5oqNglb8D4_QvdH4zNc3Ozn6Nv7d1-vPi6Wnz98urpcLizXbVk0tFVqbFnPNJNWNdpK0gsiRqs4tINioFSt91Zqycmg-UjADNI09TQyIOwcvT747qZ-C4Ot8ZLx3a4mNem6i8Z1_94Et-5Wcd_V9xRSt6I6PL9xSPHHBLl0W5fnHkyAOOWuUZwRxjVlFX12B93EKYXa30xxSiQVM_X0dqRjlj9zqMCLA2BTzDnBeEQomXPp7i37cvl7zm8qTO7A1hVTXJzbcf7_kicHScr2aP3367Bf9yu1QQ |
CitedBy_id | crossref_primary_10_1080_09500839_2024_2366219 crossref_primary_10_1016_j_mtcomm_2024_111113 crossref_primary_10_1016_j_commatsci_2024_113325 crossref_primary_10_1080_10407782_2024_2357582 crossref_primary_10_1002_adts_202400652 crossref_primary_10_1016_j_mtener_2024_101742 crossref_primary_10_1007_s10853_024_09802_2 crossref_primary_10_1038_s41524_024_01383_7 |
Cites_doi | 10.1038/s41598-020-77474-4 10.1002/adfm.202214271 10.1016/j.jhazmat.2021.127848 10.1038/sdata.2016.18 10.1002/admi.201700731 10.1557/mrs.2015.167 10.1016/j.nanoen.2019.104249 10.1126/science.aad5845 10.1063/5.0004641 10.1126/science.aah5557 10.1016/j.pquantelec.2017.05.002 10.1007/s11434-013-0072-x 10.1002/aenm.201501310 10.1038/s41578-019-0151-y 10.1002/adma.201701077 10.3390/coatings12081089 10.1126/science.153.3731.34 10.1021/ja5033259 10.1021/acsenergylett.0c02100 10.1016/j.optmat.2021.111288 10.1016/j.commatsci.2021.110360 10.1016/j.solener.2021.02.018 10.1039/C5EE03874J 10.1002/aenm.201602400 10.1021/acsenergylett.2c00463 10.1007/s40820-023-01046-0 10.1021/acsomega.0c04406 10.1002/aenm.201901891 10.1021/acsami.7b06001 10.1088/1361-6463/abd65a 10.1038/s41560-021-00941-3 10.1021/acsami.1c10420 10.1021/acsomega.1c02156 10.3390/cryst12050573 10.1021/acs.jpclett.1c03526 10.1002/pssb.202000600 10.1038/s41586-018-0575-3 10.1007/BF01507527 10.1039/D2NR01292H 10.1063/1.4946894 10.1016/j.nanoen.2018.11.069 10.1021/acs.chemmater.5b04107 10.1039/D0EE02838J 10.1021/acsami.0c23032 10.1002/adma.201803019 |
ContentType | Journal Article |
Copyright | This journal is © The Royal Society of Chemistry. Copyright Royal Society of Chemistry 2023 This journal is © The Royal Society of Chemistry 2023 The Royal Society of Chemistry |
Copyright_xml | – notice: This journal is © The Royal Society of Chemistry. – notice: Copyright Royal Society of Chemistry 2023 – notice: This journal is © The Royal Society of Chemistry 2023 The Royal Society of Chemistry |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 5PM |
DOI | 10.1039/d3ra02305b |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef MEDLINE - Academic Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2046-2069 |
EndPage | 22537 |
ExternalDocumentID | PMC10367956 37497089 10_1039_D3RA02305B d3ra02305b |
Genre | Journal Article |
GroupedDBID | -JG 0-7 0R~ 53G AAFWJ AAHBH AAIWI AAJAE AARTK AAWGC AAXHV ABEMK ABGFH ABPDG ABXOH ACGFS ADBBV ADMRA AEFDR AENEX AESAV AFLYV AFVBQ AGEGJ AGRSR AGSTE AHGCF AKBGW ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AUDPV BCNDV BLAPV BSQNT C6K EBS EE0 EF- GROUPED_DOAJ H13 HZ~ H~N J3I M~E O9- OK1 PGMZT R7C R7G RCNCU RPM RPMJG RRC RSCEA RVUXY SLH SMJ ZCN AAYXX ABIQK AFPKN CITATION NPM 7SR 8BQ 8FD JG9 7X8 5PM |
ID | FETCH-LOGICAL-c495t-21588f53b3937c829c70b606fc84e5d83e887c8bc79740d94f0ead7a294ff3e03 |
ISSN | 2046-2069 |
IngestDate | Thu Aug 21 18:37:23 EDT 2025 Fri Jul 11 00:03:52 EDT 2025 Sun Jun 29 15:46:09 EDT 2025 Thu Jan 02 22:51:23 EST 2025 Thu Apr 24 23:07:00 EDT 2025 Tue Jul 01 04:20:37 EDT 2025 Tue Dec 17 20:58:22 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 32 |
Language | English |
License | This journal is © The Royal Society of Chemistry. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c495t-21588f53b3937c829c70b606fc84e5d83e887c8bc79740d94f0ead7a294ff3e03 |
Notes | https://doi.org/10.1039/d3ra02305b Electronic supplementary information (ESI) available: The perovskite database, curated data, and supporting figures. See DOI ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0009-0008-9520-0553 0000-0002-2990-7197 |
OpenAccessLink | http://dx.doi.org/10.1039/d3ra02305b |
PMID | 37497089 |
PQID | 2844107163 |
PQPubID | 2047525 |
PageCount | 9 |
ParticipantIDs | proquest_journals_2844107163 proquest_miscellaneous_2843034913 pubmed_primary_37497089 crossref_primary_10_1039_D3RA02305B rsc_primary_d3ra02305b pubmedcentral_primary_oai_pubmedcentral_nih_gov_10367956 crossref_citationtrail_10_1039_D3RA02305B |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-07-19 |
PublicationDateYYYYMMDD | 2023-07-19 |
PublicationDate_xml | – month: 07 year: 2023 text: 2023-07-19 day: 19 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | RSC advances |
PublicationTitleAlternate | RSC Adv |
PublicationYear | 2023 |
Publisher | Royal Society of Chemistry The Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry – name: The Royal Society of Chemistry |
References | Ono (D3RA02305B/cit29/1) 2017; 9 Shockley (D3RA02305B/cit47/1) 1961; 32 Zhao (D3RA02305B/cit23/1) 2022; 12 Zhao (D3RA02305B/cit34/1) 2021; 30 Asif (D3RA02305B/cit11/1) 2021; 14 Goldschmidt (D3RA02305B/cit25/1) 1926; 14 Lee (D3RA02305B/cit30/1) 2015; 5 Martynow (D3RA02305B/cit44/1) 2020; 5 Wilkinson (D3RA02305B/cit19/1) 2016; 3 McMeekin (D3RA02305B/cit32/1) 2016; 351 Agrawal (D3RA02305B/cit7/1) 2016; 4 Zhuang (D3RA02305B/cit21/1) 2023; 15 Li (D3RA02305B/cit26/1) 2016; 28 Eibeck (D3RA02305B/cit15/1) 2021; 6 Ghanshyam (D3RA02305B/cit14/1) 2021; 193 Jacobson (D3RA02305B/cit20/1) 2021 Ouedraogo (D3RA02305B/cit24/1) 2020; 67 Liu (D3RA02305B/cit6/1) 2014; 59 Tran (D3RA02305B/cit42/1) 2021; 13 Yılmaz (D3RA02305B/cit13/1) 2020 Liu (D3RA02305B/cit8/1) 2020; 8 Odabası (D3RA02305B/cit17/1) 2019; 56 Yadav (D3RA02305B/cit27/1) 2017; 29 Chen (D3RA02305B/cit50/1) 2019; 31 Werner (D3RA02305B/cit37/1) 2017; 5 Liu (D3RA02305B/cit43/1) 2022; 14 Markvart (D3RA02305B/cit46/1) 2022; 11 Miyake (D3RA02305B/cit16/1) 2021; 12 Liu (D3RA02305B/cit12/1) 2023; 33 Hao (D3RA02305B/cit45/1) 2014; 136 Djurišić (D3RA02305B/cit5/1) 2017; 53 Maniyarasu (D3RA02305B/cit31/1) 2021; 13 Firdaus (D3RA02305B/cit4/1) 2021; 118 Ren (D3RA02305B/cit22/1) 2022; 426 Chen (D3RA02305B/cit39/1) 2017; 7 Bailie (D3RA02305B/cit38/1) 2015; 40 Saliba (D3RA02305B/cit33/1) 2016; 9 Saliba (D3RA02305B/cit28/1) 2016; 354 Bellman (D3RA02305B/cit36/1) 1966; 153 Lin (D3RA02305B/cit40/1) 2018; 562 Khee (D3RA02305B/cit41/1) 2021; 54 Liu (D3RA02305B/cit1/1) 2018; 51 Chantana (D3RA02305B/cit49/1) 2021; 217 Suzuki (D3RA02305B/cit10/1) 2020; 10 Goetz (D3RA02305B/cit35/1) 2022; 7 Roy (D3RA02305B/cit3/1) 2022; 12 Luo (D3RA02305B/cit48/1) 2020; 5 Maldonado (D3RA02305B/cit2/1) 2020; 5 Katsikas (D3RA02305B/cit9/1) 2021; 258 Li (D3RA02305B/cit18/1) 2019 |
References_xml | – volume: 10 start-page: 21790 year: 2020 ident: D3RA02305B/cit10/1 publication-title: Sci. Rep. doi: 10.1038/s41598-020-77474-4 – volume: 33 start-page: 2214271 year: 2023 ident: D3RA02305B/cit12/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202214271 – volume: 426 start-page: 127848 year: 2022 ident: D3RA02305B/cit22/1 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2021.127848 – volume: 3 start-page: 160018 year: 2016 ident: D3RA02305B/cit19/1 publication-title: Sci. Data doi: 10.1038/sdata.2016.18 – volume: 5 start-page: 1700731 year: 2017 ident: D3RA02305B/cit37/1 publication-title: Adv. Mater. Interfaces doi: 10.1002/admi.201700731 – volume: 40 start-page: 681 year: 2015 ident: D3RA02305B/cit38/1 publication-title: MRS Bull. doi: 10.1557/mrs.2015.167 – volume: 67 start-page: 104249 year: 2020 ident: D3RA02305B/cit24/1 publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.104249 – volume: 351 start-page: 151 year: 2016 ident: D3RA02305B/cit32/1 publication-title: Science doi: 10.1126/science.aad5845 – volume: 8 start-page: 061104 year: 2020 ident: D3RA02305B/cit8/1 publication-title: APL Mater. doi: 10.1063/5.0004641 – volume: 354 start-page: 206 year: 2016 ident: D3RA02305B/cit28/1 publication-title: Science doi: 10.1126/science.aah5557 – volume: 30 start-page: 1 year: 2021 ident: D3RA02305B/cit34/1 publication-title: ACM Trans. Softw. Eng. Methodol. – volume: 32 start-page: 160 year: 1961 ident: D3RA02305B/cit47/1 publication-title: J. Appl. Phys. – volume: 53 start-page: 1 year: 2017 ident: D3RA02305B/cit5/1 publication-title: Prog. Quantum Electron. doi: 10.1016/j.pquantelec.2017.05.002 – volume: 59 start-page: 1619 year: 2014 ident: D3RA02305B/cit6/1 publication-title: Chin. Sci. Bull. doi: 10.1007/s11434-013-0072-x – volume: 5 start-page: 1501310 year: 2015 ident: D3RA02305B/cit30/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201501310 – volume: 5 start-page: 44 year: 2020 ident: D3RA02305B/cit48/1 publication-title: Nat. Rev. Mater. doi: 10.1038/s41578-019-0151-y – volume: 29 start-page: 1701077 year: 2017 ident: D3RA02305B/cit27/1 publication-title: Adv. Mater. doi: 10.1002/adma.201701077 – volume: 12 start-page: 1089 year: 2022 ident: D3RA02305B/cit3/1 publication-title: Coatings doi: 10.3390/coatings12081089 – volume: 153 start-page: 34 year: 1966 ident: D3RA02305B/cit36/1 publication-title: Science doi: 10.1126/science.153.3731.34 – volume: 136 start-page: 8094 year: 2014 ident: D3RA02305B/cit45/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja5033259 – volume: 5 start-page: 3628 year: 2020 ident: D3RA02305B/cit2/1 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.0c02100 – volume: 118 start-page: 111288 year: 2021 ident: D3RA02305B/cit4/1 publication-title: Opt. Mater. doi: 10.1016/j.optmat.2021.111288 – volume: 193 start-page: 110360 year: 2021 ident: D3RA02305B/cit14/1 publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2021.110360 – volume: 217 start-page: 342 year: 2021 ident: D3RA02305B/cit49/1 publication-title: Sol. Energy doi: 10.1016/j.solener.2021.02.018 – volume: 9 start-page: 19891997 year: 2016 ident: D3RA02305B/cit33/1 publication-title: Energy Environ. Sci. doi: 10.1039/C5EE03874J – volume: 7 start-page: 1602400 year: 2017 ident: D3RA02305B/cit39/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201602400 – volume: 7 start-page: 1750 year: 2022 ident: D3RA02305B/cit35/1 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.2c00463 – volume: 15 start-page: 84 year: 2023 ident: D3RA02305B/cit21/1 publication-title: Nano-Micro Lett. doi: 10.1007/s40820-023-01046-0 – volume: 5 start-page: 26946 year: 2020 ident: D3RA02305B/cit44/1 publication-title: ACS Omega doi: 10.1021/acsomega.0c04406 – start-page: 1901891 year: 2019 ident: D3RA02305B/cit18/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201901891 – volume: 9 start-page: 30197 year: 2017 ident: D3RA02305B/cit29/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b06001 – volume: 11 start-page: 430 year: 2022 ident: D3RA02305B/cit46/1 publication-title: Energy Environ. – volume: 51 start-page: 123001 year: 2018 ident: D3RA02305B/cit1/1 publication-title: Appl. Phys. – volume: 54 start-page: 143001 year: 2021 ident: D3RA02305B/cit41/1 publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/1361-6463/abd65a – start-page: 107 year: 2021 ident: D3RA02305B/cit20/1 publication-title: Nat. Energy doi: 10.1038/s41560-021-00941-3 – volume: 13 start-page: 43573 year: 2021 ident: D3RA02305B/cit31/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c10420 – volume: 6 start-page: 2376423775 year: 2021 ident: D3RA02305B/cit15/1 publication-title: ACS Omega doi: 10.1021/acsomega.1c02156 – start-page: 105546 year: 2020 ident: D3RA02305B/cit13/1 publication-title: Nano Energy – volume: 12 start-page: 573 year: 2022 ident: D3RA02305B/cit23/1 publication-title: Crystals doi: 10.3390/cryst12050573 – volume: 12 start-page: 1239112401 year: 2021 ident: D3RA02305B/cit16/1 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.1c03526 – volume: 258 start-page: 2000600 year: 2021 ident: D3RA02305B/cit9/1 publication-title: Phys. Status Solidi B doi: 10.1002/pssb.202000600 – volume: 562 start-page: 245 year: 2018 ident: D3RA02305B/cit40/1 publication-title: Nature doi: 10.1038/s41586-018-0575-3 – volume: 14 start-page: 477 year: 1926 ident: D3RA02305B/cit25/1 publication-title: Naturwissenschaften doi: 10.1007/BF01507527 – volume: 14 start-page: 6743 year: 2022 ident: D3RA02305B/cit43/1 publication-title: Nanoscale doi: 10.1039/D2NR01292H – volume: 4 start-page: 053208 year: 2016 ident: D3RA02305B/cit7/1 publication-title: APL Mater. doi: 10.1063/1.4946894 – volume: 56 start-page: 770 year: 2019 ident: D3RA02305B/cit17/1 publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.11.069 – volume: 28 start-page: 284 year: 2016 ident: D3RA02305B/cit26/1 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.5b04107 – volume: 14 start-page: 90 year: 2021 ident: D3RA02305B/cit11/1 publication-title: Energy Environ. Sci. doi: 10.1039/D0EE02838J – volume: 13 start-page: 13372 year: 2021 ident: D3RA02305B/cit42/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c23032 – volume: 31 start-page: 1803019 year: 2019 ident: D3RA02305B/cit50/1 publication-title: Adv. Mater. doi: 10.1002/adma.201803019 |
SSID | ssj0000651261 |
Score | 2.4365113 |
Snippet | Perovskite solar cells offer great potential for smart energy applications due to their flexibility and solution processability. However, the use of... |
SourceID | pubmedcentral proquest pubmed crossref rsc |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 22529 |
SubjectTerms | Automation Chemistry Data science Energy conversion efficiency Energy gap Machine learning Optimization Perovskites Photovoltaic cells Solar cells |
Title | Leveraging machine learning to consolidate the diversity in experimental results of perovskite solar cells |
URI | https://www.ncbi.nlm.nih.gov/pubmed/37497089 https://www.proquest.com/docview/2844107163 https://www.proquest.com/docview/2843034913 https://pubmed.ncbi.nlm.nih.gov/PMC10367956 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZoOcAF8SqkFGQEF1SlJHEe9oFDtYAqRDl0W9Hbykmc7qJuFm2SIvHrGT-TJXsoXKJs4mwe88Webzz5BqG3IYFRqACmykQq_DitEp9HkRSCpCEHOlEmqkrE6bf05CL-cplc9sEc9XVJmx8Vv7d-V_I_VoVtYFf5lew_WNb9KWyAdbAvLMHCsLyVjb8KuGRdZmipkiKFrQJxJX1KoLpw_oXk9Mq_LF0OxmIk7d901zqrQwqH3zQypnvYSNp7KEP7zdCHPZtObOpA06OiabiWI_jO5zZLvvsw5b90BveUL02hbjMF1erI62k358slL4fRh4jIsKbp41QnFQG_BpvocitHYss228uSAZpMSNP0mVFigh7C_tY6MKPePSBSHPUjOTuWzCnp53jcvP1fQ5tLOFRT7YTN-mN30N0ImEU0YOF68AYPSKnsuruworaEve8P33RjRtxknGK7s7YVZZTncv4QPTCUAx9r_DxCd0T9GN2b2Ep_T9CPHkfY4AhbHOF2hQc4woAj7HCEFzUe4ggbHOFVhXscYYUjrHD0FF18_nQ-OfFNDQ6_AOrc-uARUlolJJfCiQWNWJEFOZDeqqCxSEpKBIxSBc2LDIhpULK4CqBvyngEaxURAdlDu_WqFs8RzmnFAkZYHoPbyIOCZ2kpmyYiBA5Shh56Zx_prDAC9bJOyvVsbD0PvXFtf2pZlq2tDqxlZua1bWbgj8UhONYp8dBrtxueuHwMvBarTrUhUrgphDbPtCHdaUgWsyygzEN0w8SugRRs39xTL-ZKuB0uL81YknpoD9DgDijJmqsLzvdvdVsv0P3-VTxAu-26Ey_BNW7zVwrMfwAbDboy |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Leveraging+machine+learning+to+consolidate+the+diversity+in+experimental+results+of+perovskite+solar+cells&rft.jtitle=RSC+advances&rft.au=Hussain%2C+Wahid&rft.au=Sawar%2C+Samina&rft.au=Sultan%2C+Muhammad&rft.date=2023-07-19&rft.issn=2046-2069&rft.eissn=2046-2069&rft.volume=13&rft.issue=32&rft.spage=22529&rft.epage=22537&rft_id=info:doi/10.1039%2FD3RA02305B&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_D3RA02305B |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2046-2069&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2046-2069&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2046-2069&client=summon |