Up-Regulation of Cluster of Differentiation (CD) 11b Expression on the Surface of Canine Granulocytes with Human Granulocyte-Macrophage Colony-Stimulating Factor (GM-CSF)
Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a pleiotropic cytokine, sharing a common beta subunit (CDw131) with interleukins 3 and 5. GM-CSF is important for its direct and indirect involvement in host defense. In veterinary medicine, human (h) GM-CSF has been used as a substitute f...
Saved in:
Published in | Journal of Veterinary Medical Science Vol. 76; no. 8; pp. 1173 - 1176 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Japan
JAPANESE SOCIETY OF VETERINARY SCIENCE
01.08.2014
Japan Science and Technology Agency The Japanese Society of Veterinary Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a pleiotropic cytokine, sharing a common beta subunit (CDw131) with interleukins 3 and 5. GM-CSF is important for its direct and indirect involvement in host defense. In veterinary medicine, human (h) GM-CSF has been used as a substitute for canine GM-CSF to stimulate canine granulocytes and macrophages. In this study, we compared the effects of three distinct hGM-CSFs produced by bacteria, yeasts and Chinese hamster ovary (CHO) cells with those of Escherichia (E) coli-produced canine GM-CSF on the cluster of differentiation 11b (CD11b) expression in canine granulocytes. The median effective dose (ED50) of hGM-CSFs from bacteria, yeasts and CHO cells was 3.09, 4.09 and 4.27 ng/ml, respectively, with no significant difference among three. In contrast, a significant difference was observed between ED50 of canine GM-CSF (0.56 ng/ml) and three hGM-CSFs according to the paired t-test (P<0.05). We conclude that hGM-CSF can activate canine granulocytes, but the average activity of the three rhGM-CSFs was approximately 15% of that of canine GM-CSF. |
---|---|
AbstractList | Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a pleiotropic cytokine, sharing a common beta subunit (CDw131) with interleukins 3 and 5. GM-CSF is important for its direct and indirect involvement in host defense. In veterinary medicine, human (h) GM-CSF has been used as a substitute for canine GM-CSF to stimulate canine granulocytes and macrophages. In this study, we compared the effects of three distinct hGM-CSFs produced by bacteria, yeasts and Chinese hamster ovary (CHO) cells with those of Escherichia (E) coli-produced canine GM-CSF on the cluster of differentiation 11b (CD11b) expression in canine granulocytes. The median effective dose (ED50) of hGM-CSFs from bacteria, yeasts and CHO cells was 3.09, 4.09 and 4.27 ng/ml, respectively, with no significant difference among three. In contrast, a significant difference was observed between ED50 of canine GM-CSF (0.56 ng/ml) and three hGM-CSFs according to the paired t-test (P<0.05). We conclude that hGM-CSF can activate canine granulocytes, but the average activity of the three rhGM-CSFs was approximately 15% of that of canine GM-CSF. Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a pleiotropic cytokine, sharing a common beta subunit (CDw131) with interleukins 3 and 5. GM-CSF is important for its direct and indirect involvement in host defense. In veterinary medicine, human (h) GM-CSF has been used as a substitute for canine GM-CSF to stimulate canine granulocytes and macrophages. In this study, we compared the effects of three distinct hGM-CSFs produced by bacteria, yeasts and Chinese hamster ovary (CHO) cells with those of Escherichia (E) coli-produced canine GM-CSF on the cluster of differentiation 11b (CD11b) expression in canine granulocytes. The median effective dose (ED50) of hGM-CSFs from bacteria, yeasts and CHO cells was 3.09, 4.09 and 4.27 ng/ml, respectively, with no significant difference among three. In contrast, a significant difference was observed between ED50 of canine GM-CSF (0.56 ng/ml) and three hGM-CSFs according to the paired t-test (P<0.05). We conclude that hGM-CSF can activate canine granulocytes, but the average activity of the three rhGM-CSFs was approximately 15% of that of canine GM-CSF.Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a pleiotropic cytokine, sharing a common beta subunit (CDw131) with interleukins 3 and 5. GM-CSF is important for its direct and indirect involvement in host defense. In veterinary medicine, human (h) GM-CSF has been used as a substitute for canine GM-CSF to stimulate canine granulocytes and macrophages. In this study, we compared the effects of three distinct hGM-CSFs produced by bacteria, yeasts and Chinese hamster ovary (CHO) cells with those of Escherichia (E) coli-produced canine GM-CSF on the cluster of differentiation 11b (CD11b) expression in canine granulocytes. The median effective dose (ED50) of hGM-CSFs from bacteria, yeasts and CHO cells was 3.09, 4.09 and 4.27 ng/ml, respectively, with no significant difference among three. In contrast, a significant difference was observed between ED50 of canine GM-CSF (0.56 ng/ml) and three hGM-CSFs according to the paired t-test (P<0.05). We conclude that hGM-CSF can activate canine granulocytes, but the average activity of the three rhGM-CSFs was approximately 15% of that of canine GM-CSF. Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a pleiotropic cytokine, sharing a common beta subunit (CDw131) with interleukins 3 and 5. GM-CSF is important for its direct and indirect involvement in host defense. In veterinary medicine, human (h) GM-CSF has been used as a substitute for canine GM-CSF to stimulate canine granulocytes and macrophages. In this study, we compared the effects of three distinct hGM-CSFs produced by bacteria, yeasts and Chinese hamster ovary (CHO) cells with those of Escherichia (E) coli -produced canine GM-CSF on the cluster of differentiation 11b (CD11b) expression in canine granulocytes. The median effective dose (ED 50 ) of hGM-CSFs from bacteria, yeasts and CHO cells was 3.09, 4.09 and 4.27 n g/m l , respectively, with no significant difference among three. In contrast, a significant difference was observed between ED 50 of canine GM-CSF (0.56 n g/m l ) and three hGM-CSFs according to the paired t -test ( P <0.05). We conclude that hGM-CSF can activate canine granulocytes, but the average activity of the three rhGM-CSFs was approximately 15% of that of canine GM-CSF. |
Author | NAKAGAKI, Kazuhide NUNOMURA, Yuka NAKATA, Koh TAZAWA, Ryushi UCHIDA, Kanji |
Author_xml | – sequence: 1 fullname: NAKAGAKI, Kazuhide organization: Department of Virology and Immunology, College of Veterinary Medicine, Nippon Veterinary and Animal Science University, Tokyo 180–8602, Japan – sequence: 2 fullname: NUNOMURA, Yuka organization: Department of Virology and Immunology, College of Veterinary Medicine, Nippon Veterinary and Animal Science University, Tokyo 180–8602, Japan – sequence: 3 fullname: UCHIDA, Kanji organization: Department of Anesthesiology, the University of Tokyo Hospital, Tokyo 113–0033, Japan – sequence: 4 fullname: NAKATA, Koh organization: Bioscience Medical Research Center, Niigata University Medical and Dental Hospital, Niigata 951–8520, Japan – sequence: 5 fullname: TAZAWA, Ryushi organization: Bioscience Medical Research Center, Niigata University Medical and Dental Hospital, Niigata 951–8520, Japan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24829080$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kl9v0zAUxS00xLrBG8_IEi-dRIb_JHHyggTZ2iFtQqLs2XJdu3WV2MV2Bv1KfEqctqvGJF4cy_d3js7NvWfgxDqrAHiL0SUmNfm4fujCJc4zhIryBRhhmrOM5bQ-ASNU4zJjpECn4CyENUIE52X9CpySvCI1qtAI_LnfZN_Vsm9FNM5Cp2HT9iEqP1yvjNbKKxvNvjpuri4gxnN4_XvjVQg7hYVxpeCs91pItTMQ1lgFp17YvnVyG1WAv0xcwZu-E_bpe3YnpHeblVgq2LjW2W02i6bbhbFLOBEyOg_H07usmU0uXoOXWrRBvTl8z8H95PpHc5Pdfpt-bT7fZjKvi5jhghVzRmmtykoLtiiRnitdISkoqyqxqOZaDL1rqrXMK6nYAhFWlWWNGJaU0HPwae-76eedWsjUvxct33jTCb_lThj-b8WaFV-6B57joiCIJoPxwcC7n70KkXcmSNW2wirXB56wGmGCcpTQ98_Qteu9Te0lqkSUEIaGRO-eJjpGeRxjAsgeSL8zBK80lybuZpYCmpZjxIdd4cOucJzzYVeS6MMz0aPvf_Ave3wdYhrYERY-GtmqPcxKXg3HQXQsypXwXFn6F7Tj2oA |
CitedBy_id | crossref_primary_10_1111_vco_12236 |
Cites_doi | 10.1080/09553009214551281 10.1182/blood.V90.9.3640 10.1615/CritRevImmunol.v25.i5.50 10.1074/jbc.274.9.5333 10.1146/annurev.physiol.64.090601.113847 10.1007/BF01702927 10.4049/jimmunol.0903873 10.1182/blood.V98.10.3165 10.1007/s10495-010-0552-2 10.4049/jimmunol.145.10.3325 10.4049/jimmunol.164.7.3635 10.1016/0140-6736(92)90717-H 10.1016/j.vaccine.2005.08.027 10.1172/JCI116041 10.4049/jimmunol.0903292 10.4049/jimmunol.1201789 10.1002/jcp.1041400219 10.1056/NEJMoa062505 10.1111/j.1365-3083.2012.02679.x |
ContentType | Journal Article |
Copyright | 2014 by the Japanese Society of Veterinary Science Copyright Japan Science and Technology Agency 2014 2014 The Japanese Society of Veterinary Science 2014 |
Copyright_xml | – notice: 2014 by the Japanese Society of Veterinary Science – notice: Copyright Japan Science and Technology Agency 2014 – notice: 2014 The Japanese Society of Veterinary Science 2014 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QR 7U9 8FD FR3 H94 M7N P64 7X8 5PM |
DOI | 10.1292/jvms.14-0056 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Chemoreception Abstracts Virology and AIDS Abstracts Technology Research Database Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic Virology and AIDS Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Veterinary Medicine |
EISSN | 1347-7439 |
EndPage | 1176 |
ExternalDocumentID | PMC4155203 3423963271 24829080 10_1292_jvms_14_0056 article_jvms_76_8_76_14_0056_article_char_en |
Genre | Research Support, Non-U.S. Gov't Journal Article Comparative Study |
GroupedDBID | 29L 2WC 53G 5GY ACGFO ACIWK ACPRK ADBBV ADRAZ AENEX AFRAH AI. ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL CS3 DIK DU5 E3Z EBS EJD HYE JSF JSH KQ8 M48 M~E N5S OK1 P2P RJT RNS RPM RYR RZJ TKC TR2 VH1 XSB AAYXX B.T CITATION OVT PGMZT CGR CUY CVF ECM EIF NPM 7QR 7U9 8FD FR3 H94 M7N P64 7X8 5PM |
ID | FETCH-LOGICAL-c495t-1575b7339e68fa7d60fbef80ca3788ad8bfa9080f3ffc48ce7d0278669071c323 |
IEDL.DBID | M48 |
ISSN | 0916-7250 1347-7439 |
IngestDate | Thu Aug 21 14:11:08 EDT 2025 Fri Jul 11 00:34:37 EDT 2025 Mon Jun 30 07:11:28 EDT 2025 Sat Sep 28 08:33:43 EDT 2024 Tue Jul 01 04:14:25 EDT 2025 Thu Apr 24 22:58:29 EDT 2025 Wed Apr 05 09:16:24 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives (by-nc-nd) License. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c495t-1575b7339e68fa7d60fbef80ca3788ad8bfa9080f3ffc48ce7d0278669071c323 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1292/jvms.14-0056 |
PMID | 24829080 |
PQID | 1560322702 |
PQPubID | 2028964 |
PageCount | 4 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4155203 proquest_miscellaneous_1559012040 proquest_journals_1560322702 pubmed_primary_24829080 crossref_citationtrail_10_1292_jvms_14_0056 crossref_primary_10_1292_jvms_14_0056 jstage_primary_article_jvms_76_8_76_14_0056_article_char_en |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-08-01 |
PublicationDateYYYYMMDD | 2014-08-01 |
PublicationDate_xml | – month: 08 year: 2014 text: 2014-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Japan |
PublicationPlace_xml | – name: Japan – name: Tokyo |
PublicationTitle | Journal of Veterinary Medical Science |
PublicationTitleAlternate | J. Vet. Med. Sci. |
PublicationYear | 2014 |
Publisher | JAPANESE SOCIETY OF VETERINARY SCIENCE Japan Science and Technology Agency The Japanese Society of Veterinary Science |
Publisher_xml | – name: JAPANESE SOCIETY OF VETERINARY SCIENCE – name: Japan Science and Technology Agency – name: The Japanese Society of Veterinary Science |
References | 13. McClure, B., Stomski, F., Lopez, A. and Woodcock, J. 2001. Perverted responses of the human granulocyte-macrophage colony-stimulating factor receptor in mouse cell lines due to cross-species beta-subunit association. Blood 98: 3165–3168. 1. Al-Shami, A. and Naccache, P. H. 1999. Granulocyte-macrophage colony-stimulating factor-activated signaling pathways in human neutrophils. Involvement of jak2 in the stimulation of phosphatidylinositol 3-kinase. J. Biol. Chem. 274: 5333–5338. 14. Min, L., Mohammad Isa, S. A., Shuai, W., Piang, C. B., Nih, F. W., Kotaka, M. and Ruedl, C. 2010. Granulocyte-macrophage colony-stimulating factor is the major CD8+ T cell-derived licensing factor for dendritic cell activation. J. Immunol. 184: 4625–4629. 16. Nothdurft, W., Selig, C., Fliedner, T. M., Hintz-Obertreis, P., Kreja, L., Krumwieh, D., Kurrle, R., Seiler, F. R. and Weinsheimer, W. 1992. Haematological effects of rhGM-CSF in dogs exposed to total-body irradiation with a dose of 2.4 Gy. Int. J. Radiat. Biol. 61: 519–531. 3. Chen, Q., He, F., Kwang, J., Chan, J. K. and Chen, J. 2012. GM-CSF and IL-4 stimulate antibody responses in humanized mice by promoting T, B, and dendritic cell maturation. J. Immunol. 189: 5223–5229. 19. Trapnell, B. C. and Whitsett, J. A. 2002. GM-CSF regulates pulmonary surfactant homeostasis and alveolar macrophage-mediated innate host-defense. Annu. Rev. Physiol. 64: 775–802. 22. Wang, Y-S., Chi, K-H., Liao, K-W., Liu, C-C., Cheng, C-L., Lin, Y-C., Cheng, C-H. and Chu, R-M. 2007. Characterization of canine monocyte-derived dendritic cells with phenotypic and functional differentiation. Can. J. Vet. Res. 71: 165–174. 5. Fleetwood, A. J., Cook, A. D. and Hamilton, J. A. 2005. Functions of granulocyte-macrophage colony-stimulating factor. Crit. Rev. Immunol. 25: 405–428. 21. Vreugdenhil, G., Preyers, F., Croockewit, S., Sauerwein, R., Swaak, A. J. and de Witte, T. 1992. Fever in neutropenic patients treated with GM-CSF representing enhanced host defence. Lancet 339: 1118–1119. 10. Liontos, L. M., Dissanayake, D., Ohashi, P. S., Weiss, A., Dragone, L. L. and McGlade, C. J. 2011. The Src-like adaptor protein regulates GM-CSFR signaling and monocytic dendritic cell maturation. J. Immunol. 186: 1923–1933. 23. Watanabe, S., Aoki, Y., Nishijima, I., Xu, M.J. and Arai, K. 2000. Analysis of signals and functions of the BA/F3 cells and transgenic mice colony-stimulating factor receptor in chimeric human granuloctye-macrophage. J. Immunol. 164: 3635–3644. 6. Hughes, B. J., Holler, J. C., Crockett-Torabi, E. and Smith, C. W. 1992. Recruitment of CD11b/CD18 to the neutrophil surface and adherence dependent locomotion. J. Clin. Invest. 90: 1687–1696. 11. Lundahl, J., Jacobson, S. H. and Paulsson, J. M. 2012. IL-8 from local subcutaneous wounds regulates CD11b activation. Scand. J. Immunol. 75: 419–425. 9. Kitamura, T., Tange, T., Terasawa, T., Chiba, S., Kuwaki, T., Miyagawa, K., Piao, Y. F., Miyazono, K., Urabe, A. and Takaku, F. 1989. Establishment and characterization of a unique human cell line that proliferates dependently on GM-CSF, IL-3, or erythropoietin. J. Cell. Physiol. 140: 323–334. 17. Reddy, A., Sapp, M., Feldman, M., Subklewe, M. and Bhardwaj, N. 1997. A monocyte conditioned medium is more effective than defined cytokines in mediating the terminal maturation of human dendritic cells. Blood 90: 3640–3646. 4. Choi, J. K., Kim, K. H., Park, H., Park, S. R. and Cho, B. H. 2011. Granulocyte-macrophage colony-stimulating factor shows anti-apoptotic activity in neural progenitor cells via JAK/STAT5-Bcl-2 pathway. Apoptosis 16: 127–134. 20. Uchida, K., Beck, D. C., Yamamoto, T., Berclaz, P.Y., Abe, S., Staudt, M. K., Carey, B. C., Filippi, M.D., Wert, S. E., Denson, L. A., Puchalski, J. T., Hauck, D. M. and Trapnell, B. C. 2007. GM-CSF autoantibodies and neutrophil dysfunction in pulmonary alveolar proteinosis. N. Engl. J. Med. 356: 567–579. 7. Kaatz, M., Berod, L., Czech, W., Idzko, M., Lagadari, M., Bauer, A. and Norgauer, J. 2004. Interleukin-5, interleukin-3 and granulocyte-macrophage colony-stimulating factor prime actin-polymerization in human eosinophils: A study with hypodense and normodense eosinophils from patients with atopic dermatitis. Int. J. Mol. Med. 14: 1055–1060. 12. Maurer, D., Fischer, G. F., Felzmann, T., Majdic, O., Gschwantler, E., Hinterberger, W., Wagner, A. and Knapp, W. 1991. Ratio of complement receptor over Fc-receptor III expression: a sensitive parameter to monitor granulocyte-monocyte colony-stimulating factor effect on neutrophils. Ann. Hematol. 62: 135–140. 18. Schuening, F. G., Storb, R., Goehle, S., Nash, R., Graham, T. C., Appelbaum, F. R., Hackman, R., Sandmaier, B. M. and Urdal, D. L. 1989. Stimulation of canine hematopoiesis by recombinant human granulocyte-macrophage colony-stimulating factor. Exp. Hematol. 17: 889–894. 15. Neuman, E., Huleatt, J. W. and Jack, R. M. 1990. Granulocyte-macrophage colony-stimulating factor increases synthesis and expression of CR1 and CR3 by human peripheral blood neutrophils. J. Immunol. 145: 3325–3332. 8. Kelleher, C. A., Wong, G. G., Clark, S. C., Schendel, P. F., Minden, M. D. and McCulloch, E. A. 1988. Binding of iodinated recombinant human GM-CSF to the blast cells of acute myeloblastic leukemia. Leukemia 2: 211–215. 2. Bergman, P. J., Camps-Palau, M. A., McKnight, J. A., Leibman, N. F., Craft, D. M., Leung, C., Liao, J., Riviere, I., Sadelain, M., Hohenhaus, A. E., Gregor, P., Houghton, A. N., Perales, M. A. and Wolchok, J. D. 2006. Development of a xenogeneic DNA vaccine program for canine malignant melanoma at the Animal Medical Center. Vaccine 24: 4582–4585. 11 22 12 23 13 14 15 16 17 18 19 1 2 3 4 5 6 7 8 9 20 10 21 |
References_xml | – reference: 13. McClure, B., Stomski, F., Lopez, A. and Woodcock, J. 2001. Perverted responses of the human granulocyte-macrophage colony-stimulating factor receptor in mouse cell lines due to cross-species beta-subunit association. Blood 98: 3165–3168. – reference: 18. Schuening, F. G., Storb, R., Goehle, S., Nash, R., Graham, T. C., Appelbaum, F. R., Hackman, R., Sandmaier, B. M. and Urdal, D. L. 1989. Stimulation of canine hematopoiesis by recombinant human granulocyte-macrophage colony-stimulating factor. Exp. Hematol. 17: 889–894. – reference: 4. Choi, J. K., Kim, K. H., Park, H., Park, S. R. and Cho, B. H. 2011. Granulocyte-macrophage colony-stimulating factor shows anti-apoptotic activity in neural progenitor cells via JAK/STAT5-Bcl-2 pathway. Apoptosis 16: 127–134. – reference: 7. Kaatz, M., Berod, L., Czech, W., Idzko, M., Lagadari, M., Bauer, A. and Norgauer, J. 2004. Interleukin-5, interleukin-3 and granulocyte-macrophage colony-stimulating factor prime actin-polymerization in human eosinophils: A study with hypodense and normodense eosinophils from patients with atopic dermatitis. Int. J. Mol. Med. 14: 1055–1060. – reference: 20. Uchida, K., Beck, D. C., Yamamoto, T., Berclaz, P.Y., Abe, S., Staudt, M. K., Carey, B. C., Filippi, M.D., Wert, S. E., Denson, L. A., Puchalski, J. T., Hauck, D. M. and Trapnell, B. C. 2007. GM-CSF autoantibodies and neutrophil dysfunction in pulmonary alveolar proteinosis. N. Engl. J. Med. 356: 567–579. – reference: 5. Fleetwood, A. J., Cook, A. D. and Hamilton, J. A. 2005. Functions of granulocyte-macrophage colony-stimulating factor. Crit. Rev. Immunol. 25: 405–428. – reference: 8. Kelleher, C. A., Wong, G. G., Clark, S. C., Schendel, P. F., Minden, M. D. and McCulloch, E. A. 1988. Binding of iodinated recombinant human GM-CSF to the blast cells of acute myeloblastic leukemia. Leukemia 2: 211–215. – reference: 21. Vreugdenhil, G., Preyers, F., Croockewit, S., Sauerwein, R., Swaak, A. J. and de Witte, T. 1992. Fever in neutropenic patients treated with GM-CSF representing enhanced host defence. Lancet 339: 1118–1119. – reference: 9. Kitamura, T., Tange, T., Terasawa, T., Chiba, S., Kuwaki, T., Miyagawa, K., Piao, Y. F., Miyazono, K., Urabe, A. and Takaku, F. 1989. Establishment and characterization of a unique human cell line that proliferates dependently on GM-CSF, IL-3, or erythropoietin. J. Cell. Physiol. 140: 323–334. – reference: 10. Liontos, L. M., Dissanayake, D., Ohashi, P. S., Weiss, A., Dragone, L. L. and McGlade, C. J. 2011. The Src-like adaptor protein regulates GM-CSFR signaling and monocytic dendritic cell maturation. J. Immunol. 186: 1923–1933. – reference: 3. Chen, Q., He, F., Kwang, J., Chan, J. K. and Chen, J. 2012. GM-CSF and IL-4 stimulate antibody responses in humanized mice by promoting T, B, and dendritic cell maturation. J. Immunol. 189: 5223–5229. – reference: 2. Bergman, P. J., Camps-Palau, M. A., McKnight, J. A., Leibman, N. F., Craft, D. M., Leung, C., Liao, J., Riviere, I., Sadelain, M., Hohenhaus, A. E., Gregor, P., Houghton, A. N., Perales, M. A. and Wolchok, J. D. 2006. Development of a xenogeneic DNA vaccine program for canine malignant melanoma at the Animal Medical Center. Vaccine 24: 4582–4585. – reference: 14. Min, L., Mohammad Isa, S. A., Shuai, W., Piang, C. B., Nih, F. W., Kotaka, M. and Ruedl, C. 2010. Granulocyte-macrophage colony-stimulating factor is the major CD8+ T cell-derived licensing factor for dendritic cell activation. J. Immunol. 184: 4625–4629. – reference: 15. Neuman, E., Huleatt, J. W. and Jack, R. M. 1990. Granulocyte-macrophage colony-stimulating factor increases synthesis and expression of CR1 and CR3 by human peripheral blood neutrophils. J. Immunol. 145: 3325–3332. – reference: 19. Trapnell, B. C. and Whitsett, J. A. 2002. GM-CSF regulates pulmonary surfactant homeostasis and alveolar macrophage-mediated innate host-defense. Annu. Rev. Physiol. 64: 775–802. – reference: 1. Al-Shami, A. and Naccache, P. H. 1999. Granulocyte-macrophage colony-stimulating factor-activated signaling pathways in human neutrophils. Involvement of jak2 in the stimulation of phosphatidylinositol 3-kinase. J. Biol. Chem. 274: 5333–5338. – reference: 6. Hughes, B. J., Holler, J. C., Crockett-Torabi, E. and Smith, C. W. 1992. Recruitment of CD11b/CD18 to the neutrophil surface and adherence dependent locomotion. J. Clin. Invest. 90: 1687–1696. – reference: 12. Maurer, D., Fischer, G. F., Felzmann, T., Majdic, O., Gschwantler, E., Hinterberger, W., Wagner, A. and Knapp, W. 1991. Ratio of complement receptor over Fc-receptor III expression: a sensitive parameter to monitor granulocyte-monocyte colony-stimulating factor effect on neutrophils. Ann. Hematol. 62: 135–140. – reference: 11. Lundahl, J., Jacobson, S. H. and Paulsson, J. M. 2012. IL-8 from local subcutaneous wounds regulates CD11b activation. Scand. J. Immunol. 75: 419–425. – reference: 16. Nothdurft, W., Selig, C., Fliedner, T. M., Hintz-Obertreis, P., Kreja, L., Krumwieh, D., Kurrle, R., Seiler, F. R. and Weinsheimer, W. 1992. Haematological effects of rhGM-CSF in dogs exposed to total-body irradiation with a dose of 2.4 Gy. Int. J. Radiat. Biol. 61: 519–531. – reference: 17. Reddy, A., Sapp, M., Feldman, M., Subklewe, M. and Bhardwaj, N. 1997. A monocyte conditioned medium is more effective than defined cytokines in mediating the terminal maturation of human dendritic cells. Blood 90: 3640–3646. – reference: 22. Wang, Y-S., Chi, K-H., Liao, K-W., Liu, C-C., Cheng, C-L., Lin, Y-C., Cheng, C-H. and Chu, R-M. 2007. Characterization of canine monocyte-derived dendritic cells with phenotypic and functional differentiation. Can. J. Vet. Res. 71: 165–174. – reference: 23. Watanabe, S., Aoki, Y., Nishijima, I., Xu, M.J. and Arai, K. 2000. Analysis of signals and functions of the BA/F3 cells and transgenic mice colony-stimulating factor receptor in chimeric human granuloctye-macrophage. J. Immunol. 164: 3635–3644. – ident: 16 doi: 10.1080/09553009214551281 – ident: 17 doi: 10.1182/blood.V90.9.3640 – ident: 18 – ident: 5 doi: 10.1615/CritRevImmunol.v25.i5.50 – ident: 1 doi: 10.1074/jbc.274.9.5333 – ident: 19 doi: 10.1146/annurev.physiol.64.090601.113847 – ident: 12 doi: 10.1007/BF01702927 – ident: 14 doi: 10.4049/jimmunol.0903873 – ident: 13 doi: 10.1182/blood.V98.10.3165 – ident: 4 doi: 10.1007/s10495-010-0552-2 – ident: 15 doi: 10.4049/jimmunol.145.10.3325 – ident: 23 doi: 10.4049/jimmunol.164.7.3635 – ident: 21 doi: 10.1016/0140-6736(92)90717-H – ident: 2 doi: 10.1016/j.vaccine.2005.08.027 – ident: 6 doi: 10.1172/JCI116041 – ident: 10 doi: 10.4049/jimmunol.0903292 – ident: 3 doi: 10.4049/jimmunol.1201789 – ident: 9 doi: 10.1002/jcp.1041400219 – ident: 7 – ident: 8 – ident: 20 doi: 10.1056/NEJMoa062505 – ident: 11 doi: 10.1111/j.1365-3083.2012.02679.x – ident: 22 |
SSID | ssj0021469 |
Score | 2.0168262 |
Snippet | Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a pleiotropic cytokine, sharing a common beta subunit (CDw131) with interleukins 3 and 5. GM-CSF... Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a pleiotropic cytokine, sharing a common beta subunit (CDw131) with interleukins 3 and 5. GM-CSF... |
SourceID | pubmedcentral proquest pubmed crossref jstage |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1173 |
SubjectTerms | Animals canine CD11b CD11b Antigen - metabolism CHO Cells Cricetinae Cricetulus Dogs Dose-Response Relationship, Drug Escherichia coli - metabolism flow cytometry Gene Expression Regulation - drug effects Gene Expression Regulation - immunology granulocyte-macrophage colony-stimulating factor Granulocyte-Macrophage Colony-Stimulating Factor - pharmacology Granulocytes - metabolism Humans Immunology median fluorescence intensity xenostimulation Yeasts - metabolism |
Title | Up-Regulation of Cluster of Differentiation (CD) 11b Expression on the Surface of Canine Granulocytes with Human Granulocyte-Macrophage Colony-Stimulating Factor (GM-CSF) |
URI | https://www.jstage.jst.go.jp/article/jvms/76/8/76_14-0056/_article/-char/en https://www.ncbi.nlm.nih.gov/pubmed/24829080 https://www.proquest.com/docview/1560322702 https://www.proquest.com/docview/1559012040 https://pubmed.ncbi.nlm.nih.gov/PMC4155203 |
Volume | 76 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Journal of Veterinary Medical Science, 2014, Vol.76(8), pp.1173-1176 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELfG4IEXBOMrY0xGAmkTMjSJGydCCKFCGaDyAkV7i2zH7phad2sbtP5L_JXcOU60TkPipYrqy0dzvrvf9ez7EfJcKwnmrAqGzaUY59ayXCnOVJFWEI-UVn7f2uhbdjTmX477x1ukZRsNL3B5bWqHfFLjxfTVxfn6HRj8W98boUhen_6eLcHiGba1vEFuQkwSyGUw4l09AdmrC596ccEQgocl8FfP3ghOt04Bn03MddDz6grKSyFpeJfcCViSvm-Uf49sGbdDdn7iAhe_y5aOQuH8PvkzPmOLhnYeFEHnluppjT0S8LAlSVk1aqIHgw-HNI4VNRdhmSyc4ShARbqsF1Zq4y8gHVyaTiDY1RAR14BZKf6rSz3t3-Xv2UwiUdgJ_EyKTbLdmoFjmfmHcRPaUP7Qg08jNvg-PHxAxsOPPwZHLNA0MA3Z1YrFgPiUSNPCZLmVosp6Vhmb97TEXvWyypWVBQBTm1qrea6NqLDcmWFeHus0SR-SbTd35jGh_bRvABLFwtqCS1MVSoE_EtxyUWkr4oi8bPVT6tDDHKk0piXmMqDNErUJ6UyJ2ozIi076rOnd8Q-5N42qO6lgtY2UyMocP4J0N4jb4sC3RGSvnR9lO31L3J8OrlL0kog864bBcrEcI52Z1yiD-34T8KIRedRMp-4BEo4F7hxGxMZE6wSwK_jmiPt14ruDI0JMeunuf9z3CbkN-I836xn3yPZqUZungLFWah-yi89f970R_QWZyi1j |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Up-regulation+of+cluster+of+differentiation+%28CD%29+11b+expression+on+the+surface+of+canine+granulocytes+with+human+granulocyte-macrophage+colony-stimulating+factor+%28GM-CSF%29&rft.jtitle=Journal+of+veterinary+medical+science&rft.au=Nakagaki%2C+Kazuhide&rft.au=Nunomura%2C+Yuka&rft.au=Uchida%2C+Kanji&rft.au=Nakata%2C+Koh&rft.date=2014-08-01&rft.issn=1347-7439&rft.eissn=1347-7439&rft.volume=76&rft.issue=8&rft.spage=1173&rft_id=info:doi/10.1292%2Fjvms.14-0056&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0916-7250&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0916-7250&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0916-7250&client=summon |