Up-Regulation of Cluster of Differentiation (CD) 11b Expression on the Surface of Canine Granulocytes with Human Granulocyte-Macrophage Colony-Stimulating Factor (GM-CSF)

Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a pleiotropic cytokine, sharing a common beta subunit (CDw131) with interleukins 3 and 5. GM-CSF is important for its direct and indirect involvement in host defense. In veterinary medicine, human (h) GM-CSF has been used as a substitute f...

Full description

Saved in:
Bibliographic Details
Published inJournal of Veterinary Medical Science Vol. 76; no. 8; pp. 1173 - 1176
Main Authors NAKAGAKI, Kazuhide, NUNOMURA, Yuka, UCHIDA, Kanji, NAKATA, Koh, TAZAWA, Ryushi
Format Journal Article
LanguageEnglish
Published Japan JAPANESE SOCIETY OF VETERINARY SCIENCE 01.08.2014
Japan Science and Technology Agency
The Japanese Society of Veterinary Science
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a pleiotropic cytokine, sharing a common beta subunit (CDw131) with interleukins 3 and 5. GM-CSF is important for its direct and indirect involvement in host defense. In veterinary medicine, human (h) GM-CSF has been used as a substitute for canine GM-CSF to stimulate canine granulocytes and macrophages. In this study, we compared the effects of three distinct hGM-CSFs produced by bacteria, yeasts and Chinese hamster ovary (CHO) cells with those of Escherichia (E) coli-produced canine GM-CSF on the cluster of differentiation 11b (CD11b) expression in canine granulocytes. The median effective dose (ED50) of hGM-CSFs from bacteria, yeasts and CHO cells was 3.09, 4.09 and 4.27 ng/ml, respectively, with no significant difference among three. In contrast, a significant difference was observed between ED50 of canine GM-CSF (0.56 ng/ml) and three hGM-CSFs according to the paired t-test (P<0.05). We conclude that hGM-CSF can activate canine granulocytes, but the average activity of the three rhGM-CSFs was approximately 15% of that of canine GM-CSF.
AbstractList Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a pleiotropic cytokine, sharing a common beta subunit (CDw131) with interleukins 3 and 5. GM-CSF is important for its direct and indirect involvement in host defense. In veterinary medicine, human (h) GM-CSF has been used as a substitute for canine GM-CSF to stimulate canine granulocytes and macrophages. In this study, we compared the effects of three distinct hGM-CSFs produced by bacteria, yeasts and Chinese hamster ovary (CHO) cells with those of Escherichia (E) coli-produced canine GM-CSF on the cluster of differentiation 11b (CD11b) expression in canine granulocytes. The median effective dose (ED50) of hGM-CSFs from bacteria, yeasts and CHO cells was 3.09, 4.09 and 4.27 ng/ml, respectively, with no significant difference among three. In contrast, a significant difference was observed between ED50 of canine GM-CSF (0.56 ng/ml) and three hGM-CSFs according to the paired t-test (P<0.05). We conclude that hGM-CSF can activate canine granulocytes, but the average activity of the three rhGM-CSFs was approximately 15% of that of canine GM-CSF.
Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a pleiotropic cytokine, sharing a common beta subunit (CDw131) with interleukins 3 and 5. GM-CSF is important for its direct and indirect involvement in host defense. In veterinary medicine, human (h) GM-CSF has been used as a substitute for canine GM-CSF to stimulate canine granulocytes and macrophages. In this study, we compared the effects of three distinct hGM-CSFs produced by bacteria, yeasts and Chinese hamster ovary (CHO) cells with those of Escherichia (E) coli-produced canine GM-CSF on the cluster of differentiation 11b (CD11b) expression in canine granulocytes. The median effective dose (ED50) of hGM-CSFs from bacteria, yeasts and CHO cells was 3.09, 4.09 and 4.27 ng/ml, respectively, with no significant difference among three. In contrast, a significant difference was observed between ED50 of canine GM-CSF (0.56 ng/ml) and three hGM-CSFs according to the paired t-test (P<0.05). We conclude that hGM-CSF can activate canine granulocytes, but the average activity of the three rhGM-CSFs was approximately 15% of that of canine GM-CSF.Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a pleiotropic cytokine, sharing a common beta subunit (CDw131) with interleukins 3 and 5. GM-CSF is important for its direct and indirect involvement in host defense. In veterinary medicine, human (h) GM-CSF has been used as a substitute for canine GM-CSF to stimulate canine granulocytes and macrophages. In this study, we compared the effects of three distinct hGM-CSFs produced by bacteria, yeasts and Chinese hamster ovary (CHO) cells with those of Escherichia (E) coli-produced canine GM-CSF on the cluster of differentiation 11b (CD11b) expression in canine granulocytes. The median effective dose (ED50) of hGM-CSFs from bacteria, yeasts and CHO cells was 3.09, 4.09 and 4.27 ng/ml, respectively, with no significant difference among three. In contrast, a significant difference was observed between ED50 of canine GM-CSF (0.56 ng/ml) and three hGM-CSFs according to the paired t-test (P<0.05). We conclude that hGM-CSF can activate canine granulocytes, but the average activity of the three rhGM-CSFs was approximately 15% of that of canine GM-CSF.
Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a pleiotropic cytokine, sharing a common beta subunit (CDw131) with interleukins 3 and 5. GM-CSF is important for its direct and indirect involvement in host defense. In veterinary medicine, human (h) GM-CSF has been used as a substitute for canine GM-CSF to stimulate canine granulocytes and macrophages. In this study, we compared the effects of three distinct hGM-CSFs produced by bacteria, yeasts and Chinese hamster ovary (CHO) cells with those of Escherichia (E) coli -produced canine GM-CSF on the cluster of differentiation 11b (CD11b) expression in canine granulocytes. The median effective dose (ED 50 ) of hGM-CSFs from bacteria, yeasts and CHO cells was 3.09, 4.09 and 4.27 n g/m l , respectively, with no significant difference among three. In contrast, a significant difference was observed between ED 50 of canine GM-CSF (0.56 n g/m l ) and three hGM-CSFs according to the paired t -test ( P <0.05). We conclude that hGM-CSF can activate canine granulocytes, but the average activity of the three rhGM-CSFs was approximately 15% of that of canine GM-CSF.
Author NAKAGAKI, Kazuhide
NUNOMURA, Yuka
NAKATA, Koh
TAZAWA, Ryushi
UCHIDA, Kanji
Author_xml – sequence: 1
  fullname: NAKAGAKI, Kazuhide
  organization: Department of Virology and Immunology, College of Veterinary Medicine, Nippon Veterinary and Animal Science University, Tokyo 180–8602, Japan
– sequence: 2
  fullname: NUNOMURA, Yuka
  organization: Department of Virology and Immunology, College of Veterinary Medicine, Nippon Veterinary and Animal Science University, Tokyo 180–8602, Japan
– sequence: 3
  fullname: UCHIDA, Kanji
  organization: Department of Anesthesiology, the University of Tokyo Hospital, Tokyo 113–0033, Japan
– sequence: 4
  fullname: NAKATA, Koh
  organization: Bioscience Medical Research Center, Niigata University Medical and Dental Hospital, Niigata 951–8520, Japan
– sequence: 5
  fullname: TAZAWA, Ryushi
  organization: Bioscience Medical Research Center, Niigata University Medical and Dental Hospital, Niigata 951–8520, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24829080$$D View this record in MEDLINE/PubMed
BookMark eNp1kl9v0zAUxS00xLrBG8_IEi-dRIb_JHHyggTZ2iFtQqLs2XJdu3WV2MV2Bv1KfEqctqvGJF4cy_d3js7NvWfgxDqrAHiL0SUmNfm4fujCJc4zhIryBRhhmrOM5bQ-ASNU4zJjpECn4CyENUIE52X9CpySvCI1qtAI_LnfZN_Vsm9FNM5Cp2HT9iEqP1yvjNbKKxvNvjpuri4gxnN4_XvjVQg7hYVxpeCs91pItTMQ1lgFp17YvnVyG1WAv0xcwZu-E_bpe3YnpHeblVgq2LjW2W02i6bbhbFLOBEyOg_H07usmU0uXoOXWrRBvTl8z8H95PpHc5Pdfpt-bT7fZjKvi5jhghVzRmmtykoLtiiRnitdISkoqyqxqOZaDL1rqrXMK6nYAhFWlWWNGJaU0HPwae-76eedWsjUvxct33jTCb_lThj-b8WaFV-6B57joiCIJoPxwcC7n70KkXcmSNW2wirXB56wGmGCcpTQ98_Qteu9Te0lqkSUEIaGRO-eJjpGeRxjAsgeSL8zBK80lybuZpYCmpZjxIdd4cOucJzzYVeS6MMz0aPvf_Ave3wdYhrYERY-GtmqPcxKXg3HQXQsypXwXFn6F7Tj2oA
CitedBy_id crossref_primary_10_1111_vco_12236
Cites_doi 10.1080/09553009214551281
10.1182/blood.V90.9.3640
10.1615/CritRevImmunol.v25.i5.50
10.1074/jbc.274.9.5333
10.1146/annurev.physiol.64.090601.113847
10.1007/BF01702927
10.4049/jimmunol.0903873
10.1182/blood.V98.10.3165
10.1007/s10495-010-0552-2
10.4049/jimmunol.145.10.3325
10.4049/jimmunol.164.7.3635
10.1016/0140-6736(92)90717-H
10.1016/j.vaccine.2005.08.027
10.1172/JCI116041
10.4049/jimmunol.0903292
10.4049/jimmunol.1201789
10.1002/jcp.1041400219
10.1056/NEJMoa062505
10.1111/j.1365-3083.2012.02679.x
ContentType Journal Article
Copyright 2014 by the Japanese Society of Veterinary Science
Copyright Japan Science and Technology Agency 2014
2014 The Japanese Society of Veterinary Science 2014
Copyright_xml – notice: 2014 by the Japanese Society of Veterinary Science
– notice: Copyright Japan Science and Technology Agency 2014
– notice: 2014 The Japanese Society of Veterinary Science 2014
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QR
7U9
8FD
FR3
H94
M7N
P64
7X8
5PM
DOI 10.1292/jvms.14-0056
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Chemoreception Abstracts
Virology and AIDS Abstracts
Technology Research Database
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
Virology and AIDS Abstracts

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Veterinary Medicine
EISSN 1347-7439
EndPage 1176
ExternalDocumentID PMC4155203
3423963271
24829080
10_1292_jvms_14_0056
article_jvms_76_8_76_14_0056_article_char_en
Genre Research Support, Non-U.S. Gov't
Journal Article
Comparative Study
GroupedDBID 29L
2WC
53G
5GY
ACGFO
ACIWK
ACPRK
ADBBV
ADRAZ
AENEX
AFRAH
AI.
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
CS3
DIK
DU5
E3Z
EBS
EJD
HYE
JSF
JSH
KQ8
M48
M~E
N5S
OK1
P2P
RJT
RNS
RPM
RYR
RZJ
TKC
TR2
VH1
XSB
AAYXX
B.T
CITATION
OVT
PGMZT
CGR
CUY
CVF
ECM
EIF
NPM
7QR
7U9
8FD
FR3
H94
M7N
P64
7X8
5PM
ID FETCH-LOGICAL-c495t-1575b7339e68fa7d60fbef80ca3788ad8bfa9080f3ffc48ce7d0278669071c323
IEDL.DBID M48
ISSN 0916-7250
1347-7439
IngestDate Thu Aug 21 14:11:08 EDT 2025
Fri Jul 11 00:34:37 EDT 2025
Mon Jun 30 07:11:28 EDT 2025
Sat Sep 28 08:33:43 EDT 2024
Tue Jul 01 04:14:25 EDT 2025
Thu Apr 24 22:58:29 EDT 2025
Wed Apr 05 09:16:24 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives (by-nc-nd) License.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c495t-1575b7339e68fa7d60fbef80ca3788ad8bfa9080f3ffc48ce7d0278669071c323
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1292/jvms.14-0056
PMID 24829080
PQID 1560322702
PQPubID 2028964
PageCount 4
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4155203
proquest_miscellaneous_1559012040
proquest_journals_1560322702
pubmed_primary_24829080
crossref_citationtrail_10_1292_jvms_14_0056
crossref_primary_10_1292_jvms_14_0056
jstage_primary_article_jvms_76_8_76_14_0056_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-08-01
PublicationDateYYYYMMDD 2014-08-01
PublicationDate_xml – month: 08
  year: 2014
  text: 2014-08-01
  day: 01
PublicationDecade 2010
PublicationPlace Japan
PublicationPlace_xml – name: Japan
– name: Tokyo
PublicationTitle Journal of Veterinary Medical Science
PublicationTitleAlternate J. Vet. Med. Sci.
PublicationYear 2014
Publisher JAPANESE SOCIETY OF VETERINARY SCIENCE
Japan Science and Technology Agency
The Japanese Society of Veterinary Science
Publisher_xml – name: JAPANESE SOCIETY OF VETERINARY SCIENCE
– name: Japan Science and Technology Agency
– name: The Japanese Society of Veterinary Science
References 13. McClure, B., Stomski, F., Lopez, A. and Woodcock, J. 2001. Perverted responses of the human granulocyte-macrophage colony-stimulating factor receptor in mouse cell lines due to cross-species beta-subunit association. Blood 98: 3165–3168.
1. Al-Shami, A. and Naccache, P. H. 1999. Granulocyte-macrophage colony-stimulating factor-activated signaling pathways in human neutrophils. Involvement of jak2 in the stimulation of phosphatidylinositol 3-kinase. J. Biol. Chem. 274: 5333–5338.
14. Min, L., Mohammad Isa, S. A., Shuai, W., Piang, C. B., Nih, F. W., Kotaka, M. and Ruedl, C. 2010. Granulocyte-macrophage colony-stimulating factor is the major CD8+ T cell-derived licensing factor for dendritic cell activation. J. Immunol. 184: 4625–4629.
16. Nothdurft, W., Selig, C., Fliedner, T. M., Hintz-Obertreis, P., Kreja, L., Krumwieh, D., Kurrle, R., Seiler, F. R. and Weinsheimer, W. 1992. Haematological effects of rhGM-CSF in dogs exposed to total-body irradiation with a dose of 2.4 Gy. Int. J. Radiat. Biol. 61: 519–531.
3. Chen, Q., He, F., Kwang, J., Chan, J. K. and Chen, J. 2012. GM-CSF and IL-4 stimulate antibody responses in humanized mice by promoting T, B, and dendritic cell maturation. J. Immunol. 189: 5223–5229.
19. Trapnell, B. C. and Whitsett, J. A. 2002. GM-CSF regulates pulmonary surfactant homeostasis and alveolar macrophage-mediated innate host-defense. Annu. Rev. Physiol. 64: 775–802.
22. Wang, Y-S., Chi, K-H., Liao, K-W., Liu, C-C., Cheng, C-L., Lin, Y-C., Cheng, C-H. and Chu, R-M. 2007. Characterization of canine monocyte-derived dendritic cells with phenotypic and functional differentiation. Can. J. Vet. Res. 71: 165–174.
5. Fleetwood, A. J., Cook, A. D. and Hamilton, J. A. 2005. Functions of granulocyte-macrophage colony-stimulating factor. Crit. Rev. Immunol. 25: 405–428.
21. Vreugdenhil, G., Preyers, F., Croockewit, S., Sauerwein, R., Swaak, A. J. and de Witte, T. 1992. Fever in neutropenic patients treated with GM-CSF representing enhanced host defence. Lancet 339: 1118–1119.
10. Liontos, L. M., Dissanayake, D., Ohashi, P. S., Weiss, A., Dragone, L. L. and McGlade, C. J. 2011. The Src-like adaptor protein regulates GM-CSFR signaling and monocytic dendritic cell maturation. J. Immunol. 186: 1923–1933.
23. Watanabe, S., Aoki, Y., Nishijima, I., Xu, M.J. and Arai, K. 2000. Analysis of signals and functions of the BA/F3 cells and transgenic mice colony-stimulating factor receptor in chimeric human granuloctye-macrophage. J. Immunol. 164: 3635–3644.
6. Hughes, B. J., Holler, J. C., Crockett-Torabi, E. and Smith, C. W. 1992. Recruitment of CD11b/CD18 to the neutrophil surface and adherence dependent locomotion. J. Clin. Invest. 90: 1687–1696.
11. Lundahl, J., Jacobson, S. H. and Paulsson, J. M. 2012. IL-8 from local subcutaneous wounds regulates CD11b activation. Scand. J. Immunol. 75: 419–425.
9. Kitamura, T., Tange, T., Terasawa, T., Chiba, S., Kuwaki, T., Miyagawa, K., Piao, Y. F., Miyazono, K., Urabe, A. and Takaku, F. 1989. Establishment and characterization of a unique human cell line that proliferates dependently on GM-CSF, IL-3, or erythropoietin. J. Cell. Physiol. 140: 323–334.
17. Reddy, A., Sapp, M., Feldman, M., Subklewe, M. and Bhardwaj, N. 1997. A monocyte conditioned medium is more effective than defined cytokines in mediating the terminal maturation of human dendritic cells. Blood 90: 3640–3646.
4. Choi, J. K., Kim, K. H., Park, H., Park, S. R. and Cho, B. H. 2011. Granulocyte-macrophage colony-stimulating factor shows anti-apoptotic activity in neural progenitor cells via JAK/STAT5-Bcl-2 pathway. Apoptosis 16: 127–134.
20. Uchida, K., Beck, D. C., Yamamoto, T., Berclaz, P.Y., Abe, S., Staudt, M. K., Carey, B. C., Filippi, M.D., Wert, S. E., Denson, L. A., Puchalski, J. T., Hauck, D. M. and Trapnell, B. C. 2007. GM-CSF autoantibodies and neutrophil dysfunction in pulmonary alveolar proteinosis. N. Engl. J. Med. 356: 567–579.
7. Kaatz, M., Berod, L., Czech, W., Idzko, M., Lagadari, M., Bauer, A. and Norgauer, J. 2004. Interleukin-5, interleukin-3 and granulocyte-macrophage colony-stimulating factor prime actin-polymerization in human eosinophils: A study with hypodense and normodense eosinophils from patients with atopic dermatitis. Int. J. Mol. Med. 14: 1055–1060.
12. Maurer, D., Fischer, G. F., Felzmann, T., Majdic, O., Gschwantler, E., Hinterberger, W., Wagner, A. and Knapp, W. 1991. Ratio of complement receptor over Fc-receptor III expression: a sensitive parameter to monitor granulocyte-monocyte colony-stimulating factor effect on neutrophils. Ann. Hematol. 62: 135–140.
18. Schuening, F. G., Storb, R., Goehle, S., Nash, R., Graham, T. C., Appelbaum, F. R., Hackman, R., Sandmaier, B. M. and Urdal, D. L. 1989. Stimulation of canine hematopoiesis by recombinant human granulocyte-macrophage colony-stimulating factor. Exp. Hematol. 17: 889–894.
15. Neuman, E., Huleatt, J. W. and Jack, R. M. 1990. Granulocyte-macrophage colony-stimulating factor increases synthesis and expression of CR1 and CR3 by human peripheral blood neutrophils. J. Immunol. 145: 3325–3332.
8. Kelleher, C. A., Wong, G. G., Clark, S. C., Schendel, P. F., Minden, M. D. and McCulloch, E. A. 1988. Binding of iodinated recombinant human GM-CSF to the blast cells of acute myeloblastic leukemia. Leukemia 2: 211–215.
2. Bergman, P. J., Camps-Palau, M. A., McKnight, J. A., Leibman, N. F., Craft, D. M., Leung, C., Liao, J., Riviere, I., Sadelain, M., Hohenhaus, A. E., Gregor, P., Houghton, A. N., Perales, M. A. and Wolchok, J. D. 2006. Development of a xenogeneic DNA vaccine program for canine malignant melanoma at the Animal Medical Center. Vaccine 24: 4582–4585.
11
22
12
23
13
14
15
16
17
18
19
1
2
3
4
5
6
7
8
9
20
10
21
References_xml – reference: 13. McClure, B., Stomski, F., Lopez, A. and Woodcock, J. 2001. Perverted responses of the human granulocyte-macrophage colony-stimulating factor receptor in mouse cell lines due to cross-species beta-subunit association. Blood 98: 3165–3168.
– reference: 18. Schuening, F. G., Storb, R., Goehle, S., Nash, R., Graham, T. C., Appelbaum, F. R., Hackman, R., Sandmaier, B. M. and Urdal, D. L. 1989. Stimulation of canine hematopoiesis by recombinant human granulocyte-macrophage colony-stimulating factor. Exp. Hematol. 17: 889–894.
– reference: 4. Choi, J. K., Kim, K. H., Park, H., Park, S. R. and Cho, B. H. 2011. Granulocyte-macrophage colony-stimulating factor shows anti-apoptotic activity in neural progenitor cells via JAK/STAT5-Bcl-2 pathway. Apoptosis 16: 127–134.
– reference: 7. Kaatz, M., Berod, L., Czech, W., Idzko, M., Lagadari, M., Bauer, A. and Norgauer, J. 2004. Interleukin-5, interleukin-3 and granulocyte-macrophage colony-stimulating factor prime actin-polymerization in human eosinophils: A study with hypodense and normodense eosinophils from patients with atopic dermatitis. Int. J. Mol. Med. 14: 1055–1060.
– reference: 20. Uchida, K., Beck, D. C., Yamamoto, T., Berclaz, P.Y., Abe, S., Staudt, M. K., Carey, B. C., Filippi, M.D., Wert, S. E., Denson, L. A., Puchalski, J. T., Hauck, D. M. and Trapnell, B. C. 2007. GM-CSF autoantibodies and neutrophil dysfunction in pulmonary alveolar proteinosis. N. Engl. J. Med. 356: 567–579.
– reference: 5. Fleetwood, A. J., Cook, A. D. and Hamilton, J. A. 2005. Functions of granulocyte-macrophage colony-stimulating factor. Crit. Rev. Immunol. 25: 405–428.
– reference: 8. Kelleher, C. A., Wong, G. G., Clark, S. C., Schendel, P. F., Minden, M. D. and McCulloch, E. A. 1988. Binding of iodinated recombinant human GM-CSF to the blast cells of acute myeloblastic leukemia. Leukemia 2: 211–215.
– reference: 21. Vreugdenhil, G., Preyers, F., Croockewit, S., Sauerwein, R., Swaak, A. J. and de Witte, T. 1992. Fever in neutropenic patients treated with GM-CSF representing enhanced host defence. Lancet 339: 1118–1119.
– reference: 9. Kitamura, T., Tange, T., Terasawa, T., Chiba, S., Kuwaki, T., Miyagawa, K., Piao, Y. F., Miyazono, K., Urabe, A. and Takaku, F. 1989. Establishment and characterization of a unique human cell line that proliferates dependently on GM-CSF, IL-3, or erythropoietin. J. Cell. Physiol. 140: 323–334.
– reference: 10. Liontos, L. M., Dissanayake, D., Ohashi, P. S., Weiss, A., Dragone, L. L. and McGlade, C. J. 2011. The Src-like adaptor protein regulates GM-CSFR signaling and monocytic dendritic cell maturation. J. Immunol. 186: 1923–1933.
– reference: 3. Chen, Q., He, F., Kwang, J., Chan, J. K. and Chen, J. 2012. GM-CSF and IL-4 stimulate antibody responses in humanized mice by promoting T, B, and dendritic cell maturation. J. Immunol. 189: 5223–5229.
– reference: 2. Bergman, P. J., Camps-Palau, M. A., McKnight, J. A., Leibman, N. F., Craft, D. M., Leung, C., Liao, J., Riviere, I., Sadelain, M., Hohenhaus, A. E., Gregor, P., Houghton, A. N., Perales, M. A. and Wolchok, J. D. 2006. Development of a xenogeneic DNA vaccine program for canine malignant melanoma at the Animal Medical Center. Vaccine 24: 4582–4585.
– reference: 14. Min, L., Mohammad Isa, S. A., Shuai, W., Piang, C. B., Nih, F. W., Kotaka, M. and Ruedl, C. 2010. Granulocyte-macrophage colony-stimulating factor is the major CD8+ T cell-derived licensing factor for dendritic cell activation. J. Immunol. 184: 4625–4629.
– reference: 15. Neuman, E., Huleatt, J. W. and Jack, R. M. 1990. Granulocyte-macrophage colony-stimulating factor increases synthesis and expression of CR1 and CR3 by human peripheral blood neutrophils. J. Immunol. 145: 3325–3332.
– reference: 19. Trapnell, B. C. and Whitsett, J. A. 2002. GM-CSF regulates pulmonary surfactant homeostasis and alveolar macrophage-mediated innate host-defense. Annu. Rev. Physiol. 64: 775–802.
– reference: 1. Al-Shami, A. and Naccache, P. H. 1999. Granulocyte-macrophage colony-stimulating factor-activated signaling pathways in human neutrophils. Involvement of jak2 in the stimulation of phosphatidylinositol 3-kinase. J. Biol. Chem. 274: 5333–5338.
– reference: 6. Hughes, B. J., Holler, J. C., Crockett-Torabi, E. and Smith, C. W. 1992. Recruitment of CD11b/CD18 to the neutrophil surface and adherence dependent locomotion. J. Clin. Invest. 90: 1687–1696.
– reference: 12. Maurer, D., Fischer, G. F., Felzmann, T., Majdic, O., Gschwantler, E., Hinterberger, W., Wagner, A. and Knapp, W. 1991. Ratio of complement receptor over Fc-receptor III expression: a sensitive parameter to monitor granulocyte-monocyte colony-stimulating factor effect on neutrophils. Ann. Hematol. 62: 135–140.
– reference: 11. Lundahl, J., Jacobson, S. H. and Paulsson, J. M. 2012. IL-8 from local subcutaneous wounds regulates CD11b activation. Scand. J. Immunol. 75: 419–425.
– reference: 16. Nothdurft, W., Selig, C., Fliedner, T. M., Hintz-Obertreis, P., Kreja, L., Krumwieh, D., Kurrle, R., Seiler, F. R. and Weinsheimer, W. 1992. Haematological effects of rhGM-CSF in dogs exposed to total-body irradiation with a dose of 2.4 Gy. Int. J. Radiat. Biol. 61: 519–531.
– reference: 17. Reddy, A., Sapp, M., Feldman, M., Subklewe, M. and Bhardwaj, N. 1997. A monocyte conditioned medium is more effective than defined cytokines in mediating the terminal maturation of human dendritic cells. Blood 90: 3640–3646.
– reference: 22. Wang, Y-S., Chi, K-H., Liao, K-W., Liu, C-C., Cheng, C-L., Lin, Y-C., Cheng, C-H. and Chu, R-M. 2007. Characterization of canine monocyte-derived dendritic cells with phenotypic and functional differentiation. Can. J. Vet. Res. 71: 165–174.
– reference: 23. Watanabe, S., Aoki, Y., Nishijima, I., Xu, M.J. and Arai, K. 2000. Analysis of signals and functions of the BA/F3 cells and transgenic mice colony-stimulating factor receptor in chimeric human granuloctye-macrophage. J. Immunol. 164: 3635–3644.
– ident: 16
  doi: 10.1080/09553009214551281
– ident: 17
  doi: 10.1182/blood.V90.9.3640
– ident: 18
– ident: 5
  doi: 10.1615/CritRevImmunol.v25.i5.50
– ident: 1
  doi: 10.1074/jbc.274.9.5333
– ident: 19
  doi: 10.1146/annurev.physiol.64.090601.113847
– ident: 12
  doi: 10.1007/BF01702927
– ident: 14
  doi: 10.4049/jimmunol.0903873
– ident: 13
  doi: 10.1182/blood.V98.10.3165
– ident: 4
  doi: 10.1007/s10495-010-0552-2
– ident: 15
  doi: 10.4049/jimmunol.145.10.3325
– ident: 23
  doi: 10.4049/jimmunol.164.7.3635
– ident: 21
  doi: 10.1016/0140-6736(92)90717-H
– ident: 2
  doi: 10.1016/j.vaccine.2005.08.027
– ident: 6
  doi: 10.1172/JCI116041
– ident: 10
  doi: 10.4049/jimmunol.0903292
– ident: 3
  doi: 10.4049/jimmunol.1201789
– ident: 9
  doi: 10.1002/jcp.1041400219
– ident: 7
– ident: 8
– ident: 20
  doi: 10.1056/NEJMoa062505
– ident: 11
  doi: 10.1111/j.1365-3083.2012.02679.x
– ident: 22
SSID ssj0021469
Score 2.0168262
Snippet Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a pleiotropic cytokine, sharing a common beta subunit (CDw131) with interleukins 3 and 5. GM-CSF...
Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a pleiotropic cytokine, sharing a common beta subunit (CDw131) with interleukins 3 and 5. GM-CSF...
SourceID pubmedcentral
proquest
pubmed
crossref
jstage
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1173
SubjectTerms Animals
canine
CD11b
CD11b Antigen - metabolism
CHO Cells
Cricetinae
Cricetulus
Dogs
Dose-Response Relationship, Drug
Escherichia coli - metabolism
flow cytometry
Gene Expression Regulation - drug effects
Gene Expression Regulation - immunology
granulocyte-macrophage colony-stimulating factor
Granulocyte-Macrophage Colony-Stimulating Factor - pharmacology
Granulocytes - metabolism
Humans
Immunology
median fluorescence intensity
xenostimulation
Yeasts - metabolism
Title Up-Regulation of Cluster of Differentiation (CD) 11b Expression on the Surface of Canine Granulocytes with Human Granulocyte-Macrophage Colony-Stimulating Factor (GM-CSF)
URI https://www.jstage.jst.go.jp/article/jvms/76/8/76_14-0056/_article/-char/en
https://www.ncbi.nlm.nih.gov/pubmed/24829080
https://www.proquest.com/docview/1560322702
https://www.proquest.com/docview/1559012040
https://pubmed.ncbi.nlm.nih.gov/PMC4155203
Volume 76
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Journal of Veterinary Medical Science, 2014, Vol.76(8), pp.1173-1176
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELfG4IEXBOMrY0xGAmkTMjSJGydCCKFCGaDyAkV7i2zH7phad2sbtP5L_JXcOU60TkPipYrqy0dzvrvf9ez7EfJcKwnmrAqGzaUY59ayXCnOVJFWEI-UVn7f2uhbdjTmX477x1ukZRsNL3B5bWqHfFLjxfTVxfn6HRj8W98boUhen_6eLcHiGba1vEFuQkwSyGUw4l09AdmrC596ccEQgocl8FfP3ghOt04Bn03MddDz6grKSyFpeJfcCViSvm-Uf49sGbdDdn7iAhe_y5aOQuH8PvkzPmOLhnYeFEHnluppjT0S8LAlSVk1aqIHgw-HNI4VNRdhmSyc4ShARbqsF1Zq4y8gHVyaTiDY1RAR14BZKf6rSz3t3-Xv2UwiUdgJ_EyKTbLdmoFjmfmHcRPaUP7Qg08jNvg-PHxAxsOPPwZHLNA0MA3Z1YrFgPiUSNPCZLmVosp6Vhmb97TEXvWyypWVBQBTm1qrea6NqLDcmWFeHus0SR-SbTd35jGh_bRvABLFwtqCS1MVSoE_EtxyUWkr4oi8bPVT6tDDHKk0piXmMqDNErUJ6UyJ2ozIi076rOnd8Q-5N42qO6lgtY2UyMocP4J0N4jb4sC3RGSvnR9lO31L3J8OrlL0kog864bBcrEcI52Z1yiD-34T8KIRedRMp-4BEo4F7hxGxMZE6wSwK_jmiPt14ruDI0JMeunuf9z3CbkN-I836xn3yPZqUZungLFWah-yi89f970R_QWZyi1j
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Up-regulation+of+cluster+of+differentiation+%28CD%29+11b+expression+on+the+surface+of+canine+granulocytes+with+human+granulocyte-macrophage+colony-stimulating+factor+%28GM-CSF%29&rft.jtitle=Journal+of+veterinary+medical+science&rft.au=Nakagaki%2C+Kazuhide&rft.au=Nunomura%2C+Yuka&rft.au=Uchida%2C+Kanji&rft.au=Nakata%2C+Koh&rft.date=2014-08-01&rft.issn=1347-7439&rft.eissn=1347-7439&rft.volume=76&rft.issue=8&rft.spage=1173&rft_id=info:doi/10.1292%2Fjvms.14-0056&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0916-7250&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0916-7250&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0916-7250&client=summon