Leptin Regulation of Agrp and Npy mRNA in the Rat Hypothalamus

Agouti‐related protein (AGRP) is synthesized in the same neurones in the arcuate nucleus as neuropeptide Y (NPY), another potent orexigenic peptide. AGRP antagonizes the action of α‐melanocyte stimulating hormone, a derivative of pro‐opiomelanocortin (POMC) at the hypothalamic MC4 receptor to increa...

Full description

Saved in:
Bibliographic Details
Published inJournal of neuroendocrinology Vol. 13; no. 11; pp. 959 - 966
Main Authors Korner, J., Savontaus, E., Chua Jr, S. C., Leibel, R. L., Wardlaw, S. L.
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Science, Ltd 01.11.2001
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Agouti‐related protein (AGRP) is synthesized in the same neurones in the arcuate nucleus as neuropeptide Y (NPY), another potent orexigenic peptide. AGRP antagonizes the action of α‐melanocyte stimulating hormone, a derivative of pro‐opiomelanocortin (POMC) at the hypothalamic MC4 receptor to increase food intake. Although leptin has been shown to regulate Agrp/Npy and Pomc‐expressing neurones, there are differences with respect to Agrp regulation in leptin receptor‐deficient mice and rats. Unlike the obese leptin receptor‐deficient db/db mouse, which exhibits upregulation of Agrp mRNA expression in the medial basal hypothalamus (MBH) compared to lean controls, the obese leptin receptor‐deficient (faf; Koletsky) rat does not exhibit upregulation of Agrp expression. To determine whether this represents a general difference between leptin receptor‐deficient mice and rats, neuropeptide gene expression was analysed in the MBH of lean and obese rats segregating for a different leptin receptor mutation, Leprfa (Zucker). Fasting in lean rats (+/fa) for 72 h significantly increased Agrp and Npy mRNA expression, and decreased Pomc mRNA expression as detected by a sensitive solution hybridization/S1 nuclease protection assay. Npy mRNA levels were significantly increased in fed obese fa/fa compared to lean rats, and further increased in the obese animals after fasting. In contrast, Agrp mRNA levels did not differ between fed lean and fed obese rats, and fasting did not significantly change Agrp levels in obese rats. To determine whether the change in Agrp expression that occurs with food deprivation in lean rats could be prevented by leptin replacement, Sprague‐Dawley rats were fasted and infused via subcutaneous osmotic micropumps for 48 h with either saline or recombinant mouse leptin. Fasting significantly increased Agrp and Npy, and decreased Pomc mRNA levels. Leptin infusion almost completely reversed these changes such that there was no significant difference between the levels in the fasted rats and those that were fed ad libitum. Thus, in fasted lean rats, Agrp and Npy are upregulated in parallel when leptin levels fall and are downregulated by leptin infusion. By contrast, the absence of a functional leptin receptor results in the upregulation of Npy but not Agrp mRNA.
AbstractList Agouti‐related protein (AGRP) is synthesized in the same neurones in the arcuate nucleus as neuropeptide Y (NPY), another potent orexigenic peptide. AGRP antagonizes the action of α‐melanocyte stimulating hormone, a derivative of pro‐opiomelanocortin (POMC) at the hypothalamic MC4 receptor to increase food intake. Although leptin has been shown to regulate Agrp/Npy and Pomc‐expressing neurones, there are differences with respect to Agrp regulation in leptin receptor‐deficient mice and rats. Unlike the obese leptin receptor‐deficient db/db mouse, which exhibits upregulation of Agrp mRNA expression in the medial basal hypothalamus (MBH) compared to lean controls, the obese leptin receptor‐deficient (faf; Koletsky) rat does not exhibit upregulation of Agrp expression. To determine whether this represents a general difference between leptin receptor‐deficient mice and rats, neuropeptide gene expression was analysed in the MBH of lean and obese rats segregating for a different leptin receptor mutation, Leprfa (Zucker). Fasting in lean rats (+/fa) for 72 h significantly increased Agrp and Npy mRNA expression, and decreased Pomc mRNA expression as detected by a sensitive solution hybridization/S1 nuclease protection assay. Npy mRNA levels were significantly increased in fed obese fa/fa compared to lean rats, and further increased in the obese animals after fasting. In contrast, Agrp mRNA levels did not differ between fed lean and fed obese rats, and fasting did not significantly change Agrp levels in obese rats. To determine whether the change in Agrp expression that occurs with food deprivation in lean rats could be prevented by leptin replacement, Sprague‐Dawley rats were fasted and infused via subcutaneous osmotic micropumps for 48 h with either saline or recombinant mouse leptin. Fasting significantly increased Agrp and Npy, and decreased Pomc mRNA levels. Leptin infusion almost completely reversed these changes such that there was no significant difference between the levels in the fasted rats and those that were fed ad libitum. Thus, in fasted lean rats, Agrp and Npy are upregulated in parallel when leptin levels fall and are downregulated by leptin infusion. By contrast, the absence of a functional leptin receptor results in the upregulation of Npy but not Agrp mRNA.
Agouti-related protein (AGRP) is synthesized in the same neurones in the arcuate nucleus as neuropeptide Y (NPY), another potent orexigenic peptide. AGRP antagonizes the action of alpha-melanocyte stimulating hormone, a derivative of pro-opiomelanocortin (POMC) at the hypothalamic MC4 receptor to increase food intake. Although leptin has been shown to regulate Agrp/Npy and Pomc-expressing neurones, there are differences with respect to Agrp regulation in leptin receptor-deficient mice and rats. Unlike the obese leptin receptor-deficient db/db mouse, which exhibits upregulation of Agrp mRNA expression in the medial basal hypothalamus (MBH) compared to lean controls, the obese leptin receptor-deficient (faf; Koletsky) rat does not exhibit upregulation of Agrp expression. To determine whether this represents a general difference between leptin receptor-deficient mice and rats, neuropeptide gene expression was analysed in the MBH of lean and obese rats segregating for a different leptin receptor mutation, Leprfa (Zucker). Fasting in lean rats (+/fa) for 72 h significantly increased Agrp and Npy mRNA expression, and decreased Pomc mRNA expression as detected by a sensitive solution hybridization/S1 nuclease protection assay. Npy mRNA levels were significantly increased in fed obese fa/fa compared to lean rats, and further increased in the obese animals after fasting. In contrast, Agrp mRNA levels did not differ between fed lean and fed obese rats, and fasting did not significantly change Agrp levels in obese rats. To determine whether the change in Agrp expression that occurs with food deprivation in lean rats could be prevented by leptin replacement, Sprague-Dawley rats were fasted and infused via subcutaneous osmotic micropumps for 48 h with either saline or recombinant mouse leptin. Fasting significantly increased Agrp and Npy, and decreased Pomc mRNA levels. Leptin infusion almost completely reversed these changes such that there was no significant difference between the levels in the fasted rats and those that were fed ad libitum. Thus, in fasted lean rats, Agrp and Npy are upregulated in parallel when leptin levels fall and are downregulated by leptin infusion. By contrast, the absence of a functional leptin receptor results in the upregulation of Npy but not Agrp mRNA.
Abstract Agouti‐related protein (AGRP) is synthesized in the same neurones in the arcuate nucleus as neuropeptide Y (NPY), another potent orexigenic peptide. AGRP antagonizes the action of α‐melanocyte stimulating hormone, a derivative of pro‐opiomelanocortin (POMC) at the hypothalamic MC4 receptor to increase food intake. Although leptin has been shown to regulate Agrp/Npy and Pomc ‐expressing neurones, there are differences with respect to Agrp regulation in leptin receptor‐deficient mice and rats. Unlike the obese leptin receptor‐deficient db/db mouse, which exhibits upregulation of Agrp mRNA expression in the medial basal hypothalamus (MBH) compared to lean controls, the obese leptin receptor‐deficient ( fa f ; Koletsky) rat does not exhibit upregulation of Agrp expression. To determine whether this represents a general difference between leptin receptor‐deficient mice and rats, neuropeptide gene expression was analysed in the MBH of lean and obese rats segregating for a different leptin receptor mutation, Lepr fa (Zucker). Fasting in lean rats (+/ fa ) for 72 h significantly increased Agrp and Npy mRNA expression, and decreased Pomc mRNA expression as detected by a sensitive solution hybridization/S1 nuclease protection assay. Npy mRNA levels were significantly increased in fed obese fa/fa compared to lean rats, and further increased in the obese animals after fasting. In contrast, Agrp mRNA levels did not differ between fed lean and fed obese rats, and fasting did not significantly change Agrp levels in obese rats. To determine whether the change in Agrp expression that occurs with food deprivation in lean rats could be prevented by leptin replacement, Sprague‐Dawley rats were fasted and infused via subcutaneous osmotic micropumps for 48 h with either saline or recombinant mouse leptin. Fasting significantly increased Agrp and Npy , and decreased Pomc mRNA levels. Leptin infusion almost completely reversed these changes such that there was no significant difference between the levels in the fasted rats and those that were fed ad libitum . Thus, in fasted lean rats, Agrp and Npy are upregulated in parallel when leptin levels fall and are downregulated by leptin infusion. By contrast, the absence of a functional leptin receptor results in the upregulation of Npy but not Agrp mRNA.
Author Leibel, R. L.
Chua Jr, S. C.
Korner, J.
Wardlaw, S. L.
Savontaus, E.
Author_xml – sequence: 1
  givenname: J.
  surname: Korner
  fullname: Korner, J.
  organization: Departments of Medicine and
– sequence: 2
  givenname: E.
  surname: Savontaus
  fullname: Savontaus, E.
  organization: Departments of Medicine and
– sequence: 3
  givenname: S. C.
  surname: Chua Jr
  fullname: Chua Jr, S. C.
  organization: Departments of Medicine and
– sequence: 4
  givenname: R. L.
  surname: Leibel
  fullname: Leibel, R. L.
  organization: Departments of Medicine and
– sequence: 5
  givenname: S. L.
  surname: Wardlaw
  fullname: Wardlaw, S. L.
  organization: Departments of Medicine and
BackLink https://www.ncbi.nlm.nih.gov/pubmed/11737554$$D View this record in MEDLINE/PubMed
BookMark eNqNkFtr2zAYhsVIWdKuf6GIXuzOnmQdLMEYpKXnzIXQ0kshy3Li1KdZNkv-_eQmdNCr3ugTfM_7SjzHYFI3tQUAYhRiRPmPTYgJZ0EkIh5GCOEQoRjzcPsFzN4XEzBDkpFAYEmn4Ni5jQdjRtBXMMU4JjFjdAZ-LWzbFzVc2tVQ6r5oatjkcL7qWqjrDCbtDlbLZA490q8tXOoe3u7apl_rUleD-waOcl06e3qYJ-D5-urp8jZYPN7cXc4XgaGScX9SQRHXLDMC8Uzz3FAuY5xqogk1xEhMRWpSSWOpo1TinJpcpzjiRJAcZeQEfN_3tl3zZ7CuV1XhjC1LXdtmcCqOCCWMcg-efwA3zdDV_m8KS0mEkER6SOwh0zXOdTZXbVdUutspjNQoWG3U6FGNHtUoWL0JVlsfPTv0D2lls__Bg1EP_NwDf4vS7j5drO6TK3_x8WAfL1xvt-9x3b0qPr6gXpIb9RCz5OL-97Xv-gc0yZeN
CitedBy_id crossref_primary_10_1016_j_metabol_2023_155534
crossref_primary_10_1016_j_bbr_2015_02_008
crossref_primary_10_1093_jn_134_2_295
crossref_primary_10_1210_en_2008_1409
crossref_primary_10_1016_j_ejphar_2010_10_111
crossref_primary_10_1017_S0007114512000487
crossref_primary_10_1016_j_ijdevneu_2011_03_006
crossref_primary_10_1177_153537020322801005
crossref_primary_10_1210_endocr_bqab009
crossref_primary_10_1007_s12020_016_0918_5
crossref_primary_10_1016_j_ijdevneu_2014_11_006
crossref_primary_10_1016_S0091_3022_02_00002_X
crossref_primary_10_1203_00006450_200208000_00010
crossref_primary_10_1016_S0167_0115_03_00119_8
crossref_primary_10_1111_jne_12281
crossref_primary_10_2337_dc10_zb05
crossref_primary_10_1016_j_bone_2015_10_020
crossref_primary_10_1210_en_2008_0542
crossref_primary_10_1038_s41598_020_62147_z
crossref_primary_10_1038_ijo_2008_245
crossref_primary_10_1016_j_brainres_2010_05_062
crossref_primary_10_1210_jc_2018_01909
crossref_primary_10_2174_1389557523666230825100154
crossref_primary_10_1007_s11154_007_9043_3
crossref_primary_10_1210_en_2002_221037
crossref_primary_10_1016_j_jab_2015_01_003
crossref_primary_10_1210_en_2008_0705
crossref_primary_10_1113_JP271605
crossref_primary_10_1369_jhc_7A7214_2007
crossref_primary_10_1017_S0954422408138744
crossref_primary_10_1371_journal_pone_0098276
crossref_primary_10_1530_JOE_14_0358
crossref_primary_10_1017_S0007114511001735
crossref_primary_10_1210_er_2009_0028
crossref_primary_10_1016_j_bbadis_2006_08_008
crossref_primary_10_1186_s12906_017_1667_6
crossref_primary_10_1210_en_2007_1132
crossref_primary_10_1210_me_2012_1338
crossref_primary_10_3389_fendo_2017_00367
crossref_primary_10_1098_rstb_2006_1855
crossref_primary_10_1152_japplphysiol_01187_2003
crossref_primary_10_1016_j_neulet_2012_03_025
crossref_primary_10_1152_ajpregu_00245_2002
crossref_primary_10_1016_j_regpep_2011_07_001
crossref_primary_10_1515_hmbci_2015_0054
crossref_primary_10_1098_rstb_2006_1859
crossref_primary_10_1016_j_regpep_2009_09_011
crossref_primary_10_1016_j_ygcen_2013_10_008
crossref_primary_10_1016_j_cmet_2014_09_002
crossref_primary_10_1016_j_jnutbio_2004_01_003
crossref_primary_10_1016_j_tem_2009_07_004
crossref_primary_10_1038_gt_2012_83
crossref_primary_10_1016_j_yfrne_2011_06_001
crossref_primary_10_1210_en_2010_1135
crossref_primary_10_1111_j_1365_2826_2011_02183_x
crossref_primary_10_1111_j_1439_0396_2011_01204_x
crossref_primary_10_1371_journal_pone_0213927
crossref_primary_10_1016_j_physbeh_2006_04_020
crossref_primary_10_1038_s41366_019_0328_x
crossref_primary_10_1111_j_1365_2826_2004_01213_x
crossref_primary_10_1371_journal_pone_0168226
crossref_primary_10_1016_j_ygcen_2020_113467
crossref_primary_10_1210_en_2012_1166
crossref_primary_10_3389_fendo_2018_00168
crossref_primary_10_1016_S0031_9384_03_00107_0
crossref_primary_10_1016_j_cbpa_2010_09_001
crossref_primary_10_3390_cells10113120
crossref_primary_10_1152_physiolgenomics_00123_2003
crossref_primary_10_1089_zeb_2012_0841
crossref_primary_10_1002_jbt_20065
crossref_primary_10_1016_j_ygcen_2010_01_006
crossref_primary_10_1016_j_peptides_2008_04_018
crossref_primary_10_1038_s41573_021_00337_8
crossref_primary_10_1210_en_2002_220795
crossref_primary_10_1530_JOE_11_0270
crossref_primary_10_3389_fphys_2021_789519
crossref_primary_10_1016_j_jchemneu_2014_05_001
crossref_primary_10_1016_j_brainres_2003_10_025
crossref_primary_10_1016_j_jneumeth_2008_09_024
crossref_primary_10_1111_j_1742_1241_2008_01823_x
crossref_primary_10_1210_en_2018_00307
crossref_primary_10_1016_S0006_8993_02_03674_0
crossref_primary_10_1152_ajpendo_00330_2016
crossref_primary_10_1210_en_2009_0190
crossref_primary_10_3803_EnM_2013_28_4_288
crossref_primary_10_1017_jns_2014_70
crossref_primary_10_1002_oby_20678
crossref_primary_10_1210_en_2004_1093
crossref_primary_10_1016_j_ydbio_2015_08_016
crossref_primary_10_1016_j_brainres_2008_09_091
crossref_primary_10_1038_oby_2007_314
crossref_primary_10_1016_S0006_8993_02_03678_8
crossref_primary_10_4161_jkst_23675
crossref_primary_10_1016_j_domaniend_2014_09_001
crossref_primary_10_1111_j_1365_2826_2003_01113_x
crossref_primary_10_1194_jlr_M005744
crossref_primary_10_3389_fnsys_2015_00111
crossref_primary_10_1152_ajpregu_00447_2012
crossref_primary_10_1210_en_2017_00586
crossref_primary_10_1371_journal_pone_0065317
crossref_primary_10_1080_08035250500323780
crossref_primary_10_1111_anu_12094
crossref_primary_10_1016_j_mce_2024_112179
crossref_primary_10_1016_j_yfrne_2003_10_001
crossref_primary_10_1016_j_peptides_2004_12_023
crossref_primary_10_1016_j_yfrne_2014_05_007
crossref_primary_10_1097_00060793_200206000_00001
crossref_primary_10_1016_j_aquaculture_2017_12_011
crossref_primary_10_1016_j_bbrc_2018_04_192
crossref_primary_10_1016_j_molmet_2016_08_007
crossref_primary_10_1111_j_1365_2826_2006_01528_x
crossref_primary_10_1007_s13277_016_5357_7
crossref_primary_10_1152_ajpregu_00030_2008
crossref_primary_10_1080_14767050600708233
crossref_primary_10_3389_fnins_2019_00240
crossref_primary_10_1016_j_brainres_2004_11_008
crossref_primary_10_1111_j_1742_7843_2005_pto_179_x
crossref_primary_10_3945_ajcn_111_012385
crossref_primary_10_1242_dmm_025791
crossref_primary_10_1210_en_2011_0178
crossref_primary_10_1016_j_npep_2012_02_002
crossref_primary_10_1210_en_2010_0498
crossref_primary_10_1016_j_physbeh_2016_04_049
crossref_primary_10_1089_thy_2015_0384
crossref_primary_10_1210_en_2015_1811
crossref_primary_10_2337_db19_0941
crossref_primary_10_1152_ajpregu_00429_2010
crossref_primary_10_1016_S0031_9384_02_00883_1
crossref_primary_10_1152_japplphysiol_00926_2003
crossref_primary_10_1016_j_ejphar_2010_12_021
crossref_primary_10_1007_s11695_007_9324_7
crossref_primary_10_1074_jbc_M109_016808
crossref_primary_10_1152_ajpcell_00641_2008
crossref_primary_10_1016_j_neuropharm_2024_110050
crossref_primary_10_1074_jbc_M110_192260
crossref_primary_10_3390_cells12131801
crossref_primary_10_1530_JME_16_0212
crossref_primary_10_1556_ABiol_56_2005_3_4_2
crossref_primary_10_1016_j_reach_2019_100032
crossref_primary_10_1096_fj_02_0933com
crossref_primary_10_1093_toxsci_kfy052
crossref_primary_10_1080_07853890310012076
crossref_primary_10_1146_annurev_cellbio_120319_114106
crossref_primary_10_3389_fendo_2014_00198
crossref_primary_10_1038_s41574_019_0283_6
crossref_primary_10_1172_JCI17953
crossref_primary_10_1210_en_2007_1680
crossref_primary_10_1210_en_2009_1190
crossref_primary_10_1155_2010_398026
Cites_doi 10.1126/science.278.5335.135
10.2337/diab.47.2.294
10.1159/000054499
10.1016/s0006-8993(00)02060-6
10.1210/endo-128-5-2645
10.1056/NEJM199503093321001
10.1073/pnas.94.20.10657
10.1159/000054298
10.1101/gad.11.5.593
10.1210/endo.140.11.7105
10.1210/endo.140.10.6966
10.1053/meta.2001.24917
10.1210/en.141.7.2465
10.7326/0003-4819-119-7_Part_2-199310011-00012
10.1210/endo-124-5-2283
10.2337/diab.45.8.1141
10.1210/endo-124-4-1697
10.1093/ajcn/71.6.1421
10.1016/0169-328X(91)90038-Y
10.1210/endo.132.5.7682936
10.1210/endo-127-2-730
10.1210/en.134.2.555
10.1016/0169-328X(92)90233-2
10.1159/000125327
10.1152/ajpendo.1995.268.1.E15
10.1210/endo.138.11.5651
10.1038/1082
10.1210/jc.83.5.1407
10.1016/S0021-9258(18)68784-8
10.3181/00379727-214-44090
10.2337/diab.46.12.2119
10.2337/diabetes.48.10.2028
10.1038/ng0596-18
10.1210/me.15.1.164
10.1210/en.140.2.814
10.1006/bbrc.1997.7622
10.1016/0169-328X(93)90026-L
10.1038/382250a0
10.1016/S0031-9384(99)00095-5
ContentType Journal Article
Copyright Copyright Blackwell Scientific Publications Ltd. Nov 2001
Copyright_xml – notice: Copyright Blackwell Scientific Publications Ltd. Nov 2001
DBID BSCLL
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QP
7QR
7TK
8FD
FR3
K9.
P64
7X8
DOI 10.1046/j.1365-2826.2001.00716.x
DatabaseName Istex
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Technology Research Database
ProQuest Health & Medical Complete (Alumni)
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE
CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1365-2826
EndPage 966
ExternalDocumentID 87454400
10_1046_j_1365_2826_2001_00716_x
11737554
JNE716
ark_67375_WNG_K75NBJMF_1
Genre miscellaneous
Research Support, U.S. Gov't, P.H.S
Journal Article
GrantInformation_xml – fundername: NIDDK NIH HHS
  grantid: DK26687
– fundername: NIDDK NIH HHS
  grantid: DK59316
– fundername: NIDDK NIH HHS
  grantid: DK52431
– fundername: NIDDK NIH HHS
  grantid: DK57561
– fundername: NIDDK NIH HHS
  grantid: K08 DK059316
– fundername: NIDA NIH HHS
  grantid: DA07732
GroupedDBID ---
-DZ
.3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
29L
31~
33P
36B
3O-
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIVO
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCUC
ACCZN
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AHEFC
AHMBA
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EAD
EAP
EBC
EBD
EBS
EBX
EJD
EMB
EMK
EMOBN
ESX
EX3
F00
F01
F04
F5P
FEDTE
FUBAC
FYBCS
FZ0
G-S
G.N
GODZA
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
SV3
TEORI
TUS
UB1
W8V
W99
WBKPD
WHWMO
WIH
WIJ
WIK
WOHZO
WOW
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
XG1
YFH
ZGI
ZXP
ZZTAW
~IA
~WT
AETEA
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QP
7QR
7TK
8FD
FR3
K9.
P64
7X8
ID FETCH-LOGICAL-c4956-c448406a5dc806da6fc46971ba3a34c3c9148bcb9479a2b91f4cfab126383f0d3
IEDL.DBID DR2
ISSN 0953-8194
IngestDate Fri Aug 16 05:49:11 EDT 2024
Thu Oct 10 17:34:12 EDT 2024
Thu Sep 26 18:20:57 EDT 2024
Sat Sep 28 07:35:52 EDT 2024
Sat Aug 24 01:03:05 EDT 2024
Wed Oct 30 09:53:41 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4956-c448406a5dc806da6fc46971ba3a34c3c9148bcb9479a2b91f4cfab126383f0d3
Notes istex:00C3C88EAC77FD72D4C6174D5CA6D94A786C4F1E
ArticleID:JNE716
ark:/67375/WNG-K75NBJMF-1
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 11737554
PQID 199388939
PQPubID 34202
PageCount 8
ParticipantIDs proquest_miscellaneous_72343546
proquest_journals_199388939
crossref_primary_10_1046_j_1365_2826_2001_00716_x
pubmed_primary_11737554
wiley_primary_10_1046_j_1365_2826_2001_00716_x_JNE716
istex_primary_ark_67375_WNG_K75NBJMF_1
PublicationCentury 2000
PublicationDate November 2001
PublicationDateYYYYMMDD 2001-11-01
PublicationDate_xml – month: 11
  year: 2001
  text: November 2001
PublicationDecade 2000
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: United States
– name: Oxford
PublicationTitle Journal of neuroendocrinology
PublicationTitleAlternate J Neuroendocrinol
PublicationYear 2001
Publisher Blackwell Science, Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Science, Ltd
– name: Wiley Subscription Services, Inc
References Sanacora G, Kershaw M, Finkelstein JA, White JD. Increased hypothalamic content of preproneuropeptide Y messenger ribonucleic acid in genetically obese Zucker rats and its regulation by food deprivation. Endocrinology 1990; 127: 730-737.
Truett GE, Tempelman RJ, Walker JA. Codominant effects of the fatty (fa) gene during early development of obesity. Am J Physiol 1995; 268: E15-E20.
Flier JS. Clinical review 94: what's in a name? In search of leptin's physiologic role. J Clin Endocrinol Metab 1998; 83: 1407-1413.
Ollmann MM, Wilson BD, Yang YK, Kerns JA, Chen Y, Gantz I, Barsh GS. Antagonism of central melanocortin receptors in vitro and in vivo by agouti-related protein. Science 1997; 278: 135-138.DOI: 10.1126/science.278.5335.135
Korner J, Chua SC Jr, Williams JA, Leibel RL, Wardlaw SL. Regulation of hypothalamic proopiomelanocortin by leptin in lean and obese rats. Neuroendocrinology 1999; 70: 377-383.
White BD & Martin RJ. Evidence for a central mechanism of obesity in the Zucker rat: role of neuropeptide Y and leptin. Proc Soc Exp Biol Med 1997; 214: 222-232.
Wadden TA. Treatment of obesity by moderate and severe caloric restriction. Results of clinical research trials. Ann Intern Med 1993; 119: 688-693.
Korner J, Wardlaw SL, Liu SM, Conwell IM, Leibel RL, Chua SC. Regulation of hypothalamic AGRP mRNA in lean and obese (Leprfaf) rats. Endocrinology 2000; 141: 2465-2471.
Nijenhuis WA, Oosterom J, Adan RA. AgRP (83-132) acts as an inverse agonist on the human-melanocortin-4 receptor. Mol Endocrinol 2001; 15: 164-171.
Zhang YY & Leibel RL. Molecular physiology of leptin and its receptor. Growth Genet Horm 1998; 14: 17-26.
Phillips MS, Liu Q, Hammond HA, Dugan V, Hey PJ, Caskey CJ, Hess JF. Leptin receptor missense mutation in the fatty Zucker rat. Nat Genet 1996; 13: 18-19.
Ahima RS, Kelly J, Elmquist JK, Flier JS. Distinct physiologic and neuronal responses to decreased leptin and mild hyperleptinemia. Endocrinology 1999; 140: 4923-4931.
Autelitano DJ, Blum M, Lopingco M, Allen RG, Roberts JL. Corticotropin-releasing factor differentially regulates anterior and intermediate pituitary lobe proopiomelanocortin gene transcription, nuclear precursor RNA and mature mRNA in vivo. Neuroendocrinology 1990; 51: 123-130.
Mizuno TM & Mobbs CV. Hypothalamic agouti-related protein messenger ribonucleic acid is inhibited by leptin and stimulated by fasting. Endocrinology 1999; 140: 814-817.
Hahn TM, Breininger JF, Baskin DG, Schwartz MW. Coexpression of Agrp and NPY in fasting-activated hypothalamic neurons. Nat Neurosci 1998; 1: 271-272.
Ahima RS, Prabakaran D, Mantzoros C, Qu D, Lowell B, Maratos-Flier E, Flier JS. Role of leptin in the neuroendocrine response to fasting. Nature 1996; 382: 250-252.
Chua SC Jr, Brown AW, Kim J, Hennessey KL, Leibel RL, Hirsch J. Food deprivation and hypothalamic neuropeptide gene expression: effects of strain background and the diabetes mutation. Brain Res Mol Brain Res 1991; 11: 291-299.
Leibel RL, Rosenbaum M, Hirsch J. Changes in energy expenditure resulting from altered body weight. New Engl J Med 1995; 332: 621-628.
Rosenbaum M, Hirsch J, Murphy E, Leibel RL. Effects of changes in body weight on carbohydrate metabolism, catecholamine excretion, and thyroid function. Am J Clin Nutr 2000; 71: 1421-1432.
Jhanwar-Uniyal M & Chua SC Jr. Critical effects of aging and nutritional state on hypothalamic neuropeptide Y and galanin gene expression in lean and genetically obese Zucker rats. Brain Res Mol Brain Res 1993; 19: 195-202.
Wilding JP, Gilbey SG, Bailey CJ, Batt RA, Williams G, Ghatei MA, Bloom SR. Increased neuropeptide-Y messenger ribonucleic acid (mRNA) and decreased neurotensin mRNA in the hypothalamus of the obese (ob/ob) mouse. Endocrinology 1993; 132: 1939-1944.
Mizuno TM, Kleopoulos SP, Bergen HT, Roberts JL, Priest CA, Mobbs CV. Hypothalamic pro-opiomelanocortin mRNA is reduced by fasting and in ob/ob and db/db mice, but is stimulated by leptin. Diabetes 1998; 47: 294-297.
Scarbrough K, Jakubowski M, Levin N, Wise PM, Roberts JL. The effect of time of day on levels of hypothalamic proopiomelanocortin primary transcript, processing intermediate and messenger ribonucleic acid in proestrous and estrous rats. Endocrinology 1994; 134: 555-561.
Schwartz MW, Seeley RJ, Woods SC, Weigle DS, Campfield LA, Burn P, Baskin DG. Leptin increases hypothalamic pro-opiomelanocortin mRNA expression in the rostral arcuate nucleus. Diabetes 1997; 46: 2119-2123.
Chua SC Jr, White DW, Wu-Peng XS, Liu SM, Okada N, Kershaw EE, Chung WK, Power-Kehoe L, Chua M, Tartaglia LA, Leibel RL. Phenotype of fatty due to Gln269Pro mutation in the leptin receptor (Lepr). Diabetes 1996; 45: 1141-1143.
Schwartz MW, Marks JL, Sipols AJ, Baskin DG, Woods SC, Kahn SE, Porte D Jr. Central insulin administration reduces neuropeptide Y mRNA expression in the arcuate nucleus of food-deprived lean (Fa/Fa) but not obese (fa/fa) Zucker rats. Endocrinology 1991; 128: 2645-2647.
Boozer CN, Love RJ, Cha MC, Leibel RL, Aronne LJ. Synergy of leptin and sibutramine in treatment of diet-induced obesity in rats. Metabolism 2001; 50: 889-893.
Mizuno TM, Makimura H, Silverstein J, Roberts JL, Lopingco T, Mobbs CV. Fasting regulates hypothalamic neuropeptide Y, agouti-related peptide, and proopiomelanocortin in diabetic mice independent of changes in leptin or insulin. Endocrinology 1999; 140: 4551-4557.
Pesonen U, Huupponen R, Rouru J, Koulu M. Hypothalamic neuropeptide expression after food restriction in Zucker rats: evidence of persistent neuropeptide Y gene activation. Brain Res Mol Brain Res 1992; 16: 255-260.
Kowalski TJ, Houpt TA, Jahng J, Okada N, Liu SM, Chua SC Jr, Smith GP. Neuropeptide Y overexpression in the preweanling Zucker (fa/fa) rat. Physiol Behav 1999; 67: 521-525.
Bautista E, Gavel D, Hamilton J, Horwitz B. Hypothalamic neuropeptide message in neonatal lean and obese male Zucker rats. Obesity Res 2001; 9: 70.
Shutter JR, Graham M, Kinsey AC, Scully S, Luthy R, Stark KL. Hypothalamic expression of ART, a novel gene related to agouti, is up-regulated in obese and diabetic mutant mice. Genes Dev 1997; 11: 593-602.
Blum M, Roberts JL, Wardlaw SL. Androgen regulation of proopiomelanocortin gene expression and peptide content in the basal hypothalamus. Endocrinology 1989; 124: 2283-2288.
Zhang Y, Olbort M, Schwarzer K, Nuesslein-Hildesheim B, Nicolson M, Murphy E, Kowalski TJ, Schmidt I, Leibel RL. The leptin receptor mediates apparent autocrine regulation of leptin gene expression. Biochem Biophys Res Commun 1997; 240: 492-495.DOI: 10.1006/bbrc.1997.7622
Chowen-Breed J, Fraser HM, Vician L, Damassa DA, Clifton DK, Steiner RA. Testosterone regulation of proopiomelanocortin messenger ribonucleic acid in the arcuate nucleus of the male rat. Endocrinology 1989; 124: 1697-1702.
Wardlaw SL, McCarthy KC, Conwell IM. Glucocorticoid regulation of hypothalamic proopiomelanocortin. Neuroendocrinology 1998; 67: 51-57.
White DW, Wang DW, Chua SC Jr, Morgenstern JP, Leibel RL, Baumann H, Tartaglia LA. Constitutive and impaired signaling of leptin receptors containing the Gln → Pro extracellular domain fatty mutation. Proc Natl Acad Sci USA 1997; 94: 10657-10662.
Kim E, O'Hare E, Grace MK, Welch CC, Billington CJ, Levine AS. ARC POMC mRNA and PVN alpha-MSH are lower in obese relative to lean Zucker rats. Brain Res 2000; 862: 11-16.DOI: 10.1016/s0006-8993(00)02060-6
Higuchi H, Yang HY, Sabol SL. Rat neuropeptide Y precursor gene expression. mRNA structure, tissue distribution, and regulation by glucocorticoids, cyclic AMP, and phorbol ester. J Biol Chem 1988; 263: 6288-6295.
Thornton JE, Cheung CC, Clifton DK, Steiner RA. Regulation of hypothalamic proopiomelanocortin mRNA by leptin in ob/ob mice. Endocrinology 1997; 138: 5063-5066.
Ebihara K, Ogawa Y, Katsuura G, Numata Y, Masuzaki H, Satoh N, Tamaki M, Yoshioka T, Hayase M, Matsuoka N, Aizawa-Abe M, Yoshimasa Y, Nakao K. Involvement of agouti-related protein, an endogenous antagonist of hypothalamic melanocortin receptor, in leptin action. Diabetes 1999; 48: 2028-2033.
1997; 278
1994; 134
1990; 51
1997; 214
1997; 138
2001; 50
1990; 127
1991; 11
1997; 46
1999; 48
1996; 382
1999; 67
1999; 140
2000; 71
1988; 263
1998; 83
1995; 332
1992; 16
1996; 13
1998; 67
1998; 47
1993; 19
1997; 94
1993; 119
1997; 11
2000; 862
1989; 124
2000
1997; 240
2001; 9
2000; 141
1995; 268
2001; 15
1998; 1
1991; 128
1999; 70
1993; 132
1998; 14
1996; 45
e_1_2_7_5_2
e_1_2_7_4_2
e_1_2_7_3_2
e_1_2_7_2_2
e_1_2_7_9_2
e_1_2_7_7_2
e_1_2_7_6_2
e_1_2_7_19_2
Higuchi H (e_1_2_7_21_2) 1988; 263
e_1_2_7_18_2
e_1_2_7_17_2
e_1_2_7_15_2
e_1_2_7_14_2
e_1_2_7_40_2
e_1_2_7_13_2
e_1_2_7_41_2
e_1_2_7_42_2
e_1_2_7_11_2
e_1_2_7_43_2
e_1_2_7_10_2
Zhang YY (e_1_2_7_16_2) 1998; 14
e_1_2_7_26_2
Ahima RS (e_1_2_7_12_2) 1999; 140
e_1_2_7_27_2
e_1_2_7_28_2
e_1_2_7_29_2
Mizuno TM (e_1_2_7_8_2) 1998; 47
e_1_2_7_25_2
e_1_2_7_24_2
e_1_2_7_23_2
e_1_2_7_31_2
e_1_2_7_22_2
e_1_2_7_32_2
e_1_2_7_33_2
e_1_2_7_20_2
e_1_2_7_34_2
e_1_2_7_35_2
e_1_2_7_36_2
e_1_2_7_37_2
e_1_2_7_38_2
e_1_2_7_39_2
Bautista E (e_1_2_7_30_2) 2001; 9
References_xml – volume: 140
  start-page: 814
  year: 1999
  end-page: 817
  article-title: Hypothalamic agouti‐related protein messenger ribonucleic acid is inhibited by leptin and stimulated by fasting
  publication-title: Endocrinology
– volume: 214
  start-page: 222
  year: 1997
  end-page: 232
  article-title: Evidence for a central mechanism of obesity in the Zucker rat: role of neuropeptide Y and leptin
  publication-title: Proc Soc Exp Biol Med
– volume: 128
  start-page: 2645
  year: 1991
  end-page: 2647
  article-title: Central insulin administration reduces neuropeptide Y mRNA expression in the arcuate nucleus of food‐deprived lean (Fa/Fa) but not obese (fa/fa) Zucker rats
  publication-title: Endocrinology
– start-page: 49.13
  year: 2000
– volume: 13
  start-page: 18
  year: 1996
  end-page: 19
  article-title: Leptin receptor missense mutation in the fatty Zucker rat
  publication-title: Nat Genet
– volume: 15
  start-page: 164
  year: 2001
  end-page: 171
  article-title: AgRP (83‐132) acts as an inverse agonist on the human‐melanocortin‐4 receptor
  publication-title: Mol Endocrinol
– volume: 47
  start-page: 294
  year: 1998
  end-page: 297
  article-title: Hypothalamic pro‐opiomelanocortin mRNA is reduced by fasting and in ob/ob and db/db mice, but is stimulated by leptin
  publication-title: Diabetes
– volume: 94
  start-page: 10657
  year: 1997
  end-page: 10662
  article-title: Constitutive and impaired signaling of leptin receptors containing the Gln → Pro extracellular domain fatty mutation
  publication-title: Proc Natl Acad Sci USA
– volume: 134
  start-page: 555
  year: 1994
  end-page: 561
  article-title: The effect of time of day on levels of hypothalamic proopiomelanocortin primary transcript, processing intermediate and messenger ribonucleic acid in proestrous and estrous rats
  publication-title: Endocrinology
– volume: 124
  start-page: 1697
  year: 1989
  end-page: 1702
  article-title: Testosterone regulation of proopiomelanocortin messenger ribonucleic acid in the arcuate nucleus of the male rat
  publication-title: Endocrinology
– volume: 127
  start-page: 730
  year: 1990
  end-page: 737
  article-title: Increased hypothalamic content of preproneuropeptide Y messenger ribonucleic acid in genetically obese Zucker rats and its regulation by food deprivation
  publication-title: Endocrinology
– volume: 11
  start-page: 291
  year: 1991
  end-page: 299
  article-title: Food deprivation and hypothalamic neuropeptide gene expression: effects of strain background and the diabetes mutation
  publication-title: Brain Res Mol Brain Res
– volume: 332
  start-page: 621
  year: 1995
  end-page: 628
  article-title: Changes in energy expenditure resulting from altered body weight
  publication-title: New Engl J Med
– volume: 382
  start-page: 250
  year: 1996
  end-page: 252
  article-title: Role of leptin in the neuroendocrine response to fasting
  publication-title: Nature
– volume: 16
  start-page: 255
  year: 1992
  end-page: 260
  article-title: Hypothalamic neuropeptide expression after food restriction in Zucker rats: evidence of persistent neuropeptide Y gene activation
  publication-title: Brain Res Mol Brain Res
– volume: 67
  start-page: 51
  year: 1998
  end-page: 57
  article-title: Glucocorticoid regulation of hypothalamic proopiomelanocortin
  publication-title: Neuroendocrinology
– volume: 9
  start-page: 70
  year: 2001
  article-title: Hypothalamic neuropeptide message in neonatal lean and obese male Zucker rats
  publication-title: Obesity Res
– volume: 1
  start-page: 271
  year: 1998
  end-page: 272
  article-title: Coexpression of Agrp and NPY in fasting‐activated hypothalamic neurons
  publication-title: Nat Neurosci
– volume: 46
  start-page: 2119
  year: 1997
  end-page: 2123
  article-title: Leptin increases hypothalamic pro‐opiomelanocortin mRNA expression in the rostral arcuate nucleus
  publication-title: Diabetes
– volume: 124
  start-page: 2283
  year: 1989
  end-page: 2288
  article-title: Androgen regulation of proopiomelanocortin gene expression and peptide content in the basal hypothalamus
  publication-title: Endocrinology
– volume: 138
  start-page: 5063
  year: 1997
  end-page: 5066
  article-title: Regulation of hypothalamic proopiomelanocortin mRNA by leptin in ob/ob mice
  publication-title: Endocrinology
– volume: 19
  start-page: 195
  year: 1993
  end-page: 202
  article-title: Critical effects of aging and nutritional state on hypothalamic neuropeptide Y and galanin gene expression in lean and genetically obese Zucker rats
  publication-title: Brain Res Mol Brain Res
– volume: 263
  start-page: 6288
  year: 1988
  end-page: 6295
  article-title: Rat neuropeptide Y precursor gene expression. mRNA structure, tissue distribution, and regulation by glucocorticoids, cyclic AMP, and phorbol ester
  publication-title: J Biol Chem
– volume: 278
  start-page: 135
  year: 1997
  end-page: 138
  article-title: Antagonism of central melanocortin receptors in vitro and in vivo by agouti‐related protein
  publication-title: Science
– volume: 71
  start-page: 1421
  year: 2000
  end-page: 1432
  article-title: Effects of changes in body weight on carbohydrate metabolism, catecholamine excretion, and thyroid function
  publication-title: Am J Clin Nutr
– volume: 45
  start-page: 1141
  year: 1996
  end-page: 1143
  article-title: Phenotype of fatty due to Gln269Pro mutation in the leptin receptor (Lepr)
  publication-title: Diabetes
– volume: 50
  start-page: 889
  year: 2001
  end-page: 893
  article-title: Synergy of leptin and sibutramine in treatment of diet‐induced obesity in rats
  publication-title: Metabolism
– volume: 70
  start-page: 377
  year: 1999
  end-page: 383
  article-title: Regulation of hypothalamic proopiomelanocortin by leptin in lean and obese rats
  publication-title: Neuroendocrinology
– volume: 140
  start-page: 4551
  year: 1999
  end-page: 4557
  article-title: Fasting regulates hypothalamic neuropeptide Y, agouti‐related peptide, and proopiomelanocortin in diabetic mice independent of changes in leptin or insulin
  publication-title: Endocrinology
– volume: 140
  start-page: 4923
  year: 1999
  end-page: 4931
  article-title: Distinct physiologic and neuronal responses to decreased leptin and mild hyperleptinemia
  publication-title: Endocrinology
– volume: 862
  start-page: 11
  year: 2000
  end-page: 16
  article-title: ARC POMC mRNA and PVN alpha‐MSH are lower in obese relative to lean Zucker rats
  publication-title: Brain Res
– volume: 14
  start-page: 17
  year: 1998
  end-page: 26
  article-title: Molecular physiology of leptin and its receptor
  publication-title: Growth Genet Horm
– volume: 268
  start-page: E15
  year: 1995
  end-page: E20
  article-title: Codominant effects of the fatty (fa) gene during early development of obesity
  publication-title: Am J Physiol
– volume: 132
  start-page: 1939
  year: 1993
  end-page: 1944
  article-title: Increased neuropeptide‐Y messenger ribonucleic acid (mRNA) and decreased neurotensin mRNA in the hypothalamus of the obese (ob/ob) mouse
  publication-title: Endocrinology
– volume: 141
  start-page: 2465
  year: 2000
  end-page: 2471
  article-title: Regulation of hypothalamic AGRP mRNA in lean and obese (Lepr ) rats
  publication-title: Endocrinology
– volume: 119
  start-page: 688
  year: 1993
  end-page: 693
  article-title: Treatment of obesity by moderate and severe caloric restriction. Results of clinical research trials
  publication-title: Ann Intern Med
– volume: 240
  start-page: 492
  year: 1997
  end-page: 495
  article-title: The leptin receptor mediates apparent autocrine regulation of leptin gene expression
  publication-title: Biochem Biophys Res Commun
– volume: 67
  start-page: 521
  year: 1999
  end-page: 525
  article-title: Neuropeptide Y overexpression in the preweanling Zucker (fa/fa) rat
  publication-title: Physiol Behav
– volume: 51
  start-page: 123
  year: 1990
  end-page: 130
  article-title: Corticotropin‐releasing factor differentially regulates anterior and intermediate pituitary lobe proopiomelanocortin gene transcription, nuclear precursor RNA and mature mRNA in vivo
  publication-title: Neuroendocrinology
– volume: 11
  start-page: 593
  year: 1997
  end-page: 602
  article-title: Hypothalamic expression of ART, a novel gene related to agouti, is up‐regulated in obese and diabetic mutant mice
  publication-title: Genes Dev
– volume: 48
  start-page: 2028
  year: 1999
  end-page: 2033
  article-title: Involvement of agouti‐related protein, an endogenous antagonist of hypothalamic melanocortin receptor, in leptin action
  publication-title: Diabetes
– volume: 83
  start-page: 1407
  year: 1998
  end-page: 1413
  article-title: Clinical review 94: what's in a name? In search of leptin's physiologic role
  publication-title: J Clin Endocrinol Metab
– ident: e_1_2_7_2_2
  doi: 10.1126/science.278.5335.135
– volume: 47
  start-page: 294
  year: 1998
  ident: e_1_2_7_8_2
  article-title: Hypothalamic pro‐opiomelanocortin mRNA is reduced by fasting and in ob/ob and db/db mice, but is stimulated by leptin
  publication-title: Diabetes
  doi: 10.2337/diab.47.2.294
  contributor:
    fullname: Mizuno TM
– ident: e_1_2_7_36_2
  doi: 10.1159/000054499
– ident: e_1_2_7_14_2
  doi: 10.1016/s0006-8993(00)02060-6
– ident: e_1_2_7_32_2
  doi: 10.1210/endo-128-5-2645
– ident: e_1_2_7_41_2
  doi: 10.1056/NEJM199503093321001
– ident: e_1_2_7_19_2
  doi: 10.1073/pnas.94.20.10657
– ident: e_1_2_7_20_2
  doi: 10.1159/000054298
– ident: e_1_2_7_3_2
  doi: 10.1101/gad.11.5.593
– volume: 140
  start-page: 4923
  year: 1999
  ident: e_1_2_7_12_2
  article-title: Distinct physiologic and neuronal responses to decreased leptin and mild hyperleptinemia
  publication-title: Endocrinology
  doi: 10.1210/endo.140.11.7105
  contributor:
    fullname: Ahima RS
– volume: 9
  start-page: 70
  year: 2001
  ident: e_1_2_7_30_2
  article-title: Hypothalamic neuropeptide message in neonatal lean and obese male Zucker rats
  publication-title: Obesity Res
  contributor:
    fullname: Bautista E
– ident: e_1_2_7_9_2
  doi: 10.1210/endo.140.10.6966
– ident: e_1_2_7_43_2
  doi: 10.1053/meta.2001.24917
– ident: e_1_2_7_13_2
  doi: 10.1210/en.141.7.2465
– ident: e_1_2_7_42_2
  doi: 10.7326/0003-4819-119-7_Part_2-199310011-00012
– ident: e_1_2_7_22_2
  doi: 10.1210/endo-124-5-2283
– ident: e_1_2_7_17_2
  doi: 10.2337/diab.45.8.1141
– ident: e_1_2_7_35_2
  doi: 10.1210/endo-124-4-1697
– ident: e_1_2_7_40_2
  doi: 10.1093/ajcn/71.6.1421
– ident: e_1_2_7_4_2
  doi: 10.1016/0169-328X(91)90038-Y
– ident: e_1_2_7_5_2
  doi: 10.1210/endo.132.5.7682936
– ident: e_1_2_7_11_2
  doi: 10.1210/endo-127-2-730
– ident: e_1_2_7_37_2
– ident: e_1_2_7_23_2
  doi: 10.1210/en.134.2.555
– ident: e_1_2_7_25_2
  doi: 10.1016/0169-328X(92)90233-2
– ident: e_1_2_7_24_2
  doi: 10.1159/000125327
– ident: e_1_2_7_28_2
  doi: 10.1152/ajpendo.1995.268.1.E15
– ident: e_1_2_7_6_2
  doi: 10.1210/endo.138.11.5651
– ident: e_1_2_7_31_2
  doi: 10.1038/1082
– ident: e_1_2_7_39_2
  doi: 10.1210/jc.83.5.1407
– volume: 263
  start-page: 6288
  year: 1988
  ident: e_1_2_7_21_2
  article-title: Rat neuropeptide Y precursor gene expression. mRNA structure, tissue distribution, and regulation by glucocorticoids, cyclic AMP, and phorbol ester
  publication-title: J Biol Chem
  doi: 10.1016/S0021-9258(18)68784-8
  contributor:
    fullname: Higuchi H
– volume: 14
  start-page: 17
  year: 1998
  ident: e_1_2_7_16_2
  article-title: Molecular physiology of leptin and its receptor
  publication-title: Growth Genet Horm
  contributor:
    fullname: Zhang YY
– ident: e_1_2_7_34_2
  doi: 10.3181/00379727-214-44090
– ident: e_1_2_7_7_2
  doi: 10.2337/diab.46.12.2119
– ident: e_1_2_7_10_2
  doi: 10.2337/diabetes.48.10.2028
– ident: e_1_2_7_18_2
  doi: 10.1038/ng0596-18
– ident: e_1_2_7_33_2
  doi: 10.1210/me.15.1.164
– ident: e_1_2_7_15_2
  doi: 10.1210/en.140.2.814
– ident: e_1_2_7_27_2
  doi: 10.1006/bbrc.1997.7622
– ident: e_1_2_7_26_2
  doi: 10.1016/0169-328X(93)90026-L
– ident: e_1_2_7_38_2
  doi: 10.1038/382250a0
– ident: e_1_2_7_29_2
  doi: 10.1016/S0031-9384(99)00095-5
SSID ssj0017530
Score 2.1335554
Snippet Agouti‐related protein (AGRP) is synthesized in the same neurones in the arcuate nucleus as neuropeptide Y (NPY), another potent orexigenic peptide. AGRP...
Agouti-related protein (AGRP) is synthesized in the same neurones in the arcuate nucleus as neuropeptide Y (NPY), another potent orexigenic peptide. AGRP...
Abstract Agouti‐related protein (AGRP) is synthesized in the same neurones in the arcuate nucleus as neuropeptide Y (NPY), another potent orexigenic peptide....
SourceID proquest
crossref
pubmed
wiley
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 959
SubjectTerms Agouti-Related Protein
AGRP
Animals
Body Weight
Carrier Proteins - genetics
Carrier Proteins - metabolism
Fasting - physiology
Food Deprivation - physiology
Gene Expression - physiology
Hypothalamus, Middle - physiology
Intercellular Signaling Peptides and Proteins
leptin
Leptin - metabolism
Male
Neuropeptide Y - genetics
NPY
obesity
Obesity - metabolism
Obesity - physiopathology
POMC
Pro-Opiomelanocortin - genetics
Proteins - genetics
Rats
Rats, Sprague-Dawley
Rats, Zucker
Receptors, Cell Surface
Receptors, Leptin
RNA, Messenger - analysis
Title Leptin Regulation of Agrp and Npy mRNA in the Rat Hypothalamus
URI https://api.istex.fr/ark:/67375/WNG-K75NBJMF-1/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1046%2Fj.1365-2826.2001.00716.x
https://www.ncbi.nlm.nih.gov/pubmed/11737554
https://www.proquest.com/docview/199388939
https://search.proquest.com/docview/72343546
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07b9swECaKdOnSpkkfSvrgUGSTYYqkaC4F3Dau4TYajAbNRvClDEZkww8g7q_vHSW7SJEhKLoIAiRKJO-O_I78eEfIhyC1q4NXeaFizAUPGkyq1iAQ6UGdfRFT-raLqhxfismVvOr4T3gWpo0PsV9wQ8tI4zUauHVtFpJ-im67Y2gBPkY3j2EQbFb2EE8yrpDd9WW6jySF8Sj7bdg9nsMkKDpST7fBee-H7sxUj7HTb--DoXdRbZqWRs_IbNeglo0y623Wrud__RXr8f-0-JA87dArHbbq9pw8is0ROR424LnfbOkZTXzStFB_TD5-R8JMQ6dttnuQP53XdHi9XFDbBFottvRmWg0pvAIglE7tmo63C1AcC0q6Wb0gl6PzH5_HeZetIffoZMFVgLNYWhn8oF8GW9YeXG_FnOWWC8-9Bs_LeaeF0rZwoBHC19axAkYAXvcDf0kOmnkTXxNach7r2iqmgxDWRl2Xg2BhHpVKe2ddRthOMmbRBuUwaTNd4MEz7CSDnYQpNplJnWRuM3KWRLgvYJczJLUpaX5WX803JatPk4uRYRk53cnYdPa8MkhzHAC00xl5v38Khoi7K7aJ883KqIID9BRlRl61ivGnagx_I0VGZBLvg-tsJtU53Jz8Y7lT8iQx5tLJyTfkYL3cxLcAodbuXTKO3y2CCj0
link.rule.ids 315,783,787,1378,27936,27937,46306,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEB6h9gAXKJSHW6B7QL05xN61nb0gBWgIaeJD1IreVvsyh1InykNq-PXMrJ2goh4Q4mJZstfencfuNzuzMwDvXCZN5WwRp4X3seBOokpVEhmSWRRnm_pQvm1S5sNLMbrKrtpyQHQWpskPsdtwI80I8zUpOG1Iv2_dko2WhxAtBMhk5yWUBTvJOwgo91H7OdVx-Dzd5ZKijJTdJvEej3EZFG1YT-vivPdLd9aqfSL77X1A9C6uDQvT4An82A6piUe57qxXpmN__pHt8T-N-QAetwCW9RuJewoPfP0MDvs1Gu83G3bKQkhp2Ks_hA9jipmp2bQpeI8iwGYV639fzJmuHSvnG3YzLfsMX0EcyqZ6xYabOcqORjldL5_D5eDs4tMwbgs2xJbsLLwKtBdznTnb6-ZO55VF67tIjOaaC8utROPLWCNFIXVqUCiErbRJUpwEeNV1_AXs1bPavwKWc-6rSheJdEJo7WWV95zGpTQrpDXaRJBsWaPmTV4OFfzpgs6eEZEUEYmqbCYqEEndRnAaeLhroBfXFNdWZOpb-UWdF1n5cTQZqCSC4y2TVavSS0WRjj1EdzKCk91T1EVysOjaz9ZLVaQc0afII3jZSMbvriX0m0xEkAX-_nWf1ag8w5ujf2x3Ag-HF5OxGn8tz4_hUQigCwcpX8PearH2bxBRrczboCm_ANv0DlU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hVkJceBVoKFAfUG9ZNrEdry9IC3RZtm2EVlT0ZvkRc1g1G-1D6vLrGTvZRUU9IMQlipQ4sT0z9jeez2OAt45L450VaS6qKmXUSTQpL1Eg3KI627yKx7ddlMX4kk2u-FXHfwp7Ydr8ELsFt2AZcbwOBt44_66LSrZGHhlaiI-Dm5eFJNhZ0UM8uc8KBMIBIE13qaRCQsp-m3ePpjgLso7V00U47_zSralqP_T6zV049DasjfPS6BHMti1q6Siz3nplevbnH8ke_0-TH8PDDr6SYatvT-BeVT-Fg2GNrvv1hpyQSCiNK_UH8P48MGZqMm2Pu0cFIHNPhj8WDdG1I2WzIdfTckjwFUShZKpXZLxpUHM0aul6-QwuR6ffPo7T7riG1AYvC68MvcVCc2cH_cLpwlv0vUVmNNWUWWolul7GGsmE1LlBlWDWa5PlOARQ33f0OezV87o6BFJQWnmvRSYdY1pX0hcDp3Ei5UJao00C2VYyqmmzcqgYTWdh51noJBU6KZyxmanYSeomgZMowl0BvZgFVpvg6nv5WZ0JXn6YXIxUlsDRVsaqM-ilCjzHAWI7mcDx7ilaYgiv6Lqar5dK5BSxJysSeNEqxu-qZeE3nCXAo3j_us5qUp7izct_LHcM979-GqnzL-XZETyI7Lm4i_IV7K0W6-o1wqmVeRPt5BePEA0E
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Leptin+regulation+of+Agrp+and+Npy+mRNA+in+the+rat+hypothalamus&rft.jtitle=Journal+of+neuroendocrinology&rft.au=Korner%2C+J&rft.au=Savontaus%2C+E&rft.au=Chua%2C+S+C&rft.au=Leibel%2C+R+L&rft.date=2001-11-01&rft.issn=0953-8194&rft.volume=13&rft.issue=11&rft.spage=959&rft.epage=966&rft_id=info:doi/10.1046%2Fj.1365-2826.2001.00716.x&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0953-8194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0953-8194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0953-8194&client=summon