Microfluidic Evolution‐On‐A‐Chip Reveals New Mutations that Cause Antibiotic Resistance

Microfluidic devices can mimic naturally occurring microenvironments and create microbial population heterogeneities ranging from planktonic cells to biofilm states. The exposure of such populations to spatially organized stress gradients can promote their adaptation into complex phenotypes, which a...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 17; no. 10; pp. e2007166 - n/a
Main Authors Zoheir, Ahmed E., Späth, Georg P., Niemeyer, Christof M., Rabe, Kersten S.
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.03.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Microfluidic devices can mimic naturally occurring microenvironments and create microbial population heterogeneities ranging from planktonic cells to biofilm states. The exposure of such populations to spatially organized stress gradients can promote their adaptation into complex phenotypes, which are otherwise difficult to achieve with conventional experimental setups. Here a microfluidic chip that employs precise chemical gradients in consecutive microcompartments to perform microbial adaptive laboratory evolution (ALE), a key tool to study evolution in fundamental and applied contexts is described. In the chip developed here, microbial cells can be exposed to a defined profile of stressors such as antibiotics. By modulating this profile, stress adaptation in the chip through resistance or persistence can be specifically controlled. Importantly, chip‐based ALE leads to the discovery of previously unknown mutations in Escherichia coli that confer resistance to nalidixic acid. The microfluidic device presented here can enhance the occurrence of mutations employing defined micro‐environmental conditions to generate data to better understand the parameters that influence the mechanisms of antibiotic resistance. Applying stress to bacterial populations can accelerate their evolutionary adaptation. In particular, the development of antibiotic resistance has significant health and economic implications. With the help of a new type of microfluidic device, bacterial cells can be exposed to defined stress gradients in complex microenvironments, which lead to accelerated adaptation and the occurrence of new mutations that induce antibiotic resistance.
AbstractList Abstract Microfluidic devices can mimic naturally occurring microenvironments and create microbial population heterogeneities ranging from planktonic cells to biofilm states. The exposure of such populations to spatially organized stress gradients can promote their adaptation into complex phenotypes, which are otherwise difficult to achieve with conventional experimental setups. Here a microfluidic chip that employs precise chemical gradients in consecutive microcompartments to perform microbial adaptive laboratory evolution (ALE), a key tool to study evolution in fundamental and applied contexts is described. In the chip developed here, microbial cells can be exposed to a defined profile of stressors such as antibiotics. By modulating this profile, stress adaptation in the chip through resistance or persistence can be specifically controlled. Importantly, chip‐based ALE leads to the discovery of previously unknown mutations in Escherichia coli that confer resistance to nalidixic acid. The microfluidic device presented here can enhance the occurrence of mutations employing defined micro‐environmental conditions to generate data to better understand the parameters that influence the mechanisms of antibiotic resistance.
Microfluidic devices can mimic naturally occurring microenvironments and create microbial population heterogeneities ranging from planktonic cells to biofilm states. The exposure of such populations to spatially organized stress gradients can promote their adaptation into complex phenotypes, which are otherwise difficult to achieve with conventional experimental setups. Here a microfluidic chip that employs precise chemical gradients in consecutive microcompartments to perform microbial adaptive laboratory evolution (ALE), a key tool to study evolution in fundamental and applied contexts is described. In the chip developed here, microbial cells can be exposed to a defined profile of stressors such as antibiotics. By modulating this profile, stress adaptation in the chip through resistance or persistence can be specifically controlled. Importantly, chip-based ALE leads to the discovery of previously unknown mutations in Escherichia coli that confer resistance to nalidixic acid. The microfluidic device presented here can enhance the occurrence of mutations employing defined micro-environmental conditions to generate data to better understand the parameters that influence the mechanisms of antibiotic resistance.
Microfluidic devices can mimic naturally occurring microenvironments and create microbial population heterogeneities ranging from planktonic cells to biofilm states. The exposure of such populations to spatially organized stress gradients can promote their adaptation into complex phenotypes, which are otherwise difficult to achieve with conventional experimental setups. Here a microfluidic chip that employs precise chemical gradients in consecutive microcompartments to perform microbial adaptive laboratory evolution (ALE), a key tool to study evolution in fundamental and applied contexts is described. In the chip developed here, microbial cells can be exposed to a defined profile of stressors such as antibiotics. By modulating this profile, stress adaptation in the chip through resistance or persistence can be specifically controlled. Importantly, chip‐based ALE leads to the discovery of previously unknown mutations in Escherichia coli that confer resistance to nalidixic acid. The microfluidic device presented here can enhance the occurrence of mutations employing defined micro‐environmental conditions to generate data to better understand the parameters that influence the mechanisms of antibiotic resistance. Applying stress to bacterial populations can accelerate their evolutionary adaptation. In particular, the development of antibiotic resistance has significant health and economic implications. With the help of a new type of microfluidic device, bacterial cells can be exposed to defined stress gradients in complex microenvironments, which lead to accelerated adaptation and the occurrence of new mutations that induce antibiotic resistance.
Author Niemeyer, Christof M.
Rabe, Kersten S.
Zoheir, Ahmed E.
Späth, Georg P.
Author_xml – sequence: 1
  givenname: Ahmed E.
  surname: Zoheir
  fullname: Zoheir, Ahmed E.
  organization: National Research Centre (NRC)
– sequence: 2
  givenname: Georg P.
  surname: Späth
  fullname: Späth, Georg P.
  organization: Karlsruhe Institute of Technology (KIT)
– sequence: 3
  givenname: Christof M.
  orcidid: 0000-0002-8837-081X
  surname: Niemeyer
  fullname: Niemeyer, Christof M.
  organization: Karlsruhe Institute of Technology (KIT)
– sequence: 4
  givenname: Kersten S.
  orcidid: 0000-0001-7909-8191
  surname: Rabe
  fullname: Rabe, Kersten S.
  email: kersten.rabe@kit.edu
  organization: Karlsruhe Institute of Technology (KIT)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33458946$$D View this record in MEDLINE/PubMed
BookMark eNqFkLtOwzAUhi1URC-wMqJILCwtdhzb8VhF5SK1VCowoihxTlRXuZQ4adWNR-AZeRIctRSJhcHHHr7zH5-vjzpFWQBClwSPCMburcmzbORiF2NBOD9BPcIJHXLflZ3jm-Au6huzwpgS1xNnqEupx3zp8R56m2lVlWnW6EQrZ7Ips6bWZfH18Tlvy9ieYKnXzgI2EGXGeYKtM2vqqIWMUy-j2gmixoAzLmod67K2KQsw2tRRoeAcnaa2Cy4O9wC93k1egofhdH7_GIynQ-VJxoeC4YRywCKWUnhKSUUZTdyYCcaVx3jkpZwQjzBfYAXgS8JjVzFCFKEpJEAH6Gafu67K9wZMHebaKMiyqICyMaHd2hfC5xxb9PoPuiqbqrC_s5QdLykm0lKjPWXlGFNBGq4rnUfVLiQ4bMWHrfjwKN42XB1imziH5Ij_mLaA3ANbncHun7jweTad_oZ_A1Z_k10
CitedBy_id crossref_primary_10_1038_s41522_022_00346_4
crossref_primary_10_1007_s00253_024_13011_x
crossref_primary_10_1039_D2LC00602B
crossref_primary_10_1128_spectrum_03595_23
crossref_primary_10_3390_microorganisms11010092
crossref_primary_10_1002_adfm_202313944
crossref_primary_10_1002_smll_202107523
crossref_primary_10_1002_smll_202306974
crossref_primary_10_3389_fcimb_2022_896149
crossref_primary_10_1021_acsami_2c15470
crossref_primary_10_1021_acsami_3c16004
Cites_doi 10.1371/journal.pone.0027943
10.1126/science.aaj2191
10.1038/nbt.4151
10.1039/C4LC00451E
10.1007/s13206-014-8406-6
10.1021/mp200274r
10.1016/j.molcel.2010.01.003
10.1038/nrc3039
10.1038/ismej.2017.69
10.1063/1.5066558
10.1016/j.copbio.2019.09.001
10.1016/j.copbio.2018.08.011
10.1039/c2lc40450h
10.18054/pb.v118i4.4601
10.1126/science.1251821
10.1126/science.aag0822
10.1021/ac5001306
10.1016/j.tim.2004.11.010
10.1351/PAC-REC-10-12-04
10.1038/ismej.2015.208
10.1021/ac0518710
10.1126/science.1212449
10.1128/MMBR.00008-18
10.1039/C2IB20095C
10.1038/ismej.2015.107
10.3389/fmicb.2017.00816
10.1186/1754-6834-6-151
10.1038/msb.2013.57
10.1111/1462-2920.12483
10.1016/j.molcel.2015.05.004
10.1002/smll.201901956
10.1038/s41598-019-45414-6
10.1021/es802558j
10.1054/drup.1998.0068
10.1038/s41467-019-12914-y
10.1016/S1568-7864(03)00024-7
10.1038/nrmicro1838
10.1073/pnas.0907542106
10.1038/s41576-018-0069-z
10.1128/AEM.02311-14
10.1016/0022-2836(88)90517-7
10.1021/acs.est.9b00881
10.1038/ncomms9425
10.1126/science.1208747
10.1016/j.trac.2018.12.024
10.15252/embr.201846992
10.1016/j.copbio.2011.03.007
10.1039/B511958H
10.1038/nrmicro3270
10.1002/cplu.201600654
10.1016/j.copbio.2018.08.004
10.1371/journal.pbio.2000644
10.1126/science.1109173
10.1021/bi5000564
10.1038/s41467-020-15165-4
10.1038/nrmicro1616
10.3389/fmicb.2018.00496
10.1073/pnas.1323632111
10.1007/s00253-007-1168-5
10.1073/pnas.1117716109
10.1186/1475-2859-12-64
10.1128/JB.01368-07
10.1177/2211068214521417
10.1093/jac/dkg222
ContentType Journal Article
Copyright 2021 The Authors. Small published by Wiley‐VCH GmbH
2021 The Authors. Small published by Wiley-VCH GmbH.
2021. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 The Authors. Small published by Wiley‐VCH GmbH
– notice: 2021 The Authors. Small published by Wiley-VCH GmbH.
– notice: 2021. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
WIN
NPM
AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1002/smll.202007166
DatabaseName Wiley Online Library
Wiley Online Library Open Access
PubMed
CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList CrossRef
PubMed

Materials Research Database
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID 10_1002_smll_202007166
33458946
SMLL202007166
Genre article
Journal Article
GrantInformation_xml – fundername: Helmholtz programme, BioInterfaces in Technology and Medicine
– fundername: Egyptian Ministry of Higher Education
– fundername: German Academic Exchange Service
GroupedDBID ---
05W
0R~
123
1L6
1OC
24P
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAIHA
AANLZ
AAONW
AAXRX
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EMOBN
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
SV3
V2E
W99
WBKPD
WFSAM
WIH
WIK
WIN
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
31~
AASGY
AAYOK
ACBWZ
ASPBG
AVWKF
AZFZN
BDRZF
EJD
FEDTE
GODZA
HVGLF
NPM
AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
ID FETCH-LOGICAL-c4956-750d36e07b9974cc9c353d2b5756c456a4f611415870cee8916b2c511c13fede3
IEDL.DBID 24P
ISSN 1613-6810
IngestDate Fri Aug 16 01:45:35 EDT 2024
Thu Oct 10 17:56:42 EDT 2024
Fri Aug 23 01:09:02 EDT 2024
Sat Sep 28 08:25:32 EDT 2024
Sat Aug 24 01:04:00 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords mutations
adaptive laboratory evolution
antibiotic resistance
gradients
biofilms
lab-on-a-chip
Language English
License Attribution-NonCommercial
2021 The Authors. Small published by Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4956-750d36e07b9974cc9c353d2b5756c456a4f611415870cee8916b2c511c13fede3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-8837-081X
0000-0001-7909-8191
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202007166
PMID 33458946
PQID 2499793019
PQPubID 1046358
PageCount 11
ParticipantIDs proquest_miscellaneous_2478778660
proquest_journals_2499793019
crossref_primary_10_1002_smll_202007166
pubmed_primary_33458946
wiley_primary_10_1002_smll_202007166_SMLL202007166
PublicationCentury 2000
PublicationDate 2021-03-01
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationTitleAlternate Small
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2007; 189
2017; 8
2017; 82
2009; 43
2019; 53
2006; 78
2019; 55
2020; 62
2019; 10
2019; 13
2019; 15
2011; 11
2011; 10
2008; 6
2020; 11
2018; 82
2013; 5
2007; 77
2012; 12
2017; 355
2003; 51
2013; 6
2013; 9
2017; 118
2018; 9
2019; 20
2015; 81
2013; 12
2014; 16
2003; 2
2011; 22
2016; 353
2014; 14
2005; 309
2014; 19
2007; 5
2014; 8
2014; 12
2019; 112
2018; 36
2014; 53
2019; 9
2011; 333
2015; 58
2015; 6
2010; 37
2016; 10
1988; 202
2006; 6
1999; 2
2014; 111
2011; 6
2011; 8
2012; 109
2014; 86
2017; 15
2017; 11
2014; 346
2005; 13
2009; 106
2012; 84
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
O'Toole G. A. (e_1_2_8_46_1) 2011; 10
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_62_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_65_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 55
  start-page: 60
  year: 2019
  publication-title: Curr. Opin. Biotechnol.
– volume: 8
  start-page: 2063
  year: 2011
  publication-title: Mol. Pharmaceutics
– volume: 37
  start-page: 311
  year: 2010
  publication-title: Mol. Cell
– volume: 11
  start-page: 375
  year: 2011
  publication-title: Nat. Rev. Cancer
– volume: 81
  start-page: 211
  year: 2015
  publication-title: Appl. Environ. Microbiol.
– volume: 53
  start-page: 1565
  year: 2014
  publication-title: Biochemistry
– volume: 13
  year: 2019
  publication-title: Biomicrofluidics
– volume: 86
  start-page: 3131
  year: 2014
  publication-title: Anal. Chem.
– volume: 43
  start-page: 1546
  year: 2009
  publication-title: Environ. Sci. Technol.
– volume: 309
  start-page: 137
  year: 2005
  publication-title: Science
– volume: 10
  year: 2011
  publication-title: J. Visualized Exp.
– volume: 11
  start-page: 1354
  year: 2020
  publication-title: Nat. Commun.
– volume: 58
  start-page: 586
  year: 2015
  publication-title: Mol. Cell
– volume: 11
  start-page: 2181
  year: 2017
  publication-title: ISME J.
– volume: 333
  start-page: 1713
  year: 2011
  publication-title: Science
– volume: 2
  start-page: 38
  year: 1999
  publication-title: Drug Resist. Updates
– volume: 6
  start-page: 8425
  year: 2015
  publication-title: Nat. Commun.
– volume: 12
  start-page: 465
  year: 2014
  publication-title: Nat. Rev. Microbiol.
– volume: 19
  start-page: 478
  year: 2014
  publication-title: J. Lab. Autom.
– volume: 355
  start-page: 826
  year: 2017
  publication-title: Science
– volume: 202
  start-page: 45
  year: 1988
  publication-title: J. Mol. Biol.
– volume: 77
  start-page: 489
  year: 2007
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 5
  start-page: 209
  year: 2007
  publication-title: Nat. Rev. Microbiol.
– volume: 12
  start-page: 3968
  year: 2012
  publication-title: Lab Chip
– volume: 10
  start-page: 1471
  year: 2016
  publication-title: ISME J.
– volume: 62
  start-page: 106
  year: 2020
  publication-title: Curr. Opin. Biotechnol.
– volume: 10
  start-page: 4935
  year: 2019
  publication-title: Nat. Commun.
– volume: 53
  start-page: 7996
  year: 2019
  publication-title: Environ. Sci. Technol.
– volume: 22
  start-page: 590
  year: 2011
  publication-title: Curr. Opin. Biotechnol.
– volume: 333
  start-page: 1764
  year: 2011
  publication-title: Science
– volume: 8
  start-page: 1
  year: 2017
  publication-title: Front. Microbiol.
– volume: 9
  start-page: 8933
  year: 2019
  publication-title: Sci. Rep.
– volume: 118
  start-page: 363
  year: 2017
  publication-title: Period. Biol.
– volume: 111
  year: 2014
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 8
  start-page: 282
  year: 2014
  publication-title: BioChip J.
– volume: 2
  start-page: 593
  year: 2003
  publication-title: DNA Repair
– volume: 112
  start-page: 175
  year: 2019
  publication-title: TrAC, Trends Anal. Chem.
– volume: 346
  year: 2014
  publication-title: Science
– volume: 84
  start-page: 377
  year: 2012
  publication-title: Pure Appl. Chem.
– volume: 10
  start-page: 30
  year: 2016
  publication-title: ISME J.
– volume: 109
  year: 2012
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 15
  year: 2019
  publication-title: Small
– volume: 106
  year: 2009
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 6
  start-page: 381
  year: 2006
  publication-title: Lab Chip
– volume: 5
  start-page: 262
  year: 2013
  publication-title: Integr. Biol.
– volume: 20
  start-page: 24
  year: 2019
  publication-title: Nat. Rev. Genet.
– volume: 9
  start-page: 496
  year: 2018
  publication-title: Front. Microbiol.
– volume: 9
  start-page: 700
  year: 2013
  publication-title: Mol. Syst. Biol.
– volume: 353
  start-page: 1147
  year: 2016
  publication-title: Science
– volume: 14
  start-page: 3409
  year: 2014
  publication-title: Lab Chip
– volume: 6
  start-page: 199
  year: 2008
  publication-title: Nat. Rev. Microbiol.
– volume: 6
  year: 2011
  publication-title: PLoS One
– volume: 16
  start-page: 1455
  year: 2014
  publication-title: Environ. Microbiol.
– volume: 55
  start-page: 95
  year: 2019
  publication-title: Curr. Opin. Biotechnol.
– volume: 82
  year: 2018
  publication-title: Microbiol. Mol. Biol. Rev.
– volume: 15
  year: 2017
  publication-title: PLoS Biol.
– volume: 13
  start-page: 34
  year: 2005
  publication-title: Trends Microbiol.
– volume: 51
  start-page: 1109
  year: 2003
  publication-title: J. Antimicrob. Chemother.
– volume: 12
  start-page: 64
  year: 2013
  publication-title: Microb. Cell Fact.
– volume: 20
  year: 2019
  publication-title: EMBO Rep.
– volume: 189
  start-page: 8746
  year: 2007
  publication-title: J. Bacteriol.
– volume: 6
  start-page: 151
  year: 2013
  publication-title: Biotechnol. Biofuels
– volume: 36
  start-page: 614
  year: 2018
  publication-title: Nat. Biotechnol.
– volume: 82
  start-page: 792
  year: 2017
  publication-title: ChemPlusChem
– volume: 78
  start-page: 3472
  year: 2006
  publication-title: Anal. Chem.
– ident: e_1_2_8_43_1
  doi: 10.1371/journal.pone.0027943
– ident: e_1_2_8_47_1
  doi: 10.1126/science.aaj2191
– ident: e_1_2_8_13_1
  doi: 10.1038/nbt.4151
– ident: e_1_2_8_30_1
  doi: 10.1039/C4LC00451E
– ident: e_1_2_8_29_1
  doi: 10.1007/s13206-014-8406-6
– ident: e_1_2_8_37_1
  doi: 10.1021/mp200274r
– ident: e_1_2_8_50_1
  doi: 10.1016/j.molcel.2010.01.003
– ident: e_1_2_8_63_1
  doi: 10.1038/nrc3039
– ident: e_1_2_8_33_1
  doi: 10.1038/ismej.2017.69
– ident: e_1_2_8_26_1
  doi: 10.1063/1.5066558
– ident: e_1_2_8_41_1
  doi: 10.1016/j.copbio.2019.09.001
– ident: e_1_2_8_22_1
  doi: 10.1016/j.copbio.2018.08.011
– ident: e_1_2_8_34_1
  doi: 10.1039/c2lc40450h
– ident: e_1_2_8_8_1
  doi: 10.18054/pb.v118i4.4601
– ident: e_1_2_8_38_1
  doi: 10.1126/science.1251821
– ident: e_1_2_8_18_1
  doi: 10.1126/science.aag0822
– ident: e_1_2_8_25_1
  doi: 10.1021/ac5001306
– ident: e_1_2_8_49_1
  doi: 10.1016/j.tim.2004.11.010
– ident: e_1_2_8_45_1
  doi: 10.1351/PAC-REC-10-12-04
– ident: e_1_2_8_60_1
  doi: 10.1038/ismej.2015.208
– ident: e_1_2_8_36_1
  doi: 10.1021/ac0518710
– ident: e_1_2_8_51_1
  doi: 10.1126/science.1212449
– ident: e_1_2_8_4_1
  doi: 10.1128/MMBR.00008-18
– ident: e_1_2_8_9_1
  doi: 10.1039/C2IB20095C
– ident: e_1_2_8_17_1
  doi: 10.1038/ismej.2015.107
– ident: e_1_2_8_5_1
  doi: 10.3389/fmicb.2017.00816
– ident: e_1_2_8_11_1
  doi: 10.1186/1754-6834-6-151
– ident: e_1_2_8_6_1
  doi: 10.1038/msb.2013.57
– ident: e_1_2_8_15_1
  doi: 10.1111/1462-2920.12483
– ident: e_1_2_8_64_1
  doi: 10.1016/j.molcel.2015.05.004
– ident: e_1_2_8_65_1
  doi: 10.1002/smll.201901956
– ident: e_1_2_8_24_1
  doi: 10.1038/s41598-019-45414-6
– ident: e_1_2_8_35_1
  doi: 10.1021/es802558j
– ident: e_1_2_8_56_1
  doi: 10.1054/drup.1998.0068
– ident: e_1_2_8_58_1
  doi: 10.1038/s41467-019-12914-y
– ident: e_1_2_8_55_1
  doi: 10.1016/S1568-7864(03)00024-7
– ident: e_1_2_8_14_1
  doi: 10.1038/nrmicro1838
– ident: e_1_2_8_40_1
  doi: 10.1073/pnas.0907542106
– ident: e_1_2_8_1_1
  doi: 10.1038/s41576-018-0069-z
– ident: e_1_2_8_44_1
  doi: 10.1128/AEM.02311-14
– ident: e_1_2_8_52_1
  doi: 10.1016/0022-2836(88)90517-7
– ident: e_1_2_8_28_1
  doi: 10.1021/acs.est.9b00881
– ident: e_1_2_8_54_1
  doi: 10.1038/ncomms9425
– ident: e_1_2_8_27_1
  doi: 10.1126/science.1208747
– ident: e_1_2_8_20_1
  doi: 10.1016/j.trac.2018.12.024
– ident: e_1_2_8_7_1
  doi: 10.15252/embr.201846992
– ident: e_1_2_8_3_1
  doi: 10.1016/j.copbio.2011.03.007
– ident: e_1_2_8_32_1
  doi: 10.1039/B511958H
– ident: e_1_2_8_48_1
  doi: 10.1038/nrmicro3270
– volume: 10
  start-page: e2437
  year: 2011
  ident: e_1_2_8_46_1
  publication-title: J. Visualized Exp.
  contributor:
    fullname: O'Toole G. A.
– ident: e_1_2_8_31_1
  doi: 10.1002/cplu.201600654
– ident: e_1_2_8_21_1
  doi: 10.1016/j.copbio.2018.08.004
– ident: e_1_2_8_62_1
  doi: 10.1371/journal.pbio.2000644
– ident: e_1_2_8_39_1
  doi: 10.1126/science.1109173
– ident: e_1_2_8_53_1
  doi: 10.1021/bi5000564
– ident: e_1_2_8_61_1
  doi: 10.1038/s41467-020-15165-4
– ident: e_1_2_8_23_1
  doi: 10.1038/nrmicro1616
– ident: e_1_2_8_16_1
  doi: 10.3389/fmicb.2018.00496
– ident: e_1_2_8_59_1
  doi: 10.1073/pnas.1323632111
– ident: e_1_2_8_12_1
  doi: 10.1007/s00253-007-1168-5
– ident: e_1_2_8_19_1
  doi: 10.1073/pnas.1117716109
– ident: e_1_2_8_2_1
  doi: 10.1186/1475-2859-12-64
– ident: e_1_2_8_42_1
  doi: 10.1128/JB.01368-07
– ident: e_1_2_8_10_1
  doi: 10.1177/2211068214521417
– ident: e_1_2_8_57_1
  doi: 10.1093/jac/dkg222
SSID ssj0031247
Score 2.4680588
Snippet Microfluidic devices can mimic naturally occurring microenvironments and create microbial population heterogeneities ranging from planktonic cells to biofilm...
Abstract Microfluidic devices can mimic naturally occurring microenvironments and create microbial population heterogeneities ranging from planktonic cells to...
SourceID proquest
crossref
pubmed
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage e2007166
SubjectTerms Acid resistance
Adaptation
adaptive laboratory evolution
antibiotic resistance
Antibiotics
biofilms
Drug resistance
E coli
Evolution
gradients
lab‐on‐a‐chip
Microfluidic devices
Microorganisms
Mutation
mutations
Nanotechnology
Title Microfluidic Evolution‐On‐A‐Chip Reveals New Mutations that Cause Antibiotic Resistance
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202007166
https://www.ncbi.nlm.nih.gov/pubmed/33458946
https://www.proquest.com/docview/2499793019
https://search.proquest.com/docview/2478778660
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8MwGA46L3oQv51OiSB4KqZJ2rXHMTeGbCrTwS5S0iRlg9kNu-7sT_A3-kt80651w4PgoYHStCnJ-_G8yZsnCF1zoj0qPWFBySFAIZ4lOGGWtDXhkc8iqrIE2Qe3M-D3Q2e4sos_54coJ9yMZmT22ii4CJPbH9LQ5G1ilg7MXJvtuptoy9DGGPZ8yp8KW8zAe2XHq4DTsgzzVkHbSOjt-vvrbukX1lyHrpnvae-h3SVoxI18lPfRho4P0M4KleAheu2ZzLpoko7VWOLWYilRXx-fj6ZowNUcjWe4rxcADRMMxg330nwdPsHzkZjjpkgTjRux2UUyhZagbmLQJYjFERq0Wy_NjrU8OsGSJuKxAAco5mpSD30IGKT0JXOYoiGAM1cCZhI8ciESsh1QV3CTHoDEkEoAX9JmkVaaHaNKPI31KcK2okJxVrcV4VxxIWjoac0E9QnzOJNVdFP0XDDLGTKCnAuZBqaPg7KPq6hWdGyw1JQkgPDPBxsBSLOKrsrHIONm4ULEepqaOmBW6p7rkio6yQekbIox7ng-h4_TbIT--Ifgudftlndn_3npHG1Tk9iSJaLVUGX-nuoLQCbz8DITPijv-vQbAHvc6w
link.rule.ids 315,783,787,1378,11574,27936,27937,46064,46306,46488,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB619EA59IeWsoW2RkLiFHBsbzY5rragLeyCxI_UC4oc2xGrQhaRhENPfQSekSdhJtmEbjlUag-xFMWJHdsz8409_gywqbgLhQm1h6lCB4WHnlZcesZ3XKWRTIWtAmQPg-GZ2v_ebaIJaS9MzQ_RTriRZFT6mgScJqR3HllD86tLWjugyTY_CJ7DC5R5Sac3fD1uGaQkmq_qfBW0Wh5RbzW8jVzszL8_b5eegM157FoZn73XkDTVrmNOfmyXRbJtfv7B6Phf__UGXs2gKevXY-ktPHPZMiz9Rlj4Ds7HFL-XXpYTOzFs93Y2bu9_3R1R0sdrcDG5ZsfuFgFozlCFsnFZr_bnrLjQBRvoMnesn9FelSmWhHlzwrA4-N7D2d7u6WDozQ5o8Az5VR6iDSsDx3tJhG6JMZGRXWlFghAwMIjMtEoD9Lf8LioFNMYhQtFEGIR4xpeps06uwEI2zdwqMN8KbZXs-ZYrZZXWIgmdk1pEXIZKmg5sNd0TX9c8HHHNuCxiarC4bbAOrDe9F8_kMY_RyYxQEyGe7cBG-xgliZZHdOamJeVB5dULg4B34EPd621RUqpuGCn8uKj67i91iE_Go1F79_FfXvoCi8PT8SgefTs8WIOXgkJpqtC3dVgobkr3CbFQkXyuRvsDUkQBdQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFD54AdEH8e68RhB8KqZJ1rWPY25M3VS8gC9S0iRlA-2GXX32J_gb_SWetFt1-CD40EBp2pTkXL6TnHwBOBbU-Ez50sFSYIBCfUcKyh3lGirigMdM5wmyV177QVw8Vh9_7OIv-CHKCTerGbm9tgo-1PHpN2lo-vJslw7sXJvrebMwLxCLW_Z8Jm4mtpij98qPV0Gn5VjmrQltI2Wn0-9Pu6VfWHMauua-p7UCy2PQSOrFKK_CjEnWYOkHleA6PHVtZl38nPV1X5Hm21iiPt8_rm1Rx6vR6w_JrXlDaJgSNG6kmxXr8CkZ9eSINGSWGlJP7C6SAbaEdVOLLlEsNuCh1bxvtJ3x0QmOshGPgzhAc8_QWhRgwKBUoHiVaxYhOPMUYiYpYg8jIbeK6opu0keQGDGF4Eu5PDba8E2YSwaJ2Qbiaia14DVXUyG0kJJFvjFcsoByX3BVgZNJz4XDgiEjLLiQWWj7OCz7uAJ7k44Nx5qShhj-BWgjEGlW4Kh8jDJuFy5kYgaZrYNmpeZ7Hq3AVjEgZVOci6ofCPw4y0foj38I77qdTnm385-XDmHh5qwVds6vLndhkdkclzwnbQ_mRq-Z2UeQMooOcjn8AnTJ3pY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microfluidic+Evolution%E2%80%90On%E2%80%90A%E2%80%90Chip+Reveals+New+Mutations+that+Cause+Antibiotic+Resistance&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Zoheir%2C+Ahmed+E.&rft.au=Sp%C3%A4th%2C+Georg+P.&rft.au=Niemeyer%2C+Christof+M.&rft.au=Rabe%2C+Kersten+S.&rft.date=2021-03-01&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=17&rft.issue=10&rft_id=info:doi/10.1002%2Fsmll.202007166&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_smll_202007166
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon