Microfluidic Evolution‐On‐A‐Chip Reveals New Mutations that Cause Antibiotic Resistance
Microfluidic devices can mimic naturally occurring microenvironments and create microbial population heterogeneities ranging from planktonic cells to biofilm states. The exposure of such populations to spatially organized stress gradients can promote their adaptation into complex phenotypes, which a...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 17; no. 10; pp. e2007166 - n/a |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.03.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Microfluidic devices can mimic naturally occurring microenvironments and create microbial population heterogeneities ranging from planktonic cells to biofilm states. The exposure of such populations to spatially organized stress gradients can promote their adaptation into complex phenotypes, which are otherwise difficult to achieve with conventional experimental setups. Here a microfluidic chip that employs precise chemical gradients in consecutive microcompartments to perform microbial adaptive laboratory evolution (ALE), a key tool to study evolution in fundamental and applied contexts is described. In the chip developed here, microbial cells can be exposed to a defined profile of stressors such as antibiotics. By modulating this profile, stress adaptation in the chip through resistance or persistence can be specifically controlled. Importantly, chip‐based ALE leads to the discovery of previously unknown mutations in Escherichia coli that confer resistance to nalidixic acid. The microfluidic device presented here can enhance the occurrence of mutations employing defined micro‐environmental conditions to generate data to better understand the parameters that influence the mechanisms of antibiotic resistance.
Applying stress to bacterial populations can accelerate their evolutionary adaptation. In particular, the development of antibiotic resistance has significant health and economic implications. With the help of a new type of microfluidic device, bacterial cells can be exposed to defined stress gradients in complex microenvironments, which lead to accelerated adaptation and the occurrence of new mutations that induce antibiotic resistance. |
---|---|
AbstractList | Abstract
Microfluidic devices can mimic naturally occurring microenvironments and create microbial population heterogeneities ranging from planktonic cells to biofilm states. The exposure of such populations to spatially organized stress gradients can promote their adaptation into complex phenotypes, which are otherwise difficult to achieve with conventional experimental setups. Here a microfluidic chip that employs precise chemical gradients in consecutive microcompartments to perform microbial adaptive laboratory evolution (ALE), a key tool to study evolution in fundamental and applied contexts is described. In the chip developed here, microbial cells can be exposed to a defined profile of stressors such as antibiotics. By modulating this profile, stress adaptation in the chip through resistance or persistence can be specifically controlled. Importantly, chip‐based ALE leads to the discovery of previously unknown mutations in
Escherichia coli
that confer resistance to nalidixic acid. The microfluidic device presented here can enhance the occurrence of mutations employing defined micro‐environmental conditions to generate data to better understand the parameters that influence the mechanisms of antibiotic resistance. Microfluidic devices can mimic naturally occurring microenvironments and create microbial population heterogeneities ranging from planktonic cells to biofilm states. The exposure of such populations to spatially organized stress gradients can promote their adaptation into complex phenotypes, which are otherwise difficult to achieve with conventional experimental setups. Here a microfluidic chip that employs precise chemical gradients in consecutive microcompartments to perform microbial adaptive laboratory evolution (ALE), a key tool to study evolution in fundamental and applied contexts is described. In the chip developed here, microbial cells can be exposed to a defined profile of stressors such as antibiotics. By modulating this profile, stress adaptation in the chip through resistance or persistence can be specifically controlled. Importantly, chip-based ALE leads to the discovery of previously unknown mutations in Escherichia coli that confer resistance to nalidixic acid. The microfluidic device presented here can enhance the occurrence of mutations employing defined micro-environmental conditions to generate data to better understand the parameters that influence the mechanisms of antibiotic resistance. Microfluidic devices can mimic naturally occurring microenvironments and create microbial population heterogeneities ranging from planktonic cells to biofilm states. The exposure of such populations to spatially organized stress gradients can promote their adaptation into complex phenotypes, which are otherwise difficult to achieve with conventional experimental setups. Here a microfluidic chip that employs precise chemical gradients in consecutive microcompartments to perform microbial adaptive laboratory evolution (ALE), a key tool to study evolution in fundamental and applied contexts is described. In the chip developed here, microbial cells can be exposed to a defined profile of stressors such as antibiotics. By modulating this profile, stress adaptation in the chip through resistance or persistence can be specifically controlled. Importantly, chip‐based ALE leads to the discovery of previously unknown mutations in Escherichia coli that confer resistance to nalidixic acid. The microfluidic device presented here can enhance the occurrence of mutations employing defined micro‐environmental conditions to generate data to better understand the parameters that influence the mechanisms of antibiotic resistance. Applying stress to bacterial populations can accelerate their evolutionary adaptation. In particular, the development of antibiotic resistance has significant health and economic implications. With the help of a new type of microfluidic device, bacterial cells can be exposed to defined stress gradients in complex microenvironments, which lead to accelerated adaptation and the occurrence of new mutations that induce antibiotic resistance. |
Author | Niemeyer, Christof M. Rabe, Kersten S. Zoheir, Ahmed E. Späth, Georg P. |
Author_xml | – sequence: 1 givenname: Ahmed E. surname: Zoheir fullname: Zoheir, Ahmed E. organization: National Research Centre (NRC) – sequence: 2 givenname: Georg P. surname: Späth fullname: Späth, Georg P. organization: Karlsruhe Institute of Technology (KIT) – sequence: 3 givenname: Christof M. orcidid: 0000-0002-8837-081X surname: Niemeyer fullname: Niemeyer, Christof M. organization: Karlsruhe Institute of Technology (KIT) – sequence: 4 givenname: Kersten S. orcidid: 0000-0001-7909-8191 surname: Rabe fullname: Rabe, Kersten S. email: kersten.rabe@kit.edu organization: Karlsruhe Institute of Technology (KIT) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33458946$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkLtOwzAUhi1URC-wMqJILCwtdhzb8VhF5SK1VCowoihxTlRXuZQ4adWNR-AZeRIctRSJhcHHHr7zH5-vjzpFWQBClwSPCMburcmzbORiF2NBOD9BPcIJHXLflZ3jm-Au6huzwpgS1xNnqEupx3zp8R56m2lVlWnW6EQrZ7Ips6bWZfH18Tlvy9ieYKnXzgI2EGXGeYKtM2vqqIWMUy-j2gmixoAzLmod67K2KQsw2tRRoeAcnaa2Cy4O9wC93k1egofhdH7_GIynQ-VJxoeC4YRywCKWUnhKSUUZTdyYCcaVx3jkpZwQjzBfYAXgS8JjVzFCFKEpJEAH6Gafu67K9wZMHebaKMiyqICyMaHd2hfC5xxb9PoPuiqbqrC_s5QdLykm0lKjPWXlGFNBGq4rnUfVLiQ4bMWHrfjwKN42XB1imziH5Ij_mLaA3ANbncHun7jweTad_oZ_A1Z_k10 |
CitedBy_id | crossref_primary_10_1038_s41522_022_00346_4 crossref_primary_10_1007_s00253_024_13011_x crossref_primary_10_1039_D2LC00602B crossref_primary_10_1128_spectrum_03595_23 crossref_primary_10_3390_microorganisms11010092 crossref_primary_10_1002_adfm_202313944 crossref_primary_10_1002_smll_202107523 crossref_primary_10_1002_smll_202306974 crossref_primary_10_3389_fcimb_2022_896149 crossref_primary_10_1021_acsami_2c15470 crossref_primary_10_1021_acsami_3c16004 |
Cites_doi | 10.1371/journal.pone.0027943 10.1126/science.aaj2191 10.1038/nbt.4151 10.1039/C4LC00451E 10.1007/s13206-014-8406-6 10.1021/mp200274r 10.1016/j.molcel.2010.01.003 10.1038/nrc3039 10.1038/ismej.2017.69 10.1063/1.5066558 10.1016/j.copbio.2019.09.001 10.1016/j.copbio.2018.08.011 10.1039/c2lc40450h 10.18054/pb.v118i4.4601 10.1126/science.1251821 10.1126/science.aag0822 10.1021/ac5001306 10.1016/j.tim.2004.11.010 10.1351/PAC-REC-10-12-04 10.1038/ismej.2015.208 10.1021/ac0518710 10.1126/science.1212449 10.1128/MMBR.00008-18 10.1039/C2IB20095C 10.1038/ismej.2015.107 10.3389/fmicb.2017.00816 10.1186/1754-6834-6-151 10.1038/msb.2013.57 10.1111/1462-2920.12483 10.1016/j.molcel.2015.05.004 10.1002/smll.201901956 10.1038/s41598-019-45414-6 10.1021/es802558j 10.1054/drup.1998.0068 10.1038/s41467-019-12914-y 10.1016/S1568-7864(03)00024-7 10.1038/nrmicro1838 10.1073/pnas.0907542106 10.1038/s41576-018-0069-z 10.1128/AEM.02311-14 10.1016/0022-2836(88)90517-7 10.1021/acs.est.9b00881 10.1038/ncomms9425 10.1126/science.1208747 10.1016/j.trac.2018.12.024 10.15252/embr.201846992 10.1016/j.copbio.2011.03.007 10.1039/B511958H 10.1038/nrmicro3270 10.1002/cplu.201600654 10.1016/j.copbio.2018.08.004 10.1371/journal.pbio.2000644 10.1126/science.1109173 10.1021/bi5000564 10.1038/s41467-020-15165-4 10.1038/nrmicro1616 10.3389/fmicb.2018.00496 10.1073/pnas.1323632111 10.1007/s00253-007-1168-5 10.1073/pnas.1117716109 10.1186/1475-2859-12-64 10.1128/JB.01368-07 10.1177/2211068214521417 10.1093/jac/dkg222 |
ContentType | Journal Article |
Copyright | 2021 The Authors. Small published by Wiley‐VCH GmbH 2021 The Authors. Small published by Wiley-VCH GmbH. 2021. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2021 The Authors. Small published by Wiley‐VCH GmbH – notice: 2021 The Authors. Small published by Wiley-VCH GmbH. – notice: 2021. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P WIN NPM AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1002/smll.202007166 |
DatabaseName | Wiley Online Library Wiley Online Library Open Access PubMed CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | PubMed CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed Materials Research Database |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | n/a |
ExternalDocumentID | 10_1002_smll_202007166 33458946 SMLL202007166 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Helmholtz programme, BioInterfaces in Technology and Medicine – fundername: Egyptian Ministry of Higher Education – fundername: German Academic Exchange Service |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 24P 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAIHA AANLZ AAONW AAXRX AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EMOBN F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W P4E QRW R.K RIWAO RNS ROL RWI RX1 RYL SUPJJ SV3 V2E W99 WBKPD WFSAM WIH WIK WIN WJL WOHZO WXSBR WYISQ WYJ XV2 Y6R ZZTAW ~S- 31~ AASGY AAYOK ACBWZ ASPBG AVWKF AZFZN BDRZF EJD FEDTE GODZA HVGLF NPM AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c4956-750d36e07b9974cc9c353d2b5756c456a4f611415870cee8916b2c511c13fede3 |
IEDL.DBID | 24P |
ISSN | 1613-6810 |
IngestDate | Fri Aug 16 01:45:35 EDT 2024 Thu Oct 10 17:56:42 EDT 2024 Fri Aug 23 01:09:02 EDT 2024 Sat Sep 28 08:25:32 EDT 2024 Sat Aug 24 01:04:00 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | mutations adaptive laboratory evolution antibiotic resistance gradients biofilms lab-on-a-chip |
Language | English |
License | Attribution-NonCommercial 2021 The Authors. Small published by Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4956-750d36e07b9974cc9c353d2b5756c456a4f611415870cee8916b2c511c13fede3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-8837-081X 0000-0001-7909-8191 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202007166 |
PMID | 33458946 |
PQID | 2499793019 |
PQPubID | 1046358 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2478778660 proquest_journals_2499793019 crossref_primary_10_1002_smll_202007166 pubmed_primary_33458946 wiley_primary_10_1002_smll_202007166_SMLL202007166 |
PublicationCentury | 2000 |
PublicationDate | 2021-03-01 |
PublicationDateYYYYMMDD | 2021-03-01 |
PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationTitleAlternate | Small |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2007; 189 2017; 8 2017; 82 2009; 43 2019; 53 2006; 78 2019; 55 2020; 62 2019; 10 2019; 13 2019; 15 2011; 11 2011; 10 2008; 6 2020; 11 2018; 82 2013; 5 2007; 77 2012; 12 2017; 355 2003; 51 2013; 6 2013; 9 2017; 118 2018; 9 2019; 20 2015; 81 2013; 12 2014; 16 2003; 2 2011; 22 2016; 353 2014; 14 2005; 309 2014; 19 2007; 5 2014; 8 2014; 12 2019; 112 2018; 36 2014; 53 2019; 9 2011; 333 2015; 58 2015; 6 2010; 37 2016; 10 1988; 202 2006; 6 1999; 2 2014; 111 2011; 6 2011; 8 2012; 109 2014; 86 2017; 15 2017; 11 2014; 346 2005; 13 2009; 106 2012; 84 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 O'Toole G. A. (e_1_2_8_46_1) 2011; 10 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_62_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_65_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 |
References_xml | – volume: 55 start-page: 60 year: 2019 publication-title: Curr. Opin. Biotechnol. – volume: 8 start-page: 2063 year: 2011 publication-title: Mol. Pharmaceutics – volume: 37 start-page: 311 year: 2010 publication-title: Mol. Cell – volume: 11 start-page: 375 year: 2011 publication-title: Nat. Rev. Cancer – volume: 81 start-page: 211 year: 2015 publication-title: Appl. Environ. Microbiol. – volume: 53 start-page: 1565 year: 2014 publication-title: Biochemistry – volume: 13 year: 2019 publication-title: Biomicrofluidics – volume: 86 start-page: 3131 year: 2014 publication-title: Anal. Chem. – volume: 43 start-page: 1546 year: 2009 publication-title: Environ. Sci. Technol. – volume: 309 start-page: 137 year: 2005 publication-title: Science – volume: 10 year: 2011 publication-title: J. Visualized Exp. – volume: 11 start-page: 1354 year: 2020 publication-title: Nat. Commun. – volume: 58 start-page: 586 year: 2015 publication-title: Mol. Cell – volume: 11 start-page: 2181 year: 2017 publication-title: ISME J. – volume: 333 start-page: 1713 year: 2011 publication-title: Science – volume: 2 start-page: 38 year: 1999 publication-title: Drug Resist. Updates – volume: 6 start-page: 8425 year: 2015 publication-title: Nat. Commun. – volume: 12 start-page: 465 year: 2014 publication-title: Nat. Rev. Microbiol. – volume: 19 start-page: 478 year: 2014 publication-title: J. Lab. Autom. – volume: 355 start-page: 826 year: 2017 publication-title: Science – volume: 202 start-page: 45 year: 1988 publication-title: J. Mol. Biol. – volume: 77 start-page: 489 year: 2007 publication-title: Appl. Microbiol. Biotechnol. – volume: 5 start-page: 209 year: 2007 publication-title: Nat. Rev. Microbiol. – volume: 12 start-page: 3968 year: 2012 publication-title: Lab Chip – volume: 10 start-page: 1471 year: 2016 publication-title: ISME J. – volume: 62 start-page: 106 year: 2020 publication-title: Curr. Opin. Biotechnol. – volume: 10 start-page: 4935 year: 2019 publication-title: Nat. Commun. – volume: 53 start-page: 7996 year: 2019 publication-title: Environ. Sci. Technol. – volume: 22 start-page: 590 year: 2011 publication-title: Curr. Opin. Biotechnol. – volume: 333 start-page: 1764 year: 2011 publication-title: Science – volume: 8 start-page: 1 year: 2017 publication-title: Front. Microbiol. – volume: 9 start-page: 8933 year: 2019 publication-title: Sci. Rep. – volume: 118 start-page: 363 year: 2017 publication-title: Period. Biol. – volume: 111 year: 2014 publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 8 start-page: 282 year: 2014 publication-title: BioChip J. – volume: 2 start-page: 593 year: 2003 publication-title: DNA Repair – volume: 112 start-page: 175 year: 2019 publication-title: TrAC, Trends Anal. Chem. – volume: 346 year: 2014 publication-title: Science – volume: 84 start-page: 377 year: 2012 publication-title: Pure Appl. Chem. – volume: 10 start-page: 30 year: 2016 publication-title: ISME J. – volume: 109 year: 2012 publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 15 year: 2019 publication-title: Small – volume: 106 year: 2009 publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 6 start-page: 381 year: 2006 publication-title: Lab Chip – volume: 5 start-page: 262 year: 2013 publication-title: Integr. Biol. – volume: 20 start-page: 24 year: 2019 publication-title: Nat. Rev. Genet. – volume: 9 start-page: 496 year: 2018 publication-title: Front. Microbiol. – volume: 9 start-page: 700 year: 2013 publication-title: Mol. Syst. Biol. – volume: 353 start-page: 1147 year: 2016 publication-title: Science – volume: 14 start-page: 3409 year: 2014 publication-title: Lab Chip – volume: 6 start-page: 199 year: 2008 publication-title: Nat. Rev. Microbiol. – volume: 6 year: 2011 publication-title: PLoS One – volume: 16 start-page: 1455 year: 2014 publication-title: Environ. Microbiol. – volume: 55 start-page: 95 year: 2019 publication-title: Curr. Opin. Biotechnol. – volume: 82 year: 2018 publication-title: Microbiol. Mol. Biol. Rev. – volume: 15 year: 2017 publication-title: PLoS Biol. – volume: 13 start-page: 34 year: 2005 publication-title: Trends Microbiol. – volume: 51 start-page: 1109 year: 2003 publication-title: J. Antimicrob. Chemother. – volume: 12 start-page: 64 year: 2013 publication-title: Microb. Cell Fact. – volume: 20 year: 2019 publication-title: EMBO Rep. – volume: 189 start-page: 8746 year: 2007 publication-title: J. Bacteriol. – volume: 6 start-page: 151 year: 2013 publication-title: Biotechnol. Biofuels – volume: 36 start-page: 614 year: 2018 publication-title: Nat. Biotechnol. – volume: 82 start-page: 792 year: 2017 publication-title: ChemPlusChem – volume: 78 start-page: 3472 year: 2006 publication-title: Anal. Chem. – ident: e_1_2_8_43_1 doi: 10.1371/journal.pone.0027943 – ident: e_1_2_8_47_1 doi: 10.1126/science.aaj2191 – ident: e_1_2_8_13_1 doi: 10.1038/nbt.4151 – ident: e_1_2_8_30_1 doi: 10.1039/C4LC00451E – ident: e_1_2_8_29_1 doi: 10.1007/s13206-014-8406-6 – ident: e_1_2_8_37_1 doi: 10.1021/mp200274r – ident: e_1_2_8_50_1 doi: 10.1016/j.molcel.2010.01.003 – ident: e_1_2_8_63_1 doi: 10.1038/nrc3039 – ident: e_1_2_8_33_1 doi: 10.1038/ismej.2017.69 – ident: e_1_2_8_26_1 doi: 10.1063/1.5066558 – ident: e_1_2_8_41_1 doi: 10.1016/j.copbio.2019.09.001 – ident: e_1_2_8_22_1 doi: 10.1016/j.copbio.2018.08.011 – ident: e_1_2_8_34_1 doi: 10.1039/c2lc40450h – ident: e_1_2_8_8_1 doi: 10.18054/pb.v118i4.4601 – ident: e_1_2_8_38_1 doi: 10.1126/science.1251821 – ident: e_1_2_8_18_1 doi: 10.1126/science.aag0822 – ident: e_1_2_8_25_1 doi: 10.1021/ac5001306 – ident: e_1_2_8_49_1 doi: 10.1016/j.tim.2004.11.010 – ident: e_1_2_8_45_1 doi: 10.1351/PAC-REC-10-12-04 – ident: e_1_2_8_60_1 doi: 10.1038/ismej.2015.208 – ident: e_1_2_8_36_1 doi: 10.1021/ac0518710 – ident: e_1_2_8_51_1 doi: 10.1126/science.1212449 – ident: e_1_2_8_4_1 doi: 10.1128/MMBR.00008-18 – ident: e_1_2_8_9_1 doi: 10.1039/C2IB20095C – ident: e_1_2_8_17_1 doi: 10.1038/ismej.2015.107 – ident: e_1_2_8_5_1 doi: 10.3389/fmicb.2017.00816 – ident: e_1_2_8_11_1 doi: 10.1186/1754-6834-6-151 – ident: e_1_2_8_6_1 doi: 10.1038/msb.2013.57 – ident: e_1_2_8_15_1 doi: 10.1111/1462-2920.12483 – ident: e_1_2_8_64_1 doi: 10.1016/j.molcel.2015.05.004 – ident: e_1_2_8_65_1 doi: 10.1002/smll.201901956 – ident: e_1_2_8_24_1 doi: 10.1038/s41598-019-45414-6 – ident: e_1_2_8_35_1 doi: 10.1021/es802558j – ident: e_1_2_8_56_1 doi: 10.1054/drup.1998.0068 – ident: e_1_2_8_58_1 doi: 10.1038/s41467-019-12914-y – ident: e_1_2_8_55_1 doi: 10.1016/S1568-7864(03)00024-7 – ident: e_1_2_8_14_1 doi: 10.1038/nrmicro1838 – ident: e_1_2_8_40_1 doi: 10.1073/pnas.0907542106 – ident: e_1_2_8_1_1 doi: 10.1038/s41576-018-0069-z – ident: e_1_2_8_44_1 doi: 10.1128/AEM.02311-14 – ident: e_1_2_8_52_1 doi: 10.1016/0022-2836(88)90517-7 – ident: e_1_2_8_28_1 doi: 10.1021/acs.est.9b00881 – ident: e_1_2_8_54_1 doi: 10.1038/ncomms9425 – ident: e_1_2_8_27_1 doi: 10.1126/science.1208747 – ident: e_1_2_8_20_1 doi: 10.1016/j.trac.2018.12.024 – ident: e_1_2_8_7_1 doi: 10.15252/embr.201846992 – ident: e_1_2_8_3_1 doi: 10.1016/j.copbio.2011.03.007 – ident: e_1_2_8_32_1 doi: 10.1039/B511958H – ident: e_1_2_8_48_1 doi: 10.1038/nrmicro3270 – volume: 10 start-page: e2437 year: 2011 ident: e_1_2_8_46_1 publication-title: J. Visualized Exp. contributor: fullname: O'Toole G. A. – ident: e_1_2_8_31_1 doi: 10.1002/cplu.201600654 – ident: e_1_2_8_21_1 doi: 10.1016/j.copbio.2018.08.004 – ident: e_1_2_8_62_1 doi: 10.1371/journal.pbio.2000644 – ident: e_1_2_8_39_1 doi: 10.1126/science.1109173 – ident: e_1_2_8_53_1 doi: 10.1021/bi5000564 – ident: e_1_2_8_61_1 doi: 10.1038/s41467-020-15165-4 – ident: e_1_2_8_23_1 doi: 10.1038/nrmicro1616 – ident: e_1_2_8_16_1 doi: 10.3389/fmicb.2018.00496 – ident: e_1_2_8_59_1 doi: 10.1073/pnas.1323632111 – ident: e_1_2_8_12_1 doi: 10.1007/s00253-007-1168-5 – ident: e_1_2_8_19_1 doi: 10.1073/pnas.1117716109 – ident: e_1_2_8_2_1 doi: 10.1186/1475-2859-12-64 – ident: e_1_2_8_42_1 doi: 10.1128/JB.01368-07 – ident: e_1_2_8_10_1 doi: 10.1177/2211068214521417 – ident: e_1_2_8_57_1 doi: 10.1093/jac/dkg222 |
SSID | ssj0031247 |
Score | 2.4680588 |
Snippet | Microfluidic devices can mimic naturally occurring microenvironments and create microbial population heterogeneities ranging from planktonic cells to biofilm... Abstract Microfluidic devices can mimic naturally occurring microenvironments and create microbial population heterogeneities ranging from planktonic cells to... |
SourceID | proquest crossref pubmed wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | e2007166 |
SubjectTerms | Acid resistance Adaptation adaptive laboratory evolution antibiotic resistance Antibiotics biofilms Drug resistance E coli Evolution gradients lab‐on‐a‐chip Microfluidic devices Microorganisms Mutation mutations Nanotechnology |
Title | Microfluidic Evolution‐On‐A‐Chip Reveals New Mutations that Cause Antibiotic Resistance |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202007166 https://www.ncbi.nlm.nih.gov/pubmed/33458946 https://www.proquest.com/docview/2499793019 https://search.proquest.com/docview/2478778660 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8MwGA46L3oQv51OiSB4KqZJ2rXHMTeGbCrTwS5S0iRlg9kNu-7sT_A3-kt80651w4PgoYHStCnJ-_G8yZsnCF1zoj0qPWFBySFAIZ4lOGGWtDXhkc8iqrIE2Qe3M-D3Q2e4sos_54coJ9yMZmT22ii4CJPbH9LQ5G1ilg7MXJvtuptoy9DGGPZ8yp8KW8zAe2XHq4DTsgzzVkHbSOjt-vvrbukX1lyHrpnvae-h3SVoxI18lPfRho4P0M4KleAheu2ZzLpoko7VWOLWYilRXx-fj6ZowNUcjWe4rxcADRMMxg330nwdPsHzkZjjpkgTjRux2UUyhZagbmLQJYjFERq0Wy_NjrU8OsGSJuKxAAco5mpSD30IGKT0JXOYoiGAM1cCZhI8ciESsh1QV3CTHoDEkEoAX9JmkVaaHaNKPI31KcK2okJxVrcV4VxxIWjoac0E9QnzOJNVdFP0XDDLGTKCnAuZBqaPg7KPq6hWdGyw1JQkgPDPBxsBSLOKrsrHIONm4ULEepqaOmBW6p7rkio6yQekbIox7ng-h4_TbIT--Ifgudftlndn_3npHG1Tk9iSJaLVUGX-nuoLQCbz8DITPijv-vQbAHvc6w |
link.rule.ids | 315,783,787,1378,11574,27936,27937,46064,46306,46488,46730 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB619EA59IeWsoW2RkLiFHBsbzY5rragLeyCxI_UC4oc2xGrQhaRhENPfQSekSdhJtmEbjlUag-xFMWJHdsz8409_gywqbgLhQm1h6lCB4WHnlZcesZ3XKWRTIWtAmQPg-GZ2v_ebaIJaS9MzQ_RTriRZFT6mgScJqR3HllD86tLWjugyTY_CJ7DC5R5Sac3fD1uGaQkmq_qfBW0Wh5RbzW8jVzszL8_b5eegM157FoZn73XkDTVrmNOfmyXRbJtfv7B6Phf__UGXs2gKevXY-ktPHPZMiz9Rlj4Ds7HFL-XXpYTOzFs93Y2bu9_3R1R0sdrcDG5ZsfuFgFozlCFsnFZr_bnrLjQBRvoMnesn9FelSmWhHlzwrA4-N7D2d7u6WDozQ5o8Az5VR6iDSsDx3tJhG6JMZGRXWlFghAwMIjMtEoD9Lf8LioFNMYhQtFEGIR4xpeps06uwEI2zdwqMN8KbZXs-ZYrZZXWIgmdk1pEXIZKmg5sNd0TX9c8HHHNuCxiarC4bbAOrDe9F8_kMY_RyYxQEyGe7cBG-xgliZZHdOamJeVB5dULg4B34EPd621RUqpuGCn8uKj67i91iE_Go1F79_FfXvoCi8PT8SgefTs8WIOXgkJpqtC3dVgobkr3CbFQkXyuRvsDUkQBdQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFD54AdEH8e68RhB8KqZJ1rWPY25M3VS8gC9S0iRlA-2GXX32J_gb_SWetFt1-CD40EBp2pTkXL6TnHwBOBbU-Ez50sFSYIBCfUcKyh3lGirigMdM5wmyV177QVw8Vh9_7OIv-CHKCTerGbm9tgo-1PHpN2lo-vJslw7sXJvrebMwLxCLW_Z8Jm4mtpij98qPV0Gn5VjmrQltI2Wn0-9Pu6VfWHMauua-p7UCy2PQSOrFKK_CjEnWYOkHleA6PHVtZl38nPV1X5Hm21iiPt8_rm1Rx6vR6w_JrXlDaJgSNG6kmxXr8CkZ9eSINGSWGlJP7C6SAbaEdVOLLlEsNuCh1bxvtJ3x0QmOshGPgzhAc8_QWhRgwKBUoHiVaxYhOPMUYiYpYg8jIbeK6opu0keQGDGF4Eu5PDba8E2YSwaJ2Qbiaia14DVXUyG0kJJFvjFcsoByX3BVgZNJz4XDgiEjLLiQWWj7OCz7uAJ7k44Nx5qShhj-BWgjEGlW4Kh8jDJuFy5kYgaZrYNmpeZ7Hq3AVjEgZVOci6ofCPw4y0foj38I77qdTnm385-XDmHh5qwVds6vLndhkdkclzwnbQ_mRq-Z2UeQMooOcjn8AnTJ3pY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microfluidic+Evolution%E2%80%90On%E2%80%90A%E2%80%90Chip+Reveals+New+Mutations+that+Cause+Antibiotic+Resistance&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Zoheir%2C+Ahmed+E.&rft.au=Sp%C3%A4th%2C+Georg+P.&rft.au=Niemeyer%2C+Christof+M.&rft.au=Rabe%2C+Kersten+S.&rft.date=2021-03-01&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=17&rft.issue=10&rft_id=info:doi/10.1002%2Fsmll.202007166&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_smll_202007166 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |