Counterintuitive Role of Magnesium Salts as Effective Electrolyte Additives for High Voltage Lithium-Ion Batteries

Further development of high voltage lithium‐ion batteries requires electrolyte formulations stable against oxidation or measures to generate a protective cathode/electrolyte interface (CEI) film. In the frame of this work, the actually counterintuitive concept of using metal ions as electrolyte addi...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials interfaces Vol. 3; no. 15; pp. np - n/a
Main Authors Wagner, Ralf, Streipert, Benjamin, Kraft, Vadim, Reyes Jiménez, Antonia, Röser, Stephan, Kasnatscheew, Johannes, Gallus, Dennis Roman, Börner, Markus, Mayer, Christoph, Arlinghaus, Heinrich Franz, Korth, Martin, Amereller, Marius, Cekic-Laskovic, Isidora, Winter, Martin
Format Journal Article
LanguageEnglish
Published Weinheim Blackwell Publishing Ltd 01.08.2016
John Wiley & Sons, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Further development of high voltage lithium‐ion batteries requires electrolyte formulations stable against oxidation or measures to generate a protective cathode/electrolyte interface (CEI) film. In the frame of this work, the actually counterintuitive concept of using metal ions as electrolyte additives to stabilize the CEI has proven to be successful. The addition of 1 wt% magnesium bis(trifluoromethanesulfonyl)imide (Mg(TFSI)2) as electrolyte additive to a conventional LiPF6/organic carbonate electrolyte suppresses the oxidative decomposition of the bulk electrolyte as displayed in improved capacity retention, increased Coulombic efficiencies, and reduced self‐discharge of LiNi1/3Mn1/3Co1/3O2 (NMC111)/Li half cells charged to the elevated upper cutoff potential of 4.6 V versus Li/Li+ at 20 °C. Moreover, the addition of Mg(TFSI)2 shows no adverse effect on the cycling performance of graphite anodes, as observed by good long‐term cycling results of NMC111/graphite full cells. Ex situ analysis via X‐ray photoelectron spectroscopy, scanning electron microscopy, time‐of‐flight secondary ion mass spectrometry, and electron energy loss spectroscopy of the harvested NMC111 electrodes after cycling indicate that the addition of Mg2+ ions leads to the formation of a CEI layer as a result of an increased hydrolysis reaction of the PF6 – anion. Magnesium salts are used as novel electrolyte additives to enable the application of LiNi1/3Mn1/3Co1/3O2 cathodes at the elevated upper cutoff potential of 4.6 V versus Li/Li+ without degradation of the active material or the conventional LiPF6/carbonate‐based electrolyte. In case of the Mg‐based additive, the cathode/electrolyte interface is stabilized by the formation of oxygenated salt derived species (PF x O y −).
AbstractList Further development of high voltage lithium-ion batteries requires electrolyte formulations stable against oxidation or measures to generate a protective cathode/electrolyte interface (CEI) film. In the frame of this work, the actually counterintuitive concept of using metal ions as electrolyte additives to stabilize the CEI has proven to be successful. The addition of 1 wt% magnesium bis(trifluoromethanesulfonyl)imide (Mg(TFSI)2) as electrolyte additive to a conventional LiPF6/organic carbonate electrolyte suppresses the oxidative decomposition of the bulk electrolyte as displayed in improved capacity retention, increased Coulombic efficiencies, and reduced self-discharge of LiNi1/3Mn1/3Co1/3O2 (NMC111)/Li half cells charged to the elevated upper cutoff potential of 4.6 V versus Li/Li+ at 20 °C. Moreover, the addition of Mg(TFSI)2 shows no adverse effect on the cycling performance of graphite anodes, as observed by good long-term cycling results of NMC111/graphite full cells. Ex situ analysis via X-ray photoelectron spectroscopy, scanning electron microscopy, time-of-flight secondary ion mass spectrometry, and electron energy loss spectroscopy of the harvested NMC111 electrodes after cycling indicate that the addition of Mg2+ ions leads to the formation of a CEI layer as a result of an increased hydrolysis reaction of the PF6 - anion.
Further development of high voltage lithium‐ion batteries requires electrolyte formulations stable against oxidation or measures to generate a protective cathode/electrolyte interface (CEI) film. In the frame of this work, the actually counterintuitive concept of using metal ions as electrolyte additives to stabilize the CEI has proven to be successful. The addition of 1 wt% magnesium bis(trifluoromethanesulfonyl)imide (Mg(TFSI)2) as electrolyte additive to a conventional LiPF6/organic carbonate electrolyte suppresses the oxidative decomposition of the bulk electrolyte as displayed in improved capacity retention, increased Coulombic efficiencies, and reduced self‐discharge of LiNi1/3Mn1/3Co1/3O2 (NMC111)/Li half cells charged to the elevated upper cutoff potential of 4.6 V versus Li/Li+ at 20 °C. Moreover, the addition of Mg(TFSI)2 shows no adverse effect on the cycling performance of graphite anodes, as observed by good long‐term cycling results of NMC111/graphite full cells. Ex situ analysis via X‐ray photoelectron spectroscopy, scanning electron microscopy, time‐of‐flight secondary ion mass spectrometry, and electron energy loss spectroscopy of the harvested NMC111 electrodes after cycling indicate that the addition of Mg2+ ions leads to the formation of a CEI layer as a result of an increased hydrolysis reaction of the PF6 – anion. Magnesium salts are used as novel electrolyte additives to enable the application of LiNi1/3Mn1/3Co1/3O2 cathodes at the elevated upper cutoff potential of 4.6 V versus Li/Li+ without degradation of the active material or the conventional LiPF6/carbonate‐based electrolyte. In case of the Mg‐based additive, the cathode/electrolyte interface is stabilized by the formation of oxygenated salt derived species (PF x O y −).
Further development of high voltage lithium‐ion batteries requires electrolyte formulations stable against oxidation or measures to generate a protective cathode/electrolyte interface (CEI) film. In the frame of this work, the actually counterintuitive concept of using metal ions as electrolyte additives to stabilize the CEI has proven to be successful. The addition of 1 wt% magnesium bis(trifluoromethanesulfonyl)imide (Mg(TFSI) 2 ) as electrolyte additive to a conventional LiPF 6 /organic carbonate electrolyte suppresses the oxidative decomposition of the bulk electrolyte as displayed in improved capacity retention, increased Coulombic efficiencies, and reduced self‐discharge of LiNi 1/3 Mn 1/3 Co 1/3 O 2 (NMC111)/Li half cells charged to the elevated upper cutoff potential of 4.6 V versus Li/Li + at 20 °C. Moreover, the addition of Mg(TFSI) 2 shows no adverse effect on the cycling performance of graphite anodes, as observed by good long‐term cycling results of NMC111/graphite full cells. Ex situ analysis via X‐ray photoelectron spectroscopy, scanning electron microscopy, time‐of‐flight secondary ion mass spectrometry, and electron energy loss spectroscopy of the harvested NMC111 electrodes after cycling indicate that the addition of Mg 2+ ions leads to the formation of a CEI layer as a result of an increased hydrolysis reaction of the PF 6 – anion.
Further development of high voltage lithium-ion batteries requires electrolyte formulations stable against oxidation or measures to generate a protective cathode/electrolyte interface (CEI) film. In the frame of this work, the actually counterintuitive concept of using metal ions as electrolyte additives to stabilize the CEI has proven to be successful. The addition of 1 wt% magnesium bis(trifluoromethanesulfonyl)imide (Mg(TFSI) sub(2)) as electrolyte additive to a conventional LiPF sub(6)/organic carbonate electrolyte suppresses the oxidative decomposition of the bulk electrolyte as displayed in improved capacity retention, increased Coulombic efficiencies, and reduced self-discharge of LiNi sub(1/3)Mn sub(1/3)Co sub(1/3)O sub(2) (NMC111)/Li half cells charged to the elevated upper cutoff potential of 4.6 V versus Li/Li super(+) at 20 degree C. Moreover, the addition of Mg(TFSI) sub(2) shows no adverse effect on the cycling performance of graphite anodes, as observed by good long-term cycling results of NMC111/graphite full cells. Ex situ analysis via X-ray photoelectron spectroscopy, scanning electron microscopy, time-of-flight secondary ion mass spectrometry, and electron energy loss spectroscopy of the harvested NMC111 electrodes after cycling indicate that the addition of Mg super(2+) ions leads to the formation of a CEI layer as a result of an increased hydrolysis reaction of the PF sub(6) super(-) anion. Magnesium salts are used as novel electrolyte additives to enable the application of LiNi sub(1/3)Mn sub(1/3)Co sub(1/3)O sub(2) cathodes at the elevated upper cutoff potential of 4.6 V versus Li/Li super(+) without degradation of the active material or the conventional LiPF sub(6)/carbonate-based electrolyte. In case of the Mg-based additive, the cathode/electrolyte interface is stabilized by the formation of oxygenated salt derived species (PF sub(x) O sub(y) super(-)).
Author Mayer, Christoph
Winter, Martin
Gallus, Dennis Roman
Börner, Markus
Arlinghaus, Heinrich Franz
Röser, Stephan
Wagner, Ralf
Korth, Martin
Kasnatscheew, Johannes
Reyes Jiménez, Antonia
Streipert, Benjamin
Amereller, Marius
Kraft, Vadim
Cekic-Laskovic, Isidora
Author_xml – sequence: 1
  givenname: Ralf
  surname: Wagner
  fullname: Wagner, Ralf
  email: ralf.wagner@uni-muenster.de
  organization: MEET Battery Research Center/Institute of Physical Chemistry, University of Münster, Corrensstrasse 46, 48149, Münster, Germany
– sequence: 2
  givenname: Benjamin
  surname: Streipert
  fullname: Streipert, Benjamin
  organization: MEET Battery Research Center/Institute of Physical Chemistry, University of Münster, Corrensstrasse 46, 48149, Münster, Germany
– sequence: 3
  givenname: Vadim
  surname: Kraft
  fullname: Kraft, Vadim
  organization: MEET Battery Research Center/Institute of Physical Chemistry, University of Münster, Corrensstrasse 46, 48149, Münster, Germany
– sequence: 4
  givenname: Antonia
  surname: Reyes Jiménez
  fullname: Reyes Jiménez, Antonia
  organization: MEET Battery Research Center/Institute of Physical Chemistry, University of Münster, Corrensstrasse 46, 48149, Münster, Germany
– sequence: 5
  givenname: Stephan
  surname: Röser
  fullname: Röser, Stephan
  organization: MEET Battery Research Center/Institute of Physical Chemistry, University of Münster, Corrensstrasse 46, 48149, Münster, Germany
– sequence: 6
  givenname: Johannes
  surname: Kasnatscheew
  fullname: Kasnatscheew, Johannes
  organization: MEET Battery Research Center/Institute of Physical Chemistry, University of Münster, Corrensstrasse 46, 48149, Münster, Germany
– sequence: 7
  givenname: Dennis Roman
  surname: Gallus
  fullname: Gallus, Dennis Roman
  organization: MEET Battery Research Center/Institute of Physical Chemistry, University of Münster, Corrensstrasse 46, 48149, Münster, Germany
– sequence: 8
  givenname: Markus
  surname: Börner
  fullname: Börner, Markus
  organization: MEET Battery Research Center/Institute of Physical Chemistry, University of Münster, Corrensstrasse 46, 48149, Münster, Germany
– sequence: 9
  givenname: Christoph
  surname: Mayer
  fullname: Mayer, Christoph
  organization: Institute of Physics, University of Münster, Wilhelm-Klemm-Straße 10, 48149, Münster, Germany
– sequence: 10
  givenname: Heinrich Franz
  surname: Arlinghaus
  fullname: Arlinghaus, Heinrich Franz
  organization: Institute of Physics, University of Münster, Wilhelm-Klemm-Straße 10, 48149, Münster, Germany
– sequence: 11
  givenname: Martin
  surname: Korth
  fullname: Korth, Martin
  organization: Institute for Theoretical Chemistry, Ulm University, Albert-Einstein-Allee 11, 89069, Ulm, Germany
– sequence: 12
  givenname: Marius
  surname: Amereller
  fullname: Amereller, Marius
  organization: MEET Battery Research Center/Institute of Physical Chemistry, University of Münster, Corrensstrasse 46, 48149, Münster, Germany
– sequence: 13
  givenname: Isidora
  surname: Cekic-Laskovic
  fullname: Cekic-Laskovic, Isidora
  organization: MEET Battery Research Center/Institute of Physical Chemistry, University of Münster, Corrensstrasse 46, 48149, Münster, Germany
– sequence: 14
  givenname: Martin
  surname: Winter
  fullname: Winter, Martin
  email: ralf.wagner@uni-muenster.de
  organization: MEET Battery Research Center/Institute of Physical Chemistry, University of Münster, Corrensstrasse 46, 48149, Münster, Germany
BookMark eNqFkU1PGzEQhq0KpFLgytlSL71s8Md6d30MaYBIoUgtH0fL2R0HU2cNthfIv8chFUK9cJmZw_PMjPR-Qzu97wGhI0pGlBB2rLuVHTFCK0KIrL6gPUZlVdRckJ0P81d0GON9RihllDV8D4WJH_oEwfZpsMk-Af7tHWBv8IVe9hDtsMJ_tEsR64inxkD7Bk1dHoJ36wR43HVvZsTGB3xul3f4xrukl4DnNt3lDcXM9_hEp80diAdo12gX4fBf30fXp9OryXkxvzybTcbzoi2lqApetkZK0rVaUloLqStSEiFqyaUGaFhNDWsWpi0b0ugFLMqKdWVLOs046zop-D76sd37EPzjADGplY0tOKd78ENUtOGiEk2uGf3-H3rvh9Dn7zJF81VO6yZToy3VBh9jAKMegl3psFaUqE0KapOCek8hC3IrPFsH609oNf55MfvoFlvXxgQv764Of1VV81qo219nSpDyRIoJV1f8FT_qnAI
CitedBy_id crossref_primary_10_1016_j_electacta_2017_01_029
crossref_primary_10_1002_cssc_201800375
crossref_primary_10_1016_j_jpowsour_2017_09_023
crossref_primary_10_1007_s41061_018_0196_1
crossref_primary_10_1039_C7CP03072J
crossref_primary_10_1002_ange_201901381
crossref_primary_10_1021_acsami_6b09164
crossref_primary_10_1007_s10008_017_3610_7
crossref_primary_10_1016_j_jpowsour_2016_12_040
crossref_primary_10_1002_asia_202000522
crossref_primary_10_1002_inf2_12216
crossref_primary_10_1016_j_electacta_2021_138485
crossref_primary_10_1002_ente_201800132
crossref_primary_10_1016_j_jallcom_2020_155615
crossref_primary_10_1002_ente_201800133
crossref_primary_10_1021_acs_jpcc_6b11746
crossref_primary_10_1016_j_jpowsour_2017_04_094
crossref_primary_10_1002_adma_202001741
crossref_primary_10_1021_acsami_9b16786
crossref_primary_10_1021_acs_chemmater_6b02895
crossref_primary_10_1021_acs_jpcc_8b06251
crossref_primary_10_34133_2022_9837586
crossref_primary_10_1016_j_trechm_2022_04_010
crossref_primary_10_1002_ente_201700068
crossref_primary_10_1016_j_jpowsour_2018_02_080
crossref_primary_10_1021_acs_jpcc_9b02836
crossref_primary_10_1149_2_1221814jes
crossref_primary_10_1002_adfm_202303457
crossref_primary_10_1002_admi_202102078
crossref_primary_10_1007_s40820_022_00917_2
crossref_primary_10_1007_s10008_020_04781_1
crossref_primary_10_1016_j_jpowsour_2018_07_039
crossref_primary_10_1039_C9TA00126C
crossref_primary_10_1021_acsami_6b07687
crossref_primary_10_1016_j_jpowsour_2020_228159
crossref_primary_10_1149_2_0361802jes
crossref_primary_10_1016_j_jpowsour_2017_10_058
crossref_primary_10_1039_C9NJ04897A
crossref_primary_10_1016_j_jfluchem_2017_02_005
crossref_primary_10_1021_acsami_9b03359
crossref_primary_10_3390_batteries4040062
crossref_primary_10_1021_acs_chemmater_9b00555
crossref_primary_10_1021_acsaem_1c01471
crossref_primary_10_1039_C7EE01473B
crossref_primary_10_3390_ma12172807
crossref_primary_10_1039_D0TA08540E
crossref_primary_10_1149_2_0711702jes
crossref_primary_10_1016_j_electacta_2017_03_092
crossref_primary_10_1016_j_jpowsour_2019_226881
crossref_primary_10_1002_anie_201901381
crossref_primary_10_1002_aenm_202200147
crossref_primary_10_1016_j_jpowsour_2019_01_086
crossref_primary_10_1016_j_est_2020_101616
crossref_primary_10_1016_j_jpowsour_2019_05_074
crossref_primary_10_1016_j_ensm_2019_05_031
crossref_primary_10_1021_acs_chemmater_7b01977
Cites_doi 10.1149/2.004205eel
10.1149/1.3126385
10.1016/j.aca.2011.12.062
10.1002/aenm.201200068
10.1002/aenm.201200028
10.1016/j.electacta.2003.09.009
10.1039/C5CP00483G
10.1016/j.jallcom.2012.03.018
10.1016/j.electacta.2013.02.131
10.1016/0378-7753(93)80096-8
10.1016/j.jpowsour.2005.01.006
10.1016/j.jpowsour.2013.03.024
10.1149/2.022304jes
10.1016/S0013-4686(02)00593-5
10.1021/la403276p
10.1039/C5CP07718D
10.1149/1.3428515
10.1149/2.060309jes
10.1002/adfm.201200693
10.1016/j.chroma.2014.05.066
10.1016/S0378-7753(03)00529-9
10.1016/S0378-7753(01)00537-7
10.1016/j.electacta.2014.04.091
10.1016/j.electacta.2004.03.049
10.1524/zpch.2009.6086
10.1149/1.1594413
10.1021/cr020731c
10.1149/2.048311jes
10.1007/s10800-013-0533-6
10.1016/j.jpowsour.2005.05.034
10.1016/j.carbon.2012.09.049
10.1016/j.sab.2015.08.005
10.1016/S0013-4686(02)00317-1
10.1016/j.electacta.2003.10.005
10.1016/S1452-3981(23)15534-9
10.1002/aenm.201300787
10.1149/1.1505636
10.1149/2.0951506jes
10.1149/1.2059378
10.1016/S0378-7753(97)02524-X
10.1021/ac4001404
10.1016/j.elecom.2011.10.026
10.1021/cr030203g
10.1149/1.2987680
10.1039/c3ta12643a
10.1021/ja312241y
10.1016/j.jpowsour.2012.12.056
10.1149/2.081302jes
10.1016/S0167-2738(02)00080-2
10.1039/C4CP04113E
10.1149/1.3424884
10.1016/j.jelechem.2013.08.032
10.1016/j.jpowsour.2007.11.032
10.1039/c0jm00154f
10.1149/2.0861412jes
10.1021/cm901452z
10.1016/j.jpowsour.2014.09.064
10.1016/S0013-4686(01)00847-7
10.1016/j.chroma.2015.03.048
10.1016/S0378-7753(03)00173-3
10.1007/978-1-4939-0302-3
10.1021/ja0530568
10.1149/1.1954927
10.1149/1.1480135
10.1016/j.jelechem.2014.09.005
10.1149/1.1838857
10.1016/j.jpowsour.2010.07.049
10.1016/j.jpowsour.2012.01.122
10.1016/0013-4686(96)00122-3
10.1039/C5RA23624J
10.1021/cm0511769
10.1016/j.electacta.2015.10.002
10.1016/j.electacta.2005.11.015
10.1016/j.jpowsour.2015.12.025
10.1016/j.jpowsour.2005.03.172
10.1149/05814.0055ecst
ContentType Journal Article
Copyright 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID BSCLL
AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/admi.201600096
DatabaseName Istex
CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database

CrossRef
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2196-7350
EndPage n/a
ExternalDocumentID 4143760941
10_1002_admi_201600096
ADMI201600096
ark_67375_WNG_504B95C3_T
Genre article
GrantInformation_xml – fundername: BASF
– fundername: BMW
GroupedDBID 0R~
1OC
24P
33P
AAESR
AAHHS
AAIHA
AAXRX
AAZKR
ABCUV
ACAHQ
ACCFJ
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AENEX
AEQDE
AEUQT
AFBPY
AIACR
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ARCSS
AVUZU
AZVAB
BFHJK
BMXJE
BRXPI
BSCLL
DCZOG
DPXWK
EBS
EJD
G-S
GODZA
GROUPED_DOAJ
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY~
M~E
O9-
P2W
R.K
ROL
SUPJJ
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
AAYXX
ABJCF
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
KB.
M7S
PDBOC
PTHSS
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c4956-34cf990dca911759a6040557939aee8271f28bfc4808abeb462d4c0da232dd953
ISSN 2196-7350
IngestDate Fri Jun 28 11:14:45 EDT 2024
Thu Oct 10 22:42:17 EDT 2024
Thu Sep 12 16:57:59 EDT 2024
Sat Aug 24 01:11:49 EDT 2024
Fri Apr 12 23:59:56 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 15
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c4956-34cf990dca911759a6040557939aee8271f28bfc4808abeb462d4c0da232dd953
Notes ark:/67375/WNG-504B95C3-T
ArticleID:ADMI201600096
BASF
BMW
istex:1D515FA1FFA0696A7A428F0515341C07DAE4070E
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1810553178
PQPubID 2034582
PageCount 11
ParticipantIDs proquest_miscellaneous_1835658835
proquest_journals_1810553178
crossref_primary_10_1002_admi_201600096
wiley_primary_10_1002_admi_201600096_ADMI201600096
istex_primary_ark_67375_WNG_504B95C3_T
PublicationCentury 2000
PublicationDate 20160801
PublicationDateYYYYMMDD 2016-08-01
PublicationDate_xml – month: 08
  year: 2016
  text: 20160801
  day: 01
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced materials interfaces
PublicationTitleAlternate Adv. Mater. Interfaces
PublicationYear 2016
Publisher Blackwell Publishing Ltd
John Wiley & Sons, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: John Wiley & Sons, Inc
References a) K. Xu, Chem. Rev. 2004, 104, 4303
S. Krueger, R. Kloepsch, J. Li, S. Nowak, S. Passerini, M. Winter, J. Electrochem. Soc. 2013, 160, A542.
a) D. Aurbach, E. Zinigrad, Y. Cohen, H. Teller, Solid State Ionics 2002, 148, 405
b) J. C. Burns, A. Kassam, N. N. Sinha, L. E. Downie, L. Solnickova, B. M. Way, J. R. Dahn, J. Electrochem. Soc. 2013, 160, A1451
c) I. Belharouak, Y. K. Sun, J. Liu, K. Amine, J. Power Sources 2003, 123, 247
b) H. Schranzhofer, J. Bugajski, H. J. Santner, C. Korepp, K. C. Möller, J. O. Besenhard, M. Winter, W. Sitte, J. Power Sources 2006, 153, 391.
J.-M. Kim, H.-T. Chung, Electrochim. Acta 2004, 49, 937.
R. Robert, C. Villevieille, P. Novak, J. Mater. Chem. A 2014, 2, 8589.
O. Fromm, P. Meister, X. Qi, S. Rothermel, J. Huesker, H. W. Meyer, M. Winter, T. Placke, ECS Trans. 2014, 58, 55.
b) N. Yabuuchi, T. Ohzuku, J. Power Sources 2003, 119-121, 171.
L. Yang, B. Ravdel, B. L. Lucht, Electrochem. Solid-State Lett. 2010, 13, A95.
H. Zheng, Q. Sun, G. Liu, X. Song, V. S. Battaglia, J. Power Sources 2012, 207, 134.
M. Grützke, V. Kraft, B. Hoffmann, S. Klamor, J. Diekmann, A. Kwade, M. Winter, S. Nowak, J. Power Sources 2015, 273, 83.
a) W. Weber, V. Kraft, M. Grützke, R. Wagner, M. Winter, S. Nowak, J. Chromatogr. A 2015, 1394, 128
M. Broussely, P. Biensan, F. Bonhomme, P. Blanchard, S. Herreyre, K. Nechev, R. J. Staniewicz, J. Power Sources 2005, 146, 90.
M. Hu, X. Pang, Z. Zhou, J. Power Sources 2013, 237, 229.
b) E. Krämer, T. Schedlbauer, B. Hoffmann, L. Terborg, S. Nowak, H. J. Gores, S. Passerini, M. Winter, J. Electrochem. Soc. 2013, 160, A356.
c) K. Ben-Kamel, N. Amdouni, A. Mauger, C. M. Julien, J. Alloys Compd. 2012, 528, 91
L. B. d. Caland, E. L. C. Silveira, M. Tubino, Anal. Chim. Acta 2012, 718, 116.
P. Murmann, B. Streipert, R. Kloepsch, N. Ignat'ev, P. Sartori, M. Winter, I. Cekic-Laskovic, Phys. Chem. Chem. Phys. 2015, 17, 9352.
J. F. Moulder, J. Chastain, Handbook of X-Ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data, Physical Electronics Division, Perkin-Elmer Corporation, 1992.
c) Y. Matsuda, J Power Sources 1993, 43, 1
a) T. Joshi, K. Eom, G. Yushin, T. F. Fuller, J. Electrochem. Soc. 2014, 161, A1915
a) T.-H. Kim, J.-S. Park, S. K. Chang, S. Choi, J. H. Ryu, H.-K. Song, Adv. Energy Mater. 2012, 2, 860
M. Winter, Z. Phys. Chem. 2009, 223, 1395.
a) D. P. Abraham, T. Spila, M. M. Furczon, E. Sammann, Electrochem. Solid-State Lett. 2008, 11, A226
D. R. Gallus, R. Wagner, S. Wiemers-Meyer, M. Winter, I. Cekic-Laskovic, Electrochim. Acta 2015, 184, 410.
S.-K. Kim, W.-T. Jeong, H.-K. Lee, J. Shim, Int. J. Electrochem. Sci. 2008, 3, 1504.
M. Herstedt, M. Stjerndahl, A. Nytén, T. Gustafsson, H. Rensmo, H. Siegbahn, N. Ravet, M. Armand, J. O. Thomas, K. Edström, Electrochem. Solid-State Lett. 2003, 6, A202.
P. Niehoff, M. Winter, Langmuir 2013, 29, 15813.
J. Vetter, P. Novák, M. R. Wagner, C. Veit, K. C. Möller, J. O. Besenhard, M. Winter, M. Wohlfahrt-Mehrens, C. Vogler, A. Hammouche, J. Power Sources 2005, 147, 269.
S.-K. Jung, H. Gwon, J. Hong, K.-Y. Park, D.-H. Seo, H. Kim, J. Hyun, W. Yang, K. Kang, Adv. Energy Mater. 2014, 4, 1300787.
a) K. M. Shaju, G. V. Subba Rao, B. V. R. Chowdari, Electrochim. Acta 2002, 48, 145
M. Metzger, C. Marino, J. Sicklinger, D. Haering, H. A. Gasteiger, J. Electrochem. Soc. 2015, 162, A1123.
b) Y. Matsuda, M. Morita, H. Nigo, in Proc. Symp. Primary and Secondary Lithium Batteries (Eds: K. M. Abraham, M. Solomon), Battery Division, Electrochemical Society, 1991, p. 272
S. F. Lux, I. T. Lucas, E. Pollak, S. Passerini, M. Winter, R. Kostecki, Electrochem. Commun. 2012, 14, 47.
Y. Zhang, C.-Y. Wang, J. Electrochem. Soc. 2009, 156, A527.
e) M. Ishikawa, M. Morita, Y. Matsuda, J. Power Sources 1997, 68, 501.
a) S. R. Li, N. N. Sinha, C. H. Chen, K. Xu, J. R. Dahn, J. Electrochem. Soc. 2013, 160, A2014
Z. Chen, Y. Qin, K. Amine, Y. K. Sun, J. Mater. Chem. 2010, 20, 7606.
b) A. Kraytsberg, Y. Ein-Eli, Adv. Energy Mater. 2012, 2, 922.
D. R. Gallus, R. Schmitz, R. Wagner, B. Hoffmann, S. Nowak, I. Cekic-Laskovic, R. W. Schmitz, M. Winter, Electrochim. Acta 2014, 134, 393.
F. Ding, W. Xu, G. L. Graff, J. Zhang, M. L. Sushko, X. Chen, Y. Shao, M. H. Engelhard, Z. Nie, J. Xiao, X. Liu, P. V. Sushko, J. Liu, J.-G. Zhang, J. Am. Chem. Soc. 2013, 135, 4450.
W.-S. Yoon, M. Balasubramanian, K. Y. Chung, X.-Q. Yang, J. McBreen, C. P. Grey, D. A. Fischer, J. Am. Chem. Soc. 2005, 127, 17479.
X. Qi, B. Blizanac, A. DuPasquier, P. Meister, T. Placke, M. Oljaca, J. Li, M. Winter, Phys. Chem. Chem. Phys. 2014, 16, 25306.
b) M. S. Whittingham, Chem. Rev. 2004, 104, 4271
C. Li, H. P. Zhang, L. J. Fu, H. Liu, Y. P. Wu, E. Rahm, R. Holze, H. Q. Wu, Electrochim. Acta 2006, 51, 3872.
J. T. Lee, N. Nitta, J. Benson, A. Magasinski, T. F. Fuller, G. Yushin, Carbon 2013, 52, 388.
a) J. B. Goodenough, Y. Kim, Chem. Mater. 2009, 22, 587
b) X. Zuo, C. Fan, J. Liu, X. Xiao, J. Wu, J. Nan, J. Power Sources 2013, 229, 308.
K.-W. Nam, S.-M. Bak, E. Hu, X. Yu, Y. Zhou, X. Wang, L. Wu, Y. Zhu, K.-Y. Chung, X.-Q. Yang, Adv. Funct. Mater. 2013, 23, 1047.
b) K. C. Möller, T. Hodal, W. K. Appel, M. Winter, J. O. Besenhard, J. Power Sources 2001, 97-98, 595.
b) P. Niehoff, E. Kraemer, M. Winter, J. Electroanal. Chem. 2013, 707, 110
B. Vortmann, S. Nowak, C. Engelhard, Anal. Chem. 2013, 85, 3433.
a) K. Edström, T. Gustafsson, J. O. Thomas, Electrochim. Acta 2004, 50, 397
P. Arora, R. E. White, M. Doyle, J. Electrochem. Soc. 1998, 145, 3647.
d) M. Ishikawa, S. Yoshitake, M. Morita, Y. Matsuda, J. Electrochem Soc 1994, 141, L159
J. Kasnatscheew, M. Evertz, B. Streipert, R. Wagner, R. Klopsch, B. Vortmann, H. Hahn, S. Nowak, M. Amereller, A.-C. Gentschev, P. Lamp, M. Winter, Phys. Chem. Chem. Phys. 2016, 18, 3956.
b) W. Weber, R. Wagner, B. Streipert, V. Kraft, M. Winter, S. Nowak, J. Power Sources 2016, 306, 193.
c) T. R. Jow, K. Xu, O. Borodin, M. Ue, Electrolytes for Lithium and Lithium-Ion Batteries, , Vol. 58, Springer, New york, 2014.
b) H. Gabrisch, R. Yazami, Electrochem. Solid-State Lett. 2010, 13, A88
Y. P. Wu, E. Rahm, R. Holze, Electrochim. Acta 2002, 47, 3491.
a) R. Wagner, N. Preschitschek, S. Passerini, J. Leker, M. Winter, J. Appl. Electrochem. 2013, 43, 481
d) J. Reed, G. Ceder, Electrochem. Solid-State Lett. 2002, 5, A145.
J. Choi, A. Manthiram, J. Electrochem. Soc. 2005, 152, A1714.
a) S. C. Yin, Y. H. Rho, I. Swainson, L. F. Nazar, Chem. Mater. 2006, 18, 1901
c) M. Evertz, C. Lürenbaum, B. Vortmann, M. Winter, S. Nowak, Spectrochim. Acta, Part B 2015, 112, 34.
J. Zhou, P. H. L. Notten, J. Power Sources 2008, 177, 553.
V. Kraft, W. Weber, B. Streipert, R. Wagner, C. Schultz, M. Winter, S. Nowak, RSC Adv. 2016, 6, 8.
V. Kraft, M. Grützke, W. Weber, M. Winter, S. Nowak, J. Chromatogr. A 2014, 1354, 92.
b) A. M. Andersson, D. P. Abraham, R. Haasch, S. MacLaren, J. Liu, K. Amine, J. Electrochem. Soc. 2002, 149, A1358.
a) E. Krämer, S. Passerini, M. Winter, ECS Electrochem. Lett. 2012, 1, C9
X. Bie, F. Du, Y. Wang, K. Zhu, H. Ehrenberg, K. Nikolowski, C. Wang, G. Chen, Y. Wei, Electrochim. Acta 2013, 97, 357.
S. Komaba, N. Kumagai, Y. Kataoka, Electrochim. Acta 2002, 47, 1229.
d) P. K. Nayak, J. Grinblat, M. Levi, Y. Wu, B. Powell, D. Aurbach, J. Electroanal. Chem. 2014, 733, 6.
a) N. Dupré, J.-F. Martin, J. Oliveri, P. Soudan, A. Yamada, R. Kanno, D. Guyomard, J. Power Sources 2011, 196, 4791
S. H. Park, C. S. Yoon, S. G. Kang, H. S. Kim, S. I. Moon, Y. K. Sun, Electrochim. Acta 2004, 49, 557.
b) G. Pistoia, A. Antonini, R. Rosati, D. Zane, Electrochim. Acta 1996, 41, 2683.
2015; 184
2013; 29
2010; 13
2006 2010 2003 2014; 18 13 123 733
2013; 23
2009; 156
2008; 3
2012; 14
2013; 160
2008 2013 2015; 11 160 112
2012; 207
2002 1991 1993 1994 1997; 148 43 141 68
2014; 134
2002; 47
2010; 20
2014; 4
2014; 2
2004 2013 2014; 104 707 58
2005; 146
2005; 147
2013; 237
2003; 6
2013; 97
2013; 52
2014; 16
2014; 58
2013 2012; 43 2
2014; 1354
2012 2003; 2 119–121
2013 1996; 160 41
2002 2004 2012 2002; 48 104 528 5
2015; 162
2012 2013; 1 160
2014 2006; 161 153
2015; 17
2005; 152
2006; 51
2004; 49
2013; 85
2004
1992
2016; 18
2015; 273
2016; 6
2009 2001; 22 97–98
2005; 127
2011 2013; 196 229
2012; 718
2009; 223
2013; 135
2015 2016; 1394 306
2004 2002; 50 149
2008; 177
1998; 145
e_1_2_6_51_1
e_1_2_6_53_1
e_1_2_6_32_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_38_2
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_43_1
e_1_2_6_20_2
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_1_1
e_1_2_6_22_4
e_1_2_6_22_3
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_2
e_1_2_6_49_2
e_1_2_6_1_2
e_1_2_6_20_3
e_1_2_6_22_1
e_1_2_6_28_2
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
Matsuda Y. (e_1_2_6_37_2) 1991
e_1_2_6_52_1
e_1_2_6_52_2
e_1_2_6_54_1
e_1_2_6_31_2
e_1_2_6_31_1
e_1_2_6_50_1
Moulder J. F. (e_1_2_6_48_1) 1992
e_1_2_6_37_5
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_37_4
e_1_2_6_18_1
e_1_2_6_37_3
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_14_2
e_1_2_6_14_3
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_42_1
e_1_2_6_21_1
e_1_2_6_40_2
e_1_2_6_40_1
e_1_2_6_6_4
e_1_2_6_6_3
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_2
e_1_2_6_6_1
Kim S.‐K. (e_1_2_6_10_1) 2008; 3
e_1_2_6_25_1
e_1_2_6_2_2
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_27_1
e_1_2_6_46_1
e_1_2_6_46_2
References_xml – volume: 147
  start-page: 269
  year: 2005
  publication-title: J. Power Sources
– volume: 48 104 528 5
  start-page: 145 4271 91 A145
  year: 2002 2004 2012 2002
  publication-title: Electrochim. Acta Chem. Rev. J. Alloys Compd. Electrochem. Solid‐State Lett.
– volume: 145
  start-page: 3647
  year: 1998
  publication-title: J. Electrochem. Soc.
– volume: 127
  start-page: 17479
  year: 2005
  publication-title: J. Am. Chem. Soc.
– volume: 18
  start-page: 3956
  year: 2016
  publication-title: Phys. Chem. Chem. Phys.
– volume: 134
  start-page: 393
  year: 2014
  publication-title: Electrochim. Acta
– volume: 237
  start-page: 229
  year: 2013
  publication-title: J. Power Sources
– volume: 16
  start-page: 25306
  year: 2014
  publication-title: Phys. Chem. Chem. Phys.
– volume: 161 153
  start-page: A1915 391
  year: 2014 2006
  publication-title: J. Electrochem. Soc. J. Power Sources
– volume: 58
  start-page: 55
  year: 2014
  publication-title: ECS Trans.
– volume: 162
  start-page: A1123
  year: 2015
  publication-title: J. Electrochem. Soc.
– volume: 49
  start-page: 557
  year: 2004
  publication-title: Electrochim. Acta
– volume: 273
  start-page: 83
  year: 2015
  publication-title: J. Power Sources
– volume: 2
  start-page: 8589
  year: 2014
  publication-title: J. Mater. Chem. A
– volume: 156
  start-page: A527
  year: 2009
  publication-title: J. Electrochem. Soc.
– volume: 4
  start-page: 1300787
  year: 2014
  publication-title: Adv. Energy Mater.
– volume: 85
  start-page: 3433
  year: 2013
  publication-title: Anal. Chem.
– volume: 13
  start-page: A95
  year: 2010
  publication-title: Electrochem. Solid‐State Lett.
– volume: 3
  start-page: 1504
  year: 2008
  publication-title: Int. J. Electrochem. Sci.
– volume: 14
  start-page: 47
  year: 2012
  publication-title: Electrochem. Commun.
– volume: 196 229
  start-page: 4791 308
  year: 2011 2013
  publication-title: J. Power Sources J. Power Sources
– volume: 6
  start-page: 8
  year: 2016
  publication-title: RSC Adv.
– year: 2004
– volume: 146
  start-page: 90
  year: 2005
  publication-title: J. Power Sources
– volume: 29
  start-page: 15813
  year: 2013
  publication-title: Langmuir
– volume: 1354
  start-page: 92
  year: 2014
  publication-title: J. Chromatogr. A
– volume: 207
  start-page: 134
  year: 2012
  publication-title: J. Power Sources
– volume: 160 41
  start-page: A2014 2683
  year: 2013 1996
  publication-title: J. Electrochem. Soc. Electrochim. Acta
– volume: 97
  start-page: 357
  year: 2013
  publication-title: Electrochim. Acta
– volume: 20
  start-page: 7606
  year: 2010
  publication-title: J. Mater. Chem.
– volume: 18 13 123 733
  start-page: 1901 A88 247 6
  year: 2006 2010 2003 2014
  publication-title: Chem. Mater. Electrochem. Solid‐State Lett. J. Power Sources J. Electroanal. Chem.
– volume: 52
  start-page: 388
  year: 2013
  publication-title: Carbon
– volume: 160
  start-page: A542
  year: 2013
  publication-title: J. Electrochem. Soc.
– volume: 47
  start-page: 1229
  year: 2002
  publication-title: Electrochim. Acta
– volume: 51
  start-page: 3872
  year: 2006
  publication-title: Electrochim. Acta
– volume: 6
  start-page: A202
  year: 2003
  publication-title: Electrochem. Solid‐State Lett.
– volume: 1 160
  start-page: C9 A356
  year: 2012 2013
  publication-title: ECS Electrochem. Lett. J. Electrochem. Soc.
– volume: 11 160 112
  start-page: A226 A1451 34
  year: 2008 2013 2015
  publication-title: Electrochem. Solid‐State Lett. J. Electrochem. Soc. Spectrochim. Acta, Part B
– volume: 49
  start-page: 937
  year: 2004
  publication-title: Electrochim. Acta
– volume: 148 43 141 68
  start-page: 405 272 1 L159 501
  year: 2002 1991 1993 1994 1997
  publication-title: Solid State Ionics J Power Sources J. Electrochem Soc J. Power Sources
– year: 1992
– volume: 17
  start-page: 9352
  year: 2015
  publication-title: Phys. Chem. Chem. Phys.
– volume: 2 119–121
  start-page: 860 171
  year: 2012 2003
  publication-title: Adv. Energy Mater. J. Power Sources
– volume: 23
  start-page: 1047
  year: 2013
  publication-title: Adv. Funct. Mater.
– volume: 104 707 58
  start-page: 4303 110
  year: 2004 2013 2014
  publication-title: Chem. Rev. J. Electroanal. Chem.
– volume: 43 2
  start-page: 481 922
  year: 2013 2012
  publication-title: J. Appl. Electrochem. Adv. Energy Mater.
– volume: 47
  start-page: 3491
  year: 2002
  publication-title: Electrochim. Acta
– volume: 223
  start-page: 1395
  year: 2009
  publication-title: Z. Phys. Chem.
– volume: 50 149
  start-page: 397 A1358
  year: 2004 2002
  publication-title: Electrochim. Acta J. Electrochem. Soc.
– volume: 22 97–98
  start-page: 587 595
  year: 2009 2001
  publication-title: Chem. Mater. J. Power Sources
– volume: 152
  start-page: A1714
  year: 2005
  publication-title: J. Electrochem. Soc.
– volume: 177
  start-page: 553
  year: 2008
  publication-title: J. Power Sources
– volume: 718
  start-page: 116
  year: 2012
  publication-title: Anal. Chim. Acta
– volume: 184
  start-page: 410
  year: 2015
  publication-title: Electrochim. Acta
– volume: 135
  start-page: 4450
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 1394 306
  start-page: 128 193
  year: 2015 2016
  publication-title: J. Chromatogr. A J. Power Sources
– ident: e_1_2_6_28_1
  doi: 10.1149/2.004205eel
– ident: e_1_2_6_50_1
  doi: 10.1149/1.3126385
– ident: e_1_2_6_56_1
  doi: 10.1016/j.aca.2011.12.062
– ident: e_1_2_6_1_2
  doi: 10.1002/aenm.201200068
– ident: e_1_2_6_2_1
  doi: 10.1002/aenm.201200028
– ident: e_1_2_6_8_1
  doi: 10.1016/j.electacta.2003.09.009
– ident: e_1_2_6_53_1
  doi: 10.1039/C5CP00483G
– ident: e_1_2_6_6_3
  doi: 10.1016/j.jallcom.2012.03.018
– ident: e_1_2_6_51_1
  doi: 10.1016/j.electacta.2013.02.131
– ident: e_1_2_6_37_3
  doi: 10.1016/0378-7753(93)80096-8
– ident: e_1_2_6_17_1
  doi: 10.1016/j.jpowsour.2005.01.006
– ident: e_1_2_6_32_1
  doi: 10.1016/j.jpowsour.2013.03.024
– ident: e_1_2_6_18_1
  doi: 10.1149/2.022304jes
– ident: e_1_2_6_6_1
  doi: 10.1016/S0013-4686(02)00593-5
– ident: e_1_2_6_13_1
  doi: 10.1021/la403276p
– ident: e_1_2_6_27_1
  doi: 10.1039/C5CP07718D
– ident: e_1_2_6_12_1
  doi: 10.1149/1.3428515
– ident: e_1_2_6_20_2
  doi: 10.1149/2.060309jes
– start-page: 272
  volume-title: Proc. Symp. Primary and Secondary Lithium Batteries
  year: 1991
  ident: e_1_2_6_37_2
  contributor:
    fullname: Matsuda Y.
– ident: e_1_2_6_24_1
  doi: 10.1002/adfm.201200693
– ident: e_1_2_6_55_1
– ident: e_1_2_6_42_1
  doi: 10.1016/j.chroma.2014.05.066
– ident: e_1_2_6_22_3
  doi: 10.1016/S0378-7753(03)00529-9
– ident: e_1_2_6_31_2
  doi: 10.1016/S0378-7753(01)00537-7
– ident: e_1_2_6_11_1
  doi: 10.1016/j.electacta.2014.04.091
– ident: e_1_2_6_49_1
  doi: 10.1016/j.electacta.2004.03.049
– ident: e_1_2_6_15_1
  doi: 10.1524/zpch.2009.6086
– ident: e_1_2_6_47_1
  doi: 10.1149/1.1594413
– ident: e_1_2_6_6_2
  doi: 10.1021/cr020731c
– ident: e_1_2_6_40_1
  doi: 10.1149/2.048311jes
– ident: e_1_2_6_1_1
  doi: 10.1007/s10800-013-0533-6
– ident: e_1_2_6_38_2
  doi: 10.1016/j.jpowsour.2005.05.034
– ident: e_1_2_6_54_1
  doi: 10.1016/j.carbon.2012.09.049
– ident: e_1_2_6_20_3
  doi: 10.1016/j.sab.2015.08.005
– ident: e_1_2_6_35_1
  doi: 10.1016/S0013-4686(02)00317-1
– ident: e_1_2_6_4_1
  doi: 10.1016/j.electacta.2003.10.005
– volume: 3
  start-page: 1504
  year: 2008
  ident: e_1_2_6_10_1
  publication-title: Int. J. Electrochem. Sci.
  doi: 10.1016/S1452-3981(23)15534-9
  contributor:
    fullname: Kim S.‐K.
– ident: e_1_2_6_25_1
  doi: 10.1002/aenm.201300787
– ident: e_1_2_6_49_2
  doi: 10.1149/1.1505636
– ident: e_1_2_6_29_1
  doi: 10.1149/2.0951506jes
– ident: e_1_2_6_37_4
  doi: 10.1149/1.2059378
– ident: e_1_2_6_37_5
  doi: 10.1016/S0378-7753(97)02524-X
– ident: e_1_2_6_43_1
  doi: 10.1021/ac4001404
– ident: e_1_2_6_19_1
  doi: 10.1016/j.elecom.2011.10.026
– ident: e_1_2_6_14_1
  doi: 10.1021/cr030203g
– ident: e_1_2_6_20_1
  doi: 10.1149/1.2987680
– ident: e_1_2_6_3_1
  doi: 10.1039/c3ta12643a
– ident: e_1_2_6_36_1
  doi: 10.1021/ja312241y
– ident: e_1_2_6_52_2
  doi: 10.1016/j.jpowsour.2012.12.056
– ident: e_1_2_6_28_2
  doi: 10.1149/2.081302jes
– ident: e_1_2_6_37_1
  doi: 10.1016/S0167-2738(02)00080-2
– ident: e_1_2_6_30_1
  doi: 10.1039/C4CP04113E
– ident: e_1_2_6_22_2
  doi: 10.1149/1.3424884
– ident: e_1_2_6_14_2
  doi: 10.1016/j.jelechem.2013.08.032
– ident: e_1_2_6_16_1
  doi: 10.1016/j.jpowsour.2007.11.032
– ident: e_1_2_6_33_1
  doi: 10.1039/c0jm00154f
– ident: e_1_2_6_38_1
  doi: 10.1149/2.0861412jes
– ident: e_1_2_6_31_1
  doi: 10.1021/cm901452z
– ident: e_1_2_6_44_1
  doi: 10.1016/j.jpowsour.2014.09.064
– ident: e_1_2_6_21_1
  doi: 10.1016/S0013-4686(01)00847-7
– ident: e_1_2_6_46_1
  doi: 10.1016/j.chroma.2015.03.048
– ident: e_1_2_6_2_2
  doi: 10.1016/S0378-7753(03)00173-3
– ident: e_1_2_6_14_3
  doi: 10.1007/978-1-4939-0302-3
– ident: e_1_2_6_5_1
  doi: 10.1021/ja0530568
– ident: e_1_2_6_23_1
  doi: 10.1149/1.1954927
– ident: e_1_2_6_6_4
  doi: 10.1149/1.1480135
– ident: e_1_2_6_22_4
  doi: 10.1016/j.jelechem.2014.09.005
– ident: e_1_2_6_26_1
  doi: 10.1149/1.1838857
– ident: e_1_2_6_52_1
  doi: 10.1016/j.jpowsour.2010.07.049
– ident: e_1_2_6_7_1
  doi: 10.1016/j.jpowsour.2012.01.122
– ident: e_1_2_6_40_2
  doi: 10.1016/0013-4686(96)00122-3
– ident: e_1_2_6_45_1
  doi: 10.1039/C5RA23624J
– ident: e_1_2_6_22_1
  doi: 10.1021/cm0511769
– ident: e_1_2_6_9_1
  doi: 10.1016/j.electacta.2015.10.002
– ident: e_1_2_6_34_1
  doi: 10.1016/j.electacta.2005.11.015
– ident: e_1_2_6_46_2
  doi: 10.1016/j.jpowsour.2015.12.025
– volume-title: Handbook of X‐Ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data
  year: 1992
  ident: e_1_2_6_48_1
  contributor:
    fullname: Moulder J. F.
– ident: e_1_2_6_39_1
  doi: 10.1016/j.jpowsour.2005.03.172
– ident: e_1_2_6_41_1
  doi: 10.1149/05814.0055ecst
SSID ssj0001121283
Score 2.3567102
Snippet Further development of high voltage lithium‐ion batteries requires electrolyte formulations stable against oxidation or measures to generate a protective...
Further development of high voltage lithium-ion batteries requires electrolyte formulations stable against oxidation or measures to generate a protective...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Publisher
StartPage np
SubjectTerms Additives
Cathodes
Cycles
electrolyte additives
Electrolytes
high voltage application
High voltages
Lithium-ion batteries
Magnesium
magnesium salts
NMC cathode materials
Rechargeable batteries
Title Counterintuitive Role of Magnesium Salts as Effective Electrolyte Additives for High Voltage Lithium-Ion Batteries
URI https://api.istex.fr/ark:/67375/WNG-504B95C3-T/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadmi.201600096
https://www.proquest.com/docview/1810553178
https://search.proquest.com/docview/1835658835
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLVKKyRe0PgSZQMZCcHDlNEmdpo8dmOwTXQPoy0TL5FjO1ugTac0lRj_kH_FtZ046Shi8BK1qRs5vie-Hzk-RugVZYzHwpdOIvrUIYknnZhw5kDsHgehH3tSF9xGp_7RhJyc0_NW62eDtbQq4j3-Y-O6kv-xKpwDu6pVsv9gWXtROAGfwb5wBAvD8VY2VgvKldYy-A1DAToruYIjdgFTWLqa735is2KpNpMxMsWq0aHZ-WZ2Xaj9mIX-p1Zl0KSP3eliVigiz8e0uIQrOMeAD6PCWfENK9Haij4AQa-5Wy0-kSeK5VUX6i_KJTVnbJbYek6Ry_SqXC60L7OvbJ7WdICcGdcwZSKd2zdC8hp6eZLOzav9zFS-h2oL5JQ1axd93zLnNtYoTc2tZjPBHAjzqe8MPKNNuyc3nCsnca-JVdpw59bZ_eYrjPYsE_NUMfx8nc3VXrFiAtxwlpbCyPJvihM3oNHn0w8R7ZH9kB540fgO6riDkNI26gynky-TuuDXhyhBy8LaG6hERHvu2_VurAVJHfW8f1_LgJp5lA6ExlvofpnB4KGB4wPUktlDdFczifnyEcpvghIrUOJFgi0osQYlZktsQYkboMQWlBhAiRUocQlK3AAltqB8jCbvD8cHR065sYfDVT7ueIQnEAUJzkKlFBsyH1wJpeAqQiZl4A76iRvECSdBL2CxjInvCsJ7gkH4L0RIvSeonS0y-RRhAum22iTRpYwStw9tSchiFoacExFT2UVvqpGMrox-S2SUut1IjXlkx7yLXuuBts3-ZOEu2qksEZWTwTKCQBnuAILxoIte2p9hqlbv31gmFyvVxoP0KYBjF7nagn_pUjR8Nzq2357dtoPb6F79sO2gdpGv5HMInYv4RQnKXzlaxeI
link.rule.ids 315,786,790,27955,27956,50847,50956
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NjtMwEB5BKwQXxK82sICREJyiTRM7TY5l2aWFtgdoF8TF8l-gopugTSrBjUfgGXkSZpw2S09IXCIlGVvJODPzeTL-DPBMKGW0TV1Y2IEIeZG4UHOjQsTuOstTnTifcJvN0_GSv_kodtWEtBam5YfoEm5kGd5fk4FTQvrokjVU2fMV1WalHodfhb4gUr0e9Edny0_Ly0TLAL2zp-NE40zDYSKiHXljFB_td7IXnPqk5-97yPNv_OoD0OktuLlFjmzUDvVtuOLKO3DNV3Ca-i40tLqciJcxiPh6IPauWjtWFWymPqM_W23O2Xu1bmqmatZyFpPQSbsNzvpH49jIWt-yZohkGVWAsLNq3aDHYdNV8wV7-P3z16QqWUvKiXPse7A8PVkcj8PtlgqhoZlQmHBTYPyxRuXE0ZmrFI1YCDTSXDmXxcNBEWe6MDyLMqWd5mlsuYmsQuBlbS6S-9Arq9IdAOM40aHt6WKhBI8HKMtzpVWeG8OtFi6AFztdym8tc4ZsOZJjSVqXndYDeO5V3Ympi69UbzYU8sP8tRQRf5mL40QuAjjcjYXcmlotEaLgGyAMygJ42t1GI6E_H6p01YZkEgSuGR4DiP0Y_uOR5OjVbNKdPfifRk_g-ngxm8rpZP72Idyg623h4CH0mouNe4RgptGPt5_rH43b7FM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB5BIxAXVF7CpcAiIThZdexdx3tMH6FpmwhBUyouq30ZoqZ2VTtSe-tP4Df2lzC7TtzmhMTFku3ZlT3rmflmPfstwEcmpVYmtWFuuiykeWJDRbUMEburjKcqsX7CbTRO9yf04JSd3lvF3_BDtBNuzjK8v3YGfmHyrTvSUGnOp640K_Uw_CF0EGpQTL86_ZPJz8ndPEsXnbNn40TbTMNewqIld2MUb612shKbOk7NVyvA8z589fFnsA5PF8CR9JuRfgYPbPEcHvkCTl29gNotLne8yxhDfDkQ-VbOLClzMpK_0J1N5-fku5zVFZEVaSiLndBeswvO7Lq2pG-Mb1kRBLLEFYCQk3JWo8MhR9P6N_Zwe_NnWBak4eTEFPslTAZ7xzv74WJHhVC7RChMqM4x_BgtuaPo5DJFG2YMbZRLa7O4183jTOWaZlEmlVU0jQ3VkZGIu4zhLHkFa0VZ2NdAKOY5bne6mElG4y7KUi6V5FxrahSzAXxe6lJcNMQZoqFIjoXTumi1HsAnr-pWTF6euXKzHhM_xl8Ei-g2ZzuJOA5gczkWYmFplUCEgm-AKCgL4EN7G23E_fiQhS3nTiZB3JrhMYDYj-E_Hkn0d0fD9mzjfxq9h8dfdwfiaDg-fANP3OWmbHAT1urLuX2LUKZW7xZf618hyut8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Counterintuitive+Role+of+Magnesium+Salts+as+Effective+Electrolyte+Additives+for+High+Voltage+Lithium-Ion+Batteries&rft.jtitle=Advanced+materials+interfaces&rft.au=Wagner%2C+Ralf&rft.au=Streipert%2C+Benjamin&rft.au=Kraft%2C+Vadim&rft.au=Reyes+Jim%C3%A9nez%2C+Antonia&rft.date=2016-08-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=2196-7350&rft.eissn=2196-7350&rft.volume=3&rft.issue=15&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadmi.201600096&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_504B95C3_T
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2196-7350&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2196-7350&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2196-7350&client=summon