Reliability of Absolute and Relative Predictions of Population Persistence Based on Time Series

Conventional population viability analysis (PVA) is often impractical because data are scarce for many threatened species. For this reason, simple count-based models are being advocated. The simplest of these models requires nothing more than a time series of abundance estimates, from which variance...

Full description

Saved in:
Bibliographic Details
Published inConservation biology Vol. 18; no. 5; pp. 1224 - 1232
Main Authors LOTTS, KELLY C., WAITE, THOMAS A., VUCETICH, JOHN A.
Format Journal Article
LanguageEnglish
Published 350 Main Street , Malden , MA 02148 , USA , and 9600 Garsington Road , Oxford OX4 2DQ , UK Blackwell Publishing Inc 01.10.2004
Blackwell Science
Blackwell
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Conventional population viability analysis (PVA) is often impractical because data are scarce for many threatened species. For this reason, simple count-based models are being advocated. The simplest of these models requires nothing more than a time series of abundance estimates, from which variance and autocorrelation in growth rate are estimated and predictions of population persistence are generated. What remains unclear, however, is how many years of data are needed to generate reliable estimates of these parameters and hence reliable predictions of persistence. By analyzing published and simulated time series, we show that several decades of data are needed. Predictions based on short time series were very unreliable mainly because limited data yielded biased, unreliable estimates of variance in growth rate, especially when growth rate was strongly autocorrelated. More optimistically, our results suggest that count-based PVA is sometimes useful for relative risk assessment (i.e., for ranking populations by extinction risk), even when time series are only a decade long. However, some conditions consistently lead to backward rankings. We explored the limited conditions under which simple count-based PVA may be useful for relative risk assessment.
AbstractList Conventional population viability analysis (PVA) is often impractical because data are scarce for many threatened species. For this reason, simple count-based models are being advocated. The simplest of these models requires nothing more than a time series of abundance estimates, from which variance and autocorrelation in growth rate are estimated and predictions of population persistence are generated. What remains unclear, however, is how many years of data are needed to generate reliable estimates of these parameters and hence reliable predictions of persistence. By analyzing published and simulated time series, we show that several decades of data are needed. Predictions based on short time series were very unreliable mainly because limited data yielded biased, unreliable estimates of variance in growth rate, especially when growth rate was strongly autocorrelated. More optimistically, our results suggest that count-based PVA is sometimes useful for relative risk assessment (i.e., for ranking populations by extinction risk), even when time series are only a decade long. However, some conditions consistently lead to backward rankings. We explored the limited conditions under which simple count-based PVA may be useful for relative risk assessment.
Conventional population viability analysis (PVA) is often impractical because data are scarce for many threatened species. For this reason, simple count‐based models are being advocated. The simplest of these models requires nothing more than a time series of abundance estimates, from which variance and autocorrelation in growth rate are estimated and predictions of population persistence are generated. What remains unclear, however, is how many years of data are needed to generate reliable estimates of these parameters and hence reliable predictions of persistence. By analyzing published and simulated time series, we show that several decades of data are needed. Predictions based on short time series were very unreliable mainly because limited data yielded biased, unreliable estimates of variance in growth rate, especially when growth rate was strongly autocorrelated. More optimistically, our results suggest that count‐based PVA is sometimes useful for relative risk assessment (i.e., for ranking populations by extinction risk), even when time series are only a decade long. However, some conditions consistently lead to backward rankings. We explored the limited conditions under which simple count‐based PVA may be useful for relative risk assessment. Resumen:  El análisis de viabilidad poblacional (AVP) a menudo es impráctico porque los datos para muchas especies amenazadas son escasos. Por esta razón, los modelos simples basados en conteos están siendo apoyados. El más simple de estos modelos requiere de nada más que una serie de tiempo de estimaciones de abundancia, a partir de las cual se estiman la varianza y autocorrelación de la tasa de crecimiento y se generan predicciones de la persistencia de la población. Sin embargo, aun no esta claro cuantos años de datos son necesarios para generar estimaciones confiables de estos parámetros y por tanto predicciones confiables de la persistencia. Analizando series de tiempo publicadas y simuladas, mostramos que se requieren datos de varias décadas. Predicciones basadas en series de tiempo cortas fueron muy poco confiables principalmente porque los datos limitados produjeron estimaciones sesgadas, poco confiables de la varianza de la tasa de crecimiento, especialmente cuando la tasa de crecimiento estaba fuertemente autocorrelacionada. Más optimistamente, nuestros resultados sugieren que el AVP basado en conteos a veces es útil para la evaluación de riesgo relativo (i.e. para clasificar poblaciones por riesgo de extinción), aun cuando la serie de tiempo sólo es de una década. Sin embargo, algunas condiciones conducen consistentemente a clasificaciones regresivas. Exploramos las condiciones limitadas bajos las que los AVP basados en conteos pueden ser útiles para la evaluación de riesgo relativo.
:  Conventional population viability analysis (PVA) is often impractical because data are scarce for many threatened species. For this reason, simple count‐based models are being advocated. The simplest of these models requires nothing more than a time series of abundance estimates, from which variance and autocorrelation in growth rate are estimated and predictions of population persistence are generated. What remains unclear, however, is how many years of data are needed to generate reliable estimates of these parameters and hence reliable predictions of persistence. By analyzing published and simulated time series, we show that several decades of data are needed. Predictions based on short time series were very unreliable mainly because limited data yielded biased, unreliable estimates of variance in growth rate, especially when growth rate was strongly autocorrelated. More optimistically, our results suggest that count‐based PVA is sometimes useful for relative risk assessment (i.e., for ranking populations by extinction risk), even when time series are only a decade long. However, some conditions consistently lead to backward rankings. We explored the limited conditions under which simple count‐based PVA may be useful for relative risk assessment. Resumen:  El análisis de viabilidad poblacional (AVP) a menudo es impráctico porque los datos para muchas especies amenazadas son escasos. Por esta razón, los modelos simples basados en conteos están siendo apoyados. El más simple de estos modelos requiere de nada más que una serie de tiempo de estimaciones de abundancia, a partir de las cual se estiman la varianza y autocorrelación de la tasa de crecimiento y se generan predicciones de la persistencia de la población. Sin embargo, aun no esta claro cuantos años de datos son necesarios para generar estimaciones confiables de estos parámetros y por tanto predicciones confiables de la persistencia. Analizando series de tiempo publicadas y simuladas, mostramos que se requieren datos de varias décadas. Predicciones basadas en series de tiempo cortas fueron muy poco confiables principalmente porque los datos limitados produjeron estimaciones sesgadas, poco confiables de la varianza de la tasa de crecimiento, especialmente cuando la tasa de crecimiento estaba fuertemente autocorrelacionada. Más optimistamente, nuestros resultados sugieren que el AVP basado en conteos a veces es útil para la evaluación de riesgo relativo (i.e. para clasificar poblaciones por riesgo de extinción), aun cuando la serie de tiempo sólo es de una década. Sin embargo, algunas condiciones conducen consistentemente a clasificaciones regresivas. Exploramos las condiciones limitadas bajos las que los AVP basados en conteos pueden ser útiles para la evaluación de riesgo relativo.
Author VUCETICH, JOHN A.
WAITE, THOMAS A.
LOTTS, KELLY C.
Author_xml – sequence: 1
  givenname: KELLY C.
  surname: LOTTS
  fullname: LOTTS, KELLY C.
  organization: Department of Evolution, Ecology, and Organismal Biology, Ohio State University, 300 Aronoff Laboratory,318 W. 12th Avenue, Columbus, OH 43210, U.S.A
– sequence: 2
  givenname: THOMAS A.
  surname: WAITE
  fullname: WAITE, THOMAS A.
  email: waite.1@osu.edu
  organization: Department of Evolution, Ecology, and Organismal Biology, Ohio State University, 300 Aronoff Laboratory,318 W. 12th Avenue, Columbus, OH 43210, U.S.A
– sequence: 3
  givenname: JOHN A.
  surname: VUCETICH
  fullname: VUCETICH, JOHN A.
  organization: School of Forest Resources and Environmental Sciences, Michigan Technological University, Houghton, MI 49931, U.S.A
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16183187$$DView record in Pascal Francis
BookMark eNqNkU9P2zAYh60JJErhG3DwZcdk_hPHzmGHUo2OgSCCIiQuluO8kdylSWWHrf32c8jUXeeLrff5Pe_h53N00vUdIIQpSWk8XzYpFYwnVPIiZYRkKSFMiXT_Cc2O4ATNiFIqUapgZ-g8hA0hpBA0myH9BK0zlWvdcMB9gxdV6Nv3AbDpahyZGdwvwKWH2tnB9V0YQ2W_ex9J3-ESfHBhgM4CvjYBahyHa7cF_AzeQbhAp41pA1z-vefo5ebbevk9uX9c3S4X94nNCiGSBsAWAmSeG0ttBpVhNStyRpSs6oYrWiuoKmqYkqThjZSEUakyxYDkvBaCz5Ga9lrfh-Ch0TvvtsYfNCV6LEpv9NiHHvvQY1H6oyi9j-rnSd2ZYE3beNNZF_75OVWcKhlzX6fcb9fC4b_36-Xj9W18Rf9q8jdh6P3R5yJ-S0EiTiY81rk_YuN_6lxyKfTrw0qv70pWvv140pz_AXLFluU
CODEN CBIOEF
CitedBy_id crossref_primary_10_1111_j_1365_2656_2006_01197_x
crossref_primary_10_1007_s10393_007_0112_6
crossref_primary_10_1111_j_1756_1051_2008_00159_x
crossref_primary_10_1016_j_biocon_2011_10_022
crossref_primary_10_1111_acv_12299
crossref_primary_10_1111_j_0107_055X_2008_00159_x
crossref_primary_10_1016_j_biocon_2016_01_029
crossref_primary_10_1577_T09_133_1
crossref_primary_10_2307_40166820
crossref_primary_10_1016_j_baae_2008_10_007
crossref_primary_10_1016_j_ecolind_2018_05_083
crossref_primary_10_1111_j_2007_0906_7590_05134_x
crossref_primary_10_7717_peerj_549
crossref_primary_10_2983_035_030_0330
crossref_primary_10_1098_rspb_2014_1648
crossref_primary_10_1007_s10841_011_9388_5
crossref_primary_10_1007_s10144_006_0003_7
crossref_primary_10_1016_j_biocon_2007_12_010
Cites_doi 10.2307/1943004
10.1016/S0006-3207(99)00001-4
10.1111/j.1523-1739.1991.tb00119.x
10.1046/j.1523-1739.2002.00553.x
10.1098/rspb.2001.1939
10.1046/j.1523-1739.2003.01570.x
10.1046/j.1523-1739.2002.01426.x
10.1038/35006050
10.1890/0012-9658(1999)080[0298:IIMTEA]2.0.CO;2
10.1046/j.1523-1739.1996.10061528.x
10.1086/286131
10.1046/j.1523-1739.1998.97328.x
10.1016/S0022-5193(05)80547-8
10.1073/pnas.081055898
10.1086/303262
10.1046/j.1523-1739.1995.09030551.x
10.1016/S0169-5347(01)02137-1
10.1890/0012-9658(2000)081[2040:WIIMTE]2.0.CO;2
10.1046/j.1523-1739.2000.98502.x
10.1890/1051-0761(2002)012[1163:DLHTAT]2.0.CO;2
10.1046/j.1523-1739.1994.08010124.x
10.1046/j.1523-1739.1995.09010214.x
10.1007/BF01237765
10.1016/S0006-3207(99)00194-9
10.1146/annurev.es.23.110192.002405
10.1006/jtbi.2000.2019
10.2307/3802534
10.1023/A:1017208513864
10.1086/286188
10.1111/j.1523-1739.1991.tb00139.x
10.1111/j.1523-1739.2001.99380.x
10.1890/1051-0761(1997)007[0107:PPTEMA]2.0.CO;2
10.1139/f85-132
10.1098/rspb.2000.1047
10.1023/A:1008808617633
10.1046/j.1523-1739.1999.98277.x
10.1046/j.1523-1739.2002.99419.x
10.1046/j.1523-1739.1995.09010134.x
10.1890/1051-0761(2002)012[0708:PVAIES]2.0.CO;2
ContentType Journal Article
Copyright Copyright 2004 Society for Conservation Biology
2004 INIST-CNRS
Copyright_xml – notice: Copyright 2004 Society for Conservation Biology
– notice: 2004 INIST-CNRS
DBID BSCLL
IQODW
AAYXX
CITATION
DOI 10.1111/j.1523-1739.2004.00285.x
DatabaseName Istex
Pascal-Francis
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Biology
Ecology
EISSN 1523-1739
EndPage 1232
ExternalDocumentID 10_1111_j_1523_1739_2004_00285_x
16183187
COBI285
3588990
ark_67375_WNG_TKP2PZJR_3
Genre article
GroupedDBID ---
-DZ
.-4
.3N
.GA
.Y3
05W
0R~
10A
1OC
29F
31~
33P
3SF
4.4
42X
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHKG
AAISJ
AAJUZ
AAKGQ
AANLZ
AAONW
AASGY
AAUTI
AAXRX
AAZKR
ABBHK
ABCQN
ABCUV
ABCVL
ABEFU
ABEML
ABHUG
ABJNI
ABLJU
ABPLY
ABPPZ
ABPTK
ABPVW
ABTLG
ABWRO
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACNCT
ACPOU
ACPRK
ACPVT
ACSCC
ACSTJ
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADULT
ADXAS
ADZLD
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AESBF
AEUPB
AEUQT
AEUYR
AFAZZ
AFBPY
AFEBI
AFFDN
AFFPM
AFGKR
AFPWT
AFRAH
AFVGU
AFZJQ
AGJLS
AGUYK
AHBTC
AI.
AIAGR
AIRJO
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ANHSF
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
C45
CAG
CBGCD
COF
CS3
CUYZI
CWIXF
D-E
D-F
D0L
DCZOG
DEVKO
DOOOF
DPXWK
DR2
DRFUL
DRSTM
DU5
DWIUU
EBS
ECGQY
EJD
EQZMY
ESX
F00
F01
F04
F5P
FEDTE
G-S
G.N
GODZA
GTFYD
H.T
H.X
HF~
HGD
HQ2
HTVGU
HVGLF
HZI
HZ~
IHE
IX1
J0M
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSODD
JST
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LMP
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NEJ
NF~
O66
O9-
OES
OVD
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QN7
R.K
ROL
RSU
RX1
SA0
SUPJJ
TEORI
TN5
UB1
UKR
UQL
V8K
VH1
VOH
W8V
W99
WBKPD
WHG
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XIH
XSW
YFH
YUY
YV5
YZZ
ZCA
ZCG
ZO4
ZZTAW
~02
~IA
~KM
~WT
ABXSQ
AQVQM
-
02
08R
0R
31
3N
4
AAPBV
ABFLS
DZ
GA
HF
HZ
IA
IPNFZ
KM
NF
P4A
PQEST
RIG
UMP
WT
Y3
IQODW
1OB
AAHBH
AAYXX
ADACV
ADUKH
AITYG
CITATION
HGLYW
IPSME
OIG
SAMSI
ID FETCH-LOGICAL-c4955-feec95e766ac1c4eba2d2962087bdf381d8ebb1a2870f3f7702178482e063d553
IEDL.DBID DR2
ISSN 0888-8892
IngestDate Fri Aug 23 01:57:58 EDT 2024
Sun Oct 22 16:05:52 EDT 2023
Sat Jul 09 15:03:31 EDT 2022
Fri Feb 02 07:02:52 EST 2024
Wed Jan 17 05:00:14 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Persistence
Reliability
Environmental protection
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4955-feec95e766ac1c4eba2d2962087bdf381d8ebb1a2870f3f7702178482e063d553
Notes istex:AB0567D95B5B7B0069B3F71E012240EC3CFF7BC7
ark:/67375/WNG-TKP2PZJR-3
ArticleID:COBI285
PageCount 9
ParticipantIDs crossref_primary_10_1111_j_1523_1739_2004_00285_x
pascalfrancis_primary_16183187
wiley_primary_10_1111_j_1523_1739_2004_00285_x_COBI285
jstor_primary_3588990
istex_primary_ark_67375_WNG_TKP2PZJR_3
PublicationCentury 2000
PublicationDate October 2004
PublicationDateYYYYMMDD 2004-10-01
PublicationDate_xml – month: 10
  year: 2004
  text: October 2004
PublicationDecade 2000
PublicationPlace 350 Main Street , Malden , MA 02148 , USA , and 9600 Garsington Road , Oxford OX4 2DQ , UK
PublicationPlace_xml – name: 350 Main Street , Malden , MA 02148 , USA , and 9600 Garsington Road , Oxford OX4 2DQ , UK
– name: Malden, MA
PublicationTitle Conservation biology
PublicationYear 2004
Publisher Blackwell Publishing Inc
Blackwell Science
Blackwell
Publisher_xml – name: Blackwell Publishing Inc
– name: Blackwell Science
– name: Blackwell
References Keith, D. A., T. D. Auld, M. K. J. Ooi, and B. D. E. Mackenzie. 2000. Sensitivity analysis of decision rules in World Conservation Union (IUCN) Red List criteria using Australian plants. Biological Conservation 94 : 311-319.DOI: 10.1016/S0006-3207(99)00194-9
Morris, W. F., P. L. Bloch, B. R. Hudgens, L. C. Moyle, and J. R. Stinchcombe. 2002. Population viability analysis in endangered species recovery plans: past use and future improvements. Ecological Applications 12 : 708-712.
Taylor, B. L. 1995. The reliability of using population viability analysis for risk classification of species. Conservation Biology 9 : 551-558.
NERC Centre for Population Biology, Imperial College. 1999. The Global Population Dynamics Database. NERC Centre for Population Biology, Imperial College , London . Available from http://www.sw.ic.ac.uk/cpb/cpb/gpdd.html (accessed February 2004).
Ralls, K., D.P. De Master, and J. A. Estes. 1996. Developing a criterion for delisting the southern sea otter under the US endangered species act. Conservation Biology 10 : 1528-1537.DOI: 10.1046/j.1523-1739.1996.10061528.x
Rohlf, D. J. 1991. Six biological reasons why the endangered species act doesn't work-and what to do about it. Conservation Biology 5 : 273-282.
Morris, W. F., and D. F. Doak. 2002. Quantitative conservation biology: theory and practice of population viability analysis. Sinauer Associates, Sunderland , Massachusetts .
Fagan, W. F., E. Meir, and J. Moore. 1999. Variation thresholds for extinction and their implications for conservation strategies. The American Naturalist 154 : 510-520.DOI: 10.1086/303262
Boyce, M. S. 1992. Population viability analysis. Annual Review of Ecology and Systematics 23 : 481-506.
Dennis, B., P. L. Munholland, and J. A. Scott. 1991. Estimation of growth and extinction parameters for endangered species. Ecological Monographs 6 : 115-143.
Sæther, B. E., S. Engen, A. Islam, R. McCleery, and C. Perrins. 1998. Environmental stochasticity and extinction risk in a population of a small songbird, the great tit. The American Naturalist 151 : 441-450.
Brook, B. W., J. J. O'Grady, A. P. Chapman, M. A. Burgman, H. R. Akçakaya, and R. Frankham. 2000. Predictive accuracy of population viability analysis in conservation biology. Nature 404 : 385-387.
Burgman, M. A., D. A. Keith, F. J. Rohlf, and C. R. Todd. 1999. Probabilistic classification rules for setting conservation priorities. Biological Conservation 89 : 227-231.
Vucetich, J. A., and T. A. Waite. 1999. On the interpretation and application of mean extinction times (Volume 7, pp. 1539-1547 [Erratum]). Biodiversity and Conservation 8 : 1005.
Beissinger, S. R., and M. I. Westphal. 1998. On the use of demographic models of population viability in endangered species management. Journal of Wildlife Management 62 : 821-841.
Ludwig, D. 1999. Is it meaningful to estimate a probability of extinction Ecology 80 : 298-310.
Gerber, L. R., and D. P. DeMaster. 1999. A quantitative approach to endangered species act classification of long-lived vertebrates: application to the North Pacific humpback whale. Conservation Biology 13 : 1203-1214.DOI: 10.1046/j.1523-1739.1999.98277.x
Wilcox, C., and H. Possingham. 2002. Do life history traits affect the accuracy of diffusion approximations for mean time to extinction Ecological Applications 12 : 1163-1179.
Brook, B. W., M. A. Burgman, H. R. Akçakaya, J. J. O'Grady, and R. Frankham. 2002. Critiques of PVA ask the wrong questions: throwing the heuristic baby out with the bath water. Conservation Biology 16 : 262-263.
Moilanen, A., A. T. Smith, and I. Hanski. 1998. Long-term dynamics in a metapopulation of the American pika. The American Naturalist 152 : 530-542.DOI: 10.1086/286188
IUCN (World Conservation Union). 1994. IUCN Red List categories. IUCN Species Survival Commission , Gland , Switzerland .
Foley, P. 1994. Predicting extinction times from environmental stochasticity and carrying capacity. Conservation Biology 8 : 124-137.DOI: 10.1046/j.1523-1739.1994.08010124.x
McCarthy, M. A., S. J. Andelman, and H. P. Possingham. 2003. Reliability of relative predictions in population viability analysis. Conservation Biology 17 : 982-989.DOI: 10.1046/j.1523-1739.2003.01570.x
Vucetich, J. A., and T. A. Waite. 1998b. Number of censuses required for demographic estimation of effective population size. Conservation Biology 12 : 1023-1030.
Beissinger, S. R., and D. R. McCullough, editors. 2002. Population viability analysis. University of Chicago Press, Chicago .
Fieberg, J., and S. P. Ellner. 2000. When is it meaningful to estimate an extinction probability Ecology 81 : 2040-2047.
Allen, E. J., J. M. Harris, and L. J. S. Allen. 1992. Persistence-time models for use in viability analyses of vanishing species. Journal of Theoretical Biology 155 : 33-53.
Middleton, D. A. J., and R. M. Nisbet. 1997. Population persistence time: estimates, models, and mechanisms. Ecological Applications 7 : 107-117.
Ellner, S. P., J. Fieberg, D. Ludwig, and C. Wilcox. 2002. Precision of population viability analysis. Conservation Biology 16 : 258-261.DOI: 10.1046/j.1523-1739.2002.00553.x
Shelden, K. E. W., D. P. DeMaster, D. J. Rugh, and A. M. Olson. 2001. Developing classification criteria under the US Endangered Species Act: Bowhead whales as a case study. Conservation Biology 15 : 1300-1307.
Coulson, T., G. M. Mace, E. Hudson, and H. Possingham. 2001. The use and abuse of population viability analysis. Trends in Ecology & Evolution 16 : 219-221.
Reed, J. M., L. S. Mills, J. B. Dunning Jr., E. S. Menges, K. S. McKelvey, R. Frye, S. R. Beissinger, M. Anstett, and P. Miller. 2002. Emerging issues in population viability analysis. Conservation Biology 16 : 7-19.DOI: 10.1046/j.1523-1739.2002.99419.x
Ariño, A., and S. L. Pimm. 1995. On the nature of population extremes. Evolutionary Ecology 9 : 429-433.
Scott, J. M., T. H. Tear, and L. S. Mills. 1995. Socioeconomics and the recovery of endangered species: biological assessment in a political world. Conservation Biology 9 : 214-216.
Mace, G., N. Collar, J. Cooke, K. Gaston, J. Ginsberg, N. Leader Williams, M. Maunder, and E. J. Milner-Gulland. 1992. The development of new criteria for listing species on the IUCN Red List. Species 19 : 16-22.
Vucetich, J. A., and T. A. Waite. 1998a. On the interpretation and application of mean times to extinction. Biodiversity and Conservation 7 : 1539-1547.
Ludwig, D., and C. J. Walters. 1985. Are age-structured models appropriate for catch-effort data Canadian Journal of Fisheries and Aquatic Sciences 42 : 1066-1072.
Harcourt, A. H. 1995. Population viability estimates: theory and practice for a wild gorilla population. Conservation Biology 9 : 134-142.DOI: 10.1046/j.1523-1739.1995.09010134.x
Hakoyama, H., and Y. Iwasa. 2000. Extinction risk of a density-dependent population estimated from a time series of population size. Journal of Theoretical Biology 204 : 337-359.DOI: 10.1006/jtbi.2000.2019
Meir E., and W. F. Fagan. 2000. Will observation error and biases ruin the use of simple extinction models Conservation Biology 14 : 148-154.DOI: 10.1046/j.1523-1739.2000.98502.x
Mace, G., and R. Lande. 1991. Assessing extinction threats: towards a reevaluation of IUCN threatened species categories. Conservation Biology 5 : 148-157.
2002; 16
1995; 9
2002; 12
2000; 94
1999; 89
1992; 19
1994
2003; 17
2002
1991
1999; 8
1998; 62
1999; 80
1985; 42
1996; 10
1998; 151
1991; 6
1997; 7
1991; 5
1998; 152
1999
1994; 8
2000; 14
2000; 267
1992; 155
2000; 204
2000; 404
1998b; 12
1999; 13
1999; 154
2000; 81
2002; 269
2001; 15
2001; 16
1992; 23
1998a; 7
2001; 98
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
NERC Centre for Population Biology, Imperial College (e_1_2_7_34_1) 1999
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
Beissinger S. R. (e_1_2_7_4_1) 2002
Mace G. (e_1_2_7_27_1) 1992; 19
Belovsky G. E. (e_1_2_7_7_1) 2002
IUCN (World Conservation Union) (e_1_2_7_22_1) 1994
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
Morris W. F. (e_1_2_7_33_1) 2002
e_1_2_7_23_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_37_1
e_1_2_7_39_1
e_1_2_7_6_1
Taylor B. L. (e_1_2_7_44_1) 2002
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_29_1
Beissinger S. R. (e_1_2_7_5_1) 2002
Shaffer M. L. (e_1_2_7_41_1) 2002
e_1_2_7_30_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_38_1
References_xml – volume: 16
  start-page: 262
  year: 2002
  end-page: 263
  article-title: Critiques of PVA ask the wrong questions: throwing the heuristic baby out with the bath water
  publication-title: Conservation Biology
– volume: 154
  start-page: 510
  year: 1999
  end-page: 520
  article-title: Variation thresholds for extinction and their implications for conservation strategies
  publication-title: The American Naturalist
– volume: 12
  start-page: 708
  year: 2002
  end-page: 712
  article-title: Population viability analysis in endangered species recovery plans: past use and future improvements
  publication-title: Ecological Applications
– volume: 10
  start-page: 1528
  year: 1996
  end-page: 1537
  article-title: Developing a criterion for delisting the southern sea otter under the US endangered species act
  publication-title: Conservation Biology
– volume: 62
  start-page: 821
  year: 1998
  end-page: 841
  article-title: On the use of demographic models of population viability in endangered species management
  publication-title: Journal of Wildlife Management
– volume: 12
  start-page: 1163
  year: 2002
  end-page: 1179
  article-title: Do life history traits affect the accuracy of diffusion approximations for mean time to extinction
  publication-title: Ecological Applications
– volume: 12
  start-page: 1023
  year: 1998b
  end-page: 1030
  article-title: Number of censuses required for demographic estimation of effective population size
  publication-title: Conservation Biology
– volume: 15
  start-page: 1300
  year: 2001
  end-page: 1307
  article-title: Developing classification criteria under the US Endangered Species Act: Bowhead whales as a case study
  publication-title: Conservation Biology
– volume: 267
  start-page: 621
  year: 2000
  end-page: 626
– volume: 5
  start-page: 148
  year: 1991
  end-page: 157
  article-title: Assessing extinction threats: towards a reevaluation of IUCN threatened species categories
  publication-title: Conservation Biology
– start-page: 239
  year: 2002
  end-page: 252
– start-page: 123
  year: 2002
  end-page: 142
– volume: 269
  start-page: 563
  year: 2002
  end-page: 569
– volume: 94
  start-page: 311
  year: 2000
  end-page: 319
  article-title: Sensitivity analysis of decision rules in World Conservation Union (IUCN) Red List criteria using Australian plants
  publication-title: Biological Conservation
– volume: 42
  start-page: 1066
  year: 1985
  end-page: 1072
  article-title: Are age‐structured models appropriate for catch‐effort data
  publication-title: Canadian Journal of Fisheries and Aquatic Sciences
– volume: 5
  start-page: 273
  year: 1991
  end-page: 282
  article-title: Six biological reasons why the endangered species act doesn't work—and what to do about it
  publication-title: Conservation Biology
– volume: 152
  start-page: 530
  year: 1998
  end-page: 542
  article-title: Long‐term dynamics in a metapopulation of the American pika
  publication-title: The American Naturalist
– year: 1994
– volume: 17
  start-page: 982
  year: 2003
  end-page: 989
  article-title: Reliability of relative predictions in population viability analysis
  publication-title: Conservation Biology
– volume: 23
  start-page: 481
  year: 1992
  end-page: 506
  article-title: Population viability analysis
  publication-title: Annual Review of Ecology and Systematics
– volume: 98
  start-page: 5072
  year: 2001
  end-page: 5077
– volume: 89
  start-page: 227
  year: 1999
  end-page: 231
  article-title: Probabilistic classification rules for setting conservation priorities
  publication-title: Biological Conservation
– volume: 8
  start-page: 1005
  year: 1999
  article-title: On the interpretation and application of mean extinction times (Volume 7, pp. 1539–1547 [Erratum])
  publication-title: Biodiversity and Conservation
– volume: 8
  start-page: 124
  year: 1994
  end-page: 137
  article-title: Predicting extinction times from environmental stochasticity and carrying capacity
  publication-title: Conservation Biology
– volume: 9
  start-page: 551
  year: 1995
  end-page: 558
  article-title: The reliability of using population viability analysis for risk classification of species
  publication-title: Conservation Biology
– volume: 9
  start-page: 134
  year: 1995
  end-page: 142
  article-title: Population viability estimates: theory and practice for a wild gorilla population
  publication-title: Conservation Biology
– year: 2002
– volume: 13
  start-page: 1203
  year: 1999
  end-page: 1214
  article-title: A quantitative approach to endangered species act classification of long‐lived vertebrates: application to the North Pacific humpback whale
  publication-title: Conservation Biology
– volume: 80
  start-page: 298
  year: 1999
  end-page: 310
  article-title: Is it meaningful to estimate a probability of extinction
  publication-title: Ecology
– volume: 81
  start-page: 2040
  year: 2000
  end-page: 2047
  article-title: When is it meaningful to estimate an extinction probability
  publication-title: Ecology
– volume: 204
  start-page: 337
  year: 2000
  end-page: 359
  article-title: Extinction risk of a density‐dependent population estimated from a time series of population size
  publication-title: Journal of Theoretical Biology
– volume: 9
  start-page: 214
  year: 1995
  end-page: 216
  article-title: Socioeconomics and the recovery of endangered species: biological assessment in a political world
  publication-title: Conservation Biology
– start-page: 257
  year: 2002
  end-page: 283
– start-page: 5
  year: 2002
  end-page: 17
– volume: 7
  start-page: 107
  year: 1997
  end-page: 117
  article-title: Population persistence time: estimates, models, and mechanisms
  publication-title: Ecological Applications
– volume: 9
  start-page: 429
  year: 1995
  end-page: 433
  article-title: On the nature of population extremes
  publication-title: Evolutionary Ecology
– volume: 6
  start-page: 115
  year: 1991
  end-page: 143
  article-title: Estimation of growth and extinction parameters for endangered species
  publication-title: Ecological Monographs
– volume: 14
  start-page: 148
  year: 2000
  end-page: 154
  article-title: Will observation error and biases ruin the use of simple extinction models
  publication-title: Conservation Biology
– volume: 16
  start-page: 258
  year: 2002
  end-page: 261
  article-title: Precision of population viability analysis
  publication-title: Conservation Biology
– volume: 155
  start-page: 33
  year: 1992
  end-page: 53
  article-title: Persistence‐time models for use in viability analyses of vanishing species
  publication-title: Journal of Theoretical Biology
– volume: 16
  start-page: 219
  year: 2001
  end-page: 221
  article-title: The use and abuse of population viability analysis
  publication-title: Trends in Ecology & Evolution
– volume: 16
  start-page: 7
  year: 2002
  end-page: 19
  article-title: Emerging issues in population viability analysis
  publication-title: Conservation Biology
– year: 1991
– volume: 151
  start-page: 441
  year: 1998
  end-page: 450
  article-title: Environmental stochasticity and extinction risk in a population of a small songbird, the great tit
  publication-title: The American Naturalist
– volume: 404
  start-page: 385
  year: 2000
  end-page: 387
  article-title: Predictive accuracy of population viability analysis in conservation biology
  publication-title: Nature
– volume: 19
  start-page: 16
  year: 1992
  end-page: 22
  article-title: The development of new criteria for listing species on the IUCN Red List
  publication-title: Species
– year: 1999
– volume: 7
  start-page: 1539
  year: 1998a
  end-page: 1547
  article-title: On the interpretation and application of mean times to extinction
  publication-title: Biodiversity and Conservation
– ident: e_1_2_7_13_1
  doi: 10.2307/1943004
– ident: e_1_2_7_11_1
  doi: 10.1016/S0006-3207(99)00001-4
– ident: e_1_2_7_26_1
  doi: 10.1111/j.1523-1739.1991.tb00119.x
– ident: e_1_2_7_14_1
  doi: 10.1046/j.1523-1739.2002.00553.x
– ident: e_1_2_7_45_1
  doi: 10.1098/rspb.2001.1939
– ident: e_1_2_7_28_1
  doi: 10.1046/j.1523-1739.2003.01570.x
– ident: e_1_2_7_10_1
  doi: 10.1046/j.1523-1739.2002.01426.x
– ident: e_1_2_7_9_1
  doi: 10.1038/35006050
– ident: e_1_2_7_24_1
  doi: 10.1890/0012-9658(1999)080[0298:IIMTEA]2.0.CO;2
– start-page: 123
  volume-title: Population viability analysis
  year: 2002
  ident: e_1_2_7_41_1
  contributor:
    fullname: Shaffer M. L.
– ident: e_1_2_7_35_1
  doi: 10.1046/j.1523-1739.1996.10061528.x
– ident: e_1_2_7_38_1
  doi: 10.1086/286131
– ident: e_1_2_7_48_1
  doi: 10.1046/j.1523-1739.1998.97328.x
– ident: e_1_2_7_2_1
  doi: 10.1016/S0022-5193(05)80547-8
– ident: e_1_2_7_21_1
  doi: 10.1073/pnas.081055898
– volume-title: Population viability analysis
  year: 2002
  ident: e_1_2_7_5_1
  contributor:
    fullname: Beissinger S. R.
– start-page: 257
  volume-title: Population viability analysis
  year: 2002
  ident: e_1_2_7_7_1
  contributor:
    fullname: Belovsky G. E.
– ident: e_1_2_7_46_1
– ident: e_1_2_7_15_1
  doi: 10.1086/303262
– ident: e_1_2_7_43_1
  doi: 10.1046/j.1523-1739.1995.09030551.x
– ident: e_1_2_7_12_1
  doi: 10.1016/S0169-5347(01)02137-1
– ident: e_1_2_7_16_1
  doi: 10.1890/0012-9658(2000)081[2040:WIIMTE]2.0.CO;2
– ident: e_1_2_7_29_1
  doi: 10.1046/j.1523-1739.2000.98502.x
– ident: e_1_2_7_50_1
  doi: 10.1890/1051-0761(2002)012[1163:DLHTAT]2.0.CO;2
– ident: e_1_2_7_17_1
  doi: 10.1046/j.1523-1739.1994.08010124.x
– ident: e_1_2_7_40_1
  doi: 10.1046/j.1523-1739.1995.09010214.x
– volume-title: The Global Population Dynamics Database
  year: 1999
  ident: e_1_2_7_34_1
  contributor:
    fullname: NERC Centre for Population Biology, Imperial College
– ident: e_1_2_7_3_1
  doi: 10.1007/BF01237765
– ident: e_1_2_7_23_1
  doi: 10.1016/S0006-3207(99)00194-9
– volume: 19
  start-page: 16
  year: 1992
  ident: e_1_2_7_27_1
  article-title: The development of new criteria for listing species on the IUCN Red List
  publication-title: Species
  contributor:
    fullname: Mace G.
– volume-title: IUCN Red List categories
  year: 1994
  ident: e_1_2_7_22_1
  contributor:
    fullname: IUCN (World Conservation Union)
– ident: e_1_2_7_8_1
  doi: 10.1146/annurev.es.23.110192.002405
– ident: e_1_2_7_19_1
  doi: 10.1006/jtbi.2000.2019
– ident: e_1_2_7_6_1
  doi: 10.2307/3802534
– start-page: 239
  volume-title: Population viability analysis
  year: 2002
  ident: e_1_2_7_44_1
  contributor:
    fullname: Taylor B. L.
– ident: e_1_2_7_49_1
  doi: 10.1023/A:1017208513864
– ident: e_1_2_7_31_1
  doi: 10.1086/286188
– ident: e_1_2_7_37_1
  doi: 10.1111/j.1523-1739.1991.tb00139.x
– start-page: 5
  volume-title: Population viability analysis
  year: 2002
  ident: e_1_2_7_4_1
  contributor:
    fullname: Beissinger S. R.
– ident: e_1_2_7_42_1
  doi: 10.1111/j.1523-1739.2001.99380.x
– ident: e_1_2_7_30_1
  doi: 10.1890/1051-0761(1997)007[0107:PPTEMA]2.0.CO;2
– ident: e_1_2_7_25_1
  doi: 10.1139/f85-132
– ident: e_1_2_7_39_1
  doi: 10.1098/rspb.2000.1047
– ident: e_1_2_7_47_1
  doi: 10.1023/A:1008808617633
– ident: e_1_2_7_18_1
  doi: 10.1046/j.1523-1739.1999.98277.x
– ident: e_1_2_7_36_1
  doi: 10.1046/j.1523-1739.2002.99419.x
– ident: e_1_2_7_20_1
  doi: 10.1046/j.1523-1739.1995.09010134.x
– volume-title: Quantitative conservation biology: theory and practice of population viability analysis
  year: 2002
  ident: e_1_2_7_33_1
  contributor:
    fullname: Morris W. F.
– ident: e_1_2_7_32_1
  doi: 10.1890/1051-0761(2002)012[0708:PVAIES]2.0.CO;2
SSID ssj0009514
Score 1.9054042
Snippet Conventional population viability analysis (PVA) is often impractical because data are scarce for many threatened species. For this reason, simple count-based...
:  Conventional population viability analysis (PVA) is often impractical because data are scarce for many threatened species. For this reason, simple...
Conventional population viability analysis (PVA) is often impractical because data are scarce for many threatened species. For this reason, simple count‐based...
SourceID crossref
pascalfrancis
wiley
jstor
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 1224
SubjectTerms Animal, plant and microbial ecology
análisis de viabilidad poblacional
Applied ecology
aproximación difusión
Autocorrelation
Biological and medical sciences
Conservation biology
Conservation, protection and management of environment and wildlife
diffusion approximation
endangered species
especies en peligro
evaluación de riesgo
extinción
extinction
Fundamental and applied biological sciences. Psychology
Parks, reserves, wildlife conservation. Endangered species: population survey and restocking
Population estimates
Population growth rate
population viability analysis
Risk analysis
risk assessment
series de tiempo
Species extinction
Statistical variance
Time series
Time series forecasting
Viability
Title Reliability of Absolute and Relative Predictions of Population Persistence Based on Time Series
URI https://api.istex.fr/ark:/67375/WNG-TKP2PZJR-3/fulltext.pdf
https://www.jstor.org/stable/3588990
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1523-1739.2004.00285.x
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dSxwxEB_EUuhLWz9Kt36QB-lbztuPbLKPKurVUnuIovQlJJsJiHCWu7N4_vVmEu-8Ex9K6VtYkt3NZJLMJL_5DcBOKY3NsRXcSa945eqWG-Eb7qwVZdv1ykkKFP5xWvcuqpMrcbUEvWksTOKHmB240cyI6zVNcGNHu3NInOBC8VymaJMqAiJFh6xJYtUj6-ismGPfTSTfwd3jSjUvID2vvmhhn3pDIr-fQhYJP2lGQYQ-5b5YtGvjxnT0Aa6nXUp4lJvO3dh22ocXbI__o88f4f2T9cr2krqtwBIOVuFtymc5CaXDyIE9WQNNUOdEAT5ht57t2ajjyMzAsQTA-4OsP6Rroqj5VKk_SybGCJhP0ggqyfbDRutYeEjhKoyO83C0DhdHh-cHPf6Uy4G3wQUT3CO2jUBZ16bN2wqtKVzR1EVXSet8MBucQmtzQ_euvvRSkq-kKlVgsKGcEOUnWB7cDvAzsLDl5hWiUTEQSzojZY6y9AYrU5imySCfjpz-nSg79JyrE0SoSYSUgLPSUYT6PoOvcYhnDczwhiBvUujL02N9_r1f9H-dnOkyg_WoA7OKpQgK1XQz2F7Qiecv12HRzJXMoI4j-9e_pA9-7n8LpS__2nAD3iVWSkIebsLyeHiHW8GCGtvtODseAfJUDEA
link.rule.ids 315,786,790,1382,27957,27958
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reliability+of+Absolute+and+Relative+Predictions+of+Population+Persistence+Based+on+Time+Series&rft.jtitle=Conservation+biology&rft.au=LOTTS%2C+KELLY+C.&rft.au=WAITE%2C+THOMAS+A.&rft.au=VUCETICH%2C+JOHN+A.&rft.date=2004-10-01&rft.issn=0888-8892&rft.eissn=1523-1739&rft.volume=18&rft.issue=5&rft.spage=1224&rft.epage=1232&rft_id=info:doi/10.1111%2Fj.1523-1739.2004.00285.x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_j_1523_1739_2004_00285_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-8892&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-8892&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-8892&client=summon