Effects of biomaterial surface chemistry on the adhesion and biofilm formation of Staphylococcus epidermidis in vitro
The formation of biofilm, a structured community of bacteria enclosed in slime, is a significant virulence factor in medical‐device‐centered infection. The development of cardiovascular device infection can be separated into two phases: initial bacterial adhesion and aggregation, followed by prolife...
Saved in:
Published in | Journal of biomedical materials research. Part A Vol. 78A; no. 4; pp. 836 - 842 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
15.09.2006
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The formation of biofilm, a structured community of bacteria enclosed in slime, is a significant virulence factor in medical‐device‐centered infection. The development of cardiovascular device infection can be separated into two phases: initial bacterial adhesion and aggregation, followed by proliferation and production of slime. It is possible to modulate the adhesion and biofilm formation of Staphylococcus epidermidis, a commensal skin bacterium commonly found on infected medical devices, through biomaterial surface chemistry. This study examines bacterial adhesion and biofilm formation on surface‐modified polyethylene terephthalate (PET), including surfaces with varying hydrophilic, hydrophobic, and ionic character. Bacterial adhesion and biofilm formation were observed over 48 hours in phosphate‐buffered saline (PBS) and 20% pooled human serum. The hydrophilic surface (PAAm) had significantly less nonspecific adhesion of bacteria than that in the control (PET) and other surfaces, when cultured in PBS (P < 0.0001). Charged surfaces, both anionic and cationic, had increased adhesion and aggregation of bacteria in comparison with the control (PET) in the presence of serum proteins over 24 hours (P < 0.0001). Bacteria cultured in serum on the charged surfaces did not have significantly different amounts of biofilm formation compared with that of the control (PET) surface after 48 hours. This study showed that biomaterial surface chemistry characteristics impact initial adhesion and aggregation of S. epidermidis on biomaterials. © 2006 Wiley Periodicals, Inc. J Biomed Mater Res, 2006 |
---|---|
AbstractList | The formation of biofilm, a structured community of bacteria enclosed in slime, is a significant virulence factor in medical‐device‐centered infection. The development of cardiovascular device infection can be separated into two phases: initial bacterial adhesion and aggregation, followed by proliferation and production of slime. It is possible to modulate the adhesion and biofilm formation of Staphylococcus epidermidis, a commensal skin bacterium commonly found on infected medical devices, through biomaterial surface chemistry. This study examines bacterial adhesion and biofilm formation on surface‐modified polyethylene terephthalate (PET), including surfaces with varying hydrophilic, hydrophobic, and ionic character. Bacterial adhesion and biofilm formation were observed over 48 hours in phosphate‐buffered saline (PBS) and 20% pooled human serum. The hydrophilic surface (PAAm) had significantly less nonspecific adhesion of bacteria than that in the control (PET) and other surfaces, when cultured in PBS (P < 0.0001). Charged surfaces, both anionic and cationic, had increased adhesion and aggregation of bacteria in comparison with the control (PET) in the presence of serum proteins over 24 hours (P < 0.0001). Bacteria cultured in serum on the charged surfaces did not have significantly different amounts of biofilm formation compared with that of the control (PET) surface after 48 hours. This study showed that biomaterial surface chemistry characteristics impact initial adhesion and aggregation of S. epidermidis on biomaterials. © 2006 Wiley Periodicals, Inc. J Biomed Mater Res, 2006 The formation of biofilm, a structured community of bacteria enclosed in slime, is a significant virulence factor in medical-device-centered infection. The development of cardiovascular device infection can be separated into two phases: initial bacterial adhesion and aggregation, followed by proliferation and production of slime. It is possible to modulate the adhesion and biofilm formation of Staphylococcus epidermidis, a commensal skin bacterium commonly found on infected medical devices, through biomaterial surface chemistry. This study examines bacterial adhesion and biofilm formation on surface-modified polyethylene terephthalate (PET), including surfaces with varying hydrophilic, hydrophobic, and ionic character. Bacterial adhesion and biofilm formation were observed over 48 hours in phosphate-buffered saline (PBS) and 20% pooled human serum. The hydrophilic surface (PAAm) had significantly less nonspecific adhesion of bacteria than that in the control (PET) and other surfaces, when cultured in PBS (P < 0.0001). Charged surfaces, both anionic and cationic, had increased adhesion and aggregation of bacteria in comparison with the control (PET) in the presence of serum proteins over 24 hours (P < 0.0001). Bacteria cultured in serum on the charged surfaces did not have significantly different amounts of biofilm formation compared with that of the control (PET) surface after 48 hours. This study showed that biomaterial surface chemistry characteristics impact initial adhesion and aggregation of S. epidermidis on biomaterials. The formation of biofilm, a structured community of bacteria enclosed in slime, is a significant virulence factor in medical-device-centered infection. The development of cardiovascular device infection can be separated into two phases: initial bacterial adhesion and aggregation, followed by proliferation and production of slime. It is possible to modulate the adhesion and biofilm formation of Staphylococcus epidermidis, a commensal skin bacterium commonly found on infected medical devices, through biomaterial surface chemistry. This study examines bacterial adhesion and biofilm formation on surface-modified polyethylene terephthalate (PET), including surfaces with varying hydrophilic, hydrophobic, and ionic character. Bacterial adhesion and biofilm formation were observed over 48 hours in phosphate-buffered saline (PBS) and 20% pooled human serum. The hydrophilic surface (PAAm) had significantly less nonspecific adhesion of bacteria than that in the control (PET) and other surfaces, when cultured in PBS (P < 0.0001). Charged surfaces, both anionic and cationic, had increased adhesion and aggregation of bacteria in comparison with the control (PET) in the presence of serum proteins over 24 hours (P < 0.0001). Bacteria cultured in serum on the charged surfaces did not have significantly different amounts of biofilm formation compared with that of the control (PET) surface after 48 hours. This study showed that biomaterial surface chemistry characteristics impact initial adhesion and aggregation of S. epidermidis on biomaterials. Abstract The formation of biofilm, a structured community of bacteria enclosed in slime, is a significant virulence factor in medical‐device‐centered infection. The development of cardiovascular device infection can be separated into two phases: initial bacterial adhesion and aggregation, followed by proliferation and production of slime. It is possible to modulate the adhesion and biofilm formation of Staphylococcus epidermidis , a commensal skin bacterium commonly found on infected medical devices, through biomaterial surface chemistry. This study examines bacterial adhesion and biofilm formation on surface‐modified polyethylene terephthalate (PET), including surfaces with varying hydrophilic, hydrophobic, and ionic character. Bacterial adhesion and biofilm formation were observed over 48 hours in phosphate‐buffered saline (PBS) and 20% pooled human serum. The hydrophilic surface (PAAm) had significantly less nonspecific adhesion of bacteria than that in the control (PET) and other surfaces, when cultured in PBS ( P < 0.0001). Charged surfaces, both anionic and cationic, had increased adhesion and aggregation of bacteria in comparison with the control (PET) in the presence of serum proteins over 24 hours ( P < 0.0001). Bacteria cultured in serum on the charged surfaces did not have significantly different amounts of biofilm formation compared with that of the control (PET) surface after 48 hours. This study showed that biomaterial surface chemistry characteristics impact initial adhesion and aggregation of S. epidermidis on biomaterials. © 2006 Wiley Periodicals, Inc. J Biomed Mater Res, 2006 |
Author | Marchant, Roger E. Patel, Jasmine D. Anderson, James M. MacKintosh, Erin E. |
Author_xml | – sequence: 1 givenname: Erin E. surname: MacKintosh fullname: MacKintosh, Erin E. organization: Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH – sequence: 2 givenname: Jasmine D. surname: Patel fullname: Patel, Jasmine D. organization: Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH – sequence: 3 givenname: Roger E. surname: Marchant fullname: Marchant, Roger E. organization: Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH – sequence: 4 givenname: James M. surname: Anderson fullname: Anderson, James M. email: jma6@po.cwru.edu organization: Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/16817192$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtv1DAURi1URB-wYo-8YoMy2E7siZdQlYGqlEV57awb-1rjksSDnQDz7_F0BtiVlR8639G1v1NyNMYRCXnK2YIzJl7edsMCFjXTTD4gJ1xKUTVayaPdvtFVLbQ6Jqc53xZYMSkekWOuWr7kWpyQ-cJ7tFOm0dMuxAEmTAF6mufkwSK1axxCntKWxpFOa6Tg1phDOcDodgkf-oH6mEpyd1s0NxNs1ts-2mjtnClugsM0BBcyDSP9EaYUH5OHHvqMTw7rGfn05uLj-dvq6sPq3fmrq8o2WsrKC94IhoxxxdoandWNRaW5UloDQMdr6Zl1qnEeWmmt453UQnjWAbddp-oz8nzv3aT4fcY8mfIYi30PI8Y5G9VqpmX9f1BoWUbhvIAv9qBNMeeE3mxSGCBtDWdmV4cpdRgwd3UU-tlBO3cDun_s4f8LwPfAz9Dj9j6XuXz9_o-02mdKL_jrbwbSN6OW9VKaL9cr0_Ib8XW5-mya-jccbKhp |
CitedBy_id | crossref_primary_10_1016_j_jbiosc_2016_05_010 crossref_primary_10_1021_la402608z crossref_primary_10_3389_fbioe_2014_00023 crossref_primary_10_3390_pathogens3040791 crossref_primary_10_1002_jbm_a_35130 crossref_primary_10_1016_j_actbio_2017_04_015 crossref_primary_10_1128_AEM_01932_10 crossref_primary_10_1002_jbm_a_32932 crossref_primary_10_1002_jbm_a_31648 crossref_primary_10_1016_j_colsurfb_2009_10_021 crossref_primary_10_1016_j_ejpb_2007_11_021 crossref_primary_10_1016_j_joen_2007_07_035 crossref_primary_10_1002_jbm_a_34036 crossref_primary_10_1177_039139881003300910 crossref_primary_10_3390_coatings13030627 crossref_primary_10_1039_C6TB03280J crossref_primary_10_1016_j_mimet_2022_106644 crossref_primary_10_4012_dmj_2019_178 crossref_primary_10_1002_jbm_a_36276 crossref_primary_10_3389_fcell_2022_995508 crossref_primary_10_1002_jbm_a_37560 crossref_primary_10_1002_jbm_b_34864 crossref_primary_10_1016_j_engreg_2020_07_003 crossref_primary_10_1016_j_msec_2013_01_023 crossref_primary_10_1088_0022_3727_49_30_304001 crossref_primary_10_7124_bc_0000BA crossref_primary_10_1021_acs_langmuir_6b04679 crossref_primary_10_1016_j_bioadv_2023_213281 crossref_primary_10_1088_1748_6041_7_4_045003 crossref_primary_10_1021_bm900203w crossref_primary_10_1039_C8AN00234G crossref_primary_10_1016_j_colsurfb_2018_05_038 crossref_primary_10_1016_j_surfcoat_2018_06_015 crossref_primary_10_1016_j_biomaterials_2007_10_008 crossref_primary_10_30699_ijmm_16_2_155 crossref_primary_10_1080_08927010601143524 crossref_primary_10_1016_j_actbio_2012_07_038 crossref_primary_10_1016_j_actbio_2010_03_011 crossref_primary_10_1016_j_bone_2012_01_007 crossref_primary_10_1038_pj_2012_130 crossref_primary_10_1016_j_colsurfb_2013_09_012 crossref_primary_10_1002_jor_22053 crossref_primary_10_1007_s13318_020_00622_8 crossref_primary_10_1007_s12602_022_09908_6 crossref_primary_10_1016_j_cden_2019_02_010 crossref_primary_10_1016_j_ijbiomac_2022_04_174 crossref_primary_10_3390_met9111145 crossref_primary_10_1080_00914037_2015_1030657 crossref_primary_10_1080_00914037_2017_1320664 crossref_primary_10_1002_jbm_a_31788 crossref_primary_10_1016_j_biomaterials_2007_08_003 crossref_primary_10_1016_j_ceramint_2020_07_041 crossref_primary_10_1021_bm701430y crossref_primary_10_1590_S1516_8913201500356 crossref_primary_10_1002_jbm_a_31943 crossref_primary_10_5796_denkikagaku_21_FE0032 crossref_primary_10_3390_coatings11070798 crossref_primary_10_1002_ppap_201100192 crossref_primary_10_1016_j_colsurfb_2012_07_012 crossref_primary_10_1016_j_anaerobe_2019_03_005 crossref_primary_10_1002_jbm_a_31103 crossref_primary_10_1016_j_mimet_2016_05_009 crossref_primary_10_2217_nnm_13_63 crossref_primary_10_1016_j_msec_2013_03_032 crossref_primary_10_1021_la802442d crossref_primary_10_3390_microorganisms9061124 crossref_primary_10_4236_jbnb_2012_324050 crossref_primary_10_5402_2011_290851 crossref_primary_10_1002_jor_21432 crossref_primary_10_1007_s00264_018_4237_8 crossref_primary_10_3390_coatings9110705 crossref_primary_10_3390_met6040076 crossref_primary_10_1039_C4BM00034J crossref_primary_10_1021_acsbiomaterials_8b01058 crossref_primary_10_3389_fcimb_2021_678081 crossref_primary_10_4012_dmj_2020_188 crossref_primary_10_1089_ten_tea_2007_0415 crossref_primary_10_3390_antibiotics9100716 crossref_primary_10_1002_btpr_32 crossref_primary_10_1021_acsomega_0c03151 crossref_primary_10_1039_C6QM00039H crossref_primary_10_1007_s11705_014_1412_3 crossref_primary_10_1002_jbm_a_35277 crossref_primary_10_1016_j_actbio_2014_03_032 crossref_primary_10_1111_1574_6968_12018 crossref_primary_10_1021_acsabm_9b00890 |
Cites_doi | 10.1006/jcis.1999.6159 10.1046/j.1365-2958.1997.4101774.x 10.1002/jbm.820290216 10.1163/156856203321478847 10.1093/jac/48.1.7 10.1126/science.284.5418.1318 10.1016/S1286-4579(02)01563-0 10.1016/j.biomaterials.2003.12.034 10.1073/pnas.162124199 10.1023/A:1012865200458 10.1016/j.biomaterials.2003.12.016 10.1016/S0927-7765(99)00046-6 10.1016/j.biomaterials.2003.11.056 10.1046/j.1462-5822.2004.00367.x 10.1111/j.1574-695X.1996.tb00128.x 10.1002/jbm.a.10537 10.1086/377452 10.1002/(SICI)1097-4636(19981205)42:3<425::AID-JBM12>3.0.CO;2-F 10.1002/jbm.a.10425 10.1046/j.1365-2958.2003.03401.x 10.1002/(SICI)1097-4636(19980305)39:3<341::AID-JBM1>3.0.CO;2-J 10.1128/jb.178.1.175-183.1996 10.1016/S0142-9612(01)00163-6 10.1016/0014-5793(84)81173-4 10.1111/j.1574-695X.2001.tb00520.x 10.1002/jbm.a.30026 10.1006/cyto.2002.1048 10.1002/jbm.a.10423 10.1128/IAI.66.6.2666-2673.1998 10.1163/156856203763572725 10.1002/(SICI)1097-4636(20000605)50:3<302::AID-JBM3>3.0.CO;2-1 10.1016/S0927-7765(99)00121-6 10.1016/S0142-9612(98)00125-2 10.1007/s002840010230 |
ContentType | Journal Article |
Copyright | Copyright © 2006 Wiley Periodicals, Inc. 2006 Wiley Periodicals, Inc. J Biomed Mater Res, 2006. |
Copyright_xml | – notice: Copyright © 2006 Wiley Periodicals, Inc. – notice: 2006 Wiley Periodicals, Inc. J Biomed Mater Res, 2006. |
DBID | BSCLL CGR CUY CVF ECM EIF NPM AAYXX CITATION 7SR 7TB 7U5 8BQ 8FD F28 FR3 JG9 L7M 7X8 |
DOI | 10.1002/jbm.a.30905 |
DatabaseName | Istex Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Materials Research Database CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1552-4965 |
EndPage | 842 |
ExternalDocumentID | 10_1002_jbm_a_30905 16817192 JBM30905 ark_67375_WNG_81S2X7GV_4 |
Genre | article Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: Confocal Core at the Case Comprehensive Cancer Center funderid: P30 CA43703 – fundername: NIH Grant NIH/NIBIB funderid: EB 00279 – fundername: NIBIB NIH HHS grantid: EB 00279 – fundername: NCI NIH HHS grantid: P30 CA43703 |
GroupedDBID | --- -~X .3N .DC .GA .Y3 05W 0R~ 10A 1L6 1OC 1ZS 31~ 33P 4.4 4ZD 50Z 51W 51X 52N 52O 52P 52S 52T 52W 52X 53G 5GY 5VS 66C 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABLJU ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACPRK ACXBN ACXQS ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AZBYB AZFZN BAFTC BDRZF BFHJK BROTX BRXPI BSCLL BY8 CO8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HVGLF HZ~ J0M JPC KQQ LATKE LAW LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O9- OIG P2P P2W P2X P4D PQQKQ Q.N QB0 QRW R.K RNS ROL RWI RYL SUPJJ UB1 V2E W8V W99 WIH WIK WJL WQJ WRC WXSBR XG1 XV2 ZZTAW ~IA ~WT 1OB CGR CUY CVF ECM EIF NPM AAYXX CITATION 7SR 7TB 7U5 8BQ 8FD F28 FR3 JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c4955-f21420e0016083edc94ce6916699aaab135f0cd64dfa85ccd1b5922f0ba1cbb63 |
IEDL.DBID | DR2 |
ISSN | 1549-3296 |
IngestDate | Fri Aug 16 22:04:56 EDT 2024 Fri Oct 25 02:43:10 EDT 2024 Thu Sep 26 15:48:24 EDT 2024 Sat Sep 28 07:43:09 EDT 2024 Sat Aug 24 00:55:45 EDT 2024 Wed Oct 30 09:46:30 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | 2006 Wiley Periodicals, Inc. J Biomed Mater Res, 2006. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4955-f21420e0016083edc94ce6916699aaab135f0cd64dfa85ccd1b5922f0ba1cbb63 |
Notes | istex:60CF1469CA373AA4935CDEA613DC45E6D47629DA Confocal Core at the Case Comprehensive Cancer Center - No. P30 CA43703 ArticleID:JBM30905 NIH Grant NIH/NIBIB - No. EB 00279 ark:/67375/WNG-81S2X7GV-4 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
PMID | 16817192 |
PQID | 29514211 |
PQPubID | 23500 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_68909536 proquest_miscellaneous_29514211 crossref_primary_10_1002_jbm_a_30905 pubmed_primary_16817192 wiley_primary_10_1002_jbm_a_30905_JBM30905 istex_primary_ark_67375_WNG_81S2X7GV_4 |
PublicationCentury | 2000 |
PublicationDate | 15 September 2006 |
PublicationDateYYYYMMDD | 2006-09-15 |
PublicationDate_xml | – month: 09 year: 2006 text: 15 September 2006 day: 15 |
PublicationDecade | 2000 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken – name: United States |
PublicationTitle | Journal of biomedical materials research. Part A |
PublicationTitleAlternate | J. Biomed. Mater. Res |
PublicationYear | 2006 |
Publisher | Wiley Subscription Services, Inc., A Wiley Company |
Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company |
References | Shi L, Ardehali R, Caldwell KD, Valint P. Mucin coating on polymeric material surfaces to suppress bacterial adhesion. Colloids Surf B: Biointerf 2000; 17: 229-239. Palmer RR, Lewis AL, Kirkwood LC, Rose SF, Lloyd AW, Vick TA, Stratford PW. Biological evaluation and drug delivery of cationically modified phospholipid polymers. Biomaterials 2004; 25: 4785-4796. Sapatnekar S, Kieswetter KM, Merritt K, Anderson JM, Cahalan L, Verhoeven M, Hendriks M, Fouache B, Cahalan P. Blood-biomaterial interactions in a flow-system in the presence of bacteria: Effect of protein adsorption. J Biomed Mater Res 1995; 29: 247-256. Vacheethasanee K, Marchant RE. Surfactant polymers designed to suppress bacterial (Staphylococcus epidermidis) adhesion on biomaterials. J Biomed Mater Res 2000; 50: 302-312. Higashi JM, Wang IW, Shlaes DM, Anderson JM, Marchant RE. Adhesion of Staphylococcus epidermidis and transposon mutant strains to hydrophobic polyethylene. J Biomed Mater Res 1998; 39: 341-350. Nilsson M, Frykberg L, Flock JI, Pei L, Lindberg M, Guss B. A fibrinogen-binding protein of Staphylococcus epidermidis. Infect Immunol 1998; 66: 2666-2673. Vuong C, Voyich JM, Fischer ER, Braughton KR, Whitney AR, DeLeo FR, Otto M. Polysaccharide intercellular adhesion (PIA) protects Staphylococcus epidermidis against major components of the human innate immune system. Cell Microbiol 2004; 6: 269-275. Kaper HJ, Busscher HJ, Norde W. Characterization of poly(ethylene oxide) brushed on glass surfaces and adhesion of Staphylococcus epidermidis. J Biomater Sci Polym Ed 2003; 14: 313-324. Bergkvist M, Carlsson J, Oscarsson S. Surface-dependent conformations of human plasma fibronectin adsorbed to silica, mica, and hydrophobic surfaces, studies with use of atomic force microscopy. J Biomed Mater Res A 2003; 64: 349-356. Li DQ, Lundberg F, Ljungh A. Characterization of vitronectin-binding proteins of Staphylococcus epidermidis. Curr Microbiol 2001; 24: 361-367. Patel JD, Ebert M, Stokes K, Ward R, Anderson JM. Inhibition of bacterial and leukocyte adhesion under shear stress conditions by material surface chemistry. J Biomater Sci Polym Ed 2003; 14: 279-295. Costerton JW. Introduction to biofilm. Int J Antimicrob Agents 1999; 11: 217-221. Gottenbos B, Grijpma DW, van der Mei HC, Feijen J, Busscher HJ. Antimicrobial effects of positively charged surfaces on adhering Gram-positive and Gram-negative bacteria. J Antimicrob Chemother 2001; 48: 7-13. Li DQ, Ljungh A. Binding of human clusterin by Staphylococcus epidermidis. FEMS Immunol Med Microbiol 2001; 31: 197-202. Garrett Q, Chatelier RC, Griesser HJ, Milthorpe BK. Effect of charged groups on the adsorption and penetration of proteins onto and into carboxymethylated poly(HEMA) hydrogels. Biomaterials 1998; 19: 2175-2186. Vuong C, Otto M. Staphylococcus epidermidis infections. Microbes Infect 2002; 4: 481-489. Vacheethasanee K, Temenoff JS, Higashi JM, Gary A, Anderson JM, Bayston R, Marchant RE. Bacterial surface properties of clinically isolated Staphylococcus epidermidis strains determine adhesion on polyethylene. J Biomed Mater Res 1998; 42: 425-432. Brodbeck WG, Patel J, Voskerician G, Christenson E, Shive MS, Nakayama Y, Matsuda K, Ziats NP, Anderson JM. Biomaterial adherent macrophage apoptosis is increased by hydrophilic and anionic substrates in vivo. Proc Nat Acad Sci USA 2002; 99: 10287-10292. Brodbeck WG, Voskerician G, Ziats NP, Nakayama Y, Matsuda K, Anderson JM. In vivo leukocyte cytokine mRNA responses to biomaterials are dependent on surface chemistry. J Biomed Mater Res A 2003; 6: 320-329. Li DQ, Lundberg F, Ljungh A. Binding of vitronectin and clusterin by coagulase-negative staphylococci interfering with complement function. J Mater Sci: Mater Med 2001; 12: 979-982. Rose SF, Lewis AL, Hanlon GW, Lloyd AW. Biological responses to cationically charged phosphorylcholine materials in vitro. Biomaterials 2004; 25: 5125-5135. Mack D, Fischer W, Krokotsh A, Leopold K, Hartmann R, Egge H, Laufs R. The intercellular adhesion involved in biofilm accumulation of Staphylococcus epidermidis is a linear β-1,6-linked glucosaminoglycan: Purification and structural analysis. J Bacteriol 1996; 178: 175-183. Brodbeck WG, Nakayama Y, Matsuda K, Colton E, Ziats NP, Anderson JM. Biomoaterial surface chemistry dictates adherent moncyte/macrophage cytokine expression in vitro. Cytokine 2002; 18: 311-319. Arciola CR, Campoccia D, Gamberini S, Donati ME, Montanaro L. Presence of fibrinogen-binding adhesion gene in Staphylococcus epidermidis isolates from central venous catheter-associated and orthopaedic implant-associated infections. Biomaterials 2004; 25: 4825-4829. Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: A common cause of persistent infections. Science 1999; 284: 1318-1322. Vandecasteele SJ, Peeterman WE, Merckx R, Van Eldere J. Expression of biofilm-associated genes in Staphylococcus epidermidis during in vitro and in vivo foreign body infections. J Infect Dis 2003; 188: 730-737. Yongli C, Xiufang G, Nanming Z, Tingying Z, Xinqi S. Conformational changes of fibrinogen adsorption onto hydroxyapatite and titanium oxide nanoparticles. J Colloid Interf Sci 1999; 214: 38-46. Haas R, Culp LA. Binding of fibronectin to gelatin and heparin: Effect of surface denaturation and detergents. FEBS Lett 1984; 174: 279-283. Ljungh A, Moran AP, Wadstrom T. Interactions of bacterial adhesions with extracellular matrix and plasma proteins: pathogenic implications and therapeutic possibilities. FEMS Immunol Med Microbiol 1996; 16: 117-126. Soltys-Robitaille CE, Ammon DMJr., Valint PLJr., Grobe GLIII. The relationship between contact lens surface charge and in-vitro protein deposition levels. Biomaterials 2001; 22: 3257-3260. Piehler J, Brecht A, Hehl K, Gauglitz G. Protein interactions in covalently attached dextran layers. Colloids Surf B: Biointerf 1999; 13: 325-336. Keselowsky BG, Collard DM, Garcia AJ. Surface chemistry modulates fibronectin conformation and directs integrin binding and specificity to control cell adhesion. J Biomed Mater Res A 2003; 66: 247-259. Heilmann C, Hussain M, Peters G, Gotz F. Evidence for autolysin-mediated primary attachment of Staphylococcus epidermidis to a polystyrene surface. Mol Microbiol 1997; 24: 1013-1024. Baugh L, Vogel V. Structural changes of fibronectin adsorbed to model surfaces probed by fluorescence resonance energy transfer. J Biomed Mater Res A 2004; 69: 525-534. 2002; 18 2004; 25 2004; 69 1997; 24 2002; 99 2000; 50 2003; 14 2004; 6 2002; 4 1999; 284 2001; 48 2001; 22 1996; 16 2001; 24 1998; 42 1998; 66 1998; 39 1998; 19 1984; 174 2000; 17 2003; 6 1999; 13 1999; 11 1995; 29 2001; 12 1999; 214 1996; 178 2003; 188 2003; 64 2001; 31 2003; 66 e_1_2_6_31_2 e_1_2_6_30_2 e_1_2_6_18_2 e_1_2_6_19_2 e_1_2_6_12_2 e_1_2_6_35_2 e_1_2_6_13_2 e_1_2_6_34_2 e_1_2_6_10_2 e_1_2_6_33_2 e_1_2_6_11_2 e_1_2_6_32_2 e_1_2_6_16_2 e_1_2_6_17_2 e_1_2_6_14_2 e_1_2_6_15_2 e_1_2_6_20_2 e_1_2_6_8_2 e_1_2_6_7_2 e_1_2_6_9_2 e_1_2_6_29_2 e_1_2_6_4_2 e_1_2_6_3_2 e_1_2_6_6_2 e_1_2_6_5_2 e_1_2_6_24_2 e_1_2_6_23_2 e_1_2_6_2_2 e_1_2_6_22_2 e_1_2_6_21_2 e_1_2_6_28_2 e_1_2_6_27_2 e_1_2_6_26_2 e_1_2_6_25_2 |
References_xml | – volume: 17 start-page: 229 year: 2000 end-page: 239 article-title: Mucin coating on polymeric material surfaces to suppress bacterial adhesion publication-title: Colloids Surf B: Biointerf – volume: 16 start-page: 117 year: 1996 end-page: 126 article-title: Interactions of bacterial adhesions with extracellular matrix and plasma proteins: pathogenic implications and therapeutic possibilities publication-title: FEMS Immunol Med Microbiol – volume: 18 start-page: 311 year: 2002 end-page: 319 article-title: Biomoaterial surface chemistry dictates adherent moncyte/macrophage cytokine expression publication-title: Cytokine – volume: 66 start-page: 247 year: 2003 end-page: 259 article-title: Surface chemistry modulates fibronectin conformation and directs integrin binding and specificity to control cell adhesion publication-title: J Biomed Mater Res A – volume: 12 start-page: 979 year: 2001 end-page: 982 article-title: Binding of vitronectin and clusterin by coagulase‐negative staphylococci interfering with complement function publication-title: J Mater Sci: Mater Med – volume: 69 start-page: 525 year: 2004 end-page: 534 article-title: Structural changes of fibronectin adsorbed to model surfaces probed by fluorescence resonance energy transfer publication-title: J Biomed Mater Res A – volume: 14 start-page: 313 year: 2003 end-page: 324 article-title: Characterization of poly(ethylene oxide) brushed on glass surfaces and adhesion of publication-title: J Biomater Sci Polym Ed – volume: 48 start-page: 7 year: 2001 end-page: 13 article-title: Antimicrobial effects of positively charged surfaces on adhering Gram‐positive and Gram‐negative bacteria publication-title: J Antimicrob Chemother – volume: 4 start-page: 481 year: 2002 end-page: 489 article-title: infections publication-title: Microbes Infect – volume: 24 start-page: 361 year: 2001 end-page: 367 article-title: Characterization of vitronectin‐binding proteins of publication-title: Curr Microbiol – volume: 14 start-page: 279 year: 2003 end-page: 295 article-title: Inhibition of bacterial and leukocyte adhesion under shear stress conditions by material surface chemistry publication-title: J Biomater Sci Polym Ed – volume: 66 start-page: 2666 year: 1998 end-page: 2673 article-title: A fibrinogen‐binding protein of publication-title: Infect Immunol – volume: 25 start-page: 4785 year: 2004 end-page: 4796 article-title: Biological evaluation and drug delivery of cationically modified phospholipid polymers publication-title: Biomaterials – volume: 188 start-page: 730 year: 2003 end-page: 737 article-title: Expression of biofilm‐associated genes in during in vitro and in vivo foreign body infections publication-title: J Infect Dis – volume: 42 start-page: 425 year: 1998 end-page: 432 article-title: Bacterial surface properties of clinically isolated strains determine adhesion on polyethylene publication-title: J Biomed Mater Res – volume: 174 start-page: 279 year: 1984 end-page: 283 article-title: Binding of fibronectin to gelatin and heparin: Effect of surface denaturation and detergents publication-title: FEBS Lett – volume: 24 start-page: 1013 year: 1997 end-page: 1024 article-title: Evidence for autolysin‐mediated primary attachment of to a polystyrene surface publication-title: Mol Microbiol – volume: 19 start-page: 2175 year: 1998 end-page: 2186 article-title: Effect of charged groups on the adsorption and penetration of proteins onto and into carboxymethylated poly(HEMA) hydrogels publication-title: Biomaterials – volume: 22 start-page: 3257 year: 2001 end-page: 3260 article-title: The relationship between contact lens surface charge and in‐vitro protein deposition levels publication-title: Biomaterials – volume: 64 start-page: 349 year: 2003 end-page: 356 article-title: Surface‐dependent conformations of human plasma fibronectin adsorbed to silica, mica, and hydrophobic surfaces, studies with use of atomic force microscopy publication-title: J Biomed Mater Res A – volume: 284 start-page: 1318 year: 1999 end-page: 1322 article-title: Bacterial biofilms: A common cause of persistent infections publication-title: Science – volume: 178 start-page: 175 year: 1996 end-page: 183 article-title: The intercellular adhesion involved in biofilm accumulation of is a linear β‐1,6‐linked glucosaminoglycan: Purification and structural analysis publication-title: J Bacteriol – volume: 29 start-page: 247 year: 1995 end-page: 256 article-title: Blood–biomaterial interactions in a flow‐system in the presence of bacteria: Effect of protein adsorption publication-title: J Biomed Mater Res – volume: 11 start-page: 217 year: 1999 end-page: 221 article-title: Introduction to biofilm publication-title: Int J Antimicrob Agents – volume: 25 start-page: 4825 year: 2004 end-page: 4829 article-title: Presence of fibrinogen‐binding adhesion gene in Staphylococcus epidermidis isolates from central venous catheter‐associated and orthopaedic implant‐associated infections publication-title: Biomaterials – volume: 39 start-page: 341 year: 1998 end-page: 350 article-title: Adhesion of and transposon mutant strains to hydrophobic polyethylene publication-title: J Biomed Mater Res – volume: 13 start-page: 325 year: 1999 end-page: 336 article-title: Protein interactions in covalently attached dextran layers publication-title: Colloids Surf B: Biointerf – volume: 6 start-page: 320 year: 2003 end-page: 329 article-title: leukocyte cytokine mRNA responses to biomaterials are dependent on surface chemistry publication-title: J Biomed Mater Res A – volume: 31 start-page: 197 year: 2001 end-page: 202 article-title: Binding of human clusterin by publication-title: FEMS Immunol Med Microbiol – volume: 25 start-page: 5125 year: 2004 end-page: 5135 article-title: Biological responses to cationically charged phosphorylcholine materials in vitro publication-title: Biomaterials – volume: 99 start-page: 10287 year: 2002 end-page: 10292 article-title: Biomaterial adherent macrophage apoptosis is increased by hydrophilic and anionic substrates publication-title: Proc Nat Acad Sci USA – volume: 6 start-page: 269 year: 2004 end-page: 275 article-title: Polysaccharide intercellular adhesion (PIA) protects against major components of the human innate immune system publication-title: Cell Microbiol – volume: 214 start-page: 38 year: 1999 end-page: 46 article-title: Conformational changes of fibrinogen adsorption onto hydroxyapatite and titanium oxide nanoparticles publication-title: J Colloid Interf Sci – volume: 50 start-page: 302 year: 2000 end-page: 312 article-title: Surfactant polymers designed to suppress bacterial ( ) adhesion on biomaterials publication-title: J Biomed Mater Res – ident: e_1_2_6_33_2 doi: 10.1006/jcis.1999.6159 – ident: e_1_2_6_9_2 doi: 10.1046/j.1365-2958.1997.4101774.x – ident: e_1_2_6_15_2 doi: 10.1002/jbm.820290216 – ident: e_1_2_6_23_2 doi: 10.1163/156856203321478847 – ident: e_1_2_6_30_2 doi: 10.1093/jac/48.1.7 – ident: e_1_2_6_20_2 doi: 10.1126/science.284.5418.1318 – ident: e_1_2_6_2_2 doi: 10.1016/S1286-4579(02)01563-0 – ident: e_1_2_6_14_2 doi: 10.1016/j.biomaterials.2003.12.034 – ident: e_1_2_6_27_2 doi: 10.1073/pnas.162124199 – ident: e_1_2_6_6_2 doi: 10.1023/A:1012865200458 – ident: e_1_2_6_12_2 doi: 10.1016/j.biomaterials.2003.12.016 – ident: e_1_2_6_11_2 doi: 10.1016/S0927-7765(99)00046-6 – ident: e_1_2_6_5_2 doi: 10.1016/j.biomaterials.2003.11.056 – ident: e_1_2_6_19_2 doi: 10.1046/j.1462-5822.2004.00367.x – ident: e_1_2_6_3_2 doi: 10.1111/j.1574-695X.1996.tb00128.x – ident: e_1_2_6_31_2 doi: 10.1002/jbm.a.10537 – ident: e_1_2_6_4_2 doi: 10.1086/377452 – ident: e_1_2_6_26_2 doi: 10.1002/(SICI)1097-4636(19981205)42:3<425::AID-JBM12>3.0.CO;2-F – ident: e_1_2_6_28_2 doi: 10.1002/jbm.a.10425 – ident: e_1_2_6_18_2 doi: 10.1046/j.1365-2958.2003.03401.x – ident: e_1_2_6_25_2 doi: 10.1002/(SICI)1097-4636(19980305)39:3<341::AID-JBM1>3.0.CO;2-J – ident: e_1_2_6_17_2 doi: 10.1128/jb.178.1.175-183.1996 – ident: e_1_2_6_13_2 doi: 10.1016/S0142-9612(01)00163-6 – ident: e_1_2_6_35_2 doi: 10.1016/0014-5793(84)81173-4 – ident: e_1_2_6_7_2 doi: 10.1111/j.1574-695X.2001.tb00520.x – ident: e_1_2_6_32_2 doi: 10.1002/jbm.a.30026 – ident: e_1_2_6_29_2 doi: 10.1006/cyto.2002.1048 – ident: e_1_2_6_34_2 doi: 10.1002/jbm.a.10423 – ident: e_1_2_6_8_2 doi: 10.1128/IAI.66.6.2666-2673.1998 – ident: e_1_2_6_21_2 doi: 10.1163/156856203763572725 – ident: e_1_2_6_22_2 doi: 10.1002/(SICI)1097-4636(20000605)50:3<302::AID-JBM3>3.0.CO;2-1 – ident: e_1_2_6_24_2 doi: 10.1016/S0927-7765(99)00121-6 – ident: e_1_2_6_16_2 doi: 10.1016/S0142-9612(98)00125-2 – ident: e_1_2_6_10_2 doi: 10.1007/s002840010230 |
SSID | ssj0026052 |
Score | 2.2275462 |
Snippet | The formation of biofilm, a structured community of bacteria enclosed in slime, is a significant virulence factor in medical‐device‐centered infection. The... The formation of biofilm, a structured community of bacteria enclosed in slime, is a significant virulence factor in medical-device-centered infection. The... Abstract The formation of biofilm, a structured community of bacteria enclosed in slime, is a significant virulence factor in medical‐device‐centered... |
SourceID | proquest crossref pubmed wiley istex |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 836 |
SubjectTerms | adhesion Bacterial Adhesion Biocompatible Materials - chemistry biofilm Biofilms biomaterials Blood Humans infection S. epidermidis Staphylococcus epidermidis - physiology Surface Properties |
Title | Effects of biomaterial surface chemistry on the adhesion and biofilm formation of Staphylococcus epidermidis in vitro |
URI | https://api.istex.fr/ark:/67375/WNG-81S2X7GV-4/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjbm.a.30905 https://www.ncbi.nlm.nih.gov/pubmed/16817192 https://search.proquest.com/docview/29514211 https://search.proquest.com/docview/68909536 |
Volume | 78A |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZQucCB9yM8fag4IGUbJ7GTHHm1VaX2ABT2Zo3HtlhKE7RJEOLXM3Z2ty0CJLhFih0lM-PMN_bMN4xt-zyg3ArSurEqLRXKtLaFIoWo2mUSVAUhUDw8UvvH5cFczle5OaEWZuKH2Gy4hZUR_9dhgYPpd85IQz-b0xnMiqyJDKaiqEJC1-u3G_KoANTjWSdFQGmRN2pVnUd3ds7NveCPLgfRfv8d2LyIXaPz2b0-dVjtI2dhyDk5mY2DmeGPXxgd__u7brBrK1jKX0x2dJNdcu0tdvUcWeFtNk5Exz3vPA9F-zBE4-X9uPSAjuO6dRzvWk6wkoP95MJeHIfWhhl-8eWUb4olw2MI6ZKWyZ12iGPPXehWS4ZnFz1ftPzbYlh2d9jx7pv3r_bTVdOGFCnWkqkPHG6Zi_2r68JZbEp0ikCoahoAMKKQPkOrSuuhlohWGNnkuc8MCDRGFXfZVtu17j7jiD4rHZLuyIcqlxtLYA1RVCgQrMCEba9Vp79O3Bx6YmHONUlRg45STNizqNbNGFiehHS2SuqPR3u6Fu_yebX3QZcJe7rWuyaBhZMTaF039jonHFpSqPznEapuAnOfSti9yWDO3kjVoiIcnbDnUe1_e1V98PIwXjz4l8EP2ZVpY6hJhXzEtobl6B4TVBrMk7gifgI2kRAh |
link.rule.ids | 315,783,787,1378,27936,27937,46306,46730 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZQewAOvB_hVR8qDkjZ5mUnPvJql9LdA7SwN8sZO2L7SNAmQYhfz4yzu20RIMEtUpzImUfm89jzDWPbVUIoNzdhoawMMwkiLGwqUSGycJEwMje0UJxM5fgo25-J2TLhRrUwAz_EOuFGnuH_1-TglJDeOWcNPS7PRmaURoooTDfR4VNq3fDmw5o-iqC63-3ENVCYJkou6_Pwzs6Fhy9FpE0S7vffwc3L6NWHn92bTK8mPpw6ORn1XTmCH79wOv7_l91iN5bIlL8cTOk2u-LqO-z6Bb7Cu6wfuI5b3lSc6vZN5-2Xt_2iMuA4rLrH8abmiCy5sV8cpeO4qS09Uc1Pz_i6XpJeg2AXFY0RtQHoW-6oYS3anp23fF7zb_Nu0dxjR7tvD1-Pw2XfhhBwuSXCimjcIudbWBeps6AycBJxqFTKGFPGqagisDKzlSkEgI1LoZKkikoTQ1nK9D7bqJvaPWQcoIoyB6g8DKPSJaVFvAYQ5xCDsTEEbHulO_11oOfQAxFzolGK2mgvxYA993pdjzGLEzrRlgv9ebqni_hjMsv3PuksYFsrxWsUGG2emNo1fasThKIZrpb_PEIWisj7ZMAeDBZzPiNZxDlC6YC98Hr_21T1_quJv3j0L4O32NXx4eRAH7ybvn_Mrg15IhXG4gnb6Ba9e4rIqSufeff4CRS9FDk |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZQKyE48H4ECvWh4oCUbZyHkxwpsC2FrhBQ2JvljG2xlCbVJkGov74zzu62RYAEt0ixLWdmnPnG9nzD2JaLCeXmOixKI8NUQhYWJpGoEFnYKNMy1xQoHkzk3mG6P82mi7s5lAsz8EOsNtxoZfj_NS3wE-O2z0lDv1XHIz1KopIYTNdTidiXMNGHFXsUIXV_2IkhUJjEpVyk5-Gb7QudLzmkdZLtz9-hzcvg1Xuf8c2hxGrrSQvp0snRqO-qEZz-Qun43x92i91Y4FL-YjCk2-yKre-w6xfYCu-yfmA6bnnjOGXt685bL2_7udNgOSxrx_Gm5ogruTZfLW3GcV0b6uFm34_5KluShkGoi2pGf9oA9C23VK4WLc_MWj6r-Y9ZN2_uscPx608v98JF1YYQMNjKQkckbpH1BayLxBooU7ASUagsS611JZLMRWBkapwuMgAjqqyMYxdVWkBVyeQ-W6ub2j5kHMBFqQXUHTpRaePKIFoDEDkI0EZAwLaWqlMnAzmHGmiYY4VSVFp5KQbsmVfrqo2eH9F9tjxTXya7qhAf42m--1mlAdtc6l2hwOjoRNe26VsVIxBNMVb-cwtZlETdJwP2YDCY8xnJQuQIpAP23Kv9b1NV-zsH_uHRvzTeZFffvxqrd28mbx-za8MmURmKbIOtdfPePkHY1FVP_eI4A9KxEug |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+biomaterial+surface+chemistry+on+the+adhesion+and+biofilm+formation+of+Staphylococcus+epidermidis+in+vitro&rft.jtitle=Journal+of+biomedical+materials+research.+Part+A&rft.au=MacKintosh%2C+Erin+E&rft.au=Patel%2C+Jasmine+D&rft.au=Marchant%2C+Roger+E&rft.au=Anderson%2C+James+M&rft.date=2006-09-15&rft.issn=1549-3296&rft.volume=78&rft.issue=4&rft.spage=836&rft_id=info:doi/10.1002%2Fjbm.a.30905&rft_id=info%3Apmid%2F16817192&rft.externalDocID=16817192 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-3296&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-3296&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-3296&client=summon |