Effects of biomaterial surface chemistry on the adhesion and biofilm formation of Staphylococcus epidermidis in vitro

The formation of biofilm, a structured community of bacteria enclosed in slime, is a significant virulence factor in medical‐device‐centered infection. The development of cardiovascular device infection can be separated into two phases: initial bacterial adhesion and aggregation, followed by prolife...

Full description

Saved in:
Bibliographic Details
Published inJournal of biomedical materials research. Part A Vol. 78A; no. 4; pp. 836 - 842
Main Authors MacKintosh, Erin E., Patel, Jasmine D., Marchant, Roger E., Anderson, James M.
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 15.09.2006
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The formation of biofilm, a structured community of bacteria enclosed in slime, is a significant virulence factor in medical‐device‐centered infection. The development of cardiovascular device infection can be separated into two phases: initial bacterial adhesion and aggregation, followed by proliferation and production of slime. It is possible to modulate the adhesion and biofilm formation of Staphylococcus epidermidis, a commensal skin bacterium commonly found on infected medical devices, through biomaterial surface chemistry. This study examines bacterial adhesion and biofilm formation on surface‐modified polyethylene terephthalate (PET), including surfaces with varying hydrophilic, hydrophobic, and ionic character. Bacterial adhesion and biofilm formation were observed over 48 hours in phosphate‐buffered saline (PBS) and 20% pooled human serum. The hydrophilic surface (PAAm) had significantly less nonspecific adhesion of bacteria than that in the control (PET) and other surfaces, when cultured in PBS (P < 0.0001). Charged surfaces, both anionic and cationic, had increased adhesion and aggregation of bacteria in comparison with the control (PET) in the presence of serum proteins over 24 hours (P < 0.0001). Bacteria cultured in serum on the charged surfaces did not have significantly different amounts of biofilm formation compared with that of the control (PET) surface after 48 hours. This study showed that biomaterial surface chemistry characteristics impact initial adhesion and aggregation of S. epidermidis on biomaterials. © 2006 Wiley Periodicals, Inc. J Biomed Mater Res, 2006
AbstractList The formation of biofilm, a structured community of bacteria enclosed in slime, is a significant virulence factor in medical‐device‐centered infection. The development of cardiovascular device infection can be separated into two phases: initial bacterial adhesion and aggregation, followed by proliferation and production of slime. It is possible to modulate the adhesion and biofilm formation of Staphylococcus epidermidis, a commensal skin bacterium commonly found on infected medical devices, through biomaterial surface chemistry. This study examines bacterial adhesion and biofilm formation on surface‐modified polyethylene terephthalate (PET), including surfaces with varying hydrophilic, hydrophobic, and ionic character. Bacterial adhesion and biofilm formation were observed over 48 hours in phosphate‐buffered saline (PBS) and 20% pooled human serum. The hydrophilic surface (PAAm) had significantly less nonspecific adhesion of bacteria than that in the control (PET) and other surfaces, when cultured in PBS (P < 0.0001). Charged surfaces, both anionic and cationic, had increased adhesion and aggregation of bacteria in comparison with the control (PET) in the presence of serum proteins over 24 hours (P < 0.0001). Bacteria cultured in serum on the charged surfaces did not have significantly different amounts of biofilm formation compared with that of the control (PET) surface after 48 hours. This study showed that biomaterial surface chemistry characteristics impact initial adhesion and aggregation of S. epidermidis on biomaterials. © 2006 Wiley Periodicals, Inc. J Biomed Mater Res, 2006
The formation of biofilm, a structured community of bacteria enclosed in slime, is a significant virulence factor in medical-device-centered infection. The development of cardiovascular device infection can be separated into two phases: initial bacterial adhesion and aggregation, followed by proliferation and production of slime. It is possible to modulate the adhesion and biofilm formation of Staphylococcus epidermidis, a commensal skin bacterium commonly found on infected medical devices, through biomaterial surface chemistry. This study examines bacterial adhesion and biofilm formation on surface-modified polyethylene terephthalate (PET), including surfaces with varying hydrophilic, hydrophobic, and ionic character. Bacterial adhesion and biofilm formation were observed over 48 hours in phosphate-buffered saline (PBS) and 20% pooled human serum. The hydrophilic surface (PAAm) had significantly less nonspecific adhesion of bacteria than that in the control (PET) and other surfaces, when cultured in PBS (P &lt; 0.0001). Charged surfaces, both anionic and cationic, had increased adhesion and aggregation of bacteria in comparison with the control (PET) in the presence of serum proteins over 24 hours (P &lt; 0.0001). Bacteria cultured in serum on the charged surfaces did not have significantly different amounts of biofilm formation compared with that of the control (PET) surface after 48 hours. This study showed that biomaterial surface chemistry characteristics impact initial adhesion and aggregation of S. epidermidis on biomaterials.
The formation of biofilm, a structured community of bacteria enclosed in slime, is a significant virulence factor in medical-device-centered infection. The development of cardiovascular device infection can be separated into two phases: initial bacterial adhesion and aggregation, followed by proliferation and production of slime. It is possible to modulate the adhesion and biofilm formation of Staphylococcus epidermidis, a commensal skin bacterium commonly found on infected medical devices, through biomaterial surface chemistry. This study examines bacterial adhesion and biofilm formation on surface-modified polyethylene terephthalate (PET), including surfaces with varying hydrophilic, hydrophobic, and ionic character. Bacterial adhesion and biofilm formation were observed over 48 hours in phosphate-buffered saline (PBS) and 20% pooled human serum. The hydrophilic surface (PAAm) had significantly less nonspecific adhesion of bacteria than that in the control (PET) and other surfaces, when cultured in PBS (P < 0.0001). Charged surfaces, both anionic and cationic, had increased adhesion and aggregation of bacteria in comparison with the control (PET) in the presence of serum proteins over 24 hours (P < 0.0001). Bacteria cultured in serum on the charged surfaces did not have significantly different amounts of biofilm formation compared with that of the control (PET) surface after 48 hours. This study showed that biomaterial surface chemistry characteristics impact initial adhesion and aggregation of S. epidermidis on biomaterials.
Abstract The formation of biofilm, a structured community of bacteria enclosed in slime, is a significant virulence factor in medical‐device‐centered infection. The development of cardiovascular device infection can be separated into two phases: initial bacterial adhesion and aggregation, followed by proliferation and production of slime. It is possible to modulate the adhesion and biofilm formation of Staphylococcus epidermidis , a commensal skin bacterium commonly found on infected medical devices, through biomaterial surface chemistry. This study examines bacterial adhesion and biofilm formation on surface‐modified polyethylene terephthalate (PET), including surfaces with varying hydrophilic, hydrophobic, and ionic character. Bacterial adhesion and biofilm formation were observed over 48 hours in phosphate‐buffered saline (PBS) and 20% pooled human serum. The hydrophilic surface (PAAm) had significantly less nonspecific adhesion of bacteria than that in the control (PET) and other surfaces, when cultured in PBS ( P < 0.0001). Charged surfaces, both anionic and cationic, had increased adhesion and aggregation of bacteria in comparison with the control (PET) in the presence of serum proteins over 24 hours ( P < 0.0001). Bacteria cultured in serum on the charged surfaces did not have significantly different amounts of biofilm formation compared with that of the control (PET) surface after 48 hours. This study showed that biomaterial surface chemistry characteristics impact initial adhesion and aggregation of S. epidermidis on biomaterials. © 2006 Wiley Periodicals, Inc. J Biomed Mater Res, 2006
Author Marchant, Roger E.
Patel, Jasmine D.
Anderson, James M.
MacKintosh, Erin E.
Author_xml – sequence: 1
  givenname: Erin E.
  surname: MacKintosh
  fullname: MacKintosh, Erin E.
  organization: Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH
– sequence: 2
  givenname: Jasmine D.
  surname: Patel
  fullname: Patel, Jasmine D.
  organization: Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH
– sequence: 3
  givenname: Roger E.
  surname: Marchant
  fullname: Marchant, Roger E.
  organization: Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH
– sequence: 4
  givenname: James M.
  surname: Anderson
  fullname: Anderson, James M.
  email: jma6@po.cwru.edu
  organization: Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH
BackLink https://www.ncbi.nlm.nih.gov/pubmed/16817192$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtv1DAURi1URB-wYo-8YoMy2E7siZdQlYGqlEV57awb-1rjksSDnQDz7_F0BtiVlR8639G1v1NyNMYRCXnK2YIzJl7edsMCFjXTTD4gJ1xKUTVayaPdvtFVLbQ6Jqc53xZYMSkekWOuWr7kWpyQ-cJ7tFOm0dMuxAEmTAF6mufkwSK1axxCntKWxpFOa6Tg1phDOcDodgkf-oH6mEpyd1s0NxNs1ts-2mjtnClugsM0BBcyDSP9EaYUH5OHHvqMTw7rGfn05uLj-dvq6sPq3fmrq8o2WsrKC94IhoxxxdoandWNRaW5UloDQMdr6Zl1qnEeWmmt453UQnjWAbddp-oz8nzv3aT4fcY8mfIYi30PI8Y5G9VqpmX9f1BoWUbhvIAv9qBNMeeE3mxSGCBtDWdmV4cpdRgwd3UU-tlBO3cDun_s4f8LwPfAz9Dj9j6XuXz9_o-02mdKL_jrbwbSN6OW9VKaL9cr0_Ib8XW5-mya-jccbKhp
CitedBy_id crossref_primary_10_1016_j_jbiosc_2016_05_010
crossref_primary_10_1021_la402608z
crossref_primary_10_3389_fbioe_2014_00023
crossref_primary_10_3390_pathogens3040791
crossref_primary_10_1002_jbm_a_35130
crossref_primary_10_1016_j_actbio_2017_04_015
crossref_primary_10_1128_AEM_01932_10
crossref_primary_10_1002_jbm_a_32932
crossref_primary_10_1002_jbm_a_31648
crossref_primary_10_1016_j_colsurfb_2009_10_021
crossref_primary_10_1016_j_ejpb_2007_11_021
crossref_primary_10_1016_j_joen_2007_07_035
crossref_primary_10_1002_jbm_a_34036
crossref_primary_10_1177_039139881003300910
crossref_primary_10_3390_coatings13030627
crossref_primary_10_1039_C6TB03280J
crossref_primary_10_1016_j_mimet_2022_106644
crossref_primary_10_4012_dmj_2019_178
crossref_primary_10_1002_jbm_a_36276
crossref_primary_10_3389_fcell_2022_995508
crossref_primary_10_1002_jbm_a_37560
crossref_primary_10_1002_jbm_b_34864
crossref_primary_10_1016_j_engreg_2020_07_003
crossref_primary_10_1016_j_msec_2013_01_023
crossref_primary_10_1088_0022_3727_49_30_304001
crossref_primary_10_7124_bc_0000BA
crossref_primary_10_1021_acs_langmuir_6b04679
crossref_primary_10_1016_j_bioadv_2023_213281
crossref_primary_10_1088_1748_6041_7_4_045003
crossref_primary_10_1021_bm900203w
crossref_primary_10_1039_C8AN00234G
crossref_primary_10_1016_j_colsurfb_2018_05_038
crossref_primary_10_1016_j_surfcoat_2018_06_015
crossref_primary_10_1016_j_biomaterials_2007_10_008
crossref_primary_10_30699_ijmm_16_2_155
crossref_primary_10_1080_08927010601143524
crossref_primary_10_1016_j_actbio_2012_07_038
crossref_primary_10_1016_j_actbio_2010_03_011
crossref_primary_10_1016_j_bone_2012_01_007
crossref_primary_10_1038_pj_2012_130
crossref_primary_10_1016_j_colsurfb_2013_09_012
crossref_primary_10_1002_jor_22053
crossref_primary_10_1007_s13318_020_00622_8
crossref_primary_10_1007_s12602_022_09908_6
crossref_primary_10_1016_j_cden_2019_02_010
crossref_primary_10_1016_j_ijbiomac_2022_04_174
crossref_primary_10_3390_met9111145
crossref_primary_10_1080_00914037_2015_1030657
crossref_primary_10_1080_00914037_2017_1320664
crossref_primary_10_1002_jbm_a_31788
crossref_primary_10_1016_j_biomaterials_2007_08_003
crossref_primary_10_1016_j_ceramint_2020_07_041
crossref_primary_10_1021_bm701430y
crossref_primary_10_1590_S1516_8913201500356
crossref_primary_10_1002_jbm_a_31943
crossref_primary_10_5796_denkikagaku_21_FE0032
crossref_primary_10_3390_coatings11070798
crossref_primary_10_1002_ppap_201100192
crossref_primary_10_1016_j_colsurfb_2012_07_012
crossref_primary_10_1016_j_anaerobe_2019_03_005
crossref_primary_10_1002_jbm_a_31103
crossref_primary_10_1016_j_mimet_2016_05_009
crossref_primary_10_2217_nnm_13_63
crossref_primary_10_1016_j_msec_2013_03_032
crossref_primary_10_1021_la802442d
crossref_primary_10_3390_microorganisms9061124
crossref_primary_10_4236_jbnb_2012_324050
crossref_primary_10_5402_2011_290851
crossref_primary_10_1002_jor_21432
crossref_primary_10_1007_s00264_018_4237_8
crossref_primary_10_3390_coatings9110705
crossref_primary_10_3390_met6040076
crossref_primary_10_1039_C4BM00034J
crossref_primary_10_1021_acsbiomaterials_8b01058
crossref_primary_10_3389_fcimb_2021_678081
crossref_primary_10_4012_dmj_2020_188
crossref_primary_10_1089_ten_tea_2007_0415
crossref_primary_10_3390_antibiotics9100716
crossref_primary_10_1002_btpr_32
crossref_primary_10_1021_acsomega_0c03151
crossref_primary_10_1039_C6QM00039H
crossref_primary_10_1007_s11705_014_1412_3
crossref_primary_10_1002_jbm_a_35277
crossref_primary_10_1016_j_actbio_2014_03_032
crossref_primary_10_1111_1574_6968_12018
crossref_primary_10_1021_acsabm_9b00890
Cites_doi 10.1006/jcis.1999.6159
10.1046/j.1365-2958.1997.4101774.x
10.1002/jbm.820290216
10.1163/156856203321478847
10.1093/jac/48.1.7
10.1126/science.284.5418.1318
10.1016/S1286-4579(02)01563-0
10.1016/j.biomaterials.2003.12.034
10.1073/pnas.162124199
10.1023/A:1012865200458
10.1016/j.biomaterials.2003.12.016
10.1016/S0927-7765(99)00046-6
10.1016/j.biomaterials.2003.11.056
10.1046/j.1462-5822.2004.00367.x
10.1111/j.1574-695X.1996.tb00128.x
10.1002/jbm.a.10537
10.1086/377452
10.1002/(SICI)1097-4636(19981205)42:3<425::AID-JBM12>3.0.CO;2-F
10.1002/jbm.a.10425
10.1046/j.1365-2958.2003.03401.x
10.1002/(SICI)1097-4636(19980305)39:3<341::AID-JBM1>3.0.CO;2-J
10.1128/jb.178.1.175-183.1996
10.1016/S0142-9612(01)00163-6
10.1016/0014-5793(84)81173-4
10.1111/j.1574-695X.2001.tb00520.x
10.1002/jbm.a.30026
10.1006/cyto.2002.1048
10.1002/jbm.a.10423
10.1128/IAI.66.6.2666-2673.1998
10.1163/156856203763572725
10.1002/(SICI)1097-4636(20000605)50:3<302::AID-JBM3>3.0.CO;2-1
10.1016/S0927-7765(99)00121-6
10.1016/S0142-9612(98)00125-2
10.1007/s002840010230
ContentType Journal Article
Copyright Copyright © 2006 Wiley Periodicals, Inc.
2006 Wiley Periodicals, Inc. J Biomed Mater Res, 2006.
Copyright_xml – notice: Copyright © 2006 Wiley Periodicals, Inc.
– notice: 2006 Wiley Periodicals, Inc. J Biomed Mater Res, 2006.
DBID BSCLL
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7SR
7TB
7U5
8BQ
8FD
F28
FR3
JG9
L7M
7X8
DOI 10.1002/jbm.a.30905
DatabaseName Istex
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
METADEX
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Materials Research Database
CrossRef
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1552-4965
EndPage 842
ExternalDocumentID 10_1002_jbm_a_30905
16817192
JBM30905
ark_67375_WNG_81S2X7GV_4
Genre article
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: Confocal Core at the Case Comprehensive Cancer Center
  funderid: P30 CA43703
– fundername: NIH Grant NIH/NIBIB
  funderid: EB 00279
– fundername: NIBIB NIH HHS
  grantid: EB 00279
– fundername: NCI NIH HHS
  grantid: P30 CA43703
GroupedDBID ---
-~X
.3N
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OC
1ZS
31~
33P
4.4
4ZD
50Z
51W
51X
52N
52O
52P
52S
52T
52W
52X
53G
5GY
5VS
66C
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACPRK
ACXBN
ACXQS
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AZBYB
AZFZN
BAFTC
BDRZF
BFHJK
BROTX
BRXPI
BSCLL
BY8
CO8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HVGLF
HZ~
J0M
JPC
KQQ
LATKE
LAW
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
QB0
QRW
R.K
RNS
ROL
RWI
RYL
SUPJJ
UB1
V2E
W8V
W99
WIH
WIK
WJL
WQJ
WRC
WXSBR
XG1
XV2
ZZTAW
~IA
~WT
1OB
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7SR
7TB
7U5
8BQ
8FD
F28
FR3
JG9
L7M
7X8
ID FETCH-LOGICAL-c4955-f21420e0016083edc94ce6916699aaab135f0cd64dfa85ccd1b5922f0ba1cbb63
IEDL.DBID DR2
ISSN 1549-3296
IngestDate Fri Aug 16 22:04:56 EDT 2024
Fri Oct 25 02:43:10 EDT 2024
Thu Sep 26 15:48:24 EDT 2024
Sat Sep 28 07:43:09 EDT 2024
Sat Aug 24 00:55:45 EDT 2024
Wed Oct 30 09:46:30 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License 2006 Wiley Periodicals, Inc. J Biomed Mater Res, 2006.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4955-f21420e0016083edc94ce6916699aaab135f0cd64dfa85ccd1b5922f0ba1cbb63
Notes istex:60CF1469CA373AA4935CDEA613DC45E6D47629DA
Confocal Core at the Case Comprehensive Cancer Center - No. P30 CA43703
ArticleID:JBM30905
NIH Grant NIH/NIBIB - No. EB 00279
ark:/67375/WNG-81S2X7GV-4
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PMID 16817192
PQID 29514211
PQPubID 23500
PageCount 7
ParticipantIDs proquest_miscellaneous_68909536
proquest_miscellaneous_29514211
crossref_primary_10_1002_jbm_a_30905
pubmed_primary_16817192
wiley_primary_10_1002_jbm_a_30905_JBM30905
istex_primary_ark_67375_WNG_81S2X7GV_4
PublicationCentury 2000
PublicationDate 15 September 2006
PublicationDateYYYYMMDD 2006-09-15
PublicationDate_xml – month: 09
  year: 2006
  text: 15 September 2006
  day: 15
PublicationDecade 2000
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: United States
PublicationTitle Journal of biomedical materials research. Part A
PublicationTitleAlternate J. Biomed. Mater. Res
PublicationYear 2006
Publisher Wiley Subscription Services, Inc., A Wiley Company
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
References Shi L, Ardehali R, Caldwell KD, Valint P. Mucin coating on polymeric material surfaces to suppress bacterial adhesion. Colloids Surf B: Biointerf 2000; 17: 229-239.
Palmer RR, Lewis AL, Kirkwood LC, Rose SF, Lloyd AW, Vick TA, Stratford PW. Biological evaluation and drug delivery of cationically modified phospholipid polymers. Biomaterials 2004; 25: 4785-4796.
Sapatnekar S, Kieswetter KM, Merritt K, Anderson JM, Cahalan L, Verhoeven M, Hendriks M, Fouache B, Cahalan P. Blood-biomaterial interactions in a flow-system in the presence of bacteria: Effect of protein adsorption. J Biomed Mater Res 1995; 29: 247-256.
Vacheethasanee K, Marchant RE. Surfactant polymers designed to suppress bacterial (Staphylococcus epidermidis) adhesion on biomaterials. J Biomed Mater Res 2000; 50: 302-312.
Higashi JM, Wang IW, Shlaes DM, Anderson JM, Marchant RE. Adhesion of Staphylococcus epidermidis and transposon mutant strains to hydrophobic polyethylene. J Biomed Mater Res 1998; 39: 341-350.
Nilsson M, Frykberg L, Flock JI, Pei L, Lindberg M, Guss B. A fibrinogen-binding protein of Staphylococcus epidermidis. Infect Immunol 1998; 66: 2666-2673.
Vuong C, Voyich JM, Fischer ER, Braughton KR, Whitney AR, DeLeo FR, Otto M. Polysaccharide intercellular adhesion (PIA) protects Staphylococcus epidermidis against major components of the human innate immune system. Cell Microbiol 2004; 6: 269-275.
Kaper HJ, Busscher HJ, Norde W. Characterization of poly(ethylene oxide) brushed on glass surfaces and adhesion of Staphylococcus epidermidis. J Biomater Sci Polym Ed 2003; 14: 313-324.
Bergkvist M, Carlsson J, Oscarsson S. Surface-dependent conformations of human plasma fibronectin adsorbed to silica, mica, and hydrophobic surfaces, studies with use of atomic force microscopy. J Biomed Mater Res A 2003; 64: 349-356.
Li DQ, Lundberg F, Ljungh A. Characterization of vitronectin-binding proteins of Staphylococcus epidermidis. Curr Microbiol 2001; 24: 361-367.
Patel JD, Ebert M, Stokes K, Ward R, Anderson JM. Inhibition of bacterial and leukocyte adhesion under shear stress conditions by material surface chemistry. J Biomater Sci Polym Ed 2003; 14: 279-295.
Costerton JW. Introduction to biofilm. Int J Antimicrob Agents 1999; 11: 217-221.
Gottenbos B, Grijpma DW, van der Mei HC, Feijen J, Busscher HJ. Antimicrobial effects of positively charged surfaces on adhering Gram-positive and Gram-negative bacteria. J Antimicrob Chemother 2001; 48: 7-13.
Li DQ, Ljungh A. Binding of human clusterin by Staphylococcus epidermidis. FEMS Immunol Med Microbiol 2001; 31: 197-202.
Garrett Q, Chatelier RC, Griesser HJ, Milthorpe BK. Effect of charged groups on the adsorption and penetration of proteins onto and into carboxymethylated poly(HEMA) hydrogels. Biomaterials 1998; 19: 2175-2186.
Vuong C, Otto M. Staphylococcus epidermidis infections. Microbes Infect 2002; 4: 481-489.
Vacheethasanee K, Temenoff JS, Higashi JM, Gary A, Anderson JM, Bayston R, Marchant RE. Bacterial surface properties of clinically isolated Staphylococcus epidermidis strains determine adhesion on polyethylene. J Biomed Mater Res 1998; 42: 425-432.
Brodbeck WG, Patel J, Voskerician G, Christenson E, Shive MS, Nakayama Y, Matsuda K, Ziats NP, Anderson JM. Biomaterial adherent macrophage apoptosis is increased by hydrophilic and anionic substrates in vivo. Proc Nat Acad Sci USA 2002; 99: 10287-10292.
Brodbeck WG, Voskerician G, Ziats NP, Nakayama Y, Matsuda K, Anderson JM. In vivo leukocyte cytokine mRNA responses to biomaterials are dependent on surface chemistry. J Biomed Mater Res A 2003; 6: 320-329.
Li DQ, Lundberg F, Ljungh A. Binding of vitronectin and clusterin by coagulase-negative staphylococci interfering with complement function. J Mater Sci: Mater Med 2001; 12: 979-982.
Rose SF, Lewis AL, Hanlon GW, Lloyd AW. Biological responses to cationically charged phosphorylcholine materials in vitro. Biomaterials 2004; 25: 5125-5135.
Mack D, Fischer W, Krokotsh A, Leopold K, Hartmann R, Egge H, Laufs R. The intercellular adhesion involved in biofilm accumulation of Staphylococcus epidermidis is a linear β-1,6-linked glucosaminoglycan: Purification and structural analysis. J Bacteriol 1996; 178: 175-183.
Brodbeck WG, Nakayama Y, Matsuda K, Colton E, Ziats NP, Anderson JM. Biomoaterial surface chemistry dictates adherent moncyte/macrophage cytokine expression in vitro. Cytokine 2002; 18: 311-319.
Arciola CR, Campoccia D, Gamberini S, Donati ME, Montanaro L. Presence of fibrinogen-binding adhesion gene in Staphylococcus epidermidis isolates from central venous catheter-associated and orthopaedic implant-associated infections. Biomaterials 2004; 25: 4825-4829.
Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: A common cause of persistent infections. Science 1999; 284: 1318-1322.
Vandecasteele SJ, Peeterman WE, Merckx R, Van Eldere J. Expression of biofilm-associated genes in Staphylococcus epidermidis during in vitro and in vivo foreign body infections. J Infect Dis 2003; 188: 730-737.
Yongli C, Xiufang G, Nanming Z, Tingying Z, Xinqi S. Conformational changes of fibrinogen adsorption onto hydroxyapatite and titanium oxide nanoparticles. J Colloid Interf Sci 1999; 214: 38-46.
Haas R, Culp LA. Binding of fibronectin to gelatin and heparin: Effect of surface denaturation and detergents. FEBS Lett 1984; 174: 279-283.
Ljungh A, Moran AP, Wadstrom T. Interactions of bacterial adhesions with extracellular matrix and plasma proteins: pathogenic implications and therapeutic possibilities. FEMS Immunol Med Microbiol 1996; 16: 117-126.
Soltys-Robitaille CE, Ammon DMJr., Valint PLJr., Grobe GLIII. The relationship between contact lens surface charge and in-vitro protein deposition levels. Biomaterials 2001; 22: 3257-3260.
Piehler J, Brecht A, Hehl K, Gauglitz G. Protein interactions in covalently attached dextran layers. Colloids Surf B: Biointerf 1999; 13: 325-336.
Keselowsky BG, Collard DM, Garcia AJ. Surface chemistry modulates fibronectin conformation and directs integrin binding and specificity to control cell adhesion. J Biomed Mater Res A 2003; 66: 247-259.
Heilmann C, Hussain M, Peters G, Gotz F. Evidence for autolysin-mediated primary attachment of Staphylococcus epidermidis to a polystyrene surface. Mol Microbiol 1997; 24: 1013-1024.
Baugh L, Vogel V. Structural changes of fibronectin adsorbed to model surfaces probed by fluorescence resonance energy transfer. J Biomed Mater Res A 2004; 69: 525-534.
2002; 18
2004; 25
2004; 69
1997; 24
2002; 99
2000; 50
2003; 14
2004; 6
2002; 4
1999; 284
2001; 48
2001; 22
1996; 16
2001; 24
1998; 42
1998; 66
1998; 39
1998; 19
1984; 174
2000; 17
2003; 6
1999; 13
1999; 11
1995; 29
2001; 12
1999; 214
1996; 178
2003; 188
2003; 64
2001; 31
2003; 66
e_1_2_6_31_2
e_1_2_6_30_2
e_1_2_6_18_2
e_1_2_6_19_2
e_1_2_6_12_2
e_1_2_6_35_2
e_1_2_6_13_2
e_1_2_6_34_2
e_1_2_6_10_2
e_1_2_6_33_2
e_1_2_6_11_2
e_1_2_6_32_2
e_1_2_6_16_2
e_1_2_6_17_2
e_1_2_6_14_2
e_1_2_6_15_2
e_1_2_6_20_2
e_1_2_6_8_2
e_1_2_6_7_2
e_1_2_6_9_2
e_1_2_6_29_2
e_1_2_6_4_2
e_1_2_6_3_2
e_1_2_6_6_2
e_1_2_6_5_2
e_1_2_6_24_2
e_1_2_6_23_2
e_1_2_6_2_2
e_1_2_6_22_2
e_1_2_6_21_2
e_1_2_6_28_2
e_1_2_6_27_2
e_1_2_6_26_2
e_1_2_6_25_2
References_xml – volume: 17
  start-page: 229
  year: 2000
  end-page: 239
  article-title: Mucin coating on polymeric material surfaces to suppress bacterial adhesion
  publication-title: Colloids Surf B: Biointerf
– volume: 16
  start-page: 117
  year: 1996
  end-page: 126
  article-title: Interactions of bacterial adhesions with extracellular matrix and plasma proteins: pathogenic implications and therapeutic possibilities
  publication-title: FEMS Immunol Med Microbiol
– volume: 18
  start-page: 311
  year: 2002
  end-page: 319
  article-title: Biomoaterial surface chemistry dictates adherent moncyte/macrophage cytokine expression
  publication-title: Cytokine
– volume: 66
  start-page: 247
  year: 2003
  end-page: 259
  article-title: Surface chemistry modulates fibronectin conformation and directs integrin binding and specificity to control cell adhesion
  publication-title: J Biomed Mater Res A
– volume: 12
  start-page: 979
  year: 2001
  end-page: 982
  article-title: Binding of vitronectin and clusterin by coagulase‐negative staphylococci interfering with complement function
  publication-title: J Mater Sci: Mater Med
– volume: 69
  start-page: 525
  year: 2004
  end-page: 534
  article-title: Structural changes of fibronectin adsorbed to model surfaces probed by fluorescence resonance energy transfer
  publication-title: J Biomed Mater Res A
– volume: 14
  start-page: 313
  year: 2003
  end-page: 324
  article-title: Characterization of poly(ethylene oxide) brushed on glass surfaces and adhesion of
  publication-title: J Biomater Sci Polym Ed
– volume: 48
  start-page: 7
  year: 2001
  end-page: 13
  article-title: Antimicrobial effects of positively charged surfaces on adhering Gram‐positive and Gram‐negative bacteria
  publication-title: J Antimicrob Chemother
– volume: 4
  start-page: 481
  year: 2002
  end-page: 489
  article-title: infections
  publication-title: Microbes Infect
– volume: 24
  start-page: 361
  year: 2001
  end-page: 367
  article-title: Characterization of vitronectin‐binding proteins of
  publication-title: Curr Microbiol
– volume: 14
  start-page: 279
  year: 2003
  end-page: 295
  article-title: Inhibition of bacterial and leukocyte adhesion under shear stress conditions by material surface chemistry
  publication-title: J Biomater Sci Polym Ed
– volume: 66
  start-page: 2666
  year: 1998
  end-page: 2673
  article-title: A fibrinogen‐binding protein of
  publication-title: Infect Immunol
– volume: 25
  start-page: 4785
  year: 2004
  end-page: 4796
  article-title: Biological evaluation and drug delivery of cationically modified phospholipid polymers
  publication-title: Biomaterials
– volume: 188
  start-page: 730
  year: 2003
  end-page: 737
  article-title: Expression of biofilm‐associated genes in during in vitro and in vivo foreign body infections
  publication-title: J Infect Dis
– volume: 42
  start-page: 425
  year: 1998
  end-page: 432
  article-title: Bacterial surface properties of clinically isolated strains determine adhesion on polyethylene
  publication-title: J Biomed Mater Res
– volume: 174
  start-page: 279
  year: 1984
  end-page: 283
  article-title: Binding of fibronectin to gelatin and heparin: Effect of surface denaturation and detergents
  publication-title: FEBS Lett
– volume: 24
  start-page: 1013
  year: 1997
  end-page: 1024
  article-title: Evidence for autolysin‐mediated primary attachment of to a polystyrene surface
  publication-title: Mol Microbiol
– volume: 19
  start-page: 2175
  year: 1998
  end-page: 2186
  article-title: Effect of charged groups on the adsorption and penetration of proteins onto and into carboxymethylated poly(HEMA) hydrogels
  publication-title: Biomaterials
– volume: 22
  start-page: 3257
  year: 2001
  end-page: 3260
  article-title: The relationship between contact lens surface charge and in‐vitro protein deposition levels
  publication-title: Biomaterials
– volume: 64
  start-page: 349
  year: 2003
  end-page: 356
  article-title: Surface‐dependent conformations of human plasma fibronectin adsorbed to silica, mica, and hydrophobic surfaces, studies with use of atomic force microscopy
  publication-title: J Biomed Mater Res A
– volume: 284
  start-page: 1318
  year: 1999
  end-page: 1322
  article-title: Bacterial biofilms: A common cause of persistent infections
  publication-title: Science
– volume: 178
  start-page: 175
  year: 1996
  end-page: 183
  article-title: The intercellular adhesion involved in biofilm accumulation of is a linear β‐1,6‐linked glucosaminoglycan: Purification and structural analysis
  publication-title: J Bacteriol
– volume: 29
  start-page: 247
  year: 1995
  end-page: 256
  article-title: Blood–biomaterial interactions in a flow‐system in the presence of bacteria: Effect of protein adsorption
  publication-title: J Biomed Mater Res
– volume: 11
  start-page: 217
  year: 1999
  end-page: 221
  article-title: Introduction to biofilm
  publication-title: Int J Antimicrob Agents
– volume: 25
  start-page: 4825
  year: 2004
  end-page: 4829
  article-title: Presence of fibrinogen‐binding adhesion gene in Staphylococcus epidermidis isolates from central venous catheter‐associated and orthopaedic implant‐associated infections
  publication-title: Biomaterials
– volume: 39
  start-page: 341
  year: 1998
  end-page: 350
  article-title: Adhesion of and transposon mutant strains to hydrophobic polyethylene
  publication-title: J Biomed Mater Res
– volume: 13
  start-page: 325
  year: 1999
  end-page: 336
  article-title: Protein interactions in covalently attached dextran layers
  publication-title: Colloids Surf B: Biointerf
– volume: 6
  start-page: 320
  year: 2003
  end-page: 329
  article-title: leukocyte cytokine mRNA responses to biomaterials are dependent on surface chemistry
  publication-title: J Biomed Mater Res A
– volume: 31
  start-page: 197
  year: 2001
  end-page: 202
  article-title: Binding of human clusterin by
  publication-title: FEMS Immunol Med Microbiol
– volume: 25
  start-page: 5125
  year: 2004
  end-page: 5135
  article-title: Biological responses to cationically charged phosphorylcholine materials in vitro
  publication-title: Biomaterials
– volume: 99
  start-page: 10287
  year: 2002
  end-page: 10292
  article-title: Biomaterial adherent macrophage apoptosis is increased by hydrophilic and anionic substrates
  publication-title: Proc Nat Acad Sci USA
– volume: 6
  start-page: 269
  year: 2004
  end-page: 275
  article-title: Polysaccharide intercellular adhesion (PIA) protects against major components of the human innate immune system
  publication-title: Cell Microbiol
– volume: 214
  start-page: 38
  year: 1999
  end-page: 46
  article-title: Conformational changes of fibrinogen adsorption onto hydroxyapatite and titanium oxide nanoparticles
  publication-title: J Colloid Interf Sci
– volume: 50
  start-page: 302
  year: 2000
  end-page: 312
  article-title: Surfactant polymers designed to suppress bacterial ( ) adhesion on biomaterials
  publication-title: J Biomed Mater Res
– ident: e_1_2_6_33_2
  doi: 10.1006/jcis.1999.6159
– ident: e_1_2_6_9_2
  doi: 10.1046/j.1365-2958.1997.4101774.x
– ident: e_1_2_6_15_2
  doi: 10.1002/jbm.820290216
– ident: e_1_2_6_23_2
  doi: 10.1163/156856203321478847
– ident: e_1_2_6_30_2
  doi: 10.1093/jac/48.1.7
– ident: e_1_2_6_20_2
  doi: 10.1126/science.284.5418.1318
– ident: e_1_2_6_2_2
  doi: 10.1016/S1286-4579(02)01563-0
– ident: e_1_2_6_14_2
  doi: 10.1016/j.biomaterials.2003.12.034
– ident: e_1_2_6_27_2
  doi: 10.1073/pnas.162124199
– ident: e_1_2_6_6_2
  doi: 10.1023/A:1012865200458
– ident: e_1_2_6_12_2
  doi: 10.1016/j.biomaterials.2003.12.016
– ident: e_1_2_6_11_2
  doi: 10.1016/S0927-7765(99)00046-6
– ident: e_1_2_6_5_2
  doi: 10.1016/j.biomaterials.2003.11.056
– ident: e_1_2_6_19_2
  doi: 10.1046/j.1462-5822.2004.00367.x
– ident: e_1_2_6_3_2
  doi: 10.1111/j.1574-695X.1996.tb00128.x
– ident: e_1_2_6_31_2
  doi: 10.1002/jbm.a.10537
– ident: e_1_2_6_4_2
  doi: 10.1086/377452
– ident: e_1_2_6_26_2
  doi: 10.1002/(SICI)1097-4636(19981205)42:3<425::AID-JBM12>3.0.CO;2-F
– ident: e_1_2_6_28_2
  doi: 10.1002/jbm.a.10425
– ident: e_1_2_6_18_2
  doi: 10.1046/j.1365-2958.2003.03401.x
– ident: e_1_2_6_25_2
  doi: 10.1002/(SICI)1097-4636(19980305)39:3<341::AID-JBM1>3.0.CO;2-J
– ident: e_1_2_6_17_2
  doi: 10.1128/jb.178.1.175-183.1996
– ident: e_1_2_6_13_2
  doi: 10.1016/S0142-9612(01)00163-6
– ident: e_1_2_6_35_2
  doi: 10.1016/0014-5793(84)81173-4
– ident: e_1_2_6_7_2
  doi: 10.1111/j.1574-695X.2001.tb00520.x
– ident: e_1_2_6_32_2
  doi: 10.1002/jbm.a.30026
– ident: e_1_2_6_29_2
  doi: 10.1006/cyto.2002.1048
– ident: e_1_2_6_34_2
  doi: 10.1002/jbm.a.10423
– ident: e_1_2_6_8_2
  doi: 10.1128/IAI.66.6.2666-2673.1998
– ident: e_1_2_6_21_2
  doi: 10.1163/156856203763572725
– ident: e_1_2_6_22_2
  doi: 10.1002/(SICI)1097-4636(20000605)50:3<302::AID-JBM3>3.0.CO;2-1
– ident: e_1_2_6_24_2
  doi: 10.1016/S0927-7765(99)00121-6
– ident: e_1_2_6_16_2
  doi: 10.1016/S0142-9612(98)00125-2
– ident: e_1_2_6_10_2
  doi: 10.1007/s002840010230
SSID ssj0026052
Score 2.2275462
Snippet The formation of biofilm, a structured community of bacteria enclosed in slime, is a significant virulence factor in medical‐device‐centered infection. The...
The formation of biofilm, a structured community of bacteria enclosed in slime, is a significant virulence factor in medical-device-centered infection. The...
Abstract The formation of biofilm, a structured community of bacteria enclosed in slime, is a significant virulence factor in medical‐device‐centered...
SourceID proquest
crossref
pubmed
wiley
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 836
SubjectTerms adhesion
Bacterial Adhesion
Biocompatible Materials - chemistry
biofilm
Biofilms
biomaterials
Blood
Humans
infection
S. epidermidis
Staphylococcus epidermidis - physiology
Surface Properties
Title Effects of biomaterial surface chemistry on the adhesion and biofilm formation of Staphylococcus epidermidis in vitro
URI https://api.istex.fr/ark:/67375/WNG-81S2X7GV-4/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjbm.a.30905
https://www.ncbi.nlm.nih.gov/pubmed/16817192
https://search.proquest.com/docview/29514211
https://search.proquest.com/docview/68909536
Volume 78A
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZQucCB9yM8fag4IGUbJ7GTHHm1VaX2ABT2Zo3HtlhKE7RJEOLXM3Z2ty0CJLhFih0lM-PMN_bMN4xt-zyg3ArSurEqLRXKtLaFIoWo2mUSVAUhUDw8UvvH5cFczle5OaEWZuKH2Gy4hZUR_9dhgYPpd85IQz-b0xnMiqyJDKaiqEJC1-u3G_KoANTjWSdFQGmRN2pVnUd3ds7NveCPLgfRfv8d2LyIXaPz2b0-dVjtI2dhyDk5mY2DmeGPXxgd__u7brBrK1jKX0x2dJNdcu0tdvUcWeFtNk5Exz3vPA9F-zBE4-X9uPSAjuO6dRzvWk6wkoP95MJeHIfWhhl-8eWUb4olw2MI6ZKWyZ12iGPPXehWS4ZnFz1ftPzbYlh2d9jx7pv3r_bTVdOGFCnWkqkPHG6Zi_2r68JZbEp0ikCoahoAMKKQPkOrSuuhlohWGNnkuc8MCDRGFXfZVtu17j7jiD4rHZLuyIcqlxtLYA1RVCgQrMCEba9Vp79O3Bx6YmHONUlRg45STNizqNbNGFiehHS2SuqPR3u6Fu_yebX3QZcJe7rWuyaBhZMTaF039jonHFpSqPznEapuAnOfSti9yWDO3kjVoiIcnbDnUe1_e1V98PIwXjz4l8EP2ZVpY6hJhXzEtobl6B4TVBrMk7gifgI2kRAh
link.rule.ids 315,783,787,1378,27936,27937,46306,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZQewAOvB_hVR8qDkjZ5mUnPvJql9LdA7SwN8sZO2L7SNAmQYhfz4yzu20RIMEtUpzImUfm89jzDWPbVUIoNzdhoawMMwkiLGwqUSGycJEwMje0UJxM5fgo25-J2TLhRrUwAz_EOuFGnuH_1-TglJDeOWcNPS7PRmaURoooTDfR4VNq3fDmw5o-iqC63-3ENVCYJkou6_Pwzs6Fhy9FpE0S7vffwc3L6NWHn92bTK8mPpw6ORn1XTmCH79wOv7_l91iN5bIlL8cTOk2u-LqO-z6Bb7Cu6wfuI5b3lSc6vZN5-2Xt_2iMuA4rLrH8abmiCy5sV8cpeO4qS09Uc1Pz_i6XpJeg2AXFY0RtQHoW-6oYS3anp23fF7zb_Nu0dxjR7tvD1-Pw2XfhhBwuSXCimjcIudbWBeps6AycBJxqFTKGFPGqagisDKzlSkEgI1LoZKkikoTQ1nK9D7bqJvaPWQcoIoyB6g8DKPSJaVFvAYQ5xCDsTEEbHulO_11oOfQAxFzolGK2mgvxYA993pdjzGLEzrRlgv9ebqni_hjMsv3PuksYFsrxWsUGG2emNo1fasThKIZrpb_PEIWisj7ZMAeDBZzPiNZxDlC6YC98Hr_21T1_quJv3j0L4O32NXx4eRAH7ybvn_Mrg15IhXG4gnb6Ba9e4rIqSufeff4CRS9FDk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZQKyE48H4ECvWh4oCUbZyHkxwpsC2FrhBQ2JvljG2xlCbVJkGov74zzu62RYAEt0ixLWdmnPnG9nzD2JaLCeXmOixKI8NUQhYWJpGoEFnYKNMy1xQoHkzk3mG6P82mi7s5lAsz8EOsNtxoZfj_NS3wE-O2z0lDv1XHIz1KopIYTNdTidiXMNGHFXsUIXV_2IkhUJjEpVyk5-Gb7QudLzmkdZLtz9-hzcvg1Xuf8c2hxGrrSQvp0snRqO-qEZz-Qun43x92i91Y4FL-YjCk2-yKre-w6xfYCu-yfmA6bnnjOGXt685bL2_7udNgOSxrx_Gm5ogruTZfLW3GcV0b6uFm34_5KluShkGoi2pGf9oA9C23VK4WLc_MWj6r-Y9ZN2_uscPx608v98JF1YYQMNjKQkckbpH1BayLxBooU7ASUagsS611JZLMRWBkapwuMgAjqqyMYxdVWkBVyeQ-W6ub2j5kHMBFqQXUHTpRaePKIFoDEDkI0EZAwLaWqlMnAzmHGmiYY4VSVFp5KQbsmVfrqo2eH9F9tjxTXya7qhAf42m--1mlAdtc6l2hwOjoRNe26VsVIxBNMVb-cwtZlETdJwP2YDCY8xnJQuQIpAP23Kv9b1NV-zsH_uHRvzTeZFffvxqrd28mbx-za8MmURmKbIOtdfPePkHY1FVP_eI4A9KxEug
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+biomaterial+surface+chemistry+on+the+adhesion+and+biofilm+formation+of+Staphylococcus+epidermidis+in+vitro&rft.jtitle=Journal+of+biomedical+materials+research.+Part+A&rft.au=MacKintosh%2C+Erin+E&rft.au=Patel%2C+Jasmine+D&rft.au=Marchant%2C+Roger+E&rft.au=Anderson%2C+James+M&rft.date=2006-09-15&rft.issn=1549-3296&rft.volume=78&rft.issue=4&rft.spage=836&rft_id=info:doi/10.1002%2Fjbm.a.30905&rft_id=info%3Apmid%2F16817192&rft.externalDocID=16817192
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-3296&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-3296&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-3296&client=summon